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The Internet of Things (IoT) is gradually becoming ubiquitous in various

domains of our daily lives, its applications ranging from smart homes

and wearable devices to healthcare and other sectors. IoT applications

generate a large amount of data, which requires privacy preservation

due to its sensitive nature. Like other web-based information systems,

IoT must cope with the variety of Cyber Security and privacy risks that

now disrupt organizations and have the potential to hold entire industries

and even countries’ data for ransom. However, ensuring privacy preser-

vation in IoT applications is challenging, as it involves protecting data

while maintaining the desired level of performance and security. This

thesis aims to analyze the privacy-preserving methods employed in IoT

applications, conduct a performance analysis of these techniques based

on latency and throughput, and assess the security of these techniques

against various attacks.

Additional Key Words and Phrases: privacy-preserving, security, perfor-

mance, IoT

1 INTRODUCTION

The Internet of Things (IoT) is a network of interconnected phys-

ical devices and objects embedded with sensors, software, and

connectivity capabilities to enable the exchange of data and infor-

mation over the Internet [1]. Currently, around 31 billion łthingsž

are connected, and it is estimated that this number will reach 75

billion by 2025 [2], covering a broad spectrum of applications

like home automation [3], wearables [4], transportation [5] or

augmented reality [6]. With the increasing use of IoT devices and

applications, the growing number of cyberthreats targeting these

devices and their applications has increased the need for privacy

preservation in IoT environments [7], as the widespread adop-

tion of IoT technology has raised significant concerns about the

loss of control over the collection and sharing of personal data.

Therefore, it is crucial to protect sensitive data while ensuring the

desired level of performance and security. It is also essential to

examine the privacy-preserving techniques utilized in IoT applica-

tions outlined in the existing literature. This analysis is essential

in developing effective privacy-preserving IoT applications that

are optimized for performance and security.

This thesis proposal seeks to conduct a thorough examination of

privacy-preserving methods utilized in IoT applications, encom-

passing an analysis of their performance in terms of latency and

throughput. Additionally, it aims to evaluate the security of these

techniques against various forms of attacks for diverse use cases

within IoT applications.

The findings of this study will contribute to the advancement of

more efficient and secure privacy-preserving methods for IoT
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applications. The outcomes will prove advantageous to organi-

zations and individuals utilizing IoT applications and devices,

as they will be able to safeguard their data more efficiently and

effectively.

1.1 Background

The first primitive IoT device was a remotely controllable toaster,

introduced in 1990 as a proof-of-concept [8]. A decade later,

the RFID-based item identification system [9] marked the first

large-scale smart device application. Nowadays, IoT devices, e.g.,

thermostats autonomously adjusting temperatures, already be-

come the industry standard, and hundreds of new devices are

connected to the Internet every minute [10]. However, security

is a crucial concern within IoT [11], and as the risks of frequent

attacks persist, research on IoT security has gained increasing

popularity [12].

1.2 Problem Statement and Motivation

This section outlines the problem statement motivating the re-

search questions outlined in Section 1.3.

The increasing number of connected devices in the Internet of

Things (IoT) has led to the generation of vast amounts of sensitive

data, making security and privacy preservation of utmost impor-

tance. These devices and their applications have become integral

to our daily lives, from monitoring our health to controlling home

appliances. However, the ease of access to these devices makes

them vulnerable to attacks by malicious actors who can exploit

their weaknesses to gain access to sensitive data or control the

devices themselves.

Approximately 30 years after the birth of IoT, IoT security chal-

lenges have become increasingly significant. The widespread use

and interconnectivity of IoT devices make them vulnerable to

cyberattacks, which can significantly impact multiple stakehold-

ers [2]. More traditional Information Technology (IT) security

goals mainly focused on ensuring confidentiality, integrity, and

accountability of systems and messages. However, when applied

to IoT devices, these measures present limitations, e.g., due to

computing power [13].

IoT devices frequently exhibit security vulnerabilities that are

challenging to remove. HP’s report revealed that 70% of IoT prod-

ucts have security vulnerabilities; each device contains 25 on

average. The most well-known incident occurred in 2016 when

the Mirai virus took over hundreds of thousands of IoT devices

and used them to build botnets. It carried out Tbps-level denial-of-

service (DoS) attacks on targets such as the DNS service provider

Dyn, creating major problems such as partial Internet outages in

the United States [14].

