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ABSTRACT  

In the southern Indian provinces of Tamil Nadu and Kerala, anthropogenic influences and 

habitat fragmentation have exerted significant impacts on the Indian leopard's environment 

within the biodiverse Western Ghats. As a globally recognized UNESCO World Heritage 

site, the Western Ghats' diverse ecosystems and rich biodiversity are integral to the survival 

of these leopards. This study analyses the implications of integrating anthropogenic variables 

with environmental variables, assessing their cumulative impact on the precision of Species 

Distribution Models (SDMs). Four distinct SDMs utilizing techniques Maximum Entropy 

(Maxent), Random Forests, Generalized Linear Models (GLM), and Boosted Regression 

Trees (BRT) were employed. Initial model execution solely incorporated environmental 

variables, and the outputs were incorporated into a comprehensive ensemble model, with 

recorded accuracy measures. In subsequent runs, anthropogenic variables were introduced, 

enhancing the integrated model's overall accuracy, thereby underscoring their pivotal role in 

forecasting habitat suitability. Moreover, this investigation estimates the viable habitat area 

for leopards outside the prescribed protected zones within Tamil Nadu and Kerala. An 

exploration into the influence of dataset selection on leopard habitat suitability modelling was 

also undertaken, utilizing two divergent datasets: the Global Biodiversity Information 

Facility (GBIF) and the official Indian government report on leopard status. A significant 

discrepancy was noted when each dataset was applied individually, resulting in the 

deployment of a combined dataset for the final analysis. The ensemble model predicts a total 

suitable habitat area of 21,797 square kilometres within these southern Indian states. From 

this, 7,426.015 square kilometres are within protected areas, leaving 14,370.985 square 

kilometres of appropriate habitat situated outside these zones. It also provides a district-wise 

breakdown of the predicted leopard habitat and protected areas in both states. Representing 

the pioneering application of machine learning techniques in Tamil Nadu and Kerala for 

predicting suitable habitats for leopards, this research significantly contributes to the region's 

conservation initiatives. 

 

Keywords: Leopards, Species Distribution Modelling, Ensemble Model, Habitat Suitability, 

Human-Wildlife Conflict, Western Ghats, Tamil Nadu, Kerala
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1. Introduction 

 

1.1 Background 

One of the most diverse families of mammals, carnivores (order Carnivora), has managed to 

inhabit all continents and a wide range of habitats, including deserts, tropical forests, savannas, 

rivers, and oceans (Eizirik et al., 2010). Globally, large carnivores are acknowledged as 

flagship species for conservation initiatives (Macdonald et al., 2015). As top predators, they 

control primary consumers (herbivores) both directly and indirectly, which has a cascading 

effect on the ecosystem (Carter & Linnell, 2016).  

Large carnivores provide various ecological services like biodiversity improvement, native 

plant diversity restoration, disease control, and carbon storage to mitigate climate change, also 

reducing the amount of their herbivore prey; large predators may improve carbon storage in 

particular environments, allowing plants to thrive (Ripple et al., 2014). Therefore, conserving 

carnivores globally can help restore declining forests by aiding in carbon storage, especially in 

dense tropical forests, where plant biomass declines after removing the large predator from 

those forests (Terborgh et al., 2001).  

However, because of their predatory habits, many of these species have had severe losses in 

their populations worldwide. They may be more vulnerable to anthropogenic threats than other 

animal species (Fernández-Sepúlveda & Martín, 2022). Over the past 200 years, the majority 

have seen significant population decreases and range reductions over the globe (Ripple et al., 

2014). These carnivores frequently require giant prey and broad habitats due to endothermy’s 

high metabolic demands and large body size (Ripple et al., 2014). They often clash with people 

and animals due to their varied temperaments and feeding needs. This makes them vulnerable 

to extinction, in addition to human intolerance. 

Even though protected zones have been constructed worldwide to save endangered species, 

large carnivores are often seen occupying human-dominated areas outside protected reserve 

limits to fulfil their food needs (Naha et al., 2021). A significant fraction of the surviving 

geographic range of carnivores globally is represented by such shared landscapes (Carter & 

Linnell, 2016). Most threatened, and declining carnivore species are distributed in East and 

South Asia's tropical forest, shrubland, and grassland habitat. The primary dangers to the 

Carnivora order are hunting and trapping of terrestrial species and habitat degradation due to 

deforestation and agricultural expansion (Fernández-Sepúlveda & Martín, 2022). 

As part of the Asia Pacific, India has a diverse climate, varied topography, at least ten unique 

bio-geographical areas, sustains a wide range of forest types, and is home to three hotspots for 

terrestrial biodiversity worldwide (Kumar & Verma, 2020). As other terrestrial habitats have 

lost their natural status, the forest currently holds most of the terrestrial biodiversity (Kumar & 

Verma, 2020). An outstanding protected area network includes 99 national parks (18 biosphere 

reserves), 514 wildlife sanctuaries, and many sacred groves preserved by 
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indigenous tribes (Kumar & Verma, 2020). Nevertheless, despite a supportive forest policy and 

a comprehensive regulatory framework, the ever-increasing human population's growing 

needs, land use changes, and the spread of foreign invasive species all contribute to the ongoing 

degradation of forests and loss of biodiversity.  

Despite having many national parks, wildlife sanctuaries, and protected areas, India still 

struggles with issues like habitat destruction, human-wildlife conflicts, illegal poaching, etc. 

The Indian leopard (Panthera pardus fusca) is one large carnivore species impacted by these 

activities. The Indian subspecies of leopard is distributed in all the forested habitats of the 

country; it is absent only in deserts and the upper Himalayas (Jhala et al., 2018). According to 

information provided by the Wildlife Protection Society of India, at least one leopard dies each 

day in India. Leopards are widely distributed across India, with at least 13000 in number, stated 

in the leopard report, 2018. Compared to other carnivores, leopards are better able to survive 

in increasingly human-dominated areas, mainly because they have highly adaptable behaviour 

and protection provided by the Indian government (Jhala et al., 2018). In most of India's 

forested areas, the Indian leopard serves as the top predator in addition to the tiger and lion 

(Jhala et al., 2018). Although leopards are widely distributed throughout the country, their 

habitat is becoming increasingly fragmented. This loss of suitable habitat and wild prey causes 

leopards to venture into areas with a high human presence in search of food, which leads to 

human-leopard conflict (Jhala et al., 2018). The surveys conducted across four major tiger 

conservation landscapes in India estimated the abundance of the Indian leopard in 1) Shivalik 

Hills and Gangetic plains, 2) Central India and the Eastern Ghats, 3) the Western Ghats, and 4) 

North-eastern Hills and Brahmaputra Flood Plains stated by Status of leopard report, 2018 as 

shown in Figure 1.  
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Figure 1: The figure depicts the 4-four tiger conservation landscapes across India where the 

survey for the Indian leopard abundance was conducted. 

The southern states of India have been enriched with the Western Ghat’s exceptionally high 

biological diversity and endemism which made this biodiversity paradise a part of the world 

heritage site by the United Nations Educational, Scientific and Cultural Organization 

(UNESCO, 2021). This mountain range is one of the eight "hottest hotspots" for biological 

diversity in the world (UNESCO, 2021). Some of the world's best non-equatorial tropical 

evergreen forest specimens can be found in the Western Ghats. The Ghats are home to at least 

323 species that are included on the IUCN Red Data List as threatened. They are home to 229 

plant species, 31 animal species, 15 bird species, 43 amphibian species, and 5 reptile species, 

all of which are internationally threatened. Of the 325 species that are threatened by extinction 

globally and found in the Western Ghats, 129 are considered vulnerable, 145 are endangered, 

and 51 are critically endangered. Therefore, leopards can be an umbrella species for 

biodiversity conservation in areas devoid of other large carnivores. Studies on leopards have 

been quite scarce despite their ecological importance and the problems they confront; the 

literature review suggests that the study of human-leopard conflict and leopard habitat 

suitability is very limited in the southern states of Tamil Nadu and Kerala. Most studies 

conducted in India are from the northern part, including human-leopard conflict, species, and 

prey distribution. Hence, the conservation of leopards is essential to maintain an ecological 

balance in the forested landscape of south India. 

To understand the distribution of Indian leopards in the forested landscape of southern India, 

Ecological niche models can be used for modelling the habitat suitability of leopards as these 

models are popular in ecology and used globally to address fundamental questions like where 

a species is likely to be found, what factors are involved in the distribution of a species, and 

what challenges climate change imposes on different species. Ecological niche models are also 

known as species distribution models. They are extensively used to model habitat suitability 

and understand the distribution of other species in broad environments concerning space and 

time. Ecological niche models are also used to build prediction maps by relating the occurrence 

of a species to the corresponding environmental variables (Franklin, 2012). It was first used in 

the 1920s to assess the role of climatic determinants in species distribution with the help of 

predictive output maps (Guisan & Thuiller, 2005). The advancement in data science has 

resulted in the development of complex machine learning algorithms, which are being 

integrated and used in these niche models to develop more accurate maps and provide advanced 

decision-making for the conservation of endangered species globally (Elith et al., 2006; Kindt, 

2018; Mi et al., 2017; Woodman et al., 2019). 

