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ABSTRACT 

In the face of human-induced biodiversity loss, biodiversity monitoring serves as a crucial feedback link 

supporting the development of informed decisions for conservation management. Remote sensing tool has 

been demonstrated as a valuable technique for modelling biodiversity across various scales of biological 

organization, utilizing different levels of spatial granularity and temporal resolution compared to the time 

and labour-intensive field-based studies for collecting reliable biodiversity data. Hyperspectral data provide 

extensive information in estimating biodiversity by revealing distinct biochemical and biophysical features 

of plant species but are limited and expensive. In contrast, multispectral sensors such as Sentinel-2 and 

Landsat allow monitoring for the continuous acquisition of satellite images at a larger spatial extent with 

higher temporal coverage. However, their lower spatial and spectral resolution limits their effect in 

discriminating detailed object characteristics. The Spectral Diversity Hypothesis (SDH) is an emerging 

approach relying on optical remote sensing to assess and monitor spectral diversity. SDH proposes that the 

spectral diversity in remote sensing images reflects the spatial heterogeneity within the environment. In this 

study, the SDH was applied to assess the species richness in the Mediterranean region and investigate the 

potential of the SDH in biodiversity estimation using multispectral data compared to hyperspectral data. 

 

As such, this study involved pre-processing remote sensing data, reducing data dimensionality using PCA 

to capture the spectral variation, and applying the K-means classification on selected PCs to identify distinct 

spectral species in SJER. Next, the data were validated by comparing the field plot data. 

 

The study revealed a weak correlation (R2 = 0.0639 for AVIRIS-NG and R2 = 0.0940 for Landsat 8 data) 

between spectral diversity and species diversity in the Mediterranean ecosystem, as the application of SDH 

in this region is characterized by low vegetation cover with strong influence from the soil and non-

photosynthetically active vegetation. However, it was revealed that the closed forest areas in the region 

yielded a better accuracy with R2 of 0.65 for Landsat, with AVIRIS-NG having an accuracy of R2 of 0.68. 

In contrast, the weakest relationships were observed in open forest areas of the region. 

   

Additionally, the study involved spatially and spectrally upscaling the AVIRIS-NG data to simulate Landsat 

data, aiming to evaluate the impact of the spatial and spectral resolution on species richness derived from 

remote sensing datasets. The study indicated that the spatial component played a significant role in the 

discrimination of clusters compared to the spectral component. Reducing the spatial resolution causes the 

pixels to be more heterogenous as well as to reduce the effect of background information, thereby affecting 

the spectral mixing of clusters. Consequently, Landsat and AVIRIS-NG images detected consistent patterns 

of areas with low species richness. Vegetation clusters found in the real Landsat data exhibited spatial 

consistency with clusters in AVIRIS-NG. Furthermore, The NIR and SWIR spectral domains in both real 

Landsat and AVIRIS-NG contributed the most to the principal components of AVIRIS-NG and Landsat 

data. 

 

Overall, these research results contribute valuable insights into analysing remote sensing data for biodiversity 

assessment for upcoming hyperspectral satellite missions like PRISMA and EnMap for monitoring 

biodiversity in the Mediterranean region. 

 

Keywords: Mediterranean ecosystem, biodiversity, spectral diversity, species richness, Spectral Variation 

Hypothesis, Principal Component Analysis, k-means, AVIRIS-NG, Landsat, upscaling.  
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1. INTRODUCTION 

1.1. Background 

Biodiversity is defined as the range of living organisms or functional characteristics in an ecosystem or 

landscape (Cardinale et al., 2012). It provides a variety of functional traits, such as photosynthesis and carbon 

sequestration that improve productivity and energy fluxes which provide ecosystem services to humans and 

serve as cushions to climatic events (UNEP, 2018). Through ecosystem services, biodiversity accounts for 

50% to 90% of the income generated by the rural poor and supports global and regional food security, 

particularly for the deprived groups (UNEP, 2018). According to UN DESA (2021). 83% of the poor are 

in rural areas. These deprived groups in the rural setting live on less than $ 1.90 per day and are socially 

marginalized and excluded with limited access to basic needs and employment opportunities (Gondwe, 

2019). The rural poor depend on the environment for their livelihoods, mainly through agriculture (Gondwe, 

2019).  

 

The accelerating global change has grave effects on biodiversity, and this has rippling adverse effects on 

mankind (Isbell et al., 2017). Human activities have majorly contributed to this global change and have 

caused rising temperatures, which have affected rainfall patterns and extreme weather events, altering the 

natural habitats of species. Biodiversity loss affects the efficiency of ecological functioning. These effects of 

functional characteristics and dependence of species on one another can result in species extinction, 

affecting life-sustaining ecosystem services provided to humans. In addition, these outcomes of biodiversity 

loss affect the availability of highly nutritional food, food security, medicines and wood for human use and 

heighten climate change (Buotte et al., 2020). According to FAO (2019), the farmers' variety of foods is 

reducing at an unprecedented rate and becoming homogeneous due to biodiversity loss. Moreover, close to 

20% of wild species contributing to domestic food availability have also been classified as threatened (IUCN, 

2021). Moreover, biodiversity loss also increases the prevalence of pests and infectious diseases as a result 

of the altered interaction of species (WHO, 2015). 

 

This research will focus on forests, which are habitats for 80% of terrestrial biodiversity (Raft & Oliier, 

2011). In particular, forests in the Mediterranean climate regions are home and a hotspot for significant 

levels of endemic plant species (Cowling et al., 1996). The Mediterranean regions cover the Mediterranean 

Basin (Cyprus, Malta, Greece, as well as part of Portugal, France, Italy, and Spain); central Chile; 

southwestern and southern Australia, California and southern Africa. These 5 world Mediterranean regions 

occupy less than 5 percent of the world's total land areas yet contain 20% of the world's vascular plant 

species (Cowling et al., 1996). Unfortunately, these highly diversified plant species in the Mediterranean 

areas are threatened with habitat loss and transformation due to numerous fire outbreaks, intensive 

agricultural activities and extreme climatic events presenting substantial challenges in plant growth. This can 

affect the population of these rare species in these Mediterranean areas (Cowling et al., 1996). Plana et al. 

(2016) highlighted that rampant fire outbreaks occur during dry, hot summer periods because of the climatic 

and biophysical setting of the Mediterranean regions. These areas could lead to a tremendous proportional 

change in biodiversity and perhaps face extinction in the future. Since biodiversity is a prominent factor 

reflected in many SDGs and their related targets (UNEP, 2018), improving biodiversity, and preventing 

biodiversity loss is vital to achieving the Sustainable Development Goals (SDGs) (IISD, 2019). The UN 
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(United Nations) common approach to biodiversity has been approved for the integration of nature-based 

solutions in UN policy formulation and implementation (UNEP, 2021). In addition, averting the societal 

consequences of biodiversity loss led to reaffirming the Aichi Targets for 2020 by Parties to the UN 

Convention on Biological Diversity (CBD) (Pereira et al., 2013). 

 

A wide range of studies has been done to estimate forest biodiversity. Alpha, Beta and Gamma diversity are 

the three most commonly used biodiversity measures (Whittaker, 1972). Alpha diversity relates to local-scale 

species diversity, where the number of species (species richness) or species abundance in a standard size is 

measured (Whittaker, 1972). On the other hand, beta diversity highlights the biological evolution of the 

species and focuses on the difference in the composition of species among communities across space 

(Whittaker, 1972). Gamma diversity measures the total species diversity in a landscape by finding the product 

of alpha diversity within the community and the beta diversity amongst the communities (Whittaker, 1972).  

 

Species diversity is renowned for serving as a proxy for biodiversity due to its correlation with genetic 

diversity and ecosystem functioning (Colwell & Coddington, 1994). According to Chiarucci et al. (2011), 

although several indices have been developed to estimate species diversity, no standard index has been 

defined to measure species diversity. Indeed, the current major challenge in estimating biodiversity is the 

availability of a common global methodology to monitor biodiversity change and provide timely data 

(Cardinale et al., 2012; Pereira et al., 2012). Chiarucci et al. (2011) assessed the importance of the various 

species diversity and species evenness matrices from existing literature and recommended indices such as 

the Shannon diversity index, Pielou's index, and Q-statistics evenness to be used in biodiversity conservation 

and management. However, according to Chiarucci et al. (2011), the indices (such as the Shannon diversity 

index, Pielou's index and Q-statistics evenness, and so on) had setbacks in estimating biodiversity since there 

were limitations in estimating species abundance and species evenness at larger spatial extents. In contrast, 

Dornelas et al. (2014) argued that there is no change in species diversity but in species composition through 

time. 

 

Remote sensing technology plays a crucial role in supporting biodiversity monitoring. Indeed, remote 

sensing data can provide information on a particular area at various spatial extents, with shorter revisit times 

and lower costs than the classical field survey. Huesca et al. (2015) argued that traditional field surveys are 

mostly costly and involve a lot of time and financial resources with lower spatial extents examined. The 

availability of several satellite imaging systems, such as Landsat and Sentinel, provides an unmatched 

opportunity to monitor species at several time intervals (Zhao et al., 2022). Madonsela et al. (2017) identified 

the best vegetation index in estimating species diversity by comparing vegetation indices in Landsat 8 

multispectral data (NDVI, EVI, SAVI, SRI) with alpha-diversity index (Shannon index, Species richness 

index and Simpson index), using Principal Component Analysis (PCA). Although the study singled out the 

best vegetation index computed at very high spatial resolution in detecting vegetation species diversity, the 

study highlighted that lower spectral resolution results limited the detection of slight changes in the 

estimation of species. 

 

The last three decades of advancement in imaging spectroscopy have provided some airborne and 

spaceborne sensors that can be extremely useful for monitoring forest biodiversity. Notable airborne sensors 

include NASA's Airborne Visible InfraRed Imaging Spectrometer (AVIRIS-NG), Australia's HyMap, 

Carnegie Airborne Observatory (CAO) and the University of Zürich's Airborne Prism Experiment (APEX) 

(Rast & Painter, 2019; Cocks et al., 1998). Recent spaceborne hyperspectral sensors, although at medium 

spatial resolution Precursore IperSpettrale della Missione Applicativa (PRISMA), Environmental Mapping 
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and Analysis Program (EnMap), Japanese Hyperspectral Imager Suite (HISUI) (Müller et al., 2012; Rast & 

Painter, 2019). Palmer et al. (2002). presented the Spectral Diversity Hypothesis (SDH), assuming that there 

is a linear correlation between the species diversity of a sampled area and the spectral diversity of that area. 

