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Abstract

A {0,±1} matrix is balanced if it does not contain a square submatrix with two
nonzero elements per row and column in which the sum of all entries is 2 modulo
4. Zambelli [9] provided a polynomial algorithm to test balancedness of a matrix.
This paper discusses the algorithm and its implementation, and compares it against a
naive approach using an exponential algorithm. The running time of the polynomial
algorithm is O(n9) for {0, 1} matrices and O(n11) for {0,±1} matrices, where n is the
number of rows and columns of the input matrix.
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1 Introduction

A {0,±1} matrix is balanced if it does not contain a square submatrix with two nonzero
elements per row and column in which the sum of all entries is 2 modulo 4. Figure 1
contains an example of two 3 by 3 matrices. U is not balanced and B is balanced.

U =


C0 C1 C2 C3

R0 1 0 0 1
R1 1 1 1 0
R2 0 0 1 1

 , B =


C0 C1 C2 C3

R0 1 0 0 1
R1 1 1 1 0
R2 1 0 1 1


Figure 1: An unbalanced matrix U and a balanced matrix B.

We can show that the matrix U is not balanced by looking at the 3 by 3 square submatrix
consisting of rows {R0, R1, R2} and columns {C0, C2, C3}. Note that it has two nonzero
entries in each row and column. The sum of these entries is 6 ≡ 2 (mod 4), so U is not
balanced.

Matrix B has two square submatrices such that each row and column has two nonzero
entries. One consists of the rows {R1, R2} and columns {C0, C2}. In this submatrix the
sum of the entries is 4 ≡ 0 (mod 4). The other submatrix consists of the rows {R0, R2}
and columns {C0, C3}. In this submatrix the sum of the entries is also 4 ≡ 0 (mod 4).
Hence, B is balanced.

Zambelli [9] provided two polynomial time algorithms. One algorithm can check if a
{0,±1} matrix is balanced with a running time of O(n11), and the other can check if a
{0, 1} matrix is balanced with a running time of O(n9), where n is the number of rows
plus the number of columns of the input matrix. These algorithms are explained in Section
3. In this paper we discuss an implementation of these polynomial algorithms, which was
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programmed in Java. We also discuss the implementation of a naive exponential algorithm
that might be faster for smaller matrices, which is explained in Section 2. In Section 4 we
compare the running times of the polynomial algorithm against an exponential algorithm.

Balanced matrices are used in integer programming. They are closely related to to-
tally unimodular matrices, which have the extra requirement that each submatrix must
have determinant -1, 0 or +1. Balanced matrices do not have this requirement, they can
have submatrices with determinant -2 for example. Totally unimodular matrices are a
proper subset of balanced matrices [8]. Balanced matrices are of special interest in integer
programming, as several polytopes arising in classical optimization problems have only
integral vertices when the constraint matrix is balanced [9]. Some important applications
are generalized set packing, set covering and set partitioning polytopes. These polytopes
have only integral vertices when the matrix is balanced [2, 3].

1.1 Notations and definitions

In this paper, we will work with the same definitions as used by Zambelli [9]. This section
contains all those definitions. It will be useful to work with the bipartite representation
of the matrix. Given a {0, 1} matrix A, the bipartite representation of A is the bipartite
graph G where the two sides of the bipartition are the sets R and C of rows and columns
of A, respectively, and there is an edge between i ∈ R and j ∈ C if and only if aij = 1. An
example of a {0, 1} matrix and its bipartite graph representation can be seen in Figure 2.

R0

R1R2

C0

C1

C2

GU =
U =


C0 C1 C2

R0 1 0 1
R1 1 1 0
R2 0 1 1



Figure 2: A {0, 1} matrix U and its bipartite representation GU .

A {0, 1} matrix A is balanced if and only if its bipartite representation does not contain
a hole of length 2 (mod 4) as an induced subgraph. A hole is a chordless cycle. We call
a hole odd if it has length 2 (mod 4). A bipartite graph is balanced if it does not contain
an odd hole.

R0

R1R2

C0

C1

C2

GB =
B =


C0 C1 C2

R0 1 0 1
R1 1 1 0
R2 1 1 1



Figure 3: A {0, 1} matrix B and its bipartite representation GB.

