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Summary

The common methodology for system design is to determine specifications for the plant and the controller and
optimize them independently. Although the plant and controller may be optimal for their respective design
specifications, the independent design may lead to a sub-optimal closed loop system. Simultaneous design
of the plant and controller can be considered to obtain an optimal solution but this is in general a nonlinear
problem and convexity is not guaranteed. Several works have addressed plant and controller co-optimization,
often resulting in an iterative approach. In this work plant, and controller co-optimization is investigated
in a linear matrix inequality framework. The use of so-called convexifying potentials is adopted to locally
linearize the problem. These approximations are then used to iteratively approach a stationary point in the
plant and controller design space.

As a case study for the plant and controller co-optimization an active vibration isolation system with a
power-constrained H2-optimal static state feedback controller is considered. The simultaneous optimization
problem shows to be sensitive to numerical instability which limits the convergence of the plant and controller
co-optimization algorithm. Input and output normalization, a balanced realization and pole placement are
used for numerical conditioning of the optimization problem. For the pole placement, convexified matrix
inequalities are developed that confine the closed-loop system poles to a disc centered around the origin and
to the plane left of a vertical line. The case study shows that improved closed-loop systems can be obtained
with the iterative co-optimization approach, but numerical instability requires termination of the iterative
algorithm before an optimum is reached with the plant and controller co-optimization.
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1 Introduction

The theory and methods that are used in the subsequent paper are not part of the standard curriculum of
the master Systems and Control. Therefore, the goal of this section is to provide a brief introduction to the
theory and methods to help the reader understand the paper. The introduction begins with a short overview
on active vibration isolation systems which will be the subject of plant and controller co-optimization. Then,
a brief introduction to Linear Matrix Inequalities (LMIs) is provided. LMIs are interesting since many control
problems can be cast as an LMI problem and LMIs can be solved relatively efficient for which a large number
of open source solvers are available. Some properties of LMIs and operations such as congruence transforms
and the Schur complement will be treated here since these are essential tools for LMI problems. Furthermore,
the topic of pole placement through LMI regions is introduced. In the appendix, observations will be treated
that are unfinished results but may be relevant for further research on the topic.

1.1 Active vibration isolation systems

The performance of high-precision equipment is limited by the disturbances that act on the system. Typ-
ically, vibration isolation systems are used to limit the effects of these disturbances. Vibration isolation
systems can either be passive or active. An Active Vibration Isolation System (AVIS) contains one or more
actuators and uses controllers to achieve or improve the vibration isolation. A typical model for an AVIS
with actuation force fa is shown in Figure 1. Mass m1 can be interpreted as the mounting platform and
mass m2 represents an internal frame of the machine. Stiffness and damping k1 and d1 correspond to the
stiffness and damping of the mount and stiffness k2 and d2 correspond to the internal stiffness and damping
of the precision machinery. The objective of a vibration isolation system is to minimize the deformation of
the high precision equipment or, in other words, minimize x2 − x1. This internal deformation is of interest
since in this frame, payloads are handled or samples are scanned by the precision machinery.

Disturbances that are taken into account are floor accelerations ẍ0 and direct disturbances Fd. Examples of
a direct disturbance force are a reaction forces due to handling a payload or turbulence in cooling channels.

x0

k1 d1

m1

fa

Fd

x1

k2 d2

m2
x2

Figure 1: Ideal physical model of an AVIS

4



For a passive vibration isolation system, the design of the vibration isolation system is often a trade-off
between a ’hard’ and ’soft’ mount. A hard mount has relatively high stiffness k1 and damping d1 and a soft
mount is more compliant and has less damping. This trade-off can be visualized with transfer functions

C(s) =
X1(s)

Fd(s)
, T (s) =

s2X1(s)

s2X0(s)
, D(s) =

∆X(s)

Fd(s)
, Td(s) =

∆X(s)

s2X0(s)
, (1)

where C(s) is called the compliance, T (s) the transmissibility, D(s) the deformability and Td(s) the defor-
mation transmissibility.
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Figure 2: Bode magnitude plots showing the compliance, transmissibility, deformability and deformation
transmissibility for a hard and soft mount.

Along the lines of an example of Van der Poel (2010), bode plots of the transfer function for a hard and
soft mount vibration isolation system are plotted in Figure 2. This figure shows that a hard mount provides
low-frequency attenuation for the compliance and deformability whereas a soft mount provides attenuation
on the high-frequency range for the transmissibility and the deformation transmissibility. This trade-off can
be summarized as that the hard mount provides attenuation for the low-frequency spectrum of the direct
disturbances and a soft mount provides isolation from floor accelerations in the high-frequency range.
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1.2 Linear Matrix Inequalities

This section provides an overview of LMIs and is an adaptation from Scherer and Weiland (2011). For more
information, the reader is referred to the comprehensible treatments of the topic by Dettori (2001) and Skel-
ton (2021).

A linear matrix inequality is an inequality of the form

F (x) = F0 + F1x1 + F2x2 + · · ·+ Fnxn ≻ 0, (2)

where Fi are Hermitian matrices, i.e. Fi = Fi
T

meaning that matrix Fi equals its complex conjugated
transpose. The vector x = (x1, . . . , xn) is a vector of real numbers which elements are used as decision
variables. The vector x can also be extended to matrix valued decision variables, as is often the case for
control applications.

Solving an LMI can be treated as a feasibility problem, i.e. does a vector x exist such that the LMI is
satisfied? Alternatively, LMIs can be used for optimization problems. Given an objective, dependent on x,
which set of x minimizes or maximizes the objective function while satisfying the LMIs?

An important aspect in optimization is convexity. A function F (x) is convex if for all x1, x2 and α ∈ (0, 1)
it holds that

F (αx1 + (1− α)x2) ⪯ αF (x1) + (1− α)F (x2). (3)

If, F (x) is convex and a stationary point xs is found, then F (xs) is the minimal value of F (x). Furthermore,
if a function F (x) has strong convexity, i.e. a strict inequality is used for (3), then if a stationary point xs is
found for F (x), this stationary point is the only stationary point and F (xs) is the global minimum of F (x).
Similarly, a function F (x) is concave if

F (αx1 + (1− α)x2) ⪰ αF (x1) + (1− α)F (x2). (4)

For a concave function, if a stationary point xs is found, then F (xs) is a maximum. Note that the term con-
vexity is somewhat loosely used to indicate either that a function is convex or concave. Since LMIs are affine
in its decision variables, the feasible region is a polyhedron, which is a convex region. Therefore, any LMI is
convex, and if a feasibility or optimization problem can be cast in an LMI, then convexity is guaranteed for
this problem.

We can also consider a system of LMIs,

F1(x) ≻ 0, F2(x) ≻ 0, . . . , Fn(s) ≻ 0. (5)

A system of LMIs can be written as a single LMI following

F (x) =




F1(x) 0 . . . 0
0 F2(x) 0
...

. . .
...

0 0 . . . Fn(x)


 . (6)

Furthermore, affine constraints can be incorporated in an LMI problem, such as for example

{
F (x) ≻ 0,

Ax = b,
(7)

for some given matrix A and vector b.
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For scalars, examining inequalities is trivial. For matrices, with a matrix inequality F ≻ 0 we mean that
xTFx > 0 for any non-zero x. We therefore have F ≻ 0 if and only if all eigenvalues of F are greater than
zero. Note that any matrix can be rewritten as a sum of its symmetric and skew-symmetric parts. Thus,
F = Fsym + Fskew with Fsym = 1

2 (F + FT ) and Fskew = 1
2 (F − FT ). Skew-symmetric matrices have the

property that any eigenvalue is either zero or purely imaginary. Hence, xTFskewx = 0 for any x. Therefore,
without loss of generality, we can say that if we consider an LMI F ≻ 0, then F can be assumed to be
symmetric (Skelton (2021)).