Therefore, the increasing prevalence of Internet of Things devices

in various aspects of our lives has generated a large amount of

sensitive data, which amplified the need for privacy-preserving
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IoT, as IoT systems that are not properly controlled, can pose a

threat to user privacy and even cause physical harm if the sen-

sors, actuators, or other connected devices are exploited for mali-

cious purposes [2].

1.3 Aim and ResearchQuestions

This research aims to evaluate the effectiveness of existing privacy-

preserving techniques used in IoT applications by comprehen-

sively analyzing their performance and security against different

attacks. The ultimate goal of the project is to propose an opti-

mized privacy-preserving technique for IoT applications based on

the performance and security analysis conducted.

The problem statement will lead to the following research ques-

tions:

RQ1: What are the current privacy-preserving techniques de-

ployed in IoT applications presented in the literature?

RQ2: How do different privacy-preserving techniques used in IoT

applications perform regarding latency and throughput?

RQ3: What are the attacks and the vulnerabilities of the current

privacy-preserving techniques against various attacks such as

denial of service (DoS) attacks and man-in-the-middle (MITM)

attacks?

RQ4: Can an optimized privacy-preserving technique be pro-

posed for IoT applications that offer better performance and secu-

rity compared to the existing techniques?

In conclusion, research questions 1, 2, and 3 will be answered

through the literature review. The last research question will

be answered through the proposed solutions for addressing the

limitations of the current privacy-preserving techniques.

The rest of this paper will be structured as follows. First, in sec-

tion 2, we explore related work covering research evaluations and

findings on privacy-preserving techniques deployed in IoT ap-

plications. In Section 3.2, we detail the setup of our experiments,

and in 3.1, we describe the software tools needed for conducting

the experiment. Moreover, in 4, we present the results achieved

from our experiment and assess the performance of different

privacy-preserving techniques used in IoT applications regarding

latency and throughput. Section 5 goes into a critical analysis of

our results, addresses the limitations, performs a comparative

performance analysis before and after preserving privacy, and

proposes potential solutions to address the vulnerabilities discov-

ered. Finally, Section 6 concludes the research and presents areas

of interest for further research.

2 RELATED WORK

This section highlights related work in privacy-preserving tech-

niques for IoT applications.

Several published surveys in the literature have addressed se-

curity in IoT from different angles. Ziegeldorf et al. [15] ana-

lyzed the privacy issues in IoT, focusing on classifying the var-

ious privacy threats and pointing out the challenges in privacy-

preserving IoT. The authors summarize existing privacy threats

into seven categories and review them in light of the evolving

IoT, as the article stresses the need for privacy-aware solutions

for the IoT that balance business interests and customers’ privacy

requirements.

Authors in [16] proposed a Homomorphic Encryption Protocol

that allows computations to be performed on encrypted data

without the need to decrypt it. The research involves a perfor-

mance analysis that shows that this protocol is useful for pre-

serving the privacy of the data while allowing for useful compu-

tations to be performed on it. The main advantage is that data

can be analyzed without exposing the underlying data to anyone.

However, the downside of this protocol is that it can be compu-

tationally expensive, leading to higher latency and energy con-

sumption. The performance analysis done by the authors led to

an optimization to reduce the secret key size.

Another privacy-preserving technique presented in literature is

the Differential Privacy Protocol in the work by Dwork [17]. The

authors conducted a comprehensive survey of Differential Privacy

Protocol and its applications in privacy-preserving data analysis,

the advantage of this protocol being that it provides a rigorous

mathematical framework for ensuring privacy by masking the

identity of individuals, however, at the expense of decreased ac-

curacy due to added noise. The research concluded that, although

ameliorated to some extent using Gaussian noise, the noise grows

with the complexity of the queries applied to the database. There-

fore, the paper concluded that this increase is essential for privacy

guarantees and should be a subject of ongoing research.

