
Implementation of a visual editor for SHACL-based metadata schemas
NOAH VISTE, University of Twente, The Netherlands

The Shapes Constraint Language (SHACL) provides a valuable standard for
resource description framework graphs (RDF), allowing ontologies to be
formatted and validated in a predictable way. There is a barrier to entry
for the creation of SHACL documents as it requires being familiar with the
structuring of both RDF and SHACL. A visual editor bridges the gap by
showing the relevant SHACL interactions to the user, facilitating the manual
creation process. This research aims to investigate the implementation of a
visual editor that generates valid SHACL-based metadata schemas, and how
it can incorporate intuitive features for seamless user adoption.

Additional Key Words and Phrases: SHACL, RDF, Ontology, RDFLib

1 INTRODUCTION
As humans we have the intrinsic need to categorize, however reality
is an all-encompassing system that is unmanageably complex, there-
fore it has to be broken down into manageable sets of concepts and
properties. Ontologies are used to capture the knowledge of por-
tions of reality that are useful for particular purposes, and thereby
provide a practical way for the digital domain to interact with the
identified structures. One of the main technologies enabling this is
RDF, a W3C standard which allows for the representation of inter-
connected data. SHACL was then introduced to provide restrictions
to the graphs in such a way that allows for predictable behavior and
validation. According to the W3C, having SHACL be widespread
"enhances the functionality and interoperability of the Web"[6].

For a SHACL graph to be considered correct, the data needs to be
validated following the constraints declared in the metadata. This is
done by writing the SHACL metadata code directly, however this
requires a considerable understanding of the SHACL language and
it becomes increasingly tedious as the project grows. A user-friendly
alternative is to have a visual editor which associates select UI ele-
ments with their SHACL code counterparts. This would supplement
the creation of SHACL with an alternative that aims to be more intu-
itive to use. Additionally it would also alleviates the repetitiveness
of modifying existing SHACL shapes.
A notable distinction to make is between the metadata and the

data itself. The metadata allows for descriptive properties and en-
forces the defined constraints applied to the data, meaning both
the metadata, and the data can be separately edited. The former of
which being the priority for this research.

SHACL as a baseline uses SHACL Core, this contains all the base
features needed in order to be able to validate SHACL data graphs
against the set of conditions. As an extension of the core function-
alities, there is SPARQL which adds more complex constraints on
top of the existing ones. This research will focus on the Core imple-
mentation as SHACL-SPARQL can not exist without it.

TScIT 37, July 8, 2022, Enschede, The Netherlands
© 2022 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

The current implementations of editors for SHACL-based meta-
data schemas are not varied, the focus is often on populating the
SHACL data, instead of the creation of the SHACL shapes.

2 PROBLEM STATEMENT
SHACL is a handy language for defining constraint rules to RDF
graphs, however it requires a non-negligible amount of repetitive
code to define the SHACL constraints and properties. To alleviate
some of the workload, the use of a visual editor can simplify the
process. This research will explore how such an editor would be
implemented, and how it would exist within the current SHACL
editor ecosystem.

2.1 ResearchQuestions
This leads to the following research questions:

RQ1:What are the limitations of existing SHACL editors?
RQ2:Which current technologies would allow for the creation

of a well-rounded visual SHACL metadata editor?
RQ3: How can a visual editor that generates valid SHACL-based

metadata schemas be implemented?

3 RELATED WORK
Compared to other languages, SHACL is relatively new, as such the
ecosystem of tools and libraries is still evolving. There are a few
existing implementations of SHACL visual editors.
A notable implementation is the open-source Schímatos [11]

which handles RDF graphs, and specifically the validation for SHACL-
based constraints. The implementation is built in JavaScript with
web compatible tools so it is accessible through a hosted website
with the ability to be run locally if the servers are experiencing
issues. It shows promise, however it is rendered difficult to use from
interface issues and un-intuitive behaviour.