Figure 3 contains a bipartite graph GB, which is the bipartite representation of matrix
B. As an example, notice that GB contains no odd hole. It does contain a cycle of length
2 (mod 4), R0C0R1C1R2C2R0, but this cycle has a chord C0R2, so it is not an odd hole.
Hence GB is balanced.

For general {0,±1} matrices, we will work with their signed bipartite representation.
A signed bipartite graph is a pair (G, σ) where G is a bipartite graph and σ is a signing

2



of the edges, that is a function from E(G) to {1,−1}, where E(G) denotes the edge set of
graph G.

Given a {0,±1} matrix A, the signed bipartitle representation of A is the signed bipar-
tite graph (G, σ) where G is the bipartite representation of the {0, 1} matrix underlying A
and σ is defined, for each edge ij, by σ = aij . For any subgraph F of G, we define

σ(F ) =
∑

e∈E(F )

σ(e).

A {0,±1} matrix A is balanced if and only if its signed bipartite representation does not
contain a hole H such that σ(H) ≡ 2 (mod 4) as an induced subgraph. We will say
that such a hole is unbalanced, and a signed bipartite graph is balanced if it contains no
unbalanced hole. Given a cut induced by (S, S̄) of G (where S is a subset of the nodes of
G, and S̄ = V (G)\S), we define a signing σ′ by

σ′(ij) =

{
σ(ij) if ij /∈ (S, S̄)

−σ(ij) if ij ∈ (S, S̄)
.

(G, σ) is balanced if and only if (G, σ′) is balanced, since for any hole H, σ(H) ≡ σ′(H)
(mod 4). This is because for any signing, there is always an even number of edges in H
that change their sign. Each single edge that changes sign adds or subtracts 2 from σ(H).
Since there are always an even number of edges that change their sign, σ(H) ≡ σ′(H)
(mod 4). We call this operation scaling along the cut induced by (S, S̄).

R0 R0

R1 R1R2 R2

C0 C0

C1 C1

C2 C2

−1

1

11

1

1 1

1

1−1

1

1

(G, σ) = (G, σ′) =
A =


C0 C1 C2

R0 −1 0 1
R1 1 1 0
R2 0 1 1



Figure 4: A balanced matrix A, its signed bipartite representation (G, σ),
and the resulting graph (G, σ′) after scaling (G, σ) along the cut induced by
({R0, C2, R2}, {C0, R1, C1}).

Figure 4 contains an example of a balanced signed bipartite graph G where each edge
e has the label σ(e). Note that the hole H = R0C0R1C1R2C2R0 contained in G has
σ(H) ≡ σ′(H) ≡ 0 (mod 4).

In the remainder of this paper, G will always be a bipartite graph. When we say that a
graph G contains a graph F , we will always mean that G contains a graph isomorphic to
F as an induced subgraph. Given a set X of nodes of G, we denote by G[X] the subgraph
of G induced by X. Given a subgraph F of G and a node x of G, we denote the set of
neighbours of x in F by NF (x).

Given a path or a hole Q, we will denote by |Q| the length of Q, that is the number of
edges. Given a graph F and two nodes x and y of F , dF (x, y) denotes the length of the
shortest path between x and y contained in F . If P is a chordless path and x and y are
two nodes of P , we will denote by P (x, y) the unique subpath of P between x and y. The
interior of P is the set of all nodes of P except the endpoints of P .

A path P and a node m are said to be close if m belongs to or has a neighbour in the
interior of P . Two paths P1 and P2 are said to be close to each other if there is a node in
the interior of P1 that is close to P2.
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The following two graphs will play an important role in the remainder of the paper,
because these graphs always imply the existence of an unbalanced hole.

1.1.1 3-path configurations

Given two nonadjacent nodes x and y in distinct sides of the bipartition, a 3-path config-
uration between x and y is a graph consisting of three chordless paths P1, P2, P3 between
x and y such that, for every 1 ≤ i < j ≤ 3, no node in the interior of Pi belongs to or has
a neighbour in the interior of Pj . We say that P1, P2, P3 form a 3-path configuration.

