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ABSTRACT
In the field of sports, there are many techniques for measuring run-

ning posture while the IMU-based Xsens DOT and the computer

vision-based OpenPose are commonly used. These techniques have

different advantages and limitations. Of these, their validity and

accuracy are of particular importance. In this research project, we

had 6 participants wear Xsens DOT sensors and run on a tread-

mill under the observation of a camera. We collected data from

the sensors, processed it, and obtained their cadence and vertical

oscillation during running. Subsequently, we compared these data.

Based on this, we also discussed the use scenarios of these systems

to help choose system when designing a running feedback system.
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1 INTRODUCTION
Running is one of the most popular sports in the world [1], and

several running feedback systems have emerged which involve var-

ious kinematic parameters such as cadence and vertical oscillation.

By utilizing a running feedback system, it is possible to decrease

the risk of injuries and enhance running performance[14]

Cadence refers to the frequency of steps during running or any

other repetitive movement which is commonly expressed as the

number of steps per minute. Cadence data can be found in the sta-

tistics provided by almost all smartwatches and fitness apps. This is

not only because it is easier to calculate but also because research

has shown that increasing running cadence is a means to improve

performance and reduce impact forces.[9] Therefore, cadence is an

important metric in the running analysis as it can provide insights

into running efficiency, stride rate, and overall performance. Ver-

tical oscillation refers to the vertical displacement or movement

of the body’s centre of mass during running or other forms of lo-

comotion. It represents the up-and-down motion of the body as it

moves through each stride or step. Vertical oscillation is typically

measured by tracking the vertical displacement of a specific body

point, such as the torso or pelvis, and is often expressed in units of

distance, for example, centimetres. In the process of running, our

goal is horizontal movement. Therefore, reducing vertical oscilla-

tion helps improve the running economy by minimising the energy

expenditure associated with vertical motion. Vertical oscillation

tends to increase during exercise fatigue, indicating a decrease in

running economy as more energy is wasted in the vertical direction.

When the vertical oscillation is larger, it typically indicates a slower

cadence. A study examined the relationship between cadence, verti-

cal oscillation, and lower limb loading during running. The findings

indicated that lower vertical oscillation and higher cadence are as-

sociated with reduced peak vertical ground reaction forces (vGRF),

with lower vertical oscillation having a more pronounced effect.[2]

It can be concluded that increasing cadence and reducing vertical

oscillation are significantly correlated with improving running

performance and reducing the risk of injury.

Although many smartwatches and wristbands offer measure-

ment capabilities for these parameters, there are still many peo-

ple who use professional tools such as OpenPose and Xsens DOT.

With the advancement of technology, wearable sensors are being

used by more people, and Xsens DOT is one such wearable sen-

sor based on IMU (inertial measurement unit). IMU-based sensors

are generally considered to have better performance. On the other

hand, OpenPose, which is based on computer vision, is a relatively

new technology. However, it has already found numerous applica-

tions[3][16][7][13]. Unlike Xsens DOT, it does not require users to

wear sensors and only needs at least one camera to function.

The Xsens DOT is based on an IMU, and therefore, its accuracy

is strongly influenced by the intensity of the movement; for exam-

ple, vibration caused by poorly fixed sensors during running may

interfere with the results. Due to the need to use the sensor, the

location of the sensor, as well as environmental disturbances, can

have an impact on it.

In the case of OpenPose, which is based on computer vision, the

accuracy of the system is therefore influenced by the quality of the

images. For example, insufficient lighting or low image resolution

may make it difficult for the system to identify key points in a

joint. Research has shown that simply changing the lighting or

clothing can have an impact on the measurements obtained with

OpenPose.[15] Similarly, overly complex or intense movements can

affect accuracy.

