
MSc Computer Science
Final Project

Protecting against internal
attackers with hardware-aided
proxy re-encryption

Martijn Brattinga

Supervisors:
Florian Hahn (UT)
Faiza Bukhsh (UT)
Edmond Varwijk (RDW)
Gert Maneschijn (RDW)

July, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science,
University of Twente

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 System requirements . 4

1.2.1 Functional requirements . 4
1.2.2 Security requirements . 5
1.2.3 Out of scope . 5

1.3 Research questions . 5
1.4 Contributions . 6
1.5 Outline . 6

2 Background 7
2.1 Trust boundaries . 7

2.1.1 End-to-end encryption . 7
2.1.2 Database encryption . 8
2.1.3 Desired trust boundary . 9

2.2 Trusted Execution Environment (TEE) . 9
2.2.1 Overview . 9
2.2.2 Intel Software Guard Extensions (SGX) 10

2.3 Proxy Re-Encryption (PRE) . 12
2.4 TEE database search . 13

2.4.1 Overview . 13
2.4.2 Always Encrypted with Enclaves (AE) 14

3 Architecture 16
3.1 Overview . 16
3.2 Components . 18

3.2.1 TEE Re-encrypt (PREnclave) . 18
3.2.2 DB driver . 20
3.2.3 API . 21

3.3 Organizational impact . 23
3.3.1 Implementation at service provider 23
3.3.2 Key management . 23

3.4 Summary . 24

4 Results 26
4.1 Functionality . 26
4.2 Performance . 27

4.2.1 PREnclave . 28
4.2.2 SQL driver . 30

2

4.2.3 Demo API . 33
4.2.4 Summary . 34

4.3 Security . 34
4.3.1 Initial scenario . 34
4.3.2 Proposed architecture . 35
4.3.3 Cryptography . 35
4.3.4 Summary . 36

5 Discussion & future work 37
5.1 Discussion . 37
5.2 Limitations . 37

5.2.1 Architectural limitations . 37
5.2.2 Research limitations . 38

5.3 Future work . 39

6 Conclusion 41

A Enclave EDL 45

3

Abstract

This research proposes an architecture that eliminates sensitive plaintext data at a trusted
service provider. This architecture reduces the impact of data breaches, as they do not
involve plaintext data. A typical use-case for the proposed architecture is a service provider
which allows authorized third parties to request data from and insert data into a database
via an API. The service provider is in control of the data and can use regular SQL func-
tionality on encrypted data, while no plaintext is present on both the API application
server and the database server. An Intel SGX trusted execution environment extends the
Microsoft Always Encrypted cryptography by re-encrypting sensitive data towards third
parties. Results shows that the additional security eliminates plaintext leakage at the price
of an acceptable performance impact, demonstrating the feasibility and potential of the
proposed architecture in practice.

Keywords: Trusted Execution Environment, Intel SGX, Proxy Re-Encryption, Always
Encrypted, Database Encryption, Secure Architecture

Chapter 1

Introduction

While digitization brings many opportunities and advantages, it comes with its risks as
well. The HaveIBeenPwned1 website that catalogues public data breaches contains more
than 12 billion breached accounts, some only containing usernames, others including more
sensitive data like addresses, phone numbers, and even passwords. Leakage of personal
data poses privacy risks, and sales on the dark web [25] indicate that personal information
is valuable to criminals or whoever is interested. Businesses are required to protect against
data breaches in order to prevent reputation loss or fines up to 10 million Euro or 2% of
the firm’s worldwide annual revenue from the GDPR[29].

Encryption is a widely used technique to prevent the exposure of sensitive data. A
mathematical operation transforms plaintext data into a ciphertext, which only parties
with a valid key can decrypt back into the original plaintext. The plaintext value can-
not be deduced from properly encrypted data. When the ciphertext leaks without the
corresponding decryption key, the sensitive data remains protected.

End-to-end encryption is a type of encryption where data always is encrypted between
two endpoints. No intermediary can ever obtain the plaintext data. A common use case is
encrypted chat applications[7], where only the sender and receiver possess the decryption
keys of their messages. Encrypted data storage is another use case of end-to-end encryption,
where the data owner encrypts it’s data before storing it in untrusted places. In these
applications, the service provider can provide the service without requiring access to the
plaintext data.

While end-to-end encryption allows for great privacy, the lack of functionality on en-
crypted data makes such schemes not applicable to all scenarios. Furthermore, the end-
users fully control who can access their data, while sometimes the service provider should
have this control instead. For example, we can consider a governmental organization which
is entitled by law to have access to its citizens’ data. End-users must never be able to cir-
cumvent such access. The end-to-end encryption guarantee in which not even service
providers can access the data is too strong in this case, as the government as a service
provider is and has to be trusted.

This research focuses on the common scenario where a service provider stores data in a
database and allows authorized third parties to request that data. The service provider is
trusted and in control of the decryption keys, but nevertheless not trusted to be completely
secure. Therefore, we require the service provider to only have encrypted data on its servers
at all times. Furthermore, we assume that the service provider is capable of storing the
decryption keys securely. Various mechanisms exists to support such secure key storage,
from cloud based key stores to physical hardware security modules.

1https://haveibeenpwned.com

1

https://haveibeenpwned.com

Besides encrypting data on a hard disk (at rest) and while being sent over a network
(in transit), recent technology such as the Always Encrypted functionality of the Microsoft
SQL Server (MsSQL) allows data to be encrypted while it is being processed (in use) at
the database server. While this allows the database server to only have encrypted data, the
application server still decrypts all data. The plaintext data and corresponding decryption
keys are present on the application servers in use, which leaves the service provider an
attractive target for attackers.

This research aims to reach a trust boundary where besides the authorized third parties
only a secure key management system at the service provider is included. This extends the
security provided by technology such as Always Encrypted over the application server, such
that the complete service provider has no plaintext on its systems at any time. Figure 1.1
shows our desired architecture with the service provider consisting of an application and a
database server. This research proposes an architecture where plaintext data is protected
under encryption at all times until an authorized third party obtains the data and decrypts
it locally. Such an architecture meets our defined trust boundary.

Our architecture is based on various state-of-the-art components from the literature.
Microsoft Always Encrypted with Enclaves is used to allow encryption of sensitive columns
in a SQL database. Instead of decrypting the query results at the application server, our
architecture re-encrypts the data using a Trusted Execution Environment such that the
security guarantees from the database server are extended to the application server. To
the best of our knowledge, this paper is the first to combine all these techniques to obtain
our desired minimal trust boundary.

The results show that implementing such an architecture is feasible. While the addi-
tional security comes at a performance cost, the performance penalty might be justified in
scenarios demanding a high level of privacy and security.

The rest of this paper only considers the service provider and the transit to authorized
third parties, thus the security of the data once arrived at the third parties is out of scope.
If the service provider requires access to plaintext data itself, we separate that part from
the service provider and consider it to be an external authorized third party. For instance,
a customer service centre is not considered part of the service provider in our terms, but
rather a separate third party that can request data from the service provider to do its job,
like any other third party. While it may seem like the functionality of the service provider
is limited, any functionality that requires access to the data can be considered a third party
and therefore is still possible.

1.1 Motivation

When data is encrypted at all times any data breach at the service provider only involves
encrypted data. This reduces the impact of data breaches, as leakage of encrypted data
is assumed to be less of a problem compared to leakage of plaintext data. End-to-end
encryption can bring such guarantees but is not applicable to all scenarios. In scenarios
where the service provider should have full control over the data and where functionality
such as searching through a database is required, traditional end-to-end encryption schemes
do not suffice.

In contrast to end-to-end encryption, which distrusts every party except the end user,
our architecture trusts the service provider. The service provider even is responsible for
key management, which makes sure that lost user keys or unwillingness to share data do
not reduce data availability to authorized parties. While the service provider does not need
access to the plaintext data itself, in theory, it has access to the decryption keys and can

2

Service provider

Citizen

Citizen

Web App

Read

API

DB connector

Update

Organization

Application

Employee Systems

Desired

Data

Database server

DBMS

Secure key store

Application
server

Key
management

Figure 1.1: Architectural overview of the desired system. Red (solid) indicates
encrypted data, green (dashed) indicates plaintext data.

provide the data to any authorized third party. Note that trusting the service provider
does not mean trusting their systems to be secure, but rather allowing the service provider
to securely manage and thus have access to decryption keys. Both the application server
and database server are not trusted to be secure. Only a secure key management system
is trusted to be secure, to store keys and to transfer encrypted keys towards the servers
that require them.

Besides putting less trust in the servers’ security, a common use case for database
encryption is outsourcing the database to a cloud service provider. Since the database
server only handles encrypted data, we do not necessarily have to trust the cloud service

3

provider. With our architecture, the application server could be outsourced to a cloud
service provider as well, as it does not handle any sensitive plaintext data either. The
benefits that cloud computing brings can be used to a greater extend, while maintaining
privacy and security.

1.2 System requirements

This section sets the requirements our architecture should meet in order to be considered
practical in real-world applications. These requirements are divided into security and func-
tional requirements and will be used as a guideline to develop and analyze the prototype.
A list of non-requirements that are out of scope is given as well.

As secure system design always is a trade-off between security, functionality, and per-
formance, the requirements have been broadly ordered by importance. Functional require-
ments up to and including FR4 and security requirements up to and including SR2 are
the bare minima required to create a system that can show the feasibility of our design.
The other requirements should be met in order to consider the system to be practical for a
broader range of scenarios. The availability of the data (FR3) and the required through-
put are of utmost importance for many scenarios, and they should be balanced against the
provided security.

1.2.1 Functional requirements

FR0 The system should allow for storage of at least millions of data records, including
sensitive and non-sensitive columns

FR1 The system should allow authorized third parties to request and get a subset of the
data, at least millions of records per day

FR2 The system should allow authorized third parties to insert new data

FR3 The system should guarantee availability of all data

FR4 The system should support backups and recovery

FR5 The system should allow authorized third parties to update individual data entries
under encryption

FR6 The system should require third parties to have to make minimal changes to their
IT services, at most to include key management and decryption

FR7 The system should require at most limited changes to applications behind the database
connector

FR8 The system should integrate with existing services

FR9 The system should allow underlying components to be changed in the future

FR10 The system should be maintainable by the service provider’s ICT employees.

FR11 The system should be measurable in terms of performance

FR12 The system should provide clear error messages without revealing sensitive data

FR13 The system should log data access without revealing sensitive data

4

1.2.2 Security requirements

SR0 The system should support encryption of sensitive attributes

SR1 The system should not have plaintext sensitive data present on the system

SR2 The system should store decryption keys securely. I.e. no unauthorized party should
be able to obtain the decryption keys

SR3 The system should prevent unauthorized parties to learn anything about sensitive
data from leaked data

SR4 The system should support key-rollover for all keys used. I.e. all keys must be
replaceable on demand.

SR5 The system should be based on underlying cryptography that is at least CPA secure.
I.e. attackers that can encrypt known plaintext data should not learn anything from
the resulting ciphertexts.

SR6 The system should be developed according to current secure software development
best practices, e.g. as defined by NIST[27]

SR7 The system should support cryptographic agility. I.e. the cryptographic primitives
must be replaceable

SR8 The system should prevent a persistent attacker at the application or database
provider from learning anything about sensitive data

SR9 The system should detect successful attacks that compromise the security

1.2.3 Out of scope

NR0 The system is a prototype that shows feasibility of such a system, and does not have
to be production ready

NR1 The system does not have to hide access patterns to sensitive data, as they are
deliberately logged

NR2 The system’s cryptographic access control does not have to replace the traditional
access control, and assumes third parties to be authenticated and authorized

NR3 The system does not prevent data leakage at third parties

1.3 Research questions

During the design and evaluation of the proposed architecture, the following research ques-
tions have been answered:

RQ0 How can leakage of sensitive data be mitigated at a trusted service provider?

RQ1 What functional and security requirements should a secure system for sensitive data
meet?

RQ2 What cryptographic tools exist and how can they be combined to reach these re-
quirements?

5

RQ3 How does the proposed architecture compare to a system without encryption?

RQ3.1 How does the proposed architecture compare to a system without encryption in
terms of functionality?

RQ3.2 How does the proposed architecture compare to a system without encryption in
terms of performance?

RQ3.3 How does the proposed architecture compare to a system without encryption in
terms of security?

1.4 Contributions

This research aims to contribute in three ways. First, we present an architecture that
combines various state-of-the-art components in order to obtain our desired trust boundary.
This architecture can be used as a starting point for further improvements or alternative
designs. Second, we implemented a prototype that shows the feasibility of our architecture.
The source code can serve as a starting point for refined or alternative implementations.
Lastly, the prototype is analysed in terms of functionality, performance, and security. Such
an analysis can help decision-makers with the trade-off between functionality, security, and
performance that has to be made in all secure software development projects.

1.5 Outline

This section will give a brief overview of the rest of the paper. Chapter 2 presents the
various building blocks used in this research, as well as related work. After this, details
of our proposed architecture are explained in chapter 3. In addition, this section shows
the organizational impact for an organization adopting the architecture. Chapter 4 shows
the result of our functionality, performance, and security analysis. This paper ends with
limitations and suggestions for future work in chapter 5 and a conclusion in chapter 6.

