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1. INTRODUCTION

In the context of global warming, the acceleration of the water cycle increases the odds of extreme
weather events. The Netherlands experienced one of the most severe droughts on record in 2018, which
posed threats to agriculture, ecology, etc., and caused huge economic losses to the entire country.
Furthermore, many studies indicate there is a trend of worsening drought in the Netherlands under
climate change (Cook et al., 2018; Philip et al., 2020; Zhao et al., 2020).

Soil moisture (SM) is an indicator for drought monitoring because of its essential role in the water and
energy cycle (André et al., 1986; Idso et al., 1975). Drought monitoring aims to track the severity and
location of drought. Detailed drought descriptions help decision-makers develop measures to reduce
drought-related losses. However, local/regional drought monitoring is facing difficulties with the lack of
high spatiotemporal resolution SM data. This is mainly due to the fact that in situ measurements provide
reliable point-scale high temporal resolution SM observation but lack the spatial coverage. While
remotely sensed SM data provide local/regional spatial monitoring they are at very coarse spatial
resolution (e.g., 25km, 9km, 1km). Therefore, we need a high-resolution SM product for better field
water condition monitoring in the Netherlands to provide more accurate drought monitoring across the
country.

In situ measurement is regarded as the most reliable and robust method to obtain SM (Yang et al., 2021).
The in situ measurement networks in Raam region and Twente in the Netherlands provide references for
remote sensing SM product validation (Benninga et al., 2018; Dente et al., 2012). Because of the high
investment and maintenance cost of sensors, in situ measurements can only detect SM in a limited area.
As an alternative, remote sensing technique has been introduced to SM monitoring for years. Passive
and active remotely sensed SM is obtained by inversing the measured emitted or reflected microwave
radiation from the land surface. Passive microwave radiometers provide frequent but coarse resolution
SM observations while active microwave sensors retrieve SM at higher spatial resolution with low
frequency. Although microwave technology has been greatly improved to better retrieve SM in recent
years, it is still facing the difficulty to remove vegetation effects on the microwave emission of soils.
Optical remotely sensed SM is derived from the relationships between land surface parameters, and
thermal approaches rely on variations in soil surface temperature caused by different SM. Compared
with passive and active remotely sensed SM, optical and thermal methods have better spatiotemporal
resolutions, but they are sensitive to both vegetation and the weather conditions (Zhuang et al., 2023).

Coarse remotely sensed SM limits the application of SM at finer spatial resolution. Fortunately, data
fusion approach can help address partially this issue. Data fusion is the process of assembling multiple
data to represent a more useful real-world object (Zeng et al., 2016; Zhuang et al., 2020). Zhan et al.
(2006) merged 36 km radiometer brightness temperature and 3 km radar backscatter with ancillary data
including surface roughness, vegetation water content and surface temperature to generate the SM data
at 9 km. Das et al. (2011) generated the gridded 9 km SM by integrating 36 km near-surface soil moisture



L-band radiometer retrievals and 3km L-band radar observations. Same as Zhan et al.’s study, Das et al.
took advantage of the passive and active SM observations. Estimating SM by fusing optical image with
microwave data was proposed in SM retrieval studies which combined the strengths of microwaves and
optical sensing techniques (He et al., 2014; Mattar et al., 2012; Notarnicola et al., 2006). The arrival of
Sentinel 1 and Sentinel 2 give us the chance to map SM with higher details. The twin Sentinel 1 satellites
(Sentinel 1a and Sentinel 1b) provide high spatial resolution SAR images every 6 days while Sentinel 2a
and Sentinel 2b provide high spatial resolution Visible (VNIR) and Near Infra-Red (NIR) to the Short Wave
Infra-Red (SWIR) images with a 5-day revisit frequency (Drusch et al., 2012; Potin, 2019). The studies
synthesizing sentinel 1 SAR images with sentinel 2 can generate SM with better resolution (Hajj et al.,
2017; Ma et al., 2020), so do other SM fusion studies using multiple sensor. However, the high
computational cost of the fusion algorithms restricts the generation of near real-time SM.