Both OpenPose and Xsens DOT have been evaluated in the lit-

erature for their accuracy and reliability[11][10]. However, these

articles focus on assessing the performance of one system. A few

studies are comparing their accuracy, but more often, Xsens is used

as a standard to verify whether OpenPose is accurate enough.[12]

Some studies have shown that OpenPose has low accuracy in mea-

suring joint angles during walking and running, making it more

suitable for applications such as motion gaming or virtual reality in-

teractions rather than kinematic analysis, where accuracy is lacking

due to the inherent limitations of markerless systems[5]. However,

other research suggests that while OpenPose may have low accu-

racy in measuring joint angles, it is more accurate in measuring

lower limb movement trajectories, similar to IMU measurements.

Additionally, two separate studies found that OpenPose provides

accurate measurements of joint angles in patients with arthritis and

accurate gait analysis in older adults. Based on previous research, it



can be inferred that OpenPose performs well in measuring slower

movements but has poorer performance in fast movements. It is

important to note that the aforementioned studies primarily fo-

cus on the measurement of joint angles, which involves complex

calculations and requires accurate measurement of multiple key

points. However, in our study, we are measuring data that is of

greater interest to runners, such as cadence and vertical oscilla-

tion. Calculating these metrics requires fewer key points, which

may potentially improve the accuracy and effectiveness of Open-

Pose. Unlike accuracy, there is relatively less comparison between

Xsens DOT and OpenPose in terms of their validity. The major-

ity of studies on Xsens DOT have indicated its moderate to high

level of validity. Regarding the validity of OpenPose, studies have

compared it with marker-based systems and demonstrated its high

effectiveness in measuring joints such as the knee. However, its

validity is relatively lower when it comes to measuring the pelvis.

Therefore, we will recruit participants to run on a treadmill at

different speeds. Data collected from Xsens DOT sensors and the

camera will be recorded at different output rates or frame rates. We

will analyze the differences between these two methods in terms

of cadence and vertical oscillation. Then we analyse the accuracy

and effectiveness of measurements obtained from Xsens DOT and

OpenPose, aiming to provide meaningful interpretations that assist

the intended audience in making actionable choices when designing

running feedback system.

In this study, we will compare the performance of OpenPose and

Xsens DOT. Specifically, we have the following research questions:

• Are there significant differences in cadence measurements

between OpenPose and Xsens DOT?

• Are there significant differences in vertical oscillation mea-

surements between OpenPose and Xsens DOT?

• What are the validity of measurements obtained from Open-

Pose and Xsens DOT?

• From the above results, what conclusions can we draw re-

garding the selection of an appropriate system for designing

a running feedback system?

In the end, we will present the advantages and disadvantages of

both systems, as well as guidance on how to make a selection.

2 RELATEDWORK
Real-time running feedback is a hot topic. Existing papers focus on

correcting running posture, reducing the risk of injury, improving

performance, and reducing running interruptions.[14].

There are numerous pieces of literature available comparing

the performance of OpenPose and Xsens DOT. One of them is to

compare the performance in measuring gait parameters in older

adults. In this study, the authors mentioned that OpenPose showed

good accuracy in measuring lower limb range of motion (ROM) in

the sagittal plane, but its accuracy was lower for pelvic and hip joint

movements in the frontal plane[10]. In our study, we discussed that

cadence can be calculated using changes in knee joint angles or the

vertical oscillation of the hip joint. However, even if OpenPose’s

measurement of hip joint ROM is not accurate, we can still obtain

reasonably accurate cadence by relying on its pattern of variation

rather than its ROM. For measuring vertical oscillation, although

we are measuring the movement of the hip joint relative to the

ground, the accuracy of this measurement could still be affected.

There is another piece of literature that describes a gait analysis

system based on OpenPose. Unlike our study, this system utilized

two cameras and compared different placement positions. In this

article, it mentions some limitations of IMU, such as susceptibility

to interference from ferromagnetic materials. The article also states

that OpenPose’s measurements of motion trajectories are compa-

rable to Xsens DOT. However, OpenPose tends to miss some key

point data. Furthermore, from the figures in the article, it can be

observed that there is a significant difference between Xsens DOT

and OpenPose in the measurement of the sagittal angle of the right

ankle.[6]

