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Abstract—Flexible resistive sensors have applications in mod-
ern devices that implement tactile sensors for pressure and force
sensing. The e-Cone is a low-cost prototype device developed
by the University of Twente to measure grip strength. The last
version of this sensor has a high resolution of 64x128 sensor
pixels. However, the sensor exhibits significant cross-talk, which
adversely affects the readout of sensing pixels when multiple
pixels are simultaneously pressed. To address this issue, we
present an evaluation method that utilises spring mechanisms
to study the behaviour of a single sensing pixel. Additionally, we
propose a modification to the acquisition PCB circuit aimed at
reducing the cross-talk. Finally, we introduce a machine learning
approach to compensate for the cross-talk effect, thereby enabling
reliable pressure pattern measurement.

Index Terms—Velostat, pressure sensor array, cross-talk, sens-
ing pixel, machine learning.

I. INTRODUCTION

Piezoresistive sensor arrays (PRS) have numerous applica-
tions in consumer electronics, telepresence and soft robotics,
automation, and healthcare monitoring devices to measure
force or pressure [1]. These sensors work with the piezoresis-
tivity principle; the electrical resistance of the semiconductor
or polymer changes due the mechanical strain. By employing
flexible materials, piezoresistive sensors can achieve flexibility,
enabling a wide range of different applications, including
wearable electronics, which surpasses some of the limitations
of rigid materials [2]. One of the cheapest alternatives for
building a flexible PRS is to use Velostat material. The
Velostat is a polymer material filled with carbon particles to
make it able to be electrically conductive. Figure 1 illustrates
the principle of the sensor: as pressure is applied to the
material, the proximity of carbon particles increases, resulting
in improved conductivity and a reduction in resistance for the
current flow [3].

One of the main challenges in large PRS arrays is the
cross-talk effect. This phenomenon occurs when the sensing
elements (or sensing pixels) are in close proximity to each
other. The signal from one sensor pixel influences the other
adjacent elements leading to inaccurate readings. The cross-
talk effect is due to alternative current paths created that are
read out by the acquisition system [4]. In order to mitigate
the cross-talk effect, complex circuits can be designed, or
as demonstrated in this work, computational compensation
approaches can be implemented.

Fig. 1: Sensor construction principle

The objective of this research is to develop a novel approach
to develop a compensation method for mitigating cross-talk in
a large resolution PRS array. The main research question is:
Is there a computational compensation method suitable for
compensating cross-talk in this type of sensor? In addition to
the main question, the research aims to answer the following
sub-questions:

• What is an appropriate experimental setup for collecting
data to describe the behaviour of the sensor array, includ-
ing the cross-talk effect?

• What computational methods can be used to compensate
for the cross-talk effect in the sensor array?

• What is the nature of cross-talk and its behaviour from a
quantitative perspective?

This work begins with Section II, which explores related
studies on addressing the cross-talk effect. Section III provides
an overview of the background related to the development of
the e-Cone sensor. In Section IV, the system used to evaluate
the sensor and generate data for the computational approach
is described. Section V focuses on studying the behaviour
of a single sensing pixel’s response in cross-talk scenarios.
Section VI presents the computational compensation approach
employed. Lastly, Section VII gives a detailed discussion,
while Section VIII presents the conclusion.

II. RELATED WORK

The cross-talk issue can be addressed and examined from
three different perspectives. Firstly, the mechanical perspective
requires detailed considerations of the sensor’s design and
construction to avoid undesired interactions between sensing
points. Secondly, the electrical perspective acknowledges the



circuit properties that possibly influence the creation of alter-
native current paths that affect the sensing pixel measurement.
Lastly, the computational perspective explores the utilisation
of algorithms and software tools for compensating the affected
measurements.

1) Mechanical design to reduce cross-talk: These ap-
proaches involve structural changes to the transduction mecha-
nism. When pressure is applied to the sensor, the resistance of
each element changes in proportion to the applied pressure.
However, when two sensing pixels are placed so close to
each other, the adjacent element is also pressed. Mechanical
methods focus on increasing the distance between sensing
pixels and isolating them. Harris [5] shows how an accurate
design of the sensor’s dimensions can play a major role in
how the measurement can be affected. Another example is
introducing a spacer layer between the electrodes and the
piezoresistive element (Velostat) to reduce cross-talk [6]. The
main drawback of this solution is that it reduces the sensors’
sensitivity.

2) Electrical cross-talk reduction techniques: The electrical
perspective approaches involve increasing the complexity of
acquisition circuits. One option is to add diodes to avoid
the flow of current where alternative current paths can be
created [2], although this can be effective, this involves a
complex manufacturing process in high-resolution sensors.
Another option is arrangements with the operational amplifiers
in such a way that the unwanted current paths are short circuits
forcing them to a zero potential. The Voltage Feedback Method
(VFD) is one of those techniques, which applies a feedback
voltage to the sensing elements. By adjusting the feedback
voltage, the cross-talk between adjacent sensing elements can
be reduced. Although this method can be effective, it involves
complexity in the circuit, and the feedback current needs to
be high depending on the ratio of the resistances [7].

An alternative technique is called the Zero Potential Method
(ZPM), where all row or column nodes are placed at virtually
equal potential zero using the virtual ground of high-gain
operational amplifiers with a negative feedback configuration.
ZPM and VFM both look momentarily to virtual short-circuit
around non-scanned sensels. Usually ZPMs circuits have better
results in large sensor array dimensions [8]. These methods
have the downside of raising the cost of sensors and increasing
the number of components used on them, which may be a
disadvantage in situations where there are space constraints
and expanding the size of the board is not feasible.

3) Computational cross-talk compensation methods: In re-
cent years, there has been a growing interest in applying
neural networks to solve problems that are difficult to model
mathematically, such as the case of the cross-talk in large PRS
arrays. Neural networks can effectively learn complex rela-
tionships between sensor measurements and generate certain
compensation for the cross-talk issue. Nevertheless, most of
the work is related to pattern recognition rather than precise
pressure or force value estimation, which are the cases of [4]
and [9]. They propose using convolutional neural networks to
correct cross-talk effect without using sophisticated hardware.