The higher the spectral variability in the image, the higher the heterogeneity in the environment(species 

diversity). The SDH has been employed in several studies to assess biodiversity. For instance, Heumann et 

al. (2015) utilized hyperspectral data to evaluate wetlands based on the Spectral Variability Hypothesis. Onyia 

et al. (2019) investigated the applicability of the Spectral Variability Hypothesis (SVH) in the context of oil 

pollution impacts on biodiversity using vegetation species as indicators. Féret & Asner (2014) also estimated 

biodiversity in the Peruvian Amazon using hyperspectral data based on the spectral diversity approach by 

estimating the Shannon diversity index for alpha diversity and Bray-Curtis dissimilarity for beta diversity. 

Field data were compared with the spectral diversity of the image derived. It was discovered that there was 

a challenge in identifying which specific spectral domain in the Principal Components (PC) contributes the 

most to the estimation of biodiversity based on the specific physical and chemical components. 

 

Even though hyperspectral spectral reflectance data offer an extensive variety of information in estimating 

biodiversity by revealing distinct biochemical and biophysical features of plant species (Anand et al., 2022), 

hyperspectral data acquisition is more expensive and has a lower spatial and temporal coverage than 

multispectral data. On the other hand, freely obtainable datasets from multispectral sensors such as Sentinel-

2, Landsat, and MODIS allow for the continuous acquisition of satellite images but have limited use in 

providing detailed spatial and spectral information in discriminating species. Therefore, it is imperative to 

study differentiating spectral information on species diversity with greater spatial extents and temporal 

frequency, which can be open access and inexpensive at a lower spatial resolution. This study expanded on 

the research conducted by Féret & Asner (2014) by applying the Spectral Diversity Hypothesis (SDH) in 

the Mediterranean region instead of the tropical forest and using multispectral data instead of hyperspectral 

data as employed in their research. Additionally, this study examined the applicability of SDH to satellite 

multispectral data and future hyperspectral data with lower spatial resolution for Mediterranean ecosystems. 

The overarching goal of this study was aimed at estimating species richness in Mediterranean ecosystems 

using multispectral (Landsat) data. 

1.2. Problem Statement 

This study was conducted in the San Joaquin Mediterranean region, the most lucrative agricultural region in 

the United States of America (Fernandez-Bou et al., 2022). Unfortunately, due to water scarcity in San 

Joaquin, most current agricultural practices compete with ecosystems for water access. Further, these 

intensive agricultural footprints and urban developments result in habitat loss and the establishment of 

invasive species (Fernandez-Bou et al., 2022). As a result, the ecosystem of the San Joaquin Valley is one of 

the most degraded in California(Fernandez-Bou et al., 2022). 

 

Plants typically in the Mediterranean region are known to adapt to hot, dry summers with low moisture. 

California is described with extensive blue oak woodlands with the lower foothills of the Central Valley 

predominated by savannas, spanning about 12,000 km2 (Huesca et al., 2021). The blue oak (Quercus douglasii) 

is California's most dominant and xeric-tolerant endemic oak species. Sadly, California suffered severe 

effects from the worst drought in the millennia between 2010 to 2016 (Huesca et al., 2021). Fettig et al. 

(2019) also noted that 2014 and 2015 were the warmest years in California's records. The blue oak species 

were heavily affected by tree mortality primarily due to the rate of high temperature and low rainfall 

conditions from 2013-2015, with an average mortality of 10% over the San Joaquin Experimental Range 

(SJER) during the drought (Huesca et al., 2021). Furthermore, although the drought began in 2013, the 
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mortality rate became noticeable from the year 2014 to 2015 with a reduction in canopies sizes, water content 

and LAI (Huesca et al., 2021). This cause of tree mortality was not due to over-grazing because these plants 

would have to be seedlings for them to be affected. Besides, the high temperature incidences are predicted 

to be more frequent by mid-century (Ullrich et al., 2018). 

 

Notwithstanding, logistic and financial constraints limit field observations of species not only in space but 

in time. This renders the overview of evidence from species at various geographic and climatic zones 

challenging (Dronova & Taddeo, 2022). In addition, the high cost of data acquisition of hyperspectral data 

makes it unfeasible to monitor biodiversity at a larger spatial extent with higher temporal coverage. Although 

Spaceborne hyperspectral systems such as PRISMA and ENMAP have been launched, they do not have a 

wider temporal component for monitoring biodiversity at a higher temporal resolution (Foerster et al., 2016; 

Loizzo et al., 2019). Upcoming hyperspectral satellite missions like PRISMA can apply this research 

approach as a benchmark for monitoring biodiversity at a wider time series and lower spatial resolution. 

 

Several research works on biodiversity monitoring (Anand et al., 2022; Féret & Asner, 2014) have been 

based solely on tropical forest areas, while the Mediterranean areas have not been extensively explored. 

Against the background, this research applied the SDH approach to assess the species richness and 

investigate the potential of the SDH approach in biodiversity estimation using multispectral data compared 

to hyperspectral data in the Mediterranean forest. With multispectral data proven to measure biodiversity, 

further studies can delve into the temporal behaviour of the species, including adaptation strategies used by 

species in the Mediterranean ecosystem. Again, this novel study will help provide affordable, detailed 

spectral information on biodiversity at a larger spatial scale in the Mediterranean regions using Landsat data. 

This is a vital attempt to minimize biodiversity loss by identifying priority areas of biodiversity loss. The 

information acquired on biodiversity assessments in the area will also support policy making to ensure 

biodiversity conservation in the Mediterranean region, water balance, and even carbon sequestration to 

combat climate change.  

1.3. Objectives 

The main objective is to assess the species richness in the Mediterranean ecosystem using multispectral data. 

Furthermore, this study intends to demonstrate that the spectral features (SDH) identified can still measure 

species richness even when their signals are weak to detect at lower spatial and spectral resolutions leading 

to its application across time. 

1.3.1. Sub-specific Objectives 

• Estimate species richness using hyperspectral data based on the SDH approach in a Mediterranean 

ecosystem. 

• Understand the variation in species richness when applying the SDH approach to optical data 

characterized by different spatial and spectral resolutions. 

 

1.4. Research Questions and Hypothesis 

To execute the main objective and sub-specific objectives outlined, the research questions and 

corresponding hypothesis are: 

 

1) How do estimates of spectral diversity with 4m hyperspectral data relate to species richness in the 

Mediterranean ecosystem? 
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H1: There is a relationship between spectral diversity with 4m hyperspectral data and species richness in the 

Mediterranean ecosystem. 

 

2. a) How do estimates of spectral diversity with simulated Landsat data (30m) relate to species richness in 

the Mediterranean ecosystem? 

H1: The spectral diversity with simulated Landsat data (30m) has a relationship with the species richness in 

the Mediterranean ecosystem. 

 

2. b) How do estimates of spectral diversity with Upscaled hyperspectral data (30m) relate to species richness 

estimations in the Mediterranean ecosystem? 

H1: Upscaled hyperspectral data (30m) has a relationship with the spectral diversity in the Mediterranean 

ecosystem. 

 

2.d) How do the spectral diversity with Landsat data (30m) relate to species richness estimations in the 

Mediterranean ecosystem? 

H1: The spectral diversity with Landsat data (30m) has a relationship with the species richness estimations 

in the Mediterranean ecosystem? 
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2. STUDY AREA AND MATERIALS 

2.1. San Joaquin Experimental Range (SJER) 

The San Joaquin Experimental Range (SJER) extends an area of 1806ha and is situated in the southern Sierra 

Nevada foothills in Madera County at approximately 37°05′N 119°43′W (Figure 1). This study region has 

been involved in livestock grazing since its inception in 1934. SJER, California’s first research station, has 

contributed knowledge on patterns and processes in the Mediterranean ecosystem for educational and 

research purposes (Purcell et al., 2007). SJER has been authorized to be a core site of the Southwest Pacific 

area. In addition, the SJER is part of the National Ecological Observatory Network (NEON) terrestrial site; 

the NEON site is part National Science Foundation's (NSF) initiative and is also associated with the 

southern Sierra Critical Zone Observatory (CZ Network, 2020). 

 
With an average annual temperature of 16.6°C and average precipitation of 513 mm/yr. (CZ Network, 

2020),  it has been observed that there has been an increase in average maximum temperatures by 1°F 

(0.6°C) from 1950 to 2020 every year (Fernandez-Bou et al., 2022). The air (mean monthly) temperature 

typically ranges between 4°C to 10°C in the cool, wet winter season and 24°C to 27°C in the hot, dry summer 

period, with daily temperature peaks easily exceeding 38°C. The rainfall season usually occurs from October 

or November to April or May.  

 

The vegetation species in SJER are diverse, with blue oak (Quercus douglasii) woodland being the predominant 

type. Other notable species include Mariposa manzanita (Arctostaphylos viscida mariposa), hoary coffeeberry 

(Rhamnus tomentella cispidata), interior live oak (Quercus wislizenii), chaparral whitethorn (Ceanothus leucodermis), 

wedge leaf ceanothus (Ceanothus cuneatus), grey pines (Pinus Sabiniana), and more. Among the vegetation 

species, the grey pine and the interior live oak are evergreen species, whereas the blue oak species is 

deciduous, starting greenness in April and ending in November (Miraglio et al., 2022). Areas in SJER have 

the overstory predominantly composed of blue oak, with shrubs and herbaceous species dominating the 

understory. Blue oak is known for its preference for the lowest and driest elevation zone, situated above the 

central valley floor of California. It thrives on the western foothill slopes of the Sierra Nevada Mountains. 

The blue oak is renowned for its exceptional longevity. Most Blue oak trees have tree ring ages that 

commonly span 500 years, while a few exceptional individuals have demonstrated ages of up to 600 or 

potentially even 700 years (Stahle et al., 2013). Grasses occur in abundance across all vegetation structures, 

forming a mosaic across gently sloped terrain where the overstory is lacking (Miraglio et al., 2022). The 

region's shrubs (interior live oaks) are typically sparsely populated (Newman & Duncan, 1973). 