As stated before, LMIs are useful for many control or stability problems. A well known LMI feasibility
problem is Lyapunov’s stability requirement. For a system ẋ = Ax, asymptotic stability is guaranteed if a
matrix P = PT ≻ 0 can be found such that ATP + PA ≺ 0. Typical LMI optimization problems in control
encompass the calculation of system norms such as the H2 and H∞ norms. If the controller gains for a closed
loop system are considered as decision variables, then the optimization problem can yield the optimal closed
loop system norm as well as the optimal controller.

1.3 Congruence transforms

As described, solving an LMI comes down to determining the definiteness of the eigenvalues of an LMI.
There exist a transform, called a congruence transform, that does not affect the sign of the eigenvalues. For
example, if we have a matrix F satisfying F ≻ 0 then for any non-singular T we have THFT ≻ 0, where TH

is the Hermitian transpose of T .

1.4 Schur complement

Consider a partitioned LMI

F =

[
F11 F12

F21 F22

]
≻ 0, (8)

with F12 = FT
21. By application of a congruence transform with

T =

[
I 0

−F−1
22 F21 I

]
, (9)

the LMI is diagonalized and we find

THFT =

[
F11 − F12F

−1
22 F21 0

0 F22

]
≻ 0. (10)

Simarly, by application of a congruence transform with

T =

[
I −F−1

11 F12

0 I

]
, (11)

we find

THFT =

[
F11 0
0 F22 − F21F

−1
11 F12

]
≻ 0. (12)

Since the LMIs above are diagonalized, we can conclude that F ≻ 0, if and only if
{
F11 − F12F

−1
22 F21 ≻ 0,

F22 ≻ 0,
(13)

if and only if {
F11 ≻ 0,

F22 − F21F
−1
11 F12 ≻ 0.

(14)

This result is called the Schur complement. The Schur complement provides a tool for transforming inequal-
ities with rational functions into an LMI. Note that the Schur complement works two ways, if (13) and (14)
hold, then neccesarily (8) also holds.
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1.5 LMI regions

There are reasons to allow system poles only to specific regions of the complex plane. For example, system
stability is guaranteed if all system poles lie in the left-half complex plane for a continuous time system and
within the unit circle for discrete time systems. Also other regions can be thought of to, for example, add
extra robustness or limit a system’s bandwidth.

This pole placement can be achieved using LMI regions. Each region specification yields an LMI that, if
satisfied, guarantees that the system poles lie in the respective region. An intersection of LMI regions can
easily be formed by satisfying all LMIs that form the intersection.

The following is an adaptation of Scherer and Weiland (2011), showing how LMIs region formulations are
developed. Furthermore, LMIs for the stability regions of a continuous time and discrete time system are
developed as examples.

Consider a pole s ∈ C with complex conjugate s and suppose we want this pole to lie in the region described
by Q + sS + sST + sRs ≺ 0 for some real-valued matrices Q, S and R. The eigenvalues of a real-valued
matrix A are contained in this region if we can find a P ≻ 0 such that

[
I

A⊗ I

]T [
P ⊗Q P ⊗ S
P ⊗ ST P ⊗R

] [
I

A⊗ I

]
≺ 0, (15)

where ⊗ is the Kronecker product, defined as

A⊗B =



A11B . . . A1nB

...
...

Am1B . . . AmnB


 . (16)

For stability of continuous time system ẋ = Ax, we require that all eigenvalues of a system matrix A lie in
the left-half complex plane, or Re(s) < 0, which is equivalent to s + sT < 0. Thus, we can define the LMI
region with Q = 0, S = ST = 1 and R = 0, or

[
I
A

]T [
0 P
P 0

] [
I
A

]
≺ 0. (17)

Working out the matrix products yields the well known inequality ATP + PA ≺ 0. Thus, all eigenvalues of
system matrix A lie in the left-half complex plane if we can find a P ≻ 0 such that ATP + PA ≺ 0.

Another important LMI region is the unit circle around the origin as this is the stability region for the discrete
time domain. A unit circle can be described as |s| < 1, or ss < 1 or ss − 1 < 0. Note that this region is
described with R = 1 and Q = −1. So, we have

[
I
A

]T [
−P 0
0 P

] [
I
P

]
≺ 0, (18)

which can be rewritten as −P + ATPA ≺ 0. Thus, the eigenvalues of A lie within the unit circle if we can
find a P ≻ 0 such that −P +ATPA ≺ 0.
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Abstract: Simultaneous optimization of a plant and controller is generally a nonlinear problem.
Several works have studied this problem, often resulting in an iterative approach. This paper
investigates the plant and controller co-optimization for an active vibration isolation system and
a power-constrained H2-optimal static state feedback controller by iterative use of convexified
LMI formulations. Pole placement is considered through LMI regions and convexified LMI
formulations are developed for pole placement within an origin-centered disc and the plane
to the left of a vertical line. The simultaneous optimization problem shows to be sensitive to
numerical instability. Input and output normalization, a balanced realization and pole placement
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of the iterative algorithm before a stationary point in the co-optimization is found.
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1. INTRODUCTION

The common methodology for system design is to deter-
mine specifications for the plant and the controller and
optimize them independently. Although the plant and con-
troller may be optimal for their respective design specifi-
cations, the independent design may lead to a sub-optimal
design for the closed loop system (Fathy et al. (2001)).

For an optimal closed loop performance, the plant and con-
troller need to be co-optimized (Kajiwara and Nagamatsu
(1999), Roos (2007)). In general, the co-optimization of
the plant and controller is a nonlinear problem which can
be approached with different strategies. Veen et al. (2014)
use a gradient based strategy in the frequency domain
where the sensitivity function is minimized for a particular
set of frequencies. This concept is extended for a MIMO
system and with additional mechanical requirements in
Van der Veen et al. (2017). Kianfar and Fredriksson (2011)
propose the vertex enumeration method. The claim here
is that if the plant parameters belong to a polytope, the
optimal plant and controller combination can be found at
a vertex of this polytope. This method then reduces the
plant and controller co-optimization problem to calculat-
ing an optimal controller at a finite number of vertices and
selecting the vertex with the optimal plant and controller
performance. The usefulness of this method is limited as
will be indicated with an example in this paper. Hiramoto
and Grigoriadis (2006) solve a system and mixed H2/H∞
controller co-design by iteratively solving LMIs that are
a linear approximation to the co-optimization problem.
First order terms that appear nonlinearly in products
are neglected with the argument that these will be small

terms. Shimomura and Fujii (2000) propose the successive
over-bounding method for multi-objective controller de-
sign. With this method, matrix inequalities are linearized
by replacing nonlinear terms with suitable quadratic up-
per bounds. This method is equivalent but has emerged
independently from the use of so-called convexifying po-
tentials in Oliveira et al. (2000), which uses the addition of
suitable semi-definite terms to nonlinear terms in matrix
inequalities. If these semi-definite terms are chosen follow-
ing a specific structure, the addition of this term linearizes
or ’convexifies’ the matrix inequalities. Due to the semi-
definiteness of the added term, a solution of the convexified
problem will necessarily also be a solution to the original
problem. The use of convexifying potentials and the use
of the successive over-bounding technique on plant and
controller co-optimization have been demonstrated on two
problems that are very similar to each other in Camino
et al. (2003) and Kim et al. (2005). The use of convex-
ifying potentials for plant and controller co-optimization
is extended by Goyal and Skelton (2019) by taking sensor
and actuator precision into account such that a hardware
price for a system can be added to the optimization. The
same strategy is applied is used in Goyal et al. (2021) and
Chen et al. (2023) with application to tensegrity systems.