Another significant implementation is the Protégé plugin SHACL4P
[3]. Protégé is an open-source ontology editor built in Java, the plu-
gin adds support for the SHACL constraint validation as an exten-
sion. Protégé exists in both web version and as downloaded software.
However as the SHACL support is provided by plugin, it does not
work on the web version.

RDFShape is a playground for RDF graphs allowing the visual-
ization of graphs. Built using JavaScript and Scala, it provides an
UML-like diagrams of the graph structure, with support of both
validation engines, ShEx and SHACL[8].

In a similar vein there is the stand-alone JavaScript RDF editor
OntoPad, which focuses on visual representation based on node
graphs and provides a node based drag-and-drop SHACL shape
builder[1].

CEDAR is an metadata management tool, allowing for the build-
ing of metadata schemas and the populating of those schemas[4].
The functionalities provided by the software are extensive, however
it is built around its own biomedical metadata ecosystem.

1



TScIT 37, July 8, 2022, Enschede, The Netherlands Author

There are also proprietary knowledge graph editors such as Alle-
grograph, Stardog and TopQuadrant, however these solutions are
closed source. It is worth noting that TopQuadrant is behind the
SHACL extension DASH, which provides features that allows the
nodes to store which datatype should be used when displayed on a
user interface.

In the existing implementations, the degree to which the metadata
can be edited is of varying quality. Some solutions only provide
visualizations, and others allow for editing the code directly without
providing a UI layer. Few provide a dedicated UI to allow for the
construction of the SHACL constraints.
It is also often unclear exactly what happens behind the scenes

when using the interfaces, a notable example of that is CEDAR the
ontology editor that exports in JSON-LD. Creating a new template
with a single field generates a JSON-LD containing in excess of 100
lines, converted to 16 lines in Turtle format (See Appendix 8.2). The
extra metadata is forced on top, and as such can add unwanted bloat
and complexity.

4 REQUIREMENTS
It is important to define the requirements a visual editor for SHACL-
based metadata schemas needs to meet in order to be able to con-
cretely analyse the existing solutions, as well as provide a target for
the implementation.

(1) The editor needs to be able to convert SHACL shapes graphs
into the corresponding user interface components.

(2) The editor needs to generate valid SHACL shapes graphs.
(3) The editor needs to recommend field inputs based on the

prefixes used.
(4) The editor needs to be intuitive to use by following modern

design principles.

In the current ecosystem the RDF editors are either using Java,
JavaScript or are closed-source. Nevertheless other programming
languages also support the parsing of RDF graphs, notably the RD-
FLib library in Python[7]. RDFLib has been used along side SPARQL
to perform classification on RDF data[5]. The utilities offered by
RDFLib provide the basic functionalities needed to interact with the
sets of triples as well as traverse through the graph. The Python
ecosystem also contains PySHACL which is built on top of RDFLib.
The library allows to check the validity of SHACL graphs, such as
validating quality criteria for Git repositories[9]. For the purposes of
this implementation Python is thus used, as the needed groundwork
libraries exist. For the display of the graphical user interface, PYQT5
is used as it is cross-platform and provides all the basic interface
features.

Following the W3 SHACL document, the same prefix bindings
will be used[6] for easier readability:

Prefix Namespace
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
sh: http://www.w3.org/ns/shacl#
xsd: http://www.w3.org/2001/XMLSchema#
ex: http://example.com/ns#

4.1 SHACL shapes graph to user interface
There are multiple formats an RDF graph can take depending on the
expected use cases for the data. Of the many formats to choose from,
the notable ones are n-triples, JSON-LD/RDF-XML which all focus
on machine processing, and lastly Turtle for human readability. As
this research aims to create a tool that is designed specifically for
human use, supporting the Turtle format for both importing and
exporting is vital. This is also favorable from a loss of information
perspective, as the import prefixes defined in the Turtle format
for readability are lost when transitioning into one of the other
machine-centric formats.