 

The soil types, specifically Ahwahnee and Visalia series, originate from granite and have a limited capacity 

to retain water (Newman & Duncan, 1973). The SJER area does not host permanent streams but is abundant 

in intermittent streams, swales, and springs. During the winter months, small drainages usually carry surface 

flow. The watershed of SJER ultimately drains into Cottonwood Creek, which serves as a tributary of the 

San Joaquin River. 
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Figure 1. Considered study area located in the San Joaquin Experimental Range, Madera County, California. 

2.2. Remote Sensing Data 

2.2.1. Hyperspectral Data 

This research exploited the hyperspectral data acquired with the Airborne Visible/Infrared Imaging 

Spectrometer Next Generation (AVIRIS-NG) sensor mounted aboard the NASA ER-2 aircraft platform. 

The data acquisition was carried out by the Jet Propulsion Laboratory (JPL) during the airborne summer 

campaign in 2014 for the Hyperspectral Infrared Imager (HyspIRI mission) over SJER. The hyperspectral 

sensor AVIRIS-NG was designed to take over from AVIRIS-classic with better radiometric and spatial 

performance.  

 

Known as the latest and most advanced hyperspectral sensor, AVIRIS-NG has 432 spectral bands ranging 

from 346.3nm–2505nm spectral range (Aljunid & Manjaiah, 2021) and a high signal-to-noise ratio. Its high 

spatial resolution (4m) and spectral resolution, along with more than 95% Instantaneous Field of View 

(IFOV), have facilitated the identification and mapping of spectral signatures in several applications, 

including the prediction of foliar nutrients, species discrimination and carbon stock (Thompson et al., 2015; 

Zhang et al., 2021).   

 

The AVIRIS-NG data was downloaded from the NASA JPL website. This hyperspectral imagery was 

captured on June 11th, 2014, at 20:46 hrs PST. Fifty-nine bands from the AVIRIS-NG image were excluded 

by NASA JPL due to their occurrence in water absorption, specifically column water vapour, liquid 

absorption, and ice absorption, with 373 retained bands. These bad bands were found in the wavelengths 

346.3 nm to 376nm, 1348nm to 1428.2nm and 1778.8nm to 1949nm. Also, NASA JPL performed 

radiometric calibration and georeferencing processes on the AVIRIS-NG image using a methodology 

https://avng.jpl.nasa.gov/avng/y14_data/
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developed by Thompson et al. (2015) and atmospheric correction on the AVIRIS-NG using the approach 

described by Gao et al. (1993) to retrieve the surface reflectance values from the AVIRIS-NG data. A 

specific aircraft strip line image was selected since the NASA JPL flight lines provided did not cover the 

entire study area to ensure comprehensive coverage. This selected image maximized the number of field 

plots sampled within the SJER area. 

2.2.2. Multispectral Data 

 
The study also utilized Landsat data due to its unrestricted availability and continuous earth observation 

data spanning the past 40 years (Banskota et al., 2014). As a long-running space-based earth imagery system, 

Landsat has been used for several research applications (Boori et al., 2021; Kefalas et al., 2018; Michela et 

al., 2022; Sousa & Small, 2018). 

 

In particular, the Landsat-8 Operational Land Imager (Landsat-8 OLI) sensor was used for this study. To 

ensure temporal coherence and facilitate meaningful comparisons and analysis with the selected AVIRIS-

NG data, the Landsat-8 satellite image acquired on June 8th, 2014, was considered. The data were 

downloaded from the Google Earth Engine (GEE) platform. The Level 2 Landsat 8 data comprises 7 

spectral bands across the visible to the shortwave infrared region (VSWIR) of the electromagnetic (EM) 

spectrum. 

 

Landsat-8 has a spatial resolution of 30m and revisits a specific location approximately every 16 days, 

resulting in 22 to 23 images a year (Zhu, 2017). Pervez et al. (2016) reported that Landsat-8, due to its 12-

bit data quantization, improves the signal-to-noise radiometric performance of the sensor. This 

enhancement has significantly increased the effectiveness of Landsat-8 for landcover mapping and species 

diversity purposes (Madonsela et al., 2017). 

2.3. Field Data 

This study used secondary field data collected as part of the NASA Hyperspectral Infrared Imager (HyspIRI) 

Mission's Airborne Campaigns from the summer of 2013 and 2014. The field data collection focused on 

tree species within the region, which was primarily used to validate species richness estimations in this study. 

 

The field survey utilized the stratified random sampling method to capture variability in species composition 

and canopy cover across SJER. The data collection was conducted in 60 by 60m plots, which were 

sufficiently homogenous to represent 1ha plots. Within each 60 by 60m radius plot, a radius of 20m subplots 

was established. A total of 542 tree inventory data were collected at the SJER from the years 2013 to 2015. 

The stratified random sampling approach used was to ensure efficiency in field estimations within every 

subplot aligning the AVIRIS-NG data. The field campaign was repeated in several seasons, with emphasis 

placed on sampling plots dominated by deciduous, annual, or perennial trees to depict their temporal 

evolution over the years. This plot level inventory included the geolocation of the various tree species, 

canopy base height, diameter at breast height (DBH), canopy width, and a description of the state of health 

on the trees. During its pre-processing, field plots located outside the selected aircraft strip line region were 

identified and excluded. Field plots with missing relevant information, such as plot names, were also 

removed. As a result, 399 sample points remained, which were already grouped at the plot level, resulting in 

a total of 40 plots. 
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Figure 2 Example of: a) One Strip Line Aerial View acquired over the SJER, b) Field Plots Sampled highlighted in 
red, C) 20m Radial Subplots Within 60 x 60m Plot. 
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3. METHODOLOGY 

3.1. Research Methodology 

This chapter, divided into two sections, details the operational steps adopted in this study. The first section 

focuses on biodiversity estimation when using AVIRIS-NG and Landsat 8 data, while the second section 

explores the impact of upscaling the spatial and spectral resolutions of the original hyperspectral data on 

biodiversity estimation. The procedures involved in the 2 phases are detailed in the sub-sections below. 

Figure 3 depicts the flowchart of the methodology utilised in this study. 

.
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 Figure 3 Study Methodology Flowchart 
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3.2. Pre-processing  

Prior to carrying out the biodiversity estimations and performing the upscaling procedure., pre-processing 

steps were executed. The pre-processing involved three main steps: 1) the identification and masking out of 

non-vegetative pixels, 2) outlier identification, and 3) the normalization of images per band. 

 

The Landsat data and the high spatial resolution QGIS Base Map available in QGIS were used to identify 

the non-vegetative pixels. First, the NDVI is estimated considering the Landsat data for the whole study 

area. Then, the pixels with NDVI less than 0.3 were visually inspected using the very high-resolution QGIS 

Base Map images to determine which pixels must be discarded. Most importantly, the areas masked out in 

the Landsat data were also excluded in the AVIRIS-NG data to generate consistent results. 

 

Moreover, the outlier identification (Heymann et al., 2012) and the data normalization (Singh & Singh, 2022) 

steps were executed on each remote sensing image per band. Linear scaling was performed to adjust the 

spectral values into a Gaussian distribution. The outliers were automatically identified per band using high 

(95th percentile) and low quantile (5th percentile) thresholds. In the case of values identified to exceed the 

high quartile threshold, the high threshold value was substituted. On the other hand, values detected below 

the low quartile threshold were substituted for the low threshold value. The bands were then normalized by 

subtracting the minimum value from each band and dividing it by its range using Equation 1 below. The 

normalized values are assigned back to the respective pixels in the image. This step allows for the 

comparison of the various images and the removal of noise. 

 

 

 

; where img represents all bands in the image matrix. 

    

3.3. Biodiversity Estimation based on SDH 

The estimation of alpha diversity using the SDH approach encompasses steps illustrated in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

img = (band - min(band)) ./ (max(band) - min(band)) 
 

(Equation 1) 

Figure 4 Biodiversity Estimation using the SDH Approach 
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First, the Principal Component Analysis (PCA) was used to reduce the dimensionality of the pre-processed 

remote sensing images. Then, an unsupervised clustering algorithm was applied considering the reduced 

feature space made up of the selected Principal Components (PCs). The clustering result is used to derive 

spectral classes or species, using the Davies Bouldin index to determine the optimal number of classes. The 

spectral species maps were transformed into species richness estimations at 1 ha spatial resolution. 

3.3.1. Principal Component Analysis (PCA) 

PCA was performed on the pre-processed images. Singh (1993) describes PCA as a multivariate statistical 

technique employed in the field of remote sensing to reduce the dimensionality of image data and image 

encoding. This aims to extract the maximum amount of information from the original bands to the least 

number of PCs (Estornell et al., 2013). This orthogonal transformation involves converting a set of 

correlated variables (original image bands) into uncorrelated variables (PCs), which support the removal of 

redundant bands in the spectral range to select relevant principal for better performance and higher accuracy. 

The PCA was performed using the ENVI classic software (v. 5.6.3). The PCs were visually explored and 

selected based on the eigenvalues and cumulative percentage of variation explained in the original data. The 

visual exploration of PCs aimed to assist in revealing the pattern of species richness in SJER. The first 

principal component (PC) band contains most of the information, followed by the subsequent principal 

components. The second PC band captures the second-largest source of variability orthogonal to the first 

PC band, and the third PC band captures the third-largest source of variability orthogonal to the first two 

PC bands. 

3.3.2. Maximum number of Spectral Species Estimation 

The spectral classes (called spectral species in this research) were determined by applying an unsupervised 

k-means clustering algorithm to the selected PC bands of the different remote sensing images (real and 

simulated data) considered in this study. First, a subset of pixels are randomly selected for classification 

based on similarity. Subsequently, after several iterations, a pre-defined number of spectral classes based on 

the homogeneity within those classes was defined. ENVI classic software (v.5.6.3) was used to carry out the 

k-means clustering for spectral species classification. 

 

During the k-mean clustering, each vegetated pixel is assigned to a spectral class based on the shortest 

Euclidean distance between the pre-specified centroids and the spectral values recorded for the pixel. Hence, 

the spectral classes have a relationship with the species diversity.  

