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ABSTRACT 

 Unmanned Aerial Vehicles (UAVs) have become crucial in various fields, collecting vast amounts of aerial 

data. Semi-supervised semantic segmentation techniques play an important role in extracting valuable 

information from this data. Combining labelled and unlabelled data enables efficient classification and 

segmentation of objects in UAV imagery. This integration has revolutionized decision-making processes 

in environmental monitoring, agriculture, infrastructure inspection, disaster management, and security 

surveillance. The extracted information aids in precision agriculture, urban planning, risk detection, and 

real-time situational awareness. The synergy between UAVs and semi-supervised semantic segmentation 

holds immense potential for advancing data analysis and decision support systems. 

 

Semi-supervised semantic segmentation has emerged as a powerful technique in computer vision for 

extracting precise and accurate object boundaries from images. Unlike traditional approaches that rely 

solely on labelled data, semi-supervised semantic segmentation leverages labelled and unlabelled data to 

enhance the segmentation efficiency. By merging the strengths of supervised and unsupervised learning, 

this approach addresses the challenges of limited labelled data availability while harnessing the abundance 

of unlabelled data. Various algorithms, such as self-training methods and deep learning models, have been 

evolved to exploit the potential of semi-supervised learning in semantic segmentation effectively. 

 

This research explored the scope of using semi-supervised techniques for semantically segmenting the 

UAVid dataset. This dataset brings high-resolution videos in 4K and unique challenges like dynamic object 

recognition, wide-scale disparity, and temporal consistency continuation. The BiMSANet model is used to 

segment the semantic classes in the UAVid dataset, as this model is very efficient in dealing with the 

challenges mentioned above. Only 10 labelled images with 5-sec intervals in each video sequence are 

available in the dataset. The interval between two frames is reduced from 5 sec to 1 sec to get higher 

temporal resolution and additional valuable information, which results in more frames in each video 

sequence. Pseudo-labelling is performed on the newly extracted frames through the use of a trained 

BiMSANet model on the original labelled images. Three experiments were conducted with different 

combinations of pseudo-labelled frames and original labelled images to assess the optimum condition for 

the selection of  frames in semantic segmentation of the UAVid dataset. The results from the experiments 

are presented in the mIoU metrics.  

 

The findings from the experiments of our approach show improvement in the segmentation of most of 

the semantic classes present in the UAVid dataset. For instance, Exp – 1 shows the best results in Building 

and Road class, Exp – 2 shows the best results in Static_car and Moving_car classes, and Exp – 3 shows 

better accuracy in the Vegetation class. In Exp – 3, due to balanced segmentation across all the semantic 

classes, achieved the best mIoU score of 76.51% ( mIoU of 7 classes, excluding Human class). Exp – 3 

outperforms the previous best BiMSANet (76.43%) by a margin of 0.08%. 

 

Keywords: Semi-supervised, Semantic segmentation, UAVs data, Self-training, Pseudo labels, Deep 

learning.  
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Semi-Supervised Semantic Segmentation of UAV Videos 
 

1 

1. INTRODUCTION 

1.1. Background 

 

The growing usage of Unmanned Aerial Vehicles (UAVs) in multiple fields has generated massive 

amounts of aerial video data (Ahmed et al., 2022). It is critical to extract helpful information from this data 

for applications such as surveillance, urban planning, environmental monitoring, and infrastructure 

inspection. Semantic segmentation plays a critical role in interpreting the content of these videos by 

splitting UAV footage into semantically significant sections (Gadde et al., 2017). Semantic segmentation 

gives a detailed and accurate scene representation by assigning a specific class name to each pixel or 

region, like buildings, clutter, vegetation, or tree (Lyu et al., 2020). 

 

Semantic segmentation of UAVs videos has various advantages and benefits. It provides an in-depth 

knowledge of the scene by allocating semantic labels to each pixel or region, allowing fine-grained 

evaluation and object-level recognition. This degree of precision is useful for jobs like urban land cover 

mapping, where the precise demarcation of distinct classes is critical for urban planning and development 

(L.-C. Chen et al., 2017). Semantic segmentation aids in recognizing and monitoring objects and their 

motion across time from the scene (Kim et al., 2018). It is critical for applications like surveillance and 

monitoring, where identifying anomalies or changes in the scene is critical for early warning systems or 

emergency response. 

 

Traditional supervised learning algorithms depend heavily on labelled training data for semantic 

segmentation, which can be costly and time-consuming to gather (L. C. Chen et al., 2020). Researchers 

have adopted semi-supervised learning strategies to solve these restrictions, which use labelled and 

unlabelled data to augment the efficiency of semantic segmentation models (Zhu, 2008). Semi-supervised 

semantic segmentation in UAV videos has various advantages over traditional supervised methods. These 

methods can efficiently harness the information available in the unlabelled samples to improve the models' 

segmentation accuracy and generalization capabilities by including enormous amounts of unlabelled data 

that are readily available (Jin et al., 2023). These techniques are beneficial when acquiring large-scale 

labelled datasets for UAV videos is challenging or not feasible. 

 

The primary concept of semi-supervised semantic segmentation is to use unlabelled data to complement 

labelled data while training the models (Yuchao Wang et al., 2022). One popular method is "pseudo-

labelling" or "self-training." Initially, the model use the provided labelled data for training. A trained model 

is subsequently applied to the unlabelled data to create predictions, regarded as pseudo-labels (Dong-Hyun 

Lee, 2013). The unlabelled samples having high-confidence predictions are then added to the labelled 

dataset, increasing the size of the dataset which will use in training. After that, the model is retrained with 

the supplemented dataset, and the iterative process tends to improve the model's predictions and 

efficiency. 

 

This research aims to investigate and evaluate semi-supervised techniques for semantic segmentation in 

UAV videos. We hope to design a successful and effective approach for extracting comprehensive and 

accurate semantic information from drone videos by leveraging advanced semi-supervised learning 

techniques and adapting them to the special challenges of UAV video data. Our work promotes semi-
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Figure 2: Illustration of Semi-supervised technique used in segmentation of video 
sequence.(Naive-Student) 

Figure 1: UAVid 2020 Dataset (uavid) 

supervised semantic segmentation approaches, allowing for a more efficient analysis of UAV video data 

and aiding the creation of intelligent systems for various UAV-based applications. 

 

The following sections will examine the approach, datasets, experimental results, and prospective uses for 

semi-supervised semantic segmentation in UAV videos. By emphasizing advances in this field, we hope to 

shed light on the benefits and consequences of these techniques in real-world settings involving UAV 

video analysis. 

1.2. Research Problem 

Semantic segmentation task is one of the essential functions in machine vision, which has substantially 

advanced with the progress of deep learning in scene understanding (Yuchao Wang et al., 2022). Semantic 

segmentation entails assigning each pixel a label in the image to understand the picture/scene (Lyu et al., 

2020). Recent developments in visual scene understanding through deep learning provide a perceptive 

base for numerous industries, including robots, medical image analysis, and autonomous driving. Since 

deep learning can extract significant semantic information from the training data (Lyu et al., 2021), it 

serves as the basis for the majority of successful and efficient techniques for scene comprehension 

problems. However, this learning approach does have a limitation: it needs many training samples to learn 

relevant information, particularly for real-world applications (Lyu et al., 2020). 

Aside from the limited labelled dataset, the semantic segmentation of UAVid videos faces several 

challenges, including wide scale disparity among objects at different distances or of diverse classes, 

dynamic object recognition (differentiate the cars, moving or static) in the urban road scene, and temporal 

consistency preservation for better prediction across frames. 

A semi-supervised semantic 

segmentation method is the 

solution to the above  

problem (Yuchao Wang et 

al., 2022). This method 

learns a model using  a 

limited number of labeled 

data and many pseudo labels 

generated on unlabeled 

ones. In a scientific context, 

this research aims to 

optimize the process of semantic segmentation through a semi-supervised approach using UAV videos. 

This study will use UAVid dataset (Lyu et al., 2021), which has 4K resolution UAV videos in oblique 

views.  

https://link.springer.com/chapter/10.1007/978-3-030-58545-7_40/figures/1
https://uavid.nl/
https://uavid.nl/
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1.3. Research Objectives & Questions 

 

An assessment of the Usability of Semi-Supervised learning for semantic segmentation of UAV video 

sequences dataset from Urban areas (street scenes). 

 

1. Sub-objective (1): To evaluate the effect of time interval or gap between two frames on semantic 

segmentation. 

1.1. How does the density of labeled images affect the process of semantic segmentation? 

1.2. How many frames do we need to extract high-level semantic information from video   

sequences? 

1.3. What will be the time interval between two labeled images? 

2. Sub-objective (2): Examine the implication of pseudo labels usability for semantic segmentation 

process. 

2.1. How to  check the quality of generate pseudo-labels using semi-supervised learning? 

2.2. How can pseudo-labels help to do semi-supervised semantic segmentation? 

2.3. How can the speed of UAVs during data collection affect the quality of generated pseudo labels? 

 

 

Novelty 

 

It is quite interesting to explore how the time interval or gap between video frames affects the semantic 

segmentation process.  The originality of this research is in determining the best combination of frames 

from UAV videos to improve the final segmentation outcome. To the best of our knowledge, no one has 

tried the frames combination with a time interval of less than 5 seconds. We decreased the time interval in 

this study to 1 second in order to get more information from the videos. 

 

1.4. Scientific and Societal Relevance 

 

The manual labeling of static images under the supervised learning paradigm necessitates a crucial 

investment of resources and time, whether in the kind of dedicated annotation tools or labor hours. This 

method would not scale well enough to classify real-time video frames completely (L. C. Chen et al., 

2020). It would be ideal if a training method could learn more independently, especially on videos, similar 

to how visual learning works in humans (Arazo et al., 2020).  

Labeling videos is complex and challenging in the context of self-driving automobiles, object tracking, and 

real-time monitoring, which has led to the emergence of an industry of specialist data annotation firms 

(Lyu et al., 2019). A video is a temporal and spatial data stream like a picture. To adequately evaluate a 

video, it is necessary to recognize the items in the scene at particular frames in the video, label their 

appearance, and track their activity over time. It would be challenging even if a human annotates videos 

frame-by-frame under close monitoring and control. A person's capacity to manage all the knowledge they 

must represent for the work at hand is constrained (Enfuse, 2021). 
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Figure 3: Semantic Segmentation of Images 

 

Semi-supervised training will be a good choice to contour the above challenge as it requires fewer labeled 

datasets for building a deep-learning approach to do semantic segmentation. One can train a model with 

less labeled training data through semi-supervised learning as compared to supervised learning. For 

instance a model called Naïve-Student (L. C. Chen et al., 2020) use both self-training learning and semi-

supervised learning, where the model is trained using predictions from unlabelled data and where limited 

labelled data is provided to train the model with unlabeled data respectively. 