Plant and controller co-optimization is particularly inter-
esting for applications that require effective attenuation
of disturbances such as wafer scanners (Heertjes et al.
(2020)), sensitive optical equipment such as gravitational
wave detectors (Matichard et al. (2015)) and scanning
electron microscopes (Shin et al. (2020)). Often, high-
precision machinery is mounted on a vibration isolation
system. If this mount is also actuated, we are speaking of
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an active vibration isolation system (AVIS) (Van der Poel
(2010)). AVIS are often designed such that the deforma-
tion of an internal mode of the high-precision machinery
is minimized.

Plant and controller co-optimization for AVIS systems has
been investigated by Spanjer and Hakvoort (2022) using
a combination of Ricatti equality-based H2 controller syn-
thesis and a grid search over plant parameters. In this work
it was found that using a Ricatti equality-based synthesis
provides insufficient flexibility in combining different types
of system norms, in particular H∞ norms for robustness
guarantees. H∞ norms have been approximated by H2

norms which introduces a considerable conservatism to
the optimization. Switching to an LMI-based optimiza-
tion provides the flexibility to combine different norms
and reduce conservatism in the optimization. Furthermore,
the number of system parameters for the optimization is
limited for a grid search strategy as the computational
complexity increases exponentially with the number of
optimization parameters.

In this paper, the plant parameters and a static full state
H2 will be co-optimized for an AVIS. To accomplish this,
a strategy similar to Camino et al. (2003) will be used
since this paper demonstrates a plant and controller co-
optimization for a system similar to an AVIS and it uses
LMI formulations for the co-optimization. The objective
will be to design an AVIS such that the covariance of the
internal deformation is minimized given a limited actua-
tion power. Beside the plant and controller co-optimization
for an AVIS, other contributions of this paper are a
treatment of numerical conditioning methods for solving
convexified plant and controller co-optimization problems.
Furthermore, this paper provides convexified formulations
for some LMI regions and proposes pole placement as a
tool for improving numerical accuracy.

This paper is organized as follows. Section 2 commences
with a descriptor state space formulation for a plant with
affine dependence on its parameters. Then, LMI formula-
tions are developed for H2 static state feedback, convex-
ified plant and H2 static state feedback co-optimization
and convexified LMI regions for plant and controller co-
optimization. Furthermore, an algorithm is proposed that
iteratively searches for an optimal plant and controller
and adheres to pole placement restrictions. In section 3
the co-optimization algorithm will be applied to an AVIS
system. A model is developed for an AVIS and numerical
conditioning is discussed. Sections 4, 5 and 6 respectively
provide the results of, a discussion on and a conclusion
of the co-optimization for the AVIS system. Appendix
A contains a discussion on how power constraint can be
applied in the presence of multiple actuators and Appendix
B provides an example for which the vertex enumeration
method will not find the optimal solution.

In this paper, E[.] is the expectation oparator and Tr is
the trace operator. Inequality operators < and > are used
for scalar inequalities and ≺ and ≻ are used for matrix
inequalities. Furthermore, for short notation, (.)−T is used
for ((.)T )−1.

2. PLANT AND CONTROLLER CO-OPTIMIZATION

In this chapter, a general parameter-dependent plant
model is posed in descriptor state space formulation. Using
this model formulation, LMI formulations are developed
to calculate an H2 state feedback controller for a constant
system as well as convexified LMI formulations for finding
an H2-optimal plant and controller. LMIs will be provided
for pole placement in case of optimization for a constant
plant and convexified formulations will be derived for plant
and controller co-optimization. For the pole placement,
guaranteed damping and an origin-centered disc are con-
sidered. At last, an algorithm is given to iteratively find
an H2-optimal plant and controller.

2.1 Descriptor state space formulation

Consider a linear dynamical plant with affine dependence
on its parameters. Suppose that these parameters depend
on weighting factor α, the dynamics of the plant can be
described as

E(α)ẋ = A(α)x+Bw(α)w +Buu, (1a)

z = Czx, (1b)

with state vector x, disturbance vector w, input vector
u and output vector z. This formulation is also known
as a descriptor state space formulation. This formulation
differs from the standard state space formulation by matrix
E(α) which typically contains the masses and moments
of inertia for mechanical systems and inductances for
electrical systems. The descriptor state space formulation
is adopted to avoid multiplication with the inverse inertias
or inductances and thus keeping an affine dependence in
these parameters. The dependence of the matrices on the
plant parameters can be expressed as

E(α) = E0 +
∑

i

αiEi,

A(α) = A0 +
∑

i

αiAi,

Bw(α) = Bw,0 +
∑

i

αiBw,i,

(2)

where (E(α), A(α), Bw(α)) = (E0, A0, Bw,0) constitutes
the nominal plant model. Ei, Ai and Bw,0 contain the
terms of the system matrices that depend on plant pa-
rameter i and are added with weighting factor ai to obtain
the parameter dependent plant dynamics. Effectively, this
formulation describes plant parameter pi as

pi = (1 + αi)pi,0, (3)

where pi,0 is the nominal value for parameter pi and αi its
respective weight.

Note that only systems with a constant Bu are considered
since these systems have an affine dependence on input u.

2.2 H2-optimal static state feedback synthesis

In this paper, a stochastic approach is used. Disturbance
signals are assumed white and zero-mean stochastic signals
and the objective is to minimize the asymptotic variance of
an output signal. The equivalence of a covariance controller
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to an H2 optimization problem is shown in (Skelton et al.
(2017), Dettori (2001)). For the controller we will use static
state feedback, using feedback law

u(t) = Kx(t), (4)

yielding the closed loop system matrix

Acl = A+BuK. (5)

Theorem 1 and 3 are adapted from Camino et al. (2003).
Instead of optimizing the control signal with output con-
straints we will optimize the output with a constraint on
the power of the control signal.

Theorem 1. Considering a zero-mean white noise signal
w(t) with asymptotic covariance matrix
limt→∞ E[w(t)w(t)T ] = W ≻ 0. Let the asymptotic
variance of a 1-dimensional control signal be bounded
by ζ, i.e. limt→∞ E[u(t)Tu(t)] < ζ. Then, the H2 norm
of a closed loop system with constant plant parameters
Hzw(s) := Cz(sI − E−1Acl)

−1E−1Bw is bounded by
√
γ,

i.e. ||Hzw(s)||2 <
√
γ if for a P = PT ≻ 0 a feasible

solution can be found to[ ∗ Bw

BT
w −W−1

]
≺ 0, (6a)

[
ζ F
FT P

]
≻ 0, (6b)

CzPCT
z ≺ Z, (6c)

Tr(Z) < γ, (6d)

where ∗ = APET + EPAT + BuFET + EFTBT
u . The

feedback gain matrix K is obtained by K = FP−1.