 

1.2 Problem Statement 

Leveraging their remarkable adaptability towards varying habitats and diets, leopards have 

demonstrated a resilient presence in environments heavily populated by humans and subjected 

to intensive farming (Nowell et al., 1996). These creatures exhibit robust growth, exceeding a 

rate of 10% annually, and are identified as prolific breeders (Kumar et al., 2019). However, 
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anthropogenic factors such as habitat degradation, conflicts with humans, natural prey 

depletion, and illegal poaching have severely impacted their populations, causing a significant 

contraction in their global range over the last century (Jhala et al., 2018). 

Existing studies of leopard distribution and status have reported alarming reductions in leopard 

territory, with losses amounting to 48-67% in Africa and an even more devastating 83-87% in 

Asia (Jacobson et al., 2016). Correspondingly, recent genetic studies conducted in India have 

attributed human activities to a dramatic decline of 75-90% in leopard populations over the 

past 120-200 years. This alarming trend has prompted the International Union for Conservation 

of Nature (IUCN) to revise the status of leopards from "Near Threatened" to "Vulnerable" 

(IUCN, 2022). Despite India's efforts to safeguard these creatures by granting them maximum 

protection under the Wildlife Protection Act of 1972 and the Convention on International Trade 

in Endangered Species of Wild Fauna and Flora (CITES), the persistent misperception of their 

abundance owing to their widespread visibility continues to threaten their survival. 

In the southern regions of India, escalating human-wildlife conflicts are largely a consequence 

of the increasing human population and the subsequent fragmentation of habitats. Tea estates, 

due to their proximity to forests, are frequently regarded as hotspots for human-leopard 

conflicts (Bali et al., 2007). Additionally, the Western Ghats are increasingly grappling with 

the pressures of population expansion and development (Nath et al., 2022). The management 

of these sites faces immense challenges due to their extensive size, complex territories, and 

cluster formations (Nath et al., 2022). Furthermore, an increase in human-wildlife conflicts, 

predominantly involving Asian elephants and leopards, has been noted across these southern 

states, underlining the stress exerted by human encroachments (Hills et al., 2017). 

The integrity of the forest corridors, critical to the protection of these sites, is at risk of being 

eroded due to demographic pressures (Nath et al., 2022). Given these pressing circumstances, 

it becomes imperative to investigate the correlation between leopard habitat preferences and 

instances of human-leopard conflicts. This examination will provide valuable insights to 

inform conflict mitigation strategies, promoting a sustainable model of human-leopard 

coexistence. 

1.3 Research objective 

• The overall aim of this study is to model the habitat suitability for the Indian leopard in 

two south Indian states (i.e., Tamil Nadu and Kerala) using the ensemble model. 

1.4 Research questions 

 

1. Does integrating anthropogenic variables into the ecological niche model improve the 

prediction accuracy of the suitable habitat for leopards? 

2. What is the extent of potentially suitable habitats available for leopards outside 

protected areas as predicted by the ensemble model? 

3. What is the extent of the difference in prediction accuracy between the GBIF dataset 

and the Status of Leopard Report dataset when used in species distribution modelling? 
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1.5 Research hypotheses 

H0: Incorporating anthropogenic variables into ecological niche modelling cannot significantly 

improve the prediction accuracy of the suitable habitat for leopards. 

H1: Incorporating anthropogenic variables into ecological niche modelling will significantly 

improve the prediction accuracy of the suitable habitat for leopards. 

2. Materials and Methods 

 

2.1 Study area 

The geographic focus of this thesis encompasses the southern Indian states of Kerala and Tamil 

Nadu, spanning areas of 38,863 km² and 130,058 km² respectively. The specific coordinates 

and intricate topographical details of the region are illustrated in Figure 2. The selection of this 

study area was guided by its unique climatic conditions, rich ecological profile, and significant 

leopard populations. According to the 'Status of Leopards 2018' report, along with information 

sourced from the Ministry of Environment, the Western Ghats - which extend across these two 

states - provide a habitat for an estimated population of 3,387 leopards. Of these, Tamil Nadu, 

and Kerala host 868 and 650 leopards, respectively, largely within the confines of designated 

tiger reserves. 

Internationally recognized for its ecological value, the Western Ghats region surpasses even 

the Himalayas in antiquity and stands as a notable geomorphic feature (Nath et al., 2022). The 

Ghats encapsulate the tropical monsoon system, supporting distinctive montane forest 

ecosystems that significantly modulate the Indian monsoon weather patterns while tempering 

the region's tropical temperatures (UNESCO, 2021). Furthermore, the Ghats function as a vital 

meteorological barrier, intercepting the monsoon winds originating from the southwest during 

late summer and early autumn, thereby preserving the region's unique climate (UNESCO, 

2021). Leopards, as key predators within this habitat, play an necessary role in shaping the 

population dynamics of other species, fostering ecological balance and health. In addition, their 

status as an umbrella species implies that conservational initiatives targeting leopards would 

concurrently shield a countless of other cohabiting species. 

Considering the leopards' ecological importance, their vulnerable conservation status, and the 

unique climatic and ecological features of Kerala and Tamil Nadu within the Western Ghats, 

this study area becomes a vital setting for examining leopard population dynamics and 

conservation needs. Gaining insights into these aspects could augment broader conservation 

strategies, thereby enriching the biodiversity of this globally significant region. 
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Figure 2: The location of the study area and the distribution of the protected areas in the 

southern Indian states of Kerala and Tamil Nadu 

2.2 Datasets 

A Combined dataset (GBIF and Leopard Report ) of 300 leopard presence points was used in 

this study. 

2.2.1 GBIF (Global biodiversity information facility) dataset 

The Global Biodiversity Information Facility (GBIF) is an international open data 

infrastructure that allows anyone, anywhere, to access data about all types of life on Earth, 

shared across national boundaries via the internet. Its rich repository of biodiversity data, 

contributed by a surplus of participating institutions and organizations from across the world, 

forms a pivotal resource for scientific research, conservation, and sustainable development. 

The GBIF dataset encompasses a wide array of biodiversity data, including taxonomic 

information, species distribution records, and observational data, among others. This dataset, 

being dynamic and regularly updated, represents a high asset for global biodiversity studies 

and related research endeavours. A total of 80 leopard presence points were clipped and 

Protected areas 

Kerala  

Tamil Nadu  
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collected from the GBIF dataset DOI https://doi.org/10.15468/dl.d4srbz between 2017 and 

2022 (figure 3) for the region of southern India. 

The procedure for Extracting Location Data of Leopards from GBIF is: 

1. Navigate to the GBIF homepage at https://www.gbif.org.  

2. Use the 'Search' function located at the top of the webpage and enter 'Leopard' into the 

search field. 

3. A drop-down menu will appear; select 'Species'. This will lead you to a new page 

containing information about various leopard species. 

4. Select the specific species of leopard for which you wish to extract location data. For 

instance, if you are interested in the Panthera pardus, select it. 

5. Once you have navigated to the chosen species page, click on the 'Occurrences' tab. 

6. Here, you will find a map illustrating the global distribution of the selected species 

based on the occurrence data recorded in the GBIF dataset. 

7. Above the map, there is an option to 'Download data'. Click on this button. 

8. You will then be prompted to log in or create a GBIF account if you do not already 

have one. After logging in, you can proceed with the download request. 

9. After submitting the download request, you will have to wait for the data to be prepared. 

The duration of this process can vary depending on the volume of data requested. 

10. Once the data is ready, you will receive an email notification with a link to download 

the data. This dataset can be downloaded in various formats, such as CSV or Darwin 

Core Archive, and will include detailed location data for the selected leopard species. 

11. After downloading the data, it can be imported into suitable data analysis software for 

further study and analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.15468/dl.d4srbz
https://www.gbif.org/


8  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Spatial representation of GBIF dataset 

 

2.2.2 Status of leopard report dataset  

The data compilation for the report drew upon an extensive nationwide leopard census utilizing 

a broad-spectrum camera-trap survey, conducted across 141 diverse sites spanning 21 Indian 

states (Jhala et al., 2018). The strategic implementation of camera traps facilitated the capture 

and individual identification of leopards, leveraging their unique spot patterns. This enabled a 

robust estimation of leopard populations in the surveyed regions. The survey encompassed a 

sweeping area of approximately 26,838 square kilometres, inclusive of several protected zones 

and reserves, culminating in a robust dataset. Alongside camera-trapping, ancillary data 

sources were employed, encompassing field observations, track signs, local interviews, and 

incidental leopard sightings, to gain a holistic perspective on the distribution and status of 

leopards (Jhala et al., 2018). The amassed dataset was subjected to sophisticated statistical 

scrutiny, including the Spatially Explicit Capture-Recapture (SECR) models, to extrapolate 

leopard densities and population sizes.  