6

Chapter 2

Background

This chapter starts with an overview of the trust boundaries briefly introduced in the
introduction. After this, section 2.2 introduces Trusted Execution Environments. Section
2.3 describes the technique of Proxy Re-Encryption, and finally encrypted database search
is explained in section 2.4.

2.1 Trust boundaries

In order for a system to be considered secure we require that no sensitive data can leak,
which can either be achieved by disallowing components to access sensitive data, or by
allowing components to access sensitive data but assuming that it prevents any sensitive
data leakage. Components that do have access to sensitive data should be trusted to be
secure, as insecurity can reveal sensitive data. We define the trust boundary of a system
as the set of components that need to be considered secure, e.g. which are trusted not
to be compromised. If a component is untrusted, thus outside of the trust boundary,
it can be compromised without revealing any sensitive data. Therefore, the smaller the
trust boundary, the more components can be compromised without affecting the system
security guarantees. The following sections shows three variants of trust boundaries, with
our desired trust boundary in 2.1.3.

2.1.1 End-to-end encryption

The idea of end-to-end encryption is that only the end-user(s) possess the decryption keys,
thus they are the sole owner of their data. Only the users and parties delegated by the
users can access the data, which prevents any attacker, service provider, or other man-in-
the-middle from accessing the data. As only end users have access to plaintext sensitive
data, they are the only ones included in the trust boundary.

Various applications promise to offer end-to-end encryption (E2EE), including the mes-
saging apps WhatsApp and Signal[7] as well as email, calendar, and cloud storage provider
Proton[15]. These application are similar to our use case, as they provide an application
and store user data. However, the service provider for these applications must not neces-
sarily have access to plaintext data, in contrast to our target scenario. E2EE protects data
in transit, at rest, and in use. One should note that computations on encrypted data are
often impossible with traditional schemes.

While E2EE provides a high degree of privacy, the technique cannot be applied in all
scenarios. For instance, the responsibility for key management including access control and
backups lies utterly at the end-user. As long as there are no techniques in place that allow

7

all citizens, including elderly and non-technical people, to manage keys easily and safely, it
is hard to make them responsible for key management. Proton stores private keys of users
encrypted under their account password[15], such that as long as a user has its password,
it can always recover its private key and access its data. Proton explicitly states that when
an account password is lost, only if a recovery phrase or recovery file has been configured
[24] data can be accessed. Signal proposed a technique called Secure Value Recovery, that
allows encrypted data protection with an easy-to-remember 4-digit pin-code while still
preventing brute-force attacks[17]. These techniques make it easier for users not to get
locked out of their data. Nevertheless, the final responsibility always lies with the user,
which is not desired in our target scenario as this does not provide guaranteed availability
(FR3). If a user losses their key, the data is lost.

Furthermore, if a user is not willing to share their data with authorized third parties,
the data would be inaccessible to them. In the case of a governmental organization storing
data about their citizens, both losing data and the ability to withhold data is problematic.
The data is not only important to the users but also to all other authorized third parties.

2.1.2 Database encryption

Database encryption allows data in a database to be encrypted while maintaining the
required database functionality. Database encryption exists in various flavours and can
protect a database in various ways. Transparent Data Encryption (TDE) protects data at
rest against theft of physical storage media and attackers that have access to the database
systems[9]. More recently proposed solutions encrypt queries before sending them to the
database server, which processes the encrypted query on encrypted data, and data is only
decrypted back at the application server. In addition to protection at rest, the data is
protected in transit between the application and database, and in use at the database
server. The database server never deals with any plaintext data and nor has it access
to decryption keys. This setting is particularly helpful when data is outsourced to cloud
service providers, as they do not have to be trusted with sensitive plaintext data.

The difficulty for database encryption is to perform database functionality, such as
searching for specific data, under encryption. CryptDB was the first to present search
functionality by using Property Preserving Encryption such as Deterministic Encryption
(DET) and Order-Preserving Encryption (OPE)[22]. Liu et. al. use a combination of ho-
momorphic encryption and order-preserving encryption[16]. Poddar et. al. propose Arx, a
strongly encrypted database system using searchable encryption[21], while Kamara et. al.
create a system that supports a subset of SQL queries using structured encryption[14]. Ba-
jaj et. al. introduced TrustedDB, which uses a Trusted Execution Environment (TEE)[6],
an idea which is also used by StealthDB[28] and the latest version of Microsoft Always
Encrypted[3], a production-ready database for the industry. The latter is used in our
architecture, and further explored in section 2.4.2.

Since the proposed database encryption in the literature does not require plaintext data
at the database server, it does not have to be trusted to be secure in order to guarantee the
system’s security. The application server on the other hand is trusted, as it handles plain-
text data and keys. This leaves the application server an attractive target for attackers.
This trust boundary, which includes the application server, does not fulfil our requirements
(SR1). The next section describes our desired trust boundary.

8

2.1.3 Desired trust boundary

Our desired architecture allows the service provider to only use encrypted data, not only
at rest but in transit and in use as well. As the application and database server only
handle encrypted data, they are both excluded from the trust boundary. Since the service
provider must be in control of the data and decryption keys, it must have a secure key
store. This secure key store is assumed to be safe against all unauthorized parties and thus
is included in our trust boundary. Actually, this secure key store is the root of trust for
the entire system. A Hardware Security Module or a secure key vault, for example, could
be used as a secure key store.

Compared to the database encryption trust boundary (section 2.1.2), the key manage-
ment system instead of the application server is trusted. The former is easier to secure,
which improves the architecture’s security. The key management system does not need an
internet connection and can be completely offline most of the time. Furthermore, the key
management system requires less software decreasing the chance of vulnerabilities in the
architecture’s critical part.

With this trust boundary, any leaked data snapshot at the service provider only contains
encrypted sensitive data, and thus unauthorized parties will not learn anything about
the sensitive data. This mitigates many common security vulnerabilities such as SQL
injection[12] or insider threats. As no plaintext is present at the service provider’s servers,
no attack can obtain plaintext data. Even persistent attackers with access to the full
system cannot deduce any information besides access patterns (NR1).

While the service provider does not handle any plaintext data, it has access to the secure
key storage and thus in theory could decrypt all data. The application server and database
server are excluded from the trust boundary, but the service provider as an organization
should be trusted. From a user perspective, the privacy guarantees are weaker compared
to end-to-end encryption (section 2.1.1) which distrusts the service provider. However,
with current technologies end-to-end encryption is not feasible for every scenario, and
the proposed architecture is a great security improvement compared to no encryption or
database-only encryption. Table 2.1 shows an overview of the properties of the three
discussed trust boundaries.

Component Desired trust boundary DB encryption E2EE
Database server Untrusted Untrusted Untrusted
Application server Untrusted Trusted Untrusted
Secure key store Trusted Trusted -
Authorized 3rd party Trusted Trusted Trusted
Database functionality Yes Yes No

Table 2.1: Comparison of our desired trust boundary, database encryption, and
end-to-end encryption. The bold components are included in the trust boundary,
and are trusted not to be compromised to guarantee the system’s security.

2.2 Trusted Execution Environment (TEE)

2.2.1 Overview

A trusted execution environment (TEE) is a tamper-resistant processing environment that
guarantees the authenticity of the executed code, the integrity of the runtime state, and the

9

confidentiality of its code, data and runtime states stored on persistent memory [26]. On
a normal CPU, users with root access can inspect both the operations it performs and the
data that is in memory. A TEE on the other hand allows operations to be performed while
even users with the highest privileges cannot see the data and operations processed within
the TEE. While no one can observe computations directly, cryptographic techniques ensure
that the enclave is benign. In other words, a TEE can securely perform computations
without allowing anyone to see what code and data is used, and while being certain that
the TEE does exactly what is desired. TEEs are promising for use in cryptography, as
they have performance benefits over pure cryptographic approaches as shown by Sabt et.
al.[26] for functional encryption, Zhang et. al. for proxy re-encryption[30], and Fuhry et.
al. for searching over encrypted data[10].

Among popular TEEs are Intel’s SGX[13][8] and ARM’s TrustZone[4]. Intel SGX is
further explained in section 2.2.2, as this is the technology used in the proposed prototype.
TEEs are comparable to Hardware Security Modules (HSM) but more flexible. TEEs
can be programmed by a developer in contrast to an HSM which only allows predefined
functionality. Solutions based on TEEs rely on the security of the underlying TEEs.
Various attacks exist in the literature against TEEs[20], but research and development of
mitigations are active as well.

Instead of performing costly operations on a ciphertext, a TEE can decrypt, then per-
form operations on the plaintext, and finally encrypt data within its trusted environment.
This is an alternative to cryptography that protects data in use. No one can peak in the
TEE, not even privileged users or adversaries with physical access to the processor, and
thus no one can see the plaintext. This can be considered to have the same security as
performing operations directly on a ciphertext, as long as security definitions of the various
TEEs available are taken into account. Since decryption, performing an operation, and
encryption is usually significantly faster than performing complex operations on ciphertext,
TEEs can be promising in our scenario as well.

2.2.2 Intel Software Guard Extensions (SGX)

Intel Software Guard Extensions (SGX) is the Trusted Execution Environment implemen-
tation of the Intel CPU manufacturer. Costan et. al. have provided an extensive overview
of the SGX architecture[8], of which this section gives a brief summary. The main features
include secure memory protection, attestation to ensure enclave authenticity, and sealing
to store sensitive data. We chose to use the SGX technology for our prototype, since most
servers run on an Intel CPU[1]. Furthermore, the authors develop on Intel based machines
which have native support for SGX technology.

With SGX the trusted part of the code is placed and executed in an enclave. This
enclave is isolated and thus provides integrity and confidentiality of computations within
the enclave, both for the data and code. This isolation is supported by the hardware of
the CPU. Whereas normally root users can access individual memory pages, access to the
enclave’s memory pages is blocked by the hardware. The application’s code base is split into
a trusted and an untrusted part. The main reason for this division is the limited memory
availability of the current SGX generation. Furthermore, the less code in the trusted code
base, the smaller the chance of vulnerabilities that can compromise this trusted part. The
untrusted code-base can call the trusted enclave functions for sensitive parts of the code.
For example cryptography and calculations on the plaintext can be done inside the TEE.
The idea is that sensitive data never leaves the trusted part unless protected by encryption.

Using attestation, an application can confirm that it communicates with specific soft-
ware within an SGX enclave. This can be used to cryptographically ensure that the enclave

10

an application is communicating with is benign. Attestation works by validating a signed
hash of the enclave using the manufacturer’s attestation service. Intel has to be trusted
for SGX’s security, as it is key in the attestation process. Attestation works both locally,
attesting an enclave on the same machine, as well as remotely towards another machine.
When an application sets up a secure channel using attestation to a remote machine, it can
send sensitive data to the enclave while it is guaranteed that the untrusted remote hard-
ware cannot observe the sensitive data. The application can use this secure communication
channel to exchange secrets with an enclave.

The hardware design of the Intel CPU ensures that no untrusted parts can access the
trusted enclave memory pages. Since hardware access checks happen after software access
checks, SGX lets the untrusted operating system handle initialization and management of
enclave memory page. If the untrusted operating system tries to access trusted memory
in a way that is not allowed, the access is blocked by the hardware.

Since the amount of protected enclave memory is limited, a mechanism is designed
that allows storage of sensitive memory contents on disk. This feature is called sealing and
allows enclave memory pages to be evicted to untrusted memory. Before evicting pages to
untrusted memory, the content is encrypted. Once encrypted, the memory can safely be
stored outside of the secure enclave pages, since any adversaries inspecting the memory
can only obtain encrypted information. When the data is needed again, the operating
system loads back the encrypted page into the secure memory and decrypts it. During this
process the confidentiality, integrity, and freshness of the data are preserved. The SGX
design ensures that only the enclave that sealed the memory, or any future versions of that
enclave, can decrypt the sensitive memory contents.

Intel SGX enclaves are developed using a low-level programming language, mostly us-
ing C++. These enclaves can be called from higher-level languages such as C#. Several
Software Development Kits are available, such as Intel’s SGX SDK 1, Microsoft’s OpenEn-
clave 2 that support development for multiple underlying enclave techniques, and Fortanix’
rust-sgx 3 and Incubator’s Teaclave 4 that support development in the Rust programming
language.

In order to use Intel SGX for a production system, a commercial license has to be bought
from Intel. Without such a license, the hardware memory isolation is disabled, which
destroys all the security guarantees provided by SGX. The costs and exact requirements
for a license is currently unknown to the authors. Costan et. al. provide critique for this
licensing system, as it "allows Intel to force itself as an intermediary in the distribution of
all enclave software", while this is not required for the functionality[8].

Nillson et. al.[20] have published a survey on SGX attacks. The impact of the attacks
shown in the survey varies, some including the extraction of secret seal keys and attestation
keys from the signed quoting enclave. For all attacks included in the survey mitigations
have been proposed. While some mitigations are implemented by Intel, others require
consciousness during application design. Costan et. al. provided an analysis of several
types of vulnerabilities, and conclude that it is not trivial to mitigate against advanced
side-channel attacks[8].

