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Anomalous sound detection is an important task in many real-world ap-
plications such as surveillance, quality control, and healthcare. For this
research, we propose a novel application for state-of-the-art anomaly de-
tection techniques. The proposed application is the detection of anomalous
sounds within the recordings of vinyl records, which poses significant chal-
lenges due to the context-sensitive nature of the music stored on these
records. This application poses further challenges, as due to the laborious
process of labelling no labels were available for the used datasets. Consid-
ering these limitations use was made of a reconstruction-based detector
featuring a denoising autoencoder (DAE) which uses a Long Short-Term
Memory (BLSTM) recurrent neural network (RNN). The study will inves-
tigate features which may serve to detect such anomalous sounds and the
effectiveness of using a reconstruction-based anomaly detector for the stated
problem.

Additional Key Words and Phrases: Denoising Auto-Encoders, Minimum
Redundancy Maximum Relevance, Novelty Detection, Anomalous Sound
Detection, Vinyl Records

1 INTRODUCTION
Despite the contemporary shift from tangible to digital media, vinyl
records have seen a surprising resurgence in popularity [26]. How-
ever, the very nature of the vinyl medium poses several limitations,
primarily the vulnerability of the grooves that encode the audio data.
This structural fragility often leads to the generation of anomalous
sounds during playback, such as pops and crackles. These anom-
alies compromise the listener’s experience and lead to issues in
determining the quality and therefore value of vinyl records.

1.1 Problem Definition
Current solutions for assessing the condition of used vinyl records
rely on grading standards [1]. However, these methods are often
subject to the seller’s bias, potentially leading to inflated estimations
of the record’s quality and, consequently, its market value. The
absence of an unbiased, objective grading system that operates
without human intervention is a clear gap in the field.

Moreover, there is a lack of studies focusing specifically on de-
tecting anomalies in vinyl records. Previous research has covered
anomaly detection within data extensively [5, 6, 20], but few, if any,
have applied these techniques to the detection of anomalies within
musical recordings. Lu et al. [15] attempted to detect anomalies
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within musical datasets, but the study was limited to the detec-
tion of wholely anomalous samples instead of the localization of
anomalies within musical compositions.

The application of anomaly detection to vinyl records introduces
unique challenges due to the time-series nature of audio data [6].
Identifying the anomalous sounds in a recording without consid-
ering their temporal context is a significant challenge due to the
complex nature of musical compositions. This study aims to address
these gaps and provide a preliminary step towards developing an
unbiased, automated grading system for vinyl records.

1.2 Research Goals andQuestions
The study focuses on identifying the most effective features and
anomaly detection techniques for detecting anomalies in recordings
of vinyl records. The primary research questions guiding this study
are as follows:

• What features are most effective at distinguishing between
musical compositions and the types of anomalies that occur
on vinyl records?

• To what extent can a reconstruction-based model be used to
identify anomalous sounds within vinyl record recordings?

2 BACKGROUND AND RELATED WORK
Vinyl records store information through variations in the depth of
their grooves. For mono sound, these variations occur along one
axis, while for stereo sound, they occur along two axes. During
playback, a needle moves linearly through these grooves, its side-
ways movements corresponding to the varying groove depths. This
mechanism retrieves the stored information and translates it into
sound. However, any surface damage or debris within these grooves
can cause the needle to deflect. Such deflections produce anomalous
sounds during playback. This study aims to find a method to detect
these anomalies, the following sections will describe the chosen
models and the data used during this study.

2.1 Anomaly Detection Approaches
Anomaly detection has been a topic of active research since 1999
[24]. Previous studies have compared different anomaly detection
techniques, namely Classification-Based Novelty Detection, Sta-
tistical Novelty Detection, Distance-Based Novelty Detection,
Clustering-BasedNoveltyDetection, andReconstruction-Based
Novelty Detection [5, 20].
Each of these techniques is better suited to some problems than

others. This study considers the specifics of the vinyl records appli-
cation and the available data to decide which technique is the most
appropriate.
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Classification-Based Novelty Detection techniques are ruled
out primarily due to the insufficient availability of anomalies. Classification-
based approaches can over-fit on the specific representation of the
available anomalies.
Statistical Novelty Detection techniques are not suitable due

to the high dimensionality of the data used in this study. These
techniques are less effective with complex distributions required for
high-dimensional datasets like the musical data this study involves.

Distance-Based Novelty Detection techniques, which use dis-
tance measures, are also not suitable due to the high dimensionality
of the target data and the variability between musical compositions.
Similarly, Clustering-Based Novelty Detection techniques

were also excluded due to their tendency to over-fit on training
data and the difficulty they have in dealing with high-dimensional
spaces.

After considering all other techniques, we choseReconstruction-
Based Novelty Detection. These techniques aim to reconstruct
the normal representation of data and are less likely to over-fit
on the few examples of anomalies available. They also allow us
to leverage the vast amount of available normal data during the
training process.

2.2 Reconstruction-Based Detection Techniques
Reconstruction-BasedNoveltyDetection techniques have gained
interest due to their efficacy in handling context-sensitive detection
problems, particularly the use of autoencoders [17, 18].
In this study, we use Bidirectional Long Short-Term Memory

(BLSTM) and Long Short-Term Memory (LSTM) Recurrent Neu-
ral Network (RNN) Denoising Autoencoders (DAEs). Which have
shownmarkedly better performance than distance-based and probability-
based novelty detection techniques, when applied to context-sensitive
time-series data [16, 17, 22].
Reconstruction-based models learn how to remove noise from a

signal instead of learning the representation of the noise itself. Thus,
they learn the behaviour of the signal, not the behaviour of the
noise, which allows these models to detect anomalies different from
those they were originally trained on. This is particularly beneficial
due to the limited number of available examples of anomalies.

2.3 Audio Features
Given the short duration of this study, a thorough custom feature
derivation process for distinguishing between musical compositions
was impractical. Therefore, at the offset of the study, a literature
review was conducted to identify relevant features commonly used
in such differentiation tasks, particularly focusing on anomaly de-
tection and background noise differentiation.
We then analyzed different features that might detect specific

audio signatures of the anomalies, concentrating on the Music In-
formation Retrieval (MIR) field that employs unique features such
as audio fingerprints. The MIR field, successfully applied in ap-
plications like Shazam and modern digital assistants, has invested
significant effort in identifying features to discriminate between
different musical compositions. Studies like [23, 25] emphasized
the importance of ’texture’ features and Mel-frequency Cepstral

Coefficients (MFCC) in genre classification and speech/music dis-
crimination problems respectively.

