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Artificial Neural Networks (ANNs) have gained popularity for their im-
proved performance in various fields due to their computational efficiency
and reduced storage space requirements. However, traditional ANNs consist
of multi-connected layers, leading to an increase in redundant and weak
connections as the number of neurons increases. This results in extensive
memory and computation consumption. To address this issue, techniques
such as pruning and sparsity have been developed. Pruning involves the re-
moval of unnecessary connections that do not have significance in a network,
while adaptive/dynamic sparsity involves removing redundant connections
while allowing others to grow in their place during training. In this paper,
we aim to bring more understanding to Dynamic Sparse Training models by
discussing its relation to mammal brains and improving the pruning process
and re-connection of neurons. We introduce the Brain-Mimetic Synapse
Adjustment algorithm and successfully assess his classification performance
using two datasets, CIFAR10 and Fashion MINST. By the end of this research,
we expect to contribute to the understanding of Dynamic Sparse Training
models, improve the removal process in sparse models, and address the
rewiring of neurons in Dynamic Sparse Training models. This gives us valu-
able insights into developing more human brain-like efficient, and effective
neural networks.

Additional KeyWords and Phrases: Artificial Neural Network, Brain-Mimetic
Synapse Adjustment, Sparse Evolutionary Training, Synaptic Pruning, Opti-
mizing Network Structure

1 INTRODUCTION
Artificial Neural Networks gained popularity for their improved
performance in various fields, owing to their ability to keep ef-
ficiency in terms of computation power and storage space [28].
Mentioned advantages are giving the ANNs ability to be run on
resource-constrained devices [28] which has prohibited resource de-
mands [8]. It has been found that, neural networks closer to mammal
brains in structure, are successful in overcoming above stated short-
comings; [8, 16, 22, 28] however, there still exists many limitations
regarding the topic.
Human brain produces more than needed neurons when the de-

velopment process of the brain starts and during childhood synaptic
pruning, removes more than half of these synapses [3]. Previous
studies show that, brain is removing the weaker connections that are
in lesser use [10, 19] to improve the performance [2]. Unlike mam-
mal neural structure, Artificial Neural Networks are, traditionally,
consisting of multi-connected layers. That being said, as number of
neurons increase, connections increase respectively. Nonetheless,
most of these connections are redundant and weak, causing the
already pointed out problem of extensive memory and computation
consumption [8]. Various techniques have been developed to ad-
dress this problem, such as pruning [7, 11, 28] and sparsity [16, 22].
Pruning is removal of unnecessary connections that do not have
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significance in a network. Sparse neural networks are removing
redundant connections while letting others grow in the place [22].
Sparsity can also be seen in a biological brain, where synaptic

connections are kept healthy by removal and rewiring [14, 24].
While doing so, the process should be carefully done as errors in
the process can cause unwanted results in both human and artificial
brain [6, 26]. This paper will stick to sparsity while being inspired
by the pruning and addition techniques used in a biological brain.
In this paper, we aim to bring more understanding to Dynamic

Sparse Training models by discussing its relation to mammal brains.
We are aiming for improvements in pruning process and a better
approach in re-connection of the neurons. Having a satisfactory
model’s performance still remains crucial. Bringing a more system-
atic approach to determine weakly connected neurons and using
these connections for the purpose of rewiring is the most important
part of the process. Based on these, our goals can be defined as:

• Goal 1: To understand and improve the process of removal of
connections with regard to human neural structure, using and
perhaps combining previously used approaches [16, 22, 28].
• Goal 2: To address the connection of the artificial synapses
from a different perspective than already existing, accuracy
based connection technique [16].

Following research questions (RQ) will be our main assisting
point throughout the research for reaching these goals:

• RQ1: How do we need to remove connections in a Dynamic
Sparse Traning models to be mimicking biological brain?
• RQ2:What are the alternative strategies of adding connec-
tions in a Dynamic Sparse Training Model?
• RQ3: To what extent can the model performance be improved
or kept while following and applying RQ1 and RQ2?