The format of RDF graphs is by nature simple as it is based on a
set of triples. Each triple contains the subject, the predicate, and the
object. The user interface is determined by the predicates, for in-
stance if it is "<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>"
("rdf:type" using prefixes) which is the equivalent to the letter "a" in
the Turtle format, it means that a class is defined.

In order to create the user interface, each triple needs to be iterated
over, it is however important to do this in a systematic way, such
that the related fields are grouped together. The classes are treated
at the top level, while the children are recursively iterated over. For
each child an input form for the predicate gets built, and if the object
is a literal such as a string or an integer, then the specific input form
for that type of literal is created. For example for the boolean, a
check box is used that can be either set to true or false. If the object
is a BNode which is a reference to another node, it identifies it and
recursively repeats the process for that child. If it is not any of the
two aforementioned types, it is built with a string input field.

Fig. 1. Simple example of specific fields, from top to bottom: boolean, integer,
string

In order to be able to generate the relevant user interface, the
editor needs to have access to the SHACL shapes graph. This can
be implemented in two ways, either by providing a dedicated load
functionality, or by pasting the shapes graph directly into a text edit
form. These are not mutually exclusive but for simplicity only the
latter is implemented.
Therefore the feature of converting from the shapes graph to a

user interface is implementable by taking the graph pasted into the
text edit form and parsing it through the RDF library after every edit
or on saving. Ensuring the user interface responds to the new loaded
graph. The benefits of this solution is the ease of implementation,
however it is liable to bring performance issues. The feature can be
improved by either accounting for changes, and only acting upon
those. This on the other hand requires an in-depth and flexible link
between the user interface and graph. Amiddle ground is to separate

2



Implementation of a visual editor for SHACL-based metadata schemas TScIT 37, July 8, 2022, Enschede, The Netherlands

the classes, thus if one of the classes gets changed, none of the other
would need to be reloaded, avoiding unnecessary processing.

Fig. 2. Simple example of generated UI from the text input field

Figure 2 above is unable to show show the dynamic updating of
the user interface, however when writing in a new sh:minInclusive
value on the right side, the left side spin box (integer input field with
buttons to increment and decrement) immediately updates with the
new values.

Another benefit to this approach is that by loading the SHACL
code into the RDF library it ends up verifying that the structure is
correct, and in the case of invalid code it provides an informative
error message. As the user is editing the text, the left side user
interface does not update until it receives a valid shapes graph.

Fig. 3. Error message when removing ":person" from "schema:person", the
rest of the user interface is cropped away for readability

The transition discussed in this section is the key missing compo-
nent in all of the other editor implementations, with the exception
of Schímatos and OntoPad. Schímatos uses the same type of user in-
terface as this implementation, focusing on fields. On the other hand
OntoPad uses a node system with drawn links between the related

elements. However as SHACL graphs are usually represented using
Turtle, having the formatting match between the user interface and
the graph provides a clear and intuitive conversion. Additionally by
having the fields built recursively, it makes the hierarchy, and thus
the structure of the graph easier to identify.

4.2 Generate SHACL shapes graph
Transitioning from the user interface to a SHACL shapes graph
requires significantly more work than parsing a graph. Each user
interface field needs to be connected to the graph triple counterpart,
such that when the field is modified, the graph is updated as well. In
the case of RDFLib this is non-trivial as many of the graph entities
are immutable. In order to bypass this restriction a wrapper class is
added ontop (see Fig.4) in such a way that it can make alterations
to the graph. Afterwards each generated editable field is assigned a
signal that is emitted when a change occurs, this causes the wrapper
to update the values, and tries to export the graph in Turtle format
to the text input on the right half.

Fig. 4. Class diagram showing simplified structure

Additionally PySHACL verifies the graph to ensure that it con-
forms to the SHACL requirements.

4.3 Input recommendation
As a baseline whenever adding a new triple, the subject, the predi-
cate and object can be freely chosen, however in order to provide
ease of use filtering is needed. For instance "sh:maxLength" requires
an "xsd:integer" as datatype, in which case the object field should
be limited to integers only as shown in the shapes graph to user
interface section. Similarly the severity predicate should only have
3 options available "sh:Info", "sh:Warning" and "sh:Violation". As
there are an extensive amount of predicates and classes, by using the
SHACL itself loaded into the RDF library, the fields can be filtered by
querying the SHACL graph, instead of having to manually declare
all the conditions.