An example of a graph containing a 3-path configuration can be seen in Figure 5. The
three dashed lines in this graph represent chordless paths between ai and bi for i ∈ {1, 2, 3}
such that each pair of these paths is not close to each other. Note that x and y must be
nonadjacent, so all of the paths forming the 3-path configuration must at least have a
length equal to 3.

y

a1 a2 a3

x

b1 b2 b3

Figure 5: A 3-path configuration. The dashed lines indicate potentially longer
paths.

1.1.2 Wheels

A wheel consists of a hole H and a node v outside H with at least 3 distinct neighbours
in H, and is denoted by (H, v). A wheel (H, v) for which v has k neighbours in H is said
to be a k-wheel. A sector of (H, v) is a maximal subpath of H with no neighbours of v in
its interior. The spokes of (H, v) are the edges of G of the form uv where u is a neighbour
of v in H. (H, v) is an odd wheel if it is a wheel and v has an odd number of neighbours
in H.

Figure 6 contains an example of a 5-wheel (H, v). Note that because it is a 5-wheel,
there are exactly 5 spokes, i.e. there are no other neighbours of v in the hole H.

The importance of 3-path configurations and odd wheels is explained by the next
proposition.

Proposition 1.1. If G is a bipartite graph containing a 3-path configuration or an odd
wheel, then (G, σ) is not balanced for any signing σ.

The proof for this proposition can be found in [9].

2 Naive recognition algorithm

To get a good estimate of the speed of the implemented polynomial algorithm, we will
compare it to a naive algorithm. This naive algorithm checks for balancedness by iterating
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vH

Figure 6: A 5-wheel. The dashed lines indicate potentially longer paths.

over each square submatrix. In Algorithm 1 we see an overview of the naive algorithm. This
algorithm runs in exponential time, since we have to iterate over almost all combinations
of rows and columns and the number of combinations grows exponentially. Note that R is
the set of rows and C is the set of columns of A.

Algorithm 1 Naive recognition algorithm
Input: Matrix A
Output: True if the matrix is balanced, otherwise false
1: for all 2 ≤ size ≤ min(|R|, |C|) do
2: for all X ⊆ R with |X| = size do
3: for all Y ⊆ C with |Y | = size do
4: if AX,Y has two nonzero entries per row and column then
5: Count the sum s of the entries of AX,Y .
6: if s = 2 (mod 4) then
7: return false
8: return true

Proposition 2.1. Algorithm 1 correctly determines if an m-by-n matrix A is balanced.
The running time of the algorithm is O(2m+n).

I implemented this algorithm by recursively iterating over all the subsets of R and C.
There are some optimizations that were implemented to make this algorithm faster.

First, there is a pre-processing step, in which we remove all the rows and columns with
fewer than two nonzero entries. We can do this because any square submatrix that includes
these rows/columns would not correspond to an unbalanced hole.

We can do something similar before line 3 of the algorithm. When we have a selection of
rows, we can skip over all the columns that do not have exactly two nonzero entries in AX,C .

Another optimization that was implemented is that in step 3, when we make Y , we
can be smart about which columns we include. Before we select any column, we make a
list rowCount in which we can count the number of nonzero entries in each row with the
current selection of columns. When we select a column, we check that there are no rows
that would get more than two nonzero entries in their row if we would include it. If the
inclusion of the column would cause one of the rows to have more than two nonzero entries,
we skip the column.

We also make sure that each column we add makes the count of one of the rows go
from 0 to 1. This makes sure that we do not get a situation where the counts of the rows
are all either 2 or 0, which would mean that we have found a hole that is smaller than the

5



current size we are looking at. We can skip this because the algorithm will have checked
the hole in a previous iteration. This is illustrated by the following example.