The authors of the aforementioned literature subsequently con-

ducted further research on the performance of the mentioned sys-

tem. The results of this study indicated that OpenPose showed

relatively accurate measurements of motion trajectories. However,

in some cases, there were significant errors in measuring joint

angles, but the errors were smaller when the joints were simulta-

neously visible to both cameras. The study suggested that their

system could be used for applications like video games but may not

be sufficient for comprehensive kinematic analysis.[5]

3 METHODS
3.1 Participants
The participants were all students from the University of Twente.

A total of 6 participants took part in the study. Participants were

informed about the potential risks of joint or body pain and fatigue

associated with the experiment. They all signed informed consent

forms. The study was approved by the Ethics Committee of the

University of Twente. Inclusion criteria included having an aver-

age weekly running distance of over 2 kilometers for more than 6

months, being able to run at a speed of 10 km/h for 2 minutes, and

having experience with running on a treadmill. Exclusion criteria

included any injuries or surgeries on the knee joint or ankle within

the past six months.

3.2 Task
Participants were instructed by the researchers to gradually in-

crease the speed on the treadmill to 7 km/h. Once the partici-

pants’ running posture was stable, the researchers simultaneously

recorded data using Xsens DOT and a smartphone for video record-

ing. After recording data for 1 minute, participants were instructed

to rest. Then, participants gradually increased the running speed on

the treadmill to 10 km/h, and the recording process was repeated

as before.

3.3 Senor
Xsens DOT is a wearable sensor based on inertial measurement

unit (IMU) technology. The Xsens DOT sensor has a sampling rate

of 600Hz and an acceleration range of 16g[4]. In this study, we

recorded data using an output rate of 120Hz. The sensor was placed

directly in front of the participant’s pelvis and securely fastened

using the official Xsens elastic strap(see Figure 1 ).



Figure 1: Sensor Placement

Figure 2: Camera Placement

3.4 Computer
The computer used to run OpenPose was equipped with an Intel

I7-9750H @2.60 GHz CPU and an Nvidia GTX 1660Ti GPU.

3.5 Camera
We used the camera of a Samsung S22 smartphone for recording,

with a resolution of 1920*1080 and a frame rate of 120Hz. During

the recording process, the smartphone was mounted on a tripod at

a height of 128 cm and positioned at a distance of 195 cm from the

treadmill(see Figure 2, the camera is placed in the red circle). The

forearm length of each participant was measured for the purpose

of calculating the vertical oscillation.

3.6 Video processing
Due to the presence of windows in the background of the original

videos, there were some reflections captured. To avoid interference

with the recognition of participants by OpenPose, we performed

video editing to cover up the reflections on the glass. Additionally,

to process the data within a limited time frame(which could be

important for a real-time feedback system), as OpenPose operates

at a speed of 3 frames per second (FPS) on the researcher’s computer,

we downscaled the original 120 FPS videos to 30 FPS.

3.7 Gait variables
The gait variables in this study are cadence and vertical oscillation.

We use different methods to calculate them in Xsens DOT and

OpenPose as they have different principles and output types. The

IMU-based Xsens DOT provides mechanical parameters including

acceleration and Euler angle. To obtain the cadence data, we find

the high peaks in the acceleration data on the Z axis which is

vertical to the ground. These peaks occur at the moment when the

participant(runner) contacts the ground. An interval between two

peaks is one step time in the scale of the data frame. As we know

the output frame, we can calculate each frame time. Then each step

costs frame multiply frame time second. The inverse of step time is

the cadence (per second) which can be multiplied by 60 to get the

cadence(per minute).

For the calculation of vertical oscillation, we need to integrate

the accelerations to get the velocity, where 𝑡0means the moment

of a low peak in acceleration data and 𝑡1 means the moment of the

next peak:

𝑣 = 𝑣0 +
∫ 𝑡1

𝑡0

𝑎d𝑡

After that, we integrate the velocity to get the displacement(vertical

oscillation):

𝑑 =

∫
𝑣d𝑡

The computer vision-based OpenPose provides spatial data: the

key points of the body in coordinates. So the method to calculate the

vertical oscillation is to find the lowest and highest point in one step.