 

The number of clusters chosen for unsupervised image classification, such as k-means, can impact both the 

spatial and spectral information of the resulting segmented image (El Abbassi et al., 2021). Considering 

different remote sensing data, the Davies Bouldin index was employed to determine the optimal maximum 

number of classes that can be discriminated in the study area. This cluster separation measure is based on 

the ratio of compactness within clusters to separability between clusters (Davies & Bouldin, 1979). The 

separability of the cluster is calculated by computing the minimum distance between each point in a cluster 

and the centroids of other clusters. The compactness is measured by estimating the average distance between 

each point in a cluster and its centroid. This elbow method (Davies Bouldin Index) relies on the concept of 

diminishing returns in variance explanation as more clusters are included. A lower Davis Bouldin Index is 

associated with better clustering performance (Davies & Bouldin, 1979). MATLAB software was used to 

estimate the Davies Bouldin Index. At the end of this step, the corresponding spectral species map for each 

considered remote sensing data is developed. 

3.3.3. Species Richness 

The most commonly used alpha diversity metric, species richness, was calculated by counting the number 

of unique species in a 1-ha moving window. Chao & Chiu (2016) define species richness as the number of 
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unique species present in a particular area or ecosystem. This index was calculated using a 1-hectare moving 

window, with the number of pixels adjusted to fit the varying spatial resolution of the generated spectral 

species maps (spanning from 4m to 30m). Thus, the resulting mapping units, the output of the species 

richness estimations, have a 1ha spatial resolution. 

 

The species richness calculations for the remote sensing images were done using the ENVI IDL v.8.2.0 

(Interactive Data Language) programming language. The number of spectral class maps are transformed 

into image bands, with each representing a respective spectral class. Typically, species richness provides 

information on the species' presence-absence information for a locality. Pixels with more than 0 bits per 

band are given a value of 1 for presence, whereas pixels with no data are assigned a value of 0 for absence. 

These binary values were summed across the bands to calculate the number of different species present 

within a 1-ha window. 

 

The quantification of species diversity primarily emphasized species richness as an alpha diversity metric 

due to its simplicity and straightforwardness in contrast to more complex metrics such as the Shannon index. 

3.4. Biodiversity Estimation for Simulated Data 

The second sub-objective of the study aims to study the impact of the spatial and spectral resolutions on 

biodiversity estimation using the SDH approach, which is visually represented in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Starting from the AVIRIS-NG hyperspectral data, simulated data were generated by computing spatial 

upscaling, spectral upscaling and a combination of both in order to generate the simulated version of 

Landsat data. The upscaling method involves reducing the finer resolution (spatial or spectral) of the image 

to a coarser representation by combining smaller units to larger units (Markham et al., 2023). At the end of 

this step, four simulations were generated. These include a spectrally upscaled 4m image (7 bands), a 16m 

hyperspectral data having spectral properties of the AVIRIS-NG sensor, a 30m hyperspectral data having 

the spectral properties of the AVIRIS-NG sensor, and a simulated Landsat-8 data. 

Figure 5 Biodiversity Estimation for Simulated Data 
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3.4.1. Spatial Upscaling  

In landscape ecology, the spatial resolution (grain) of the considered optical images plays a vital role in 

mapping biodiversity. When performing the spatial upscaling, the spectral resolutions of the pre-processed 

AVIRIS-NG data were maintained (373 bands). The AVIRIS-NG spatial resolution (4m) was upscaled to 

the spatial resolution of an intermediate pixel size of 16m and the multispectral Landsat data spatial 

resolution (30m). This was executed through the decimation into the two spatial resolutions by resizing the 

original image with the scale factor of 1/4 (16m) and 1/7 (30m) of its original size each. The blurred images 

were then downsampled in all directions with a spatial reference similar to the original image. The AVIRIS-

NG was subsampled to a 16m spatial resolution to investigate the variation in the alpha diversity index for 

the 16m resolution data with the AVIRIS-NG before comparing it with the 30m spatially upscaled 

hyperspectral data. The obtained simulated images had the same spatial extent and georeferencing as the 

original AVIRIS-NG image. 

 

Spatially upscaled images were used to estimate species richness using all steps outlined in subsection 3.3.  

3.4.2. Spectral Upscaling  

The spectral upscaling was executed by downgrading the spectral resolution of the pre-processed AVIRIS-

NG to the spectral resolution of Landsat 8, maintaining the spatial resolution of the original image (4m). 

The narrow 373 bands were fused to form broader bands to match the desired Landsat spectral resolution 

by calculating the spectral responses of the Landsat 8 bands with AVIRIS-NG spectral information. This is 

based on the band number, central wavelength, and bandwidth (nm) of the Landsat-8 spectral properties.  

 

The biodiversity estimation of the spectrally upscaled image followed the systematic procedure outlined in 

subsection 3.3.  

3.4.3. Simulated Landsat  

The simulated Landsat (30m) data were produced by combining both methods outlined in the spatially and 

spectrally upscaling procedure. The biodiversity estimation described in subsection 3.3 were applied to 

estimate the species richness of the developed image to untangle the effects of spatial and spectral resolution 

differences on biodiversity estimations.  

 

3.5.  Validation 

Validation was done by evaluating the relationship by comparing the species richness estimated when using 

the field data with the ones obtained with the considered remote sensing images. Moreover, the spatial 

consistency of the spectral species maps generated using different remote sensing data was evaluated. Finally, 

the spectral meaning of the clusters obtained was compared with the JPL AVIRIS vegetation spectral library 

using Spectral Feature Fitting (SFF). Together, these evaluation measures were employed to determine the 

impact of spatial and spectral variations in biodiversity estimation between the original hyperspectral data, 

Landsat-8 image and the simulated data.  

 

3.5.1. Biodiversity Estimation of Field Data Species Richness  

The species richness was computed for each field data plot by estimating the number of unique species. The 

study utilized the R package "vegan" v. 2.6-4 for species richness computations. 

 

The study adopted an inductive approach to examine the relationship between the species richness obtained 

from the field data and the corresponding species richness derived from the different remote sensing 
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datasets (i.e. AVIRIS-NG, the 4m spectrally upscaled data, 16m hyperspectral data, 30m hyperspectral data, 

simulated Landsat-8 and Landsat-8). The field points were used to extract the estimated biodiversity indices 

at various locations on the associated remote sensing images to establish this relationship. This was evaluated 

using the Pearson correlation test (R2) to determine the intensity of the relationship between the species 

richness derived, as seen in Figure 3. 

3.5.2. Closed and Open Forest  

The study proceeded to investigate the correlation between the biodiversity indices derived from the remote 

sensing images and field data, explicitly focusing on field points located in close and open forests separately. 

A two-step process was employed to categorize a sampled field plot as an open or closed forest. First, a 

visual exploration was conducted using a high spatial resolution to identify points located in a close or open 

forest. These identified open and closed forests were evaluated based on tree density Gauquelin et al. (2018) 

mentioned in distinguishing Mediterranean forests. According to the criterion, areas with a tree density of 

less than 4 individual trees per 1 ha were categorized as open forests. In contrast, areas with a tree crown 

density exceeding 4trees per 1 ha were classified as closed forests. This lower limit of the closed forest was 

set at 4 trees by visually examining all sampled plots in the region. The categorisation of the field plots 

resulted in 70% being in the open forest, while 30% were in the closed forests. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.3. Spatial Consistency  

For better discrimination of clusters in the images, the spatial consistency of the resulting clusters for the 

various images was evaluated with the spectral species map generated with AVIRIS-NG. Specifically, 

spatially consistent clusters were identified by examining the similarity of the cluster of the pixels. The 

number of similar pixels in each image was quantified to evaluate the similarity of pixels within each cluster 

across the images with the AVIRIS-NG image. Furthermore, the spectral signature of the selected 

corresponding clusters was verified for similarity using visual examination. Additionally, the images of the 

spatially consistent clusters were examined on very high-resolution satellite images (QGIS base map) to 

identify what the clusters represent. 

 

a) 

b) 

Figure 6 Example of: a) Closed Forest Areas in SJER, and  b) Open Forest Areas in SJER. 
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3.5.4. Spectral Feature Fitting (SFF) 

Spectral Feature Fitting was conducted to analyze the physical meaning of the clustering results obtained 

with the aim of associating each cluster with a specific class. SFF is a technique that entails comparing the 

(unknown) spectra in an image with reference (known) spectra from a spectral library (Roger et al. 1993). 

The method uses a least-squares fit to determine the similarity. 

 

Regarding the SFF analysis, the JPL AVIRIS spectral library for vegetation was utilized within the ENVI 

classic software. By comparing the unknown pixel spectra with the reference spectra, the SFF values were 

calculated. A lower SFF value indicates a higher similarity between the endmember and the average spectra 

of the cluster (pure vegetation cluster). 

 

The SFF analysis was primarily conducted on the clusters derived from AVIRIS-NG. This comprehensive 

approach allows for a better understanding of the spectral meaning of the obtained clusters.  

 

3.6. Spatial Pattern Analysis 

In the study, a spatial pattern analysis was conducted to identify areas of high and low biodiversity utilizing 

the Getis-Ord Gi* statistical analysis tool, which serves as an indicator for priority intervention. This tool 

identifies a significant spatial cluster of pixels with either high (hotspots) or low (coldspots) values (Boori et 

al., 2021). The z-scores and p-values derived serve as measures of statistical significance and aid in 

determining whether to reject the null hypothesis or accept it. The null hypothesis assumes Complete Spatial 

Randomness (CSR) of the pixels or their associated values. 

A statistically significant hotspot can be established by a high value pixel having similarly high value pixels 

surrounding it. Moreover, intensified clustering of high pixel values reflects higher z-scores. Conversely, 

heightened clustering of low values indicates coldspots, signalled by lower z-scores (Silveira et al., 2021). A 

high ±z score with a small p-value indicates clustering of both high and low values. The application of the 

Getis-Ord Gi* statistic in identifying low biodiversity areas was adopted from a study conducted by Silveira 

et al. (2021) in estimating areas of biodiversity concern in a spatiotemporal analysis. This assessment of areas 

with high and low biodiversity was solely based on species richness. 
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4. RESULTS  

This section presents the results obtained through species richness estimations using both real (i.e., AVIRIS-

NG and Landsat) and simulated data and reflects on the findings derived from the analysis. Consequently, 

the chapter examines various aspects, including Principal Component Analysis (PCA), spatial consistency 

and Spectral Feature Fitting. 