In the case of Müller’s work [4], they use an analytical
forward model to find the relation between sensing pixels’
resistance and measured ADC voltages considering alternative
current paths in order to generate synthetic data for training
the network. Around 100,000 random 16x16 patterns are
drawn using the analytical forward model. For correcting the
measurement error captured in the matrix of ADC-measured
voltages, they use the approximation capabilities of neural
networks for mapping from ADC voltages to the pressure
matrix.

Unlike Müller’s work, our analytical forward model is dif-
ferent due to the distinct nature of our acquisition circuit. Our
compensation method is tailored to a high-resolution sensor
(128x64 sensing pixels) instead of a 16x16 one. Additionally,
our machine learning approach is trained using experimental
data rather than synthetic data to avoid finding a complex
analytical forward model. Furthermore, we adopt a sequential
compensation technique, accurately estimating the load value
for each individual sensing pixel. In Müller’s work, the pres-
sure accuracy is lower and just sufficient for classification and
object recognition, while in this work, the objective is to have
accurate measurements for medical diagnosis.

III. BACKGROUND

Grip strength is an important indicator of physical health
and a variable to evaluate disability, morbidity, and mortality.
[10]. To measure grip force, different devices have been devel-
oped over time; hand dynamometers (hydraulic, mechanical, or
digital), these are handheld devices providing a single value
that represents overall grip strength. Pinch gauges measure
the force between the thumb and fingers and they are used
to assess hand functioning. And sphygmomanometers, which
are blood pressure cuffs, are used to measure grip strength
as well [11]. The previous devices offer a limited range of
measurements for hand muscle behaviour, often providing only
a single value that generalises a patient’s grip strength. For that
reason, over the previous years, the instrument called e-Cone
has been developed at the University of Twente. This sensor
consists of a PRS array wrapped around a cone (or cylinder
in the most recent version as seen in Figure 2) that allows
visualising the grip strength pattern. Figure 3 illustrates a hand
grip pattern taken by the sensor.

A. Sensor Hardware

The sensor consists of a matrix of 8192 elements in a
configuration of 128 columns and 64 rows. It uses a Velostat
sheet between two electrodes which has a surface resistance
of 31,000 Ω and a volume resistance of 500 Ω · cm. The
electrodes are flexible printed circuit boards (PCBs) with
multiplexers soldered to them. The sensor data is read out by
an acquisition PCB board that communicates to a Raspberry
Pi Zero W (Figure 4). The Raspberry Pi processes the data and
does wireless data transmission to client devices. The e-Cone
structure is 3D printed, consisting of a cylinder that makes it
easier to mount the PRS array compared to mounting the array
to a cone surface.



Fig. 2: e-Cone most recent version

Fig. 3: Sensor readout; hand pattern visulatization

B. Pressure Sensing Principle

The acquisition board reads the voltage of each sensing pixel
in a sequential manner. Figure 5 is a simplification of the e-
Cone circuit using 2x2 sensing pixels version to show the con-
cept. It illustrates the sensing principle and the basic elements
to do it; the piezoresistive material (Velostat), the amplifier,
the power supply for Vtest, the sensing pixels represented by
resistances, and the multiplexers. The transparent paths are
below the Velostat material while the strong-coloured paths
are above (purple-colored area).

Fig. 4: Pressure sensor, acquisition board, and Raspberry Pi
Zero W

Fig. 5: Scanning circuit overview (simplified)

The sensor has an array of columns that are connected to
a 16:2 channel analogue multiplexer. The multiplexer outputs
to Vtest or ground depending on the selected control signal.
Only one column can be activated to Vtest while the others
go to ground (column deactivated). In the rows array, a 32:1
channel analogue multiplexer is used, which closes the circuit
to send a current through Vtest to the Operational Amplifier
(op-amp). To read out a certain sensing pixel, a specific column
is activated, followed by a row. Then, the op-amp amplifies
the signal with the relation of Rk and the Rtaxel as is seen in
Figure 6. The amplified voltage is read by the ADC integrated
circuit located in the acquisition board. In the example of
Figure 5, the red path is the closed circuit due to some load
on the sensing pixel therefore, Vout can be described by the
next equation which is given by the op-amp configuration:

Vout = −Vtest
Rk

Rs +
Rk

A + Rs

A

≈ −Vtest
Rk

Rs
(1)

Where Rs = Rtaxel2,1 (the resistance of the measured
sensing pixel), A is the amplification factor of the amplifier.
Typically A > 100 000, allowing to approximate the function
to a relation between Rk, Rs, and Vtest.

C. Cross-talk Model

Cross-talk, in the context of PRS array, refers to the ap-
pearance of extra unwanted current paths around the target
sensing pixel (Rtaxel or Rs). The current flowing in these
unwanted paths should be included in the Vout calculation
[12], otherwise the measured voltage of the sensing pixel is
not accurate anymore. Previous work [13] describes the cross-
talk effect based on the influence of the neighbouring activated
sensor cells. The alternative paths’ unwanted effect is modelled
by a resistor RL from op-amp negative (−) input to ground
(as seen in Figure 6).
RL summarises all the equivalent resistance of all alterna-

tive created paths. The mathematical model considering this
resistance into (1) is:



Fig. 6: Model considering the cross-talk effect in [13]

Vout = −Vtest
Rk

Rs +
Rk

A + Rs

A + RsRk

ARL

≈ −Vtest
Rk

Rs

(
Rk

ARL
+ 1
)

(2)
If there are not too many alternative paths then the RL factor

can be neglectable since its value would be large enough to
neglect Rk

ARL
. Nevertheless, this RL can affect if too many

alternative paths are there or if the RL has a noticeable small
value because it is pressed too hard. The visual effects of
cross-talk can be seen in Figure 7 where the reference (yellow
squared element in 7a) readout drops when more elements are
pressed in the same row direction (7b).