Then by doing the deduction, we can get the vertical oscillation

in coordinates. Because we already have the length of the forearm

of each participant, we can then transfer the coordinates to the

physical unit (cm).

For the cadence, we calculated the knee angle by the law of

cosines. Following is the formula to calculate the knee angle where

𝑎 is the vector of the calf and 𝑏 is the vector of the thigh.

\ = arccos

(
a · b

∥a∥ · ∥b∥

)
To get the length of 𝑎 and 𝑏 we can use the distance formula:

𝑑 =

√︃
(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

where (𝑥1,𝑦1) and (𝑥2,𝑦2) are the starting point and ending point

coordinates of the vector. By observing the periodic changes in the

knee joint angle, we can obtain the cadence or cadence of a single

leg. Then the cadence is the cadence of a single leg multiplied by 2.

3.8 Statistical analysis
All the cadence and vertical oscillation data are already filtered by

the 1.5 IQR rule to exclude outliers and then be compared.

First, we will use descriptive statistics to compare the means

and variances of the two systems at different running speeds. The

variance represents the degree of dispersion in the data, which to

some extent reflects the stability and validity of the measurements.

Due to the fact that the cadence and vertical oscillation data ob-

tained from OpenPose and Xsens DOT have the same units, it is

sufficient to analyze them using standard deviation alone, without



Table 1: Cadence in 7 km/h

Participant OpenPose Xsens DOT(60Hz) Xsens DOT(120Hz)

Mean SD Mean SD Mean SD

1 153 4.8 156 13.0 155 12.3

2 143 4.4 160 36.9 139 20.7

3 145 6.5 143 8.9 139 50.3

4 145 3.0 145 3.3 146 8.3

5 158 5.2 154 4.1 158 8.5

6 164 8.8 165 11.2 170 29.0

Table 2: Cadence in 10 km/h

Participant OpenPose Xsens DOT(60Hz) Xsens DOT(120Hz)

Mean SD Mean SD Mean SD

1 156 4.7 154 5.4 156 3.7

2 148 2.7 177 3.5 153 20.0

3 164 0.0 149 11.2 263 69.0

4 161 10.9 153 4.5 153 5.7

5 173 13.3 172 9.4 174 13.3

6 165 8.0 169 24.1 170 29.0

the need for a coefficient of variation. Our data from the six par-

ticipants’ running sessions are assumed to be independent. Due to

our small sample size, it is necessary to conduct a normality test

so we will test the normality by the Shapiro-Wilk test which is an

appropriate method for small sample size(3 < N < 50). Then we

will use the Pearson correlation coefficient to assess the correlation

between the means of the two systems. Next, we will draw Bland-

Altman plots to further analyze the agreement between the two

systems[8]. It is important to note that correlation does not imply

agreement, and we will further explain the implications of these

comparisons in the discussion. We will also present the measure-

ments from both systems in graphical form to provide users with a

visual understanding.

4 RESULTS
We recorded running videos at 120 frames per second (FPS), but

due to processing speed limitations, we ultimately decided to use

OpenPose with a video frame rate of 30 FPS. Unless otherwise

specified, the data from OpenPose and Xsens DOT are respectively

based on a frame rate of 30 FPS and a data output rate of 60 Hz.

4.1 Descriptive Statistics
See Table 1 2 3 4 We conducted descriptive statistics on the mea-

surement results and found that OpenPose and Xsens had simi-

lar measurements for cadence, but Xsens DOT had a significantly

higher standard deviation. We also observed that increasing the

data output rate did not necessarily increase or decrease the stan-

dard deviation. For vertical oscillation measurements, there were

significant differences between the results of OpenPose and Xsens

DOT. Additionally, at a speed of 7 km/h, OpenPose had a lower

standard deviation than Xsens DOT, while at 10 km/h, OpenPose

had a higher standard deviation than Xsens DOT.