4.1. PCA Analysis 

This subsection details the results of the selected principal components from the PCA analysis of AVIRIS-

NG, spectrally upscaled 4m image, spatially upscaled 16m image, spatially upscaled 30m image, simulated 

Landsat, and Landsat 8 data. The PC selection for each remote sensing data was based on the eigenvalues 

resulting from the PCA and the PCs accounting for at least 98% of the cumulative variance in the images 

(Figure 7). Moreover, the remaining PCs produced only 2% or less of the total (eigenvalue) of the data, as 

their images appeared to be noise. Table 1. summarises the eigenvalues of the first three PCs for each remote 

sensing image.  

 
Table 1 PC Bands with Various Eigenvalues and Percentage Variances 

Remote Sensing Data PC Band Eigenvalue Percentage 
Variance 

AVIRIS-NG      Band 1 7.352837 89.8 

     Band 2 0.555378 6.8 

     Band 3 0.163083 2 

Spectrally Upscaled 4m 
Image 

     Band 1 0.164344 90 

     Band 2 0.012020 6.6 

     Band 3 0.004275 2.3 

Spatially Upscaled 16m Image      Band 1 4.746150 89.8 

     Band 2 0.381812 7.2 

     Band 3 0.094383 1.8 

Spatially Upscaled 30m Image      Band 1 3.963779 89.8 

     Band 2 0.325333 7.4 

     Band 3 0.074057 1.7 

Simulated Landsat Image      Band 1 0.070639 91.3 

     Band 2 0.004284 5.5 

     Band 3 0.001808 2.3 

Landsat 8      Band 1 0.015586 92.2 

     Band 2 0.000748 4.4 

     Band 3 0.000324 2%  

 

Table 1 shows that the first three PCs contain a significant part of the information. The first three PCs 

explained 89.8%, 6.8%, and 2% of the variance in the AVIRIS-NG image. In the simulated Landsat image, 
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the first 3 PCs explained 91.3%, 5.5%, and 2.3% variance in the image. On the other hand, the first 3 PCs 

of Landsat 8 explained 92.2%,4.4%, and 2% of the total variance in the dataset. The correlation matrix 

shows that PC1 has a large positive correlation with bands within the red and near-infrared region (701 to 

852 nm) for AVIRIS-NG, contributing the most to species variation. PC2 and PC3 are also related to NIR 

and SWIR bands (1313.2 nm to 2190 nm) and (862.2 nm to 1758.8 nm), respectively.  

 

Similarly, in the case of the simulated Landsat and Landsat, the first three PCs were influenced the most by 

the bands in the NIR and SWIR range (Table 5 and Table 6). This can be attributed to the high reflectance 

of vegetation signals in the NIR and its spectral response to dry vegetation in the SWIR. 

 

Moreover, by loading the first three PC images in RGB, as seen in Figure 7, the lower spatially resolution 

images (spatially upscaled 16m, spatially upscaled 30, simulated Landsat and Landsat 8) captured general 

and similar dominant pattern as the AVIRIS-NG image although less detailed. Meanwhile, the higher spatial 

resolution images (the spectrally upscaled 4m image and AVIRIS-NG) captured the spatial grain and 

intricate pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

/* 

 

 

 

 

 

 

  

Figure 7 RGB combination using the first 3 PCA Images Derived from a) AVIRIS-NG (4m)  b) 
Spectrally Upscaled Image (4m with 7 bands) c)Spatially Upscaled Image (16m) d)Spatially Upscaled 
image (30m) e) Simulated Landsat (30m with 7 bands) and  f) Landsat 8 Image 
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4.2. Cluster Discrimination  

This subsection highlights the spectral classes derived from cluster analysis using the selected Principal 

Components (PCs). Figure 8 presents the results of the cluster discrimination based on the maximum 

number of clusters (Table 2) identified in each image. 

 
Table 2 Cluster Discrimination 

Remote 
Sensing 
Data 

AVIRIS-
NG 
(4m) 

Spectrally 
Upscaled 
Image 
(4m) 

Spatially 
Upscaled 
16m 

Spatially 
Upscalled 
30m 

Simulated 
Landsat 
(30m) 

Landsat 
(30m) 

Cluster 18 9 18 16 6 8 

 

Table 2 displays the pre-defined number of clusters obtained using the Davies Bouldin Index for each 

image. Among the considered images, it is worth noting that both the AVIRIS-NG image and the spatially 

upscaled 16m image exhibited the highest number of clusters in cluster discrimination (18), followed by 

the spatially upscaled 30m image (16), the spectrally upscaled 4m image (9), Landsat 8 (8) and lastly, the 

simulated Landsat (6). It is evident that most of the clusters are produced at high spatial and spectral 

resolution. The number of clusters can be seen from the spatially upscaled images (16m and 30m) to 

decrease as the spatial resolution is degraded. Additionally, the clusters in the spectrally upscaled image 

(4m) demonstrate how the spectral component affects cluster discrimination. It has been noted that the 

image loses its discrimination strength as the high spatial resolution (4m) is retained while the spectral 

Figure 8 Spectral Classes generated using the classical k-means clustering for a) AVIRIS-NG (4m)  b) Spectrally 
Upscaled Image (4m with 7 bands) c)Spatially Upscaled Image (16m) d)Spatially Upscaled image (30m) e) 
Simulated Landsat (30m with 7 bands) and  f) Landsat 8 Image. 
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resolution degrades. Aside from that, the simulated multispectral Landsat image and the actual Landsat 

data produced a similar number of clusters, although slightly. Overall, the cluster discrimination signifies 

that the spatial component plays a more crucial role in discriminating clusters than the spectral 

component. 

4.3. Corresponding Spectral curves  

The spectral characteristics of the obtained clusters within each image were analyzed by deriving and plotting 

the average and standard deviation of the spectra of each cluster for visual examination. The average of all 

pixels allocated to that cluster serves as the centre and representative value of the cluster, shedding light on 

the general characteristics or behaviour of the cluster. The standard deviation of the cluster signifies how 

varied or similar the pixels are among a cluster. The visual examination of the average spectral profiles of 

the various clusters showed that there were clusters that did not belong to a vegetation class (a combination 

of dry vegetation and soil, while others were soil only). For the considered images, it was identified that: 13 

out of the 18 clusters in AVIRIS-NG, 5 out 9 clusters in the spectrally upscaled 4m image, 14 clusters out 

of the 18 clusters in the spatially upscaled 16m  image,  13 clusters out of the 16 clusters in the spatially 

upscaled 30m image, 4 out the 6 clusters in the simulated Landsat image,  and the 5 out of the 8 clusters 

were identified not to be vegetation. Figure 21 to Figure 26 contain the respective spectral profiles for each 

image (i.e. AVIRIS-NG, spectrally upscaled (4m) image, spatially upscaled 16m image, spatially upscaled 

30m image, simulated Landsat and Landsat 8). 

4.3.1. Endmember Analysis 

After estimating the mean spectral signatures in each cluster in the considered images, Spectral Feature 

Fitting (SFF) was conducted to examine the purity of the spectral traces of the clusters in the AVIRIS-NG 

that are similar to vegetation. On the other hand, the vegetation spectral classes from Landsat 8 were verified 

by deriving the correspondence between the very high resolution images and clusters. Figure 9 outlines the 

Spectral Feature Fitting (SFF) scores for AVIRIS-NG clusters. 
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As illustrated in Figure 9, Cluster 13, Cluster 15, Cluster 16, Cluster 17 and Cluster 18 (SFF scores of 0.0) 

indicate similarity to the endmember vegetation in the JPL AVIRIS spectral library. The colour intensity 

fades as the clusters are mixed with vegetation and other background information. Cluster 1 had the highest 

SFF score (0.926), indicating that the spectral profile is not vegetation. Figure 10 displays the spectral profiles 

of Cluster 13, Cluster 15, Cluster 16, Cluster 17 and Cluster 18, evidenced as vegetation species based on 

the SFF score and Cluster 1 identified not to be vegetation. 

Furthermore, SFF also highlights the phenology of the vegetation species in the region as the time spot 

(summer), which is characterized by less rainfall and high temperature, causing the understorey (such as 

grasses) to be dry. The spectral profiles of the other clusters also indicate that the clusters can be affected 

by mixed reflectance of dry grasses and underlying soil reflectance. For instance, it is seen in clusters like 

Cluster 12 and Cluster 14 (Figure 47), which were slightly close to being pure vegetation had an influence 

of non-vegetative spectral signatures or background effects included in those regions.  

 

 

 

 

 

 

 

 

 

 

 

      High Low 

SFF Score 

SPECTRAL FEATURE 

FITTING 

Figure 9 shows the SFF Score for Clusters in AVIRIS-NG derived by comparison with the AVIRIS 
vegetation spectral library. The shading intensity highlights the pure vegetation spectral profiles among the 
clusters. 
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According to Figure 11, three spectral profiles from the real Landsat 8 were identified as vegetation species 

(Cluster 3, Cluster 7, and Cluster 8). However, the remaining spectral profiles represented mixtures of non-

vegetation elements (soil) and non-photosynthetic vegetation, while some were solely composed of soil. 

Landsat 8 clusters were geographically linked with high-resolution imagery for visual examination. Also, it 

was seen that the vegetation species in Landsat Cluster 7 were less dense than Landsat Cluster 8 and typically 

located around Landsat Cluster 8. Compared to AVIRIS-NG (4m), Landsat data shows that the lower spatial 

resolution makes the pixels more homogenous and detects less background information to form more 

clusters. 

Additionally, the gamma diversity of SJER is evident through the Landsat data, showcasing the total 

variability in vegetation species within the study area. 

 

 
  Figure 11 Spectral Signatures of Landsat Vegetation Clusters identified with High Resolution 
 Image 

 

Figure 10 Spectral Signatures for .Cluster 13, Cluster 15, Cluster 16, Cluster 17 and Cluster 18. 
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4.4. Species Richness 

For estimating species richness, spectral classes were treated as spectral species. This approach considers 

spectral diversity proxy for species diversity, where each spectral class represents one or more species that 

share similar spectral signatures. For example, a pixel in SJER might be composed of deciduous and 

evergreen oak (Quercus douglesii, Quercus wislizeni) or a combination of deciduous, grey pine and evergreen oak 

(Quercus douglesii, Quercus wislizeni, Pinus sabiniana) or bare soil only. Thus, spectral diversity is related to species 

diversity. A moving window of 100 by 100m was used to calculate species richness in each image. 