1https://www.intel.com/content/www/us/en/developer/articles/guide/
getting-started-with-sgx-sdk-for-windows.html

2https://github.com/openenclave/openenclave
3https://github.com/fortanix/rust-sgx
4https://github.com/apache/incubator-teaclave-sgx-sdk

11

https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-sgx-sdk-for-windows.html
https://www.intel.com/content/www/us/en/developer/articles/guide/getting-started-with-sgx-sdk-for-windows.html
https://github.com/openenclave/openenclave
https://github.com/fortanix/rust-sgx
https://github.com/apache/incubator-teaclave-sgx-sdk

2.3 Proxy Re-Encryption (PRE)

Proxy re-encryption (PRE) allows a proxy to convert a ciphertext encrypted under one key
into a ciphertext encrypted under another key, without seeing the underlying plaintext [5].
Such schemes are based on public-key encryption, where each party has a public key and
a private key. To encrypt a message, one can take the public key of the receiver to encrypt
a message. Only the receiver can decrypt the message, as their private key is required to
decrypt a message. If a message is encrypted under A’s public key, only A can decrypt
that message. Using PRE, A can ask a proxy to transform the ciphertext such that B can
decrypt it, without alowing the proxy to see the plaintext. The first party (A) uses their
private key to generate a delegation key for the other party’s (B) public key, which enables
the proxy to re-encrypt a message such that only the second party (B) can decrypt it with
their private key. A visualization of PRE can be found in Figure 2.1.

Encrypt

A

B

Re-encrypt

Create delegate key
A to B

OkDecrypt

No

Decrypt

Figure 2.1: Proxy Re-Encryption: a ciphertext can be Re-Encrypted without
seeing plaintext.

An alternative to public key encryption is symmetric key encryption, which requires all
parties involved to have access to the shared private key. If standard symmetric encryption
is used to encrypt data in a database, decryption keys have to be given to all third parties
to let them decrypt the data. However, now an attacker can simply become a third party,
obtain the decryption key, and decrypt all encrypted data. This does not prevent leakage
of sensitive data, but only postpones it. A solution would be to encrypt every entry in the
database under a different key, such that each third party can only decrypt its own data,
however now authorized third parties that require access to many user’s data need to store
an absurd amount of keys.

PRE allows us to split the data flow from one encrypted data flow into two encrypted
data flows with a proxy in-between. The database is encrypted under a private database
key. As no third party possesses that private decryption key, they cannot read this data.
The application server that interacts with the database can act as a proxy and re-encrypt
the data towards the specific third party that requested the data, allowing only that party
to decrypt the data.

Zhang et. al. found that TEEs can be used for proxy re-encryption[30]. Instead of
having a proxy that re-encrypts from A to B using a delegate key, the proxy uses a TEE
to decrypt the ciphertext CA, and then re-encrypts it with the public key of B into CB.
Assuming the underlying TEE is secure, this satisfies the goal that no plaintext is ever

12

visible on the systems of the proxy. A visualization of TEE PRE can be found in Figure
2.2.

Encrypt

A

B

OkDecrypt

No

Decrypt

Decrypt Encrypt

Trusted Execution Environment

Figure 2.2: Proxy Re-Encryption using a trusted execution environment: instead
of re-encryption, a ciphertext is decrypted and encrypted within the TEE.

PRE with TEEs is different from cryptographical PRE in several aspects. No delegate
keys are involved, but instead, the secret key of the first data flow is used directly in the
TEE to perform re-encryption. Furthermore, TEE PRE works with many cryptographic
schemes, which can easily be exchanged in the future when one protocol turns out to be
insecure. The cryptography used for the first data flow between database and proxy can
even differ from the one used in the second data flow between proxy and third party. This
property allows for a wide variety of encryption algorithms, which increases the chances of
interoperability with the database and third parties and supports functional cryptography
such as homomorphic encryption for additional functionality.

2.4 TEE database search

2.4.1 Overview

Various researchers have proposed to use TEEs for searching through encrypted data. In-
stead of using searchable encryption schemes the TEE decrypts the data and then performs
the necessary computations for searching. Bajaj et. al. claim that the computation inside
secure hardware processors is orders of magnitude cheaper than equivalent cryptographic
operations performed on the provider’s unsecured common server hardware[6]. This section
shows various proposals from the literature that involve database searching with TEEs.
The database search technique used in our proposed architecture is further explored in
section 2.4.2.

TrustedDB proposes a trusted hardware-based database where the client transparently
encrypts a query, which is offloaded to a Request Handler inside a secure co-processor
(SCPU)[6]. This SCPU decrypts, parses, and optimizes the query, after which the private
parts of the query are handled by the SCPU database engine, while the public queries
are handled by the host server. The final result is assembled, encrypted, signed, and send
back to the client by the Query Dispatcher within the SCPU. The performance overhead
measured is up to 10x compared to databases without encryption[6].

Priebe et. al. propose EnclaveDB, which as the name implies uses enclaves, the secure
parts of Intel SGX, to process database queries[23]. The client establishes a session key with
the secure enclave on the server-side and uses this key to encrypt the query parameters.

13

In contrast to TrustedDB, EnclaveDB does not require additional hardware, as Intel SGX
is used as opposed to a special co-processor. Furthermore, EnclaveDB ensures integrity
and freshness of computation next to confidentiality, and the system has been designed to
keep context switches low to reduce performance overhead.

StealthDB by Vinayagamurthy et. al. uses a TEE as well, but only the primitive
comparison operations are outsourced to the trusted part[28]. While EnclaveDB assumes
the existence of large enclaves, much greater than existing today, StealthDB is practical to
implement on the current generation Intel SGX. Only outsourcing primitive operations to
an enclave greatly reduced the size of the trusted code base, counting only 5k lines of which
1.5k running in enclaves. However, this also results in leakage of the plaintext outputs for
every primitive comparison operation to the untrusted server.

Fuhry et. al. have proposed EncDBDB, a searchable encrypted, fast, compressed, in-
memory database that relies on Intel SGX enclaves[11]. In-memory databases rely mainly
on memory instead of hard disks to store data. They focus on range queries, but EncDBDB
also supports join, count, aggregation and average calculations. Furthermore, EncDBDB
target usage is for heavy read-only usage and is implemented on the column-oriented
database Monet, but insertions, deletions and updates are possible as well.

Antonopoulos et. al. have proposed the Microsoft SQL Database supporting Always
Encrypted with Secure Enclaves[3]. This is a production-ready database, that supports
column-level encryption and uses a TEE to search through the encrypted data. Despite
some limitations that can be relevant depending on the application, this system demon-
strates the feasibility of TEE search in practice. This database is further explored in section
2.4.2.

2.4.2 Always Encrypted with Enclaves (AE)

Always Encrypted (AE) is a feature of the production-ready Microsoft SQL Server that
uses column granularity encryption to provide cryptographic data protection guarantees[3],
while maintaining most SQL functionality. The first release of AE used deterministic de-
cryption (DET), which only allowed for equality comparisons. Unfortunately, deterministic
encryption turns out to reveal quite some information about the underlying plaintext[19].
Besides the fact that only a small subset of the SQL functionality was available in this first
version of AE, the weak cryptography makes it inadequate for our use case.

In the release of Always Encrypted with Secure Enclaves, a Trusted Execution Environ-
ment is used at the database engine that can do much more operations, while maintaining
the protection guarantees. The application server has an SQL client which transforms the
query by encrypting sensitive fields and sends the query to the database server. Decryption
keys required are sent over a secure channel from the SQL client to the TEE at the database
server. Now the database with the TEE can perform the query operations, and send back
the results. Note that all operations on plaintext happen inside the enclave, and thus are
invisible to the database server. The on-premise version of AE uses Virtualization-based
Security enclaves[18], while the Azure cloud version can use Intel SGX enclaves[8].

Besides the promising features of AE, there are still some limiting factors. Only one
encryption scheme is currently supported, namely AES256 with HMAC SHA256. The
HMAC is used to distinguish legitimate ciphertext from garbage and does not aim to
guarantee data integrity according to the authors[3]. There are more implementation
limitations, but their significance depends on the application requirements.

The default setup of AE requires the database connector at the application server to
have access to the decryption keys. These keys have to be sent to the TEE at the database
provider. As our required trust boundary cannot include decryption keys at the application

14

server, these keys should either be sent directly from the secure key storage or from a TEE
at the database driver. Furthermore, the database driver should not decrypt the data, as
this reveals plaintext at the application server. Instead, the data should be re-encrypted.
These modifications are the basis for our architecture, decribed in the next chapter.

15

Chapter 3

Architecture

This chapter gives a detailed description of our proposed architecture and the prototype
implementation. The first section provides an overview of the architecture, after which
the individual components are explained in detail. After the technical details, this chapter
explains the organizational impact of the proposed architecture.

3.1 Overview

We propose an architecture that consists of a REST API at an application server, a
database server, and a third party. Upon third parties request the API retrieves data
from a database and responds with JSON formatted data back to the user. Requests can
both involve retrieving and inserting data.

Figure 3.2 shows an overview of the architecture. The secure key store and key manage-
ment at the top right are considered secure and trusted, while everything else within the
service provider is considered insecure. The third-party organization itself is out-of-scope
for this research.

An example scenario for the proposed architecture is a governmental organization that
keeps track of its citizens’ driver’s licenses. The database consists of three tables: Users,
DriversLicenses, and DriversLicenseCodes. Each user has a social security number (BSN),
and personal information such as first name, last name, birth date, birth place, postal
code, and house number. Each driver’s license is linked to one single user and furthermore
contains the start date, the expiration date, and a penalty points number. Finally, each
driver’s license can have multiple driver’s license codes, which represent the various cate-
gories of vehicles a driver’s license is valid for. These codes contain an optional text field
for extra information. A diagram of the database can be found in Figure 3.1.

For simplicity, only the BSN, last name, and postal code fields are considered sensi-
tive. Therefore, these are the only fields that are encrypted. For simplicity, these fields
are encrypted under the same key. The encryption scheme is randomized since random
initialization vectors are used per entry.

The architecture is based on the Microsoft SQL Database (MsSQL), which supports
Always Encrypted (AE) with Enclaves (described in section 2.4.2). MsSQL is a mature
database that supports a great part of the SQL functionality under encryption of sensitive
columns (SR0). A cloud version is available on Azure. MsSQL supports the required
data functionality such as inserting (FR2), updating (FR5), and retrieving data (FR1).
With this database the architecture has a trust boundary as described in section 2.1.2. The
database server will not be discussed in detail, since it is already described and implemented
by Microsoft[3].

16

Figure 3.1: Database scheme used in our database. The User.BSN, User.lastname,
and User.postal_code columns are sensitive and encrypted.

A major modification required in our architecture is the key provisioning to the MsSQL
enclave. In the original AE technology the application server provisions the database de-
cryption key to the database server. However, in our design the trusted key management
system should provision that database key. Otherwise, the key would be available in plain-
text on the application server, which does not satisfy our requirements (SR1). The enclave
can cache and even store the key using the Intel SGX sealing functionality. Therefore, the
key has to be provisioned only on initialization or when keys are rolled-over.

To obtain our desired trust boundary (from section 2.1.3), proxy re-encryption at the
application server extends the AE encryption. Instead of encrypting and decrypting data
at the application server, the application server merely re-encrypts the data. This makes
sure that there is no plaintext on the application server (SR1). As explained in section 2.3
a TEE is used for re-encryption. Proxy re-encryption within an enclave is very versatile, as
the cryptography between the database and application as well as between the application
and the third party can be chosen as desired. This allows insecure cryptography to be
changed in the future, or switch databases once other mature databases are developed
(SR7, FR9). Section 3.2.2 explains the modifications made to the database driver in
more detail. The prototype has an C# implementation of re-encryption next to the TEE
implementation, which is only meant for analysis.

A typical data flow involving both sensitive data in the request and in the response
starts at the organization at the bottom of Figure 3.2. The third-party encrypts sen-
sitive request parameters using a randomly generated session key (1). The third-party
encrypts this session key as well, using the application server’s public key, and sends both
the encrypted request and the encrypted session key to the application server (2). The
application server calls the TEE to re-encrypt the parameters towards the database (3)
and makes an SQL query to the database server with the re-encrypted parameters (4).

The database server uses AE with enclaves to process the query (5) and sends back
the encrypted results to the application server (6). The application server now re-encrypts
the data inside the TEE using a new session key (7). After this, the application server
encrypts the session key under the third parties public key and sends the encrypted data
and session information back to the third party (8). Finally, the third party decrypts the
session key and uses this key to decrypt the data (9). During this whole process, plaintext
is only available within the TEEs, and not anywhere else on the service provider (SR1).

As state before in chapter 1, if the service provider as an organization requires access
to the plaintext data, we considered that part of the service provider like any other third
party. For instance, the data flow of a customer service centre of the service provider is
identical to the one described above.

Section 3.2.1 discusses the enclave that re-encrypts the data at the application provider
(PREnclave). After this, section 3.2.2 discusses the integration of the PREnclave into the

17

database driver. Finally, section 3.2.3. explains the integration of this modified database
driver into a common DotNet application.