Proof. The H2-norm of a closed loop system in regular
state space formulation Hzw(s) := Cz(sI − Âcl)

−1B̂w is
bounded by

√
γ if for a P = PT ≻ 0 a feasible solution

can be found to (see for example Dettori (2001), Skelton
et al. (2017), Scherer and Weiland (2011), Caverly and
Forbes (2021))

ÂclP + PÂT
cl + B̂wWB̂T

w ≺ 0, (7a)

CzPCT
z ≺ Z, (7b)

Tr(Z) < 0. (7c)

When considering a system that in its descriptor repre-
sentation, i.e. Hzw(s) := Cz(sI − E−1Acl)

−1E−1Bw, we

have Âcl = E−1Acl and B̂w = E−1Bw. Then, (7a) takes
the form E−1AclP + PAT

clE
−T + E−1BwWBT

wE
−T ≺ 0.

Applying a congruence transform with E−1 yields

AclPET + EPAT
cl +BwWBT

w ≺ 0. (8)

When considering static full state feedback, we have Acl =
A+BuK, which causes a nonlinearity in variables K and
P . A linear inequality can be obtained with the substitu-
tion (P,KP ) → (P, F ). Applying a Schur complement to
(8) and applying the substitution, (7a) becomes
[
APET + EPAT +BuFET + EFTBT

u Bw

BT
w −W−1

]
≺ 0.

The asymptotic variance of the control signal is a measure
of the average controller power (Boyd and Barratt (1991)).
The asymptotic variance of the control signal is given as

lim
t→∞

E[u(t)Tu(t)] = lim
t→∞

Tr(E[u(t)u(t)T ])

= lim
t→∞

Tr(E[Kx(t)x(t)TKT ])

= Tr(KP0K
T )

≤ Tr(KPKT )

(9)

where P0 is the asymptotic covariance matrix of the
system states, i.e. P0 = limt→∞ E[x(t)x(t)T ] (Skelton
et al. (2017), Dettori (2001)). When considering a single
controller output, i.e. a single actuator, the upper bound
on the asymptotic variance of the control signal reduces
to limt→∞ E[u(t)Tu(t)] ≤ KPKT . Using the coordinate
transform, this relation becomes limt→∞ E[u(t)Tu(t)] ≤
FP−1FT . Bounding the asymptotic variance by ζ and
applying a Schur complement yields

[
ζ F
FT P

]
≻ 0. (10)

Remark 2. Note that this holds if only one actuator is
considered. In case there are multiple actuators, different
formulations are possible for the controller power con-
straints (see Appendix A).

2

2.3 Plant and controller co-optimization

For simultaneous optimization of the plant and controller,
the plant parameters will be treated as optimization pa-
rameters. Therefore, the system matrices E(α), A(α) and
Bw(α) explicitly depend on the plant parameter weighting
factors α. Inequality 6a in Theorem 1 then becomes

[ ∗ Bw(α)
Bw(α)

T −W−1

]
≺ 0, (11)

with ∗ = A(α)PE(α)T + E(α)PA(α)T + BuFE(α)T +
E(α)FTBT

u , or ∗ = (A(α)+BuK)PE(α)T+E(α)P (A(α)+
BuK)T without the variable substitution. Using the plant
parameters in the optimization renders the problem non-
linear and non-convex. Camino et al. (2003) has shown
how to locally convexify a similar problem by noting that
a potential function can be used to linearize the problem
(see Oliveira et al. (2000)).

Theorem 3. Considering a matrixG = (Ac+BuKc−Ec)Pc

for some constant matrices Ac, Kc, Ec and Pc. The H2

norm of a static state feedback closed loop system

Hzw(s, α) := Cz(sI − E(α)−1Acl(α))
−1E(α)−1Bw(α),

under the assumption of a white noise zero-mean dis-
turbance w(t) and a limited asymptotic variance of the
controller signal, i.e. limt→∞ E[u(t)Tu(t)] < ζ, is bounded
by
√
γ if there exist a set of plant parameters weights α,

a feedback gain matrix K and a matrix Q = QT ≻ 0 such
that the following LMIs are satisfied:
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


∗ Bw(α) A(α) +BuK E(α)
Bw(α)

T −W−1 0 0
A(α)T +KTBT

u 0 −Q 0
E(α)T 0 0 −Q


 ≺ 0,

(12a)[
ζ K

KT Q

]
≻ 0,

(12b)[
Z Cz

CT
z Q

]
≻ 0,

(12c)

Tr(Z) < γ,
(12d)

where
∗ = −(A(α) +BuK − E(α))GT

−G(A(α) +BuK − E(α))T +GQGT .

Proof. Notice that the nonlinearity of the problem ap-
pears in the term (dropping the dependence on α for short
notation and using Acl = A+BuK)

AclPET + EPAT
cl.

By completion of squares, this term can be rewritten as

AclPAT
cl + EPET − (Acl − E)P (Acl − E)T .

By applying a Schur complement on the terms AclPAcl

and EPET , (11) can be written as


−(Acl − E)P (Acl − E)T Bw Acl E
BT

w −W−1 0 0
AT

cl 0 −P−1 0
ET 0 0 −P−1


 ≺ 0.

(13)

The term in the top left corner of this formulation still
contains multiplications between optimization variables.
Furthermore, both P and its inverse appear in this matrix
inequality.

Let Acl,c := Ac + BuKc, Ec and Pc be some constant
matrices and define a function

Φ = (Acl − E −GP−1)P (Acl − E −GP−1)T ,

with G = (Acl,c − Ec)Pc. Notice that, since P is positive
definite, it follows that Φ is positive semi-definite. If we
were to add Φ to the top-left block of (13) and find a
feasible solution to the resulting LMI, then due to the
positive semi-definiteness of Φ, this solution is guaranteed
to also satisfy (13). Adding the potential to the term in
the top-left corner yields

−(Acl − E)P (Acl − E)T +Φ =

−(Acl − E)GT
c −Gc(Acl − E)T +GP−1GT

c

which is linear in E, Acl = A + BuK and P−1. With
applying the transformation P−1 → Q we arrive at
(12a). Note that if Acl,c, Ec and Pc are chosen as a
feasible solution for (6), then Φ vanishes for (Acl, E, P ) =
(Acl,c, Ec, Pc) and the formulations of (11) and (12a)
become equivalent.

The same transformation has to be applied to the inequal-
ity CzPCT

z = CzQ
−1CT

z ≺ Z. With a Schur comple-
ment,this inequality can be rewritten to

[
Z Cz

CT
z Q

]
≻ 0.

The same applies for the power limitation on the controller
signal KPKT = KQ−1KT < ζ, which by using a Schur
complement becomes [

ζ K
KT Q

]
≻ 0.

2

2.4 LMI regions

With the use of LMI regions, the pole locations of a closed
loop system can be restricted to specified regions on the
complex plane. This can be accomplished by extending
the optimization problem with extra LMIs. Several LMI
formulations for regions on the complex plane have been
developed and for an overview, the reader is referred to
Scherer and Weiland (2011). When the plant parame-
ters are used as optimization variables, the inequalities
describing the LMI regions usually become nonlinear. In
order to combine plant and controller co-optimization with
LMI regions, convex approximations of the respective LMI
regions have to be made. Furthermore, the LMI region
formulations need to be compatible with the coordinate
systems used in (6) and (12).

Not all LMI regions are suitable for convexification since
only nonlinear terms on the diagonal of the matrix in-
equalities can be linearized. Typically, regions that have
non-orthogonal borders such as a conic sector lead to off-
diagonal nonlinearities.

In this paper two types of LMI regions are considered,
namely guaranteed damping and a disc centered at the
origin.