Considering the strong spectral diversity dependence on spatial resolution, larger pixel sizes (such as Landsat 

8) had fewer pixels in the 1-ha moving window. Hence, fewer unique species are computed at lower spatial 

resolutions than at higher spatial resolutions.  The surrounding pixels of the boundary area did not have 

enough pixels to fill a 1-hectare (ha) moving window due to the algorithm employed to estimate species 

richness. As a result, less than four species were recorded in those areas. Figure 12 below shows the resultant 

species richness maps for the real and simulated data. 

 

From Figure 12, it can be seen that there is a reduction in the number of species as the image is being 

degraded spatially and spectrally. High spatial resolution images (i.e. AVIRIS-NG, spatially upscaled 16m, 

spectrally upscaled 4m) depicted more variation in the number of species than the images with a low spatial 

resolution (Spatially upscaled 30m, Simulated multispectral and Landsat 8 data). The spatially upscaled 16m 

image detected a higher variation of unique species compared to the spectrally upscaled image with a 4m 

resolution due to the higher spectral resolution found in the image to detect variation across the landscape. 

Similar to the Landsat data, the spatially upscaled 30m image also depicted a similar number of unique 

species (ranging from 4-8 species) in the study area. However, it is more evident that the 30m spatially 

a) b) c) 

f) d) e) 

Figure 12 Species Richness a) AVIRIS-NG (4m)  b) Spectrally Upscaled Image (4m with 7 bands) c)Spatially 
Upscaled Image (16m) d)Spatially Upscaled image (30m) e) Simulated Landsat (30m with 7 bands) and f) Landsat 8 
Image. 
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upscaled image shows a more pronounced presence of species between the range 4 to 8 species than in the 

Landsat 8 data. This is attributed to the high spectral component of the spatially upscaled image. 

 

4.4.1. Spatial consistency   

The spatial consistency of remote sensing images (spectrally upscaled 4m image, spatially upscaled 16m 

image, spatially upscaled 30m image, simulated Landsat, and Landsat) was examined in conjunction with 

AVIRIS-NG images to identify similarities between clusters following the species richness estimation. 

Figure 13 and Figure 15 show the identified spatially consistent clusters with AVIRIS with the respective 

spectral traces displayed in Figure 14 and Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 Spatially Consistent Clusters In Landsat And AVIRIS-NG Together with a Corresponding Region In High Resolution. 
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Figure 15 Spatially Consistent Clusters In Landsat And AVIRIS-NG Together with a Corresponding Region In High 
Resolution. 

Figure 14 Corresponding Spectral Curves of AVIRIS Cluster 17 and Landsat Cluster 3. 
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Figure 13 showcases the clusters in AVIRIS-NG (Cluster 17) and Landsat 8 (Cluster 3) data identified to 

have a similar spatial pattern through visual examination. It can be seen that the spatially consistent cluster 

is vegetation based on the high resolution image included, as well as the spectral profiles provided in 

Figure 14. 

 

Based on Figure 15, it is evident that Landsat cluster 7 exhibits a similar spatial pattern to AVIRIS-NG 

cluster 17. These spatially consistent clusters identified as vegetation correspond to the high resolution 

image. Also, Figure 16 provides the spectral signatures of the respective clusters that further support their 

classification as vegetation. 

 

The identified clusters imply that vegetation species can be consistently and accurately characterized for 

comparison and analysis to understand species patterns and dynamics in the Landsat scene. The resulting 

spatial consistency of the remaining remote sensing images (Landsat, spatially upscaled 16m, spatially 

upscaled 30m, spectrally upscaled 4m and simulated Landsat) can be found in Figure 29 to Figure 46 in 

Appendix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 Corresponding Spectral Traces of AVIRIS Cluster 17 and Landsat Cluster 7. 

Figure 17 Frequency of Spatially Consistent Pixels Per Cluster with AVIRIS-NG. 
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Coupled with that, Figure 17 shows the number of pixels exhibiting spatial consistency with a cluster in 

AVIRIS-NG. The highest number of similar pixels with AVIRIS-NG are found in cluster 3 of Landsat 

(5883 pixels), cluster 15 (9631) of the spatially upscaled 30m, cluster 17 (12293) of the spatially upscaled 

16m, cluster 2 (18715) of the simulated Landsat and cluster 1 (32271) of the spectrally upscaled 4m image. 
 

4.4.2. Validation Results  

 
Table 3 Correlation of Field Data with Open and Closed Forest 

Remote 
Sensing 
Data 

AVIRIS-
NG 

Spectrally 
Upscaled 

Image (4m) 

Spatially 
Upscaled 

16m 

Spatially 
Upscaled 

30m 

Simulated 
Landsat 

Landsat 

Closed 
Forest 0.68 

 
0.65 0.25 0.68 0.65 0.65 

Open 
Forest -0.068 0.5 -0.11 -0.068 0.21 0.01 

 

Figure 18 depicts the correlation between the field data and Landsat 8 and AVIRIS-NG images; results show 

that the remote sensing images overestimated, albeit slightly. The point size increases with the number of 

overlapped points at a given location in the graph. 40 field plots in total were used for validation. Results 

indicate a low correlation between the species richness from field data and Landsat 8 data (r2 = 0.0940) and 

Figure 18 Correlation of the Landsat and AVIRIS-NG data with Field data with the number of points overlapped at a specific point 
location influences the size of the points in the figure. 
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AVIRIS-NG data (r2 = 0.0639). However, it is worth noting that Landsat 8 showed a relatively higher 

correlation compared to AVIRIS-NG.   

 

Considering the correlation of the field data with the closed and open forests separately, Table 3 shows an 

overall improvement in the correlation between the closed forest and species richness field data than with 

the open forest, except for the spatially upscaled 16m image in the closed forest. The weak correlation in 

Figure 18 and the improved correlation in Table 3 corroborate the influence of background information 

when applying the SDH approach in SJER. 

 

4.4.3. Spatial Pattern Analysis 

This subsection focuses on the spatial pattern analysis conducted to pinpoint regions in the San Joaquin 

area with low biodiversity based on the species richness information obtained from the optical data. 

 
Figure 19 Comparative Analysis of Coldspot  (black circles) and Hotspots (black squares) Patterns in  a) AVIRIS-NG 
(4m)  b) Spectrally Upscaled Image (4m with 7 bands) c)Spatially Upscaled Image (16m) d)Spatially Upscaled image 
(30m) e) Simulated Landsat (30m with 7 bands) and  f) Landsat 8 Image) 

Figure 19 demonstrates a consistent pattern of low-diversity areas (identified by black circles) across the 

optical images. The Getis Ord Gi * statistic in the ENVI software determined the coldspot areas in SJER 

across the considered images. This z-statistic revealed statistically significant (Table 4) spatial clusters of 

pixels. Coldspots – areas where low species richness levels are concentrated – were identified. The black-

circled areas were determined coldspot and hotspot regions identified to have low biodiversity and are 

consistent across the optical images.  
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Table 4 Significant Test Result for the Optical Data 

Optical Data Z-Score 

AVIIRS-NG 19.71 

Spectrally 

Upscaled 4m  

17.75 

Spatially 

Upscaled 16m 

20.57 

Spatially 

Upscaled 30m 

16.78 

Simulated 

Landsat 

15.40 

Landsat 8 14.58 

  
The z-scores in Table 4 indicate the level of statistically significant pattern in the respective optical data 

(AVIIRS-NG, Spectrally Upscaled 4m, Spatially Upscaled 16m, Spatially Upscaled 30m, Simulated 

Multispectral, and Landsat 8). The spatially upscaled 16m data has the highest z-score of 20.57, indicating a 

highly significant result. AVIRIS-NG data follows closely with a z-score of 19.71, indicating a highly 

significant result. The spectrally upscaled 4m image has a significant result with a z-score of 17.75, although 

slightly lower than AVIRIS-NG. The spatially upscaled 30m image shows a significant result with a z-score 

of 16.78. The simulated Landsat image has a z-score of 15.40, indicating a significant result, albeit lower 

than the previous datasets. Finally, Landsat 8 data has a z-score of 14.58, which is relatively lower than the 

other datasets but still signifies a significant result. This finding underscores the importance of upscaling 

spatial resolution when analyzing spatial patterns in the Mediterranean region. 

.   



MONITORING BIODIVERSITY USING SATELLITE IMAGE TIME-SERIES IN SAN JOAQUIN EXPERIMENTAL RANGE, CALIFORNIA. 

33 

5. .DISCUSSION 

This section of the research reflects on the findings derived from the analysis conducted in this study. 

5.1. Spectral Diversity Hypothesis and its Application in the Meditterean Ecosystem 

Hyperspectral data has proven helpful in applying the SDH approach in areas with high species variability, 

such as the dense tropical forest (Féret & Asner, 2014) areas where background information such as soils 

had been effectively masked out. However, this phenomenon did not occur in the Mediterranean ecosystem, 

such as SJER. This study represents one of the first real-world applications of SDH with low vegetation 

cover in the Mediterranean ecosystem with strong influence from the soil. With low vegetation, additional 

care is required in filtering out non-vegetative information in the Mediterranean ecosystem.  

 
In the case of the dimensionality reduction using PCA, it was observed that the spectral domain of NIR and 

SWIR were the most significant in contributing to the PCs in real data and simulated data for estimating 

spectral heterogeneity. This finding aligns with numerous studies that indicate the pronounced synergy 

reflectance at the canopy level in the near-infrared (NIR) region as well as the additional information 

provided by the SWIR region in capturing biochemical and structural traits in vegetation for differentiating 

vegetation species (Estornell et al., 2013; Hall et al., 2012; Heumann et al., 2015; Madonsela et al., 2017b; 

Ollinger, 2011). The variables (bands) that cause the most variance represent the primary construct of the 

spectral feature space (Sousa & Small, 2018). The similarity in the regions contributing to the principal 

components of AVIRIS-NG and Landsat data shows that the multispectral data represents the fundamental 

vegetation species structure found in the AVIRIS-NG image despite the AVIRIS-NG image reflecting a 

variety of spectral information indistinguishable from the Landsat data. 