Figure 7 contains an example of a matrix A that we could be iterating over. Let us
assume that we are currently looking at the submatrices of size 4, and we have X =
{R0, R1, R2, R3} and Y = {C0, C1}. We need to select a third column. We can not select
C2 because R0 already has two nonzero entries. We can also not select C3 because then we
would get the hole A{R0,R1,R2},{C0,C1,C2} in our submatrix, which we have already checked
when we iterated over the submatrices of size 3. C4 is the only column left, but we need
two more columns so we can also skip C4.

rowCount =


R0 2
R1 1
R2 1
R3 0

 A =


C0 C1 C2 C3 C4

R0 −1 1 1 0 0
R1 1 0 0 1 1
R2 0 1 0 1 0
R3 0 0 1 0 1


Figure 7: A matrix A and the rowCount list that keeps track of the number of
nonzero entries in the selected rows {R0, R1, R2, R3} with the current selection of
columns {C0, C1}.

3 Polynomial recognition algorithm

In this section we will discuss how the polynomial time algorithm can check if a matrix
is balanced. The algorithm consists out of four smaller algorithms. The first step in the
algorithm is to change the matrix to the bipartite representation.

We then start by checking if the graph contains a 3-path configuration. From Proposi-
tion 1.1 we know that if this is the case, we are guaranteed to have an unbalanced hole in
the graph. In Section 3.1 we will discuss this algorithm in more detail. If we find a 3-path
configuration, we can output that the graph is unbalanced and stop.

If the graph does not contain a 3-path configuration, we check if the graph contains a
detectable 3-wheel. This is a 3-wheel where one of the sectors has length 2. See Figure 8
for an example of a detectable 3-wheel. The sector highlighted in blue has length 2, and
since there are 3 spokes, the hole H and v form a detectable 3-wheel.

vH

Figure 8: A detectable 3-wheel.

A detectable 3-wheel is an odd wheel, so from Proposition 1.1 it follows that if the graph
contains a detectable 3-wheel, it contains an unbalanced hole. Section 3.2 will discuss this
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algorithm in more detail. If we find a detectable 3-wheel, we can output that the graph is
unbalanced and stop.

The third algorithm has the goal of creating a set of so called cleaners. We will come
back to the definitions when we explain this algorithm in Section 3.3. In short, it is
guaranteed that at least one of the cleaners will remove the middle node of an odd wheel,
if there is one in the graph.

The fourth algorithm iterates over all the cleaners, and in each iteration we try to find
an unbalanced hole in the graph. We do this by iterating over every triple of nodes in
the graph and finding the shortest paths between them. These paths will form a hole,
which we can check for balancedness. The third and fourth algorithms can be combined
for signed graphs, which we will discuss in Section 3.3.

3.1 3-path configuration recognition algorithm

In this section we will discuss Algorithm 2.2 from Zambelli [9]. The overall running time
of this algorithm is O(|V (G)|9). The way this algorithm works is that we try to find three
paths that have the same endpoints, and that are not close to eachother. If we can find three
paths like that, they form a 3-path configuration. Figure 9 shows the general structure of
a 3-path configuration, and it uses the same labels that are also used in Algorithm 2. Note
that the figure only shows the 3-path configuration in a graph. Also note that the dashed
lines form potentially longer chordless paths between ai and bi for i = 1, 2, 3 and that they
are all not close to each other. We can see the path P1(m) = xa1P

′
1(m)mP ′′

1 (m)b1y in
blue, where P ′

1(m) is the shortest path between a1 and m, and P ′′
1 (m) is the shortest path

between b1 and m. One other note is that in the node m can be in either partition of the
bipartite graph.

y

a1 a2 a3

m

x

b1 b2 b3

P1(m)

Figure 9: Structure of a 3-path configuration.

In Algorithm 2 we will show the algorithm that can find such a 3-path configuration in
polynomial time. In the implementation we used Breadth First Search (BFS) to calculate
the shortest path between two nodes. In Figure 10 we can see a graph and two of the
3-path configurations that were found by the algorithm.
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Algorithm 2 Determine if a graph contains a 3-path configuration [9].
Input: Graph G
Output: True if the graph contains a 3-path configuration, otherwise false For each 6-tuple

a1, a2, a3, b1, b2, b3 such that:

• a1, a2, a3 ∈ R and b1, b2, b3 ∈ C

• ai is nonadjacent to bj for every i ̸= j

• there exist nonadjacent x and y such that x is adjacent to a1, a2, a3 and y is
adjacent to b1, b2, b3;

do the following:
1: For i = 1, 2, 3, compute the set X(i) of nodes that are not adjacent to any of x, y, aj , bj

for j ̸= i.
2: For i = 1, 2, 3, for every node m ∈ X(i), compute the shortest paths P ′

i (m) between
ai and m in G[X(i) ∪ ai] and P ′′

i (m) between bi and m in G[X(i) ∪ bi] (if they exist).
3: For i = 1, 2, 3, for every node m ∈ X(i) ∪ ai, define Pi(m) as follows: if ai is adjacent

to bi, then Pi(ai) = xaibiy and Pi(m) is undefined for every m ∈ X(i); else Pi(ai) is
undefined and for every m ∈ X(i) satisfying the following

• P ′
i (m) and P ′′

i (m) both exist

• P ′
i (m) is not close to P ′′

i (m) ▷ We ensure that Pi(m) is a chordless path.

let Pi(m) = xaiP
′
i (m)mP ′′

i (m)biy, else Pi(m) is undefined.
4: For every m ∈ X(i) ∪ ai such that Pi(m) is defined, compute the set Yi(m) of nodes

that are not close to Pi(m).
5: For every 1 ≤ i < j ≤ 3, and for every mi ∈ X(i)∪ai and every mj ∈ X(j)∪aj , verify

that the interior of Pj(mj) is contained in Yi(mi). If this is the case, we say that the
pair mi,mj is (i, j)-good. ▷ We ensure that Pi(mi) and Pj(mj) are not close.

6: Verify if there exists a triple m1,m2,m3 such that mi ∈ X(i)∪ai for i = 1, 2, 3, and such
that mi,mj is (i, j)-good for every 1 ≤ i < j ≤ 3. If such a triple exists, return true
and also output the 3-path configuration P1(m1), P2(m2), P3(m3). Otherwise return
false.
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R0R1

R2 R3

R4

R5

R6

R7

C0 C1

C2 C3

C4

C5

C6

C7

R0R1

R2 R3

R4

R5

R6

R7

C0 C1

C2 C3

C4

C5

C6

C7

Figure 10: Example of a graph containing at least two 3-path configurations, one
displayed in blue and one in red.

3.2 Detectable 3-wheel recognition algorithm

In this section we will discuss the Algorithm 3.2 from Zambelli [9]. This algorithm has a
polynomial running time of O(|V (G)|9).

The algorithm is Algorithm 2. Figure 11 illustrates how the algorithm tries to find the
detectable 3-wheel. We iterate over every 7-tuple of nodes in this specific configuration.
Each greyed out edge with a cross through the middle represents that the nodes at both
endpoints must nonadjacent.

During the implementation of this algorithm, I noticed two small errors in Algorithm
3.2 from Zambelli [9]. One was already corrected in a later version of the detectable 3-wheel
detection algorithm, in Lemma 5 of [5]. It was missing the v in step 4 of Algorithm 2.

One other correction I made is the fifth point on the list before step one. If we look at
Figure 9, we can see that u1 and v2 must indeed not be adjacent, or else the hole produced
by the algorithm would actually not be a hole. Similarly u2 must also not be adjacent v1.

v1 v2

x

s

v

w

u1
u2

××
×

P

P2

Figure 11: Structure of a detectable 3-wheel.

3.3 Finding the smallest unbalanced hole

The following definitions are from Zambelli [9]. Let H be an unbalanced hole. We say that
a vertex x ∈ V (G)\V (H) is major for H if NH(x) is not contained in a subpath of H of
length 2. Note that if we have a wheel (Hv, v), the v is major for Hv. Let M(H) be the
set of major vertices for H. We say that H is clean if M(H) = ∅. A set X ⊆ V (G)\V (H)
is a cleaner for H if M(H) ⊆ X (i.e. if H is clean in G\X). A signed bipartite graph
(G, σ) is clean if G is either balanced or it contains a clean smallest unbalanced hole. An
unbalanced hole is smallest if it has minimum length among all unbalanced holes.
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Algorithm 3 Determine if a graph contains a detectable 3-wheel [9].
Input: Graph G containing no 3-path configuration
Output: True if the graph contains a detectable 3-wheel, otherwise false

For each u1, u2, v, v1, v2, w, s such that:

• v and w are both adjacent to v1 and v2

• there exists a node x such that x is adjacent to v, u1, u2 but not to w

• s is adjacent to u1

• either s = v1 or no node in {u2, v, v2, x, w} is coincident with or adjacent to s.