The recommendations serves two purposes, it both helps find the
option that is wanted as well as providing a basic auto-completion

3



TScIT 37, July 8, 2022, Enschede, The Netherlands Author

Fig. 5. Simple drop-down hint menu

for manual typing. This helps reduce the barrier to entry as it helps
guide the user into making a valid decision.
The same procedure works for the prefixes. In order to receive

a list of all the prefixes and the commonly used abbreviations, the
namespace lookup website prefix.cc allows for querying. In order
to avoid unnecessary querying, the list can be downloaded and
parsed through RDFLib. When used this way however, the list might
become outdated.

Fig. 6. Simple prefix drop-down hint menu

Each prefix that is added to the prefix list can be fetched and then
used to extend the set of hints provided when filling out the forms,
as shown in Fig 5.

OntoPad partially covers this, it exposes the class list and proper-
ties, among others, which can be click and dragged onto the shape
nodes. However it does not expose object filtering when connecting
nodes, as well as not having an easily accessible way to modify the
object.

4.4 Intuitive to use
In order to have an intuitive editor to use, it is important to define
"intuitive". Ruiz et al. (2020) compiled a list of 50 design principles
with the highest centrality degree[10].

An issue with existing SHACL editor solutions is the schism
between the user interface and the resulting graphs. As the SHACL
shape graph is being built, the text format equivalent is hidden,
usually only shown during export. As the Turtle format is inherently
easy to read and understand, having both the user interface and the
Turtle equivalent shown side by side would help provide concrete
feedback for the user actions.

Emphasizing the "What You See IsWhat YouGet" approach allows
for more informed decisions and gives a clearer understanding of

Fig. 7. The top 10 of the 50 highest ranked design principles relative to the
centrality degree[10]

the process. This covers the most important design principle of
offering informative feedback.

One of the shortcomings of using a recursive field user interface
instead of a node system, is that the readability suffers greatly when
multiple layers deep. To combat this, each layer receives its own
color from a gradient to clearly delineate which fields correspond
to which groups (see Fig 8). To add a triple to a group, it is achieved
by right clicking inside the colored rectangle in which it is found.
Of the only two relevant existing implementations, Schímatos

does not provide informative feedback for the actions, it is unclear
which process is taking place, this is exacerbated by the structure of
the user interface. Additionally there are unforeseeable errors that
cause the progress to be lost.
OntoPad and Schímatos also have visibility issues, as they have

several submenus, and certain menus that only show up as needed
which makes it hard to make a decision when the user is not aware
that they exist.

5 LIMITATIONS
Python despite its flexibility and many use cases, is unable to run
natively in the browser. This is a significant limitation as the ease of
access becomes severely hindered without sacrificing functionality.
Therefore choosing a language that easily support web could be
beneficial.
The editor does not online query the prefixes, it is therefore

unable to provide recommendations for prefixes that are not locally
defined.

Following the Turtle format also introduces some limitations. As
the graph structure grows and becomes more complex, it can be
hard to visualize the inter-linking of the nodes. This is due to the
tree structure, however a node based system provides the freedom
to better show how the graph is connected.

Non-validating property shape characteristics such as "sh:name",
"sh:description", "sh:order", "sh:group", and "sh:defaultValue" provide
extra metadata information that is not used for logic in the graph
structure. The order property can be given to each property, "if
present at property shapes, the recommended use of sh:order is
to sort the property shapes in an ascending order, for example
so that properties with smaller order are placed above (or to the
left) of properties with larger order"[6]. This can help showing the

4



Implementation of a visual editor for SHACL-based metadata schemas TScIT 37, July 8, 2022, Enschede, The Netherlands

Fig. 8. Visible gradient from a 5 layers deep AddressShape

user interface in a consistent way such that fields do not move
unpredictably when making changes.