(a) Single element pressing the sensor

(b) Multiple elements pressing the sensor

Fig. 7: Cross-talk effect visual imaging

D. Previous Sensor Evaluation and Reliability

The assessment of the e-Cone sensor in the past was
constrained by its qualitative validation, rather than being
quantitatively evaluated in detail. A comprehensive investi-
gation into the behaviour of an individual sensing pixel was
lacking in the evaluation because the average of measured

ADC voltages of a group of pixels was taken. In order to
propose a computational method, it is crucial to comprehend
the behaviour of individual sensing pixels and the interplay
between them, as one sensing pixel may influence others, and
vice versa. To facilitate sensor evaluation and data collection,
we designed an experimental flexible setup that allows for the
study of individual sensing pixels under cross-talk conditions
when multiple sensing pixels are pressed.

IV. EVALUATION METHOD DEVELOPMENT

The purpose of the sensor evaluation is to get a better
understanding of the performance of the sensor array and to
give a better description of the cross-talk effect in our sensor.
The evaluation checks on the next parameters:

• Reliability and repeatability: sensor’s ability to produce
consistent output readings when it is subjected to the
same pressure of force repeatedly.

• Sensitivity: how the output voltage changes in response
to a change in pressure in function of Vtest parameter.

• Linearity: check if there is a proportional change in output
with changes in input, or non-proportional change if the
sensor works in a non-linear region.

• Cross-talk behaviour: how a single sensing pixel mea-
surement changes when more sensing pixels are pressed.

A. Experimental Setup
The experimental setup aims to test the previously men-

tioned features of the PRS array. To evaluate the sensor is
critical to know the applied load in the sensing pixel and
the area that is covering that load. The sensor is subjected
to different levels of pressure set by a pressure mechanism.
By obtaining information about the pressure value and the
corresponding sensing pixel under evaluation ADC voltage
measurement we can qualitatively asses the sensor response.
The experimental setup consists of a table where the load can
be placed in specific sensor regions (Figure 8). The table has
the flexibility to place one or more loads in the same column
or same row. Multiple pressure mechanisms can be utilised to
generate diverse pressure patterns within the sensor.

Fig. 8: Experimental setup for data collection (Lateral view)

The table columns and rows are labelled, as seen in Figure
9. The labels help to have better control of the experiments
performed and easily register them in .txt files (i.e. pinpoint
pressure mechanisms placed on B7 and C7).



Fig. 9: Experimental setup for data collection (Top view)

B. Pressure Mechanism Design

The pressure mechanism applies a load to the Velostat
material, simulating the pressure range that the hand can
apply when gripping an object. The mechanism consists of
several components, including a tip that can be interchanged
to adjust the area of pressure, a spring with a specific force
per millimetre of compression, a tube that guides the spring
in a linear fashion, and a pushing tube that compresses the
spring (Figure 10).

Fig. 10: Pressure mechanism system

1) Spring Selection: The spring is selected based on com-
mercial availability and defining a range according to hand
pressure variability. According to [14], [10] the maximum
hand pressure a human can exert varies depending on physical
condition, age, and gender. But, the average maximum hand
pressure that a healthy adult can exert is around 0.4 MPa
(megapascals) to 0.7 MPa. That means that the pressure
mechanism should be able to apply that range of pressure to
simulate a hand grip strength. To properly select the spring
for the sensor evaluation, the pressure formula which relates
force and area (3) is used to determine the appropriate spring
constant.

P = F/A (3)

The load weight applied by the pressure mechanism is
experimentally validated using a high-resolution scale to en-
sure that the applied load is proportional to the compression
distance of the spring. Figure 11 shows this linear relation.

Contact Area (mm2) Max. Force (N ) Pressure (MPa)
1 1.53 1.53
2 1.53 0.765
4 1.53 0.3825
8 1.53 0.1913

TABLE I: Max. pressure for a 0.06 N/mm spring resolution

Contact Area (mm2) Max. Force (N ) Pressure (MPa)
1 2.57 2.57
2 2.57 1.285
4 2.57 0.6425
8 2.57 0.3213

TABLE II: Max. pressure for a 0.08 N/mm spring resolution

Contact Area (mm2) Max. Force (N ) Pressure (MPa)
1 3.64 3.64
2 3.64 1.82
4 3.64 0.91
8 3.64 0.465

TABLE III: Max. pressure for a 0.09 N/mm spring resolution

It is crucial to take into account an offset that includes the
weight of the tip, push tube, and spring components, in order to
accurately determine the total load applied to the sensing pixel.
The total offset weight in the mechanism is 1.7 grams. Tables
I, II, and III show pressure ranges depending on the selected
spring and the 3D printed pinpoint area for the mechanism tip.
The mechanism design has the flexibility to be modified to
distribute pressure over a larger area; however, this may result
in a reduced probability of uniform pressure distribution due
to material roughness caused by the manufacturing process.
In contrast to large pinpoint areas, small pinpoint areas are
more difficult to manufacture and can cause load shifts when
applying force in the sensor.

Fig. 11: Relation of a spring compression (0.08N/mm) and
weight scale measurement

2) Evaluation System Manufacturing: The system setup is
constructed using a combination of 3D printing and laser-
cutting manufacturing processes. The system was designed



in CAD software, and the pressure mechanism, along with
certain top-side table variations, were made using 3D printing
technology. The 3D printing process enables achieving a
precise and customised design which is crucial for simulating
the range of pressure that the sensor array may encounter.
Additionally, the laser-cutting process was used to cut the table
that holds the pressure mechanism. This process allows for
making an accurate and sturdy platform that can securely hold
the pressure mechanisms during testing and data collection.
Figure 12 shows one version of the experimental table setup.

Fig. 12: Experimental test setup

C. Data Collection

To collect data, the pressure mechanisms are used to apply
loads to the sensor array while it is in operation; Figures
13a and 13b show the sensor readouts while performing the
experiments. The sensor outputs are recorded in a .txt file
document which later can be interpreted and processed. To
ensure the accuracy and reliability of the data, multiple trials
for each pressure level are performed.

(a) Single element pressing the sensor

(b) Multiple mechanisms pressing the sensor

Fig. 13: Readout example for data collection

In order to generate different pressure patterns, ’steps’
structures were 3D printed as seen in Figure 14 and 15. The
steps in the structure are well known so the ’step levels’ are

linked to the spring linear compression. Additionally, the table
setup is modified to cover half of the sensor, allowing for the
placement of various loads such as circular weights, finger
pressure, or the palm hand area of a hand. These loads are used
to introduce disturbances (cross-talk) to the reference labelled
pinpoint which is crucial for generating training data for the
compensation method.