• u1 is not adjacent to v2, and u2 is not adjacent to v1.

do the following:
1: Compute the set X of nodes that do not belong to or have a neighbour in

{u2, x, v, v2, w}.
2: Compute the shortest path P , if one exists, between v1 and s in G[X ∪ v1]. If no such

path exists, select a different 7-tuple.
3: Verify that the only neighbour of u1 in P is s, if this is the case let P1 = v1Psu1,

otherwise select a different 7-tuple.
4: Compute the set Y of all nodes that do not belong to or have a neighbour in P1 ∪

{v, w, x}.
5: Compute, if one exists, a chordless path P2 between u2 and v2 with interior contained

in Y . If P2 exists, then let H = wv1P1u1xu2P2v2w, return true and also output the
detectable 3-wheel (H, v). Otherwise return false.

I implemented Algorithms 4.4 and 4.6 from Zambelli [9]. These algorithms create
polynomially many cleaner sets for unsigned and signed graphs respectively. By Theorem
4.2 and Lemma 4.5 in Zambelli [9] it follows that at least one of these cleaner sets must
be a cleaner for the smallest unbalanced hole in the (un)signed graph.

By iterating over these cleaner sets, and applying them to the graph by removing the
vertices in the cleaner set from the graph, we can start to look for the smallest unbalanced
hole.

Figure 12 shows the structure of Algorithm 6.2 from Zambelli [9]. This algorithm
combines the search for cleaner sets and unbalanced holes for signed graphs. We will not
go into the details behind this algorithm too much. The algorithm has a polynomial running
time of O(|V (G)|11). In Figure 12 we see two chordless paths v0v1v2v3 and u0u1u2u3. The
following lemma is due to Conforti, Conruéjols, Kapoor and Vušković [4]:

Lemma 3.1. (Lemma 4.5 in [9]) Let (G, σ) be a signed graph. Let G be the smallest
unbalanced hole of (G, σ). Then there exist two edges u1u2 and v1v2 of H such that every
major node for H is adjacent to one of u1, u2, v1, v2.

Algorithm 6.2 from Zambelli [9] then provides us with the final step where we use
Lemma 3.1 to find the smallest unbalanced hole. We are looking for the structure as
we see in Figure 12. The input is a signed graph containing no 3-path configuration or
detectable 3-wheel. We iterate over all the chordless paths v0v1v2v3 and u0u1u2u3. Then
we remove all the neighbouring vertices of the endpoints of the edges u1u2 and v1v2. Next
we iterate over each node x, and we find the shortest path Q from x to v0, and we find
the shortest path Q′ from x to v2. If these exist, we verify that the Q and Q′ are not close
to each other, and that they are not close to v1. If this is the case let H = v0v1v2Q

′xQv0,
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u0 u1 u2
u3

v0
v1 v2 v3

m
× ×

x

Q Q′

Figure 12: Structure of Algorithm 6.2 [9].

and if σ(H) = 2 (mod 4), then H is an unbalanced hole. If we do not find any unbalanced
hole, G is balanced.

It is important that we are able to remove the nodes that are major for H, because
otherwise the major node could make a ’shortcut’ in the hole, which would mean that the
shortest paths algorithms would not find the hole anymore.

Also note that in Figure 12 both Q and Q′ do not go through u0u1u2u3, but it is
possible that u0u1u2u3 is part of either path.

For unsigned matrices, the algorithm is a bit simplified which brings the running time
down to O(|V (G)|9). The algorithm can be found in Zambelli [9] (Algorithm 5.2).

4 Computational study

To get an idea of how well the implementations perform, I ran tests on a dataset of randomly
generated balanced matrices. More specifically, I used network matrices [8], since these
can easily be randomly generated, and they are always balanced (network matrices are
totally unimodular). Sections 4.1 and 4.2 explain how the random network matrices were
generated.