6 CONCLUSION
This research identifies the existing editor solutions and compares
their functionalities against the requirements of SHACL-based meta-
data schema editing. Creating a SHACL shapes graph requires a
good understanding of SHACL to get started, this barrier to entry
only hinders the widespread adoption that the W3C is looking for.
However by guiding the user with curated selection options and
by providing immediate feedback, it simplifies the adoption pro-
cess. Aside from being more accessible, those qualities can also help
streamline the creation process.

Only two editors pass the main functionality requirement that
the SHACL shapes graphs can be converted into the user interface
equivalent. Schímatos provides the needed functionalities, however
it lacks intuitiveness and the user interface becomes difficult to use
when the amount of field to fill in grows. OntoPad on the other hand
provides a different experience with node based building, however

for metadata schema editing it adds a layer of complexity.

This research shows a process for creating an editor that inter-
connects the user interface with the SHACL directly. It follows the
design principles that aim to provide a usable user experience, such
as dedicated input fields. The end result is not extensive however it
showcases the functionalities.

7 FUTURE WORK
As the implementation stands, SPARQL definitions are accepted,
however they are only editable as strings. This can be improved
by full SPAQRL support allowing for the structured editing of the
queries. However it adds a layer of complexity to the user interface.

DASH is an extension of SHACL that provides new constraints
and target types among other features. Parts of the extension intro-
duces SHACL shape definitions that aim to help create user inter-
faces. It provides more specific functionalities than the basic ones
found natively in SHACL. If implemented this feature would add
more input types, and thus allow for better control of the user expe-
rience.

Auto-completion is a invaluable quality of life feature which
greatly streamlines the tediousness of filling in input boxes. Shacled
Turtle explores two different filtering strategies, and conclude that a
naive approach of displaying all the suggestion is equivalent to their
unique solution that filters out suggestions[2]. They acknowledge
different filtering options that could provide better results, such as
recommending the entire triplet instead of one field at a time.

8 APPENDIX

8.1 Gitlab
https://gitlab.utwente.nl/s2343169/shaclomatic

8.2 CEDAR empty export
Converted from JSON-LD to Turtle using EasyRDF. Formatted for
readability.

@pref ix ns0 : < h t t p : / / open− s e r v i c e s . ne t / ns / co r e #> .
@pref ix b ibo : < h t t p : / / pu r l . org / on to logy / b ibo / > .
@pref ix xsd : < h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema#> .
@pref ix ns1 : < h t t p : / / pu r l . org / pav / > .
@pref ix schema : < h t t p : / / schema . org / > .

< h t t p s : / / repo . me t ad a t a c en t e r . org / t emp l a t e s / x>
a < h t t p s : / / schema . me t ad a t a c en t e r . org / co r e / Template > ;
ns0 : modi f i edBy < h t t p s : / / me t ad a t a c en t e r . org / u s e r s / x> ;
b i bo : s t a t u s " b i bo : d r a f t "^^ xsd : s t r i n g ;
ns1 : c r e a t edBy < h t t p s : / / me t ad a t a c en t e r . org / u s e r s / x> ;
ns1 : c rea tedOn " x "^^ xsd : dateTime ;
ns1 : l a s tUpda tedOn " x "^^ xsd : dateTime ;
ns1 : v e r s i o n " 0 . 0 . 1 " ^ ^ xsd : s t r i n g ;
schema : d e s c r i p t i o n " " ^^ xsd : s t r i n g ;
schema : name " Empty−Example "^^ xsd : s t r i n g ;

5



TScIT 37, July 8, 2022, Enschede, The Netherlands Author

schema : schemaVers ion " 1 . 6 . 0 " ^ ^ xsd : s t r i n g .

REFERENCES
[1] Natanael Arndt, André Valdestilhas, Gustavo Publio, Andrea Cimmino Arriaga,

Konrad Höffner, and Thomas Riechert. 2021. A Visual SHACL Shapes Editor
Based On OntoPad.. In SEMANTiCS Posters&Demos.