Lately, the machine learning method was applied to downscale SM ( Su et al., 2020). The
computationally-efficient machine learning (ML) provides a possibility to better establish nonlinear
relationships between environmental factors and SM. Abbaszadeh et al. (2019) proposed a random
forest (RF) based model with predictors including normalized difference vegetation index (NDVI), land
surface temperature (LST), precipitation, elevation and soil texture to generate 1 km resolution SM.
Zhang et al. (2021) applied in-situ observation-constrained RF for the SM estimates at a global scale with
the same predictors, and the spatiotemporal patterns of the SM were compared against the in-situ
observations, showing reasonable agreements. Lv et al. (2021) used environmental variables such as LST,
the NDVI, the normalized shortwave-infrared difference bare soil moisture indices (NSDSI), the digital
elevation model (DEM), and calculated slope data (SLOPE) to estimate SM at 1 km resolution with
artificial neural networks (ANN). In the study of estimating SM with gradient boosting decision tree
regression (GBDT) over the Tibetan plateau, 26 indices frequently used in SM downscaling were analyzed
by filter method for their relative importance and high relative importance indices Enhanced Vegetation
Index (EVI), Distance Drought Index (DDI), Modified Perpendicular Drought Index (MPDI), Modified
Shortwave Infrared Perpendicular Water Stress (MSPSI), NDVI, Modified Perpendicular Drought Index
(PDI), Shortwave Single Slope Index (SASI) (Wei et al., 2019). Although the above studies lead to
acceptable predictions, feature selection is still a challenge in ML-based SM downscaling (Sachindra &
Kanae, 2019). Appropriate variables not only reduce the complexity of the model but also result in a
better estimation. Apart from predictors, the choice of algorithm also affects the SM estimate. There are
many studies that compared the performance of different algorithms in generating SM products. Im et al.
(2016b) compared the performance of random forest (RF), boosted regression trees, and cubist in
generating 1 km SM in Korea and Australia. The result indicates the superior performance of RF with high
accuracy and robustness. In the comparison study of six different algorithms in estimating SM, the
effectiveness of RF was confirmed again (Liu et al., 2020). The same result was seen in the Yan and Bai
(2020)’s comparison study. In summary, RF is the best-performing ML algorithm in the existing SM
studies.

In this study, we use sentinel 1 Ground Range Detected (GRD) dataset and vegetation indices (EVI and LAI)
from sentinel 2 with environmental variables (precipitation, soil texture, Surface Reflectance and ground



water level (GWL)) and 1km SM to generate a high-resolution (10m) SM product for the Netherland by RF.
The 1km dataset consist of aggerated 1 km predictors and 1km SM will be used to train, validate and test the
model. Then we use the 10m predictors to generate the 10m SM product for the Netherlands. The generated
high resolution SM product is evaluated by the in situ measurement and the importance of the predictors are
analyzed. We expect the generated 10 m SM product can better reveal the field water conditions to achieve
more accurate drought monitoring in the Netherlands under global warming.

Due to the computational limitations, the 10m soil moisture data we generated is only for the Twente region
in this study, the workflow of which can be easily scaled up to the whole Netherlands.



2. DATA DESCRIPTION

In this research, auxiliary data including precipitation, LST, soil texture, surface reflectance, GWL will be selected as predictors with sentinel 1 level 1 GRD
and vegetation indices (EVI and LAI) from sentinel 2 and 1 km SM simulated from in situ measurement to generate daily SM at 10 m. Other details of the
dataset are shown in the following table.

Table 3.1 Required Dataset

Variable Description Source Data Duration Resolution Unit

Precipitation
The KNMI precipitation dataset provides gridded 24 hour
precipitation accumulations from climatological gauge-adjusted
radar dataset for The Netherlands

KNMI Data Platform 01/01/2008-01/01/2023 1 km/Hourly
mm

LST
LST_day and LST_night are obtained through interpolation from
MODIS 1km LST_day and LST_night data.

(Han et al., 2023) 01/01/2000-01/01/2020 1 km/ Daily
°C

Soil Texture
Soil texture is the proportion of sand, silt and clay content. sized
particles that make up the mineral fraction of the soil.

OpenGeoHub / 30m

clay %

sand %

bulk 10kg/m3

LAI The Leaf Area Index is an important indicator reflecting the growth
status of the plant population. It is the one-sided green leaf area
over a unit of land.

