
Are classical features still relevant in the era of deep learning?
JESSE SNOIJER, University of Twente, The Netherlands

A deep-learning AI model for point clouds often requires a vast amount of
training data, which is not always available or requires a time-expensive
process to create. To reduce the amount of data needed, the complexity of
the model can be decreased. To reduce the loss of accuracy by doing this, it is
investigated if appending classical features to the data increases the accuracy
for a model with low complexity. Multiple tests will be performed where
data with and without classical features appended is compared. Also, models
with different complexity are compared. Here we show that appending these
classical features does increase the test accuracy for a deep-learning AImodel
with low complexity by 20%. It is also shown that decreasing the complexity
of the model and appending classical features prevents the f1-score from
dropping 22.4%. These findings could possibly translate to other kinds of
data as well and solve the problem of not having enough data available.
Because a less complex model is used, this also lowers the computational
demand which speeds up training and has a lower power usage.

Additional Key Words and Phrases: AI, features, computer science, deep
learning, point cloud

1 INTRODUCTION
The Netherlands is covered with about 7 thousand km of train tracks.
These tracks are some of the busiest tracks in the world. This means
maintaining the railway environment and corresponding structure
is extremely important to prevent accidents and delays. Strukton
Rail is a subcontractor of ProRail that inspects the rail infrastructure
and detects where maintenance is needed.
Strukton Rail would like to work with a digital twin of the rail

environment. A digital twin will ease the maintenance of the track.
While for new tracks, this digital twin exists and is ready to use, old
tracks do not have this. Strukton wants to create a digital twin by
making use of point cloud data. These are sets of spatial data points
captured by 3D scanning techniques such as lidar. These point clouds
contain millions of data points, resulting in 3D representations of
the railway environment.
Strukton Rail asked AMI Saxion if it was possible to localise

objects in the rail structure. This has been an ongoing project of
Saxion since 2020 and multiple students and researchers have been
working on this problem [4, 14, 15]. These researchers have proven
that semantically segmenting point clouds is possible and they build
an AI model which could do it. However, this AI model requires a
lot of epochs before it reaches adequate accuracy. This means the
model needs to train on a lot of data. Manually labelling the data
is a time-expensive process and Saxion would rather have a model
that requires less data for the same performance.
The current AI is a deep-learning PointNet++ model [8]. This

model learns the features of point clouds and based on that, is
able to create a semantic segmentation. Features could of course

TScIT 39, July 7, 2023, Enschede, The Netherlands
© 2023 University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

also be crafted by hand instead of the AI model discovering them.
Feeding a lighter AI model the by hand chosen features might reduce
the number of epochs needed and thus make the AI model faster
and require less training data. This means that features have to be
selected carefully so they add value to the model and do not confuse
the model with non-relevant data.

2 RESEARCH QUESTION
This paper tries to answer the problem presented in the introduction
with the following research question:What is the impact on the f1-
score when classical features are appended to the input data of a deep-
learning AI model with a low complexity for classifying point clouds?
It will attempt to answer the question by using several sub-research
questions. These are listed below:

Q1: What features are available for a point cloud?
Q2: What feature achieves the highest f1-score?
Q3: When is adding features the most useful?

For the first sub-question, point clouds with only x, y, and z coor-
dinates are considered. This makes the available features limited
since some features require more parameters, such as colour or light
intensity. Extracting the correct features is essential for the results
of this research.

For the second sub-question, an investigation has to be done into
what feature found in the previous sub-question achieves the highest
accuracy. This makes sure that the right features are selected for this
research. The best two features will be selected and a combination
of these two features is considered as well.
Finally, for the third sub-questions, different models with a dif-

ferent amount of layers and thus complexity are considered. The
features found in the previous sub-questions are fed into these mod-
els and the resulting data has to be analyzed. From the data can be
read when appending classical features has the most impact on the
test results in comparison to the baseline.