Theorem 4 and 6 describe the LMI regions for a system
with constant parameters. These formulations are consid-
ered general results. Theorem 5 and 7 are novel formula-
tions, describing convexified formulations for parameter-
dependent systems.

Guaranteed damping Let β be a positive real number.
The LMI region corresponding to a guaranteed damping
can be described as

{s ∈ C|Re(s) < −β}.
Theorem 4. The poles of a feasible closed loop system
with constant parameters in (6) are in the region {s ∈
C|Re(s) < −β} by extending (6) with the LMI

2βEPET+APET+EPAT+BuFET+EFTBT
u ≺ 0. (14)

Proof. The LMI region for guaranteed damping with the
standard state space formulation is given as (Scherer and
Weiland (2011))

2βQ+QÂcl + ÂT
clQ ≺ 0. (15)

To be compatible with (6), we require the use of its
dual version, i.e. use P = Q−1. Applying a congruence
transform with P and adopting the descriptor state space
formulation for the closed loop system (i.e. Âcl = E−1Acl),
then (15) can be rewritten as

2βEPET +(A+BuK)PET +EP (A+BuK)T ≺ 0. (16)
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And using the substitution (P,KP )→ (P, F ) the result is

2βEPET+APET+EPAT+BuFET+EFTBT
u ≺ 0. (17)

2

Theorem 5. For some G = (Ac + BuKc − Ec)Pc with
constant matrices Ac, Kc, Ec and Pc, the poles of a
feasible closed loop system for (12) are in the region
{s ∈ C|Re(s) < −β} by extending (12) with the LMI




∗ A(α) +BuK E(α)
(A(α) +BuK)T −Q 0

E(α)T 0 − Q

1 + 2β


 ≺ 0, (18)

where

∗ = −(A(α) +BuK − E(α))GT

−G(A(α) +BuK − E(α))T +GQGT .

Proof. The steps taken are identical to the proof of
Theorem 3, except that the term (1 + 2β)EPET is used
for a Schur complement instead of the term EPET .

2

Disc centered at the origin Considering a disc with
radius r, centered at the origin. The region of this disc
can be described as

{s ∈ C| |s| < r}.
Theorem 6. The poles of a feasible closed loop system with
constant parameters in (6) are in the region {s ∈ C||s| <
r} by extending (6) with the LMI[

−r2P (AP +BuF )T

AP +BuF −EPET

]
≺ 0. (19)

Proof. The LMI region for the inside of a circle centered
at the origin with radius r is given by (see Scherer and
Weiland (2011))

−r2Q+ ÂT
clQÂcl ≺ 0. (20)

We require the dual version of this formulation for com-
patibility with the coordinates used in (6), i.e. P = Q−1.
Dualizing the above equation and applying a congruence
transform with P yields

−r2P + PATP−1AP ≺ 0.

Adopting the descriptor representation, i.e. Âcl = E−1Acl,
and writing Acl = A+BuK, we obtain

−r2P + P (A+BuK)TE−TP−1E−1(A+BuK)P ≺ 0.

The inverse relation in P makes this inequality nonlinear,
but this can be resolved by a Schur complement:[

−r2P P (A+BuK)T

(A+BuK)P −EPET

]
≺ 0.

Applying the coordinate transform (P,KP ) → (P, F )
yields [

−r2P (AP +BuF )T

AP +BuF −EPET

]
≺ 0. (21)

2

Theorem 7. For some matrices Ec and Pc the poles of
a feasible closed loop system in (12) are in the region
{s ∈ C||s| < r} by extending (12) with the LMI[

−r2Q (A(α) +BuK))T

A(α) +BuK ∗

]
≺ 0, (22)

with ∗ = EcPcQPT
c ET

c − EcPcE(α)T − E(α)PT
c ET

c .

Proof. Since (12) is in terms of Q = P−1, there is no need
for dualization of the formulation and we can start with
the formulation of the LMI region as

−r2Q+ ÂTQÂ ≺ 0.

Adopting the descriptor representation, i.e. Âcl, writing
Acl = A+BuK and considering the dependence on param-
eter weights α, then the inequality can be Considering the
closed loop system, the dependence on α and adopting the
descriptor formulation, then the inequality can be written
as

−r2Q+(A(α)+BuK)TE(α)−TQE(α)−1(A(α)+BuK) ≺ 0.

By applying a Schur complement, we can write[
−r2Q (A(α) +BuK)T

A(α) +BuK −E(α)Q−1E(α)T

]
≺ 0. (23)

A convex approximation of this formulation can be created
by adding the positive semi-definite function

Φ = (EcPc − E(α)Q−1)Q(EcPc − E(α)Q−1)T

to the right-bottom element, yielding (22).
2

Note that if A = Ac, E = Ec, K = Kc and Q−1 = Pc,
then (19) and (22) become equivalent. Also, if Q−1 = Pc

and E = Ec, then (14) and (18) become equivalent.

2.5 Iterative co-optimization algorithm

The convex approximations of the the plant and controller
co-optimization depend on a particular set of constant
matrices which in general cannot be chosen freely. There-
fore, first a suitable choice for these matrices has to be
determined before the convexified LMI formulations can be
used for plant and controller co-optimization. If we chose
any feasible solution of (6) or a known solution to (12)
and take these constant matrices according this solution,
we can always find a solution to (12) since any feasible
solution of (6) and (12) is by design always a solution
to (12). Then, (12) becomes a convex approximation of
the plant and controller co-optimization around the used
solution. This attribute of the convexified formulations will
be used for an algorithm that iteratively co-optimizes the
plant and controller.

Below, an algorithm is described that iteratively optimizes
for a closed loop system that has a better performance in
terms of objective γ. This algorithm follows closely to the
algorithm described in Camino et al. (2003) up to some
changes in the LMIs for the optimization objective and
the consideration of LMI regions. The algorithm for plant
and controller co-optimization is as follows:

Algorithm for plant and controller co-optimization

Initialize nominal plant parameters α0

Define the LMI regions by setting β and r
Calculate K0 and P0 by minimizing γ with the condi-
tions given by (6), (14) and (19)
Set γ0 ← γ
Set η to a prescribed tolerance and set k = 0
repeat

Set (Ec, Ac, Pc,Kc)← (E(αk), A(αk), Pk,Kk)
Set G← (Ac +BuKc)Pc

Minimize γ subject to (12), (18) and (22) for α, K
and Q
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Denote the solution (α∗,K∗, Q∗, γ∗)
Set (αk+1,Kk+1, Pk+1, γk)← (α∗,K∗, Q∗−1, γ∗)
Set k ← k + 1

until ||γk − γk−1|| < η

Remark 8. The algorithm described above will approach
a stationary point that is not necessarily the globally
optimal plant and controller pair. Note that a global
optimal controller can be found for any αk by minimization
of γ for F and P subject to (6), (14) and (19).

3. CASE STUDY: ACTIVE VIBRATION ISOLATION
SYSTEM

3.1 Model

The mechanical part of an AVIS can be modeled as a
double mass-spring-damper system with masses m1 and
m2, stiffnesses k1 and k2 and damping constants d1 and
d2. The system is subject to floor accelerations ẍ0 and a
direct disturbance force Fd, which are forces caused by,
for example, the handling of a payload or turbulence in
cooling channels.

x0

k1 d1

m1

fa

Fd

x1

k2 d2

m2
x2

Fig. 1. Ideal physical model of an AVIS.