Service provider

MsSQL

Database server

MsSQL with AE

MsSQL
enclave

5

API

DB driver

Organization

Application

Employee Systems

Architecture

Secure key store

Application
server

Enc/Dec

TEE Re-Encrypt

Key
management

1

2

3

4

6

7

8

9

Figure 3.2: Architectural overview. Red (solid) indicates encrypted data, green
(dashed) indicates plaintext data.

3.2 Components

3.2.1 TEE Re-encrypt (PREnclave)

The PREnclave securely re-encrypts the data from the client to the database server and
vice versa. Encrypted request parameters which are re-encrypted towards the database
are defined as the forward proxy re-encryption, while encrypted response data that is

18

re-encrypted back to the client is defined as backward proxy re-encryption.
The cryptography between the third party and the application server, and between the

application and database server both use AES, however, in slightly different ways. The
third-party uses AES256 in CBC mode with a random session key and IV to encrypt to-
wards the application server. The third-party encrypts the session key and initialization
vector (IV) with RSA2048 with OaepSHA256 padding towards the application server, such
that the application server can decrypt them using its private key. While AES and RSA
are well-established schemes for exactly this use case, other combinations of schemes are
possible as well. For instance, if the cryptography should be changed to quantum secure
schemes in the future or key lengths should be extended, this is possible in our design
(SR7). The encryption between the application server and the database server mainly
depends on the support of the database server. Currently, MsSQL with AE only sup-
ports authenticated encryption based on AES256 in CBC mode, with an HMAC SHA256
hash. There is no key encapsulation mechanism, so the secret key is retrieved at both the
application and the database server from a key store.

The PREnclave is implemented in C++ using the Intel SGX SDK. The the Intel SGX
SSL library1 provides the cryptographic functions based on OpenSLL. To allow passing
data from and to the DotNet database driver, two additional dynamically linked libraries
(DLLs) are implemented. This is required because DotNet with C# is managed code (i.e.
it uses a runtime to manage memory) while the TEE code is written in C++ which is
unmanaged code. Furthermore, the enclave bridge functions can only contain C linkages,
not C++, and should be 100% native code2. As explained in section 2.2.2, no commercial
license is obtained from Intel for this research. The enclave is build and tested in pre-
release mode, which enables all compiler optimizations, but does not enable the hardware
isolation features.

The EnclaveLink is a C++/CLI DLL that is mainly responsible for marshaling data
between the managed C# code and the unmanaged C++ code. This DLL consists of both
a managed and a native part. When the caller moves byte arrays of data in and out of
the enclave, the EnclaveLinkManaged class creates a pint_ptr from the given byte array
which is passed to the EnclaveLinkNative class. This native class is responsible for calling
the enclave bridge functions and for managing the running enclave. On the first enclave
function call, it creates a new enclave. Subsequent enclave functions calls make use of the
same enclave, and a mutex makes sure that per EnclaveLink instance only one enclave
can be active and only one thread can access this enclave at a time. This ensures that
one enclave represents one client-enclave and enclave-database session at a time, and that
different sessions can not influence each other. When the EnclaveLinkManaged class is not
used anymore by the caller, the enclave is destroyed as well.

The EnclaveBridge is a DLL containing pure C code and acts as a bridge between the
EnclaveLink and the PREnclave. Besides specifying the interface, all linkages functions
are generated by the SGX SDK upon compilation.

The enclave itself specifies functions to set-up the enclave and functions to do the re-
encryption. The Enclave Definition Language (EDL) file describes all external callable
functions and can be found in the appendix A. Data in and out the enclave is passed by
a pointer to an unsigned char array, together with the length of the data. The length is
required for the enclave, since all untrusted memory is copied to trusted enclave memory
before using the data. All functions return a status code, which indicates success or failure

1https://github.com/intel/intel-sgx-ssl
2https://www.intel.com/content/www/us/en/developer/articles/technical/

using-enclaves-with-callbacks-via-ocalls.html

19

https://github.com/intel/intel-sgx-ssl
https://www.intel.com/content/www/us/en/developer/articles/technical/using-enclaves-with-callbacks-via-ocalls.html
https://www.intel.com/content/www/us/en/developer/articles/technical/using-enclaves-with-callbacks-via-ocalls.html

of the operation.
The enclave requires various keys to operate. For simplicity, we allow the private

RSA key and the database AES key to be set from the untrusted environment in our
prototype. In a real-world deployment such key provisioning should be done using SGX
remote attestation features. Therefore our exact implementation of the key provisioning
function is not of interest. Once key provisioning using remote attestation is implemented,
key caching using SGX sealing features could be implemented as well to minimize the
number of times a secret key has to be transferred. Both the RSA private key of the
enclave and the AES database key remain constant until keys are rotated.

Communication from and back to the client uses session keys. We define two ses-
sions analogous to the two re-encryption directions: a forward session for communication
from the third party to the database, and a backward session for communication from the
database to the third party. Before the re-encryption functions can be called, the sessions
should be initialized. The caller provides the encrypted session key, encrypted session IV,
and public key of the client to the enclave. The enclave decrypts the key and IV, and
initializes an AES object for the forward communication. The enclave creates a new AES
object with a random key and IV for the backward communication. The enclave encrypts
the backward session key and IV towards the third parties public key, such that they can
be retrieved by the untrusted environment.

The forward proxy re-encryption first decrypts the given encrypted data. Since the
plaintext size is unknown before decryption, but always equal or less than the ciphertext
size, a buffer of the size of the ciphertext is created. After decryption, this buffer is
trimmed to the final size. The enclave then encrypts the plaintext towards the database
with the cryptography used by Always Encrypted, which involves generating a random IV,
encrypting the plaintext, calculating a MAC, and combining everything. Details can be
found in the Always Encrypted documentation[3]. The backward re-encryption is similar,
but the other way around. Upon decrypting the ciphertext from the database, the enclave
calculates a MAC and compares this hash to the given hash.

3.2.2 DB driver

Our architecture uses the Microsoft.Data.SqlClient database driver, which is a popular
driver used in the DotNet framework. The driver already supports Always Encrypted
functionality, where parameters are encrypted and results are decrypted at the application
server. The source code is mainly written in C# and available publicly3, which allows
extension with our PREnclave. Other database drivers could be used instead, as long as
they support AE or similar technology.

With typical usage of the database driver, an application creates a SqlConnection,
creates one or more SqlCommands, possibly sets SqlParameters, executes the command(s),
and reads the results.

When the application creates a SqlConnection, a connection string that includes various
settings such as the database address, credential type, and security settings is provided in
the constructor. The Always Encrypted functionality can be enabled by providing the Col-
umn Encryption Setting=Enabled; setting. Enabling proxy re-encryption in our modified
database driver works in a similar way, by setting the option Column Encryption PRE Set-
ting=BidirectionalTEE;. The forward and backward re-encryption has been implemented
separately as well, but in order to obtain our desired trust boundary both must be enabled
hence bidirectional.

3https://github.com/dotnet/SqlClient

20

https://github.com/dotnet/SqlClient

When a new SqlConnection object is created and the PRE setting is set, a new En-
claveLinkManaged instance is created, in turn spinning up a new enclave. Each connection,
therefore, contains its own enclave, while multiple commands for this connection share the
same enclave. Upon disposing of the SqlConnection, the enclave is automatically disposed
of as well.

The proposed architecture considers each SqlCommand as a separate session. There-
fore, each command holds information about the encrypted session keys, encrypted session
IVs, as well as the client’s public key. The enclave session function is called with this
information. With this call the enclave sessions as described in section 3.2.1 are initialized.

When PRE is enabled, the database driver re-encrypts instead of the AE encryption
and decryption. This is required because the input and output should not be plaintext,
but ciphertexts under the session key instead. Parameter values are re-encrypted using
the PREnclave in the TDSExecuteRPCAddParameter(...) method before the encrypted
parameter is added to the remote procedure call (RPC). The query with encrypted pa-
rameters is sent to the database server, which processes the requests and responds with
encrypted data. When the application extracts the response data from the SqlDataReader,
the PREnclave backward re-encrypts the values. These locations are chosen for the re-
encryption because this is where original AE code encrypts parameters and decrypts values
as well. Therefore, code such as obtaining information about which database key should be
used and retrieving that database AES key can be re-used. Note that for the first request,
the database AES key is retrieved and provided to the enclave, which is insecure and only
used for simplicity as explained in section 3.2.1.

For evaluation purposes, the re-encryption functionality is implemented in both the
PREnclave and in C#. When PRE without TEE is enabled, the encrypted parameter is
decrypted in C#, and encrypted towards the database using the regular Always Encrypted
functionality. Backward re-encryption uses the regular Always Encryption decryption func-
tionality and encrypts towards the third party in C#. Note that this is only helpful for
our analysis to compare the overhead of re-encryption in general versus the overhead of
TEE PRE. The implementation in C# does not contribute to our desired trust boundary.

3.2.3 API

This section shows how a typical DotNet application can implement the modified database
driver and how this differs from implementing the default database driver with Always
Encrypted enabled. The design goal of the database driver is to require as little devel-
oper effort as possible (FR7), but unlike the AE functionality, a completely transparent
implementation is not possible. Whereas AE does not require any information from the
application server, the PRE version needs to know both the forward session information
in order to decrypt parameters, as well as the public key of the third party to encrypt the
backward session information. This information is provided by the third party and should
be available to the PREnclave, and thus passed through the database driver. Furthermore,
the query parameters and return values do not have the original data types but will be
byte arrays instead. Finally, applications might perform operations on the plaintext values
which are not possible on encrypted data. Databases should be designed with encrypted
columns in mind, and applications should be adapted to encrypted database designs.

An example implementation of the modified database driver is shown in Listing 1. The
connection string in line 3 includes the PRE TEE setting in addition to the default AE
connection string. The public key, encrypted key, and encrypted IV properties are set on
the SqlCommand in lines 5-7. The query contains one single parameter, which is set in
lines 10-12. The column type is explicitly set in line 10, while the encrypted value is set

21

in line 11.
Upon retrieving the values, the types of the encrypted columns are lost. Line 18,20,

and 23 are of type byte array, and use the GetValue(...) function instead of the typed get
function.

1 byte[] enc_symmetric_key, enc_symmetric_IV, pk_client, val;
2

3 using (SqlConnection connection = new SqlConnection(connectionstring +
"Column Encryption PRE Setting=BidirectionalTEE")){↪→

4 using (SqlCommand cmd = connection.CreateCommand()){
5 cmd.CommandText = @"SELECT * FROM users WHERE bsn = @BSN";
6 cmd.PREPublicKey = pk_client;
7 cmd.PREEncryptedSymmetricKey = enc_symmetric_key;
8 cmd.PREEncryptedSymmetricIV = enc_symmetric_IV;
9

10 SqlParameter p = new SqlParameter("@BSN", System.Data.SqlDbType.Int);
11 p.Value = val;
12 cmd.Parameters.Add(p);
13

14 connection.Open();
15 using (SqlDataReader r = cmd.ExecuteReader(){
16 while (r.Read()){
17 int id = reader.GetInt32(r.GetOrdinal("id"));
18 byte[] bsn = (byte[])r.GetValue(r.GetOrdinal("bsn"));
19 string firstname = r.GetString(r.GetOrdinal("firstname"));
20 byte[] lastname = (byte[])r.GetValue(r.GetOrdinal("lastname"));
21 DateTime birth_date = r.GetDateTime(r.GetOrdinal("birth_date"));
22 string birth_place = r.GetString(r.GetOrdinal("birth_place"));
23 byte[] postalcode = (byte[])r.GetValue(r.GetOrdinal("postalcode"));
24 string house_nr = r.GetString(r.GetOrdinal("house_nr"));
25 }
26 }
27 }
28 }

Listing 1: Example implementation of the modified database driver with PRE
TEE enabled.

As mentioned briefly before, our prototype provisions the database key via the original
Always Encrypted functionality in an insecure way. Similarly our prototype provisions
the PREnclave private RSA key from the application server. In a real-life implementation
of the modified database driver, the developer and administrator should make additional
effort for key management.

22

3.3 Organizational impact

3.3.1 Implementation at service provider

Besides technical changes, the implementation of our architecture also has an organiza-
tional impact on the service provider. The off-the-shelf MsSQL database and existing
applications require little changes (see section 3.2.3), thus maintenance of these parts is
not affected much (FR10). The database driver on the other hand requires more devel-
opment and maintenance, which requires a thorough understanding of low-level program-
ming, SGX development, and cryptography. As this is a niche in software development,
current knowledge at a service provider’s IT personnel might be limited. Furthermore, if
the database driver has been customized, every update of the original database driver has
to be integrated into the customized version. This is important, especially for security
and performance updates, and can be time-consuming. If the original developers of the
DotNet database driver would include our proposed additions in the official code-base, the
maintenance is completely outsourced and not an issue for the service provider.