The "Status of Leopards in India 2018" report serves as a potent foundation for species 

distribution modelling (Jhala et al., 2018). First, the curated data presents crucial insights into 

the spatial distribution of leopards across India, empowering researchers to identify potential 

GBIF dataset 

Protected areas 

Leopard presence points  
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habitats and comprehend the factors driving leopard distribution. Next, the report delineates 

leopard population densities across different regions, offering a pivotal understanding of 

habitat-carrying capacities. This is integral in forecasting potential shifts in leopard distribution 

instigated by factors such as habitat loss, prey availability, or human encroachment (Jhala et 

al., 2018). 

Finally, the standardized approach to data collection across different states ensures data 

compatibility and reliability, fostering the development of robust, credible, and accurate 

species distribution models. These, in turn, yield critical perspectives, essential for effective 

conservation planning and management (Jhala et al., 2018). 

A total number 230 leopard presence points were collected using the report (see figure 4). For 

spatial representation of camera trap data in the southern Indian states refer (appendix I).          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Spatial representation of Status of leopard report dataset 
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2.3 Predictor variables  

In the current study, predictor variables for the Southern Indian leopards were meticulously 

selected based on a comprehensive review of existing literature, research studies, local news 

reports, national publications, as well as expert knowledge in the field. Predictor variables, or 

covariates, play a critical role in species distribution modelling . They serve as the independent 

factors that influence the presence, absence, or abundance of a species in specific locations 

(Guisan & Zimmermann, 2000). The correct selection and incorporation of predictor variables 

are vital in SDMs as they facilitate an understanding of how different environmental and 

anthropogenic factors may affect species distribution (Austin, 2007). 

For example, variables such as temperature, precipitation, and land use might influence a 

species' ability to survive and reproduce, thereby determining its distribution (Elith & 

Leathwick, 2009). Additionally, understanding these relationships allows for the projection of 

potential shifts in species distributions in response to environmental change, a fundamental 

component in conservation planning and management (Guisan et al., 2013). 

2.3.1 Environmental variables  

The environmental variables used in this study were obtained from publicly accessible sources 

(refer to Table 1) and underwent pre-processing in ArcGIS software. Pre-processing involved 

converting the variables into the appropriate format, namely ASCII, and ensuring that they had 

a consistent spatial resolution of 1 km. Additionally, variables that originally had vector 

features, such as points and lines, were transformed into raster format while maintaining the 

same 1 km resolution. 

Bio-climatic layers 

Climate sensitivity is a fundamental aspect of all living organisms. Bio-climatic variables serve 

as biologically relevant indicators for characterizing species distribution across both 

continental scales (Blach-Overgaard et al., 2015) and regional scales (Kandel et al., 2015). To 

acquire the necessary bio-climatic data, the WorldClim database (http://worldclim.org/) was 

accessed. The WorldClim database, specifically version 2, consists of a comprehensive 

collection of global climate layers. The database includes annual time series with metrics such 

as annual means, seasonality, as well as extreme or limiting temperature and precipitation data 

(Hijmans et al., 2005). In this study, 19 bio-climatic layers and elevation (obtained from 

Worldclim database), each possessing a spatial resolution of 1 km, were employed (refer to 

Table 1). 

Creation of additional environmental layers 

To provide a more comprehensive evaluation of the habitat, additional environmental layers 

were generated encompassing water bodies, herbaceous vegetation, shrub, forest cover, and 

bare or sparsely vegetated areas. These layers were extracted from the Copernicus Global Land 

Service's Land Cover 100m data repository, specifically the version 3 Globe spanning the years 

2015-2019. This dataset represents a high-resolution depiction of land cover on a global scale, 

generated through the analysis of satellite data and providing a vital resource for ecological 

modelling (Buchhorn et al., 2020). The Copernicus data has been recognized for its consistent, 

http://worldclim.org/
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reliable, and comprehensive global coverage which is critical in studying the dynamics of land 

cover changes over time. By incorporating the environmental features from this dataset, our 

model can accurately consider factors such as the availability of water bodies, the extent of 

vegetated areas, and the presence of forest cover, which are integral elements of the leopards' 

habitat (Tuanmu & Jetz, 2014). Once obtained, these layers were then resampled to 1km spatial 

resolution using ArcGIS 10.8. Next, The forest height data employed in this study was sourced 

from the Global Forest Canopy Height dataset of 2019, distributed by the Global Land Analysis 

& Discovery (GLAD) group (Townshend et al., 2019). This dataset is characterized by its high 

spatial resolution of 30 meters, allowing for comprehensive and intricate insights into forest 

structure across global landscapes. For the purpose of this investigation, the original resolution 

of the data was modified; the layer was resampled to a coarser resolution of 1 km using ArcGIS 

10.8. 

Preparation of Normalized Difference Vegetation Index (NDVI) layers 

A key aspect of this study involves the creation of multiple Normalized Difference Vegetation 

Index (NDVI) layers – namely, NDVI_maximum, NDVI_standard deviation, 

NDVI_minimum, and NDVI_mean – utilizing the Google Earth Engine platform. The Earth 

Engine allows for the development of a customizable program capable of computing NDVI for 

any geographic region, contingent upon user-specified geometry parameters. The output layers 

were rendered as Geo TIFF files with integrated coordinates and a spatial resolution of 1 km. 

These contain the corresponding NDVI value for each category (max, min, mean, and standard 

deviation) and can be directly incorporated into Geographic Information System (GIS) 

software such as ArcGIS and Q GIS. 

The NDVI was calculated using the MOD13A2.061 Terra Vegetation Indices product, a 

MODIS (Moderate Resolution Imaging Spectroradiometer) dataset with a 16-day interval and 

global 1 km resolution. This dataset delivers various vegetation index layers that offer a precise 

representation of Earth's photosynthetically active vegetation and facilitate the observation and 

monitoring of vegetation conditions worldwide. Employing this dataset for NDVI computation 

helps in generating highly accurate environmental layers, crucial in species distribution 

modelling. 

 

2.3.2 Anthropogenic variables  

Anthropogenic variables represent those elements within an ecosystem substantially influenced 

or modified by human activities. These variables, in turn, exert profound implications on the 

flora and fauna, including species like the leopard, by altering habitats, reshaping landscapes, 

and changing ecological dynamics (Laurance et al., 2014). Particularly in the context of 

southern Indian states such as Kerala and Tamil Nadu, several anthropogenic variables pose 

considerable threats to leopard populations and their habitats. In this study, seven key 

anthropogenic variables considered include population density, distance to roads, distance to 

paths, distance to settlements, distance to protected areas, distance to farmlands, and croplands. 

Each of these variables reflects a different aspect of human-induced environmental changes 

impacting leopards and their habitats. Population density can exert pressure on habitats through 
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activities like deforestation, pollution, and urbanization, directly affecting leopards’ natural 

habitats (Ripple et al., 2014). Similarly, the distance to roads, paths, and settlements represents 

the encroachment of human-made structures and activities into leopard habitats, leading to 

habitat fragmentation and increased human-wildlife conflicts (Carter et al., 2012). 

The proximity to protected areas and farmlands portrays the tension between conservation 

efforts and agricultural activities. Protected areas can serve as refuges for leopards, but nearby 

farmlands can become potential conflict zones due to livestock predation and crop damage 

(Athreya et al., 2013). Finally, croplands not only replace natural habitats but can also disrupt 

wildlife corridors, leading to further isolation and fragmentation of leopard populations 

(Karanth et al., 2010). These layers of anthropogenic variables, created at a resolution of 1 km 

using ArcGIS, serve as critical tools in understanding the spatial dynamics of these human-

induced factors, enabling more precise and context-specific conservation strategies for 

leopards in southern India.  