The system is actuated with actuation force fa, which
is exerted by a motor with motor constant km, coil
inductance L and coil resistance R. The motor dynamics
are modeled as

Lḟa = kmV −Rfa − k2m(ẋ1 − ẋ0), (24)

where V is the input voltage.

For simplicity the assumption is made that all states are
measurable and without noise. Disturbances that are taken
into account are the floor accelerations ẍ0, the direct
disturbance force Fd and noise on the input voltage Vd.

A coordinate system that is in terms of relative motions is
adopted. We define relative motion to the floor as ϵ1 = x1−
x0 and ϵ2 = x2−x0. The internal deformation of the AVIS
is defined as ϵ3 = x2 − x1.

In descriptor state space formulation, the dynamics of the
nominal system is described as:

Eẋ = Ax+Bww +Buu, (25)

where

E =




1 0 0 0 0
0 1 0 0 0
0 0 m1 0 0
0 0 0 m2 0
0 0 0 0 L


 , Bu =




0
0
0
0
km


 , Bw =




0 0 0
0 0 0
−m1 1 0
−m2 0 0
0 0 km


 ,

A =




0 0 1 0 0
0 0 0 1 0

−k1 − k2 k2 −d1 − d2 d2 1
k2 −k2 d2 −d2 0
0 0 −k2m 0 −R


 ,

x =




ϵ1
ϵ2
ϵ̇1
ϵ̇2
fa


 , u = V,w =

[
ẍ0

Fd

Vd

]
.

3.2 Optimization objective

The objective of the optimization is to minimize the
asymptotic variance of the internal deformation of the
AVIS system, i.e. minimization of limt→∞ E[ϵ3(t)T ϵ3(t)]
by optimizing over plant parameters and static full state
feedback controllers while adhering to the actuator power
constraint.

With this performance objective the descriptor state space
formulation is extended with the output equation

z = Czx, (26)

with Cz = [−1 1 0 0 0] .

3.3 Plant parameters

For this case study, and adaptation of the system in
Spanjer and Hakvoort (2022) is used as a basis.

Plant parameter Value

m1 5 kg
m2 2.5 kg
k1 3.8× 103 N/m
k2 2.5× 105 N/m
d1 3.4 Ns/m
d2 2.5 Ns/m
km 10 N/A
L 5.2 mH
R 12.8 Ω

Table 1. Nominal plant parameters of the
AVIS.

Thermal limits of the actuator induce a limit in the
asymptotic variance of the control signal u. Taking the
maximum continuous power of the motor P100 = 16W as
a limit, then the asymptotic variance of u is limited by

lim
t→∞

E[u(t)Tu(t)] = lim
t→∞

E[V (t)TV (t)] ≤ RP100. (27)

The variances of the disturbances are chosen as E[ẍT
0 ẍ0] =

10−6[m2/s4], E[FT
d Fd] = 10−8[N2] and E[V T

d Vd] =
10−7[V2].

3.4 Numerical conditioning

Since the optimization problems will be solved using float-
ing point operations, we are dealing with limited numerical
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precision. Especially, with the iterative algorithm, numer-
ical precision is important since optimization results are
used in subsequent optimization steps.

Therefore, strategies are used that condition the numerics
of the optimization problem.

Input/Output Scaling In order to reduce the spread in
numerical values, the inputs for the optimization problem
are normalized such that the variances of the input signals
are unitary. The output is rescaled such that the output
variance of the optimally controlled nominal system be-
comes unitary.

For this system, the scaling is as follows. New system
matrices Bu, Bw, Cz and input and output vectors u, w
and z are calculated such that

Eẋ = Ax+Buu+Bww,

z = Czx,
(28)

with

Bu = Bu

√
Su,

Bw = Bw

√
Sw,

Cz =
√
SzCz,

(29)

and

u = S−1
u u,

w = S−1
w w,

z = S−1
z z,

(30)

with

Su = ζ, Sw =



E[ẍT

0 ẍ0] 0 0
0 E[FT

d Fd] 0
0 0 E[V T

d Vd]


 . (31)

And Sz = γ0, where γ0 is the result of minimizing for γ,
subject to (6), (14) and (19).

Balanced realization After the rescaling, a balanced re-
alization of the system is calculated. With a balanced real-
ization, the coordinates of the system are transformed such
that the controllability and the observability Gramians
become equal and diagonal, where the diagonal contains
the variances of the states. The effect is that the sensitivity
to the inputs and outputs are balanced. For the system
matrices the result is that gains are also balanced, which
decreases the numerical spreads.

LMI Regions Since Lyapunov matrix P reflect the dy-
namics of the system, having both slow and fast dynamics
in the system can cause a large spread in the eigenvalues
of matrix P . Pole placement can be used to bring the
pole locations closer and thus lower the condition number
of matrix P . We will do this by requiring guaranteed
damping and confine the poles to a disc around the origin.
From a implementation viewpoint guaranteed damping is
also useful to add extra robustness to the stability. The
circular disc can be justified as a limited actuator band-
width. Furthermore, application of the circular disc leads
to more robustness to high-frequency parasitic dynamics.
Since the pole locations are constrained by LMI regions,
the design space is also limited. Therefore, the theoretical

performance of the closed-loop system is equal or lower
than when the pole location are not restricted.

For the guaranteed damping, we choose β = 1 and a radius
r = 3000 for the disc. Thus, the combined LMI region
becomes

{s ∈ C|Re(s) < −1, |s| < 3000}.

4. RESULTS

The optimization results in this section are found using
Yalmip (Löfberg (2004)) which is an optimization toolbox
in MATLAB. The optimization problems can be solved
with different solvers. For each result it is indicated which
solver has been used.

In the results below, the disc LMI region is not included
since it causes the solvers to be more susceptible to
numerical problems.

4.1 Performance loss due to LMI regions

As stated above, the use of the LMI regions comes with a
loss of performance. Optimizing the controller for the nom-
inal system does not cause numerical problems when the
LMI regions are not considered. Therefore, controller op-
timization for a nominal plant can serve as an assessment
for the performance loss due to the LMI regions. Using
the guaranteed damping, the H2 norm of the system is
5.49 (Mosek) times higher. But as an effect, the condition
number of P decreases from 4.6 · 1011 to 3.7 · 109 (Mosek).

4.2 Vertex enumeration method

In order to gain insight in the importance of individ-
ual parameters and what the expected result would be,
the vertex enumeration method proposed by Kianfar and
Fredriksson (2011) can be used. For this investigation,
we use k1, k2, d1, d2 and m2 as free plant parameters.
Note that m1 is not considered since the system dynamics
mainly depend on ratios the system parameters and not so
much of the absolute values of the parameters. Hence, m1

serves as an anchor for the absolute values of the system
parameters. Since five plant parameters are considered, the
plant parameter polytope has 32 vertices. The parameter
range α ∈ [−0.5, 1.0] is used, meaning that the plant pa-
rameters are allowed to range between half and two times
its nominal values. When the H2-optimal performance
is compared at the vertices of the parameter polytope,
it appears that a number of vertices have a comparable
performance and that the optimal performance is shared
by eight vertices. The results for these eight vertices are
shown in Table 2.

The common factor for these vertices is that k2 is at its
maximum value and m2 at its minimum. The eight results
are all possible permutations of the parameters with k2
at its maximum value and m2 at its minimum. Thus, we
can conclude that the parameters k1, d1 and d2 have little
influence on the closed loop system performance.