3 RELATED WORK
For this research, the focus lies on features for point clouds available
in Python libraries. The reason for choosing Python is the PyTorch-
geometric library [3]. PyTorch-geometric makes it possible to write
and train Graph Neural Networks. The library can not only be used
for learning on arbitrary graphs but also on 3D meshes or point
clouds, which is what is needed for this research.
PointNet++ is a "deep hierarchical feature learning AI for point

sets in metric space" [8]. But for the purpose of this paper, some of
the features will be manually crafted.

For extracting the features, some related research has been done.
The Point Cloud Library (PCL) [12] has a variety of features available.
Most of these features come from research papers and thus it can
more easily be identified if the feature is useful for the data. This
library is written for C++, but with the help of the Python library
pclpy [1], it can be used in Python as well.

1



TScIT 39, July 7, 2023, Enschede, The Netherlands J.H. Snoijer

Table 1. Class distribution of the ModelNet-10 dataset.

Class Train count Test count

bathtub 106 50
bed 505 101
chair 889 101
desk 200 86
dresser 200 86
monitor 465 100
night_stand 200 86
sofa 680 100
table 392 100
toilet 344 101

The data used for training and testing the model comes from the
publicly available dataset ModelNet-10 [16]. This dataset consists
of point clouds which can be used for classification. This dataset
is created for another research and made available for academic
research. The set consists of point clouds of 10 different classes: a
bathtub, a bed, a chair, a desk, a dresser, a monitor, a nightstand, a
sofa, a table and a toilet. The set contains a total of 4899 files split
into a test and train set. This set is also easily accessible via the
before mentioned library PyTorch-geometric.

4 METHODOLOGIES

4.1 The model input
The input of the model are point clouds with 10 different classes
from ModelNet-10 as described in the section "Related Work". The
amount of files used for the model to train and test on per class
is shown in table 1 These point clouds consist of points with 3
position dimensions. The files are down-sampled to 128 points and
normals are computed for these points. This gives the points a fourth
dimension. The test set will be rotated along all three axes before
downsampling. Then finally for all down-sampled files, features are
extracted by using the before mentioned PCL Library. The data is
fed into the model in batches of 10. The train set will be used for
training and the test set will be used for validating the results. These
validation results are stored and used for answering the research
question.

4.2 The model
The PointNet++ model is created by following the steps presented
by M. Fey [2]. For this paper, we will use the model that accounts
for a rotation of the data. The seeds presented in the steps by M.
Fey are kept the same. Inserting features in this model requires only
a minor change to the code presented in the tutorial. The model
needs to accept the features as an argument and this argument is
forwarded into the layers accordingly.
A small optimisation has been made to the model as well. The

learning rate has been set to 0.005 in the optimizer. This value
provided the best test accuracy for the ModelNet-10 dataset after
running a series of small tests.

The model is shown in figure 1. A point has three dimensions, on
top of this a normal is calculated which adds a fourth dimension.

Fig. 1. A representation of the model used in this research paper.

Then the dimensions added by the features will be appended. These
dimensions will go to the first PointNet layer. This layer will for
most tests have a size of 32. This number was the default value. The
"empty" dimensions are filled by the model itself since PointNet++
is a "deep hierarchical feature learning AI" [8]. The created model
consists for most tests out of 2 PointNet layers of the same size.
Finally, the data is transformed into a 10-dimensional linear layer.
These 10 dimensions correspond with the 10 classes of data.

The model will run for 200 epochs. This number is chosen because
the model seems to peek at around 150-175 epochs and 25 epochs
are chosen to be added as a margin. This allows to gather data over
the whole process of training the model.

4.3 Experiments
4.3.1 First sub-question. For this research, the features will be re-
stricted to the ones provided by the Point Cloud Library. From the
features available in this library, a list is created of all the features
which require just point clouds with x, y and z coordinates. This list
will be further filtered on the number of dimensions it adds to the
data. A test will be performed to see what amount of dimensions
benefit the model and those features will be used in the following
questions.

4.3.2 Second sub-question. For this test, data will be plotted per
epoch for all features found in the previous sub-question. These
lines will be put into a single graph where the two best-performing
features will be taken. From these two features, a combination will
be made.