Table 3: Vertical oscillation in 7 km/h

Participant OpenPose Xsens DOT(60Hz) Xsens DOT(120Hz)

Mean SD Mean SD Mean SD

1 4.7 1.67 9.8 2.68 9.2 2.50

2 8.5 2.08 10.2 2.39 8.7 2.42

3 12.2 1.82 9.5 2.61 8.3 1.98

4 11.3 1.08 9.7 2.26 11.8 1.59

5 4.8 1.4 9.1 2.68 11.3 2.04

6 5.7 1.8 10.1 2.13 11.6 1.89

Table 4: Vertical oscillation in 10 km/h

Participant OpenPose Xsens DOT(60Hz) Xsens DOT(120Hz)

Mean SD Mean SD Mean SD

1 6.0 1.45 11.1 1.82 10 2.27

2 10.8 2.29 9.1 2.25 8.7 2.24

3 9.7 3.88 8.6 2.29 10 2.50

4 10.7 1.04 10.0 2.20 12.3 1.31

5 5.48 1.72 7.9 2.06 11.5 1.73

6 7.8 1.4 8.2 2.27 7 1.59

Table 5: Cadence 7 km/h

Table 6: Cadence 10 km/h

4.2 Pearson Correlation Coefficient
See Table 5 6 7 8 Before conducting the Pearson correlation test,

we performed the Shapiro-Wilk test for normality on the data,

and the distribution of the data did not show significant deviation

from normality. Since we analyzed data from different sets of 6

participants each time, we satisfied the assumption of independence.

According to the results of the Pearson correlation test, for the

cadence data at 7 km/h, r=0.609, p=0.199>0.05. This indicates a

positive correlation between OpenPose and Xsens DOT under this

condition, but the p-value is greater than 0.05, indicating that this

conclusion is not statistically significant. For the other three sets of

data, both the correlation and significance were not evident.



Table 7: Vertical Oscillation 7 km/h

Table 8: Vertical Oscillation 10 km/h

4.3 Bland-Altman Grpah
See Figure 3 We plotted Bland-Altman graphs for the cadence and

vertical oscillation data at 7 km/h and 10 km/h using both OpenPose

and Xsens DOT. Since Bland-Altman analysis does not require

independence, we also compared the cadence data at both speeds

together.

From the graphs, we can observe that the data points for cadence

and vertical oscillation are mostly within two standard deviations.

However, they are not consistently distributed around the zero line,

indicating that there is some level of variability between the two

systems. Therefore, we can conclude that there is a certain degree

of agreement between the two systems.

See Figure 4 5 From these two graphs, it can be observed that

as the speed increases from 7 km/h to 10 km/h, the data points

for vertical oscillation become more dispersed. Additionally, there

are noticeably more data points that fall outside the range of two

standard deviations, indicating a decrease in the agreement between

the two systems. This could be attributed to the higher movement

speed and increased motion amplitude, which pose challenges in

measurement accuracy.

It should be noted that the data fromOpenPose at 10 km/h did not

pass the normality test. However, according to George and Mallory

(2010), since the kurtosis and skewness values are relatively small,

we still accepted this set of data.

See Figure 6

From this graph of the cadence data, it can be observed that the

data points from OpenPose and Xsens DOT are mostly within two

times the standard deviation. However, as the cadence increases,

there is a noticeable bias. This indicates that there is some level of

agreement between the two systems, but there may be a systematic

error present. If the cadence continues to increase, the consistency

between the two systems may decrease.

4.4 Graph Comparison
See Figure 7 From the comparison graph of vertical oscillation, it

can be observed that the consistency between the two systems

varies among individuals. For Participant 1, the variation trend of

the two systems is more similar

Figure 3: Overall

Figure 4: Vertical Oscillation

Figure 5: Vertical Oscillation

Figure 6: Cadence

See Figure 8

From the graph, it can be seen that OpenPose has a smoother

variation in cadence, but with more small fluctuations.

5 DISCUSSION
In this section, we will discuss the results above.

• Descriptive Statistics

The cadence measurement data between the two systems

are similar, despite their different standard deviations while

overall they are relatively low so their is no evidence shows



Figure 7: Vertical Oscillation

Figure 8: Compare Cadence

their validity are low. The difference in standard deviations,

relative to the means, is not substantial, suggesting that

the two systems perform comparably in measuring cadence.