Sentinel-2 28/03/2017-present 10m/ 5d /

Modis 18/02/2000-present 500m/8d /

https://dataplatform.knmi.nl/nl/dataset/rad-nl25-rac-mfbs-24h-netcdf4-2-0
https://medium.com/mlearning-ai/dynamic-soil-information-at-farm-scale-based-on-machine-learning-and-eo-data-building-an-open-1a6ffe282162
https://scihub.copernicus.eu/dhus/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD15A2H


EVI Enhanced vegetation index is an 'optimized' vegetation index. It is
calculated by NIR, red, C1, C2, blue and L bands observed by
Sentinel-2.

Sentinel-2 28/03/2017-present 10m/ 5d /

Modis 18/02/2000-present 250m/16d /

K

GWL The 1km GWL is generated from The DINO groundwater database. DINO Depend on station pointed m

GRD
The sentienl-1 L1 Ground Range Detected dataset provided by GEE is
a calibrated, ortho-corrected product.

Sentienl-1
01/10/2014-present

10m/6d dB

SM
The in situ measurement datasets are from the Raam region and
Twente.

In situ
measurements( Dente et
al., 2012)

01/01/2016-31/12-2019 15 minutes cm3/cm3

SM The 1km SM was generated by global in situ dataset.
(Han et al., 2023)

01/01/2000-01/01/2020 1km/daily cm3/cm3

https://scihub.copernicus.eu/dhus/
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MOD13Q1
https://www.dinoloket.nl/grondwateronderzoek
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD


3. DATA PREPROCESSING AND HARMONIZATION

Since our model trains at 1km daily resolution and predict at 10m daily resolution, we need to resample
all the predictor variables into 1km daily and 10m daily resolution.

Before the aggregation, we remove the clouds of Sentienl2 data by the characteristics of the QA band
and then calculate EVI and LAI follow the equations below (R. Zhang et al., 2022) (Boegh et al.,
2002).Then we resample and interpolate the EVI and LAI into 1km daily and 10m daily resolution. The
code(in Google Earth Engine) can be accessed via the link:
https://code.earthengine.google.com/2dd8e31b7a4430270b9996b4536f9d34

��� = � �−�
�+�1�−�2�+�

eq.1

��� = 3.618 ∗ ��� − 0.118 eq.2

For GWL, we convert it from pointed to raster by kriging. The code is shown as follows.

https://code.earthengine.google.com/2dd8e31b7a4430270b9996b4536f9d34


For GRD, we use the bilinear and temporal interpolation for the resampling. The code(in Google Earth
Engine) can be accessed via the link: https://code.earthengine.google.com/?scriptPath=users%2Fxli-
14%2Ftry%3AGRD_1km_10m_all
For other predictor variables, the resampling process followed the function defined in the code of GRD and
EVI/LAI.

4.MODEL BUILDING

4.1 Data splitting
After complementation the data processing and harmonization, we extract the pixel values of images at
1km resolution by GDAL and save them as csv. Based on the seasonal variation of SM, we spilt the 1km
dataset by time that validation set consists of data from January, April, July, and October of 2018 (first
month of each season), while the test set includes data from the same months in 2019. The dataset can
be accessed via the following links:

https://crib.utwente.nl/geospatialhub/hub/user-redirect/lab/tree/model_1km/training_set_0510.csv

https://crib.utwente.nl/geospatialhub/hub/user-redirect/lab/tree/model_1km/training_set_0510.csv

https://crib.utwente.nl/geospatialhub/hub/user-redirect/lab/tree/model_1km/test_set_0510.csv

4.2 Model Tuning
We tune the hyperparameters n_estimators, min_samples_leaf in the range of 10 to 200, and 10 to 50
respectively by bayesian optimization. Bayesian optimization is the method used in machine learning for
hyperparameter tuning and model optimization which combines Bayesian inference and optimization
algorithms (Snoek et al., 2012). The target for an optimization problem depends on the specific case. Our
study, prediction of 10m SM, is a regression problem, therefore we select RMSE as the target.
Futhermore, we add a minus to RMSE for application since bayesian optimization aims to solve
maximization problems (in the context of model performance, a lower RMSE indicates better
performance). The code is shown as follows.