 

Using SFF (Figure 9) and from visual exploration in the Landsat data (Figure 11), it was determined that the 

vegetation species in SJER were more than three (3). The study concurs with previous studies by Newman 

& Duncan (1973), noting that the least number of tree species in SJER is 3. To add to this, the findings of 

this study should not be interpreted to suggest that the hyperspectral data cube from AVIRIS-NG data is 

limited to detecting four or five different vegetation species. Similarly, it should not be assumed that 

multispectral (Landsat) can capture the same data as the AVIRIS-NG data cube. Instead, the study shows 

that both datasets exhibit a comparable number of fundamental dimensions and a similar geometric 

relationship among their spectra when linearly decomposed using PCA. 
 

The high number of (18) clusters in the AVIRIS-NG images may ascribe to the subtle variations in pixel 

values amplified due to the high spatial and spectral resolution of AVIRIS-NG. This over-segmentation may 

also have slightly overestimated the species richness results by producing too many small clusters, 

particularly in open forest areas where background information is present. For instance, in viewing the 

AVIRIS-NG image and its corresponding images (PCA and RGB) in Figure 20, it is evident that there is an 

overestimation of the clusters in the AVIRIS-NG image, where more than one cluster was produced on a 

canopy crown. This finding is consistent with Griffith et al (2021), who noted that redundant information 

could be introduced into images of the Mediterranean ecosystem at fine resolution. However, it is observed 

from the study that there may be other species not captured in the dominant classifications. On the other 

hand, the overestimation in the AVIRIS-NG can be attributed to the nature of species found in SJER.  

According to Roth et al (2015), the classification of coniferous species, such as grey pines (Pinus Sabiniana) 

in the southern Sierra Nevada region, proved challenging due to the intensive mixture at fine resolution. 

This is because these species occur as unique clusters of individual species during classification. To add to 
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that, the herbaceous species are known to be very dry in the summer due to their response to low soil 

moisture and high temperature. 

5.2. Spectral Diversity in Upscaled Hyperspectral Data  

It can be observed in Table 2 that spatial resolution strongly influences the discrimination of clusters in the 

study area, which consequently affects species richness estimations. It is observed that as the AVIRIS-NG 

(4m) image is spatially upscaled to 16m resolution and 30m resolution separately, there is a slight reduction 

in cluster discrimination from 18 clusters in the spatially upscaled 16m image to 16 clusters in the spatially 

upscaled 30m image.  

A decrease in spatial resolution can impact spectral mixing, affecting the optimal number of spectral species 

in k-means clustering. The spatial upscaling of the AVIRIS-NG reduces the detail of spectral reflectances 

from the San Joaquin area. Furthermore, it was observed that both the simulated multispectral data and 

Landsat 8 data showed the lowest number of unique species (Table 2). This is attributed to the low spatial 

resolution (30m) of multispectral data affecting the capacity to detect distinct spectral signals in vegetation 

(Badola et al., 2022). It also results in fewer pixels within the 1 ha moving window used in estimating species 

richness compared to AVIRIS-NG. 

 

Conversely, it was observed in the spatially upscaled 30m image and Landsat data that spectral resolution 

plays a role in estimating species richness. The Landsat data and simulated multispectral Landsat 

distinguished 8 and 6 clusters, respectively, while the spatially upscaled 30m data detected 16 clusters in the 

region. Additionally, it was observed in the spectrally 4m upscaled image that despite the high spatial 

resolution detected, only 9 clusters could be discriminated. However, its small pixel size makes it possible 

for more pixels in the 1 ha moving window compared to the 30m resolution images, making it a slightly 

higher species richness compared to the simulated multispectral and Landsat data, as shown in Figure 12. 

Finally, the results in Table 2 showed that the high spectral resolution in the spatially upscaled 16m and 30m 

resolution helped to detect subtle variations in the area resulting in a higher species richness being measured 

in SJER, as seen in Figure 12. 

5.3. Comparison of Performance in AVIRIS-NG and Multispectral Data 

In contrast to earlier studies conducted by Féret & Asner (2014), Hall et al. (2012) and Rocchini et al. (2015), 

this research revealed an overall weaker correlation (R2 of 0.0639 in AVIRIS-NG and R2 of 0.0940 in Landsat) 

between species richness and species diversity. Nevertheless, the study discovered that the higher accuracy 

of the closed forest was consistent with previous studies regardless of the weaker overall correlation. 

According to Table 3, the R2 values of the closed forest range from 0.25 to 0.68. These R2 values can be 

deemed valid for species diversity from spectral variation, as Rocchini et al. (2015) stated that R2 values are 

Figure 20 Overestimation in AVIRIS-NG. 
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considered valid for species diversity from spectral variation. Furthermore, implementing methods to mask 

out non-vegetative pixels in the San Joaquin area for both open and closed forest areas would provide an 

efficient approach to assessing vascular species in the Mediterranean region. Besides, there was a low 

correlation between species richness in open forests and species richness in field data due to background 

information (soil and dry vegetation) affecting the spectral classes used to assess species richness. The low 

correlation between the field data and the Landsat 8 and AVIRIS-NG images can be attributed in part to 

the characteristics of the Mediterranean ecosystem being predominantly an open woodland.  

 

There is a need to consider appropriate sensor resolution based on the characteristics of the landscape 

features of interest to ensure optimal spectral information capture (Sousa & Small, 2018). The comparison 

of the R2 values between Landsat 8 (0.65) and AVIRIS-NG (0.68) in Table 3 shows the potential of Landsat 

data in estimating species diversity in the San Joaquin Experimental Range (SJER). With the landscape 

features of SJER compared to tropical areas, Landsat 8 data, with its lower spatial and spectral resolution, 

captures a heterogenous mixture of spectra with lesser background detail and produces optimal variation in 

spectral patterns. This can effectively map species diversity given that there are fewer species in the region 

as compared to the tropical areas that require high-fidelity image spectroscopy to map biodiversity. This 

finding aligns with the study conducted by Viedma et al. (2012), who argued that using multispectral sensors 

in conjunction with large sampling plot sizes (greater than 100 m2) allowed for high accuracy prediction of 

overall species richness in the Mediterranean region of Spain. 

 

5.4. Consistency of Spatial Patterns and Relationships 

Despite the differences in spectral and spatial resolutions in measuring species richness in San Joaquin, the 

spatial patterns of vegetation species between clusters remained consistent across the dataset, even in the 

spatially and spectrally upscaled AVIRIS-NG images. The spectral similarities of the spatially consistent 

clusters in the Landsat 8 and AVIRIS-NG image imply that multispectral and hyperspectral feature spaces 

have comparable structures for measuring alpha diversity in the Mediterranean ecosystem, although 

AVIRIS-NG has high data dimensionality. The consistency of the spatial patterns in clusters in Landsat and 

AVIRIS-NG data has the capabilty to significantly inform analyses in studies where spatially or temporally 

limited hyperspectral information can complement the plethora of multispectral observations. 

 

Aside from that, spatial pattern analysis was useful in detecting cold spots (areas of low species richness) in 

biodiversity for both the real and simulated data. This analysis was adapted from Boori et al. (2021), which 

used the Getis Ord Gi* statistic to identify vulnerable areas in a spatiotemporal ecological analysis. The 

consistent pattern of biodiversity cold spots shown in both real and simulated data signified the effect of 

environmental filtering.  

5.5. Limitations 

Applications of SDH using Landsat and AVIRIS-NG demonstrated its limits when applied to the 

Mediterranean ecosystem. Given that the images were captured during one of the driest years in the history 

of California (Huesca et al., 2021) and considering the nature of the vegetative species, especially the 

understorey being dry and also mixed with soil at that time in SJER, automatically masking out of non-

vegetative pixels using the NDVI threshold (< 0.3) only was a challenge. In order to curb this limitation, 

non-vegetative pixels were masked out manually, as the automated method excluded important vegetative 
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areas in the study area. These vegetative areas were identified from high resolution images from the same 

time spot. Although these non-vegetative areas were attempted to be excluded, not all areas were detected. 

 

Additionally, a challenge that was not considered in this study was the influence of topographic effects, such 

as aspect and shadows, in the spectral species estimations. For example, a north-facing species may exhibit 

slightly different spectral reflectance compared to a south-facing species of the same species due to the 

differences in sun exposure. These effects can result in the overestimation of species in the optical data. To 

mitigate this challenge, band normalization was performed to reduce the influences of these factors. For 

instance, since shadows reflect lower signals in the VNIR region, the bands with very low signals are adjusted 

to the lower limit to minimize the effect of all these errors. 

 

Lastly, the field data used in this study was not explicitly collected for validating species richness estimates 

but for a slightly different purpose. Plots dominated by deciduous, annual or perennial trees were mainly 

sampled to depict their temporal evolution throughout the years. 

 

5.6. Implications for Biodiversity Assessment 

The Spectral Diversity Hypothesis, as proposed by Palmer et al. (2002), allows conservationists to map 

ecological conditions in the Mediterranean ecosystem using multispectral sensors, such as Landsat and 

Sentinel 2, rather than hyperspectral sensors. This method can help to detect areas where environmental 

conditions are unfavourable or less suitable for certain species to be intervened, given that Mediterranean 

areas are noted for drought and frequent fire outbreaks (Huesca et al., 2021; Ullrich et al., 2018). 

 

Utilizing openly accessible multispectral data allows for consistent monitoring of the species to mitigate the 

effect of biodiversity loss through anthropogenic activities in the Mediterranean ecosystem. Hence, this is a 

cost-effective method of assessing biodiversity and will improve the ability to respond to biodiversity loss.  

 

Additionally, this approach offers a stepping stone to monitor the temporal development and dynamics of 

species diversity at the pixel level using tailored indicators and Essential Biodiversity Variables (EBVs). With 

applications such as Breaks For Additive Seasonal and Trend (BFAST) together with the Box -Jenkins 

method, trends, seasonality, abrupt changes and emerging needs of the species can be predicted and 

forecasted by analyzing the spectral diversity in time. The Autoregressive Integrated Moving Average 

(ARIMA) model has been evidenced to have exceptional evaluations in demonstrating patterns in 

biodiversity as well as the trend of changes over an average time of years for the Mediterranean region 

(Martinez, 2012). 