Before an organization can implement the proposed architecture, good key manage-
ment practices should be in place. When the organization already uses Transparent Data
Encryption, which provides encryption at rest, key management probably is already in
place. However, when no data encryption is used yet, such key management should be
designed and implemented. This includes access control to the keys and back-ups. As the
database server itself is untouched in our architecture, existing backup technology can be
used. Currently Always Encrypted supports encrypted back-ups. Data can be both ex-
ported and imported in encrypted or plaintext form. For key management, several options
are available such as Hardware Security Modules, or software key vaults.

As described in the introduction, any internal part of the service provider that uses
the data is considered a regular third party. Therefore, any internal processes that use
the data should be adapted as well. This includes technical applications such as logging
and metrics (FR12, FR11), but also includes business intelligence and customer services.
When a customer service requires access the plaintext sensitive data, it should behave as
an authorized third party and thus make similar modifications as the other third parties
including encrypting requests and decrypting responses.

While the security of a system is improved by implementing the proposed architec-
ture, the functionality and performance might be reduced (see chapter 4 for more details).
Whether the additional security out-weights the disadvantages is mainly a business de-
cision. Chapter 4 aims to provide an adequate security, performance, and functionality
analysis to support such decisions.

3.3.2 Key management

This section provides an overview of all cryptographic keys used in the proposed architec-
ture, of which a summary is given in Table 3.1.

Always Encrypted requires two keys for every encrypted column in the database. Col-
umn Master Keys (CMK) are used to encrypt Column Encryption Keys (CEK), such that
the latter can be stored at the database server. The CMKs are stored securely in a sepa-
rate key store such as Azure Key Vault, Windows Certificate Store, or Hardware Security
Modules (SR2). Always Encrypted uses AES, which is CPA secure (SR5).

Encryption between the service provider and a third party requires a public-key pair
for both sides since key encapsulation is used with a random session key for symmetric
AES encryption. The session key is encrypted using the public key of the other party,

23

such that only that party can decrypt the session key. This approach provides forward
secrecy and is faster since symmetric encryption generally has better performance than
asymmetric encryption. Note that the session key is for one-time use, and does not have
to be stored.

A backup (FR4) can contain either a plaintext version or an encrypted version of
the database. Microsoft SQL server supports backups with encrypted content, and this
option has the least risk in terms of unauthorized data access. However, the availability
of the data depends completely on the availability of the keys. If the main private key
is lost, neither the original database nor the backup can be decrypted, meaning that
all data is lost. Measures could be taken, such as backing up the private key as well.
Good key management practices include such key backups, for instance encrypting the
key and replicating that encrypted version of the key over multiple locations. A plaintext
backup cannot be obtained using the regular backup functionality of MsSQL. Instead, the
export data functionality should be used that does support plaintext exports of the data.
Eventually, the risk of a plaintext backup against the risk of losing the private key should
be weighed against each other.

Key rollover is supported for both the AE and the session encryption (SR4). Key roll-
over is important to limit the risk of the leakage of a single key. If a key is compromised, it
can be changed (rolled-over), such that the compromised key cannot be used to decrypt the
data anymore. Roll-over of the Always Encrypted CMK only requires re-encryption of the
corresponding CEKs. Roll-over of the CEKs requires re-encryption of all corresponding
columns in the database. During these operations the client sees no downtime[3]. Key
rollover for the key between the application provider and 3rd party boils down to changing
the 3rd parties key pair and sharing the new public key with the application provider. As
for the data encryption session keys are used, they roll over each session by definition.

Key Owner Amount Usage Rollover
Column Encryp-
tion Key (CEK)

service
provider

One for each en-
crypted column

Enc/Decrypt
database columns

Re-encrypt DB
column

Column Master
Key (CMK)

service
provider

One for each CEK Enc/Decrypt
CEK

Re-encrypt CEK,
provide to TEE

Session key service
provider

One for each data
request, volatile

Enc/Decrypt
client-service
provider data

-

Service provider
public/private
key pair

service
provider

One Enc/Decrypt ses-
sion key

Publish to 3rd
parties

3rd Party pub-
lic/private key
pair

3rd
party

One for each third
party

Enc/Decrypt ses-
sion key

Share to service
provider, provide
to TEE

Table 3.1: Overview of the keys required in our system

3.4 Summary

The proposed architecture extends database encryption using trusted execution environ-
ment based proxy re-encryption, such that the data remains encrypted from the database
all the way to the third parties. This ensures that no plaintext data is present on either

24

the database server and the application server, which answers our main research question
(RQ0) on how leakage of sensitive data can be mitigated at a trusted service provider.

The Microsoft SQL Server with Always Encrypted is used as our database. This
database supports SQL functionality search as searching through data, logging, and back-
ups, even with encrypted columns. The original AE enabled database driver encrypts
query parameters and decrypts query results. However, this results in plaintext data on
our application server. Our modified database driver instead re-encrypts query parameters
and query results. This re-encryption is performed within an Intel SGX enclave.

Data is protected in transit between third parties and the application server using
session keys, and between the application server and the database server by the Column
Encryption Key. The data data remains encrypted under the CEK at rest at the database
server as well. Since data is not stored at the application server and the third party is
out-of-scope, data protecting at rest at these parts is not applicable. Data in use at the
database server is possible since AE technology uses a TEE. Data remains encrypted during
all operations, and when plaintext data is required, for example when comparing rows on
an encrypted value, the data is decrypted within the TEE. Data in use at the application
server always stays encrypted as well. The data is encrypted under the CEK when received,
re-encrypted within the TEE, and encrypted under a session key when formatting the API
response.

25

Chapter 4

Results

This chapter presents the results of our prototype analysis. First, the functionality of the
architecture is compared to the requirements from section 1.2. After this the performance
of the various components is evaluated. Finally, a security analysis of the architecture is
presented.

4.1 Functionality

Table 4.1 shows an overview of the requirements introduced in section 1.2. The majority of
the requirements have been met or can be met in future extensions of the architecture. The
previous chapter showed which parts of the architecture contribute to which requirements,
while this section focuses on the requirements that are not completely met in our prototype.

Updating data (FR5) is not implemented in the prototype. However, updating data
is a combination of selecting a row and inserting data which both have been implemented
and tested separately. Therefore, updating data should be possible in the architecture as
well.

Third parties need to encrypt and decrypt all incoming and outgoing sensitive data.
While this effort is not negligible, it is the minimum required to eliminate plaintext data at
the service provider (FR6). To help third parties implement this functionality, a library
or example code could be provided. Furthermore, third parties need to have some key
management for their asymmetric private key.

The prototype implementation is not easy to maintain for a service provider (FR10).
The main reason is that a custom version of the database driver is required, that needs to
be kept up to date. Furthermore, implementation and maintenance of the enclave requires
specialised knowledge of low-level programming and cryptography. If the architecture
would be integrated in readily available solutions, just as Always Encrypted is integrated
in the Microsoft.Data.SqlClient driver, maintenance would be greatly improved.

Clear error messages (FR12) have not been implemented in the prototype. However,
the PREnclave returns a status code for each function. These status codes could be
formalized to clear error messages. The database driver error system could be extended
with additional errors thrown by the custom implementation or the PREnclave.

Logging data access (FR13) is not implemented in the prototype. However, all logging
solutions that work for the regular MsSQL database setup should also work for the proposed
architecture. Since encryption is on a per-value basis, the sensitive values in the logs will
be encrypted as well.

The proposed architecture can meet all functional requirements for our system, which
proofs the feasibility of the design. The gained security will be analysed in section 4.3, but

26

first the performance costs are analysed in the next section.

Requirement Description Full-filled
FR0 Store data records Yes
FR1 Request data Yes
FR2 Insert data Yes
FR3 Guaranteed availability Yes
FR4 Support backups Yes
FR5 Update data Possible, not implemented
FR6 Minimal 3rd party IT changes Yes, additional encryp-

tion/decryption and key man-
agement

FR7 Minimal application server changes Yes, set encrypted Key, IV, public
client key

FR8 Integrate with existing services Yes
FR9 Modular components Yes
FR10 Maintainable system Partly
FR11 Measurable performance Yes
FR12 Clear error messages Possible, not implemented
FR13 Log data access Possible, not implemented

Table 4.1: Functional requirements overview for the proposed architecture.

4.2 Performance

An important factor that contributes to the decision whether or not to implement security
measures is the overhead they impose. This section describes performance tests of the
various components involved. These tests are performed at three levels: at the PREnclave,
at the SQL driver that uses the PREnclave, and at the demo API that uses the modified
SQL driver.

All tests are performed on a HP ZBook Studio G5 with an Intel Core i7-8750H 2.20GHz
CPU and 16GB RAM. The computer runs Windows 10 Home 22H2 64-bit. Both the
database and the application server run on the same device. A typical deployment of
our architecture would be on specialized server hardware, and therefore results of the
performance analysis should not be interpreted as absolute values. However, comparison of
the various tests with and without our security components as described in the next sections
can give valuable insights in the feasibility of our architecture. Both our implementation
and evaluation do no not use multi-threading, and during our tests both CPU and memory
usage were well below system limits. An advantage of running both the database and the
application on the same device is that any network latency is excluded from the analysis.

For all tests that involve the database, our database scheme introduced in Figure 3.1
is used. All queries are performed using various database sizes (1000, 10.000, 100.000,
1.000.000, 10.000.000). For tests that are not significantly influenced by the database size
only the results that correspond to the largest database size of 10 million records are shown,
which directly shows compliance with requirement FR0.

The database is initialized with randomly generated data. Each user contains exactly
one drivers license with one drivers license code. The first name, last name, birthplace,
and postal code are random strings of length 6, 8, 10, and 6 respectively. The ID is auto

27

generated, and the BSN is i for the ith row. The house number is a random number below
1000, and the dates are randomly generated dates. The driver’s license penalty points is a
random number between 0 and 2, and the driver’s license code is a random single character.

All tests that are dependent on execution time are executed with a minimum of 1 data
item or row, and a maximum of 1000 items or rows. Based on our example scenario we
assume that most requests will not contain more than 1000 rows or re-encryptions.

4.2.1 PREnclave

The goal of performance testing the proxy re-encryption enclave is to measure the overhead
of re-encryption in isolation. Besides measuring the TEE implementation, similar func-
tionality in C# is implemented such that the two approaches can be compared. In other
words, this analysis shows the additional overhead of re-encryption in a TEE compared to
re-encryption in untrusted code.

The benchmarks are made using the BenchmarkDotNet1 library. All re-encryption
functions of the TEE are called from C#, such that the context switching overhead is
included.

The PREnclave contains both functions that are used for setting-up the enclave and
functions to do the actual re-encryption. The functions that perform the re-encryption are
measured using various input amounts. In this way, the performance of batch operation
is compare against other batch sizes. Furthermore, a full PREnclave invocation including
setting up the entire enclave, re-encrypting towards the database, and re-encrypting back
towards the client is measured, since this represents the real-world usage of the PREnclave.

Set-up

The execution time of the one-time enclave functions are shown in Table 4.2. Creating an
enclave takes the majority of the set-up time, with an average of 31.6 ms. Initializing a
new forward and backward AES session for communication between the third party and
the application server adds another 5.9ms. Retrieving the encrypted AES key and IV from
the enclave only entails passing data from the TEE to the managed code, which is a sub
1 ms operation. Setting and retrieving the private RSA key are only implemented in our
prototype for simplicity, and in a real-world deployment other mechanisms such as SGX
remote attestation should be used. Furthermore, these operation only happen infrequently
as the keys can be cached by the enclave. Therefore, the results are of less importance.
The total column is the time required to set-up and initialize an enclave, thus excluding
the time that setting and getting the RSA key takes.

An enclave can be set-up on average under 37 ms, and 95% all tests created and
initialized an enclave under 42ms. Since in C# no enclave has to be created, the same
functionality in untrusted code is significantly faster. However, if we assume an enclave
is already created and provisioned with the long-term keys, setting the AES session takes
takes about 5.9 ms on average.

Re-encryption

Table 4.3 shows the execution time of forward proxy re-encryption, backward proxy re-
encryption , and a full PRE invocation for various amounts of data. The latter contains
the set-up execution time as explained above in addition to a forward and backward re-
encryption. The # data column shows how much data entries are re-encrypted in the test.

1https://github.com/dotnet/BenchmarkDotNet

28

https://github.com/dotnet/BenchmarkDotNet

Functionality Mean TEE Mean C# P95 TEE P95 C#
Create enclave 31.6 0 33.3 0
Create AES session 5.9 2.5 7.7 3.3
Retrieve encrypted AES
session

0.2 0.3 0.2 0.3

Set private RSA key 0.1 2.7 0.1 3.5
Get public RSA key 0.1 77.3 0.1 120.2
Total setup 37,9 2,8 41.2 3,6

Table 4.2: PREnclave set-up performance comparison between C# and TEE (in
ms)

The results show an increase in runtime with an increase of re-encryption invocations. This
makes sense, because the cryptographic operations are the most expensive, and they are
invoked more often when more data is re-encrypted.

The time it takes to compute a single forward or backward PRE is sub 0.1ms, excluding
any enclave initialization. The backward re-encryption is slightly faster than the forward
re-encryption. This can be explained by the forward encryption being a bit more complex,
as a new random IV has to be created, and the ciphertext for the database has to be
composed in a specific format. Furthermore, upon decrypting the client value, the original
plaintext value is obtained.