The research done by Lindell and Pinkas in [18] illustrated an-

other privacy-preserving protocol by conducting a privacy and

performance analysis of the Secure Multi-party Computation

(MPC) Protocol; this protocol allows multiple parties to jointly

compute a function without revealing their private inputs to

each other. The authors showed that MPC had made significant

progress in recent years and has become fast enough and rec-

ognized by the industry to be deployed in practice. However,

deploying MPC requires expertise, and additional breakthroughs

are needed to make it practical for large data sets and complex

problems.

Sharaf-Dabbagh et al. [19] proposed a novel authentication frame-

work for IoT environments based on device fingerprinting tech-

niques. The proposed model overcomes the limitations of existing

device fingerprinting methods, such as assuming fixed finger-

prints, by leveraging transfer learning techniques to accurately

identify emulation attacks and to distinguish between abnormal

fingerprints caused by environmental factors and those resulting

from attacks. The simulation results illustrate an improvement in

authentication accuracy by up to 8% compared to conventional

authentication techniques. Overall, the proposed framework is

a step towards developing IoT-specific security and privacy so-

lutions, but further research is needed to address the remaining

challenges in IoT security.

3 RESEARCH METHODOLOGY

This section outlines the steps taken to address the research ques-

tions (RQs) mentioned in Section 1.3 and provides an overview of

the materials and tools used in the experiment.
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For RQ1, a literature review was conducted to identify existing

privacy-preserving techniques in IoT applications. This included

examining potential security threats, vulnerabilities, and miti-

gation strategies. We created a simulated IoT environment, as

described in Section 3.1, where privacy-preserving techniques

such as differential privacy and data anonymization were imple-

mented.

RQ2 involved evaluating the performance of the privacy-preserving

techniques in the simulated IoT environment. Data on latency

and throughput was collected under various scenarios, consid-

ering the number of devices and data size. Statistical analysis

techniques were applied to compare the performance metrics of

each technique. The findings of the experiment can be found in

Section 4.

For RQ3, the security of the privacy-preserving techniques was

analyzed against different attack scenarios. Eavesdropping, data

tampering, and Man-in-the-Middle (MITM) attacks were simu-

lated in the IoT environment. The impact of these attacks on data

privacy and security was assessed, and the effectiveness of the

privacy-preserving techniques against the various attack scenar-

ios was evaluated. Based on the security analysis, potential im-

provements to the privacy-preserving techniques were identified,

such as enhancing the encryption algorithm and incorporating

additional security measures to prevent such attacks.

Lastly, RQ4, which aimed to propose an optimized privacy-preserving

technique for IoT applications, was not achieved. The research

assessed the effectiveness of privacy-preserving techniques in

mitigating different attack scenarios but an optimized method

is still to be proposed, as the experimental results showed that

privacy-preserved IoT applications still present security vulnera-

bilities.

3.1 Measurement tools

This subsection describes the tools used in conducting the ex-

periment and the packages used to implement each privacy-

preserving technique.

The experiment was conducted on a Dell XPS laptop, with 16GB

RAM, and Intel Core i7. The high RAM capacity allowed for the

efficient execution of resource-intensive operations within the

Mininet framework, ensuring smooth emulation and accurate

measurements. The tools used in this research are software pack-

ages and all of the tools are contained in one Virtual Machine

(VM) running in VMware Workstation 17 Player.

To create the network topology of my IoT environment, the fol-

lowing packages and modules were used:

• Mininet: provides the network emulation framework to

simulate a realistic network environment by creating vir-

tual hosts, switches, and links.

• Mininet Topo: allows defining the custom network topolo-

gies by creating the required hosts and switches and es-

tablishing the connections between them. Within the

Mininet package, we used mininet.net, mininet.node, and

mininet.link modules to configure the network and define

the connections between devices.

• Mininet Link: enables to establishment and control of the

links between the hosts and the switch, specifying parame-

ters like bandwidth, delay, and packet loss.

To implement the privacy-preserved techniques in my simulated

IoT environment, we used the following packages and libraries:

• Diffprivlib: Python library for applying differential privacy

techniques to my network data. The library provided me

with a set of algorithms for adding noise, perturbing data,

and aggregating statistics while ensuring privacy guaran-

tees. By leveraging these functionalities, we could protect

sensitive information exchanged between devices by in-

troducing controlled randomness. Moreover, diffprivlib

allowed us to quantify the privacy guarantees and con-

trol the level of privacy and accuracy trade-offs through

privacy parameters.