Table 1: All Predictor variables 

Data Sources Categories Variables Abbreviation Units 

Worldclim  

 

 

 

Environmental 

Variables 

 

 

 

Annual mean 

temperature 

bio1 ◦ C 

Mean diurnal range 

(mean of monthly 

(Max temp – min 

temp))           bio2 ◦ C 

Isothermality 

(BIO2/BIO7) 

bio3 Dimensionless 

Temperature 

seasonality (standard 

deviation) bio4 ◦ C 

Max temperature of 

the warmest month bio5 ◦ C 

Min temperature of 

the coldest month bio6 ◦ C 

Temperature annual 

range 

(BIO5-BIO6) bio7 ◦ C 

Mean temperature of 

wettest quarter bio8 ◦ C 

Mean temperature of 

driest quarter bio9 ◦ C 
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Mean temperature of 

warmest quarter bio10 ◦ C 

Mean temperature of 

coldest quarter bio11 ◦ C 

Annual precipitation bio12 mm 

Precipitation of 

wettest month 

bio13 mm 

Precipitation of driest 

month 

bio14 mm 

Precipitation 

seasonality coefficient 

of variation) bio15 Dimensionless 

Precipitation of 

wettest quarter 

bio16 mm 

Precipitation of driest 

quarter 

bio17 mm 

Precipitation of 

warmest quarter 

bio18 mm 

Precipitation of 

coldest quarter 

bio19 mm 

 Elevation elevation m 

GEOFABRIK Distance to water 

bodies  km 

GLAD Forest Height  m 

 

 

Copernicus Global 

Land Service's 

Land Cover 

Bare and Sparse 

Vegetation  Dimensionless 

Shrubs  Dimensionless 

Herbaceous 

vegetation  Dimensionless 

Distance to water 

bodies  km 

Bare and Sparse 

Vegetation  Dimensionless 

 

 

Google Earth     

Engine 

Annual minimum 

NDVI 

ndvi_min Dimensionless 

Annual mean NDVI ndvi_mean Dimensionless 

Annual maximum 

NDVI 

ndvi_max Dimensionless 
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2.4 Collinearity analysis of predictor variables 

Multicollinearity analysis is a critical procedure in statistical modelling, including ecological 

niche modelling (ENM), which addresses the issue of collinearity, or the high correlation 

among predictor variables (Dormann et al., 2013). It aims to identify and mitigate the influence 

of interrelated variables that may otherwise confound the results and interpretations of a model, 

thereby ensuring robust and credible model outcomes. 

Within the context of ENMs multicollinearity can lead to an overestimation or underestimation 

of the effects of different environmental variables on species distributions (Elith et al., 2011). 

This can mislead the interpretation of species-environment relationships and can undermine 

the predictive performance of the model. Hence, a careful multicollinearity analysis is 

fundamental to the successful application of ENM. 

 In this study, multicollinearity analysis was performed using the Variance Inflation Factor 

(VIF) rule, specifically identifying variables with a VIF greater than 10. This rule stipulates 

that variables with a VIF exceeding 10 are considered highly collinear and thus should be 

omitted from the model (O'Brien, 2007). This step ensures that the final model is free from the 

undue influence of correlated variables, thereby increasing its interpretability and accuracy 

The stepwise multicollinearity analysis conducted in this study leveraged the VIF step function 

(table 3), a tool developed by Babak Naimi (Naimi, 2018). This function operates on an 

iterative mechanism, initiating the process by determining the VIF of each variable 

incorporated in the model. Should any of the variables manifest a VIF value surpassing the 

predefined threshold, which is typically set at 10, the function identifies the variable with the 

most significant VIF value and eliminates it from the model. This procedure continues 

iteratively, systematically eliminating variables that demonstrate a VIF value beyond the 

Standard deviation 

NDVI 

NDVI_standard 

deviation 

Dimensionless 

NASA (SEDAC)  

 

 

Anthropogenic 

Variables 

Population density  

Population per 

square km 

 

 

GEOFABRIK 

Distance to roads         km 

Distance to Railways  km 

Distance to built-up 

areas  km 

Distance to farmlands  km 

     GEONODE Distance to Protected 

areas  km 

Copernicus Global 

Land Service's 

Land Cover 

 

Cropland  km 
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threshold. The process ceases when all remaining variables in the model have VIF values 

within the acceptable range (VIF>10). The outcome of this process is a model with 

multicollinearity significantly reduced, thereby enhancing the interpretability and credibility of 

the model results. 

 

Table 2 – VIF test for all variables 

 

 

 

 

 

S.N. Variables VIF 

1 Bare and Sparse Vegetation 1.385 

2 Human population density 1.413 

3 Distance to water bodies 1.419 

4 Bio 15 1.441 

5 Shrubs 1.442 

6 Herbaceous vegetation 1.462 

7 Distance to roads 1.473 

8 Forest height 1.504 

9 NDVI_minimum 1.544 

10 Distance to farmlands 1.575 

11 Bio 11 1.589 

12 Elevation 1.622 

13 Distance to build up area 1.708 

14 Distance to railway 1.842 

15 Bio 3 1.846 

16 Bio 1 2.171 

17 Bio 18 2.525 

18 Bio 14 2.707 

19 Bio 9 3.065 

20 Bio 13 3.105 

21 Bio 2 3.385 

22 Cropland 3.701 

23 Bio 17 3.713 

24 Bio 7 3.831 

25 Bio 8 3.856 

26 Bio 4 3.981 

27 Bio 10 4.067 

28 Bio 12 4.295 

29 Bio 6 4.581 

30 NDVI_maximum 5.625 

31 Forest cover 5.718 

32 Bio 5 5.953 

33 NDVI_standard deviation 6.027 

34 Bio 16 8.228 

35 Bio 19 8.238 

36 Distance to Protected areas 8.899 

37 NDVI_mean 8.988 



16  
 

Table 3 - VIF values after applying the VIF step function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 – Environmental variables after VIF Test 

S.N. Variables VIF 

1 Human population density 1.256 

2 Distance to water bodies 1.305 

3 Bare and Sparse Vegetation 1.363 

4 Herbaceous vegetation 1.375 

5 Shrubs 1.418 

6 Distance to roads 1.422 

7 Distance to farmlands 1.468 

8 NDVI_minimum 1.503 

9 Forest height 1.530 

10 Distance to build up area 1.606 

11 Distance to railway 1.666 

12 Bio 8 2.661 

13 Cropland 3.496 

14 Bio 19 3.551 

15 Bio 14 4.167 

16 Bio 15 4.266 

17 Distance to Protected areas 4.595 

18 NDVI_standard deviation 4.879 

19 Bio 2 4.966 

20 NDVI_maximum 5.084 

21 Bio 3 5.108 

22 Forest cover 5.927 

23 Bio 18 5.984 

24 NDVI_mean 7.756 

S.N. Environmental Variables VIF 

1 Distance to water bodies 1.305 

2 Bare and Sparse Vegetation 1.363 

3 Herbaceous vegetation 1.375 

4 Shrubs 1.418 

5 NDVI_minimum 1.503 

6 Forest height 1.530 

7 Bio 8 2.661 

8 Bio 19 3.551 

9 Bio 14 4.167 

10 Bio 15 4.266 

11 NDVI_standard deviation 4.879 

12 Bio 2 4.966 

13 NDVI_maximum 5.084 

14 Bio 3 5.108 

15 Forest cover 5.927 

16 Bio 18 5.984 
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Table 5 – Anthropogenic variables after VIF Test 

 

 

 

 

 

 

 

 

2.5 Ecological niche modelling 

Ecological Niche Modelling (ENM), also known as species distribution modelling or habitat 

suitability modelling, is a predictive tool that utilizes statistical algorithms to identify 

relationships between species occurrences and their environmental and spatial characteristics 

(Elith & Leathwick, 2009). It operates on the fundamental ecological principle that species are 

not randomly distributed across landscapes but are confined to suitable environments dictated 

by their evolutionary adaptations and ecological needs (Soberón, 2007). 

In the context of wildlife and habitat conservation, ENM has emerged as a significant tool 

owing to its ability to predict the potential distribution of species under different environmental 

scenarios, providing critical insights for biodiversity management and conservation planning 

(Franklin, 2013). It assists in identifying areas of high conservation value, informing reserve 

design, assessing the impact of climate change on species distributions, and guiding efforts to 

reintroduce species or mitigate human-wildlife conflicts (Guillera-Arroita et al., 2015). 

The application of ENM to leopards in the southern Indian states of Kerala and Tamil Nadu 

holds considerable promise. By combining occurrence records with a range of environmental 

and anthropogenic variables, ENM can identify areas that offer suitable conditions for leopards. 

This can enhance our understanding of the species ecological requirements and potential 

distribution within these regions, which can be used to prioritize areas for conservation 

(Phillips et al., 2017). Furthermore, ENM can predict the impacts of future land-use changes 

on leopard habitats, thereby providing valuable guidance for land-use planning and conflict 

mitigation strategies to ensure the coexistence of humans and leopards in these areas (Elith et 

al., 2010). 