By introducing the task of urban scene image segmentation to the UAV platform, researchers might learn 

more about the visual comprehension job in the UAV sceneries and provide the groundwork for more 

advanced intelligent applications like traffic management, crowd monitoring, disaster management, etc. 

The semantic segmentation problem utilizing UAV data demands more significant consideration because 

the information from UAVs has distinct peculiarities (Lyu et al., 2020). 

 

1.5. Key Concepts 

1.5.1. Semantic Segmentation 

The technique of identifying each pixel of the image using a predetermined set of classes is known as 

semantic image segmentation (Lyu et al., 2021). We often wish to identify which pixel corresponds to 

which class in an image containing multiple classes. For instance, in a street scene, one can segment the 

roadways, pedestrians, trees, bikes. 

Semantic segmentation is quite advantageous for autonomous vehicles like self-driving cars and drones. 

Semantic segmentation allows self-driving cars to recognize items in their environment and make 

decisions based on that information, such as applying the brakes when another vehicle or object is very 

close to them. It is beneficial in the autonomous flight and landing of drones. (Bit, 2019)(hackabit). 

 

For instance, the accompanying image has various things that can be utilized as classes for image 

segmentation tasks, including automobiles, trees, people, road signs, etc.  

https://medium.com/hackabit/semantic-segmentation-8f2900eff5c8
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Figure 4: Represent Semi-supervised vs Supervised vs 
Unsupervised learning(Semi-supervised) 

 

1.5.2. UAVs 

Unmanned aerial vehicles, often known as drones or pilotless aircraft, are operated using cutting-edge 

components, such as a contemporary sensor, replica models, Ground Stations, communication system, 

and a platform (Ahmed et al., 2022). UAVs can acquire shots from angles not possible from the ground, 

and they often operate in dangerous or inaccessible areas for people. The UAVs enable picture retrieval in 

broad regions more affordable and practical, enabling rapid access to helpful knowledge about a specific 

region. UAVs acquire photos from the sky with higher spatial resolution and flexible flying schedules than 

satellites and aircraft, giving the opportunity to quickly monitor and evaluate the terrain at specific 

moments and locations (Lyu et al., 2020). In the recent years, UAVs have been utilized for both civilians 

and military purposes, including search and rescue operations, surveillance, weather forecasting, and 

mapping (Ahmed et al., 2022). UAVs are now also utilized for precise farming (Lottes et al., 2017), 

cadastral mapping (Crommelinck et al., 2017), and emergency rescue missions during natural catastrophes 

such as storms, floods, bushfires, etc. 

 

1.5.3. Semi-Supervised Learning 

Semi-Supervised learning is a form of process which focuses on performing specific learning tasks 

utilizing unlabeled data and labeled. Semi-supervised learning techniques are beneficial in situations where 

labeled data is limited. It allows the utilization of the substantial amount of unlabeled data present on 

numerous occasions in addition to the more common limited sets of labelled data (van Engelen & Hoos, 

2020). The core function of semi-supervised semantic segmentation is to give appropriate pseudo-labels to 

each pixels in an unlabeled images (Yuchao Wang et al., 2022). Pseudo-label is one kind of label that is 

generated from a trained model with limited labeled data to be used to label real-time video frames (Dong-

Hyun Lee, 2013).  

 The major challenge in semi-supervised learning is 

finding the proper ways to provide reliable and 

efficient supervision signals for unlabeled input (Jin 

et al., 2023). To address the issue, two major 

branches of approach are proposed: entropy 

minimization and consistency regularization. Entropy 

minimization, promoted by self-training, works 

simply by giving pseudo labels to unlabelled data and 

then mixing it with original labelled data for 

supplementary re-training. Furthermore, consistency 

regularization assumes that the prediction of an 

unlabeled sample is invariant to various types of 

perturbations (Yang et al., 2022). 

In our case, we could utilize self-training approach where pseudo labels help in training the deep neural 

networks to fulfill the purpose of semi-supervised semantic segmentation.  

 

 

https://blog.roboflow.com/what-is-semi-supervised-learning/
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Figure 5: Application of Semantic Segmentation of UAV datasets in traffic management and crop field 
detection(Application) 

 

1.5.4. Pseudo Labelling  

“The process of predicting labels for unlabelled data from the aid of the labelled data model is known as 

pseudo-labeling” (Lee, 2013). In this case, a model was initially trained on the labeled dataset; then, it was 

employed to provide pseudo labels to the unlabeled dataset. Eventually, both the datasets, labelled and the 

pseudo labels, are mixed for training the model. As these labels might or might not be real, and as we are 

producing them based on an identical data model, it is dubbed pseudo (Dong-Hyun Lee, 2013). 

The following steps are commonly included in the pseudo-labelling process: First, using regular supervised 

learning techniques, the  training of the model is on the small labelled dataset. The model that has been 

trained is subsequently utilized to predict labels for unlabelled data, resulting in pseudo-labels (Arazo et al., 

2020). These bogus labels are screened to assure their quality and dependability. The filtered pseudo-labels 

are mixed together with the original labeled data to form an augmented dataset. The model is retrained 

using this updated dataset, which includes both labelled and pseudo-labeled samples. The pseudo-labelling 

and training processes are often repeated iteratively to improve the model's predictions and enhance its 

performance (L. C. Chen et al., 2020). 

 

1.6. Applications 

A wide range of applications support the efficacy of semantic segmentation like robotic navigation and 

autonomous driving benefit immediately; such applications include terrain recognition, path planning, and 

obstacle identification (Lyu et al., 2019).  

Particularly semantic segmentation of UAV datasets is mostly used for surveillance and monitoring in the 

target region. They have already been employed for weed monitoring, cadastral mapping, smart farming, 

and precision agriculture, but there hasn't been much research on urban scene analysis. Applications for 

monitoring traffic, including car accidents and traffic jams, population tracking, and city greenery, 

including vegetation blooms and damages, may be built on the study of urban scene image semantic 

segmentation (Lyu et al., 2020). 

 

https://keymakr.com/blog/semantic-segmentation-uses-and-applications/
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1.7. Thesis Structure 

 

This report is primarily divided into 7 chapters, with multiple sub-chapters in each chapter. The State of 

the Art is reviewed in the succeeding chapter. The overview of the UAVid data is included in the third 

chapter. In Chapter 4, the research methodology is discussed. It provides an explanation of the purpose 

and process behind each experiment. The findings are recounted in the fifth chapter, together with the 

analytical discussions that surrounded them in sixth chapter. The conclusion and recommendations, which 

includes the research's contributions and shortcomings as well as its future directions, is briefly discussed 

in the final chapter. 
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Figure 6: Two moon dataset separated by decision lines, using  various SSL techniques, with 6 labelled samples and 
remaining unlabelled samples.(Oliver et al) 

 

2. STATE OF THE ART 

This chapter briefly describes Semi-supervised learning methods in section 2.1 and reviews some networks 

that have evolved to resolve the multi-scale problem for semantic segmentation in section 2.2. And there 

is a short introduction to the algorithm used in the research in section 2.3. 

 

2.1. Semi-supervised learning (SSL) 

 

The essential purpose of SSL is to use unlabelled data to build improved learning algorithms. However, 

this is not every time simple nor entirely feasible. Unlabelled data can only be valuable when it provides 

information essential to label predictions that are either not available in labelled data or is challenging to 

extract (Zhu & Goldberg, 2009). The algorithm must gather this information to employ any semi-

supervised learning strategy in the application. 

 

(Oliver et al., 2018) used two picture classification challenges to compare multiple semi-supervised neural 

networks, namely the virtual adversarial training, mean teacher model, and a wrapper method termed as 

pseudo-labelling. They found that when an extra unlabelled data were added (no eliminating of labelled 

data), the error rates frequently decreased. Efficiency depreciation appeared only when it was evident that 

there was a discrepancy between the categories found in the data with labels and the categories available in 

the unlabelled data. Aforementioned findings are encouraging, indicating that neural networks can use 

unlabelled data to increase performance in image classification tasks consistently. 

 

 

 

https://arxiv.org/abs/1804.09170
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Figure 7 : Illustration of taxonomy for the semi-supervised categorization. Each leaf represents different type of 
techniques used in segmentation methods using unlabelled data. (I king et al) 

 

The primary problem in SSL is determining how to create accurate and efficient supervision indicators for 

unlabelled data. To address the issue, two key approaches are offered: entropy minimization (Pham et 

al., 2021) and consistency regularization (Jeong et al., 2019). Entropy minimization, promoted by self-

training (Lee, 2013), it works simply by labelling unlabelled data with pseudo labels and merging it into 

human-labelled data to perform re-training. Furthermore, consistency regularization assumes that the 

prediction of an unlabelled sample is invariant to various types of perturbations. FixMatch (Sohn et al., 

2020), for example, recommends injecting strong perturbations into unlabelled images and supervising the 

training process using forecasts from weak perturbation ones to combine the benefits of each techniques. 

FlexMatch (Zhang et al., 2021) and FreeMatch (Yidong Wang et al., 2022) recently considered the learning 

degree of distinct semantic classes and then filtered poor-confidence label using classes-specific 

thresholds. Before describing the self-training and perturbation-based methods we need to know the 

different types of Semi-supervised learning techniques. 

 

 

 

 

 

 

https://arxiv.org/abs/2103.00550#:~:text=Deep%20semi-supervised%20learning%20is%20a%20fast-growing%20field%20with,perspectives%20of%20model%20design%20and%20unsupervised%20loss%20functions.
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From figure 7, The initial differentiation in semi-supervised classification taxonomy, which separates 

inductive and transductive approaches, which is widespread during dividing the semi-supervised 

techniques into further parts (Zhu & Goldberg, 2009). Like supervised learning approaches, the former 

produces a  model for classification of semantic class which can be utilized to generate pseudo-labels for 

hitherto unknown data points. The latter do not produce such models but rather offer straight forecasts 

(van Engelen & Hoos, 2020). In a nutshell, given a data set XL, XU ⊆ X, having labels yL ∈ Yl to the l 

labelled data samples, inductive approaches provide a classifier f: X → Y. At the same time, transductive 

methods gives predictions in terms of labels yˆU for the unlabelled samples in XU. As a result, inductive 

approaches involve model optimization, while transductive methods improve directly across the 

predictions yˆU. Here, XL, XU represents labelled data and unlabelled data, respectively. yL is the labels for 

the labelled samples and yˆU is the label prediction on XU. 