However, for vertical oscillation, there is a notable difference

in the means between the two systems. Therefore, further

analysis is required in the subsequent sections to investigate

this difference in more detail.

• Pearson Correlation Coefficient

By calculating the Pearson correlation coefficient, we did not

find any significant linear correlation between the data from

the two systems. However, it is important to note that this

analysis is based on the means of the measurements. When it

comes to individual measurements, the Pearson correlation

coefficient may not provide conclusive results.

• Bland-Altman Grpah

From the graphs, it can be observed that both systems ex-

hibit a certain level of consistency in measuring cadence

and vertical oscillation at both speeds. However, for vertical

oscillation, there is greater variability in the distribution of

data points at 10 km/h, indicating that the consistency of the

two systems may vary at different speeds. Therefore, users of

these two systems should consider selecting the appropriate

system based on their anticipated running speed.

• Graph Comparison

Because both systems exhibit similar trends in capturing the

variations of cadence and vertical oscillation over time, there

is not a significant difference between the two systems in

describing the trends of running. However, when consid-

ering different participants and speeds, it is important to

exercise caution with Xsens DOT as it tends to have greater

fluctuations.

• Suggestions on System Selection

OpenPose requires a tripod to stabilize the camera and en-

sure a stable shooting angle and quality of pose tracking.

This makes it more suitable for recording treadmill running.

Also, OpenPose has certain requirements for lighting condi-

tions, as it needs sufficient light to obtain clear images, and

it’s important to avoid obstructions. But it only requires a

single camera and does not require the purchase of additional

sensors. Additionally, OpenPose has a slower data process-

ing speed, such as with the Nvidia GTX 1660Ti graphics

card, processing speed is approximately 3 frames per second,

which may not meet the requirements of real-time feedback

systems.

On the other hand, Xsens DOT requires the use of sensors

and elastic bands for fixation, which may cause discomfort

to the runner and potentially affect their performance. How-

ever, Xsens DOT doesn’t have specific requirements for light-

ing or obstructions, making it suitable for use in various in-

door and outdoor environments. It also has a faster real-time

data processing speed.

In summary, OpenPose has a lower cost and does not require

wearing sensors, so it does not interfere with the perfor-

mance of the runner. Also, it is more suitable for recording

running on a treadmill, and it requires proper lighting and

avoidance of obstructions, and its data processing speed is

slower. Xsens DOT, on the other hand, can be used in various

environments without specific lighting requirements, but

consideration should be given to the potential discomfort

caused by wearing sensors. The choice of the system depends

on the specific usage scenario and requirements.

• Limitation This study may have a relatively small sample

size, and the samples may come from students in the univer-

sity. This may limit the generalizability and applicability of

the findings to different populations. This study has been

conducted in specific testing environments: indoor and spe-

cific treadmill settings. This may limit the generalizability of

the results and fail to account for the influence of outdoor

environments and other factors on system performance. This

study mentioned the technical requirements for the instal-

lation and data processing of OpenPose and Xsens DOT.

However, these requirements may exceed the technical abil-

ities of the average user, limiting the practical usability and

adoption of the systems.

• Future work In future work, we will conduct outdoor testing

to evaluate the performance of both systems under different

lighting conditions. Additionally, we will expand our par-

ticipant pool to include individuals of various age groups

and running habits, not limited to just college students. To

validate the accuracy and effectiveness of the two systems,

this study only compared them to each other. In the future,

we will compare these systems to established gold standards

for further validation.



6 CONCLUSIONS
In this study, we compared the performance of OpenPose and Xsens

DOT at two different speeds. We find that the cadence and vertical

oscillation measured by these system has a certain degree of agree-

ment. However, there are also differences between theses systems

especially in a higher running speed(10 km/h). In the end, we gave

the potential users suggestions on how to select an appropriate

system for designing a running feedback system.
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