By the end of this research, we contribute in three ways. First and
foremost, we bring in more understanding to the Dynamic Sparse
Training models. Secondly, we have an improved removal process in
sparse models, inspired from the to mammal neural structure. Lastly,
we address the rewiring of neurons in Dynamic Sparse Training
models, improving the already existing AccSET approach. Further-
more, it is important to point out that keeping the accuracy carries
great importance.
The structure of the research paper is as follows. In Section 2,

the related work to the topics of pruning in mammalian brains,
pruning in neural networks and dynamic sparse neural networks
will be further discussed, important points for this research will
be pointed out. Section 3 will focus on the methodologies used to
address and answer the research questions, followed by a Section 4,
which will communicate the setup environment for the experiments.
Following this, Section 5 will discuss the results conducted from
these experiments, which will be discussed in Section 6.
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2 RELATED WORK
In this section, we will point out the related work to the topic of
Understanding the Dynamic Sparse Training models. Firstly, previ-
ous work on synaptic pruning in mammal brains will be discussed
upon. Elaboration on related literature about pruning in artificial
and sparse artificial neural networks will follow.

2.1 Synaptic pruning in the human brain
Research conducted on pruning in mammalian brains can be seen
in studies earlier than 1998. Chechik et al. [2] approaches this and
comes up with a mechanism for synaptic pruning during brain
maturation. The research initiates a mathematical model regarding
the topic and points out that pruning does not improve performance
of the brain. Later he publishes one more paper discussing the
removal of weak synapses and modification of the remaining ones
[3].
Followingly in 2010, in Herculano et al. [12], he studies connec-

tivity driven white matter scaling and points out that while some
of the cerebral cortices show a decrease in connectivity, cerebral
cortex may be connected in some other areas.
Later in 2016, it was discussed that microglial processes make

connections in synapses after they are being eliminated by Hong
et al. [14]. The topic is further discussed in the research, and new
insights are found. The important thing to point out in this research
for us is the refinement of the synapses.

2.2 Pruning in artificial neural networks
From pruning to compression and later on dynamic sparse training,
much work was focused in the last two decades on making the
continuously increasing deep learning models more efficient [13].

While focusing on sparse models, there are some distinctive meth-
ods worth pointing out. They can be differentiated as:

(1) Dense-to-sparse: In this approach, the training starts with a
dense neural network, which is then followed by the pruning
process. The most popular pruning method is The Lottery
Ticket Hypothesis [6].

(2) Sparse-to-sparse: In this approach, the training starts with
a sparse neural network and is then further trained. This
approach introduces two cases:

(a) Static sparsity: A sparse initialization is used, followed by
normal training [21].

(b) Dynamic sparsity: A sparse initialization is used, and re-
movals and additions are made during training. Various
dynamic sparse training algorithms have been proposed
starting from [22]. The main difference between these al-
gorithms lies in how the sparse topology is adapted during
training [5, 16, 17].

To point out more on the process of pruning, Han et al. managed
to reduce the number of parameters drastically without any loss
in accuracy [8]. Later that year, he introduces a new technique
called deep compression, where the pruning is one of the three
steps. In this case, based on weights, irrelevant connections are
found and removed from a network for the purpose of compression
[7]. In 2021, Zhao et al. introduces a new dynamical optimization
method. He, being inspired by the human brain, keeps track of the

unimportant connections for three generations and if the connection
keeps performing below a threshold it is being removed [28]. This
method makes sure of the irrelevance of a synapse in a network
before removing it. Further pruning strategies that are the most
popular are the following: magnitude-base, as in SET [22], gradient-
base, as in RigL [5], performance-based, as in AccSET [16], a mix of
the before-mentioned ones, as in ITOP [17].

Sparsity was another approach used. However, this introduced a
new problem in itself, being, what is the optimal level of sparsity
and how can it be obtained. Mocanu et al. introduced a Sparse Evo-
lutionary Training algorithm for this purpose in 2018 [22] followed
by a PhD research, that was published a year earlier, in which the
key concept was dynamic sparsity [20]. SET initially randomly gen-
erates the connections, and in each iteration it removes and regrows
connections. The removal is done by choosing the values that are
closer to zero. In 2020, Lapshyna used SET to improve the regrowing
process and came up with a formula for finding the regrow amount
while keeping the accuracy [16] and called it AccSET. [1, 23] intro-
duced sampling sparse connectivity based on Bayesian posterior and
Dynamic Sparse Representation (DSR) which dynamically adjust
the sparsity level respectively.
This paper will mostly refer to SET and AccSET algorithms to

understand, analyze and show possible improvements in Dynamic
Sparse Training models.