4.1 Generating random balanced {0,±1} matrices

The algorithms were tested on network matrices. Network matrices are a prominent class
of totally unimodular matrices. Every totally unimodular matrix is also balanced, so we
can use these network matrices to run performance tests on the algorithms. The matrices
were generated using a randomly generated tree T . We construct T by starting from a
root node. For each node v we add to T , we randomly choose a node u of the already
connected nodes from a uniform distribution, and we add a directed edge between them.
The direction of the edge is randomly chosen, there is equal chance for the edge to be
either u, v or v, u. Next we add edges that are not in the tree. We choose two nodes, s
and t, and we add a directed edge s, t between them.

The network matrix rows correspond to the edges in initial tree T , and the columns
correspond to the edges in E\T . For each edge s, t ∈ E\T , we calculate the path P from s
to t in T . If P goes over an edge in T forward, the entry in the row corresponding to that
edge and column corresponding to s, t is 1. If it goes over an edge backwards, the entry is
−1. And if P does not go over an edge, the entry is 0. Figure 13 contains an example of
a network matrix and the graph it was generated from.
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0
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N =



0 1 2
0 1 0 1
1 1 0 1
2 0 1 −1
3 0 0 0
4 0 0 1
5 0 −1 1


Figure 13: An example of a network matrix N , and the directed graph it was
generated from, with T in black and the edges E\T in blue.

4.2 Generating random balanced {0, 1} matrices

To generate random balanced {0, 1} matrices we make some changes to the algorithm for
generating random balanced {0,±1} matrices in section 4.1. When constructing T , instead
of choosing the direction of each edge randomly, we now make sure that the directions of
the edges always point in the direction of a sink node, which can be reached via the directed
edges from all nodes. Before we add each edge s, t that that is not in the tree, we need to
ensure that there exists a path in T from s to t. The resulting matrix will only have {0, 1}
entries.

4.3 Test Results

The tests were performed on a Lenovo Thinkpad P51, with a Intel(R) Core(TM) i7-7700HQ
CPU @ 2.80GHz, with 16GB memory and without parallelization. The implementations
can be found on my gitlab page [7].

Each algorithm was tested with 50 randomly generated network matrices. These gen-
eration algorithms were implemented as part of the CMR [1]. For the {0,±1} polynomial
algorithm and the exponential algorithm I used {0,±1} network matrices, and for the
{0, 1} polynomial algorithm I used {0, 1} network matrices. The running time of the
{0,±1} polynomial algorithm for n ≥ 16 was already long, so for those values of n I took
the average running time of 10 matrices instead of 50. At n ≥ 19 the running time became
very long even for a single matrix. I decided to not include any results from those bigger
matrices, because the sample size would become too small. In Figure 14 we can see the
results of these tests.

We can extrapolate the results by approximating the {0,±1} and {0, 1} polynomial
algorithms by fitting polynomials of degree 11 and 9 respectively using the least squares
method. Similarly the exponential algorithm can be approximated by an exponential
function. Figure 15 contains these approximations.

The algorithms were also tested on another set of various balanced matrices stemming
from the integer programming benchmark instances from MIPLIB [6]. The results of these
tests are shown in Table 1. The {0,±1} matrices were checked by the {0,±1} polynomial
algorithm and the {0, 1} matrix by the {0, 1} algorithm.

In Figure 14 we see that for the random network matrices the exponential algorithm is
faster for smaller matrices. In Figure 15 we see that for random {0, 1} network matrices,
the {0, 1} polynomial algorithm is slower than the exponential algorithm for matrices of
sizes of at most 62. For {0,±1} network matrices, the {0,±1} polynomial algorithm is
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Figure 14: Average results of tests on random network matrices.

Table 1: Test results of several other balanced matrices.