 

2.1.1. Inductive methods 

 

The primary aim of inductive approaches is to construct a classifier to generate labels for any data in the 

input area. Although unlabelled data can be utilized to train this classifier,  the prediction for numerous 

new, hitherto unseen instances are distinct after training is complete (van Engelen & Hoos, 2020). The 

aforementioned relates to the goal of supervised learning methods: the model is developed in the process 

of trainings for predicts the labels on unseen or fresh data. The inductive methods can be separated into 3 

categories like; Unsupervised pre-processing, Wrapper methods, and Intrinsically semi-supervised 

methods. 

 

Wrapper methods belong to the simplest and most extensively used semi-supervised learning algorithms 

(Zhu, 2008). To expand the current supervised approaches to the semi-supervised environment, it initially 

trains the classifier on data with labels and afterward employs the prediction of the resulting classifier to 

generate more labelled data. The same classifier can be retrained using the pseudo-labels dataset and the 

previously utilized labelled data. Wrapper methods are used when pseudo-labels are generated on 

unlabelled data by a wrapper approach, and the final inductive classifier is constructed by a fully 

supervised learning technique, unaware of the distinction between initially labelled data and data with 

pseudo-labels. (van Engelen & Hoos, 2020). This method is further categorised into three parts: Self-

training, Co-training and Boosting. 

 

The unsupervised pre-processing methods, which are different from wrapper and intrinsically semi-

supervised methods, the way of using the unlabelled data and labelled data for training the model in two 

different steps. In general, the unsupervised phase consists of one or the other the automated extraction 

or modification of samples features from unlabelled data (features extraction), unsupervised data 

clustering (clusters-then-labels), or the initiation of the learning procedure's parameters (pre-trainings) (van 

Engelen & Hoos, 2020). Features extraction, Clusters-then-labels and Pre-trainings are the different 

categories of unsupervised pre-processing methods. An example of features extraction method that is 

autoencoder is illustrated in Figure 8. Intrinsically semi-supervised algorithms that head on includes 

unlabelled data into the learning method's objective functions or optimizations process (Zhu, 2008). Most 

of the methods are straight semi-supervised expansions from supervised learning methods: they expand 

the supervised classifier's objective function to incorporate unlabelled data. For example, semi-supervised 

support vector machines (S3VMs) (Ding et al., 2017) go beyond supervised SVMs by maximizing the 

margins on labelled and unlabelled samples. Many popular supervised learning algorithms, such as SVMs 

(Cervantes et al., 2020), Gaussian processes, and neural networks, have inherent semi-supervised 
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Figure 8: Simplified representation of an autoencoder, an example of semi-supervised feature extraction methods. 
The networks having multiple layers shown as rectangles and the trapeziums used to show the encoder and 

decoder.(I king et al) 

 

 

Figure 9: Representation of graph-based 
techniques used in undirected graphical model. 

Where black dots are edges and nodes from 
main graph. White dotes having sign of minus, 
plus are nodes have labelled data.(I king et al) 

extensions. This method is further divided into four parts such as: Maximum-margins, Perturbation-based, 

Manifolds and Generative models. 

 

2.1.2. Transductive methods 

 

In contrast to inductive approaches, transductive methods do not build classifiers for the complete input 

area. Alternatively, they can only predict things encountered during the training phase (van Engelen & 

Hoos, 2020). As a result, transductive approaches lack separate train and evaluate phases. As supervised 

learning approaches, by properties, are not provided with unlabelled data before the evaluation stage, there 

are no clear correlation of  transductive methods with supervised learning. Because transductive learners 

lack an input space model, the transmission of information must be by direct links between data samples. 

This realization soon led to the development of a graph-based technique for transductive learning; if 

the graph is constructed in which similar data points are linked together, information may be 

communicated via the graph's edges as represented in Figure 9. In general, all transductive approaches are 

either explicitly or implicitly graph-based (Zhou & Li, 2005). 

 

 

 

 

 

 

 

 

 

https://arxiv.org/abs/2103.00550#:~:text=Deep%20semi-supervised%20learning%20is%20a%20fast-growing%20field%20with,perspectives%20of%20model%20design%20and%20unsupervised%20loss%20functions.
https://arxiv.org/abs/2103.00550#:~:text=Deep%20semi-supervised%20learning%20is%20a%20fast-growing%20field%20with,perspectives%20of%20model%20design%20and%20unsupervised%20loss%20functions.
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Figure 10: The iterative process of Self-Training.(Self-
training) 

 

Transductive graph-based approaches typically have three phases: graph building, graph weighted, and 

inferencing the graph. In the initial stage, a collection of items, X, is utilized to build a graph, with each 

node indicating a data sample and pairs of comparable data samples joined by an edge. In the following 

stage, these edges are given a weight to indicate the degree of pairwise similarities among the 

corresponding data samples. In the final stage, the graph assists in assigning labels to unlabelled data 

samples (Zhou & Li, 2005).  

 

2.1.1.1 Self-training 

Self-training techniques (also known as "self-learning" techniques) are one of the utmost fundamental of 

pseudo-labelling procedures (Triguero et al., 2015). These techniques are built up from a unitary 

supervised model, trained iteratively on a combination of labelled and pseudo-labelled data, which is 

generated in earlier iterations of the method. A supervised model is trained with the labelled data only at 

the start of the self-training process. The trained model is employed to predict the unlabelled data samples. 

Highly accurate prediction or high-quality pseudo-labels join the data set with original labels, and the 

supervised model is retrained using the combination of the original labelled data and the freshly 

generated pseudo-labels. This method works in a loop until all the unlabelled data get pseudo labels (van 

Engelen & Hoos, 2020). 

 

 David Yarowsky presented self-training as a 

method for the first time, extracting the 

knowledge from words by examining their 

context in text sources (Yarowsky, 1995). 

Following then, various uses and variants of 

self-training evolved. For example, a self-

training was employed to address the 

challenges of object detection tasks by 

Rosenberg (Rosenberg et al., 2005). They 

achieved the highest accuracy during that 

period by developing the best object detection 

model. In another instance, the self-training 

methods were evolved to classify hyperspectral 

pictures (J. Li et al., 2013). They utilized their 

domain expertise to choose a collection of 

prospective unlabelled data and the most 

significant pseudo-label examples from the 

predictions of the trained algorithm. 

 

The self-training approach allows for a wide 

range of pattern considerations, such as data 

selection to pseudo-label, reusing pseudo-labels 

dataset in subsequent training of the algorithm, 

and pause principles (Triguero et al., 2015). The 

technique for selecting the data used to generate pseudo-labels is critical as it decides the set of data that 

will be included in the training dataset for the model training. In conventional self-training circumstances 

wherein this decision is based on prediction probability, the degree of probability estimations significantly 

influences the algorithm's effectiveness. Prediction probability ordering for unlabelled data, in particular, 

should indicate the actual confidence level (Yidong Wang et al., 2022).  

https://towardsdatascience.com/self-training-classifier-how-to-make-any-algorithm-behave-like-a-semi-supervised-one-2958e7b54ab7
https://towardsdatascience.com/self-training-classifier-how-to-make-any-algorithm-behave-like-a-semi-supervised-one-2958e7b54ab7
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Figure 11: Perturbation based technique used in FixMatch Pipeline, unlabelled image is perturbated into weak and 
strong augmentation.(FixMatch) 

 

The primary classifier in self-training are, by principle, unaware of the existence of the wrappers technique 

(van Engelen & Hoos, 2020). As a result, they must be entirely trained again during every self-training 

cycle. When a classification model is trained progressively (i.e., by maximizing the objective functions on 

specific data samples or portions of the available data), an iterative pseudo-labelling technique identical to 

self-training might be useful (Lee, 2013). Instead of training the whole system again in every repetition, 

each data sample might be pseudo-labelled throughout the training process. Lee, who pioneered the 

pseudo-label approach, adapted the aforementioned approach to neural networks (Lee, 2013). As the 

pseudo-label anticipated in previous training rounds tend to be uncertain, the weights for the 

specific pseudo-labels grow over time. The methodology of pseudo-labelling is similar to self-training but 

different in that the classification model is not trained afresh with every pseudo-labelling phase; however, 

it is optimized with latest pseudo-labelled data and so formally varies from the wrapper methods concept. 

2.1.1.2 Perturbation-based methods 

 

Perturbation-based techniques are a type of approach that is often employed in semi-supervised learning. 

These strategies seek to boost a machine-learning model's efficiency by utilizing labelled and unlabelled 

data. The unlabelled data is disrupted or manipulated in some way in perturbation-based approaches to 

generate synthetic labels or more training instances (van Engelen & Hoos, 2020). 

 

Standard perturbation-based procedures include "consistency regularization" or "augmentation-based 

methods" (Yang et al., 2022). Techniques for data augmentation are utilized in this approach to generate 

several augmented variants of each unlabelled data point. The model is taught to predict consistently 

across various upgraded versions. These augmented variants motivate the model to develop more resilient 

and generalizable representations (Sohn et al., 2020). The augmented data act as a form of regularization, 

using the unlabelled data to enhance the model's efficiency. 

 

In this manner, Perturbation-based approaches can benefit semi-supervised learning as they leverage the 

knowledge contained in unlabelled data, which tends to be numerous and easier to get than labelled data. 

By using this additional information, these strategies may enhance the model's generalization and 

precision, especially when labelled data is sparse or expensive to get (Arazo et al., 2020). 

 

https://amitness.com/2020/03/fixmatch-semi-supervised/
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Figure 12: Multi-Scale-Dilation Net. Concatenating the features from coarse to fine 
scales(.Lyu et al) 

 

2.2. Networks for Semantic Segmenation 

 

Modern semantic segmentation techniques count on potent deep neural networks efficiently extracting 

significant semantic information to identify the class kinds for every pixel (L.-C. Chen et al., 2018). There 

is typically a performance trade-off when developing deep neural networks for objects of various scales. In 

remote sensing images, for instance, the feature extraction of a small vehicle is more accessible and 

handled at higher resolutions when finer elements, such as wheels, can be seen. Since their entire outlines 

should be seen for semantic segmentation, larger things like highways and buildings benefit from having 

more global context when recognized (Lyu et al., 2021). 

There are numerous ways to address the multiscale issue while designing deep neural networks. The initial 

approach gradually reshapes features from coarse to fine scales(Shelhamer et al., 2016). The other method 

is constructing a multiscale feature detection block in the center of the deep learning models (L.-C. Chen 

et al., 2018). Graph networks, Self-attention have also been employed to collect data globally and 

strengthen the characteristics of each pixel (Li & Gupta, 2018).  

To address the multiscale challenge in semantic segmentation of the UAVid dataset, we explore some 

existing networks based on the approaches mentioned above to deal with multiscale issues in the dataset. 

Here, we review some of the network architecture designs to apprehend the networks' working better. 