• SEAL-Python: Python version of SEAL library for applying

fully homomorphic encryption (FHE); it enables computa-

tions to be performed on encrypted data without decryp-

tion, preserving the privacy and security of sensitive infor-

mation. We used the library’s functionalities to encrypt the

received data packet from each IoT device, perform homo-

morphic addition operations on the encrypted data, and

decrypt the result to obtain the processed data.

• Anonimyzedf: Python library for applying Data Anonymiza-

tion, offering methods for generalization, suppression, ran-

domization, and perturbation of data attributes. Using the

library, we could remove and obfuscate personally identifi-

able information (PII) from the sample data we generated,

to prevent the identification of individuals.

3.2 Measurement environment

This subsection explains how we set up the measurement en-

vironment which comprises a virtual network with multiple

interconnected hosts, switches, and controllers, emulating the

behavior of a real IoT network.

To create the IoT simulation, we established the measurement

environment using Mininet, an open-source network emulator

providing a flexible and controllable platform for creating a simu-

lated IoT network environment, enabling precise measurements

and analysis. To set up the environment in Mininet, we followed

the instructions for Windows provided by its documentation and

first downloaded the Mininet VM Image. As Mininet is primarily

designed for Linux-based operating systems, we set up the Virtual

Machine (VM) running Ubuntu on my Windows host machine

using the VMware Workstation 17 Player virtualization system.

To ensure a clean and isolated environment, we created a virtual

environment using virtualenv where we installed the necessary

libraries and packages required for security analysis, performance

measurement, and IoT simulation, utilizing Python’s package

manager, pip. For more details regarding the use of packages, see

Section 3.1. To begin the experiment, we started the virtual ma-

chine and logged in to Mininet. Once logged in, we used a text

editor to write a Python script to generate the network topology,

apply privacy-preserving techniques, simulate attacks, and mea-

sure performance metrics. We navigated to the directory where

3



TScIT 39, July 7, 2023, Enschede, The Netherlands Brianna Drîngă

the script was located in the Mininet terminal and ran it using

the Python interpreter after importing the necessary packages de-

scribed in Section 3.1. This established measurement environment

was the foundation for conducting the security and performance

analysis of privacy-preserved IoT applications.

4 RESULTS

This section outlines the results of the methodology described

in Section 3, based on evaluating the effectiveness of privacy-

preserving techniques in terms of throughput and latency.

All privacy-preserving techniques were applied to a start topol-

ogy network of 20 IoT devices connected via a switch, config-

ured as described in Section 3.2. Table 1 gives an overview of the

privacy-preserving techniques employed in our IoT environment,

along with the libraries used for implementation. We created

a Python script for each privacy-preserving technique applied

to our simulated IoT environment, yielding average values for

throughput and latency. To ensure the high accuracy of these

results, we ran each script 100 times by adding a loop to iterate

over the desired number of runs. After each run, the measure-

ments of throughput and latency are stored in separate lists. Once

the loop completes, the script calculates the average throughput

and latency by summing up the results of the measurements and

dividing by the total number of runs.

To evaluate the effectiveness of each privacy-preserving tech-

nique, we created different scripts using a consistent network

topology, described in Section 3.2, simulated a different attack sce-

nario for each script, and measured the network’s performance in

terms of throughput and latency. Subsequently, we implemented

the selected privacy-preserving techniques and repeated the at-

tack simulations, again measuring the network’s throughput

and latency. We compared the results before and after privacy-

preserving to assess whether the privacy-preserving methods

applied to the environment can be used in preventing or mitigat-

ing the simulated attack and to which extent enhancing security

negatively impacts performance.

The first privacy-preserving technique applied to our simulated

IoT environment is Differential Privacy (DP). DP ensures that

the privacy of individual device values is protected while still

allowing statistical analysis. By adding noise to the data, we can

safeguard sensitive information even in the presence of poten-

tial adversaries or data breaches. To perform the experiment,

we ran the Python script in the Mininet terminal, which applies

DP using the diffprivlib package explained in Section 3.1, along

with Numpy, which is used to generate random data and perform

mathematical operations. The Laplace mechanism is specifically

designed to provide privacy guarantees by introducing noise pro-

portional to the sensitivity of the data and inversely proportional

to the desired privacy parameter (epsilon). This mechanism pro-

vides strong privacy guarantees and has been widely adopted in

various privacy-preserving applications.