Preceding studies have explored anomaly detection within music
datasets, identifying spectral, temporal, and rhythmic features for
classification [13, 15]. In this study, we extend upon these features
with additional features from the field of MIR.

From our literature review,we found numerousmulti-dimensional
features, such as MFCC, Chroma, and Tonnetz, which are fre-
quently used for audio analysis. These features span both MIR
and speech classification fields [4, 8–12, 25], an overview of these
features and their related studies is given in Table 5.

The literature also emphasized the significance of certain derived
features, originally proposed by [25] and subsequently validated
by [13]. These features were found to be applicable in the domain
of anomaly detection by [15], who explored the identification of
anomalies within a dataset of musical compositions.
In this study, we examined these derived features due to their

demonstrated relevance in related use cases. These features are
derived from ’texture windows’, as described by [25]. These texture
features encompass the mean, variance, and low energy values
measured over a predefined number of windows, which have been
shown to significantly enhance accuracy in classification problems.

Specifically, the low-energy value, a term infrequently used out-
side of [25], is a binary statistical feature that indicates whether the
energy of a window falls below 90% of the feature’s mean energy,
thereby representing deviations from the mean value of a feature.

3 DATASETS
The study used a large dataset comprising two types of recordings:
those from vinyl records, and those produced digitally described in
greater detail in this section. Due to the labelling effort required,
only the digital masters’ dataset is labelled. A description of how
the recordings of vinyl records were leveraged to produce examples
of anomalies is given in Section 3.3.

3.1 Vinyl Recordings

Fig. 1. Recording Setup for Vinyl Recordings

A total of 54 vinyl records spanning 31 artists and 60 genres were
digitized consistently using a Raspberry Pi 4Bwith a HifiBerry DAC+
ADC expansion board and a Thorens TD170 record player as shown
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in Figure 1. A choice was made to use as few constituent parts in the
recording setup as possible in order to reduce the variability and the
likelihood of anomalies occurring due to an incorrect setup. These
recordings contain the entirety of the discography of The Beatles
from 1963-1970.

3.2 Digital Masters
The digital masters’ dataset comprises over 12,000 songs from 580
artists and 300 genres. But due to time limitations, only a subset
from the Beatles (1963-1970) was used as expanding the amount of
training data is directly proportional to training times. An overview
of the albums used is given in Table 14.

3.3 Anomaly Examples
The study used expert knowledge to classify representative anom-
alies captured during the silence before a song starts on a vinyl
record. The classification includes crackle, pop, surface noise, flut-
ter/wow, and needle jumps, each associated with specific types of
record defects as outlined in Table 1. For this study, a collection
of each of these types of anomalies was gathered, for use in the
production of labelled data as described in Section 5.1.

Table 1. Anomalies observed in vinyl records and their causes

Anomalies
Causes Contaminants Static Charge Surface Defect Warping

Crackle
Pop
Continuous Surface Noise
Flutter/Wow
Needle Jumps

The availability for each of these types of anomaly is given in
Table 2, for each anomaly an indication of the number of examples
available and the lengths of these examples is given. It may be
noted that the number of examples is rather low, this was a primary
consideration of the model used during this study.

Table 2. Availability of Anomaly Samples

Anomaly Type Count Average Length (s) Minimum Length (s) Maximum Length (s) Summed Length (s)
Pop 36 0.03 3.62e-4 0.42 1.16
Hiss 2 1.54 0.28 2.81 3.08
Crackle 27 0.33 0.01 1.63 8.90
Surface Noise 34 6.07 1.25 25.70 206.53
Needle Drop 14 0.59 0.20 1.09 8.22

4 METHODOLOGY
This study employs an investigation around two fundamental re-
search questions geared towards identifying irregularities in the
audio of vinyl records. This involves feature selection, metric iden-
tification, and the establishment of a reproducible experiment.

4.1 Feature Selection
Identifying deviations in music and abnormal sounds requires an
effective feature selection process. This process integrates literature
review and analytical methodologies. The initial features set, offer-
ing high information gain, is derived from existing literature in the
fields of MIR and speech classification.

However, the difference between the detection of audio anomalies
in vinyl records and the identification of musical compositions in
MIR calls for a comprehensive examination of feature relevance.
Therefore, we evaluate the relevance of these features with respect
to anomalies in vinyl records. To navigate this process, we use
the minimal-redundancy maximal-relevance (mRMR) feature
selection method [19], which assists in identifying a relevant, non-
redundant set of features.

Fig. 2. Schematic overview of mRMR algorithm

The Maximum Relevance Minimum Redundancy (mRMR) algo-
rithm operates by maximizing feature relevance and minimizing
feature redundancy. Relevance is quantified as a feature’sMutual
Information (MI) with the target class, while redundancy is quan-
tified as the mutual information between features. The algorithm
commences by selecting the feature with the highest mutual in-
formation with the target, thereby being maximally relevant. In
subsequent iterations, it selects the feature yielding the maximum
Mutual Information (MI) with the target yet minimum aver-
ageMutual Information (MI) with previously selected features,
thereby ensuring minimum redundancy.
Implementing mRMR is beneficial as it identifies a compre-

hensive yet non-redundant feature set, improving model perfor-
mance and interpretability by mitigating the inclusion of superflu-
ous, highly correlated features.

The mRMR method generates a list of features in order of selec-
tion, providing a form of ranking considering both target relevance
and feature redundancy. This ranking represents a crucial sequence
of feature importance and relevance for distinguishing between
music and vinyl record anomalies.

Among the various mRMR variants, the MIQ (mutual informa-
tion quotient) variant was selected for this study due to its robust
performance and the availability of open-source implementations,
despite its low computational efficiency as compared to the FCQ
variant [7, 27].

4.2 Model Performance
The detection model used in this study is two part, namely the
DAE which is trained to remove noise from given data, and the
detector which leverages the results produced by the DAE to make
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detections. For this study the relative performance of LSTM and
BLSTM neural networks for use in a DAE are compared, in order
to determine the relative strengths and weaknesses of these two
types of RNN. These two parts are not necessarily sympathetic as
an improvement in reconstruction may also lead to a decrease in
detection performance, therefore these two parts have been sepa-
rated in such a way that their individual performance metrics do
not influence each other in any way. In this section, the method for
determining the performance of the two parts of the detector will
be described.