2.2.1. Multi-Scale-Dilation Net (MSDNet) 

 

As the very prime bid to handle the multiscale challenges in the UAVid dataset, the multi-scale-dilation net 

is introduced (Lyu et al., 2020). The basic concept is derived from the ideology of multiscale image inputs, 

in which each image's input dataset undergoes scaling by the "scale to batch and batch to 

scale"  operations. The intermedial feature is then concatenated across “coarse to fine scales” before being 

used to generate the ultimate semantic segmentation result. Figure 12 illustrates the MSDNet architecture. 

In the following diagrams, the Trunk is representing the extraction of features, the Feat shows the 

features, and the Seg is the final segmentation head. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.arxiv-vanity.com/papers/2102.03099/
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Figure 13:Illustration of Hierarchical 
Multi-scale Attention net 
architecture.(Lyu et al) 

Figure 14:Illustration of Feature 
Level Hierarchical Multi-Scale 
Attention net architecture.(Lyu 

et al) 

 

2.2.2. Hierarchical Multi-Scale Attention Net (HMSANet) 

 

The Hierarchical multiscale attention net (Tao et al., 2020) is suggested as a hierarchical attention 

mechanism for learning to merge semantic segmentation outputs from adjacent scales. Deep neural 

networks are taught to classify images while anticipating weighted masks for score map merging. This 

technique performs best in the multiscale pixel-level semantic segmentation challenge of the Cityscapes 

dataset (Cordts et al., 2016). The hierarchical method permits for variable network architectures during 

training and inference; for example, during training, the network may include just 2 branches of 2 adjacent 

scales; however, during testing, the network may include 3 branches of 3 adjacent scales, as illustrated in 

Figure 13. The terms up refer to bilinear upsampling and down refers to bilinear downsampling. 

 

 

 

2.2.3. Feature Level Hierarchical Multi-Scale Attention Net (FHMSANet) 

 

The FHMSANet is the upgraded version of HMSANet; the latter has a limitation: When mixing score 

maps, it considers the score maps of adjacent scales through linear interpolation, whereas the former has 

better score maps through interpolation of features contrary to the previous (Lyu et al., 2021). It moves 

the Seg that is segmentation head to the last of the fused features, which makes the difference and 

produces better score maps. Figure 14, shows the architecture of FHMSANet where segmentation head is 

moved after the fused features.  

 

 

https://www.arxiv-vanity.com/papers/2102.03099/
https://www.arxiv-vanity.com/papers/2102.03099/
https://www.arxiv-vanity.com/papers/2102.03099/
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Figure 15: Framework of the model 

 

2.3. Self-Training using BiMSANet 

 

Bidirectional multiscale attention networks (BiMSANet) is a good solution for the multiscale challenges  in 

the semantic segmentation task (Lyu et al., 2021). This method merges the features directed by the 

attentions of multiple scales along bi-directional routes, i.e., fine-to-coarse and coarse-to-fine. It is 

motivated by the multiscale attention technique (Tao et al., 2020) and the feature-level fusion strategy (L.-

C. Chen et al., 2017). This method was tested over the new UAVid2020 dataset (Lyu et al., 2020). Owing 

to its oblique seeing style, one of its difficulties is the significant scale variance across and within classes 

for various things. This approach delivers the best results with an mIOU value of 70.8% (Lyu et al., 2021). 

This method exceeds the current top-ranked solution, which focuses on addressing the multiscale problem 

by over 0.8%. 

 

To achieve elegance and efficacy, we drew inspiration from both the Naive-Student model (L. C. Chen et 

al., 2020) and Bidirectional Multi-Scale Attention Networks (BiMSANet) (Lyu et al., 2021)(discussed in 

section 4.4). To address the constraints of insufficient labelled data or more unlabelled data, the self-

training and semi-supervised learning approaches from the Naive-Student model were investigated. 

BiMSANet is utilized to handle the multi-scale challenge in the semantic segmentations of the UAVid 

dataset. Furthermore, Ye Lyu's (the author) code for this network is a publicly available and adequately 

maintained library with ample documentation for modifying its use. As the network gains cutting-edge 

efficiency, it has been broadly adapted for other activities by other individuals, with keen community 

involvement providing an additional benefit in adapting this network for our research. 
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Figure 16: Scene complexity in UAVid dataset 

 

3.  DATA DESCRIPTION 

This chapter contains a short summary of the UAVid dataset (Lyu et al., 2020), the class definition used in 

semantic segmentation, and the dataset splits arrangement used in this work under section 3.1, 3.2, and  

3.3, respectively. 

3.1. UAVid Dataset 

The segmentation of urban scenes, particularly the street environment, will be addressed in this work 

using a unique UAVid semantic segmentation collection that includes high-resolution UAV photos in 

oblique angles. A high-resolution dataset for semantic segmentation of UAV videos that focuses on the 

street segment is called UAVid. The collection comprises 42 sequences (sequences 1 through 42), each 

recorded in oblique views at a 4K high resolution. A total of 420 photos have been densely classified, with 

eight classifications to complete the work of semantic tagging. The eight categories include background 

clutter, moving cars, static cars, low vegetation, roads, buildings, trees, and low vegetation (Lyu et al., 

2020). 

This dataset is distinctive in that it poses various challenges, such as the wide-scale difference between 

semantic classes at different distances or belonging to other categories. To Identify movable objects in 

urban street scenes (distinguishing moving cars from static cars) and the conservation of temporal 

uniformity for greater forecasting across frames. These difficulties highlight the originality of this dataset. 

Eight item classes were assigned to 420 high-resolution photos from 42 video sequences. Concerning the 

number of labeled pixels, this dataset is 10 times larger than the Vaihingen dataset (Rottensteiner et al., 

2014), and 5 times larger than the CamVid dataset (Brostow et al., 2008), and twice as large as the 

Potsdam dataset. 
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Modern, lightweight drones like the DJI phantom3 pro and phantom4 were utilized for the collection of 

data. The UAVs eliminate any apparent blurring effects brought on by platform motion by flying 

consistently at a top speed of 10 m/s. The UAVs' standard cameras are used to capture video using only 

RGB channels. 

This dataset contains scenes that are dynamic and complex with a variety of items. With both stationary 

and moving elements, the complexity of the scene in real life is what this dataset seeks to achieve. For the 

UAVid dataset, scenes near streets are preferred because they're complicated and have more continuous 

human activity. The scene has many objects, including automobiles, pedestrians, buildings, highways, 

plants, billboards, light poles, traffic signals, etc. 

 

 
Table 1: Dataset Description 

S.NO.  Features  Description 

1 UAV used for data collection DJI phantom3 pro & DJI phantom4 

2 UAV flying speed and height 10m/s speed  & 50m height 

3 Channels of dataset RGB channels 

4 Oblique view Camera angle 45 degrees to the vertical direction 

5 High-resolution  4K resolution videos recording & 4096*2160 or 
3840*2160 image resolution 

6 Complex and dynamic scenes The dataset contains both static & moving objects 

 

3.2. Class definition  

Thoroughly  labelling to all variety of items in the urban scenario  in the high-resolution UAV image is 

prohibitively expensive. As a result, only those that are most familiar and representatives categories of 

objects are tagged in the UAVid dataset (Lyu et al., 2020). In total, eight classes are chosen for semantic 

segmentation: Clutter, Building, Road, Static_car,  Tree,  Vegetation, Human, and Moving_car as shown in 

Figure 17. 

 Each class is defined below: 

1. clutter: all items that do not correspond to one of the classes defined below. 

2. building: represents dwelling house, garage, skyscraper, security booth, and under-construction 

structures. Walls and fences that stand alone are not featured. 

3. road: the surface of a pathways or bridges on which cars can legitimately drive. There are no 

parking lots included. 

4. static car: non-moving vehicles such as cars, buses, trucks, autos, and tractors. Motorcycles and 

bicycles are not counted. 

5. tree: a tall tree with a canopy and a main trunk. 

6. vegetation: shrubs, grass and bushes. 

7. human:  peoples as pedestrian, biker, and all other humans engaged in various activities. 

8. moving car: vehicles include moving cars, buses, trucks, and tractors. Motorcycles and bicycles are 

not counted. 
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Figure 17: Illustration of different classes with their assigned colour from the UAVid dataset. Original images, 
ground-truth labels, and predicted labels in first, second, and third row, respectively.(uavid.nl) 

 

 

 

3.3. Dataset splits 

 

The 42 heavily annotated sequences of videos are organized into three parts: training, validation, and 

testing. UAVid doesn't split the data entirely at random, but rather in such a way that each split is 

representative of the variety of distinct scenes. Every class should be represented in all three splits. UAVid 

is divided into sequences, with each sequence coming from a distinct scene location. According to this 

technique, it receives 20 training sequences (200 labelled image) and 7 validation sequences (70 labelled 

image) for training and validation set, respectively, with publicly accessible annotations. The test set holds  

the remaining 15 sequences (150 labelled image), the labels of which have been restrained for 

benchmarking purpose. The size ratios between the training, validation, and test sets are almost 3:1:2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://uavid.nl/


Semi-Supervised Semantic Segmentation of UAV Videos 
 

20 

Figure 18: Methodology Flowchart 

 

4. METHODOLOGY 

In this chapter, we discuss the methodology used to semantically segment the UAVid dataset using semi-

supervised techniques, as shown in Figure 18. Section 4.1 elaborates the procedures for extracting frames 

from the UAVid dataset videos. Section 4.2 then describes the annotation approach used to label the 

frames. We examined how to build pseudo labels on unlabelled data frames in Section 4.3. Section 4.4 

describes the segmentation model, BiMSANet. The architecture and specifics of the model are detailed 

further in subsection 4.4. Lastly, in section 4.5, the metrics utilized to compute the effectiveness of the 

suggested methodology for UAVid semantic segmentation, is described.  
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Figure 19: Frames extraction from UAVid video with a time interval of 1 second 

 

4.1. Frames Extraction  

 

To obtain frames from the UAVid data videos, the frame extraction procedure was set up employing 

Python and the OpenCV package. The videos were fed into the program utilizing the OpenCV package, 

which provides a dependable and efficient approach for video manipulation and processing (Rashmi, 

2020). 

 

The frame extraction criteria were configured to extract frames at varied time intervals. Time intervals of 1 

second, 2 seconds, 3 seconds, and 4 seconds were chosen to collect frames at varying rates. With a rate of 

motion of 20 frames per second, the frame extraction technique involved calculating the frame skip 

frequency for each time interval. This skip frequency defined how many frames would be omitted between 

extractions, ensuring that the appropriate time intervals were met. Frames were extracted and preserved 

based on the calculated skip frequency for each time interval using a loop that successively scanned the 

video frames. The retrieved frames were saved in a specific area with proper file naming standards, 

allowing for easier categorization and retrieval for later analysis or utilization. 