To calculate the throughput, we simulated a specific number of

differential privacy operations, measuring the elapsed time and

dividing the number of operations by the elapsed time. For mea-

suring the latency, the code performs the same set of operations

and measures the time taken for each operation. The average

latency is calculated by averaging the measured times.

To assess the effectiveness of DP in mitigating an attack, we im-

plemented a data tampering attack, which we simulated by mod-

ifying a specific set of data values collected from the IoT devices

before applying the privacy-preserving techniques. By leverag-

ing the inherent noise injection and aggregation steps in the DP

mechanism, we observed that the impact of the data tampering

attack was significantly reduced. The added noise, derived from

the Laplace distribution, acted as a protective layer, rendering the

tampered values indistinguishable from the original data. As a

result, applying DP effectively masked the tampered values and

prevented adversaries from accurately determining the original

data, and even when the tampered data was aggregated and ana-

lyzed, the privacy guarantees provided by DP remained intact.

Data Anonymization is the second privacy-preserving technique

applied to our virtual network of IoT devices. By applying various

anonymization techniques, such as generalization, suppression,

or randomization, data is transformed in a way that makes it dif-

ficult or impossible to identify specific individuals or sensitive

attributes directly. We generated sample data stored in a .txt file

on each IoT device. The data represents personal information

such as names, ages, and salaries, on which we apply anonymiza-

tion techniques to transform it. The script initiates data transfer

among devices by simulating network traffic, such as sending

ping requests.

To calculate the throughput, the code measures the data trans-

fer time between devices. It starts a timer before initiating data

transfer among devices, and once the data transfer is complete,

the timer is stopped, and the elapsed time is recorded. The av-

erage throughput is calculated by dividing the amount of data

transferred by the elapsed time. For measuring the latency, the

script captures the time it takes for each ping request to receive a

response, representing the round-trip time. We extract the latency

values from the ping responses and calculate the average latency

between all pairs of devices in the network.

To evaluate the efficacy of data anonymization in securing an

IoT environment, we implemented a man-in-the-middle (MITM)

attack that involved intercepting and manipulating the communi-

cation between IoT devices in the network. We employed packet

sniffing techniques to capture the network traffic passing through

our environment and, to intercept and analyze the packets ex-

changed between the IoT devices, we used Scapy, a packet ma-

nipulation library written in Python. By intercepting the packets,

we were able to modify their content, introducing unauthorized

changes to the data being transmitted. We forwarded the manip-

ulated packets to their intended recipients, simulating the actions

of a malicious actor. This allowed us to evaluate the vulnerabili-

ties and limitations of data anonymization techniques in the face

of MITM attacks.

The application of data anonymization proved to be a valuable

defense mechanism in mitigating the impact of the MITM at-

tack. While effective in protecting sensitive information, can still

present certain vulnerabilities that adversaries may exploit. One

such vulnerability is the potential re-identification of individuals

based on the released anonymized data. Although generalization,
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suppression, and randomization techniques are applied to dis-

guise personal information, advanced de-anonymization attacks,

such as inference or background knowledge attacks, can exploit

patterns, correlations, or external datasets to identify individuals.

However, even if an attacker gains unauthorized access to the

anonymized data, the information lacks direct identifiers or sensi-

tive details, making it difficult for the attacker to obtain sensitive

information from the intercepted traffic.

The third privacy-preserving technique we employed in our sim-

ulated IoT environment is Fully Homomorphic Encryption (FHE).

We performed data processing tasks on the switch device by sim-

ulating the processing of packets received from IoT devices. To

demonstrate FHE, we created an instance of the SEAL context

with appropriate parameters for encryption and set up the nec-

essary encryption keys. Using the encryptor, we encrypted the

packet data received from each IoT device and performed homo-

morphic computations such as addition and multiplication to the

encrypted data. Finally, we decrypted the result to obtain the pro-

cessed data. The main advantage of homomorphic encryption is

that it allows data to be analyzed without exposing the underly-

ing data to anyone. However, the downside of this protocol is that

it can be computationally expensive, leading to higher latency

and energy consumption.