4.3 Plant and controller co-optimization

In light of the results from the vertex enumeration method,
we will only use the plant parameters k2 and m2 as
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k1 k2 d1 d2 m2 γ/γnominal

- + - - - 0.062466
- + - + - 0.062464
- + + - - 0.062466
- + + + - 0.062464
+ + - - - 0.062471
+ + - + - 0.062470
+ + + - - 0.062471
+ + + + - 0.062470

Table 2. Best performance vertices as found
with the enumeration method. (+ represents
the maximum parameter value and - represents

the minimal parameter value)

optimization variables for the plant and controller co-
optimization.

For this problem, the used LMI solvers have trouble
solving the convexified LMI problems. The solvers either
run into numerical problems or do not find a feasible
solution. These numerical problems prevent the iterative
optimization from approaching a stationary solution in
the optimization space. It is important to note that for
every iteration, a feasible plant and controller combination
can be found with a performance that is at least equal or
better than the performance of the system obtained in the
previous iteration. This is guaranteed since the previous
result is by design a solution for the current optimization.

It often occurs that the solvers find a result that has lower
performance than the result of the previous iteration. At
each iteration the solvers try to get as close as possible
to the optimal solution of the convexified LMIs but nu-
merical issues may cause the solvers to terminate with a
solution that correspond to a system with a sub-optimal
performance.

Although a monotonous increase in performance is in the-
ory guaranteed, sub-optimal optimization solutions cause
problems. Therefore, we will use the additional constraint

γk ≤ γk−1. (32)

Furthermore, the solvers may run into numerical issues be-
fore a feasible solution to the problem is found. Therefore,
if a solver fails to find a feasible solution, another solver is
employed. As the default solver we use Mosek. If it fails,
we try to find a solution with in order Sedumi, sdpt3 and
LMIlab. If none of the solvers is able to find a feasible
solution, the co-optimization algorithm is terminated.

The results of the plant and controller co-optimization are
given below. Figures 2, 3 and 4 show how the system
output, the plant parameters and the controller power
develop during the iterative system optimization.

If we compare Figure 2 with Figure 3 we observe that there
is still a performance increase when αk2

and αm2
have

already reached their bound. The performance improve-
ment is then accounted for by finding improved controller
parameters. At the point where the co-optimization is
terminated, the controller is not at its optimal parameters
as is also reflected in the partial utilization of the available
controller power.

If the solvers were able to keep finding feasible solutions
to the convexified formulation, the controller is expected
to approach a locally optimal controller. Since the plant

parameters have already reached its bounds, we can also
find a globally optimal controller for this optimal plant.
The optimization is terminated after the 88th, for which
the relative performance is γ88

γ0
= 9.4 · 10−2. If we consider

the system found at the 88th iteration, i.e. α88, and
optimize for an H2 optimal controller we find
γ
γ0

= 6.2 · 10−2.
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Fig. 2. Asymptotic output covariance during the plant
and controller co-optimization relative to the H2-
optimally controlled nominal system.
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-0.5

0

0.5

1

Fig. 3. Development of the parameter weights during the
plant and controller co-optimization.

Fig. 4. Power of the control signal relative to the maximally
available controller power.

Figure 5 shows the power spectral densities from the
disturbances to the internal deformation for the nominal
open-loop, the H2-optimal controlled closed-loop nominal
system and the co-optimized closed loop system. The
results are quite similar for the nominal closed loop system
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and the co-optimized system, but the co-optimized system
has an improved attenuation for the full spectrum of the
ground vibrations. Furthermore, the co-optimized system
has slightly more attenuation for the low-frequency range
of the direct disturbance but the voltage noise is less
attenuated on the whole spectrum.
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Fig. 5. Power spectral density of the noise sources to the
internal deformation.

5. DISCUSSION

As discussed in the results, imposing a guaranteed damp-
ing improves the numerics of the optimization problem.
Without this LMI region, an H2-optimal controller can
be calculated for the nominal plant but the plant and con-
troller co-optimization algorithm fails at the first iteration.
The implementation of this LMI region causes a consider-
able performance loss, but enables several iterations for
the co-optimization algorithm.

It turns out that the used model and constraints do not
yield the most insightful example for the iterative algo-
rithm. In this case study, the result of the co-optimization
could have been found relatively easy using the vertex
enumeration method. However, there are situations for
which the vertex enumeration method does not find the
optimal solution (see Appendix B for an example). Fur-
thermore, the vertex enumeration method has shown that

only few plant parameters have a significant influence on
the performance of the closed-loop system.

In theory, the iterative algorithm can run indefinitely
unless a stopping logic is applied. This is possible since
the solution of the previous iteration is by design also a
feasible solution to the current iteration. In this case study,
none of the used solvers is able to find a feasible solution
at the 89th iteration and thus the iterative algorithm is
terminated at this iteration. Furthermore, if at each step
of the iterative algorithm the optimal solution is found, the
output will vary monotonically to the the optimal solution
for the plant and controller co-optimization. For the case
study, the used solvers run into numerical problems and
cannot find the optimal solution. In order to ensure the
monotonicity of the co-optimization, the additional con-
straint that the new performance should be at least as
good as the previous performance is necessary.

Since we did not approach a stationary solution, we do
not know whether the found plant parameters belong to
the local optimum. However, in this case we know from
the results of the vertex enumeration method that the
resulting plant parameters are globally optimal.

As for the results of the co-optimization, k2 is maximized
and m2 is minimized. The maximization of k2 is to be
expected since this stiffens the internal mode and thus
suppresses the internal deformation. The minimized mass
m2 may be explained by a more effective use of the
controller power since less power is needed to control a
smaller mass. A lower value for m2 also increases the
eigenfrequency of the internal deformation, but there is
no clear sign in Figure 5 that the disturbance attenuation
of the co-optimized system is benefiting from an increased
eigenfrequency of the internal deformation.

Numerical precision is found to be the limiting factor
for the plant and controller co-optimization. The solvers
used in this work rely on double-precision floating point
operations. There exist solvers, although less available,
that rely on quadruple precision floating point operations.
The extra precision may probably be not enough for
the co-optimization algorithm to run indefinitely but it
may help the co-optimization algorithm to approach a
stationary point.

For this case study, a simplified model is used. Namely, we
assume that every state can be measured without noise,
only a static state feedback controller is considered and the
assumption is made that the spectra of the disturbances
are flat. In a more realistic case study, not all states
are measurable, and measurable states will be measured
with noise. A next step would therefore be to consider
output feedback with measurement noise and non-flat
noise spectra for the disturbances.

6. CONCLUSIONS

This paper presents an iterative algorithm to simultane-
ously optimize a plant and power-constrained H2 static
state feedback controller while imposing pole placement
constraints. This method uses convexified LMI formula-
tions for the plant and controller co-optimization. Con-
vexified LMI formulations for placement of poles within
an origin-centered disc and to the left of a vertical line are
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developed in this paper. Numerical conditioning is needed
in order to run the co-optimization algorithm. Inputs and
outputs are rescaled, a balanced realization and pole place-
ment constraints are used for numerical conditioning. The
pole placement constraints are effective for the numerical
conditioning but come at the cost of performance loss for
the closed loop system. With an application to a simplified
AVIS, the co-optimization algorithm has shown to yield
improved systems, but numerical problems cause the co-
optimization algorithm to terminate early, before a locally
optimal plant and controller are found.
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Appendix A. MULTI-ACTUATOR FORMULATIONS

When considering a power constraint on the controller
signal there are two options. Namely, a the combined
power of all actuators can be constrained, which may
be useful in case of a limited power supply such as a
battery. The other option is to constrain the power of each
individual actuator, which is useful when, for example,
a thermal limit is applicable for individual actuators. A
combination of these two options is also possible.