 

 

Finally, the frame extraction algorithm successfully extracted frames from the UAVid data videos at 

various time intervals using Python and the OpenCV package. Python and OpenCV together created an 

efficient and adaptable framework for frame retrieval. Frames were accurately recovered for later analysis 

or uses in UAV video processing and evaluation by establishing the intended time intervals and applying 

frame skipping according to the video's frame rate. 

 

 

 



Semi-Supervised Semantic Segmentation of UAV Videos 
 

22 

Figure 20: Example of annotation techniques, pixel-level, superpixels-level, and polygon-level annotations from left-
to-right order.(uavid.nl) 

 

4.2. Annotation method 

 

We used annotations provided in the UAVid dataset to conduct our research. The UAVid dataset has 

supplied densely labelled fine-annotation for high-resolutions of UAVs photos. All of the labels were 

obtained using the UAVid labeller tool (Lyu et al., 2020). It took about two hours to classify total pixels in 

a single photo. Annotators can use pixels, super-pixels, and polygon-level annotations method, as seen in 

Figure 20. The UAVid approach uses a strategy similar to the COCO-Stuff (Caesar et al., 2016) dataset for 

super-pixel level labelling. UAVid initially uses the SLIC method (Achanta et al., 2012) to divide the photo 

in to super-pixels, which are groups of pixels which are spatially related and exhibits common features, 

such as colour and textures. 

  

The pixels inside the identical superpixels get labels of the same sort of class. Superpixel-level annotating 

is particularly useful for items with sawtooth edges, such as trees. UAVid provides 

superpixels classification at four distinct scales, allowing labellers to better adapt to items with varying 

scales. Polygon annotations is especially beneficial for annotating things with straight edges, such as 

buildings, whereas pixel-level annotation acts as a primary annotating tool. The UAVid annotating tools 

also includes video play feature nearby specific images to aid in determining whether or not particular 

items are in motion. Because there may be overlapping items, it labels the overlapping pixel as belonging 

to the semantic class which is closest to the cameras (Lyu et al., 2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://uavid.nl/
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Figure 21: Pseudo Labelling, Semi-supervised learning 

 

4.3. Generate pseudo labels through semi-supervised learning 

 

 The main problem in semi-supervised techniques is to efficiently use the massive unlabelled data. One 

extensively used approach is pseudo labelling to deal with the above problem (Dong-Hyun Lee, 2013). As 

illustrated in Figure 21, the model provides pseudo labels to unlabelled data based on model predictions 

made on the fly. These data featuring pseudo labels are going to be used as supplemental supervision 

while training to improve performance. 

 

The following are the main properties of semi-

supervised pseudo-labelling (L. C. Chen et al., 

2020): 

 

• Unlabelled data is being used in the 

process of training. 

• Using the model-generated pseudo 

labels on unlabelled dataset to augment 

the training dataset. 

• In training, combine labelled and 

pseudo-labelled datasets to learn more 

information. 

 

By utilizing the unlabelled data and assigning 

pseudo-labels on them, the process of pseudo-

labelling leverages the benefits of semi-

supervised learning (Dong-Hyun Lee, 2013). It 

uses the additional information in the 

unlabelled data to enhance the model's 

performance beyond what could be enhanced 

with only the limited labelled dataset. It is 

fundamental to observe that the efficiency of 

pseudo-labelling is dependent on the quality of 

the pseudo-labels and the distribution of 

unlabelled data (Arazo et al., 2020). In the ideal 

situation, the pseudo labels should be accurate 

enough to deliver meaningful supervision to the 

model throughout training (Iscen et al., 2019). 

 

We assume the merits of generated pseudo-labels will be comparable to model prediction on the 

validation set having original labels. Suppose the unseen images are comparable to the training images. In 

that case, the accuracy on the validation set is more likely to be a better predictor of the model's 

performance on the unseen images with pseudo labels. The model's generalization ability should be more 

trustworthy when the unseen images have comparable properties and distribution to the training data. 

 

Overall, pseudo-labelling is a semi-supervised learning strategy since this blends original-labelled and 

pseudo-labelled data to improve training and capitalize on the advantages of using unlabelled data in a 

scenario of shortage of fully labelled dataset (Zhu & Goldberg, 2009).  
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Figure 22: Algorithm used in Semi-supervised semantic segmentation of UAVid dataset. Here 'xi' represent labelled 
images and 'yi' represent correspond annotation. 

In Figure 22, there is an illustration of the algorithm used to predict pseudo labels and to get the final 

output of semantic segmentation of UAVid videos. 

 

4.4. Model: Bidirectional multi-scale attention networks (BiMSANet) 

 

In this Sub-section, we will introduce the model used to predict pseudo-labels and to final semantic 

segmentation of the UAVid dataset. 

4.4.1. BiMSANet Architecture 

 

The BiMSANet approach also considers the hierarchical attention mechanism and feature level fusion. 

There is an illustration of the framework of the BiMSANet in Figure 23. “The image pyramid is formed 

for the input image I of size H × W, by adding two additional images, I2× and I0.5×, which are obtained by 

bi-linear up-sampling I to size 2H × 2W and bi-linear down-sampling I to 1/2H × 1/2W” (Lyu et al., 

2021).  The BiMSANet have 2 hierarchical paths for features fusion. The structure for each pathway is 

similar as for feature-level hierarchical multiscale attention nets. The arrangement of the two paths permits 

feature fusion from two sides, which helps to determine the fusion weights on a better scale.   

 

The network requires different characteristics for two paths; thus, it employs feature level fusion. When 

the score maps are utilized for mixing, the Feat1 and Feat2 in both paths will be identical, limiting the 

representation capability of the paths. Both paths make use of their specific attention features and 

branches. Attn1 and Feat1 represent the coarse-to-fine path, whereas Attn2 and Feat2 represent the fine-

to-coarse path (Lyu et al., 2021). The Feat1 and Feat2 from the two paths are integrated hierarchically 

among scales to generate the ultimate feature, which concatenates the properties of the two paths. 
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Figure 23: Architecture of the BiMSANet. (BiMSANet) 

BiMSANet also uses parameter pooling between different branches. Trunk, Attn1, and Attn2 are three 

branches that correlate to the three different scale and share the identical network parameters. Feat1 and 

Feat2 in all the 3 branches differ because they represent the product of distinct images inputs via the 

similar trunk. 

 

 

 

4.4.2. Architecture Details 

In this Sub-section, the description of  the components used in this architecture are mentioned. 

 

Trunk: BiMSANet chose the deeplabv3+ (L.-C. Chen et al., 2018) as the trunk to extract features from 

each scale properly. As the backbone, the model uses wide residual networks (Zagoruyko & Komodakis, 

2016), specifically the WRN-38, previously trained on the imagenet data (Deng, 2009). Deeplabv3+'s 

ASPP module offers convolutions with atrous rates of 1, 6, 12, and 18. The deeplabv3+ features called fb 

are improved further with the following modules: Conv3 × 3(256)- > BN- > ReLU- > Conv3 × 3(256)- 

> BN- > ReLU- >  Conv1 × 1(nc) (brackets contains the number of output channels), which correlates 

to the modification of features in the Seg of the HMSANet preceding the final segmentation (Lyu et al., 

2021). Conv, BN, and ReLU are convolution, batch norm, and rectified linear unit acronyms (L.-C. Chen 

et al., 2018). 

 

An image input I is transform by the trunk T into feature maps f with nc channels, i:e., f = T(I). nc = 

nclass × d, where nclass represents the number of classes. The channel expansion rate is represented by d. 

Here expansion rate d is set to 4. The first 1/2nc channels are dedicated to the Feat1, whereas the second 

1/2nc channels are dedicated to the Feat2 (Lyu et al., 2021). 

 

 

https://arxiv.org/pdf/2102.03099.pdf
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Figure 24: Confusion matrix with green column as positive and red column as negative. 

Attention head: The Attn1 and Attn2 have the same structure but differ in their specifications. The 

attention heads translate the deeplabv3+ features fb to the attention weights α, β (ranging between 0.0 to 

1.0 with 1/2 nc channels) for the two paths. The structure is composed of the following parts for each 

attention head: Conv3 × 3(256)- > BN- > ReLU- > Conv3 × 3(256)- > BN- > ReLU- > Conv1 × 

1(1/2 nc)- > Sigmoid (brackets contains the number of output channels) (Lyu et al., 2021). 

 

Segmentation head: The segmentation head called Seg is responsible to transform the input fused 

feature maps ffused to a score maps S (8 channels in case of UAVid dataset), which correlates to the 

probabilities of class for each pixels, i.e., S = Seg(ffused). The segmentation head Seg is basically the 

convolution of size 1×1, Conv1 × 1(nclass). The final class labels for all pixels are output by the Argmax 

operation alongside the channel dimension (Lyu et al., 2021). 

 

Auxiliary semantic head: Model also uses the semantic segmentation auxiliary head for every branch in 

training, as in (Tao et al., 2020) , which is composed of 1×1 convolution, Conv1 × 1(nclass). 

 

4.5. Evaluation Metrics 

 

The comprehensive confusion matrix for each semantic classes created from the network's test semantic 

segmentation results can be used to calculate the quantitative efficiency of the developed algorithm. The 

resulting confusion matrix includes an extensive description of each class's accurate and incorrect 

classifications. Figure 24 illustrates a binary classification in a basic confusion matrix, with green column 

indicating right (positives) classifications and red column indicating incorrect (negatives) classifications. 

 

 

 

 

To evaluate the model output, we initially must determine what constitutes a prediction as positive 

detection or a true positive (Jordan, 2018). The model will calculate the IoU score for every (targets, 
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Figure 25: Threshold value define True positive and False negative.(Evaluating image segmentation model) 

predictions) and then identify which mask combinations have an IoU score higher than a predefined 

threshold value. Figure 25 shows, a mask combination, if the IoU score is higher than threshold value of 

0.5 only then it is true positive, otherwise it is treated as false negative. In our case of the UAVid dataset, 

we put this threshold value to 1.0, which means if the predicted and ground truth mask entirely overlap, 

only then is that pair treated as true positive. 

 

 

 

Pixel or Overall Accuracy: The most often used statistic for evaluating semantic segmentation is simply 

reporting the share of pixels in the test images that was identified correctly (Jordan, 2018). Pixel accuracy 

is frequently given independently for each class and globally throughout all classes. We are simply 

evaluating a binary mask when calculating per-class pixel accuracy; a true positive reflects the pixels that 

are accurately predicted to belong to the particularly given classes (depending on the target masks), 

whereas a true negative reflects the pixels that have been correctly identified as not falling within the 

specific given classes (Nitr, 2020). 