1. import pandas as pd
2. import numpy as np
3. from bayes_opt import BayesianOptimization
4. from sklearn.metrics import mean_squared_error
5. import sklearn
6. from sklearn.ensemble import RandomForestRegressor
7. from scipy.stats import pearsonr
8. from sklearn.metrics import r2_score
9.

https://code.earthengine.google.com/?scriptPath=users%2Fxli-14%2Ftry%3AGRD_1km_10m_all
https://code.earthengine.google.com/?scriptPath=users%2Fxli-14%2Ftry%3AGRD_1km_10m_all
https://crib.utwente.nl/geospatialhub/hub/user-redirect/lab/tree/model_1km/training_set_0510.csv
https://crib.utwente.nl/geospatialhub/hub/user-redirect/lab/tree/model_1km/training_set_0510.csv
https://crib.utwente.nl/geospatialhub/hub/user-redirect/lab/tree/model_1km/test_set_0510.csv
mailto:https://github.com/fmfn/BayesianOptimization


10. dataset = pd.read_csv('validation_set_0510.csv')
11. dataset.head()
12. feature_names =['GRD','GW','preci','bulk','clay'
13. ,'sand','LST_day','LST_night','EVI_modis','LAI_modis']
14. label = "SM"
15. X = dataset[feature_names].values
16. y = dataset[label].values
17. def gbdt_cv(n_estimators,min_samples_leaf):
18.
19. rf=RandomForestRegressor(n_estimators=int(n_estimators),
20. min_samples_leaf=int(min_samples_leaf),n_jobs=-1).fit(X, y)
21. y_pre=rf.predict(X)
22.
23. df=pd.DataFrame({'SM_pre':y_pre,'SM':y})
24.
25. RMSE=np.sqrt(mean_squared_error(df['SM'], df['SM_pre']))
26. corr, p_value = pearsonr(df['SM'], df['SM_pre'])

27. return -RMSE
28.
29. gbdt_op = BayesianOptimization(
30. gbdt_cv,
31. {'n_estimators': (10,200)
32. ,'min_samples_leaf': (10, 50)

33. })
34.
35. gbdt_op.maximize(iter=10,init_points=0)
36. print(gbdt_op.max)
37. print(gbdt_op.max)

4.3 Model Training

Our random forest model is trained with the training set by sklearn. The code is shown as follows.
The model can be accessed via the link:

https://crib.utwente.nl/geospatialhub/hub/user-redirect/lab/tree/model_1km/rf_r_0.92.pkl

https://crib.utwente.nl/geospatialhub/hub/user-redirect/lab/tree/model_1km/rf_r_0.92.pkl


4.4 Model Testing

Our model is tested by the test set. Our evaluation matrix include Root Mean Square Error (RMSE),
unbiased Root Mean Square Error (ubRMSE), Pearson Correlation Coefficient (r) and Mean
Difference (MD). The equations for the metrics can be seen below) ( Zhang et al., 2021).

���� = �
� (�����,�−����,�)2�

�
eq.3

� = (�����−������ ����� )(����−����� ���� )�

(�����−������ ����� )2� (����−����� ���� )2�
eq.4

�� = �
� (�����,�−����,�)�

�
eq.5

������ = ����2 −��2 eq.6

The code is shown as follows:

4.5 10m Product Generation

After building the RF-based model, we apply the 10m resolution predictor variable to predict the
SM for the Twente region in the Netherlands. Due to the large size of the dataset, we are unable to



upload 10m predictors variable dataset. Please download the 10m predictor variables from Google
Earth Engine and follow the step of filling gap in previous sections . The code is shown as follows.
The 10m SM product can be accessed via link: https://drive.google.com/file/d/1Hfi5jrF0f-pJ_-
VRfjXezvAv_ujtpFBg/view?usp=drive_link
https://drive.google.com/file/d/1XuOudey7yDbUDYQpBr0AUkj7zcpSAteH/view?usp=drive_link

https://drive.google.com/file/d/1Hfi5jrF0f-pJ_-VRfjXezvAv_ujtpFBg/view?usp=drive_link
https://drive.google.com/file/d/1Hfi5jrF0f-pJ_-VRfjXezvAv_ujtpFBg/view?usp=drive_link
https://drive.google.com/file/d/1XuOudey7yDbUDYQpBr0AUkj7zcpSAteH/view?usp=drive_link
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