[2] Julian Bruyat, Pierre-Antoine Champin, Lionel Médini, and Frederique Laforest.
2022. Shacled turtle: Schema-based turtle auto-completion. In Visualization and
Interaction for Ontologies and Linked Data 2022, Vol. 3253. 2–15.

[3] Fajar J. Ekaputra and Xiashuo Lin. 2016. SHACL4P: SHACL constraints validation
within Protégé ontology editor. In 2016 International Conference on Data and
Software Engineering (ICoDSE). 1–6. https://doi.org/10.1109/ICODSE.2016.7936162

[4] Rafael S. Gonçalves, Martin J. O’Connor, Marcos Martínez-Romero, Attila L.
Egyedi, Debra Willrett, John Graybeal, and Mark A. Musen. 2017. The CEDAR
Workbench: An Ontology-Assisted Environment for Authoring Metadata that De-
scribe Scientific Experiments. In The Semantic Web – ISWC 2017, Claudia d’Amato,
Miriam Fernandez, Valentina Tamma, Freddy Lecue, Philippe Cudré-Mauroux,
Juan Sequeda, Christoph Lange, and Jeff Heflin (Eds.). Springer International
Publishing, Cham, 103–110.

[5] Rupal Gupta and Sanjay Kumar Malik. 2022. A classification using RDFLIB
and SPARQL on RDF dataset. Journal of Information and Optimization Sci-
ences 43, 1 (2022), 143–154. https://doi.org/10.1080/02522667.2022.2039461
arXiv:https://doi.org/10.1080/02522667.2022.2039461

[6] Holger Knublauch and Dimitris Kontokostas. 2017. Shapes Constraint Language
(SHACL), W3C Recommendation. World Wide Web Consortium (2017).

[7] D Krech. 2006. Rdflib: A python library for working with rdf. Online
https://github.com/RDFLib/rdflib (2006).

[8] Jose Emilio Labra Gayo, Daniel Fernández-Álvarez, and Herminio Garcıa-
González. 2018. RDFShape: An RDF playground based on Shapes. In Proceedings
of ISWC.

[9] Leon Martin and Andreas Henrich. 2022. Specification and Validation of Quality
Criteria for Git Repositories using RDF and SHACL. (2022).

[10] Jenny Ruiz, Estefanía Serral, and Monique Snoeck. 2021. Unifying Functional
User Interface Design Principles. International Journal of Human–Computer
Interaction 37, 1 (2021), 47–67. https://doi.org/10.1080/10447318.2020.1805876
arXiv:https://doi.org/10.1080/10447318.2020.1805876

[11] Jesse Wright, Sergio José Rodríguez Méndez, Armin Haller, Kerry Taylor, and
Pouya G. Omran. 2020. Schímatos: A SHACL-Based Web-Form Generator for
Knowledge Graph Editing. In The Semantic Web – ISWC 2020, Jeff Z. Pan, Valentina
Tamma, Claudia d’Amato, Krzysztof Janowicz, Bo Fu, Axel Polleres, Oshani Senevi-
ratne, and Lalana Kagal (Eds.). Springer International Publishing, Cham, 65–80.

6

https://doi.org/10.1109/ICODSE.2016.7936162
https://doi.org/10.1080/02522667.2022.2039461
https://arxiv.org/abs/https://doi.org/10.1080/02522667.2022.2039461
https://doi.org/10.1080/10447318.2020.1805876
https://arxiv.org/abs/https://doi.org/10.1080/10447318.2020.1805876

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Research Questions

	3 Related Work
	4 Requirements
	4.1 SHACL shapes graph to user interface
	4.2 Generate SHACL shapes graph
	4.3 Input recommendation
	4.4 Intuitive to use

	5 Limitations
	6 Conclusion
	7 Future Work
	8 Appendix
	8.1 Gitlab
	8.2 CEDAR empty export

	References