3 METHODOLOGIES
This section is dedicated to explaining the steps that are to be taken
for the purpose of answering the above defined research questions.
In short, we first improve pruning process based on previously used
techniques. Then we refine the way addition of connections are
handled. While doing so, we should keep the accuracy of the model.

3.1 Brain-Mimetic Synapse Adjustment
3.1.1 Biological Brain Inspired Pruning. As discussed before, SET
and AccSET are removing connections based on their closeness to
zero from both, negative and positive sides. However, in a biological
brain, this process is a bit different. Synapses in mammal brains
are pruned based on the frequency of their usage [25]. Lesser used
connections are weakened and then removed while keeping the
used connections untouched. In this paper, we apply the biological
way of pruning to Sparse Neural Networks.

We start with an already sparse network, which is achieved by
generating an Erdős-Rényi sparse weight mask for each layer in the
neural network. After each epoch, it is checked which weights are
close to zero, as it is an indication of their significance.
The following matrix 𝐶𝑤 shown in Algorithm 1 (row 9) is dedi-

cated for saving the insignificance information:

𝐶𝑤 =


𝑎1 𝑎2 · · · 𝑎𝑛
𝑎11 𝑎12 · · · 𝑎1𝑛
.
.
.

.

.

.
. . .

.

.

.

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛


(1)

Values noted as𝑎𝑚𝑛 where𝑚 and𝑛 states the index of eachweight
is in 0 to 3 intervals. Unlike AccSET and SET, the count of appearance
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Fig. 1. Illustration of the pruning process in human brain.

Fig. 2. Illustration of the removal process in an artificial neural network as done in the proposed Brain-Mimetic Synapse Adjustment algorithm..

Algorithm 1 Brain-Mimetic Synapse Adjustment
1: Set 𝜖 and 𝜁
2: Initialise ANN model
3: for each fully-connected (FC) layer of the ANN do
4: Replace FC with a Sparse Connected (SC) layer
5: end for
6: for each training epoch 𝑒 do
7: Perform standard training procedure
8: for each layer do
9: Pruning candidates that are in 𝐶𝑤

10: if weight appears 3 times then
11: Restart count for weights under the condition
12: Remove 𝜁 weights closest to zero for three genera-

tions
13: 𝜆𝑙𝑒 := current number of connections
14: Δ𝑙𝑒 ← 𝛾𝑙𝑒 − 𝜆𝑙𝑒
15: if 𝑒 is not the last training epoch then
16: 𝜃𝑙𝑒 ← 1 − (𝑎𝑐𝑐𝑙−𝑎𝑐𝑐𝑙×𝑘 )

𝑘−|𝑎𝑐𝑐𝑙 |×2×𝑘+1
17: Add 𝜃𝑒

𝑙
× Δ𝑒

𝑙
new connections based on their

probability to be added, namely 𝑃
18: end if
19: end if
20: end for
21: end for

of those weights under the condition of being insignificant is kept
and if the weights are noted as such for three times consecutively,
they are then removed from the network.

Figure 2 and Algorithm 1 (rows 11 and 12) illustrates the process
of removal in detail, which has the following steps:

(i) Indicate the connections that have weight value close to zero
and mark them (i.e. store them in a list) as shown in Epoch i
of Figure 2 and Algorithm 1 (row 9)

(ii) Repeat the process while keeping the number of times a con-
nection is insignificant, and check if this number is equal to
three.

(iii) If the number is equal to three, it indicates that the connection
has been close to zero three times, and therefore we remove
the connection as illustrated in Epoch i+3 of Figure 2.

Following the above stated procedures, just like human neural
system, we remove a connection if and only if it has not been used
for a while.

3.1.2 Addition of Connections After Being Pruned. After the prun-
ing process takes place, new connections are to be added. AccSET
uses accuracy based approach to add connections. Based on the ac-
curacy, number of connections are reduced and added. As accuracy
decreases, more connections are added whereas, an increase in accu-
racy leads to reduction of connections. Our approach is keeping this
technique while adding more understanding and logic to it. In sec-
tion 3.1.1 we have explained how the removal process is improved
by keeping track of the insignificant connections. Following this
reasoning, we introduce one more matrix, which will be using the
before-mentioned one. Each time a connection is removed, we will
consider it to be less significant in comparison to one that has been
pruned less. Using this, a formula has been developed to improve
the addition of artificial neurons in a logical manner.
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Unlike most of the dynamic sparse models [SET, rigl, AccSET,
. . . etc.], instead of randomly adding connections, we choose which
connection to add. Having the significance level of each artificial
synapse, we can give each one of them a probability to be added. Less
significance indicates a lower probability to be used again, whilst
vice versa is the case for connections having more significance level.
The formula developed for this purpose follows