4.2.1 DAE Performance. This study aims to detect anomalies through
the use of a DAE, which is to be trained using differing features, in
order to determine whether a DAE detector is able to find anom-
alies within musical compositions. The ability of autoencoders to
construct their own features from given input data is sometimes
leveraged to directly reconstruct waveforms or images, however, as
the waveforms of which musical compositions are comprised are
very complex the choice was made to use features as an input and
output of the model instead.

Fig. 3. Schematic overview of Auto-Encoder

The goal of a DAE is to reconstruct some form of distorted, also
called "noisy", data back to its undistorted state. This is achieved by
giving a DAE distorted data as an input and setting undistorted data
as a target, which serves to teach the DAE how to remove distortions
from data. Denoising Autoencoders are typically compressive, which
indicates that the size of the latent representation is of a lower
dimension than the input and target data, a schematic overview of
this process is given in Figure 3.
The performance metric used for the DAE is the reconstruction

error, defined as the mean absolute error Mean Absolute Error
(MAE) between the output of the DAE and the target data. The
choice was made to use theMean Absolute Error (MAE) as the
mean difference is independent of the size of the input and target
data, which may vary depending on the number of features used.

4.2.2 Detector Performance. Separate from the process of training
the DAE, is the process of determining the performance of the de-
tector which leverages the DAE. Reconstruction-Based Novelty
Detection techniques employ thresholds to determine whether or
not an anomaly is present in any given location, however, there are
several ways in which these thresholds can be applied.

Fig. 4. Schematic overview of Detector

For threshold-based detection the difference between some data
X which may or may not be noisy is given to the DAE as an input,
the absolute difference between the output of the DAE X̂ and the
input X, dubbed the Reconstruction Error |X̂-X|, is then used as
an indicator for the presence of anomalies. An overview of how the
Reconstruction Error is obtained for a given input is shown in
Figure 4.
The obtained threshold can be leveraged in several ways, for

instance, the use of a Fixed Threshold or a Adaptive Threshold,
both of these methods have their own advantages and disadvantages.

The use of a Adaptive Threshold comes with many considera-
tions, primarily, the method in which the threshold adapts itself to
the data. Whereas a Fixed Threshold is a single value determined
during model training and is not adjustable.
In this study a Fixed Threshold was used, as it reduces the

number of variables which influence the results of the study.

4.2.3 Generalization Ability. The problem of Generalization is
particularly relevant for this application, due to the variability be-
tweenmusical compositions, andwithinmusical compositions them-
selves. Therefore, a part of this study will be dedicated to determin-
ing the ability of the DAE to be generalized.
The generalization ability of the models will be determined by

varying the number of songs used during the training step of the
models. The F1-Score and Mean Absolute Error (MAE) loss will
be logged for the different number of training songs for both the
LSTM and BLSTM based DAE, such that claims can be made about
the Generalization abilities of both these types of models.

5 EXPERIMENTAL SETUP
For the determination of the efficacy of a DAE in the application of
anomaly detection on a background of musical data, a methodical
approach must be undertaken to underpin the scientific founda-
tions of the study. This methodical approach consists of several
components, ensuring reproducible results, the production of rep-
resentative data through augmentation and the determination of
relevant performance metrics for model evaluation.

5.1 Augmentation
As delineated in Section 3.2, a dataset consisting of musical compo-
sitions without anomalies has been collected, henceforth referred
to as normal data. The normal data serves as a target for the DAE,
as an input for the DAE the process of augmentation is applied.
The nature of a DAE is such that it receives noisy data as an

input and aims to return de-noised data as an output. The process
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of augmentation enables the generation of uniquely noised data
by adding unique generated noise to the normal data that is used as
a target.
In order for the model to be able to learn as much as possible

about the target, the given inputs for the model are augmented in
different ways each epoch, remaining consistent between exper-
iments as described in Section 5.2. Each augmentation is unique,
this is achieved by varying the locations of the augmentations, the
types of the augmentations and the signal-to-noise-ratios between
the augmentations and the normal data.

Fig. 5. Schematic overview of Augmentation Process

5.1.1 Augmentation Process. The process of augmentation works
as follows, first the length of a target waveform is determined, then
a waveform of equal length is constructed from samples of noise,
or anomalies. For this process five parameters can be configured,
each of these parameters influences the produced augmentation in
its own way. The overall process of the augmentation is given in
Figure 5.
Two of these parameters are categorical and can either be true

or false, these govern whether different types of noise will be in-
terspersed within a single song and whether the samples will be
spaced equidistantly. Both of these affect the predictability of the
data and are generally set to both be true such that the data is of a
more unpredictable nature.

The three other parameters are continuous they are the aug-
mentation fraction, the maximum length of an anomaly and the
signal-to-noise ratios to use during augmentation. The augmenta-
tion fraction determines what fraction of the original waveform
should be augmented, for instance, if set to 1 the entirety of the
original waveform is augmented, whereas when set to 0.05 only 5%
of the waveform will be augmented.

The maximum length of an anomaly sets the number of seconds
any noise sample may at most consists of, and was implemented
due to the nature of the different types of anomalies, whereas an
example of a "pop" may only last a fraction of a second an example
of "surface noise" may last 30 seconds or longer. Therefore to ensure
that some types of anomalies are not over-represented in the data a
limit was imposed on the length of individual noise samples.

The signal-to-noise ratios speak for themselves, and are an indica-
tion of the values of the relative strength of the signal as compared
to the noise., For instance, a signal-to-noise ratio of 2.0 indicates
that the relative magnitude of the signal is twice as strong as that
of the noise during addition.
featuring randomized noise samples, signal-to-noise ratios and

spacing between samples is constructed. This noise waveform is
then added to the target waveform in order to produce a noisy wave-
form in which the locations of anomalies are known this process is
highlighted in Figure 5.1.