To assess the throughput, we measured the number of FHE op-

erations (e.g., encryption, decryption, or computations such as

addition) that can be processed per unit of time. We executed the

selected workloads multiple times and recorded the time taken

for each execution. The average throughput was calculated based

on these measurements. We measured latency by measuring the

time it takes for a single FHE operation to complete and, sub-

sequently, we calculated the average latency by executing the

selected workloads and recording the time taken for each opera-

tion.

To evaluate the efficacy of FHE in securing IoT applications, we

performed an eavesdropping attack by employing network sniff-

ing tools to intercept and capture the encrypted data transmitted

between the IoT devices. Despite the encrypted nature of the

data, traditional encryption methods would still be susceptible

to eavesdropping attacks, as the ciphertext could be intercepted

and stored for potential decryption attempts. However, with the

application of FHE, the intercepted encrypted data remained se-

cure and resistant to decryption attempts by the eavesdropper.

FHE allowed computations to be performed directly on the en-

crypted data, enabling secure data processing without the need

for decryption. This capability provided an additional layer of

protection against eavesdropping attacks, as the sensitive infor-

mation remained encrypted throughout the entire data lifecycle.

By demonstrating the efficacy of FHE in mitigating eavesdrop-

ping attacks, our work highlighted the importance of leveraging

advanced cryptographic techniques to ensure the confidentiality

and privacy of IoT data, even in the presence of malicious actors.

Therefore, all results showed that the overall security and per-

formance of the network were preserved through the applica-

tion of differential privacy against a data tampering attack, data

anonymization against a MITM attack, and FHE against eaves-

dropping. When DP and FHE were applied to the network under

Table 1. Overview of privacy-preserved techniques applied to the IoT
environment.

Privacy-
preserving method

Differential
Privacy

Data
Anonymization

Fully Homomorphic
Encryption

Library NumPy AnonymizeDF SEAL-Python
Language Python Python Python
Additional
Libraries

- pandas -

Fig. 1. Average throughput in the IoT environment with and without the
implementation of privacy-preserving techniques.

Fig. 2. Average latency in the IoT environment with and without the
implementation of privacy-preserving techniques.

attack, the average throughput resulting from the experiment

increased compared to the results given by the same environment

without privacy preservation. Moreover, the average latency

decreased, hence how privacy-preserving methods secure IoT

environments, but do not always ensure full protection against

attacks. In the case of data anonymization, a MITM attack was

still possible, although its impact was improved through privacy

preservation.

By considering the trade-off between privacy and performance,

our findings demonstrate that the incorporation of privacy-

preserving methods in the IoT environment provided a valuable

layer of protection against data tampering attacks while ensur-

ing that the system’s throughput and latency remained within

acceptable limits.
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5 DISCUSSION

This section will highlight the findings of our research based

on the experimental results. The conducted experiment proves

the impact of privacy-preserving techniques on both security

and performance. On the one hand, the attacks performed in the

simulated environment suggest that Differential Privacy, Data

Anonymization, and Fully Homomorphic Encryption strengthen

the security of the simulated IoT environment. On the other hand,

the evaluation of the performance metrics in terms of through-

put and latency of the IoT environment shows how privacy-

preserving techniques decrease performance, as it has the effect

of increasing latency and decreasing throughput.

When applying Differential Privacy, the results prove that adding

noise affects the data’s accuracy and utility. The noise introduced

by the differential privacy mechanism causes distortions in the

data, resulting in a reduction in throughput, as illustrated by Fig.

1, and an increase in latency, as shown by Fig. 2. The amount

of noise introduced impacts the trade-off between security and

performance. Higher noise levels resulted in greater privacy pro-

tection but at the cost of reduced data quality and throughput.

Under the simulation of an attack, when differential privacy was

applied, the findings mentioned in Section 4 illustrate that differ-

ential privacy effectively prevents a data tampering attack. Based

on the security and performance analysis conducted, a poten-

tial improvement to DP algorithms would involve developing an

optimized mechanism for allocating the amount of noise added

to the data. Increasing the amount of noise allows for stronger

privacy guarantees but impacts the accuracy of the data analysis.