With the first option, the traces in limt→∞ E[u(t)Tu(t)] ≤
Tr(KPKT ) = Tr(FP−1FT ) cannot be neglected. By
introducing an auxiliary matrix U such that
limt→∞ E[u(t)Tu(t)] ≤ Tr(KPKT ) = Tr(FP−1FT ) <
Tr(U), we can replace (6b) in Theorem 1 with

[
U F
FT P

]
≻ 0, (A.1a)

Tr(U) < ζ. (A.1b)

And we can replace (12b) in Theorem 3 by
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[
U K
KT Q

]
≻ 0, (A.2a)

Tr(U) < ζ. (A.2b)

For the second option, we need to separate the controller
signals. We do that by noting that, with the presence of n
actuators, the feedback matrix can be written as

K =



K1

...
Kn


 . (A.3)

Consequently, we have

F =



F1

...
Fn


 =



K1

...
Kn


P. (A.4)

Considering actuator i with power constraint ζi, we can
then replace (6b) in Theorem 1 with[

ζi Fi

FT
i P

]
≻ 0, ∀i ∈ {1, · · · , n}. (A.5)

And, we can replace (12b) in Theorem 3 by[
ζi Ki

KT
i P

]
≻ 0, ∀i ∈ {1, · · · , n}. (A.6)

Appendix B. EXAMPLE NON-MONOTONIC
SURFACE

In Camino et al. (2003) a similar problem is solved as
in this paper. In short, Camino et al. (2003) optimizes
for a plant and controller with minimal controller power
but that satisfies certain performance criteria. The model
is very similar and the performance criteria bound the
allowed displacements and velocity of the masses.

The important difference between this paper and Camino
et al. (2003) is that in this paper the optimization is
bounded by only one constraint (the controller power)
whereas the optimization problem in Camino et al. (2003)
is bounded by multiple constraints on displacements and
velocities.

If we perform a grid search over the plant parameters
k2 and d2 for the system of example 1 in Camino et al.
(2003). And calculate for each point the minimal controller
energy we obtain the surface in Figure B.1. If the vertex
enumeration had been used for co-optimization on this
problem, it would not have found the optimum since the
minimum is not found at one of the vertices of the plant
parameter polytope (i.e. the corner points of this surface).

The surface in Figure B.1 can be viewed as two inter-
secting surfaces. The two surfaces are formed by different
constraints. In this example, there are three constraints on
mass velocities and three constraints on mass positions. As
it turns out, not all constraints are limiting at the same
time. The two surface segments are formed due to different
sets of limiting constraints.

If there was only one limiting constraint on the plant
parameter polytope, the surface is monotonic and the
vertex enumeration method can be used to find the optimal

Fig. B.1. Normalized objective of example 1 of Camino
et al. (2003). A grid search is performed over pa-
rameters d2 and k2 and an H2-optimal controller is
calculated at each point.

plant and controller combination at one of the vertices
of the plant parameter polytope. This example shows
that in the presence of multiple constraints, the surface
is not always monotonic and that the vertex enumeration
method may fail to find the optimum.
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A Additional observations

This section contains some observations that contributed to the understanding of the co-optimization al-
gorithm, but not directly to the results in the paper. These observations are unfinished results but could
provide useful insights for further research.

A.1 Convexified optimization surfaces

As discussed in the journal paper, numerical problems hinder the iterative algorithm. In general, calculating
the initial controller K0 and P0 can be accomplished without issues. The numerical problems occur during
the iterative part of the plant and controller co-optimization algorithm. Since the optimization problem
is highly dimensional and depends on previously obtained solutions, it is hard to obtain a comprehensible
overview of the results and detect causes for the numerical issues.

We can, however, study the influence of the system parameters on the convexified optimization problems.
This can be done by starting the co-optimization algorithm, but at the first iteration we do not include αk2

and αm2
as optimization parameters. Instead we use these parameters as variables for a grid search. For

each pair of αk2 and αm2 we minimize γ subject to (9), (15) and (19) from the journal paper with K and Q
as optimization variables. If we then plot the optimal values for γ against αk2 and αm2 we obtain the surface
in Figure 3a (LMI Lab). With this surface, we can make a prediction on what values α will obtain from the
first iteration with the co-optimization algorithm. Namely, the α for which the parameter dependent surface
attains a minimum.

If we take a closer inspection to the parameter dependent surface, we find that not all solutions that have
been obtained are a feasible solution to (9), (15) and (19) and thus are invalid solutions. If we filter for the
feasible solutions, we obtain Figure 3b, showing holes where the solver did not provide a feasible solution.

(a) All solutions (b) Strictly feasible solutions

Figure 3: Grid search over αk2 and αm2 for the first iteration of the co-optimization algorithm. The surface
is determined by the optimal output variances resulting for minimization of γ subject to (9), (15) and (19)
with K and P as optimization variables. The solutions are obtained with LMI Lab.
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The holes in the surface in Figure 3b do not mean that no feasible solution exists for this point but merely
that if a feasible solution exists, the solver could not find it and returned the best infeasible solution that has
been found before running into numerical problems.

There are no straightforward implications of these holes in this surface but it may prevent the solvers from
finding the optimal solution for an iteration and eventually, the co-optimization has to be terminated if none
of the solvers find a feasible solution.

The results in Figure 3 are calculated with LMI Lab, which yields the best result. The same grid search does
not return any feasible solutions with MOSEK and SeDuMi. SDPT3 only returns a sparse surface of feasible
solutions.

A.2 Reduced actuator power

Another observation is that the plant and controller co-optimization algorithm shows a smoother result when
the controller is limited to a lower power. If, for example the same problem is considered as in the journal
paper but the maximum continuous actuator power is limited to 16 · 10−4W instead of 16W, we find the
co-optimization results as in Figures 4a and 4b. Although the co-optimization algorithm appears to yield
smoother results, the algorithm is nonetheless required to terminate when eventually none of the solvers
can find a feasible solution. Furthermore, the plant parameters reach their maximum and minimum value
relatively quickly after which there is still improvement in the output variance. This improvement of the
output variance can then only be caused by improved controllers.

0 500 1000 1500
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MOSEK

SeDuMi

SDPT3

LMI Lab

(a) Asymptotic output variance relative to the optimally
controlled nominal system during the plant and controller
co-optimization.
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(b) Plant parameter weights during the system and con-
troller co-optimization.

Figure 4: Asymptotic output variance and plant parameter weights during the system and controller co-
optimization when the actuator is constrained to a power of 16 · 10−4W.

A maximum continuous actuator power of 16 ·10−4W is quite low in comparison to the actual 16W. Figure 5
shows the power spectral densities of the disturbances to the internal deformation. In these plots, the lowered
actuator power can be observed by reduced attenuation of the disturbances.

In the case study of the paper we have observed that not all available power is utilized by the controller.
Figure 6 shows the utilized controller power during the co-optimization when only 16 · 10−4W is available for
the controller. For this lower-power case, the situation also occurs that not all available power is utilized,
but eventually for this case all available power is utilized. This may suggest that the controller is nearer to
optimal, but the performance still improves even when all power is already utilized.
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Figure 5: Power spectral densities from the disturbances to the internal deformation for the co-optimized
system. The two plots correspond to the co-optimized plant and controller in case the maximum continuous
power of the actuator is 16W and 16 · 10−4W.

Figure 6: Asymptotic controller power during the iterative co-optimization.
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