Table 3. Parameters used for augmentation

Dataset Signal-to-noise
ratios

Augmentation
Fraction

Maximum augmentation
length (s)

Regularly
Spaced Interspersed

Training 1.0, 1.5, 2.0, 3.0 1.0 2 No Yes
Testing 1.0, 1.5, 2.0, 3.0 0.05 0.5 No Yes
Validation 1.0, 1.5, 2.0, 3.0 0.05 0.5 No Yes

As described in Section 5.1, there are several parameters for the
augmentation which may be adjusted, which each influence the
outcome of the experiment. These parameters were kept as consis-
tent as possible, with the exception of augmentation lengths and
fractions and are given in Table 3.

Fig. 6. DAE training methodology Fig. 7. DAE testing methodology
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5.1.2 Augmentation of Training Data. The goal of this study is
to create a DAE-based anomaly detector, which is able to detect
anomalies other than only those present in the dataset of anomalies
as delineated in Section 3.3. To improve the generalization abilities
of the detector produced in this study [2], a number of types of noise
different from those regularly found on vinyl records are introduced
during augmentation.
The "noisy" data used for training is augmented by introducing

both the types of anomalies commonly found on records, as well as
Gaussian, Brownian, white and pink noise. Through the addition of
these types of noises, the DAE will be trained to not only remove
the examples of noises gathered for this study but also to remove
noises of a more random nature that may not be part of the gathered
datasets this process is displayed schematically in Figure 6.

5.1.3 Augmentation of Testing and Validation Data. The testing and
validation of the detection model have different requirements for the
used data than that used for training, namely, whereas the training
data is meant to encompass more examples of noises that are likely
to occur on a vinyl record, the testing and validation data must
only contain those examples of noises which would occur on vinyl
records.

For this reason, the augmentation of testing and validation data is
conducted in a similar manner as that of the training data, however,
for testing only the anomalies present on vinyl records as described
in Section 3.3 are used. Therefore, during the testing and validation
stages the performance of the model can be measured against rep-
resentative data this process is displayed schematically in Figure
7.

5.2 Repeatability
To make claims about the efficacy of different architectures and
features, it is of great importance that the data used to train the
model is consistent between experiments. The data used for training,
testing and validating the model in this study is augmented in a
repeatable way with several types of noises and anomalies.

This consistency is often called Repeatability, and was achieved
through the procedural generation of seeds. To validate that the
procedural generation was achieved effectively, three tests were
conducted, described as follows.

The first test ensured that the augmentations applied were differ-
ent between each iteration of the dataset, i.e. between the epochs.
The second test ensured that the augmentations were identical be-
tween different instances of the experiment.

As augmentation is not the only variable dependent on a seed, as
the models also use random values, the third test trained the same
model with the same parameters and data twice. It verified that its
results were identical between runs, validating the repeatability of
the model’s training.

5.3 Model Evaluation
The model was evaluated in several ways, as the model consists
of multiple stages, the autoencoder training stage followed by the
testing stage for the detector, the autoencoder was evaluated by itself
once its training was completed the performance of the detector
could be measured.

5.3.1 Hyperparameters. The model used in this study may be tuned
using several Hyperparameters, these are given in Table 4 As
an exhaustive search was not feasible within the given time, use
was made of Tree-Structured Parzen Estimator (TPE) hyperpa-
rameter optimization algorithm [3]. A commonly used approach
publically available through the python optuna library. For each
of the feature sets a total of 200 trials were conducted during the
search for optimal Hyperparameters.

Table 4. Hyper-Parameters of DAE

Hyper Parameter Minimum Value Maximum Value Condition (optional)
Learning Rate 1e-06 1e-01
Weight Decay 1e-06 1e-01 Lower than learning rate
Dropout Probability 0.0 0.9
Compression Ratio 0.5 Feature Count
Layer Count 1 6
Sequence Length 3 300

5.3.2 Evaluation of the DAE. The performance for the DAE will be
measured in two ways. Firstly through theMean Absolute Error
(MAE) loss, which evaluates the ability of the DAE to denoise
given input data. Secondly the inference time of the DAE will be
measured, as this dominates the inference time of the detector. Due
to the variability of the lengths of sequences passed to the model,
the inference time is used computed relative to the length of these
sequences. Thus the inference time is defined as the number of
milliseconds for determining the reconstruction error divided by
the number of seconds of audio data passed to the model.

5.3.3 Evaluation of the Detector. The generation of augmented la-
belled data enabled us to measure the model’s detection accuracy
during testing. Applying our fully trained model to unseen valida-
tion data allowed us to assess its accuracy based on comparison
with actual labels. Metrics such as F1-Score, Accuracy, Precision
and Recall are used to evaluate the performance of the anomaly
detection model.

6 RESULTS
Through the exploration of features and anomaly detection tech-
niques, it was found that it is possible to detect some types of
anomalies within musical composition through the use of advanced
reconstruction-based anomaly detection techniques. The use of
each available feature is detrimental to the detection of anomalies,
therefore a subset of the most useful features has been constructed.
Furthermore, the use of reconstruction-based techniques was found
to be poorly suited to the problem.

6.1 Feature Selection
Given the findings from our literature review, we undertook an
analysis of the relevance and redundancy of the identified features
using the mRMR algorithm [19]. The features investigated are listed
in Table 5, for each of these features the relevance of the derived
"texture" features was also determined.
The results from the mRMR algorithm’s computation of mutual

information, which indicates the applicability of each feature inde-
pendently, are presented in Tables 6, 7, 8, 9, 10 and 11.
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The ranking of features as produced by the mRMR algorithm is
given in Tables 12 and 13. Notably, out of the 10 best features, 9 were
the derived texture features, highlighting once more the benefits of
these derived features. Furthermore, the spectral centroid, spectral
flux, and spectral flatness were particularly relevant for this problem,
in line with the justifications given in Table 5.

6.2 Model Performance
The model’s performance was evaluated for several sets of features,
in order to validate that the mRMR feature selection method used
is suitable for use with RNN based models. The feature sets which
were compared were as follows the top 5, top 10, top 30 and top 60
features as selected by the mRMR algorithm, and for validation the
commonly usedMel-frequency Cepstral Coefficients (MFCC)
feature including its means, variances and low energy.
The use of Mel-frequency Cepstral Coefficients (MFCC) as

a baseline comparison due to its use in comparable studies which
use LSTM AEs for novelty detection [16, 17, 21], allowing us to
make some claims as to the benefits of the chosen feature selection
method.