On the other hand, a smaller amount of noise may provide better

data utility but will compromise privacy protection. Therefore

a potential solution would focus on developing a dynamic bud-

get allocation and adaptive privacy mechanisms to optimize the

trade-off between privacy and data utility.

Regarding Data Anonymization, the impact on the throughput

and latency depends on the computational complexity of the tech-

niques used for transforming and modifying data to remove iden-

tifiable information. Since data anonymization ensures that sen-

sitive information is protected by replacing identifiable data with

anonymized values, the throughput of the network decreases due

to the additional processing required for anonymization. Based

on the results shown by 1, the reduction in throughput is lower

than in the other two cases of privacy-preserved methods. The

latency is higher due to the additional computational overhead in-

troduced by anonymization. Under a man-in-the-middle (MITM)

attack, data anonymization is not fully effective in mitigating

the attack. This results in reduced throughput and increased la-

tency, as legitimate communication is hindered or altered by the

attacker’s actions. Based on the experimental results, the poten-

tial improvements of data anonymization could involve privacy-

preserving data sharing by developing more secure protocols and

frameworks for sharing anonymized data, such that privacy is

maintained even when data is shared between different entities

or organizations. Another point of improvement could be to com-

bine multiple anonymization techniques to create a multi-layered

approach when securing data.

Applying Fully Homomorphic Encryption to the network above

has a significant impact on the throughput and latency based on

the findings presented in Section 4. FHE is a computationally in-

tensive process that involves complex mathematical operations

on encrypted data. These operations introduce additional com-

putational overhead, increasing processing time and reducing

throughput. The encryption and decryption processes add latency

to the data transfer, further increasing the overall latency of the

network. The impact on throughput and latency is the highest

among all three privacy-preserving methods employed in this

research, as illustrated by Fig. 1 and Fig. 2. To our knowledge, this

is the first work that makes a comparison between the average

throughput and latency instead of comparing the throughput

given by each homomorphic operation. Regarding potential im-

provements, FHE could be strengthened through performance

optimization of FHE schemes, to reduce the computational over-

head associated with performing computations on encrypted

data, especially for resource-constrained IoT devices. Moreover,

to address potential vulnerabilities in FHE key management sys-

tems, secure key distribution, storage, and revocation should

be ensured. Further enhancements could be made to enhance

the security of the encryption scheme by addressing potential

side-channel attacks on FHE implementations, such as timing or

power analysis attacks.

Therefore, all the experimental results illustrate how the net-

work’s performance under attack is better when a privacy-preserving

technique is used. Differential privacy is effective against data

tampering attacks, as FHE efficiently mitigates eavesdropping

attacks. In the case of a MITM attack, the data anonymization

proved to reduce the impact of the attack but did not fully miti-

gate it. Hence privacy-preserved IoT applications are still vulner-

able to attacks and require further improvements and security

measures.

6 CONCLUSION

In conclusion, this study has highlighted the growing need for

enhanced security measures in the realm of IoT, driven by the

widespread adoption of IoT devices and the consequent genera-

tion of sensitive data. The research has undertaken a comprehen-

sive analysis of existing privacy-preserving methods, evaluating

their performance in terms of latency and throughput while also

assessing their efficacy in safeguarding against various types of

attacks.

The experimental findings have revealed that privacy-preserving

techniques offer only partial effectiveness in mitigating or pre-

venting attacks within IoT applications. Furthermore, it has been

observed that these techniques can lead to decreased performance

in terms of throughput and latency. Consequently, there is room

for improvement in privacy-preserving strategies to address the

vulnerabilities still existing within IoT applications, such as data

tampering, Man-in-the-Middle (MITM) attacks, and eavesdrop-

ping.

In future work, it is imperative to explore potential enhancements

for privacy-preserving techniques to bolster their resilience
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against attacks. The research underscores the ongoing neces-

sity to fortify privacy-preserved IoT applications and emphasizes

the importance of devising robust countermeasures to combat

evolving security threats.
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