𝑃 = 𝑒−|𝑘 |𝐷 × (1 + |𝑘 |𝐴𝑐𝑐) (2)

Here 𝐷 indicates the matrix that keeps track of the number of
times each connection has been removed, and 𝐴𝑐𝑐 is the current
accuracy of the model. Using the Euler’s constant, 𝑒 we are able to
exponentially decrease the probability of a connection’s addition
using −|𝑘 | in the power of 𝑒 . Furthermore, it is important to make
sure that more connections are being added when the accuracy is
going down. A lower number of neurons in human brain will lead
to decreased cognitive ability [12] and therefore, we need to make
sure that the addition of artificial synapses is more, especially when
the model is performing worse. To assure this, we also include the
accuracy in our formula. As the accuracy decreases, the probability
of every connection increases. To make sure that probabilities are
between 0 and 1 range, we then normalise the probabilities using:

𝑁 =
𝑃 −min(𝑃)

max(𝑃) −min(𝑃) =


𝑝1 𝑝2 · · · 𝑝𝑛
𝑝11 𝑝12 · · · 𝑝1𝑛
.
.
.

.

.

.
. . .

.

.

.

𝑝𝑚1 𝑝𝑚2 · · · 𝑝𝑚𝑛


(3)

The algorithm then calculates the median of the probabilities in
𝑁 and only adds the connections that are above the median.

4 EXPERIMENTAL SETUP
This section will discuss the chosen datasets in detail. That being
said, description of the datasets with illustrative images. Baseline
approaches, validation metrics will be further explained followed
by details of implementation.

4.1 Datasets
The improved and refined algorithmswere tested against two datasets,
Fashion MNIST [27] and CIFAR10 [15] based on the Multilayer Per-
ceptron (MLP). Section 5 contains the experiments done on men-
tioned datasets.

4.1.1 Fashion MNIST. Fashion MNIST [27] is an image dataset with
28x28 grayscale images. It consists of 10 classes having 6000 images
per one of the following: Tshirts, trousers, pullovers, dresses, coats,
sandals, shirts, sneakers, bags, and ankle boots. The examples of
images are shown in Figure 3a. It has 60,000 training and 10,000 test
samples. We train the model on this dataset for 1000 epochs.

4.1.2 CIFAR10. CIFAR10 [15] dataset just like Fashion MNIST con-
sists of images; however, of datatype RGB colors. It is also consisted
of 10 following catagories: airplanes, automobiles, birds, cats, deer,
dogs, frogs, horses, ships, and trucks which are illustrated in Figure
3b. Train sample size is 50,000 and test sample size is 10,000.

(a) (b)

Fig. 3. The figure shows example images from both datasets. Figure 3a is
samples from CIFAR10 and Figure 3b holds the Fashion MNIST examples.

Overall, although similar in domain these datasets are, they differ
in storing the data. Fashion MNIST is easier to train on, considering
the low-scale grayscale images and no noise. On the other hand,
CIFAR10 is consisting of RGB (i.e 3 color) images with noise and
background, which makes it more challenging.

4.2 Baseline Approaches and Validation Metrics
The experiments conducted will be tested against SET [22] and
AccSET [16] based on the training on above-discussed datasets.
Metrics such as, accuracy, loss, sparsity level (number of connections
throughout the training) will be carrying the most importance in
terms of validation of effectiveness of the newly proposed algorithm.

4.3 Implementation Details
It was decided to use Python for the purpose of developing the
model. Keras [4] was the chosen implementation method, and the
mathematical parts of the model were done using the NumPy library
[9].