2.5.1 Model scenario 

Ensemble modelling is a methodological approach that combines the predictions from multiple 

individual models to generate a single, more robust prediction. This methodology capitalizes 

on the strength of consensus, reducing the likelihood of decision-making based on anomalous 

17 NDVI_mean 7.756 

S.N. Anthropogenic Variables VIF 

1 Human population density 1.256 

2 Distance to roads 1.422 

3 Distance to farmlands 1.468 

4 Distance to build up area 1.606 

5 Distance to railway 1.666 

6 Cropland 3.496 

7 Distance to Protected areas 4.595 
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results from a single model (Araújo & New, 2007). By integrating a variety of predictions, 

ensemble modelling can mitigate the uncertainties inherent in single-model predictions and 

improve the precision and reliability of the final outputs (Marmion et al., 2009). 

Role in Species Distribution Modelling: 

Ensemble modelling, by combining outputs from multiple SDMs, offers a more comprehensive 

and reliable view of species distributions. It allows for a more better understanding of the 

relationships between species and their environment, making it a particularly valuable tool in 

ecology and conservation biology. The ability to integrate and compare different model outputs 

has made ensemble modelling a preferred choice for predicting the potential impacts of climate 

change, land use change, or other environmental changes on species distribution patterns 

(Buisson et al., 2010). Consequently, ensemble modelling has become instrumental in 

formulating effective conservation strategies and managing biodiversity under global change 

scenarios (Araújo & New, 2007). 

In this study, 4 SDM techniques are used –  

1. Maxent –  

• The Maximum Entropy Model, more commonly known as Maxent, is a widely utilized 

tool in the field of species distribution modelling. Developed by Phillips, Anderson, 

and Schapire (2006). Within the realm of species distribution modelling, Maxent is used 

to infer potential distributions of species based on the environmental constraints of the 

locations where they have been observed. It operates under the assumption that the 

species under study is at distributional equilibrium with its environment, i.e., it is found 

wherever suitable conditions exist and does not occur where conditions are unsuitable 

(Elith et al., 2011). 

• Maxent is particularly notable for its applicability to presence-only data, which makes 

it useful when absence data are not available or reliable. This ability to operate 

efficiently with limited data inputs makes it highly suitable for applications such as the 

study of rare or elusive species and in regions where comprehensive survey data is 

lacking. Maxent also provides an array of output formats that are interpretable and 

useful for conservation planning, such as logistic output for habitat suitability and 

response curves to elucidate relationships between variables and probability of presence 

(Phillips & Dudík, 2008). 

• Overall, Maxent is a robust, flexible, and user-friendly tool that has been shown to 

perform well compared to other species distribution modelling methods, especially 

when using small sample sizes or incomplete data, making it a significant asset in 

modern ecological research. 

 

2. Generalized Liner Model – 

• The Generalized Linear Model (GLM) is a fundamental and widely employed statistical 

method in the field of species distribution modeling (Guisan et al., 2002). As a flexible 

extension of ordinary linear regression, GLMs allow for response variables with error 
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distributions other than the normal distribution, making them a powerful tool for 

modelling a range of biological phenomena (McCullagh & Nelder, 1989). 

• GLMs are particularly beneficial for examining the relationships between a response 

variable (e.g., species presence or abundance) and multiple explanatory variables, such 

as environmental or anthropogenic factors. The relationships are formulated in a 

systematic component that linearly combines the effects of these factors on a suitable 

scale for the response (Hastie & Tibshirani, 1986). 

• The application of GLMs in species distribution modelling allows ecologists to 

determine the influence of each environmental factor on species distribution while 

controlling for others, thereby providing insights into the species' ecological 

requirements and tolerances (Austin, 2002). This understanding can be harnessed to 

predict a species' potential distribution under different environmental scenarios, which 

is fundamental for conservation planning and management. Notably, GLMs are also 

capable of handling both presence-absence and presence-only data, further increasing 

their utility in ecological studies where complete datasets might not always be available 

(Yee & Mitchell, 1991). 

 

3. Boosted Regression Tree –  

• Boosted Regression Trees (BRTs) amalgamate the strengths of two machine learning 

techniques: regression trees and boosting, providing a powerful tool for understanding 

species-environment relationships and predicting species distribution (Elith et al., 

2008). Regression trees generate simple, interpretable decision rules, but their 

predictive performance is relatively modest. In contrast, boosting improves the 

accuracy by combining many simple models to create a single, highly accurate 

prediction model. BRT models can represent complex nonlinear relationships and 

interactions between predictors, thus enabling a nuanced understanding of species-

environment relationships (De'ath, 2007). 

• In species distribution modelling, BRTs allow for flexible response shapes, provide 

robust predictive performance, and handle different types of predictor variables, 

making them highly versatile (Elith et al., 2008). Furthermore, BRTs can handle 

missing data and are resistant to outliers, both common challenges in ecological datasets 

(Leathwick et al., 2006). BRTs also can quantify variable importance, providing insight 

into which environmental factors are most influential in determining the species' 

distribution (Hastie et al., 2009). This can provide crucial information for guiding 

conservation actions and understanding the potential impacts of environmental 

changes. 

 

4. Random Forest –  

• Random Forest (RF) is an ensemble machine-learning technique that builds multiple 

decision trees and merges their predictions to produce a final, more accurate prediction 

(Breiman, 2001). This method has gained widespread recognition in the field of species 

distribution modelling due to its ability to handle complex ecological data effectively 

(Cutler et al., 2007). A key advantage of RF lies in its robustness to overfitting and its 
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ability to handle large datasets with many predictor variables, even when they are 

highly correlated or contain missing values (Breiman, 2001). It also efficiently models 

non-linear relationships and interactions between predictors without requiring explicit 

specification (Hastie et al., 2009). 

• In species distribution modelling, RF offers insights into the relative importance of 

predictor variables in determining species' distribution, providing crucial knowledge 

for habitat management and conservation planning (Prasad et al., 2006). For example, 

variable importance measures can reveal which environmental factors are most 

influential for a species' presence or absence, helping to prioritize conservation actions. 

Furthermore, RF can be used to predict species' distribution under current conditions as 

well as under future scenarios of environmental change, offering valuable foresight for 

biodiversity conservation strategies in the face of climate change (Evans et al., 2011). 

Subsequently, an ensemble modelling approach was adopted to integrate the four Species 

Distribution Models (SDMs). This approach was executed in two distinctive manners: 

• Incorporation of environmental variables exclusively. 

• Incorporation of both environmental and anthropogenic variables. 

The former examines the potential natural distributions based on environmental conditions, 

whereas the latter considers human-induced changes, thereby providing a more realistic 

projection of species distribution in the current human-dominated landscapes. 

All the 4 models (Maxent, GLM, BRT and RF) were incorporated via the Species 

Distribution Modelling (SDM) package, a tool devised by Babak Naimi (Naimi, 2015). 

This package was selected for its capacity to generate comprehensive ecological niche and 

species distribution predictions. Next, each of the four SDMs were executed independently 

ten times. Subsequently, the results from these iterations were integrated into an ensemble 

model, which served as the basis for further analysis. This approach was designed to 

enhance the reliability and robustness of our predictive models. 

2.5.2 Threshold selection for predicting suitable leopard habitat 

For ensemble modelling, the Uncertainty Analysis for Species Distribution Models (USDM) 

R-package was utilized; the USDM package in R is an instrumental tool in ecological studies, 

particularly for species distribution modelling. The package is designed to assess uncertainties 

associated with these models, integrate several modelling algorithms to create ensemble 

models, estimate variable importance, and evaluate correlations among predictors (Naimi & 

Araújo, 2016). Understanding these uncertainties is vital in biodiversity conservation as it 

influences planning and decision-making processes. Ensemble forecasting, facilitated by 

USDM, is a sophisticated strategy employed in species distribution modelling. It amalgamates 

predictions from multiple individual models to provide a comprehensive, robust, and more 

accurate prediction (Araújo & New, 2007). This approach counteracts the weaknesses of 

individual models, thus enhancing overall model performance and reliability. 

In the current study, the 'weighted,’ 'stat,’ and 'opt' parameters were utilized to generate a 

habitat suitability map for the leopards in Southern India. Specifically, 'Weighted Averaging 
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of True Skill Statistics (TSS) was employed. This method leverages the TSS from each model, 

averaging them based on their respective weights to produce the final ensemble result 

('weighted'). The 'stat' parameter, set to 'TSS,’ indicates that the True Skill Statistics is used for 

model evaluation. TSS is a highly regarded performance measure in species distribution 

modelling as it accounts for both omission and commission errors and is not affected by 

prevalence (Allouche et al., 2006). The 'opt' parameter was set to '2', which signifies the usage 

of the TSS value in the ensemble model. The selection of '2' corresponds to maximizing the 

sum of sensitivity and specificity, aligning with recommended practices in species distribution 

modelling (Liu et al., 2013). 