For an SQL query, each parameter and each encrypted column value is re-encrypted
separately and counted as 1 data entry. For example, an SQL query with 2 parameters only
has two forward re-encryption, which takes about 1ms without setting up and initializing
the enclave. If a table with 3 encrypted columns is returned, each returned row requires
3 backward re-encryptions. One such row requires 0.1ms to re-encrypt backwards. The
main overhead for a full run lies in creating an enclave and initializing the enclave. As
Table 4.2 shows this takes about 37.9 ms altogether, which is the majority of the mean
execution time for PRE full runs.

Functionality # data Mean TEE Mean C# P95 TEE P95 C#
PRE forward 1 0.1 0.1 0.1 0.1
PRE forward 10 0.4 0.2 0.5 0.2
PRE forward 100 3.3 1.3 3.7 1.8
PRE forward 1000 31.7 9.4 35.8 12.0
PRE backward 1 0.1 0.1 0.1 0.1
PRE backward 10 0.3 0.1 0.4 0.2
PRE backward 100 2.2 0.8 2.3 0.9
PRE backward 1000 22.6 7.3 27.1 7.7
PRE full run 1 37.7 6.3 39.6 7.3
PRE full run 10 38.5 7.4 41.6 8.4
PRE full run 100 42.4 11.0 44.2 13.2
PRE full run 1000 108.5 31.4 136.4 46.3

Table 4.3: PREnclave proxy re-encryption performance comparison between C#
and TEE (in ms)

29

4.2.2 SQL driver

The goal of performance testing the SQL driver is to determine the performance difference
between a plaintext query, a query that uses AE, and a query that uses TEE PRE.

Various types of queries are measured where the queries target only plaintext columns,
only encrypted columns, or both. Not all types of queries are available in all scenarios.
For example, any query targeting encrypted columns in a WHERE clause is unsupported
by the default plaintext SQL driver. With the unconditional SELECT of an encrypted
columns the plaintext SQL driver just obtains the encrypted byte values to allow for some
sort of comparison. However, insertion of plaintext data is not possible on encrypted
columns and therefore INSERT queries without AE is excluded.

SELECT

A simple select query allows us to compare a query that requires backward re-encryption
with a query that does not require any re-encryption. To measure the execution time of a
query involving three plaintext columns the following query is executed:

SELECT TOP(@Limit) id, firstname, birth_place FROM users;

A similar query selecting three encrypted columns is executed as follow:

SELECT TOP(@Limit) bsn, lastname, postal_code FROM users;

The execution time of both queries can be found in Table 4.4. The limit value shows
how much rows are returned per query which influences the amount of data that is re-
encrypted backwards. As the queries do not contain any sensitive arguments, no forward
re-encryption is performed.

Selecting three plaintext columns does not involve any re-encryption. Therefore, results
for the three versions should be similar. When AE is enabled, the application server makes
an additional round trip to the database to request if the query contains any encrypted
columns, to which the answer will be negative. This round trip overhead cannot be deduced
from the results. This is probably because there is no network latency in our local set-
up. The results show an additional 31.8 ms for the TEE version compared to the other
implementations, which is unexpected. This additional execution time can be attributed
to the creation of an enclave. Our prototype does not check whether a PREnclave is
required, but it creates a PREnclave anyway. The developer can prevent this by excluding
the PRE setting in the connection string for queries that do not need it. Alternatively, the
database driver can use the information about encrypted columns for the specific query
before deciding whether to create a PRENclave or not. When no enclave is created when it
is not needed, the query time is reduced by 31.6 ms (see Table 4.2) from 32.0 to 0.4 ms for a
single row, and from 33.4 to 1.8 ms for 1000 rows. Microsoft has similar recommendations
for excluding the AE setting from the connection string if the developer is sure that the
query does not involve any encrypted columns, as this prevents an additional round trip
to the server.

The second query targeting encrypted columns takes longer than the query targeting
plain columns, except for the plain implementation. This makes sense, because for TEE
and AE additional cryptographic operations are performed. Especially for a query that
returns one row, the average overhead per row for the TEE version compared the the
plain version is significant. The setup costs of the enclave are mainly responsible for the
significant overhead, as shown in section 4.2.1. When multiple rows are processed, the

30

setup costs can be amortized over the total processing time as they only happen once for
each SqlConnection.

Queries targeting encrypted columns can be further optimized to reduce execution time.
Instead of creating a new enclave each time a new SqlConnection is created, the database
driver can manage a pool of enclaves that stay online. When enclaves do not have to
be created and initialized for each new SqlConnection the query time can be reduced by
31.6 ms (see section 4.2). Querying a single row then requires 14.1 instead of 45.7 ms,
and selecting 1000 rows take 68.6 instead of 100.2 ms. As each session still requires re-
encryption and an AES session to be set-up, there is overhead compared to the always
encrypted version.

Query #
rows

Mean
TEE

Mean
AE

Mean
plain

P95
TEE

P95
AE

P95
plain

SELECT 3 plain columns 1 32.0 0.2 0.2 32.3 0.2 0.2
SELECT 3 plain columns 10 32.1 0.2 0.2 33.0 0.2 0.2
SELECT 3 plain columns 100 32.5 0.6 0.6 32.7 0.6 0.6
SELECT 3 plain columns 1000 33.4 1.5 1.5 33.6 1.5 1.5
SELECT 3 encrypted columns 1 45.7 0.2 0.2 46.5 0.2 0.2
SELECT 3 encrypted columns 10 46.2 0.4 0.2 46.7 0.4 0.2
SELECT 3 encrypted columns 100 51.2 1.8 0.6 51.6 1.8 0.6
SELECT 3 encrypted columns 1000 100.2 14.9 2.2 101.3 15.3 2.2

Table 4.4: Comparison between a SELECT query targeting plaintext or encrypted
columns, for various amount of rows and the three implementations (in ms)

SELECT WHERE

By introducing an additional WHERE clause, a query that requires bidirectional re-
encryption can be compared to a query that only requires backward re-encryption. To
measure the execution time of a query with a plaintext WHERE clause the following
query is executed:

SELECT * FROM users WHERE id = @Id;

A similar query targeting an encrypted column in the WHERE clause, thus requiring
forward re-encryption, is executed as follows:

SELECT * FROM users WHERE bsn = @BSN;

The execution time of both queries can be found in Table 4.5. The results are similarly
to the SELECT queries without a WHERE clause, where the TEE version also has quite
some overhead. The query with an encrypted WHERE clause is a bit more expensive than
the query with a plaintext WHERE clause. This can be explained by the fact that the
encrypted WHERE clause requires the database to search through an encrypted column,
which involves Always Encrypted enclave computations.

Since it is possible to generate an index on an encrypted column, the overhead for
searching through the encrypted column is limited. Table 4.6 shows a comparison between
queries where the encrypted WHERE clause has or has no index for various database sizes.
The difference between 0.5 and 0.6 ms for the indexed version can be explained by slight
variations in performance and rounding to one decimal.

31

Query Mean
TEE

Mean
AE

Mean
plain

P95
TEE

P95 AE P95
plain

WHERE plain 45.0 0.2 0.2 45.7 0.2 0.2
WHERE encrypted 45.7 0.5 x 46.4 0.6 x

Table 4.5: Comparison between a SELECT query with a plaintext or encrypted
column in the WHERE clause, for the three implementations (in ms). The WHERE
column is indexed.

Query DB size AE (indexed) AE (no index)
WHERE encrypted 1,000 0.5 6.8
WHERE encrypted 10,000 0.6 82.3
WHERE encrypted 100,000 0.6 611.5
WHERE encrypted 1,000,000 0.5 2510.0
WHERE encrypted 10,000,000 0.5 21634.1

Table 4.6: Comparison between a Always Encrypted SELECT query with an
encrypted column in the WHERE clause, for various database sizes both with and
without an index (in ms)

JOIN

A common operation on relational databases is joining multiple tables. A query that joins
two tables on a plaintext column is executed as follow:

SELECT TOP(@Limit) * FROM users JOIN driversLicenses ON
Users.id=driversLicenses.user_id;↪→

This number of rows returned is limited. The execution time has similar performance
to the SELECT encrypted columns query. Results are shown in Table 4.7. The additional
join operation that AE performs has limited impact compared to the SELECT encrypted
columns query. A few ms required for this JOIN can be observed in all three implemen-
tations. In our experiments the JOIN is performed on a plaintext column. For a JOIN
on an encrypted column, additional overhead for performing the table searches within the
AE TEE might be present. However, section 4.2.2 shows that this overhead is sub 1 ms.

Query Limit Mean
TEE

Mean
AE

Mean
plain

P95
TEE

P95 AE P95
plain

JOIN 1 45.6 0.4 0.3 46.1 0.4 0.3
JOIN 10 46.6 0.6 0.4 47.2 0.6 0.5
JOIN 100 51.8 2.3 0.9 52.9 2.3 0.9
JOIN 1000 104.4 18.4 5.7 106.1 18.7 5.8

Table 4.7: Comparison between the various implementations for a JOIN query
for various row limits (in ms)

INSERT

In order to meet requirement FR2, the architecture supports inserting data. An insert
query is executed as follows:

32

INSERT dbo.Users ([BSN], [firstname], [lastname], [birth_date],
[birth_place], [postal_code], [house_nr]) VALUES (@BSN, @FirstName,
@LastName, @BirthDate, @Birthplace, @PostalCode, @HouseNr); SELECT
CAST(scope_identity() AS int);

↪→

↪→

↪→

The values used for insertion are randomly generated, similar to those used for database
initialization. Execution times for INSERT queries are shown in Table 4.8. As one might
note, the execution time is quite extensive. Inserting 1000 rows takes almost half a minute
using the TEE approach. A theoretical estimation would assume an additional overhead
of 3000 PRE forwards (1000 rows, 3 columns per row) and the PREnclave set-up time.
According to tables 4.2 and 4.3 this should take less than 31.7 ∗ 3 + 37.9 = 133 ms extra
compared to the AE version. Not only the TEE version scales linearly in time, this increase
is also visible in the AE version.

Query # Rows Mean
TEE

Mean
AE

P95
TEE

P95 AE

INSERT 1 55.8 1.1 56.4 1.2
INSERT 10 316.7 7.8 320.1 8.6
INSERT 100 2857.5 72.8 2909.8 76.9
INSERT 1000 28173.8 676.0 28358.9 694.0

Table 4.8: Comparison between the various implementations for a INSERT query
with various amounts of rows inserted (in ms)

4.2.3 Demo API

The goal of the final performance tests is to measure the impact of the proposed architec-
ture in a realistic scenario. Besides the performance overhead of the modified SQL driver,
the web API modifications are consideredd as well. For instance, the session keys should
be included in the request and the response. The response time of the API will be mea-
sured using JMeter2. Traditional plaintext queries that use the default Always Encrypted
functionality are compared to encrypted queries and responses that uses the modified SQL
driver. A prototype without AE enabled is omitted, as such a prototype cannot give the
desired functionality for our demo API.

Table 4.9 shows the response times of various queries to our demo API server. Since all
services are deployed on a single machine the response times do not include any network
latency.

Three types of API requests are executed. The first request retrieves a user by their
BSN. This query contains both sensitive (encrypted) data in the query and in the response.
This is similar to the SELECT WHERE encrypted query. The second request performs
a join over three tables and only contains sensitive columns in the response. This is a
combination of the SELECT WHERE encrypted query and the JOIN query. The third
request is a join over three tables and contains a sensitive column in the response.

The AE version responds within at most 2 ms to the requests. The TEE version takes
43-56 ms longer, which is expected given the results from the previous section. The third
requests, getting a drivers license by the corresponding users BSN has the longest response
time. This is expected as this query requires both forward and backward re-encryption, a
join over multiple tables, and searching through an encrypted column.

2https://jmeter.apache.org

33

https://jmeter.apache.org

While the TEE version is significantly slower than the TEE version, in certain sce-
narios the additional performance overhead might be acceptable. Especially with further
improvements as suggested in section 4.2.2, TEE proxy re-encryption in combination with
technology such as Always Encrypted is feasible in real-world scenarios.

Request Mean
TEE

Mean
AE

P95
TEE

P95 AE

Get user by BSN 54 1 66 2
Get driverslicense by ID 44 1 54 3
Get driverslicense by BSN 56 2 70 4

Table 4.9: Average response time comparison between the Always Encrypted and
the TEE PRE version of requests to a demo API (in ms)

4.2.4 Summary

The performance tests show that our architecture has quite some overhead compared to
the plaintext and AE versions. The majority of this overhead comes from initializing
the PREnclave, which especially in the case of a single re-encryption is relatively time
consuming. As discussed in 4.2.1, the set-up costs could be reduced by having enclaves
ready to go in a managed pool of enclaves. In our demo API, the performance is well
below 60 ms which can be considered adequate for many real-world scenarios. There is
some performance overhead to consider, but for various applications the additional gained
security might justify this sacrifice. Furthermore, with the increase of processing power
and TEE performance, the performance overhead could be further reduced in the future.