Table 1. Hyper-parameters used in training of CIFAR10 and Fashion MNIST

Hyper-
parameter

Value Hyper-
parameter

Value

Learning
rate

0.01 𝜁 0.3

Optimiser SGD Batch size 100
Momentum 0.9 𝜖 20
Activation
Function

LeakyReLU Loss Func-
tion

Categorical
Cross-
entropy

Dropout
rate

0.3

𝜁 and 𝜖 can be seen in both Algorithm 1 and Table 1. 𝜖 indicates
the level of sparsity during initialisation phase of the training pro-
cess. 𝜁 expresses the sparsity during the training. Both of these
variables hold a value between [0, 1] interval. Table 1 show the pa-
rameters used. AccSET uses LeakyReLU [18] as an activation model.
Better-Prune algorithm is built on top of the AccSET algorithm. The
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Fashion-MNIST

(a) (b) (c)

CIFAR10

(d) (e) (f)

Fig. 4. The figure illustrate the accuracy of the models (BMSA, SET-MLP, AccSET-MLP) on datasets, Fashion-MNIST 4a and CIFAR10 4d. Comparison in
numbers of connections are also shown for both of the datasets 4b, 4e. Lastly, the figure displays the loss of all three models in graphs 4c, 4f.

architercture used for training CIFAR10 dataset is 3072-4000-1000-
4000-10 and 784-256-128-100-10 for Fashion MNIST following the
settings in [16].

5 RESULTS
Experiments were performed on newly proposed BMSA algorithm
and the results were tested against two datasets, Fashion-MNIST
and CIFAR10. These factors then were compared against previous
algorithms, namely, SET and AccSET to assess the model’s perfor-
mance.

5.1 Fashion-MNIST
Three distinct models, BMSA, ACCSET-MLP and SET-MLP, were
compared for accuracy, the result of which can be seen in the graph
in Figure 4. The maximum accuracy observed among the models is
0.86 while theminimum is 0.72. During the initial 20 epochs, all three
models exhibit a sharp increase in accuracy, which subsequently
changes into a fast learning curve. For AccSET-MLP, the stabilization
occurs at an accuracy of approximately 0.80 and reaches a maximum
of 0.83 by the 1000th epoch. For SET-MLP, the deceleration occurs
at an accuracy of approximately 0.82 and continues to increase until
reaching 0.86 by the 1000th epoch. BMSA experiences stabilization
at an accuracy of approximately 0.82 and remains competitive with

SET-MLP until after the 400th epoch when SET-MLP experiences
an increase while BMSA remains relatively static at around 0.84,
ultimately reaching a maximum of 0.85 by the final epoch. Overall,
BMSA shows excellent results, being competitive with SET and
out-performing AccSET in terms of accuracy.

Assessment of number of connection for each of the three, BMSA,
ACCSET-MLP and SET-MLP models was also performed. The cor-
responding results are given in Figure 4b below. BMSA has 68000
connections, AccSET-MLP has approximately 11000 connections
and SET-MLP has around 35000 connections.
BMSA shows excellent results by having 63% less connections

compared to its dense counterpart, MLP.
The results of the relationship between loss and training time (e.g.

number of epochs) for the same three models, illustrated in Figure
4c. It is notable from this graph that all the models start of with
a loss of approximately 0.75 in the first epoch. By the 10th epoch,
BMSA and SET-MLP have both experienced a significant reduction
in loss to 0.50 while AccSET-MLP has reduced to 0.58. Subsequently,
a fast learning curve is visible for all three models. AccSET-MLP
reduces to a loss of 0.49 by the end of the 1000th epoch. BMSA and
SET-MLP remain competitive and by the 600th epoch, SET-MLP
exhibits a lower loss than BMSA. By the end of the training, the
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Fig. 5. The figure illustrates the weight distribution of the model BMSA, for each layer. Graph 5a shows the results for Fashion-MNIST and 5b displays the
outcomes of CIFAR10

proposed BMSA model shows a better learning behavior compared
with SET-MLP.

Furthermore, the weight distribution graph (see Figure 5b) illus-
trates that the majority of the weights are located at 0, indicating
that they have been removed. This observation provides evidence
for the sparsity of the model.