Fig. 14: Step structures with different level patterns

Fig. 15: Load patterns with multiple pressure mechanisms

Finally, Figure 16 illustrates the process of pressing the
mechanism. The mechanism is manually pressed, and two
scales are positioned behind it to avoid any slope between
points A and B.

D. Evaluation and Compensation Software

C++ language is used for the sensor’s ADC readout utilising
the Raspberry Pi, as it provides a fast and efficient way to
gather data from the sensor. However, this language has its
limitations when it came to data visualisation and ease of
use for non-programmers. As a result, for the data processing
and compensation method, we switched to a Python-based
software solution. Python has a number of advantages for sci-
entific data analysis, including libraries for data visualisation,
processing, and machine learning (ML). For this application,
a Python-based software solution is developed, which enables



Fig. 16: Mechanism compression process for collecting data

the automatic filtering of behaviour data of any selected
sensing pixel, array row, or column. The Python language is
also utilised for developing the computational compensation
method and training the ML model.

V. SENSOR EVALUATION & CROSS-TALK STUDY

In the sensor evaluation, first reliability and repeatability
are checked. Then, the method addresses and extends the
previous mathematical model in order to understand better its
performance characteristics. Finally, different experiments are
performed to validate the mathematical model in a quantitative
way and to observe how the voltage measurement of a sensing
pixel drops when there is cross-talk.

A. Reliability and Repeatability

While the sensor provides valuable data, its reliability may
be limited. Inconsistencies are observed, as seen in Figure 17
at times during the readings.

Fig. 17: Errors in readout due to connectivity issues

During the troubleshooting process, it was discovered that
there were connectivity issues in the part of the flexible
PCBs subsystem. Rigid Integrated Circuits (ICs) were possibly
breaking their solder points to the PCB due to the stress put on
them by bending the PCBs. The major issue was observed in
the interconnection between the two flexible PCBs (columns
and rows PCBs). The connector was not able to maintain

a stable connection, likely due to a lack of proper support
or constant bending in this area. To address the bending
condition, a spacer was designed and placed between the two
flexible PCBs to prevent them from bending excessively and to
provide additional support and stability for the components (as
seen in Figure 18). New flexible PCBs were soldered, requiring
careful attention to detail and precision.

(a) Bending in the region where components are
placed

(b) No bending in the components region.

Fig. 18: Spacer solution

To assess the measurement consistency, a total of 100
measurements were conducted over a period of time, both
before and after implementing the connector fixing solution.
The results of these measurements are shown in Figure 19
and Figure 20, respectively. The percentage of outliers in the
measurements was then calculated as means of evaluating their
consistency before and after the connectivity fixing. This is
shown in Table IV, where outliers drastically drop after the
fixing denoting the importance of ensuring good connectivity
within the sensor. By conducting this straightforward evalua-
tion, it can be certain of the quality of the measurements prior
to utilising them as valid data for the compensation method
and the effectiveness of the fixing solution. This assessment
provides insight into whether a redesign iteration is necessary
or not.



Fig. 19: Repeatability test before connectivity fixing

Fig. 20: Repeatability test after connectivity fixing

Sensor Outliers (%)
Flexible PCBs with non-fixed connections 22%

Flexible PCBs with fixed connections 5%

TABLE IV: Percentage of outliers in data

B. Theoretical Analysis

The previous mathematical model to describe and under-
stand the cross-talk effect in the PRS array has some limita-
tions in order to be demonstrated. Firstly, the model for the
cross-talk was checked only in a qualitative way and not in
a quantitative way, which can limit the understanding of the
cross-talk effect. Secondly, the cause of cross-talk in the sensor
is simplified as RL (equation 1) and not studied in detail as
a function of a specific number of possible alternative current
paths that could exist in the sensor when multiple sensing
pixels are pressed in the sensor.

Figure 21 illustrates the possible current alternative paths
when a readout of a sensing pixel takes place (green-coloured
paths). These alternative paths happen due to sensing pixels
pressed in the same row while the sensor is doing the readout
of just one (Ri) and a path when sensor pixels are pressed in
the row and column in such a way that it closes the circuit
(Rm). To validate the equation 2, Rm is currently ignored.
This is because the previous work observed a significant drop
when multiple loads were placed in the same row, rather
than when multiple sensing pixels were activated in the same
column.

Fig. 21: Alternative current paths in a sensing pixel reading

Looking at the green-coloured path, then RL is extended
as multiple resistances in parallel if more resistances Rtaxel

are pressed over the same current line (red-coloured path),
therefore extending the previous equation 1:

RL =

(
i∑

n=i

1

Ri

)−1

Vout ≈ −Vtest
Rk

(Rtaxel +Rmux)
(

Rk

A (
∑i

n=i
1
Ri

) + 1
) (4)

Where Ri is the specific parasitic resistance due to pressing
sensing pixel n, i is the number of alternative current paths
which depend on the number of sensing pixels pressed on the
same row. Its value can go from 1 to 128 (the maximum of
sensing pixels in the row). A is the op-amp amplification fac-
tor. Considering Rmux small by selecting a good multiplexer,
the next equation simplification can be made:

Vout ≈ −Vtest
Rk

Rtaxel

(
Rk

A (
∑i

n=i
1
Ri

) + 1
) (5)

It is important to notice that the Ri value depends on
the pressure intensity on that region. The expansion of Ri

as the sum of different created paths allows understanding
better the variables that play a role in the previous equivalent
resistance RL (1) and therefore define these as feature inputs
in a machine learning model. It is noticed by the model that
Ri reduces Vout, and a large value of i can suppress any
observation of Vout when the sensing pixel Rtaxel is pressed.
To validate the equation with experimental data, it is possible
to simplify the model further. Assuming that the pressure or
load is applied uniformly across the sensor (or multiple sensing
pixels in the same row) by the mechanisms, the Ri in eq. 5 can
be considered equal in each element of the sum. Therefore:



i∑
n=i

1

Ri
=

N

Ri

Vout ≈ −Vtest
Rk

Rtaxel

(
NRk

ARi
+ 1
)

Vout ≈ −Vtest
ARkRi

(ARi +NRk)Rtaxel
(6)

Equation 6 facilitates the assessment of the anticipated
sensor response in accordance with the theoretical model in
the conducted experiments. Therefore, evaluate if the sensor
is giving the correct response or not, based on the model’s
predictions. Finally, an interactive model is done to manipulate
the values and observe how the sensor response changes in
relation to the model parameters. Figure 22 illustrates the
interface of the interactive model. Up to 4 different model
behaviours can be set and compared where the graph y-axis
shows the Vout sensing pixel response in function of how many
sensing pixels are pressed in the same row (N in x-axis).