 

Although the SDH approach does not give details of specific species, it can offer valuable insights into the 

spatial pattern of biodiversity for sustainable management of the environment. 
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6.  RECOMMENDATIONS AND CONCLUSION 

The section of this study concludes with a summary of findings based on the analysis obtained from the 

real and simulated data and makes recommendations for further study. 

6.1. Summary 

This study was primarily aimed at applying the Spectral Diversity Hypothesis (SDH) in assessing biodiversity 

in the Mediterranean ecosystem. The research investigated the potential of different sensors, which were 

hyperspectral data from AVIRIS-NG, multispectral sensor Landsat 8, as well as spatially upscaled and 

spectrally upscaled AVIRIS-NG products, in estimating species richness using the same SDH method. 

 

In general, it was observed that there was a weak correlation (R2 = 0.0639 for AVIRIS and R2 = 0.0940 for 

Landsat 8 data) between spectral diversity and species diversity in the region. This was attributed to the 

SJER being an open woodland with non-photosynthetically active vegetation and the influence of soil. 

However, it was revealed that the closed forest areas in the region presented a relatively higher accuracy of 

R2 of 0.65 for Landsat, with AVIRIS-NG having an accuracy of R2 of 0.68. 

  

The discrimination of clusters in the spatially and spectrally upscaled AVIRIS-NG images revealed that the 

spatial component had a higher influence on the discrimination of clusters for estimating alpha diversity 

than the spectral component. The Landsat 8 data was able to discriminate vegetation species with a reduced 

effect of background information compared to AVIRIS-NG. This shows that although the high spectral 

resolution aids in discriminating species, the spatial component plays a crucial role. This study also revealed 

that out of the 18 clusters derived for the AVIRIS-NG image, only 5 clusters of pure vegetation species 

(SFF score of 0), whilst the other clusters were influenced by soil. Similar findings were observed in the 

Landsat data, where 3 clusters were detected as vegetation from visual exploration. 

 

This study has shown that multispectral sensors effectively assess biodiversity in the Mediterranean 

ecosystem. This includes consistencies in spatial patterns of clusters as well as identified low biodiversity 

areas between AVIRIS-NG data (renowned for estimating species diversity due to its high spatial and 

spectral resolution) and Landsat data. Furthermore, the Principal Component Analysis revealed that the PCs 

were primarily influenced by bands in the NIR and SWIR regions in both AVIRIS-NG and Landsat 8. 

 

6.2.  Recommendations 

This research serves as a springboard for additional studies into the application of SDH  with the 

Mediterranean climate. To ensure the usability of the hyperspectral imagery when applying the SDH 

approach, non-vegetative and non-photosynthetically active vegetative pixels should be extensively masked 

out in the open forest areas to improve the accuracy in estimating species diversity since the Mediterranean 

areas are characterised mainly by open forest areas, dominated by shrubs, herbaceous plants, grasses with a 

higher influence of background information.  

 

Aside from this, it is recommended to further investigate the application of the SDH extrapolated in the 

Mediterranean closed forest area, even though the closed forest areas showed a better accuracy compared 

to the overall study area by proving a higher correlation of species richness to species diversity.  
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Lastly, it will be beneficial to include the temporal component in the classification to improve discrimination 

from the soil and model the phenological pattern of understorey vegetation when applying the SDH 

approach for monitoring.   

6.3.  Conclusion 

The portability of the SDH method ensures its usability and reliability in ecological areas; however, the 

context of the landscape should be taken into consideration. These findings are encouraging as they suggest 

that similar classification analyses can be applied to larger areas using emerging hyperspectral satellite 

imagery. Landsat can still effectively differentiate spectral classes that represent the environmental 

heterogeneity in the study area as well as detect spatially consistent areas as with the high spectral resolution 

images. 
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7. APPENDIX  

7.1. Spectral Curves of Clusters 

 The average spectral reflectance was derived from the mean reflectance curves of pixels belonging to each 

cluster in the considered images. Spectral profiles demonstrate significant variation among species across 

the spectra and overall albedo. Figure 21 to Figure 26 below shows the spectral curves of clusters in AVIRIS-

NG, spectrally upscaled 4m image, spatially upscaled 16m image, spatially upscaled 30m image, simulated 

Landsat and Landsat 8 data. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 21 Average Spectral Reflectance of Clusters  identified in AVIRIS-NG. 

Figure 22 Average Spectral Reflectance of Clusters identified in Spectrally Upscaled 4m image  (7 
bands) 
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Figure 23 Average Spectral Reflectance of Clusters identified in the Spatially Upscaled 16m image. 

Figure 24 Average Spectral Reflectance of Clusters identified in the Spatially Upscaled 30 image. 
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Figure 25 Average Spectral Reflectance of Clusters identified in Simulated Landsat. 

Figure 26 Average Spectral Reflectance of Clusters identified in Landsat 8 
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Cluster 1 Cluster 2 Cluster 4 

Cluster 5 Cluster 6 Cluster 7 Cluster 8 

Figure 27 RGB images for a) AVIRIS-NG (4m) b) Spectrally Upscaled 4m  image (7 bands) c) Spatially 
Upscaled 16m image ( 373 bands) d) Spatially upscaled 30m image (373 bands) e)Simulated Landsat (30m with 
7 bands) and f) Landsat 8 data (30m with 7 bands). 

Figure 28 Examples of zoom-in areas of clusters derived in Landsat 8 data 

Cluster 3 
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Table 5 Eigenvectors of PCA Analysis in Simulated Landsat 

Eigenvector    Band 1    Band 2    Band 3    Band 4    Band 5    Band 6    Band 7 

     Eig. 1 0.35 0.36 0.36 0.39 0.24 0.43 0.48 

     Eig. 2 -0.23 -0.19 -0.19 0.01 -0.70 0.28 0.55 

     Eig. 3 0.51 0.39 0.19 -0.03 -0.57 -0.47 -0.08 

     Eig. 4 0.36 0.05 -0.25 -0.78 0.23 0.04 0.38 

     Eig. 5 0.33 0.07 -0.27 -0.05 -0.21 0.68 -0.55 

     Eig. 6 -0.41 0.25 0.67 -0.48 -0.14 0.25 -0.14 

     Eig. 7 -0.40 0.78 -0.47 0.04 0.06 -0.04 0.03 

 
 

Table 6 Eigenvectors of PCA Analysis in Landsat 8 

Eigenvector    Band 1    Band 2    Band 3    Band 4    Band 5    Band 6    Band 7 

     Eig. 1 0.27 0.28 0.27 0.16 0.36 0.53 0.59 

     Eig. 2 0.23 -0.08 -0.07 0.09 -0.92 0.14 0.24 

     Eig. 3 -0.63 -0.20 -0.21 0.04 -0.49 0.48 0.21 

     Eig. 4 -0.34 0.00 0.43 0.72 -0.19 -0.35 -0.11 

     Eig. 5 0.22 0.13 -0.22 0.34 -0.17 0.52 -0.69 

     Eig. 6 0.11 0.01 -0.78 0.45 0.14 -0.29 0.26 

     Eig. 7 -0.55 0.80 -0.17 -0.14 0.00 0.05 -0.01 
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Figure 29 Spatially Consistent Clusters In Spectrally Upscaled 4m Image And AVIRIS-NG Together with a 
Corresponding Region In High Resolution. 

Figure 30 Corresponding Spectral Profiles of Spectral Upscaled 4m image Cluster 1 and  AVIRIS-NG 
Cluster 18. 
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Figure 31 Spatially Consistent Clusters In Spectrally Upscaled 4m Image And AVIRIS-NG Together with a 
Corresponding Region In High Resolution. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 32 Corresponding Spectral Profiles of Spectral Upscaled 4m image Cluster 2 and  AVIRIS-NG Cluster 17. 
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Figure 33 Spatially Consistent Clusters In Spectrally Upscaled 4m Image And AVIRIS-NG Together with a 
Corresponding Region In High Resolution. 

. 

 
 
 
 
 
 
 
 
 

Figure 34 Corresponding Spectral Profiles of Spectral Upscaled 4m image Cluster 3 and  AVIRIS-NG Cluster 15. 
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Figure 36 Spatially Consistent Clusters In Spatially Upscaled 16m Image And AVIRIS-NG together with a Corresponding 
Region In High Resolution. 

Figure 35 Corresponding Spectral Profiles of Spatially Upscaled 16m image Cluster 10 and  AVIRIS-NG 
Cluster 17. 
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Figure 37 Spatially Consistent Clusters In Spatially Upscaled 16m Image And AVIRIS-NG Together with a 
Corresponding Region In High Resolution. 

Figure 38 Corresponding Spectral Profiles of Spatially Upscaled 16m image Cluster 17 and  AVIRIS-NG Cluster 
18. 
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Figure 40 Spatially Consistent Clusters in Spatially Upscaled 16m Image And AVIRIS-NG together with a 
Corresponding Region In High Resolution. 

Figure 39 Corresponding Spectral Profiles of Spatially Upscaled 16m image Cluster 13 and  AVIRIS-NG 
Cluster 13. 
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Figure 41 Corresponding Spectral Profiles of Spatially Upscaled 16m image Cluster 13 and  AVIRIS-NG Cluster 13. 

Figure 42 Corresponding Spectral Profiles of Spatially Upscaled 16m image Cluster 12 and  AVIRIS-NG Cluster 13. 
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Figure 43 Spatially Consistent Clusters In Spatially Upscaled 30m Image And AVIRIS-NG Together with a 
Corresponding Region In High Resolution. 

Figure 44 Corresponding Spectral Profiles of Spatially Upscaled 16m image Cluster 14 and  AVIRIS-NG Cluster 17. 
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Figure 47 Spatially Consistent Clusters In Simulated Landsat Image And AVIRIS-NG Together with a 
Corresponding Region In High Resolution. 

Figure 45 Corresponding Spectral Profiles of Simulated Landsat Cluster 2 and  AVIRIS-NG Cluster 18. 

Figure 467 Cluster 12 and Cluster 14 in AVIRIS-NG having SFF score close to 0 