The performance of theDAE as discussed in Section 5.3 are given
for both the LSTM and BLSTM variants in Figure 10. These results
highlight the improved performance of the BLSTM architecture
when used for reconstruction, however, as the size of the model is
larger it can be seen that inference times are generally higher.
Furthermore, the inference times of the DAE are significantly

higher for theMel-frequency Cepstral Coefficients (MFCC) fea-
tures, this is likely due to the model having an increased complexity
due to the complex nature of the features. Whereas the selected
features are more readily reconstructed.

The performance of the detector is given for both the LSTM and
BLSTM architectures and shows theMel-frequency Cepstral Co-
efficients (MFCC) features outperforming the selected features in
most metrics. Particularly in the F1-Score, this result is unexpected
and the opposite of the Mean Absolute Error (MAE) loss for the
same features.

7 DISCUSSION
The results of this study are not in line with initial expectations, the
relation between the efficacy of the DAE and the F1-Score of the
detector is expected to be proportional. However, as the reconstruc-
tion error was reduced through the use of features selected through
mRMR the F1-Score was reduced in turn.

Fig. 8. Reconstruction example of best performing model and features

Figure 8 shows an example of reconstruction through the best-
performing model and features. The figure highlights the inability
of the model to reconstruct the complex patterns of the features of
musical compositions. Comparable results can be observed in the
reconstruction of the other feature sets.
This shows that whilst the selected feature may be highly in-

formative with regard to the detection of anomalies, the model is
not able to reconstruct these features. This lack of ability of the
model may be explained due to the simplistic architecture of the
used model which makes it difficult to draw conclusions on the
applicability of the selected features.

8 CONCLUSION
This study has examined the applicability of features selected through
the mRMR algorithm and the effectiveness of the models utiliz-
ing these features in the domain of musical anomaly detection. We
found that, while the selected features demonstrated a heightened
performance for the DAE used, no substantial enhancement was
observed in the F1-Score, a measure of detection efficacy. It seems
that while these features are highly reconstructable, their aggrega-
tion may not be conducive to anomaly detection via a thresholding
mechanism. Nonetheless, it is worth noting that the inference times
using these features were significantly lower compared to the direct
usage of Mel-frequency Cepstral Coefficients (MFCC).

This suggests that the mRMR-selected features are indeed more
amenable for reconstruction, as evidenced by lower inference times
and Mean Absolute Error (MAE) loss compared to the direct use
of Mel-frequency Cepstral Coefficients (MFCC). However, con-
sidering the observed inefficiency in detection, alternative feature
selection methods that take into account the temporal context of
the features could potentially yield better results, as the current
approach does not factor in preceding and succeeding samples.
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In the comparison between LSTM and BLSTM models, no sub-
stantial difference was found in terms of F1-Score or detection per-
formance. However, the BLSTM model consistently outperformed
the LSTM in terms of reconstruction, registering a lower Recon-
struction Error across all selected feature sets.
Overall, these findings underscore the importance of judicious

feature selection and model choice in enhancing both the speed
and performance of musical anomaly detection. Further research
might focus on refining the feature selection process, possibly by
incorporating temporal context and testing the applicability of more
sophisticated model architectures for improved reconstruction abil-
ity.

9 FUTURE RESEARCH
This research has highlighted the viability of detecting anomalies
withinmusical composition through the use of advanced reconstruction-
based anomaly detection techniques, specifically DAEs, in combi-
nation with features selected using the mRMR algorithm. Despite
these advances, however, certain discrepancies between the efficacy
of the DAE and the detection performance, as measured by the
F1-Score, suggest that further research is needed to refine these
techniques.

Future studies might consider the construction of more complex
and configurable LSTM and BLSTM based models that allow for
the adjustment of the number of hidden layers and their sizes. Such
advancements could potentially offer amore nuanced reconstruction
of the selected features, thus addressing the limitations observed in
the current model’s performance.

Moreover, the adoption of the Next Prediction BLSTM DAE (NP-
BLSTM-DAE) method [17], where a current sample is used to pre-
dict the subsequent sample, may offer improvements. Given the
temporal nature of music, this approach could provide enhanced re-
construction capabilities by better capturing the inherent temporal
dependencies in musical compositions.
In addition, the introduction of an adaptive threshold could be

beneficial. By adjusting the threshold according to the data, the
model might exhibit more robust performance when dealing with
unseen data.
Advancements could also be made through the introduction of

an adversarial stage to improve reconstruction performance. The
benefits of this adversarial approach were highlighted in previous
research [21], and the incorporation of such a stage might aid in
addressing the observed inefficiencies in detection.
To better ascertain the generalizability of the model, future re-

search could utilize recordingsmade using different recording setups.
By analyzing how well the model generalizes across various record-
ing conditions, the robustness of the anomaly detection method
could be evaluated.
Moreover, expanding the diversity of the training and testing

datasets to include more genres could provide insight into the
model’s ability to generalize across not only songs from the same
artist but also songs from different genres.
Finally, future research might explore the implementation of

LSTM/BLSTM variants of the mRMR algorithm, such as the random

forest-based variants produced in [27]. Such an approach could po-
tentially offer a more temporally aware feature selection process,
which may result in improved anomaly detection performance.
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GLOSSARY
Accuracy

A metric used to assess the performance of classification models. Accuracy is defined as the proportion of true results (both true
positives and true negatives) in the total number of cases examined. It ranges from 0 to 1, where 1 indicates perfect accuracy. 6

Adaptive Threshold
An adaptive threshold, in the context of reconstruction-based anomaly detection, is a threshold value that dynamically adjusts based on
the underlying data or some other factors. Unlike a fixed threshold, an adaptive threshold can change to better accommodate variations
in the data or specific conditions. This can be particularly useful when the data is highly variable, or the distinction between normal
and anomalous data changes over time. The adaptive threshold can be based on the statistical properties of the data, predictive models,
feedback loops, or other methods. 4

BLSTM
A Bidirectional Long-Short Term Memory network extends LSTM by presenting the network with both past and future data. 1, 2, 4, 7, 8

Classification-Based Novelty Detection
This technique involves training a model on a set of known categories or classes, and anything that doesn’t fit these categories is
considered as a novel or an anomaly. It’s applicable when known classes exist and there is enough data to train a classifier. 1, 2