Fig. 22: Interactive model interface

C. Model Validation

In order to validate the theoretical model, experimental data
collection is done in a systematic way. The experimental data
is used to compare predictions of the mathematical model with
the actual behaviour of the system. This is done by plotting
the model predictions alongside the experimental data and
visually comparing them. Then, the results are analysed. If the
model predictions match the experimental data closely, then
the model can be considered valid. If there are discrepancies,
then the model may need to be modified or refined. Collecting
experimental data in this system is challenging due to various
factors that can affect the accuracy and reliability of the data.
The most common issue is illustrated in Figure 23, which
shows the possible misalignments that can occur between the
pressure mechanism and the studied sensing pixel.

The misalignment occurs due to mechanical drift while
applying the pressure, human error during the setup of the
experiments, and imprecision in applying the mechanisms in
the sensor. When the mechanism and the sensing pixel are
not aligned correctly, the Vout recorded varies and may not
accurately represent the behaviour of the system, leading to

Fig. 23: Possible scenarios for pinpoint pressing sensor

errors or biases in the analysis. To address the misalignment
issue, performing multiple replicates of an experiment is done.
By conducting the experiment multiple times, any error will
be spread across the replicates, reducing their overall impact
on the results. The mean value of the replicates is calculated
to cancel any random error and to show the underlying signal
behaviour to become more apparent.

The relation between the applied pressure and the Vout

measurement is first validated by pressing a single mechanism
above the sensor. The evaluation in Figure 24 shows the
straight-line relationship between the Vout (expressed by a 16-
bit number) and the weight load in grams distributed over
an area of 10 mm2. Different pinpoint areas were tested,
nevertheless, tip areas lower than 8-10 mm2 had small shifts
while the load was applied, changing the ADC readout. The
tip area covers 2 adjacent sensing pixels, but this provides
consistent data. For the evaluation, Vtest (eq. 6) is set to 0.4V.
Higher Vtest raises the Vout to the maximum ADC value when
the minimum possible pressure is applied to the sensor pixel
while small Vtest values (in the range of 10 mV) make ghost
activations due noise susceptibility. It is quite important to
properly calibrate Vtest otherwise data quality for training the
ML approach is low or cross-talk information might be limited.

Fig. 24: Vout response with N = 2. Vtest = 400mV

In addition to accurate calibration of Vtest, it is crucial to
correctly size the resistance Rk. Otherwise, an incorrect sizing
of Rk can cause the Vout readout to reach the maximum 16-bit
value even when small loads are applied, leading to inadequate



Fig. 25: Vout response with Rk incorrectly sized or high Vtest

sensing of high pressures. Figure 25 shows how ADC gets to
the maximum value when the load in the sensing pixel is more
than 100 grams. In our acquisition circuit Rk value is set at 2
kΩ since the range of human pressure when a sensing pixel is
pressed goes from 3 kΩ to 500 Ω. The Rk sizing is validated
through an LTSpice simulation (Figure 26) which considers
an estimated value for Ri (cross-talk equivalent resistance) as
well.

Fig. 26: LTSpice simulation: Simplified Model

Since the alternative current paths only significantly happen
when more sensing pixels are activated in the row path. The
evaluation consists of more and more sensing pixels pressed
over a row with the same pressure. In order to validate equation
6, ten mechanisms were placed in the same row, one next to
another (Figure 27a). The same pressure is applied in mech-
anisms, and data is subsequently recorded. The experiment is
repeated twice taking ten measurements per experiment. Then,
one mechanism is removed and the process is repeated until
just one pressure mechanism is left (Figure 27b). The process
is again repeated over 7 different areas in the sensor to reduce
the misalignment error. This gives a total of 140 performed
experiments and 1400 data points to determine behavioural
curves.

Once the 1400 data points are collected, these are plotted
according to the number of sensing pixels (N ) that are covered
in PRS array. Figure 28 shows how ADC 16-bit value slightly
drops (Vout) when N is increased. This sensor behaviour in
function of N is consistent with the expected behaviour pre-
dicted by the interactive model. Lastly, the interactive model
parameter scenario is set as shown in Table V with logical
values to check if it matches the experimentally obtained data

Fig. 27: Experiment (a) initial setup and (b) final setup for
one area in the sensor

(Figure 29). The observed data aligns with the predicted by
the model, indicating that the model accurately captures the
behaviour of the sensor under cross-talk conditions.

Fig. 28: Vout drops due N increase. Constant load of 132 gr.

Fig. 29: Interactive model matching sensor’s data

A 100,000
Rk 2,000
Ri 1,000

Rtaxel 1,000
Vtest 0.4

TABLE V: Interactive model parameters



1) Circuit protection Rv effect at test voltage Vtest output:
At the output of Vtest, a resistor Rv was previously incor-
porated to provide circuit protection. The equivalent resulting
circuit is shown in Figure 30. This makes the cross-talk effect
caused by Rm (shown in Figure 21) more considerable. The
relation between Rm and Rv causes a voltage divider at
the input of the sensing pixel resistance Rs, resulting in a
considerable drop in Vin if Rv is much higher than Rm:

Fig. 30: Model considering Rm and Rv

Vin = Vtest
Rm

(Rm +Rv)
(7)

Vin = Vtest
1

(1 + 1000)
= Vtest(0.0009)

In the performed experiments, Rv significantly amplifies
the cross-talk effect, leading to a sharper decline Vout as
N increases in the experimental evaluation. The impact of
Rv can be observed in Figure 31, where Vout drops as N
increases. When Rv is implemented in the circuit, the role of
Rm becomes more significant. The experiments also revealed
that the influence of Rm is greater than initially anticipated
if Rv is implemented. Additionally, when the input voltage
Vin is low, it becomes more susceptible to steeper declines
in Vout when more sensing pixels are pressed in the same
row. However, in the new design iteration, the steeper decline
caused by cross-talk is mitigated by removing Rv .