Matrix Size Entries Polynomial time (ms) Exponential time (ms)
supportcase18.dense 30× 30 {0, 1} 48338 > 2200000

30n20b8.dense 27× 22 {0,±1} 7241 185763
neos-3046615.dense 18× 32 {0,±1} 67030 3307
neos-1445765.dense 10× 12 {0,±1} 1411 24

slower than the exponential algorithm for matrices of sizes of at most 106. Interestingly
the point at which the {0,±1} polynomial algorithm gets faster is once both algorithms
take about 1015 ms, which is over 30000 years.

In Table 1 we see that for the supportcase18.dense and 30n20b8.dense matrices, the
polynomial algorithm is faster than the exponential algorithm. These matrices are rela-
tively small. This shows that the polynomial algorithm has the potential to be faster for
smaller matrices even though the exponential algorithm is generally faster on randomly
generated network matrices.
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Figure 15: Extrapolated fit of the test results on random network matrices.

5 Conclusions

From the results we see that for the randomly generated network matrices, the exponential
algorithm is faster on reasonable time scales. We also saw that there exist matrices for
which the polynomial algorithm is faster.

An example of another type of matrix for which the polynomial algorithm is faster is
the matrix where the bipartite representation is a large hole. The exponential algorithm
has to go over all the combinations of rows and columns while the polynomial algorithm
will quickly find that the graph contains no 3-path configurations and detectable 3-wheels.
Next it would have a relatively small amount of paths to iterate over in the final step of
the algorithm, because a hole does not contain a lot of edges.

It is important to note that all the matrices used in testing were balanced matrices,
so all the algorithms would never terminate early since there were no unbalanced holes to
find. When one would use the algorithm to check for any matrix if it is balanced or not,
the running time could be much lower if the matrix turns out to be unbalanced.

The exponential algorithm does use some pre-processing optimizations that give it an
advantage over the polynomial algorithms, which does not make use of any pre-processing.
The exponential algorithm ignores all the rows and columns with less than two nonzero
entries before iterating over all submatrices, which is very effective for the random network
matrices. These matrices often have multiple rows and columns with less than two nonzero
entries.

A similar pre-processing technique for the polynomial algorithms would be to repeatedly
remove the leaves (vertices of degree 1) of the bipartite representation of the matrix until
there are no leaves left. This is an effective pre-processing step since removing leaves
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are never part of a hole, and it makes each step of the algorithm faster since there are
less vertices to iterate over. This would not change time complexity for the polynomial
algorithms.

I ran some small tests to compare the running times and the size of the cleaner set of
the {0,±1} polynomial algorithm on three different matrices, in their original form and
with their leaves removed. Table 2 shows how the running time and size of the cleaner set
decreases for three different random network matrices by removing the leaves.

Table 2: Comparison of the {0,±1} polynomial algorithm with and without the
leave removal step.

Matrix Size Running time (ms) Cleaner set size
network-10-10-1.dense 10× 10 4134 37401
network-10-10-1.dense (without leaves) 8× 8 3375 33670
network-15-15-1.dense 15× 15 35736 183315
network-15-15-1.dense (without leaves) 11× 13 20608 162165
network-20-20-1.dense 20× 20 1194965 5201925
network-20-20-1.dense (without leaves) 14× 19 763815 4516515

The polynomial algorithm running time could also be improved by implementing it in a
faster programming language than Java, such as C. And there are some changes that could
be made to the implementation that could speed it up. Currently we use the JGraphT
package to use their graph datastructures. In the current implementation the vertices are
stored as a String. This makes it easier to debug the code, but vertex comparisons take
longer. It would be faster to change the vertices to integers instead of String objects.

There is potential for a small optimization in the 3-path configuration algorithm 2.
In step 3 we check if ai is adjacent to bi and if this is the case we can ignore what we
calculated in step 2, because all the Pi(m) for m ̸= ai would be undefined. So it would
make more sense to check this before doing step to, so we can potentially skip part of the
algorithm in some cases.

Some testing can also be done in the future on transposing the matrix in when using
the exponential algorithm. Perhaps there is some way to estimate if the algorithm would
run faster if the matrix was transposed.

Future research can be done by exploring other pre-processing techniques. One idea is
to compress long sections of connected vertices of degree 2. Making these chains of vertices
smaller could potentially speed up all the BFS algorithms that are used for finding the
shortest paths in the polynomial algorithms.
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