Clustering-Based Novelty Detection
This approach uses clustering algorithms to group similar data together and identify the normal data clusters. Data points that don’t
belong to any of these clusters or belong to small and sparse clusters are considered anomalies. 1, 2

DAE
A Denoising Autoencoder is a type of neural network that is trained to use its hidden layer to encode robust representations by
reconstructing the input from a noisy version of itself. 1–4, 6–8, 17

Distance-Based Novelty Detection
This technique defines an anomaly based on the distance of a data point from the rest of the data. Data points that are far away from
others are considered anomalies. The distance measure can be Euclidean, Manhattan, or any other distance metric. 1, 2

F1-Score
A measure used to evaluate the performance of binary classification models, although it can be extended for multi-class problems. The
F1-Score is the harmonic mean of precision and recall, and ranges from 0 to 1, with 1 being the best possible score. A higher F1-Score
indicates a more accurate and robust model. 4, 6–8

FCQ
Feature Correlation Quotient (FCQ) is a term often used in feature selection to denote the degree of correlation between features. The
aim in many algorithms is to minimize the FCQ to ensure that the selected features provide non-redundant information. 3

Fixed Threshold
In the context of reconstruction-based anomaly detection, a fixed threshold is a predetermined value used to decide whether a given
data point is an anomaly based on its reconstruction error. The reconstruction error is compared with the fixed threshold: if the error is
less than or equal to the threshold, the data point is considered normal; if the error exceeds the threshold, the data point is flagged as an
anomaly. The key characteristic of a fixed threshold is that it remains constant, regardless of changes in the data or other conditions. 4

Generalization
In the context of machine learning, generalization refers to the model’s ability to adapt properly to new, previously unseen data, drawn
from the same distribution as the one used to create the model. A model that generalizes well will be able to make accurate predictions
on unseen data after being trained on a subset of that data. The goal of a good machine learning model is to generalize well from the
training data to any data from the problem domain. This allows us to make predictions in the future on data the model has never seen. 4

Hyperparameters
In machine learning, hyperparameters refer to the parameters of the model that are set prior to the start of the learning process. Unlike
other parameters, hyperparameters cannot be learned directly from the data in the standard training process and must be predefined.
These can include learning rates, regularization parameters, the number of layers in a deep neural network, the number of clusters in a
k-means clustering algorithm, etc. The choice of hyperparameters can significantly influence the performance of the model. 6

LSTM
A Long Short-Term Memory network is an artificial recurrent neural network architecture used in the field of deep learning, capable of
learning long-term dependencies. 2, 4, 7, 8
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Mean Absolute Error (MAE)
A metric used to quantify the difference between predicted and actual values in regression problems. It is calculated as the average of
the absolute differences between the predicted and actual values. It provides a measure of how far off the predictions are on average,
with a value of 0 indicating no error. 4, 6, 7

Mel-frequency Cepstral Coefficients (MFCC)
A type of feature used in signal processing and machine learning for audio analysis. MFCCs are derived from a type of cepstral
representation of the audio clip (a nonlinear "spectrum-of-a-spectrum"). The mel-frequency part indicates that the frequency bands
are positioned logarithmically (on the mel scale), which approximates the human auditory system’s response more closely than
linearly-spaced frequency bands. They are commonly used in speech and music processing, as well as in many other machine-learning
tasks related to audio. 2, 7

MIQ
Mutual Information Quotient (MIQ) is a term often used in the context of feature selection or filtering methods, where the aim is to
maximise the mutual information between the selected features and the target class while minimizing the mutual information between
the features themselves. 3

MIR
Music Information Retrieval is the interdisciplinary science of retrieving information from music. 2, 3, 12

mRMR
Minimum Redundancy Maximum Relevance (mRMR) is a feature selection method that aims to select features that are highly correlated
with the class but uncorrelated with each other. It balances the importance of mutual information (relevance) and redundancy of the
features. 3, 7, 8

Mutual Information (MI)
Mutual Information (MI) is a metric in Information Theory that quantifies the statistical dependence between two variables or sets of
variables. It represents the amount of information that can be obtained about one variable by observing another variable. 3

Precision
A measure used to evaluate the performance of classification models. Precision is defined as the number of true positives divided by
the sum of true positives and false positives. It provides an understanding of the reliability of positive predictions. A precision of 1
indicates that all positive predictions were correct. 6

Recall
A measure used to evaluate the performance of classification models. Recall (or sensitivity or true positive rate) is defined as the number
of true positives divided by the sum of true positives and false negatives. It provides an understanding of the model’s ability to identify
all relevant instances. A recall of 1 indicates that all relevant instances were identified. 6

Reconstruction Error
Reconstruction error, in the context of reconstruction-based anomaly detection techniques, is a measure of the difference between
the original input data and the same data after being processed (e.g., compressed and then decompressed) by a model, such as an
autoencoder. A high reconstruction error indicates a large discrepancy between the original and reconstructed data and is typically
used as an indicator of an anomaly. In other words, if the model is trained primarily on normal data, it should have a low reconstruction
error on similar data. Conversely, it should have a high reconstruction error on anomalous data, which significantly deviates from the
norm. 4, 8

Reconstruction-Based Novelty Detection
In this approach, a model is trained to reconstruct normal data. The model typically performs poorly when trying to reconstruct
anomalies. Therefore, data points with high reconstruction errors are considered anomalies. Techniques such as autoencoders can be
used for this purpose. 1, 2, 4

Repeatability
In the context of machine learning, repeatability refers to the consistent reproduction of results in an experiment or analysis. As machine
learning models often incorporate elements of randomness during training (e.g., initialization of weights, data shuffling, splitting
of training and testing data), repeatability becomes critical when comparing models, fine-tuning hyperparameters, and confirming
the robustness of results. Achieving repeatability often involves setting a specific seed for the random number generator to ensure
consistent randomness between runs. Additionally, repeatability also includes the ability for other researchers to replicate results using
described methods and provided code/data, promoting good scientific practice. 6

RNN
A Recurrent Neural Network is a type of artificial neural network where connections between nodes form a directed graph along a
temporal sequence, allowing it to exhibit temporal dynamic behaviour. 1, 2, 4, 7
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Statistical Novelty Detection
This technique is based on statistical models and it assumes that normal data follows a certain statistical distribution. Any data point
that deviates significantly from this distribution is considered novel or an anomaly. 1, 2