Fig. 31: Alternative type of cross-talk with Rtest incorrect
sizing

VI. CROSS-TALK COMPUTATIONAL COMPENSATION
METHOD

We implement a machine learning method using artificial
neural networks (ANN) to compensate for the cross-talk effect.
A well-trained Machine Learning model can effectively learn
the complex relationships between sensor measurements and
generate compensation values. One advantage of using neural
networks is that they can be trained on large datasets, which
enables them to capture the intricate relationships between
sensor measurements and the expected pressure value even in
the presence of cross-talk. The method approach involves col-
lecting data from the sensor array under various conditions. A
known labelled reference pinpoint pressure is utilised, and this
reference is deliberately disturbed by cross-talk environments,
such as applying excessive pressure to a different section in
the same row as the reference point. Then, the data is used
to train a supervised machine learning model that can predict
the estimated load (or pressure) on the sensing pixel given the
Vout measurements (Figure 32).

Fig. 32: Overview cross-talk compensation

The data have to be high-quality data that accurately
describes the sensor’s behaviour. This requires control over
the experimental conditions and the use of appropriate data
acquisition and processing techniques to minimise outliers,
noise, and other possible sources of error. Figure 33 shows
the process used to train the compensation method.

In order to implement the compensation method, it is
essential to consider the next conditions:

• The 16-bit ADC values (0 to 65,535) are available for all
the rows and columns.

• Cross-talk information has to be present in ADC Vout

sensor’s array measurements.
• Outliers should be filtered before inputting the data into

the model.
• The sensor must be capable of producing high-

dimensional data that can be used to train a machine
learning mode, and a sufficient amount of data should
be collected under a wider range of conditions.

The compensation method calculates the value-sensing pixel
pressure value considering all the values in the same row
which are linked to the parasitic cross-talk resistances. The
method is applied sequentially to every element in the sensor
array. Two important aspects to consider are the data filtering
and the data management to input into to ML model:



Fig. 33: Flow chart for training ML models

1) Data filtering: As seen in Table IV some outliers are
present in the measurements, usually these values either go
to the maximum or to the minimum of the 16-bit number of
the ADC. This makes it relatively simple to filter the data by
placing a mask over it. The mask filters the values that are
close to low and high extremes. After removing outliers, the
data set is built to train ML models.

2) Data management: The large dataset used to train the
model is stored in a .csv file. The dataset is constructed
carefully, separating data that is the input and its corresponding
labels. As seen in Table VI, the first column in the data set
contains the sensing pixel ADC value, the consequent columns
until the second-to-last column are the values in the same
row, and the last one contains the ground truth load. For this
application, the order of row values does not matter for how
you input information (second column in Table VI), therefore
a random shuffling can be done to augment the dataset for
training and testing.

Taxel value Taxel Value Pos [0-128] Load (grams)
12520 22520... 48201 18
25840 23840... 14436 67
10840 19561... 65820 18
39840 5906... 3589 165

254 252... 48201 0

TABLE VI

A. Neural Network Architecture

The supervised machine learning model used is a basic
Multi-Layer Perceptron (MLP) Feed-forward ANN. MLPs
are effective at predicting values in a regression problem
due to their ability to capture complex linear and nonlinear
relationships between input variables and output variables.
With the flexibility to design MLPs, they can be adaptable
if the dataset for training is increased and can scale well on
large datasets. Figure 34 illustrates the architecture used for
the NN net.

Fig. 34: Neural network net architecture

After defining the NN architecture, an algorithm is devel-
oped to perform the compensation. The algorithm reads the
sensor’s measurements and structures the data in such a way
that can be input to the NN model. Algorithm 1 illustrates
the compensation method programmed in Python. It uses
the ”scikit-learn” library and its class ”MLPRegressor” that
implements the multi-layer perceptron model that is commonly
used for regression tasks. Sklearn ”MLPRegresor” can provide
a high degree of accuracy, handle non-linear datasets, and be
easily set in Python.



Input: 64x128 Matrix ADC values readout
Output: 64x128 Matrix load estimated values

Import MLP-trained model;
Read PRS measurement 64x128 dataset;
for every row do

Make ML input matrix structure;
if ADCV alue ≤ 300 then

Count as pressed pixel;
for every pixel do

Input previous matrix into the model;
Store the pressure output of the model;

end
end
else

for every pixel do
Fill zero load in that pixel;

end
end
Reconstruct row with new values;

end
Reconstruct 64x128 matrix with new rows;
Interpolate image for displaying;
Print image result;

Algorithm 1: Pixel-by-pixel compensation pseudocode

B. Compensation Results

After the compensation has been executed, the image is
reconstructed with the estimated load values per sensing pixel.
Figure 35 illustrates how readout pixel values change after the
compensation process. The first matrix (Figure 35a) shows the
ADC values taken by the sensor readout, and the output matrix
(Figure 35b) shows how these values change to estimated
load values (in grams). These values can be transformed to
pressure values (in MegaPascals) by just dividing all matrix
values by 10 mm2. It is evident that the finger on the
right side is affected by cross-talk, particularly in the rows
where both fingers coincide. This results in a drop in the
measurement of the lower part of the finger. However, after
the compensation process, the values become more uniformly
distributed, indicating some level of cross-talk compensation.

Figure 36 shows the compensation result for a hand readout.
It is seen how sensing pixels that coincide with highly pres-
sured points are higher compensated. High-pressured points
create higher cross-talk affectations, therefore pixels on that
row need to be better compensated. During the test, the left
side of the palm pressed harder on the sensor, this is well seen
in the image top side output Figure 36b.