In summary, the USDM package, and specifically its capability for ensemble forecasting, offers 

a valuable approach to creating robust and reliable species distribution models. The weighted 

averaging of TSS to generate the final ensemble model ensures an accurate representation of 

the habitat suitability for leopards in Southern India. 

 

2.6 Model performance assessment 

The evaluation of model performance is a cornerstone in the application of machine learning 

algorithms and modelling procedures, serving as a critical indicator of a model's predictive 

capabilities (Guisan et al., 2017). In the present study, the predictive effectiveness of the 

machine learning algorithms employed for habitat suitability modelling was evaluated using 

two widely adopted accuracy assessment metrics in species distribution modelling: the 'Area 

Under the Curve' (AUC) of the Receiver Operating Characteristics (ROC) function (Elith et 

al., 2006), and the True Skill Statistics (TSS) (Allouche et al., 2006). 

The AUC, a threshold-independent metric, gauges the model's aptitude to distinguish species 

presence from absence (Elith et al., 2006; Guisan et al., 2017). The value of AUC ranges 

between 0 and 1, where 1 denotes perfect discrimination, 0.5 implies predictive accuracy is no 

better than a random estimate, and less than 0.5 indicates subpar performance, worse than a 

random estimate (Elith et al., 2006). While widely utilized, AUC has faced criticism for its 

accuracy measurements (Lobo et al., 2008). In conjunction with AUC, the TSS was employed 

as an additional model performance assessment metric. Unaffected by prevalence and factoring 

in both omission and commission errors, TSS ranges from +1 to -1. A score of +1 signifies 

flawless performance, while a score of zero or less represents a classifier performance that is 

no better than a random prediction (Allouche et al., 2006). As TSS is a threshold-dependent 

metric, the threshold value was determined by maximizing the sum of sensitivity and 

specificity, as advocated by previous research (Liu et al., 2013).            

                                                                                                                                                                                                                                                                                                                                                                               

3. Results  

3.1 Leopard habitat suitability modelling 

3.1.1 Predicted suitable habitat for leopards using only environmental variables 
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The ensemble model only with environmental variables  (figure 6) was modelled by integrating 

four distinct SDM techniques: (a) Maxent, (b) GLM, (c) BRT, and (d) RF (figure 5). The 

ensemble model (figure 6) represents the habitat suitability for leopards with an AUC - 0.95 

and TSS – 0.82 
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Figure 5: Depicted here are the outcomes of four distinct SDM techniques, namely, (a) 

Maxent, (b) GLM, (c) BRT, and (d) RF. These models were generated solely using 

environmental variables. For a detailed list of the employed environmental variables (table 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Depicted here is a habitat suitability map, a product of the ensemble model. This 

model unifies the four distinct SDM techniques, as shown in Figure 5, with an exclusive focus 

on environmental variables. The resulting predictive accuracy and performance of this 

environmental variable-based ensemble model are indicated by an AUC score of 0.95 and a 

TSS score of 0.82, respectively. 

 

3.1.2 Predicted suitable habitat for leopards using environmental variables and 

anthropogenic variables 

The ensemble model with environmental variables and anthropogenic variables (figure 8) was 

modelled by integrating four distinct SDM techniques: (a) Maxent, (b) GLM, (c) BRT, and (d) 

AUC - 0.95 

TSS - 0.82 

Ensemble Model only with environmental 

variables  
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RF (see figure 7). The ensemble model (figure 8) represents the habitat suitability for leopards 

with an AUC - 0.96 and TSS – 0.85. 
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Figure 7: Depicted here are the outcomes of four distinct SDM techniques, namely, (a) Maxent, 

(b) GLM, (c) BRT, and (d) RF. The development of these models was conducted by integrating 

both environmental and anthropogenic variables. For a detailed list of the employed 

environmental variables and anthropogenic variables (Table 4  and 5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Depicted here is a habitat suitability map, a product of the ensemble model. This 

model unifies the four distinct SDM techniques, as shown in Figure 7, employing both 

environmental and anthropogenic variables. The resulting predictive accuracy and performance 

of this environmental variable-based ensemble model are indicated by an AUC score of 0.96 

and a TSS score of 0.85, respectively 

 

3.2 The distribution of suitable leopard habitat in Southern India 

The evaluation of suitable leopard habitat in Southern India (figure 9) was conducted using a 

multifaceted approach, integrating both Environmental and Anthropogenic variables and 

AUC - 0.96 

TSS - 0.85 

Ensemble model with environmental and 

anthropogenic variables  
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employing four SDM techniques - Maxent, GLM, BRT, and RF. This comprehensive analysis 

was achieved through the utilization of 'weighted,' 'stat,' and 'opt' parameters, which 

collectively facilitated the development of a habitat suitability map for Southern Indian 

leopards. A specific technique, 'Weighted Averaging of TSS, was deployed, leveraging the 

TSS derived from each model. These were then averaged in accordance with their relative 

weights to yield the final ensemble outcome ('weighted') (Araújo & New, 2007). 

The 'stat' parameter was configured to 'TSS, for the evaluation of the model. As a performance 

metric, TSS is highly esteemed in species distribution modelling due to its capacity to account 

for both omission and commission errors, and its immunity to prevalence (Allouche et al., 

2006). The 'opt' parameter was set to '2,' signifying the application of the TSS value in the 

ensemble model. This choice aligns with best practices in species distribution modelling, as it 

maximizes the sum of sensitivity and specificity (Liu et al., 2013).  

Criteria Threshold Sensitivity  Specificity  TSS 

Max (se+sp) 0.04768 0.984 0.891 0.874 

 

The ensemble model (figure 10) predicts a total suitable habitat area of 21,797 square 

kilometres within the southern states of India. Of this, a total of 7,426.015 square kilometres 

falls within protected areas, leaving 14,370.985 square kilometres of suitable habitat situated 

outside protected zones. In terms of individual states, Tamil Nadu has a predicted suitable 

habitat area of 9,587 square kilometres, while Kerala has a larger area of 12,132 square 

kilometres (Appendix II).  
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Figure 9: Predicted suitable habitat for leopards 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 - Spatial representation of predicted Leopard Habitat within and beyond protected areas in 

the southern states of Tamil Nadu and Kerala 

 

3.3 Distribution of suitable leopard habitat using different datasets 

3.3.1 Predicted suitable habitat using the GBIF dataset 

Ensemble model (figure 11) with both the environmental and anthropogenic variables was used 

to generate habitat suitability map relying on data obtained from the GBIF pertaining to leopard 

sightings. The dataset constituted approximately 80 presence points gathered between 2017 

and 2022, providing a valuable basis for mapping leopard habitats in the study area.  This 

method adheres to current best practices in species distribution modelling, which emphasize 

Predicted habitat 

Protected areas 

AUC -0.97 

TSS - 0.87 
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the importance of considering a broad spectrum of influencing factors to attain an accurate 

depiction of species habitats (Guisan & Thuiller, 2005).  

The performance of this habitat suitability model was assessed using two widely accepted 

evaluation metrics: AUC and TSS. The AUC value achieved was 0.94, indicating an excellent 

model performance, as values closer to 1 suggest a near-perfect ability of the model to 

distinguish between presence and absence areas (Swets, 1988). The TSS value, at 0.78, also 

demonstrates a high level of accuracy, as values closer to +1 denote perfect agreement between 

observed and predicted species presence (Allouche et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Habitat suitability map using the GBIF dataset 

 

3.3.2 Predicted suitable habitat using the status of leopard report dataset 

Ensemble model (figure 12 )with both the environmental and anthropogenic variables was used 

to generate habitat suitability map  relying on data obtained from the Status of the Leopard 

report, India 2018. This invaluable report provided approximately 230 presence points of 

AUC - 0.94 

TSS - 0.78 

Habitat suitability map using GBIF 

dataset 
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leopards, allowed us to build a robust and holistic understanding of leopard habitat suitability 

in the southern states of India. 

The efficacy of the generated model was rigorously evaluated using two commonly employed 

statistical measures: the AUC and TSS. The model performed commendably, achieving an 

AUC score of 0.95 and a TSS score of 0.83. An AUC score of 0.95 signifies an exceptional 

discriminatory power of the model, as values closer to one represent excellent discrimination 

between presence and absence locations (Swets, 1988). Similarly, a TSS score of 0.83 suggests 

a high level of predictive accuracy, with values closer to +1 indicating flawless agreement 

between observed and predicted species presence (Allouche et al., 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Habitat suitability map using the status of the leopard report dataset 

4. Discussion  

 

Leopards (Panthera pardus) is integral to the intricate ecosystems of the Western Ghats in India, 

playing a vital role in maintaining the stability and diversity of this complex ecological 

landscape (Ripple et al., 2014). As apex predators, leopards regulate prey populations, thus 

controlling the population dynamics and contributing to the balance of trophic interactions 

Habitat suitability map using report 

dataset 

AUC -0.95 

TSS - 0.83 
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within the system (Terborgh et al., 2001). This leads to 'trophic cascades,' which significantly 

influence community structure and biodiversity (Estes et al., 2011). 