Tree-Structured Parzen Estimator (TPE)
The Tree-Structured Parzen Estimator (TPE) is a sequential model-based optimization (SMBO) approach used for hyperparameter
tuning in machine learning. It constructs two probabilistic models based on good and bad hyperparameter settings observed so far in
the optimization process. These models, which estimate the conditional probability of a score given the hyperparameters, are used to
explore and exploit the hyperparameter space. The approach is called ’tree-structured’ because a tree structure is used to partition the
space of hyperparameters according to the regions they affect the most. TPE was introduced by James Bergstra, Rémi Bardenet, Yoshua
Bengio, and Balázs Kégl in the paper titled "Algorithms for Hyper-Parameter Optimization" presented at the NIPS 2011 conference [3]. 6

A FEATURE DESCRIPTION

Table 5. Feature Descriptions

Feature Dimensions Description
Chroma
STFT

12 bins The spectrum of an audio signal mapped into 12 bins representing 12 distinct semitones of the musical octave,
particularly relevant when dealing with musical compositions.

Tonnetz 6 bins Tonal Centroid features, A projection of chroma features onto a 6-dimensional basis representing the perfect
fifth, minor third, and major third each as two-dimensional coordinates [10]. Of particular relevance for
distinguishing musical compositions from anomalies as anomalies will not map neatly into musical notes.

MFCC 13 bins Mel Frequency Cepstral Coefficients, A concise description of the whole spectral envelope scaled to mel scale,
which is a perceptual scale of pitches which sound to the human ear to be separated by an equal distance. Its
relevance for use with music has been established extensively in the field of MIR [14].

Spectral
Flux

16 bins Spectral flux measures the spectral change between two successive frames and is computed as the squared
difference between normalized magnitudes of the spectra of the two successive windows [9].

Pitch 12 bins The pitch of an audio sample, the degree of highness or lowness of a tone. The dimension of the pitches vastly
exceeds other features, therefore principal component analysis (PCA) was used to scale the pitches down into
12 bins.

Spectral
Centroid

1 bin The mean of all frequencies present in a signal, the centroid of the spectrum [12].

Spectral
Contrast

1 bin The contrast between the energy present in the highest frequency bands and the energy present in the lower
frequency bands [11]

Spectral
Rolloff

1 bin In digital signal processing, Spectral Rolloff is a critical measure that captures the frequency below which a
certain portion of the total spectral energy is located. Its role in anomaly detection is crucial as it identifies
unusual energy distributions across the frequency spectrum often indicative of audio anomalies.

Spectral
Flatness

1 bin The spectral flatness, also called tonality coefficient, quantifies how noise-like a signal is, as opposed to being
tone-like[8]. This measure is particularly useful as the music is tone-like, whereas the anomalies are not.

Zero Cross-
ing Rate

1 bin Defined as the number of times the zero-point is crossed by a waveform, of particular use as the deflection of a
needle on a record causes additional zero-crossings to occur at that point in time.

Pulse
Curve

1 bin The onset strength of the spectral flux, indicates the absolute amount with which the frequency changes at
a given point [4]. This is of particular relevance as it is known that an anomaly presents itself as a change
throughout the entire spectrum, which is particularly noticeable in this feature.
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B FEATURE IMPORTANCE

Table 6. Relevance of Mel-frequency cepstral coefficients

Information Gain Normal Mean Variance Low Energy
MFCC Bin 0 0.024 0.138 0.015 0.037
MFCC Bin 1 0.010 0.065 0.022 0.017
MFCC Bin 2 0.008 0.008 0.022 0.021
MFCC Bin 3 0.005 0.007 0.022 0.022
MFCC Bin 4 0.005 0.005 0.022 0.017
MFCC Bin 5 0.008 0.018 0.020 0.018
MFCC Bin 6 0.005 0.010 0.021 0.019
MFCC Bin 7 0.007 0.014 0.021 0.019
MFCC Bin 8 0.0 13 0.024 0.018 0.023
MFCC Bin 9 0.015 0.014 0.021 0.021
MFCC Bin 10 0.011 0.017 0.023 0.025
MFCC Bin 11 0.015 0.010 0.025 0.019
MFCC Bin 12 0.023 0.012 0.021 0.023

Table 7. Relevance of Spectral Flux

Information Gain Normal Mean Variance Low Energy
Spectral Flux Bin 0 0.043 0.056 0.013 0.010
Spectral Flux Bin 1 0.008 0.016 0.008 0.002
Spectral Flux Bin 2 0.006 0.012 0.004 0.002
Spectral Flux Bin 3 0.006 0.010 0.000 0.002
Spectral Flux Bin 4 0.007 0.011 0.000 0.003
Spectral Flux Bin 5 0.003 0.008 0.000 0.002
Spectral Flux Bin 6 0.002 0.003 0.000 0.001
Spectral Flux Bin 7 0.005 0.011 0.000 0.002
Spectral Flux Bin 8 0.004 0.009 0.000 0.002
Spectral Flux Bin 9 0.003 0.005 0.000 0.001
Spectral Flux Bin 10 0.007 0.015 0.000 0.002
Spectral Flux Bin 11 0.012 0.023 0.001 0.005
Spectral Flux Bin 12 0.004 0.011 0.000 0.003
Spectral Flux Bin 13 0.003 0.006 0.000 0.003
Spectral Flux Bin 14 0.006 0.016 0.000 0.005
Spectral Flux Bin 15 0.006 0.013 0.000 0.005

Table 8. Relevance of Chroma

Information Gain Normal Mean Variance Low Energy
Chroma Bin 0 0.011 0.011 0.009 0.011
Chroma Bin 1 0.029 0.011 0.013 0.012
Chroma Bin 2 0.022 0.009 0.017 0.011
Chroma Bin 3 0.048 0.043 0.015 0.006
Chroma Bin 4 0.022 0.016 0.014 0.006
Chroma Bin 5 0.041 0.024 0.015 0.003
Chroma Bin 6 0.023 0.019 0.014 0.006
Chroma Bin 7 0.041 0.030 0.010 0.013
Chroma Bin 8 0.024 0.009 0.012 0.003
Chroma Bin 9 0.032 0.020 0.012 0.003
Chroma Bin 10 0.023 0.025 0.008 0.005
Chroma Bin 11 0.029 0.022 0.009 0.004