4.3 Security

This section explores the additional security various sub parts of our architecture provide.
The communication between third parties and the application server is assumed to be
encrypted in all scenarios, i.e. API request are made over HTTPS. We start with a scenario
where the data is only encrypted at rest, which is common nowadays. After this, the AE
functionality is added which protects the database server. Finally, proxy re-encryption is
added to come to our proposed architecture. The security issues at the database server
that are present in the Always Encrypted scenario are also present in the final scenario, as
the database encryption part is provided by Always Encrypted.

Various attackers are considered, including an attacker with access to the application
server, an attacker with access to the database server, an attacker with privileged access
to either of these, and an attacker that watches network traffic at the service provider.
Any malicious database administrator or server operator is also considered, which might
be helpful in scenarios where certain parts of the architecture is outsourced to an untrusted
cloud service provider.

4.3.1 Initial scenario

If no data is encrypted, access to the database server, both physical and digital, allows an
attacker to copy all data. Transparent Data Encryption (TDE) is often used to encrypt
data at rest, mitigating theft of data from the files system or physical disks. However,
TDE does not protect in any way against attackers who can query the database, as the

34

encryption is transparent to database queries. As decryption keys are present in-memory at
the database server, any attacker with privileged access can dump these keys from memory
and steal the encrypted data with it. Any malicious database administrator has access to
all data, thus outsourcing to an untrusted cloud service provider is not secure.

Always Encrypted allows the database server to be removed from the trust boundary.
The database server only contains keys and plaintext data within the Trusted Execution
Environment, which is assumed to be secure. Not even a privileged attacker or database
administrator can access plaintext data, as there are no keys or plaintext data in memory
and the administrator has no access to the keys either. However, if encrypted columns
contain an index, this index reveals information about the order of rows. The order of the
underlying plaintext values is preserved in the index, and thus leaked.

As traffic between the application server and the database server is not encrypted,
any attacker listening on the network can watch all queries and responses in plaintext.
Sometimes it is possible to encrypt queries and responses, e.g. MsSQL supports TLS for
queries and responses. AE additionally encrypts sensitive query parameters and response
columns.

An attacker with access to the application server could perform SQL queries, if the
attacker has obtained similar permissions to the running applications. This would results
in plaintext retrieval of all data. A sophisticated privileged attacker could see all data and
keys going through memory before being send to third parties.

4.3.2 Proposed architecture

When a trusted execution environment is used for re-encryption, such as our proposed
architecture describes, no plaintext data or keys are present at the application server
outside the TEE. Assuming these TEEs are secure, no attacker at the application server
can access any plaintext data. Not even privileged attackers or server administrators have
access to the plaintext data. The entire database server also does not have to be trusted,
as explained by the Always Encrypted security guarantees above.

The only part that is trusted in our architecture is the key management system. This
part of the architecture serves as a root of trusts, and attests the TEEs before providing
the keys. Compromise of the proxy RSA keys allows an attacker to decrypt any third
parties request. Compromise of the database keys allows an attacker to decrypt sensitive
database columns.

As long as the TEEs are secure and the key management system is not compromised,
no attacker on the service provider is able to obtain any plaintext data.

4.3.3 Cryptography

The system uses AES in CBC mode, and RSA as cryptographic schemes. Both schemes
are used in the industry for quite some time already, and up till now are considered se-
cure. The encryption between the application server and database server could be changed
by Microsoft in the feature if this is required. The encryption between any third party
and the application server could also be changed in the future if required. The mini-
mum requirement of CPA security (SR5), where an attacker cannot learn anything about
the cryptography while he is able to craft ciphertext of known plaintexts, is met for all
encryption used.

35

4.3.4 Summary

The security analysis is summarized in Table 4.10. Most of the requirements have been
met. The proposed architecture assumed that TEE are secure and that the service provider
can securely store private keys. Secure software development best practices have been
followed where possible, but the implementation merely serves as a prototype. For real-
world deployments the exact implementation should be reviewed by experienced security
experts.

The cryptography used can be exchanged by other schemes. However, the cryptography
between the application server and the database depends on the supported encryption by
the database. Currently only one scheme is supported.

As shown in section 4.3.1, order information can leak when an index exists on the
encrypted column. Therefore, the requirement that a persistent attacker does not learning
anything about sensitive data is not entirely met. Such an attacker could learn information
about the order of records with an encrypted index.

Detection is not implemented specifically in the proposed architecture.

Requirement Description Full-filled
SR0 Encrypt sensitive attributes Yes
SR1 No plaintext Yes, assuming TEE security
SR2 Securely store keys Assumed
SR3 Unauthorized parties learn nothing Yes
SR4 Key rollover Yes
SR5 CPA security Yes
SR6 Secure software development Partly, prototype only
SR7 Cryptographic agality Yes, partly depended on Microsoft
SR8 Against persistent attacker No
SR9 Detection No, not implemented

Table 4.10: Security requirements overview for the proposed architecture.

36

Chapter 5

Discussion & future work

This chapter starts with a discussion on our research. This includes our achievements and
contributions. After this, limitations of our research, implementation, and evaluation are
presented. Finlay, this chapter concludes with suggestions for future work.

5.1 Discussion

Our results show that it is possible to design an architecture that meets the requirements
(Section 1.2) drafted for a scenario in which a service provider stores and manages data
for third parties. Furthermore, the performance analysis on our implemented prototype
shows that such an architecture has an overhead in the order of tens of milliseconds, which
could be acceptable in various scenarios considering the gained security.

This research shows that the use of Trusted Execution Environments for eliminating
plaintext sensitive data at a service provider is feasible and promising. Previous research
showed how TEEs can be used to implement database search [3] and proxy re-encryption
[30], and this research in addition shows how these components can be combined to compose
a secure architecture. Before the use of TEEs, such an architecture was either extremely
slow, or limited in functionality. We showed how the security of an architecture can be
improved at a feasible performance costs and with the preservation of functionality.

Our results once more show the potential of TEEs and open a new direction in secure
architecture design. This potential makes TEE-based technology more attractive, which
can stimulate research in the direction of TEE technology, TEE database search, and ar-
chitecture design based on TEEs. Furthermore, the industry can continue developing TEE
based technology as use-cases and with that the potential customer base keep expanding.
Our advance in secure architecture design is valuable in a digitizing world where protection
of sensitive data becomes more and more important.

5.2 Limitations

5.2.1 Architectural limitations

The proposed architecture aims to meet all requirements from section 1.2, however some
limitations cannot be circumvented.

The design is based on MsSQL Always Encrypted with Enclaves, which has some
limitations in functionality. Clustered indexes cannot be created on encrypted columns,
and encrypted columns cannot be primary key or referenced by foreign key or unique
key constraints either. For example, the social security number (BSN) column cannot be

37

defined as unique in the demo database (Figure 3.1). Encrypted columns cannot have the
IDENTITY property, have default or check constraints, or be of the types xml, timestamp,
rowversion, image, ntext,text,sql_variant,hierarchyigeography,geometry or any user defined
type. Furthermore, in-memory tables and computed columns do not support encrypted
columns. A complete overview of all Always Encrypted limitations can be found in the
documentation 1.

The hardware used for the application server and the database server should support
TEE technology, with in particular Intel SGX for our prototype. Modern Intel processor
have support for SGX, and cloud service providers such as Microsoft Azure also support
SGX enabled virtual machines. However, being limited to particular hardware can cause
vendor lock-in effects. Moreover, the requirement of a commercial license to use Intel SGX
makes a company dependent on Intel. Deployment pipelines such as Azure App Services
do not support Intel SGX. Compared to existing deployment pipelines, deploying to virtual
machines or dedicated hardware requires more effort in both deployment and maintenance.

The proposed architecture’s security heavily depends on the security of the underlying
TEEs. The underlying cryptographic schemes can easily be exchanged, but TEEs lay at
the heart of the architecture. The TEE security considerations shown in section 2.2 should
be taken into account.

Compared to traditional approaches the proposed system makes extensive use of cryp-
tography, which makes key management an important topic. When keys are lost, all data
is lost as well. Therefore, good backup strategies for both data and keys are of utmost
importance.

While the sensitive columns are encrypted with randomized encryption, the order of
rows can be leaked. Especially if such a column contains an index, this index could be
scanned to find determine the order of rows.

Lastly, the proposed design relies on the existence of a database that supports enclave
technology to provide functionality over encrypted data. Currently, only Microsoft provides
such a database and therefore vendor lock-in is a risk. In the future, more databases might
support TEE technology such that our design can be applied universally, but at the time
of writing this is not the case.

5.2.2 Research limitations

This research includes an implementation and evaluation of the architecture proposed in
chapter 3. Due to time constraints, the implementation deviates slightly from the described
architecture. Techniques already implemented in the AE enclave could be re-used for the
re-encryption enclave, but the source code of MsSQL and the corresponding enclave is not
available. While the prototype gives a first feasibility prove, a real-world implementation
is left to future work.

First of all, our architecture should come on top of traditional authorization and au-
thentication (see NR2). For simplicity, the prototype does not contain any authentication
and authorization. The prototype allows anyone to make API requests, while in a real-
world implementation the application server should authenticate and authorize all requests.
As in our prototype the requests give a public key to which data is encrypted, any attacker
can simply asks for a re-encryption towards that attacker, which makes the re-encryption
a decryption oracle. In a real-world implementation, the public key towards which data is
encrypted should be validated.

1https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/
always-encrypted-enclaves?view=sql-server-ver16

38

https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/security/encryption/always-encrypted-enclaves?view=sql-server-ver16

The proposed architecture includes a secure key management system. This compo-
nent is not implemented, thus the related functionality is not implemented or implemented
differently. The first functionality is attestation of the re-encryption enclave at the appli-
cation server, which is omitted in our implementation. A real-world system should always
attest enclaves to meet the security guarantees. Implementing attestation is not a technical
issue, as Always Encrypted already implements such attestation to the database server.
Secondly, keys are provisioned to the database and re-encryption enclave from the appli-
cation server. This renders all of our security statements useless, since the combination
of keys and ciphertext on the application servers is no better than having plaintext on
these servers (violating SR1). In a real-world scenario, keys should be provided from a
secure key management system. The fact that Always Encrypted can securely provision
keys remotely shows that such a remote key provisioning is possible. Since keys can be
securely cached at the TEEs, the secure key management only has to provision on enclave
creation and when keys are rotated. Therefore, the additional performance overhead is
minimal compared to our prototype.

For simplicity the implemented prototype only uses one key to encrypt all sensitive
columns. In practice, one might choose to encrypt each column under a different key.
This requires more keys to be provisioned to and stored in the re-encryption enclave.
Furthermore, the re-encryption enclave should be aware of which key to use for every re-
encryption. Slight changes in the design of the PRE enclave are required to allow this
extra metadata to be used.

As shown in section 3.2.3 type information on the encrypted values is lost in our
prototype. Type information and other constraints on encrypted data can only be verified
within the enclave, as this verification requires access to the plaintext values. Such type
checking or constraint validation is not implemented in the prototype.

Finally, the implemented prototype uses the Microsoft Virtualisation Based Security
TEE instead of Intel SGX at the database server. The tests have been performed with
all components running locally to eliminate network delays. However, the local version
of Microsoft SQL Server does not support SGX as enclave technology. Therefore, using
VBS was the only option in our set-up. Hosted versions of MsSQL on Microsoft Azure do
support SGX.

5.3 Future work

The previous section listed the limitations and shortcomings of the architecture and proto-
type. While some limitations are inherent to the used technology, for instance the Always
Encrypted limitations, others can be solved to come to a more reliable prototype. Our
implemented prototype can serve as a starting point and inspiration.

For instance, integration with a secure key management system would make the proto-
type actually reach the trust boundary aimed for. Once such improvements are in place,
further practical analysis could take place, for instance by penetration testing the architec-
ture, or running a forensic analysis on the servers to see what sensitive data is leaked to an
attacker. Note that for the latter a commercial license for Intel SGX should be obtained,
in order to enable the hardware security guarantees.

The proposed architecture has chosen specific technology for the TEE and the database
server. Alternative architectures could use a different database, different cryptography, or
a different TEE technology. Various combinations of technologies and implementations
are possible, all with their own advantages and disadvantages. Advancements in these
individual components would improve the entire architecture as well.

39

The performance of the PREnclave and the architecture as a whole could be improved
in further iterations. As mentioned in section 4.2.2, a pool of enclaves could be managed by
the application server. This allows the database driver to re-use existing enclaves, reducing
the execution time. Furthermore, multi-threading support could be added for re-encryption
as these calculations do not depend on each other. Multi-threading could also speed up
queries that only use backward re-encryption, as the enclave could be initialized while
the query is already send to the database server. When the data returns, the PREnclave
is ready for backward re-encryption. For queries where the PREnclave is not needed, it
should not be created. To reduce the overhead of key provisioning, the long-term keys
could be cached and stored using the SGX sealing technology.

Our research focuses on the scenario of a service provider that allows third parties to
store and retrieve data. While this is a common use-case, various other scenarios could be
thought of. Designing and implementing a similar architecture for other scenarios could
show feasibility for other use-cases. For example, computations on the encrypted data using
homomorphic encryption or TEEs could be included. The results section of our research
is very focused on the example scenario, while future work could evaluate the architecture
more generally. For instance, an industry standard benchmark such as TPC-C [2] could
be used to do a performance analysis that allows comparison with other architectures.