5.2 CIFAR10
The accuracy of three models; BMSA, AccSET-MLP, SET-MLP on
CIFAR10 dataset are shown in Figure 4d. At the onset, BMSA exhibits
superior performance, achieving an accuracy of approximately 0.50.
In contrast, AccSET-MLP and SET-MLP only attain this level of
accuracy around the 10th epoch. Subsequently, all three models
demonstrate a rapid increase in accuracy, with BMSA ultimately
reaching amaximumvalue of 0.70. SET-MLP andAccSET-MLP attain
maximum accuracies of 0.67 and 0.63, respectively. Beyond these
points, the rate of increase in accuracy diminishes for all models. In
summary, BMSA consistently outperforms both AccSET-MLP and
SET-MLP in terms of accuracy. Furthermore, BMSA achieves high
levels of accuracy more rapidly than the other two models.
The second figure (see Figure 4e), is showing the number of

connections in BMSA, AccSET-MLP, SET-MLP and MLP. MLP has
the highest number of connections at 2,000,000, while BMSA has
significantly fewer connections with a total of 580,000. SET-MLP and
AccSET-MLP have even fewer connections, with totals of 278,264
and 162,595, respectively. Comparing BMSA and MLP in terms of
the percentage of connections, BMSA has only 20.4% of the entire
connections. Overall, BMS use 5 times less number of connections
compared to their dense counterpart.
The Figure 4f, illustrates the loss per epoch for three models.

Initially, BMSA has a lower loss of around 1.2, while the other two
models start with a loss of around 1.3. Over time, the loss for all
three models gradually decreases. By the 1000th epoch, BMSA has
the lowest loss of around 0.87, while SET-MLP and AccSET-MLP
have losses of around 0.92 and 1.01, respectively. Overall, it can be
observed that BMSA consistently has the lowest loss, followed by
SET-MLP and then AccSET-MLP. This indicates that BMSA is the
most effective model in terms of minimizing loss.

Just like the Fashion-MNIST dataset, the sparsity level stays high
on CIFAR10 as well. This can be seen from the Figure 5b where most
of the weights are dense around 0. Be reminded that, 0 indicates no
connection.

6 DISCUSSIONS
The comparison of the models, BMSA, ACCSET-MLP and SET-MLP,
enabled us to validate the possibility of removing and adding connec-
tions in a Dynamic Sparse Training model by mimicking biological
brain. The study also verified whether the proposed BMSA algo-
rithm can improve performance of Dynamic Sparse Training model.

6.1 Insights on Brain-Mimetic Pruning
The present study introduces a novel approach called Brain-Mimetic
Pruning, which incorporates principles from the biological brain’s
synaptic pruning process into the context of Sparse Neural Networks.
Unlike traditional pruning methods such as AccSET and SET that
remove connections based on their proximity to zero, this approach
emulates the biological brain’s mechanism of pruning synapses
based on their frequency of usage.

The pruning process involves identifying connectionswithweight
values close to zero and marking them for potential removal. These
connections are tracked, and if they remain insignificant for three
consecutive times, they are removed from the network. This mimics
the biological brain’s behavior of pruning connections that have
not been frequently utilized, allowing the network to adapt its con-
nectivity based on usage patterns.
By incorporating this biological pruning mechanism, the study

aims to enhance the efficiency and performance of Sparse Neural
Networks. By removing unused connections, the network can al-
locate its computational resources more effectively and potentially
reduce overfitting. Additionally, the sparsity induced by this prun-
ing method contributes to the interpretability of the network, as the
majority of connections carry meaningful information.
The successful implementation of Brain-Mimetic Pruning holds

several implications for the field of deep learning. Firstly, it offers a
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biologically inspired alternative to traditional pruning methods, al-
lowing for more efficient utilization of computational resources. Sec-
ondly, the approach introduces a level of interpretability to Sparse
Neural Networks by emphasizing the importance of frequently used
connections. This could aid in understanding the network’s decision-
making process and facilitate model explanation.
While this study demonstrates the feasibility and potential ben-

efits of Brain-Mimetic Pruning, further research is warranted to
explore its applicability in different domains and datasets.

6.2 Insights on Brain-Mimetic Addition
In this study, we also address the issue of adding connections after
the pruning process in Sparse Neural Networks. While traditional
approaches like AccSET use accuracy-based methods to determine
the number of connections to add or remove, we aim to enhance
this technique by introducing a more logical and nuanced approach.

Unlike many dynamic sparse models that randomly add connec-
tions, our approach focuses on selecting which connections to add.
With the knowledge of each artificial synapse’s significance level,
we assign a probability to each connection for potential addition.
Connections with lower significance are assigned a lower probabil-
ity of being used again, while connections with higher significance
have a higher probability of being added.
Furthermore, to strike a balance between adding too few or too

many connections, the algorithm calculates the median of the prob-
abilities. Only the connections with probabilities above the median
are selected for addition. This approach ensures a controlled and
balanced increase in the number of connections, taking into account
both the significance of connections and the current accuracy of
the model.
The successful implementation of this approach holds several

implications for the field of deep learning. By adding connections
in a more strategic and informed manner, the network can adapt
its architecture to better capture complex patterns and improve its
overall performance. Moreover, the use of a logical framework for
connection addition contributes to the interpretability of Sparse
Neural Networks, as connections with higher significance carry
more weight in the decision-making process.