 

 

Overall Accuracy =            TP + TN                                                              

 TP + TN+ FP + FN                                                                  
                                                                                                                                                       Equation (4.1) 

 

When the class appearance is minimal within the image, or the pixel number distribution of multiple 

classes is imbalanced, this metric can produce deceptive findings because the measure is biased in 

reporting how effectively the model identifies negative cases (i.e., when the specific class is absent) 

(Shorten & Khoshgoftaar, 2019). In a case, where few classes lead the dataset, the model can achieve high 

accuracy by predicting the leading class for most pixels while failing miserably on the minority classes (Lyu 

et al., 2020). However, when working with class-imbalanced data, other measures such as Mean 

intersection over union (mIoU), F1-score, Recall, and Precision are more effective evaluation metrics 

(Marsocci & Scardapane, 2022). 

 

 

Mean Intersection over Union (mIoU): In the case of semantic segmentation with many classes, mIoU 

is typically thought to be a more useful and reliable indicator than total accuracy (Jordan, 2018). It assists 

in determining how well the model can segment each class, such as both dominant and minority classes. 

https://www.jeremyjordan.me/evaluating-image-segmentation-models/


Semi-Supervised Semantic Segmentation of UAV Videos 
 

28 

Figure 26: Representation of IoU formula-the area of overlap as TP; 
the area of union as TP+FP+FN. 

mIoU gives a more thorough evaluation of the model's ability to capture the borders and spatial 

interactions of various objects or regions by examining per-class performance (Nitr, 2020). 

 

The Intersection over Union (IoU) statistic, commonly known as the Jaccard index, compute the 

percentage overlap between the ground truth and our prediction output (Rezatofighi et al., 2019). Simply 

put, the IoU metric counts the quantity of pixels shared by the ground truth and the predicted masks 

divided by the overall pixels shared by both the masks. 

 

IoU =           TP                          

             TP + FP + FN 
                                                                                                                                                  Equation (4.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

The IoU score is generated separately for each semantic class and then meant across all classes to generate 

an overall mIoU score used in our semantic segmentation prediction. 
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Figure 27: Representation of semantic classes with their identity colour. 

 

5. RESULTS  

The  interpretation of the research outcomes is presented  in this chapter through Experiments 1-3, using 

different combination of the frames extracted from the UAVid videos in section 4.1. Here, BiMSANet is 

the base classifier used for semantic segmentation in all the experiments, which perform segmentation for 

all 8 classes in the dataset as shown in Figure 27. We conducted 3 experiments with distinct combinations 

of frames having original labels and pseudo-labels generated by the trained model on original labels. In 

section 5.1 and 5.2, we presented model performance results and quality of pseudo labels, respectively. We 

discuss experiment – 1, 2, and 3 in section 5.3, 5.4, and 5.5 respectively and report accuracy of all 

experiments through mIoU metrics on test set. We have 10 original labels with 5 sec time interval in each 

sequence.  

 

All models used in the experiments were built with Pytorch (Paszke et al., 2019) and performed on an 

exclusive Nvidia A40 GPU with 48GB of memory and a batch size of two images. The model makes use 

of mixed precision and synchronous batch normalization (Lyu et al., 2021). The training optimizer used 

stochastic gradient descent with momentum 0.9 and weight decay of 5e−4. A "polynomial" learning rate 

policy is used (Liu et al., 2015), with a poly exponent of 2.0. The initial rate at which learning begins is set 

at 5e-3. The model undergoes training for 175 epochs using random image selection. We use random 

scaling to scale the photos from 0.5× to 2.0×. Image patches of 896 × 896 pixels in size are obtained 

through random cropping.  

 

Even though the model in all experiments was trained for the 8 semantic classes presented in the dataset, 

the mIoU is calculated for 7 semantic classes, excluding humans. We exclude Human class from the 

evaluation part, as it bring class imbalance in the dataset because the size of this class is very small and 

have very less pixel share in the dataset. Most important is when we produce pseudo labels this class 

performs poor accuracy and only become the potential source of noise which negatively effects the 

model’s efficiency. In section 5.2, we presented the quality assessment of the semantic classes in pseudo 

labels. We selected the classes with an accuracy of more than 50% in pseudo labels to ensure that the 

model feed with good quality information for better generalization.  

5.1. Model Performance 

 

Our research uses BiMSANet as a base model to predict the semantic segmentation for multiple classes in 

the UAVid dataset. Initially, the base model is trained with ground-truth labels, in our case, 10 labels with 

5 sec time intervals from each sequence. We used 200 labelled images for model training phase, and we 

have 70 labelled images for validation. We used a validation set to assess the efficiency of the trained 

model on unseen samples; it estimates how well the model can generalizes to new samples. It aids 
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Ground Truth 

Prediction Validation 

Original Image 

decision-making, such as choosing the optimum model or hyperparameter configuration. The validation 

set serves as an interim checkpoint to confirm the model's performance before the final test set evaluation. 

 
Table 2: Accuracy of the model in mIoU metrices for semantic classes on validation set. Mean, maximum and 
minimum scores are in blue, green and red respectively. 

Methods mIoU Clutter Building Road Static_car Tree Vegetation Human Moving_car 

BiMSANet 78.06 73.51 94.07 85.65 80.88 81.76 74.33 49.76 84.55 

 

 

Table 2 depicts the semantic 

segmentation results on the 

validation set, and the measuring 

metric is mIoU. The IoU score for 

all eight semantic classes can be 

observed; the building class has the 

highest accuracy while the Human 

class has the lowest accuracy, and 

the total accuracy for the model is 

mIoU is 78.06, which shows that 

the model can generalize to new 

instances with this accuracy. 

 

Figure 28 shows the ground truth, 

the prediction by the base model on 

the validation image, and the 

original image from seq18 (image 

000000) in the validation set. We 

used bounding boxes to compare 

the segmentation quality in the 

prediction label with ground truth. 

The blue box shows that Building 

and Tree classes are well segmented 

with clear-cut boundaries. Human 

class is segmented partially; the 

density of humans in the predicted 

label is reduced compared to the 

ground truth, as represented in the 

white box. The orange box shows 

that model predicts the road in place 

of the clutter class. The model 

generally performed well with 

balanced prediction to different 

semantic classes, whether small or 

large.   

 

 

 

 Figure 28: Semantic segmentation results on Validation set. Bounding 
boxes in blue, white, and orange shows comparison. 
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Frame 380 

Frame 400 

Frame 420 

Figure 29: Quality of Pseudo labels generated. Frames are 
shown from seq1 of training set. 

 

5.2. Quality of Pseudo labels 

 

In our research, we reduced the time interval between two frames from 5 to 1 sec to enhance the temporal 

resolution and label consistency. Initially, we had 10 labelled images in each video sequence, but after 

reducing the time interval, we needed to extract more frames from the video; we extracted new frames 

with a time interval of 1 sec and resulting in 46 frames in each sequence and 920 frames from all the 

sequence. Pseudo-labels were generated on the newly extracted frames with the help of a trained base 

model. We performed both visual and evaluation checks to ensure the quality of the generated pseudo 

labels. 

 
Table 3: Table 3: Accuracy of predicted labels on 200 common frames. 

 

We need the ground truth of those images to 

evaluate the model prediction on any images. In our 

case, we do not have ground truth for the newly 

extracted frames from the video sequence, but there 

are some common frames between the pseudo-

labelled set and the originally labelled set. For 

instance, initially, we had 0th, 100th, 200th, …, 900th 

frame with ground truth in each sequence, and after 

extracting new frames, we have 0th, 20th, 40th, 60th, 

80th, 100th, 120th, …., 900th frame with pseudo 

labels in each sequence. According to this scenario, 

we have 200 frames with ground truth out of 920 

frames. We can evaluate the accuracy of  200 frames 

that are common and have ground truth. We can rely 

on the model's generalization ability for the 

remaining frames, which we already evaluated on the 

validation set. 

 
Table 3 depicts the accuracy of generated pseudo-
labels over the 200 common frames among the 
original and pseudo-labelled sets. The Human class 
has lowest accuracy with 43.73% in pseudo labels, it 
will propagate noise to the model and degrade the 
ability of further prediction in Human class. From 
Figure 29, we can visually inspect the quality of 
pseudo labels for other frames by comparing them 
with Frame 400, which is common in both sets and 
has an accuracy score in mIoU metrics. And some 
frames have poor pseudo-labels due to blur-effect in 

the frames because of high speed of camera rotation. 

 

 

Methods mIoU Clutter Building Road Static_car Tree Vegetation Human Moving_car 

BiMSANet 76.72 75.33 93.74 87.49 76.15 82.98 73.41 43.73 80.92 
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Figure 30: Selected combination of frames for Experiment -1. 

 

5.3. Experiment – 1 (Exp – 1) 

 

In this particular experiment, the selection of a combination of frames, all original labels, and pseudo 

labels with a 1-second time gap. Each sequence has 10 original labels and 46 pseudo labels. Figure 30, 

depicts the chosen frame combination. We trained the model with 1120 images in total from all the 

sequences, driven by the notion that decreasing the time interval between frames can improve temporal 

resolution and label consistency, resulting in an improved model's ability to learn. 

 

 

 

 

In table 4, the IoU for all the semantic classes and mIoU are presented. The Building class shows the 

highest score with 89.13% and Vegetation class has the lowest score with 62.59%. The other classes shows 

prediction scores in between the above two classes and the mean of all the classes is mIoU shows 76.10%. 

 

 
Table 4: Accuracy of the model in mIoU metrices for semantic classes. Mean, maximum and minimum scores are in 
blue, green and red respectively. 

Methods mIoU Clutter Building Road Static_car Tree Vegetation Human Moving_car 

Experiment- 

1 

76.10 69.33 89.13 81.86 72.81 79.48 62.59 - 77.56 
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Figure 31: Semantic segmentation results with bounding boxes in green and red from predicted label compare to 
ground truth. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31, shows the original image, ground truth, and predicted results from the experiment – 1 for the 

image 000600 from seq22 in the test set. The bounding boxes in green and red colour from predicted label 

shows the quality of segmentation of Building and Vegetation class respectively. The red box shows that 

the model predicts some part of Vegetation as Clutter class; if we compare this area with the original 

image, the model predicts correctly. However, if we compare this area with ground truth, it is a wrong 

prediction. In ground truth, this area is labelled as Vegetation and not Clutter; in reality, this area is more 

similar to Clutter class. The other classes like Road, Tree,  Moving_ car, and Clutter performed well, but 

Static_car showed some drop in accuracy. 