In order to evaluate the compensation, the load value of the
test data (ground truth) is compared to the output of that data
input to the neural network model. The difference average
variation between ground truth and the estimation is ±10
where the possible range can go from 0 to 600 grams.

(a) Two finger test original input

(b) Two finger test after compensation

Fig. 35: Compensation and pressure estimation process

(a) Input matrix: Readout from sensor

(b) Output matrix: Compensated imaging

Fig. 36: Crosstalk compensation for a hand palm readout



VII. DISCUSSION

Accurate measurement acquisition for the analysis was a
significant challenge. In order to rely on the measurement, it
was necessary to average multiple experiments. This approach
was essential to establish confidence in the measurement
results. To reduce the time required for multiple experiments,
it is recommended to design a high-precision system for
applying the loads to the sensor. The sensor initially exhibited
reliability issues primarily due to connectivity problems, re-
sulting in the need for troubleshooting. Resolving the problem
of highly noisy measurements required a significant amount
of effort and work. It is suggested to use a different con-
nector between the flexible PCBs and to design a structure
that prevents bending on the region where rigid components
are soldered. This future approach will help to mitigate the
occurrence of misconnections caused by imperceptibly broken
soldered paths.

In terms of the circuit configuration, an unrecognised source
of cross-talk was identified, arising from the presence of a
resistance connected to the output of the voltage source Vtest.
This introduced a distinct cross-talk type that differed from
what was described in the extended mathematical model.
The coexistence of these cross-talk sources can potentially
mislead interpretations of the results when compared to the
mathematical model. However, by eliminating the resistor, the
cross-talk induced by this resistor was successfully suppressed,
significantly reducing the observed cross-talk. Great care must
be taken when sizing the values for Rk and Vtest. Poorly di-
mensioned values can make it impossible to read the pressures
in the human range, even if the pattern is visually shown in
the imaging. To ensure accurate sizing, it is crucial to consider
the observed resistance value Rtaxel when a finger is pressed
against it for a single sensing pixel. It is also suggested to
explore other Velostat materials in order to have a larger range
of sensible pressures, meaning to have a thicker piezoresistive
with a larger linear behaviour range.

The table setup serves the purpose of data collection to
study the behaviour of the sensor and train the machine
learning algorithm. It allows different configurations to provide
more accurate load placement with the spring mechanism,
consequently minimising misalignment and drift issues dur-
ing load application. To mitigate human error during spring
compression, an automated system can be employed to ensure
consistent and accurate load application. The compensation
method has certain limitations that should be considered. One
of the main limitations is the processing time required, as the
method needs to be executed for every sensing pixel in the
PRS array, which can affect real-time cross-talk compensation.
Another limitation arises from the readout data, as values
larger than 65,535 ADC value cannot be captured, making the
cross-talk level unknown beyond this threshold. To address
this, it is suggested to maintain a low sensitivity level by
setting a low Vtest voltage. This ensures that most of the cross-
talk information is captured in the data, even when the sensor
is subjected to extremely high pressure.

VIII. CONCLUSION

The proposed approach for cross-talk compensation has
several advantages over traditional methods for compensating
for the cross-talk effect. First, do not need to increase the
complexity of the circuit, so this allows us to keep a portable
version of the e-Cone and keep the sensor cost low. Second,
it is highly flexible and adaptable, allowing for easy updates
and modifications as new data becomes available. Due to
some inconsistencies in data, like outliers in sensor readings,
caution should be exercised when interpreting the results
obtained from the sensor. Therefore, we recommend that future
cross-talk studies employ a more reliable sensor or conduct
additional tests to ensure result accuracy. Then, collect more
data to train a model. In addition to that, new machine-learning
methods can be explored to execute the compensation in real-
time.

The choice of the MLP algorithm proved to be a strong
choice for our pressure estimation problem. Its ability to cap-
ture complex non-linear relationships, learn relevant features
from the data, and generalize to unseen instances resulted in
valid estimations and showcased the effectiviness of MLPs
in adddresing this specific problem. Overall, the proposed
approach represents an advance in the field of piezoresistive
sensor arrays and has the potential to significantly improve
the accuracy and reliability of sensor measurements in a wide
range of applications, including the e-Cone sensor.
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IX. APPENDIX

A. Sensing pixel analyser

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Create a 128x64 matrix of zeros
matrix = np.zeros((64, 128))

# Read data directly from a text file
data = np.genfromtxt(’FORGRAPHS/C7_400mV_NEW.

txt’,
delimiter=’,’,
autostrip=True)

data = data[:,:-1]

# Select sensing pixel
# IMPORTANT: IN SENSOR’S ACQUISITION

PROGRAMMING ROW AND COLUMNS ARE SWAPPED
# THERE ARE 128 ROWS, 64 COLUMNS
row_index = 58
col_index = 2
pressure = 0.5 #MPa

# Access the value at the specified row and
column

value = data[row_index, col_index]
print(value)

# Define step size
step_size = 64 #TO KEEP IT FIXED, 65 for CSV

files, 64 for TXT files

# Extract the column index
column = data[:, col_index]

# Extract every 64th or 65th element from the
column

new_column = column[row_index::step_size]

# Export new_column to a Excel File
pixelvalue = pd.DataFrame(new_column)
pixelvalue.to_excel(r’D5_p.xlsx’, sheet_name=’

1’, index=False)

# Extract the whole row every 64 rows
alldatacolumn = data[row_index::step_size]

# Create an array of x values from 0 to n
x = np.arange(len(new_column))

# Plot the values
fig1 = plt.figure(1)
plt.plot(x, new_column)

# Set the axis labels and title
plt.xlabel(’Iteration’)
plt.ylabel(’ADC Value’)
plt.title(f’ADC Values from Taxel in Row {

col_index:.2f} and Column {row_index:.2f}
at {pressure:.2f} MPa’)

# Set the threshold value
threshold = 300

# Create a boolean array for values above the
threshold

mask = new_column < threshold

# Use the boolean array to remove values from
the column

new_column_filtered = new_column[˜mask]
new_column_filtered = new_column_filtered.T