 

Conserving leopards in the Western Ghats is crucial due to their role as an umbrella species. 

Essentially, their conservation can indirectly protect the multitude of species that share their 

habitat, leading to wider biodiversity conservation (Noss et al., 1996). Leopards also have a 

vast home range, and preserving these expansive habitats can lead to larger, more robust, and 

interconnected conservation areas that benefit overall ecological integrity (Riggio et al., 2013). 

Moreover, leopards may have cultural and economic importance for local communities through 

tourism, enhancing local support for wildlife conservation initiatives (Goodrich, 2010). 

However, leopards in the Western Ghats face increasing threats due to anthropogenic factors 

such as habitat fragmentation, prey depletion, and retaliatory killings due to human-wildlife 

conflicts (Jacobson et al., 2016). Therefore, it is of utmost importance to implement effective 

conservation strategies and promote harmonious human-leopard coexistence to safeguard the 

ecological health and resilience of the Western Ghats. 

 

4.1 Assessing the Influence of anthropogenic factors on leopard habitat suitability 

This study's findings illustrate the integral role that anthropogenic variables can play in 

enhancing the accuracy of ecological niche models. Particularly in the context of leopards, 

widely recognized as one of the most adaptable large cat species, the integration of 

anthropogenic variables with environmental variables in the above models presented a detailed 

understanding of their potential habitats (Athreya et al., 2013). Increasing reports from the 

southern Indian states of Tamil Nadu and Kerala reveals that leopards have demonstrated a 

remarkable ability to subsist in human-influenced environments, sometimes even exploiting 

these conditions for their benefit (Athreya et al., 2016). A salient example is the ease with 

which leopards’ prey on domesticated animals due to their ready accessibility, a phenomenon 

likely exacerbated by forest fragmentation,  and unauthorized cattle grazing in protected areas 

(Bhatnagar et al., 2013). Such trends highlight the influence of anthropogenic factors on 

leopard ecology, and by extension, their habitat suitability. In fact, the increased accuracy 

observed in the above models (figure 7 and 8) upon the inclusion of anthropogenic variables 

provides empirical support for this relationship. These findings underscore the necessity of 

considering anthropogenic influences, alongside environmental parameters, in studies aiming 

to predict leopard habitat suitability accurately (Guisan et al., 2013). 

 

This increased understanding can significantly contribute to wildlife management strategies 

and conservation plans, especially in regions like Tamil Nadu and Kerala where human-leopard 

interactions are commonplace (Athreya et al., 2016). As human-dominated landscapes 

continue to expand, integrating knowledge of anthropogenic influences into ecological niche 

modelling will become increasingly important in ensuring the survival of adaptable species like 

leopards (Guisan et al., 2013). 
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4.2 An ensemble model's perspective on leopard habitat suitability in Southern India 

 

The ensemble model (figure 9) has provided a comprehensive estimate of suitable leopard 

habitats in the southern states of India, notably Tamil Nadu and Kerala. Covering a total area 

of 21,797 square kilometers, the model enables us to understand the spatial distribution of 

these habitats and can be instrumental in future wildlife conservation planning and 

management efforts. 

 

Interestingly, a significant portion of these suitable habitats - around 7,426.015 square 

kilometers - is encompassed by protected areas. This is a promising indicator, suggesting that 

current conservation efforts might be partly aligned with leopard habitat requirements. 

Nonetheless, the model (figure 10) also predicts 14,370.985 square kilometers of suitable 

habitat outside these protected zones, hinting at the potential for spatial conflicts between 

leopards and human activities. This also highlights the need for enhanced conservation 

strategies beyond existing protected areas. In a state-wise comparison, Kerala has been found 

to harbor a larger expanse of suitable leopard habitat, 12,132 square kilometers, as opposed to 

Tamil Nadu 9,587 square kilometers (Appendix III). Such findings could guide state-specific 

conservation policies, considering the differing ecological and anthropogenic contexts of these 

regions. Nonetheless, it is essential to note that our model's accuracy and precision could be 

significantly augmented with the inclusion of live presence data of leopards, especially if 

procured from the wildlife departments and national parks of Tamil Nadu and Kerala. The 

ensemble model is data-dependent; hence, its predictive power is invariably tied to the quality 

and quantity of data utilized. Live presence data can offer a real-time snapshot of leopard 

distributions, enabling the model to fine-tune its predictions and present a more accurate picture 

of their habitats. Accurate models are integral to effective conservation strategies. They offer 

reliable insights into species' habitat requirements and their spatial distribution, facilitating the 

formulation of data-driven, targeted, and efficient conservation plans. Therefore, these findings 

recommend future research collaborations with wildlife departments and national parks to 

enhance data collection efforts and consequentially, the accuracy of habitat suitability models. 

 

In conclusion, this study underscores the importance of habitat suitability assessments in 

wildlife conservation, the potential of ensemble models in such assessments, and the necessity 

for incorporating high-quality, real-time data to improve these models. Further research in 

these directions would undoubtedly contribute to our collective goal of effective leopard 

conservation. 

 

 

4.3 The Impact of dataset selection on habitat suitability modelling for leopards 

 

This investigation shows the importance of the quality and comprehensiveness of presence-

only data used in habitat suitability modelling, particularly about leopards in the southern 

Indian states of Tamil Nadu and Kerala. Comparative analysis of habitat suitability maps 

derived from the GBIF dataset (figure 11) and the Status of the Leopard 2018 Report (figure 
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12) revealed noteworthy differences. While both sets of data contributed valuable insights into 

leopard habitat preferences, the GBIF-sourced map was marked by lower AUC and TSS values. 

This discrepancy may be linked to the disparate methods of presence point collection. The 

GBIF dataset, heavily weighted towards the central regions of Tamil Nadu and Kerala, 

indicated a concentrated 'red zone' of leopard presence. However, data drawn from the 2018 

Leopard Report, collected via extensive camera trap deployments throughout the tiger reserves, 

revealed a more geographically dispersed leopard presence (Phillips et al., 2009). 

Interestingly, the GBIF dataset exhibited some spatial inaccuracies. Specifically, presence 

points marked within large urban areas of Tamil Nadu and Kerala, which are unlikely leopard 

habitats, had to be discarded. This issue underlines the limitations of exclusive reliance on the 

GBIF dataset for species distribution modelling, reinforcing the importance of supplemental 

data sources for a more accurate and comprehensive depiction of habitat suitability. 

 

5. Conclusion  

 

This study has furthered our understanding of the factors influencing leopard habitat suitability, 

most notably the role of anthropogenic elements. This research revealed the remarkable 

resilience of leopards, exhibiting their adaptability to thrive even in human-influenced 

environments, exploiting these conditions to their advantage. Hence, the inclusion of 

anthropogenic variables, along with environmental factors, in the ensemble models has 

undeniably enriched our understanding of potential leopard habitats. Figure 9 shows clearly 

that a significant portion of suitable leopard habitats fall within protected areas, affirming the 

value of these conservation efforts. However, a large expanse of habitat lies outside these 

zones, which calls for a broader outlook on conservation strategies. State-specific findings, 

especially regarding Tamil Nadu and Kerala, could be valuable in formulating localized 

conservation policies, aligning them with the ecological and anthropogenic specificities of the 

respective regions. The key to more precise habitat suitability models lies in integrating higher 

quality, real-time data. Live presence data, sourced from wildlife departments and national 

parks, can present an accurate snapshot of leopard distributions, allowing the model to fine-

tune its predictions. Emphasizing the importance of reliable data, Steve Irwin once said, "I 

believe our biggest issue is the same biggest issue that the whole world is facing, and that's 

habitat destruction." Hence, utilizing authentic data will not only refine the models but also 

adopt more effective conservation strategies. In the realm of habitat suitability modelling, 

dataset selection holds utmost importance. The differences noted in habitat suitability maps 

drawn from the GBIF dataset (figure 11) and the Status of the Leopard 2018 report dataset 

(figure 12) highlight this. Spatial inaccuracies detected in the GBIF dataset reiterate the need 

for careful data selection and supplementing data sources for more comprehensive habitat 

suitability assessments. 

 

To quote an old African proverb, "A leopard cannot change its spots." We must remember that 

while leopards may adapt to changing environments, they remain bound by their inherent 

ecological requirements. Their survival, like all wildlife, hinges on the preservation of suitable 

habitats, and it's our responsibility to provide them with this. In conclusion, this study 
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accentuates the significance of habitat suitability assessments, the potential of ensemble 

models, and the value of incorporating authentic, real-time data in improving these models. It 

prompts us to envisage innovative conservation strategies that extend beyond protected areas, 

bearing in mind the unique adaptability of leopards. The path towards effective leopard 

conservation is arduous, but our journey is inspired by the hope of hearing the leopard's roar 

echoing in the wilderness for generations to come. 