 

5.4. Experiment – 2 (Exp – 2) 

 

In this particular experiment, we use other combination of frames, with all the original labels, and the 

pseudo labels which are adjacent to the original labels. So, from each sequence we took 28 pseudo labels 

and 10 original labels. In total, the model was trained with 760 images. The idea is to reduce the additional 

noise by reducing the number of pseudo labels and maintain the temporal resolution and label consistency 

by having adjacent pseudo labels. The adjacent frames are similar to original frames as shown in Figure 32, 

the pattern of information can be easily generalize by the model and help to better understand the 

dynamic objects. 

Original Image 

Ground Truth Predicted  

Original Image 
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Figure 32: Selected combination of frames for Experiment - 2. 

 Table 5 presents the result of semantic segmentation of different semantic classes with mIoU score. The 

green, red, and blue colour show the highest, lowest, and mean score values for semantic classes, 

respectively. The orange colour shows the semantic class with maximum improvement from the previous 

experiment. In this condition, the Static_car class shows massive improvement from 72.81% to 76.28%. 

The mIoU also shows better results and increased from 76.10% to 76.28%. 

 
Table 5: Accuracy of the model in mIoU metrices for semantic classes. Mean, maximum and minimum scores are in 
blue, green and red respectively, and orange box shows maximum improvement. 

Methods mIoU Clutter Building Road Static_car Tree Vegetation Human Moving_car 

Experiment- 

2 

76.28 68.68 88.55 80.46 76.28 79.71 62.49 - 77.77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground Truth Prediction Exp-1 

Prediction Exp-2 Original Image 

Ground Truth 

Figure 33: Semantic segmentation results with orange bounding box shows highest improvement in Static_car class 
and red box shows improvement in Tree class. 

Predicted Exp-1 

Predicted Exp-2 
Original Image 

Ground Truth 
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Figure 34: Selected combination of frames for Experiment - 3. 

 

 

Figure 33 shows the ground truth, original image, and predicted labels from the experiment – 1 and 

experiment – 2 for image 000300 from seq28 in the test set. The orange bounding box compares the 

Static_car class in the experiment – 1 and experiment – 2; this class greatly improved in experiment – 2. 

The other classes, like Moving_car and Tree, also show improvement compared to experiment – 1, and all 

other classes are more or less the same. The red bounding box shows the area of the Tree and Vegetation 

class; here Tree class has improved compared to experiment – 1. 

 

5.5. Experiment – 3 (Exp – 3) 

 

In this experiment, we use another combination of frames, all original labels, and pseudo labels which are 

not adjacent or away to the original labels. So, from each sequence we took 28 pseudo labels and 10 

original labels, which similar to experiment - 2. The model is trained on 760 images from all the sequences. 

Sometimes, the adjacent frames are more or less similar to each other when the time interval is small and 

unable to provide additional valuable information. So, we took pseudo labelled fames which are not 

adjacent to original labels, can bring  more valuable additional information. From Figure 34, pseudo 

labelled frames at 0th, 40th, 60th and 100th position have different scene scenario which can bring different 

point of view and add more information.      

 

 

 

 

Table 6, contains the semantic segmentation results for different semantic classes in mIoU metrics. The 

green, red, and blue colour show the highest, lowest, and mean score values for semantic classes, 

respectively. All the semantic classes show improvement in accuracy except Static_car and Moving_car; 

the above classes lose their accuracy by a slight margin. There is a significant gain in mIoU from 76.28% 

to 76.51%.  
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Table 6: Accuracy of the model in mIoU metrices for semantic classes. Mean, maximum and minimum scores are in 
blue, green and red respectively 

Methods mIoU Clutter Building Road Static_car Tree Vegetation Human Moving_car 

Experiment- 

3 

76.51 69.28 88.57 81.54 75.97 79.73 62.87 - 77.58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 shows the ground truth, original image, and predicted labels from experiment – 2 and 

experiment – 3 for image 000900 from seq30 in the test set. We show a prediction comparison between 

Exp – 2 and Exp – 3 with the help of bounding boxes. The blue box shows improvement in predicting 

Tree and Vegetation semantic class in Exp – 3 compared to Exp – 2. The green box shows that the 

Building class is better predicted with clear-cut boundaries in Exp – 3. The orange box shows slight 

depreciation in the prediction of the Moving_car and Static_car class in Exp – 3 compared to the 

previous. 

 

 

 

 

 

 

 

Figure 35: Results of Semantic Segmentation from Experiment – 3, bounding boxes in orange, blue and green colour 
shows prediction comparison of different semantic classes from experiment – 2 and experiment – 3. 

Ground Truth 
Prediction Exp-2 

Prediction Exp-3 Original Image 
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6. DISCUSSION 

In the discussion chapter, we elaborate on the semantic segmentation results for UAVid obtained from 

different experiments in Chapter 5. There is comparison between the results of three experiments 

conducted in this research with the previous best model results in section 6.1. We analyze each class's 

semantic segmentation results from different experiments in section 6.2. 

6.1. Model Comparisons 

 

This part presents the analysis of the semantic segmentation results on test set images from UAVid data 

for BiMSANet (Lyu et al., 2021) and our three separate experiments. Table 7 shows the IoU score values 

for each semantic class and the model's total mIoU scores. It is evident from the table 7 that Exp – 3 

outperforms all other models in terms of the mIoU measure. In order to generalize each different class, 

the BiMSANet scores the highest for Clutter and Tree classes only, the Exp – 1 rank first for classes of 

Building and Road, the Exp - 2  scores maximum for classes of Static_car and Moving_car, and the Exp – 

3 ranks first for Vegetation class only but received the highest mIoU for balanced prediction ability among 

all the different classes. 

 
Table 7: It depicts the comparison of efficiency of different models in mIOU and for each class in IoU. Red is used 
to show 1st place, green is for the 2nd place, and blue represents the 3rd place. 

Methods mIoU Clutter Building Road Static_car Tree Vegetation Human Moving_car 

BiMSANet 76.43 69.94 88.63 81.60 75.62 80.38 61.64 - 77.22 

Experiment- 

1 

76.10 69.33 89.13 81.86 72.81 79.48 62.59 - 77.56 

Experiment- 

2 

76.28 68.68 88.55 80.46 76.28 79.71 62.49 - 77.77 

Experiment- 

3 

76.51 69.28 88.57 81.54 75.97 79.73 62.87 - 77.58 

 

 

Figure 36 depicts qualitative comparisons of predictions from different experiments with the BiMSANet 

model's prediction over the test set of UAVid. The predicted image is 000400 from seq30 in the test set. 

We used three bounding boxes of orange, white, and blue colour to show the example area from the 

image. The orange box region shows that the Exp-1 model struggles to provide coherent predictions for 

static or moving cars. However, all the other 3 models generates better predictions due to no noise in the 

BiMSANet model and less noise with good temporal precision in the Exp-2 and Exp-3 models, and Exp-2 

outperforms all other models with the best IoU. The BiMSANet incorrectly categorized some parts of the 

road in yellow box as clutter. In contrast, the other two models forecasted that part of road with less error 

and Exp – 3 predict it with least error due to better scene comprehension. The area of parking, which is a 

part of the clutter class, is anticipated to be the road in the white box region by BiMSANet, Exp-2, and 

Exp-3, although Exp-1 explicitly forecasted this region as clutter; this is aided by the additional 
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information offered by an extensive training set. All models incorrectly classify the clutter between the 

vegetation area as vegetation class in the blue box area, whereas Exp-3 makes minor mistakes and the 

BiMSANet makes the most. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.  Experiments Analysis 

 

This section discusses how the model behaves or produces specific results in different experiments. All 

three experiments were performed under the same parameter for the model. All three experiments differ 

in selecting pseudo-label frames added with the original label to make large training sets. In all three 

experiments, we observed that selecting a particular combination of pseudo labels with original labels to 

enhance the training dataset significantly affects the segmentation outcomes. 

 

 

Figure 36: Qualitative comparisons of different scenarios with BiMSANet model on the UAVid test set. 

Prediction Exp-1 

Prediction Exp-2 

Prediction Exp-3 Original Image 

Ground Truth 

BiMSANet 
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• Experiment – 1 : Table 7 shows that Exp – 1 outperforms all the other three models in the 

classes of Building and Road. There is a gain of 0.5% and 0.26% in the Building and Road classes, 

respectively, compared to the second-best. Further, it effectively segments the classes of 

Vegetation, Clutter, and Moving_car but does not perform well with classes of Static_car and 

Tree and has the least mIoU. We added 920 pseudo labels with 200 original labels to train the 

model in this designed setting. When we use pseudo labels to augment the dataset, the model's 

performance depends on the quality of pseudo labels. We assessed the merits of pseudo labels in 

section 5.2; Building and Road classes have high IoU accuracy. Both the classes benefitted from 

additional valuable information that comes with pseudo labels, which helps to predict these 

classes better.  

Semantic classes of Vegetation and Moving_car were segmented well because the additional 

information from the pseudo labels was reliable, as these classes have good IoU accuracy in 

pseudo labels. Particularly for Moving_car, this class is benefitted from the better temporal 

resolution, which is the 1-sec interval between two frames. Static_car is the only class that 

drastically dropped its accuracy by 2.81%. The reason behind the poor performance for Static_car 

class is that the model wrongly classified static cars as moving cars due to the small interval 

between the two frames, which gives more dynamic information. This classification may be 

correct in real scenarios because mostly the static cars are not present in the middle of roads; they 

should be at the edge of the roads, as parked. Figure 37shows an orange box that compares the 

ground truth having static cars in the middle of roads and the predicted label from Exp-1, which 

classifies them as moving cars on behalf of better dynamic information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Experiment – 2 : Table 7 shows that Exp – 2 performs best for classes of Static_car and 

Moving_car compared to all other models. Exp -2 predictions for Static_car and Moving_car 

outperform the BiMSANet model's prediction by 0.66% and 0.55%, respectively. Overall 

performance in terms of mIoU is higher than Exp – 1. In this experiment, we only selected the 

pseudo labels adjacent to the original labels; this reduced the number of pseudo labels from 920 

to 560. The idea is to reduce the noise that comes with pseudo labels, and selecting the pseudo 

labels adjacent to the original labels helps eliminate unwanted noise and maintain the temporal 

resolution, which is more important for understanding dynamic changes. 

 

Ground Truth Prediction Exp-1 

Figure 37: Wrong classification of Static_car as Moving_car, example image is 000100 from seq41 in test set. 
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Figure 38: Blend of Original image and predicted label from Exp-3, image 000000 from seq21 in test set. 