6.3 Insights on Model Performance
The performance of BMSA was compared to two distinct models,
namely AccSET-MLP, and SET-MLP, on two widely-used image
classification datasets, Fashion-MNIST and CIFAR10. The evaluation
was based on accuracy, number of connections, and loss metrics,
providing valuable insights into the strengths and limitations of
each BMSA.
The results of accuracy demonstrate that BMSA is competitive

with SET-MLP in terms of accuracy. Both models experience a rapid
increase in accuracy during the initial 20 epochs and remain com-
petitive until after the 400th epoch, when SET-MLP experiences an
increase while BMSA remains relatively static. By the final epoch,
BMSA achieves a maximum accuracy of 0.85 which is considerably
higher than AccSET and only slightly lower than the maximum ac-
curacy achieved by SET-MLP (0.86). On the CIFAR10 dataset, BMSA
exhibited superior performance by achieving a maximum accuracy

of 0.70, surpassing the accuracies of SET-MLP (0.67) and AccSET-
MLP (0.63). These results indicate that BMSA has a higher potential
for accurate image classification compared to the other models.
The number of connections analysis revealed interesting differ-

ences in the model architectures. BMSA exhibited the highest num-
ber of connections among the three models, indicating a higher level
of complexity and connectivity in its architecture. It can be seen that,
BMSA has significantly fewer connections compared to its dense
counterpart, MLP. BMSA has a more intricate model structure and
potentially has the ability to capture more intricate patterns and
relationships within the datasets. Our results show that, in a more
complex dataset, CIFAR10, BMSA outperformed its counterparts
while keeping up with SET against Fashion-MNIST.

Furthermore, the analysis of loss values provided insights into
the models’ optimization capabilities. BMSA consistently achieved
lower loss values, indicating its effectiveness in minimizing errors
during the training process. Specifically, BMSA demonstrated the
lowest loss values on both Fashion-MNIST (final loss of 0.42) and
CIFAR10 (final loss of 0.87), followed closely by SET-MLP. AccSET-
MLP exhibited slightly higher losses on both datasets. These findings
highlight the superior optimization abilities of BMSA in terms of
reducing the discrepancy between predicted and actual labels.

In conclusion, the comparative analysis suggests that BMSA out-
performs AccSET-MLP and SET-MLP in terms of accuracy, loss
minimization, and convergence speed on both Fashion-MNIST and
CIFAR10 datasets. BMSA consistently achieved higher accuracies,
demonstrated superior optimization capabilities by minimizing loss,
and showcased faster convergence to high accuracy levels. These
findings have significant implications for the field of image classi-
fication, as BMSA can be considered a more effective and efficient
model for accurate classification tasks. However, further research
is needed to investigate the generalization capabilities and poten-
tial trade-offs associated with the increased complexity of BMSA’s
architecture.

7 CONCLUSION
In this research, we presented a novel approach for the pruning
and growth processes in Sparse Neural Networks, inspired by the
biological brain. Our proposed Brain-Mimetic Synapse Adjustment
(BMSA) algorithm incorporates. the concept of significance and
frequency of usage to prune connections and add new ones, mim-
icking the pruning mechanisms observed in mammalian brains. The
findings of this research have significant implications for the field of
deep learning. Our approach provides a more biologically plausible
and intuitive method for network pruning and growth. The com-
bination of improved performance, interpretability, and biological
inspiration makes our approach a promising direction for future
research in sparse network modeling.
Despite the success of our Biological Brain Inspired Pruning ap-

proach, there are limitations to consider. Time constraints hindered
experimentation and exploration of alternative methods for deter-
mining connection insignificance.

Further work may include: (1) exploration of the generalization of
BMSA learning capabilities under various datasets, (2) investigation
of other biological-inspired possibile algorithmic improvements of
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BMSA, and (3) fast adaptation of BMSA algorithm to other dynamic
sparse training models (e.g. RigL).
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