 

6. Recommendation 

 

This study highlights the value of integrating machine learning and statistical techniques, in 

the form of Species Distribution Models (SDMs), into the domain of wildlife conservation. 

Emerging as a potent tool amidst the escalating global biodiversity crisis, SDMs transcend 

purely academic relevance, offering actual insights beneficial to policymaking, wildlife 

management strategies, and real-world conservation initiatives. 

 

These models adeptly map the potential geographical distribution of species, using 

environmental and, as our study highlights, anthropogenic variables. Such information is 

paramount for the conservation of rare and endangered species, whose habitats might be 

fragmented, insufficiently understood, or under threat from human activities. Furthermore, 

SDMs serve as predictive tools, anticipating future distributions in the wake of changing 

climatic and land-use conditions. This predictive prowess allows conservation managers to 

proactively counter potential threats and adopt timely mitigation strategies. A nuanced 

understanding of biodiversity's spatial distribution, as facilitated by SDMs, steers conservation 

efforts towards areas boasting high species richness, or those sheltering endangered or endemic 

species. In this context, SDMs inform critical conservation decisions, such as the designation 

of protected areas, prioritization of zones for restoration, or the identification of potential 

wildlife corridors facilitating species movement. Notably, SDMs promote evidence-based 

decision-making in conservation, providing governments, conservation organizations, and 

society at large with the means to comprehend and visualize the potential conflicts between 

biodiversity conservation and other land-use interests. This understanding can stimulate the 

development of balanced policies and management strategies that harmonize biodiversity 

conservation with sustainable development goals. As we navigate the challenges of accelerated 

anthropogenic changes and declining biodiversity, the importance of robust, data-driven tools 

like SDMs cannot be overstated. By bridging the divide between scientific knowledge and 

conservation practice, they represent indispensable allies in our collective quest for a 

sustainable co-existence with the planet's diverse range of species. 

 

Moreover, our study recommends the integration of live presence data into these models, which 

would enhance their accuracy. The use of real-time data, particularly from wildlife departments 

and national parks, provides a more accurate picture of species distribution, allowing for more 

precise predictive modelling. Finally, the study emphasizes the value of state-specific analyses 

in forming localized conservation policies, aligning them with the ecological and 

anthropogenic contexts of the respective regions. This targeted approach, enriched by reliable 
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data, and powered by the precision of SDMs, promises to heighten the effectiveness of 

conservation efforts. 

 

In conclusion, the current study has reaffirmed the potential of SDMs as crucial tools in 

contemporary wildlife conservation, driving policymaking and management strategies with 

data-driven insights. By addressing the evolving challenges to biodiversity, especially in the 

context of anthropogenic influences, and advocating for the integration of higher-quality, real-

time data, this research sets the stage for more effective, sustainable, and inclusive conservation 

strategies in the future. 
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Appendix I – Spatial representation of camera trap data in southern Indian states 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: This illustration represents a density map of the leopard population across 

southern Indian states, generated utilizing camera trap data collated from various tiger 

reserves. 
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Appendix II – Protected areas of southern India 

 

Table 6 – Protected areas of Kerala and Tamil Nadu 

 

 

 

Name of the Protected Area Type State Area in Km2 

Mathikettan Shola National Park National Park Kerala 12.82 

Pambadum Shola National Park National Park Kerala 1.318 

Aralam WLS Wildlife Sanctuary Kerala 55 

Kottiyoor WLS Wildlife Sanctuary Kerala 30.38 

Peechi-Vazhani WLS Wildlife Sanctuary Kerala 125 

Chimmony WLS Wildlife Sanctuary Kerala 85 

Chinnar WLS Wildlife Sanctuary Kerala 90.44 

Peppara WLS Wildlife Sanctuary Kerala 53 

Parambikulam WLS/Tiger Reserve Wildlife Sanctuary Kerala 285 

Thattekad Bird WLS Wildlife Sanctuary Kerala 25 

Chulannur Peafowl WLS Wildlife Sanctuary Kerala 3.42 

Shendurney WLS Wildlife Sanctuary Kerala 100.32 

Malabar WLS Wildlife Sanctuary Kerala 74.215 

Neyyar WLS Wildlife Sanctuary Kerala 128 

Idukki WLS Wildlife Sanctuary Kerala 70 

Kurinjimala WLS Wildlife Sanctuary Kerala 32 

Anamudi Shola National Park National Park Kerala 7.5 

Periyar WLS/Tiger Reserve Wildlife Sanctuary Kerala 427 

Wayanad WLS Wildlife Sanctuary Kerala 344.44 

Periyar National Park/Tiger Reserve National Park Kerala 350 

Silent Valley National Park Kerala 89.52 

Eravikulam National Park National Park Kerala 97 

Sathyamangalam WLS/Tiger Reserve Wildlife Sanctuary Tamil Nadu 1411.61 

Srivilliputhur Grizzled Squirrel WLS Wildlife Sanctuary Tamil Nadu 485.2 

Kannyakumari WLS Wildlife Sanctuary Tamil Nadu 457.78 

Nellai WLS Wildlife Sanctuary Tamil Nadu 356.73 

Cauvery North WLS Wildlife Sanctuary Tamil Nadu 504.334 

Kodaikanal WLS Wildlife Sanctuary Tamil Nadu 608.95 

Kalakad WLS Wildlife Sanctuary Tamil Nadu 223.58 

Mundanthurai WLS Wildlife Sanctuary Tamil Nadu 567.38 

Indira Gandhi WLS (Anamalai) Wildlife Sanctuary Tamil Nadu 841.49 

Megamalai WLS Wildlife Sanctuary Tamil Nadu 269.11 

Mukurthi National Park Tamil Nadu 78.46 

Mudumalai National Park Tamil Nadu 103.23 

    

  Total Area 7426.015 

km2 



43  
 

Appendix III - District-Wise Distribution and Quantitative Analysis of Predicted Habitat 

Suitability and Protected Areas in Kerala and Tamil Nadu 

 

Kerala has a predicted suitable habitat area of 12,132 square kilometres 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Geospatial distribution of predicted habitats and protected areas across Kerala's 

districts 

 

Table 7: District wise distribution of predicted habitat and protected areas across Kerala 

District Name Protected Area Predicted Area  
Sq. KM % In Dist. 

Area 

Sq. KM % In Dist. 

Area      

Idukki 1182.355 26 3392.547 75 

Wayanad 427.802 19 1261.685 56 

Pattanamittia 208.034 7.7 1304.734 47 

Palakkad 403.622 8.8 1731.038 37 

Thrissur 241.074 7.8 990.702 32 

Predicted habitat 

Protected areas 
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Tamil Nadu has a predicted suitable habitat area of 9,587 square kilometres 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Geospatial distribution of predicted habitats and protected areas across Tamil 

Nadu’s districts 

 

 

 

 

Kollam 185.226 7.3 794.775 31.5 

Thiruvananthpuram 199.745 9 635.634 28 

Malappuram 14.097 0 762.138 20 

Ernakulam 16.845 0.5 568.297 18 

Kozikod 0.0437 0 410.855 16 

Kannur 86.690 3 234.179 7 

Kottyam 4.408 0 41.346 1.9 

Kasargod 0 0 2.5679 0 

Alappuzha 0 0 1.6293 0 

Predicted habitat 

Protected areas 
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Table 8: District wise distribution of predicted habitat and protected areas across Tamil Nadu 

 

District Name Protected Area Predicted Area 

 Sq. KM % In Dist. Area Sq. KM % In Dist. Area 

     

Kanyakumari 513.832 30 724.638 63 

Krishnagiri 919.406 17.5 170.264 42 

Tirunelveli 1171.176 17 1293.074 28 

Nilgiri 440.814 16.8 1689.196 27 

Dindigul 988.532 16 1294.342 23 

Coimbatore 519.883 13 1134.597 20 

Erode 796.016 13 1434.967 18.5 

Teni 328.171 11 826.432 5.3 

Tiruppur 470.684 8 290.389 4.7 

Dharampuri 325.163 7 151.806 3.2 

Madurai 257.107 6 196.498 3.1 

Virudhunagar 240.838 5.5 232.631 2.5 

Salem 0 0 136.573 0 

Namakkal 0 0 2.983 0 

Tiruvannamalai 0 0 4.919 0 

Vellore 0 0 1.989 0 

Tiruvallur 0 0 0.994 0 

Villupuram 0 0 1.473 0 

 

 