In this case, the model classified both the Static_car and Moving_car classes more accurately 

because the model learned better dynamic information from adjacent frames with short time 

intervals between two frames. Dynamic information plays an essential role in differentiating 

between static and moving cars. We believe that adjacent frames are more or less similar to each 

other. However, they provide better temporal information, which makes it easy to differentiate 

between moving and static cars by understanding the changes in their position with respect to 

time. 

 

 

• Experiment – 3 : It is evident from Table 7 that Exp – 3 outperformed all the other three 

models in terms of mIoU. It has the highest accuracy and shows significant improvement from 

the previous best. This model only ranks first in the Vegetation class, but its balanced prediction 

to all the semantic classes makes it have the highest mIoU. The mIoU is increased from the 

previous best of 76.43% to the new best of 76.51%. In this experiment, we followed the same 

approach as in Exp – 2, reducing the number of pseudo labels from 920 to 560 but selecting the 

other combination of pseudo labels, which are far from the original labels or not adjacent frames. 

In this setting, we reduced the unwanted noise and slightly compromised the temporal resolution 

compared to Exp -2. As adjacent frames have similar information when the time interval is very 

short between two frames, they are unable to provide additional valuable information to all the 

semantic classes. The frames which are not adjacent to the original frames may have more diverse 

information because they are not similar to the original frames and have different views of the 

scene as in Figure 34. 

 

 

Figure 38 shows the best prediction result in the form of a blended image, made from the original 

image and predicted label for the image 000000 from seq21 in the test set. Most semantic classes 

overlap the corresponding classes in the original image accurately.  
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6.3. Limitations 

 

Findings from the experiments reveals that designed approach failed to segments some classes properly or 

misclassifying.  

 

• For instance, Static_car is classified as Moving_car in Exp – 1 as shown in figure 37 which leads 

to bad accuracy and inversely impacted the performance of the model.  

• In Exp – 2, Clutter is misclassified as Road and there is error exaggeration from base model to 

Exp – 2 as shown in Figure 39.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Highly rely on the base model, as the quality of predicted pseudo labels depends on the 

generalization ability of the base model. If the base model fails to predict some classes properly, 

then the pseudo labels will have poor quality and affect the final model's performance. For 

example, the base model predicts the Human class with 43.73%, which is insufficient to add this 

class in pseudo labels as it will only add more noise than valuable information..  

 

 

 

 

 

 

 

Figure 39: Misclassification between Clutter and Road, Orange bounding box shows misclassification is exaggerate 
from Base model to Exp-2. Image 000900 from seq21 in test set. 

Ground Truth Prediction Base Model 

Prediction Exp-2 Original Image 
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7. CONCLUSION & RECOMMENDATIONS 

7.1. Conclusion 

 

The goal of this research was to explore different combinations of frames extracted from UAVid videos 

with time intervals of 1 sec for semantically segmentation the UAV videos. In this context, we designed an 

algorithm to (i) extract frames from videos with 1-sec intervals, (ii) generate pseudo labels on newly 

extracted frames, (iii) quality assessment of pseudo labels and ignore pseudo labels for poor performing 

semantic class, (iv) perform different experiments with different combination of frames with pseudo labels 

and original labels, (v) accuracy assessment of the final semantic segmentation results on the test set. For 

semantic segmentation, we used BiMSANet as the basic model, which allows us to employ larger trunks 

for greater efficiency and better ability to fuse features from adjacent coarser and finer scales. We 

performed all of the experiments using the UAVid dataset with a wide spatial resolution range. 

Comparisons between all experiments and the BiMSANet model reveal that our Exp - 3 obtains better 

outcomes by balancing the efficiency of all semantic classes. Our Exp -3 outperforms the previous best by 

0.08%. 

 

From the experiments' findings, we observed that reducing the time interval between the frames of videos 

from 5 sec to 1 sec provides better temporal resolution and more information to better segment the 

dynamic objects; it also brings additional valuable information for other objects in the scene. For instance, 

our Exp – 2 shows the best results for Static_car and Moving_car classes; a better temporal resolution is 

needed to segment these classes efficiently. Building and Road classes achieved the best results in Exp - 1 

due to additional information that comes with new frames. However, Exp – 3 shows the best results in 

the Vegetation class only, but due to its balanced segmentation efficiency to all the semantic classes, it 

outperforms all other experiments and BiMSANet. Moreover, selecting the combination of frames for 

video scene segmentation depends on various factors like dataset specification, video frame rate, and 

platform speed during data collection. Regarding UAVid videos, we have a video frame rate of 20 fps and 

a UAV speed of 10m/s during data collection. Therefore, the user can follow this approach in different 

applications where the segmentation of videos is the task. However, it is crucial to consider the factors 

that affect the frame selection.   

 

In the previous work, BiMSANet used only the limited labelled data with the low temporal resolution to 

train the model for semantic segmentation. Our research proves that by reducing the time interval or 

improving the temporal resolution, we can have additional information about the scene and helps to 

predict the semantic classes better. We adopted a pseudo-labelling approach to deal with the limited 

labelled data challenge and fed the model with a large dataset to improve the model generalization ability. 

In our approach, three things play an essential role in improving the model efficiency: the selection of the 

base model or classifier, the quality of pseudo labels, and the proper combination of frames. Our research 

is an example of a simple and efficient way to achieve better results in the UAV video dataset. We make 

our research reproducible, as we used the UAVid dataset and BiMSANet as the base model, which is 

available publicly, and our algorithm is presented in section 4. We hope our work will help other research 

further to enhance the  efficiency of semantic segmentation in UAV videos. 
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7.2. Research Questions & Answers 

 

1.1) How does the density of labeled images affect the process of semantic segmentation? 

 
The density of labeled images refers to the quantity of annotated or labeled images available for 

training the semantic segmentation model. A higher density of labeled images indicates a greater 

amount of training data is available. More annotated images allow the model to gain an additional 

understanding of numerous objects, backdrops, and settings. This can lead to better segmentation 

accuracy and generalization capabilities. We use pseudo labels to enhance the quantity of labelled 

dataset, which improves the model efficiency as mentioned in section 5.5.   

 

1.2) How many frames do we need to extract high-level semantic information from video 

sequences? 

The number of frames necessary to extract high-level semantic information from video sequences 

is determined by various factors, including the scene's complexity, the particular task or analysis 

being performed, and the desired level of accuracy. While no predetermined number of frames 

guarantees high-level semantic information extraction, here are some considerations to determine 

the selection of frames: Temporal Context, Frame Rate, Task Complexity, Event Duration, and 

Computational Constraints. In our research, Exp – 3 scores the best results for semantic 

segmentation of UAVid dataset, we select 200 labelled and additional 560 pseudo labelled frames 

to achieve this result as shown in section 5.5. It may be different for different applications, so 

number of frames required to extract high-level information is depends on above mentioned 

factors.  

 

1.3) What will be the time interval between two labelled images? 

The time interval between two labelled images in a video dataset is determined by various factors, 

such as the application or task's unique needs, the dynamics of the scene being taken, and the 

available resources. Although there is no generally applicable time interval, the interval between 

labelled images should be set to collect the relevant temporal information for the task at hand. A 

shorter time gap between labelled images is often necessary for applications requiring fine-grained 

analysis of motion or dynamic changes in the scene. A longer time interval, on the other hand, 

may be sufficient if the assignment concentrates on static or slower-changing objects like 

buildings or roads. In our work, we use 1 sec time interval between two labelled images, which 

helps to understand better the scene's dynamics, which results in better segmentation of moving 

and static cars. The model also generalizes well for other semantic classes due to a better 

understanding of the pattern and information when the gap between two labelled images is less, 

as mentioned in section 6.1. 
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Frame 180 Frame 200 Frame 220 

Figure 40: Motion blur due to camera rotation with high speed, frame 200 from seq13 has poor pseudo label due 
blur motion. 

2.1) How to  check the quality of generate pseudo-labels using semi-supervised learning? 

 

When utilizing semi-supervised learning to produce pseudo labels, it is critical to evaluate their 

quality to ensure they are dependable and can be used effectively for training. Consistency Check, 

Manual Inspection, Label Confidence Scores, Validation on Labeled Subset, and other approaches 

can be applied to assess the quality of created pseudo labels. In our research, we used manual 

inspection and validation on labelled subset approach and found that both are simple and 

effective way to assess the quality of pseudo labels. We did the quality assessment of pseudo labels 

in section 5.2.  

 

2.2) How can pseudo-labels help to do semi-supervised semantic segmentation? 

 

Pseudo-labels can help with semi-supervised semantic segmentation by using the information in 

both labelled and unlabelled data. Pseudo-labels enable the use of unlabelled data in the training 

phase for semi-supervised semantic segmentation. Mixing the restricted labelled data with the 

wider pool of pseudo-labelled samples allows the model to develop more robust representations 

and increase segmentation performance, effectively exploiting the additional information provided 

in the unlabeled data. We can easily see the improvements in the accuracy after adding pseudo 

labels from section 6.1.  

 

 

2.3) How can the speed of UAVs during data collection affect the quality of generated pseudo 

labels? 

 

The speed of the UAV while collecting data can affect the quality of the pseudo labels generated 

for semantic segmentation tasks. Higher UAV speeds can cause motion blur and object 

displacement, decreasing visual quality and producing pseudo-label discrepancies. Lower sample 

density and less frame overlap at higher speeds may decrease the availability of redundant data 

and fine-grained temporal information, lowering pseudo-label accuracy. Furthermore, labeling 

latency may rise when producing pseudo-labels after data collection. To address these difficulties, 

optimizing UAV flight parameters, balancing speed with image quality and temporal context, and 

employing post-processing techniques can all aid in improving the quality of pseudo labels. In 

UAVid data collection the speed of UAV was 10m/s, which is good to capture the scene without 

causing any motion blur or object displacement. But sometimes when Camera rotates with high 

speed may cause motion blur and effect the frame which results into poor pseudo label as depicts 

in Figure 40.  
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7.3. Recommendations 

 

There are some recommendations based on this research for the future works: 

 

• Class imbalance in the dataset, most of the image's pixels represent only some classes, like 

Building, Tree, and Clutter, and there is a minimal share of Human class which makes the model 

predict poor for this specific class. More focus is required to segment classes with a small share, 

ultimately enhancing the model's overall efficiency. 

• Since the pseudo labelling techniques showed an improvement in segmenting the semantic classes 

in UAVid dataset, it depends on the combination of frames selected for training the model. In 

this research, the frames with time intervals of less than 5 sec are used in different combinations 

in different experiments, so reducing the interval below 1 sec in future work will not add more 

information.  

• Iterative pseudo labelling will be helpful, as it tries to improve the model after each iteration.  

• In this research self-training technique is used to perform the experiments as this technique is 

widely used and simple to implement. However, other semi-supervised techniques can also be 

explored to enhance the model's efficiency.  
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