Table 9. Relevance of Tonnetz

Information Gain Normal Mean Variance Low Energy
Tonnetz Bin 0 0.040 0.093 0.000 0.033
Tonnetz Bin 1 0.032 0.085 0.000 0.032
Tonnetz Bin 2 0.023 0.065 0.000 0.029
Tonnetz Bin 3 0.004 0.020 0.000 0.015
Tonnetz Bin 4 0.028 0.066 0.000 0.032
Tonnetz Bin 5 0.021 0.048 0.000 0.015

Table 10. Relevance of Pitch

Information Gain Normal Mean Variance Low Energy
Pitch Bin 0 0.000 0.000 0.000 0.000
Pitch Bin 1 0.010 0.008 0.007 0.000
Pitch Bin 2 0.007 0.005 0.008 0.001
Pitch Bin 3 0.005 0.005 0.006 0.014
Pitch Bin 4 0.013 0.015 0.003 0.018
Pitch Bin 5 0.008 0.006 0.006 0.001
Pitch Bin 6 0.002 0.001 0.002 0.021
Pitch Bin 7 0.020 0.030 0.003 0.046
Pitch Bin 8 0.002 0.002 0.002 0.057
Pitch Bin 9 0.069 0.079 0.002 0.183
Pitch Bin 10 0.059 0.060 0.000 0.158
Pitch Bin 11 0.019 0.020 0.000 0.156

Table 11. Relevance of 1D Features

Information Gain Normal Mean Variance Low Energy
Spectral Centroid 0.140 0.218 0.011 0.041
Spectral Contrast 0.051 0.203 0.005 0.048
Spectral Rolloff 0.051 0.203 0.005 0.048
Spectral Flatness 0.056 0.118 0.012 0.065
Zero Crossing Rate 0.012 0.073 0.003 0.010
Pulse Curve 0.001 0.001 0.000 0.000
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Table 12. Top 60 mRMR features (Part 1)

Feature Name Bin Type Order Score (MIQ)
Spectral Centroid 0 Mean 1 0.218
Spectral Flux 0 Normal 2 3.970
Spectral Flatness 0 Low Energy 3 1.859
Pitch 10 Low Energy 4 1.391
Pitch 2 Variance 5 1.086
Spectral Flatness 0 Mean 6 1.859
Pitch 11 Low Energy 7 1.333
Pitch 9 Mean 8 1.347
MFCC 0 Low Energy 9 1.180
Pitch 9 Low Energy 10 1.080
Pitch 7 Variance 11 1.013
Chroma 0 Low Energy 12 1.052
MFCC 12 Normal 13 1.097
MFCC 11 Variance 14 1.067
Chroma 2 Variance 15 1.115
Spectral Flatness 0 Normal 16 1.162
Tonnetz 0 Mean 17 1.198
Pitch 3 Variance 18 1.072
Pitch 10 Mean 19 1.131
Pitch 8 Low Energy 20 1.175
Spectral Flux 15 Mean 21 1.184
Spectral Flux 0 Mean 22 1.130
Spectral Contrast 0 Mean 23 1.135
MFCC 0 Mean 24 1.021
Spectral Flatness 0 Variance 25 1.002
Pitch 11 Normal 26 0.934
Spectral Flux 11 Normal 27 0.952
Pitch 7 Mean 28 0.978
Tonnetz 0 Mean 29 0.983
Spectral Centroid 0 Normal 30 0.913

Table 13. Top 60 mRMR features (Part 2)

Feature Name Bin Type Order Score (MIQ)
Spectral Centroid 0 Variance 31 0.909
Pitch 9 Normal 32 0.900
Spectral Flux 14 Mean 33 0.869
Chroma 5 Variance 34 0.872
Chroma 7 Low Energy 35 0.884
Pitch 7 Low Energy 36 0.882
Pitch 10 Normal 37 0.889
Pitch 1 Variance 38 0.847
Spectral Flux 11 Mean 39 0.863
Spectral Flux 0 Variance 40 0.829
Pitch 5 Variance 41 0.837
Pitch 4 Low Energy 42 0.851
Tonnetz 4 Mean 43 0.853
Spectral Rolloff 0 Mean 44 0.847
MFCC 10 Low Energy 45 0.795
Pitch 11 Mean 46 0.803
Spectral Flux 4 Mean 47 0.794
Chroma 8 Variance 48 0.772
Spectral Flux 4 Normal 49 0.765
Tonnetz 2 Mean 50 0.766
MFCC 1 Variance 51 0.749
Chroma 2 Low Energy 52 0.740
Pitch 6 Low Energy 53 0.728
Chroma 3 Variance 54 0.730
Spectral FLux 2 Variance 55 0.708
Chroma 3 Normal 56 0.712
Spectral Flux 7 Mean 57 0.707
Chroma 6 Variance 58 0.693
MFCC 12 Low Energy 59 0.698
Spectral Contrast 0 Low Energy 60 0.700
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C DATASETS

Table 14. Beatles albums used during this study

Title Artist Year Genres Song Count
Please Please Me The Beatles 1963 Beat, Rock & Roll, Pop 14
With The Beatles The Beatles 1963 Rock & Roll, Pop 14
A Hard Day’s Night The Beatles 1964 Rock, Pop Rock, Pop 14

Beatles for Sale The Beatles 1964 Folk Rock, Rock & Roll,
Pop Rock 14

Help! The Beatles 1965 Folk Rock, Pop Rock 14
Rubber Soul The Beatles 1965 Folk Rock, Rock, Pop 14
Revolver The Beatles 1966 Rock, Pop 14
Magical Mystery Tour The Beatles 1967 Psychedelic Rock 11
Sgt. Pepper’s Lonely
Hearts Club Band The Beatles 1967 Pop, Art Rock, Rock 13

The Beatles The Beatles 1968 Rock, Pop 30
Abbey Road The Beatles 1969 Rock 17
Yellow Submarine The Beatles 1969 Pop Rock, Psychedlic Rock 13
Let It Be The Beatles 1970 Rock, Blues 12
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D RESULTS

Fig. 9. Performance of the Detector
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Fig. 10. Performance of the DAE
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Fig. 11. Generalization Performance
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