For any organization to implement the proposed architecture, the maintenance and im-
plementation effort should be minimal. This can be achieved when existing database drivers
implement the desired re-encryption technology, just like the Microsoft DotNet database
driver implements the Always Encrypted functionality. Libraries to help implementing the
technology, including the secure key management system, should be available and easy
to implement. The architecture makes use of generic software components and therefore
it does not make sense for each service provider to individually develop and maintain
these components. Instead, software companies that provide databases with encryption
technology or communities should centrally develop the technology.

40

Chapter 6

Conclusion

To summarize our contributions, this work has presented an architecture that combines
various state-of-the-art components in order to mitigate leakage of sensitive data at a
trusted service provider. With this proposed architecture no sensitive plaintext data is
present at the service provider at any time, which makes sure any possible data breaches
can only contain encrypted data. The architecture protects against various types of at-
tacks, including internal attackers. This increases privacy of data owners and prevents any
possible fines for service providers.

A list of requirements (RQ1) is compiled in section 1.2 and evaluated in the results
chapter (4). The cryptographic tools available to meet these requirements are explored
in chapter 2, with in particular Intel SGX (2.2.2), proxy re-encryption (2.3), and Always
Encrypted (2.4.2). These components are combined into the proposed architecture (RQ2)
in chapter 3. The proposed architecture builds on existing work for database encryption
and extends the provided encryption using proxy re-encryption in a customized database
driver. Both database encryption and proxy re-encryption make use of trusted execution
environments.

We implemented a prototype of this architecture which shows feasibility in practice.
The functionality (RQ3.1) is similar to an architecture without encryption, with minor
limitations. Most of these limitations are inherited from Always Encrypted. In terms of
performance (RQ3.2) there is some overhead compared to a plaintext architecture or an
Always Encrypted architecture without re-encryption. However, this performance overhead
is in the order of tens of milliseconds, which can be considered worth the gained security
benefit depending on the scenario. Furthermore, this work presents suggestions that can
greatly improve performance of this first attempt.

Our prototype has some limitations and is not ready to be used in the industry yet.
However, this initial feasibility check makes TEE technology more attractive and can stim-
ulate further research and development. The architecture and implementation can serve
as a starting point for further research. Finally, our analysis gives insight in the trade-off
between functionality, performance, and security of our proposed architecture, which can
help business owners to better predict the potential of the presented technology.

To answer the main research question (RQ0), leakage of sensitive data can be mitigated
at a trusted service provider by using database encryption such as Always Encrypted and
extending the encryption using trusted execution environment based proxy re-encryption.
This allows the service provider to only handle ciphertext data on its servers, eliminating
the possibility of any plaintext sensitive data leakage.

41

Bibliography

[1] Passmark cpu benchmarks - amd vs intel market share. URL: https://www.
cpubenchmark.net/market_share.html.

[2] Tpc-c homepage. URL: https://www.tpc.org/tpcc/.

[3] Panagiotis Antonopoulos, Arvind Arasu, Kunal D. Singh, Ken Eguro, Nitish Gupta,
Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann, Nikolas Ogg,
Ravi Ramamurthy, Jakub Szymaszek, Jeffrey Trimmer, Kapil Vaswani, Ramarathnam
Venkatesan, and Mike Zwilling. Azure sql database always encrypted. page 1511–1525,
2020. doi:10.1145/3318464.3386141.

[4] ARM. Arm security technology building a secure system using trustzone ® technol-
ogy, 2009. URL: https://www.arm.com/technologies/trustzone-for-cortex-a/
tee-reference-documentation.

[5] Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved
proxy re-encryption schemes with applications to secure distributed storage. ACM
Trans. Inf. Syst. Secur., 9(1):1–30, feb 2006. doi:10.1145/1127345.1127346.

[6] Sumeet Bajaj and Radu Sion. Trusteddb: A trusted hardware-based database with
privacy and data confidentiality. IEEE Transactions on Knowledge and Data Engi-
neering, 26:752–765, 3 2014. doi:10.1109/TKDE.2013.38.

[7] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. A formal security analysis of the signal messaging protocol. Journal of
Cryptology, 33:1914–1983, 2020. doi:10.1007/s00145-020-09360-1.

[8] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive,
2016. URL: https://eprint.iacr.org/2016/086.

[9] Anwar Pasha Deshmukh and Riyazuddin Qureshi. Transparent data encryption -
solution for security of database contents, 2013. URL: http://arxiv.org/abs/1303.
0418, arXiv:1303.0418.

[10] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn, Florian Kerschbaum,
and Ahmad-Reza Sadeghi. Hardidx: Practical and secure index with sgx. 3 2017.
doi:https://doi.org/10.1007/978-3-319-61176-1_22.

[11] Benny Fuhry, H. A. Jayanth Jain, and Florian Kerschbaum. Encdbdb: Searchable
encrypted, fast, compressed, in-memory database using enclaves. Proceedings - 51st
Annual IEEE/IFIP International Conference on Dependable Systems and Networks,
DSN 2021, pages 438–450, 6 2021. doi:10.1109/DSN48987.2021.00054.

42

https://www.cpubenchmark.net/market_share.html
https://www.cpubenchmark.net/market_share.html
https://www.tpc.org/tpcc/
https://doi.org/10.1145/3318464.3386141
https://www.arm.com/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://www.arm.com/technologies/trustzone-for-cortex-a/tee-reference-documentation
https://doi.org/10.1145/1127345.1127346
https://doi.org/10.1109/TKDE.2013.38
https://doi.org/10.1007/s00145-020-09360-1
https://eprint.iacr.org/2016/086
http://arxiv.org/abs/1303.0418
http://arxiv.org/abs/1303.0418
http://arxiv.org/abs/1303.0418
https://doi.org/https://doi.org/10.1007/978-3-319-61176-1_22
https://doi.org/10.1109/DSN48987.2021.00054

[12] William G Halfond, Jeremy Viegas, Alessandro Orso, et al. A classification of
sql-injection attacks and countermeasures. 1:13–15, 2006. URL: https://www.cc.
gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf.

[13] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. Using innovative instructions to create trustworthy software solutions.
2013. doi:10.1145/2487726.2488370.

[14] Seny Kamara and Tarik Moataz. Sql on structurally-encrypted databases. Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 11272 LNCS:149–180, 2018. doi:10.1007/
978-3-030-03326-2_6.

[15] Nadim Kobeissi. An analysis of the protonmail cryptographic architecture. Cryptology
ePrint Archive, 2018. URL: https://eprint.iacr.org/2018/1121.

[16] Dongxi Liu and Shenlu Wang. Query encrypted databases practically. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security,
page 1049–1051, New York, NY, USA, 2012. Association for Computing Machinery.
doi:10.1145/2382196.2382321.

[17] Joshua Lund. Signal - blog - technology preview for secure value recovery, 12 2019.
URL: https://signal.org/blog/secure-value-recovery/.

[18] Microsoft. Virtualization-based security (vbs) | microsoft learn. URL: https:
//learn.microsoft.com/en-us/windows-hardware/design/device-experiences/
oem-vbs.

[19] Muhammad Naveed, Seny Kamara, and Charles V Wright. Inference attacks on
property-preserving encrypted databases general terms. Proceedings of the 2015
ACM Conference on Computer and Communications Security, pages 644–655, 2015.
doi:10.1145/2810103.2813651.

[20] Alexander Nilsson, Nikbakht Bideh, and Joakim Brorsson. A survey of published
attacks on intel sgx, 2020. doi:https://doi.org/10.48550/arXiv.2006.13598.

[21] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. Arx: An encrypted database
using semantically secure encryption. Proc. VLDB Endow., 12(11):1664–1678, jul
2019. doi:10.14778/3342263.3342641.

[22] Raluca Ada Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakr-
ishnan. Cryptdb: Protecting confidentiality with encrypted query processing. page
85–100, 2011. doi:10.1145/2043556.2043566.

[23] Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A secure database
using sgx. Proceedings - IEEE Symposium on Security and Privacy, 2018-May:264–
278, 7 2018. doi:10.1109/SP.2018.00025.

[24] Proton. Set account recovery methods in case you forget your proton password |
proton. URL: https://proton.me/support/set-account-recovery-methods.

[25] P Ruffio. Dark web price index 2022 - dark web prices of personal data, 9 2020. URL:
https://www.privacyaffairs.com/dark-web-price-index-2022/.

43

https://www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf
https://www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viegas.orso.ISSSE06.pdf
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1007/978-3-030-03326-2_6
https://doi.org/10.1007/978-3-030-03326-2_6
https://eprint.iacr.org/2018/1121
https://doi.org/10.1145/2382196.2382321
https://signal.org/blog/secure-value-recovery/
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-vbs
https://doi.org/10.1145/2810103.2813651
https://doi.org/https://doi.org/10.48550/arXiv.2006.13598
https://doi.org/10.14778/3342263.3342641
https://doi.org/10.1145/2043556.2043566
https://doi.org/10.1109/SP.2018.00025
https://proton.me/support/set-account-recovery-methods
https://www.privacyaffairs.com/dark-web-price-index-2022/

[26] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. Trusted
execution environment: What it is, and what it is not. 1:57–64, 2015. doi:
10.1109/Trustcom.2015.357.

[27] Murugiah Souppaya, Karen Scarfone, and Donna Dodson. Secure software develop-
ment framework (ssdf) version 1.1: Recommendations for mitigating the risk of soft-
ware vulnerabilities. 2 2022. URL: https://csrc.nist.gov/publications/detail/
sp/800-218/final, doi:10.6028/NIST.SP.800-218.

[28] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. Stealthdb: a
scalable encrypted database with full sql query support. Proceedings on Privacy En-
hancing Technologies, 2019:370–388, 2019. doi:10.2478/popets-2019-0052.

[29] B Wolford. What are the gdpr fines? - gdpr.eu. URL: https://gdpr.eu/fines/.

[30] Fan Zhang, Ziyuan Liang, Cong Zuo, Jun Shao, Jianting Ning, Jun Sun, Joseph K.
Liu, and Yibao Bao. Hpress: A hardware-enhanced proxy re-encryption scheme using
secure enclave. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 40:1144–1157, 6 2021. doi:10.1109/TCAD.2020.3022841.

44

https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://csrc.nist.gov/publications/detail/sp/800-218/final
https://doi.org/10.6028/NIST.SP.800-218
https://doi.org/10.2478/popets-2019-0052
https://gdpr.eu/fines/
https://doi.org/10.1109/TCAD.2020.3022841

Appendix A

Enclave EDL

45

1 enclave {
2 trusted {
3 public int e_PREForward(
4 [in, size=data_len] unsigned char* data,
5 size_t data_len,
6 [out, size=result_len] unsigned char* result,
7 size_t result_len
8);
9 public int e_PREBackward(

10 [in, size=data_len] unsigned char* data,
11 size_t data_len,
12 [out, size=result_len] unsigned char* result
13 size_t result_len
14);
15 public int e_session(
16 [in, size=key_len] unsigned char* key_enc,
17 size_t key_len,
18 [in, size=iv_len] unsigned char* iv_enc,
19 size_t iv_len,
20 [in, size=pk_len] unsigned char* publickey_client,
21 size_t pk_len
22);
23 public int e_get_session_client(
24 [out, size=key_enc_len] unsigned char* key_enc,
25 size_t key_enc_len,
26 [out, size=iv_enc_len] unsigned char* iv_enc,
27 size_t iv_enc_len
28);
29 public int e_set_key_db_insecure(
30 [in, size=key_db_len] unsigned char* key_db,
31 size_t key_db_len
32);
33 public int e_set_private_key_proxy_insecure(
34 [in, size=key_proxy_len] unsigned char* key_proxy,
35 size_t key_proxy_len
36);
37 public int e_get_public_key_proxy(
38 [out, size=publickey_len] unsigned char* publickey,
39 size_t publickey_len
40);
41 };
42 };

Listing 2: The enclave EDL file, which specifies all function with their incoming
and outgoing parameters.

46

	Introduction
	Motivation
	System requirements
	Functional requirements
	Security requirements
	Out of scope

	Research questions
	Contributions
	Outline

	Background
	Trust boundaries
	End-to-end encryption
	Database encryption
	Desired trust boundary

	Trusted Execution Environment (TEE)
	Overview
	Intel Software Guard Extensions (SGX)

	Proxy Re-Encryption (PRE)
	TEE database search
	Overview
	Always Encrypted with Enclaves (AE)

	Architecture
	Overview
	Components
	TEE Re-encrypt (PREnclave)
	DB driver
	API

	Organizational impact
	Implementation at service provider
	Key management

	Summary

	Results
	Functionality
	Performance
	PREnclave
	SQL driver
	Demo API
	Summary

	Security
	Initial scenario
	Proposed architecture
	Cryptography
	Summary

	Discussion & future work
	Discussion
	Limitations
	Architectural limitations
	Research limitations

	Future work

	Conclusion
	Enclave EDL