# Create an array of x values from 0 to n
x2 = np.arange(len(new_column_filtered))

# Plot the values
fig2 = plt.figure(2)
plt.plot(x2, new_column_filtered)

# Set the axis labels and plot
plt.xlabel(’Iteration’)
plt.ylabel(’Value’)
plt.title(f’ADC Values Filtered from Taxel in

Row {col_index:.2f} and Column {row_index
:.2f} at {pressure:.2f} MPa’ )

# Display the plot
plt.show()

# Percentage data filtered
percetange_filtered = 100 - ((len(

new_column_filtered) / len(new_column))
*100)

print(’percetange filtered:’ ,
percetange_filtered)

B. ML model design and training

import numpy as np
import pandas as pd
from sklearn.neural_network import

MLPRegressor
from sklearn.model_selection import

train_test_split
from sklearn.metrics import mean_squared_error
from sklearn.metrics import

mean_absolute_percentage_error
from sklearn.preprocessing import

StandardScaler
import pickle

# From a CSV file
data = pd.read_csv("DataMLPTraining.csv")
data = np.matrix(data)
data = np.asarray(data, dtype=np.float32)
prev_matrix = data

# Function for shuffling each row of the
matrix, except the first and last element

def shuffle_row(row):
mid = row[1:-1]
np.random.shuffle(mid)
return np.concatenate((row[:1], mid, row

[-1:]))

# Create 100 new matrices with shuffled rows
new_matrices = []
for i in range(100): # define the number of

shuffling



shuffled_matrix = np.apply_along_axis(
shuffle_row, 1, prev_matrix)

new_matrices.append(shuffled_matrix)

# Stack all matrices vertically
stacked_matrix = np.vstack([prev_matrix] +

new_matrices)

x_pre = stacked_matrix[:, :129]
y = stacked_matrix[:, -1]

scaler = StandardScaler()
x = scaler.fit_transform(x_pre)

# Split the dataset into training and test
sets

x_train, x_test, y_train, y_test =
train_test_split(x, y, test_size=0.1,
random_state=1)

# Initialize an MLP model with hidden layers
model = MLPRegressor(hidden_layer_sizes

=(160,480,240), activation=’relu’, solver=
’adam’, max_iter=2000)

# Train the model with the sample data
model.fit(x_train, y_train)

# Save the model to a file
filename = ’MLPModel129to1_2.sav’
pickle.dump(model, open(filename, ’wb’))

# Evaluate the MLP model
y_pred = model.predict(x_test)
mse = mean_squared_error(y_test, y_pred)
mape = mean_absolute_percentage_error(y_test,

y_pred)
print("Mean Squared Error:", mse)
print("Mape:", mape)

# Calculate errors
errors = list()
for i in range(len(y_test)):
# calculate error
err = abs((y_test[i] - y_pred[i]))
# store error
errors.append(err)
# report error
#print(’>%.1f, %.1f = %.3f’ % (y_test[i],

y_pred[i], err))

# Average errors
average = sum(errors)/len(errors)
print("Average:", average)

C. Computational compensation method

import pickle
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import

StandardScaler
from PIL import Image

scaler = StandardScaler()

def interpolate_heatmap(heatmap_array, factor)
:
# Convert the array to a Pillow Image
heatmap_image = Image.fromarray(

heatmap_array)

# Calculate the new dimensions
width, height = heatmap_image.size
new_width = width * factor
new_height = height * factor

# Resize the image using bilinear
interpolation: BILINEAR, BICUBIC,
NEAREST

interpolated_image = heatmap_image.resize
((new_width, new_height), Image.
BILINEAR)

# Convert back to NumPy array
interpolated_heatmap = np.array(

interpolated_image)

return interpolated_heatmap

# Import ML trained model
filename = ’MLPModel129to1_2.sav’
model = pickle.load(open(filename, ’rb’))

# Read Sensor measurement 64x128
data = np.genfromtxt(’HANDREADOUT/CARLOSHAND4.

txt’, delimiter=’,’, autostrip=True)
data = data[:,:-1]
data = np.matrix(data)
data = np.asarray(data, dtype=np.float32)

# Take just 1 sensor mattress readout
data1 = data[:64, :]
data1 = np.round(data1)

# Creat mask with pressed pixels
mask = np.where(data1 > 260, 1, 0)

# generate the heatmap
heatmap = plt.imshow(data1, cmap=’inferno’)
# plt.colorbar(heatmap) # add a colorbar to

the heatmap
# show the plot
plt.show()

# Save features in a matrix
x_testin = np.zeros((0, 129))

# For every pixel on that row...
for i in range(data1.shape[0]): # iterate

over rows
for j in range(data1.shape[1]): # iterate

over columns
if data1[i,j] > 350: # filter to

compensate only pressed pixels
cell_value = data1[i, j]

# print(cell_value) # For Debugging
x_test = np.array([cell_value])
x_test = np.concatenate((x_test,

data1[i,:]), axis=0)

x_testin = np.vstack((x_testin,



x_test))
else: # for pixels not pressed, set

pressure to 0
x_test = np.zeros((1, 129))
x_testin = np.vstack((x_testin,

x_test))
#print(N, data1[i,j], Pt)
#print(y_pred) # For Debugging
#print(x_test) # For Debugging

# Calculate output & Store the output of the
model

x_testin_nonorm = x_testin # TO DEBUG
x_testin = scaler.fit_transform(x_testin)

y_pred = model.predict(x_testin)
y_pred = np.round(y_pred, decimals=0)

# Reconstruct 64x128 matrix
matrix_out = y_pred.reshape((64, 128))

# replace all occurrences of 163 with 0
matrix_out = matrix_out*mask

# Set all negative values to zero using clip
function

matrix_out = np.clip(matrix_out, 0, None)

# generate the heatmap
heatmap2 = plt.imshow(matrix_out, cmap=’

inferno’)
# add a colorbar to the heatmap
#plt.colorbar(heatmap2)
# show the plot
plt.show()

# Image interpolation for Display
heatmap_array = heatmap2.get_array()
interpolation_factor = 10
interpolated_heatmap = interpolate_heatmap(

heatmap_array, interpolation_factor)
# Display the interpolated heatmap
plt.imshow(interpolated_heatmap, cmap=’inferno

’)
#plt.colorbar()
plt.show()