4.3.3 Third sub-question. To answer this research question, three
different tests are done. The features discovered in the previous
research question and the combination of those two are appended
to the data in three different models. A model as shown in figure 1
with 1 PointNet layer, a model with 2 PointNet layers and a model
with 3 PointNet layers. The results from these models are compared
to investigate if the complexity of the model has an influence.

2



Are classical features still relevant in the era of deep learning? TScIT 39, July 7, 2023, Enschede, The Netherlands

4.4 Visualizing the results
For every feature combination, the average f1-score of the runs is
taken per epoch. The f1-score is chosen instead of the accuracy
because of the class imbalance in the ModelNet-10 dataset (table 1).
The amount of runs per test is rather limited, this still results in a
graph that jumps up and down a lot. To get to a more realistic graph,
a sliding-window-average is used with a window size of 5 epochs.
This results in a precise enough graph of which the results can be
read. Next to the graph, a table showing three different metrics is
produced. The first metric is the mean f1-accuracy during the entire
training process. The second metric is the maximum f1-score and
the third metric is the mean f1-score of the last 10 epochs.

5 RESULTS
This section of the paper will present the results of the research
described in the methodologies section. Experiments are conducted
as described in section 4.3. All experiments ran three times and
present averaged results.

5.1 Features available for a point cloud
Filtering the Point Cloud Library on features available for point
clouds with just x, y and z coordinates results in a list of 34 features.
This list consists of features which add a single dimension till fea-
tures which add 1980 dimensions to the data. To prevent testing all
available features a test is done for 2 features which add a single
dimension to the data and a feature which adds 33 dimensions to the
data. The feature with 33 dimensions is chosen because the amount
of dimensions lies close to the chosen amount of dimensions of the
PointNet layers. The features used for this test are BoundaryEstima-
tion, DifferenceOfNormals and FPFHEstimation. These features add
1 dimension, 1 dimension and 33 dimensions respectively. For the
test with FPFHEstimation, a model with PointNet layers consisting
of 40 dimensions is used. The reason is that the model has more
dimensions in the PointNet layer than as input since this proved to
give better results. In this case, There are three "free" dimensions for
the model to fill since the points have 3 dimensions and a normal
dimension.
BoundaryEstimation results in 1 for points which are believed

to lay on a boundary of an object and 0 otherwise. Removing all
the points which resulted in 0, would leave the outline of an object.
This feature requires a point cloud of the data and a point cloud
of normals as input data. For the angle, the default value (𝜋/2.0)
is used. This results in a point cloud with for every point a single
dimension which is either 1 or 0.
DifferenceOfNormals [5] compares the normal of a small area

with the normal of a larger area. The difference of these normals
provides a scale-based feature, somewhat like the Difference of
Gaussians in image processing, but instead on surfaces. With these
2 normals, the curvature of an object can be captured. This difference
between these normals is presented as a single dimension.
FPFHEstimation [10, 13] estimates the Fast Point Feature his-

togram (FPFH) descriptor for a given point cloud dataset containing
points and normals. This FPFH descriptor is a fast version of the PFH
descriptor. This is a histogram with 33 dimensions with various fea-
tures for points presented in the research [9] and [11]. The features

Fig. 2. This graph shows the f1-score over the number of epochs. The model
consists of 2 layers and 32 features. BoundaryEstimation and Difference-
OfNormals are the baseline + 1 dimension gained from the feature.

Fig. 3. This graph shows the f1-score over the number of epochs. The model
consists of 2 layers and 40 features. FPFHEstimation is the baseline + 33
dimensions gained from that feature.

are "informative enough to differentiate between the underlying
primitive geometric surfaces they represent" [10].
The test performed resulted in the graphs in figure 2 and figure

3. It can clearly be seen that FPFHEstimation in figure 3 follows
the baseline, until epoch 20. Then the baseline continues rising in
f1-score while the feature line stays fluctuating around 40%.

The graph in figure 2 seems to provide more promising results. In
this graph, the data with the feature BoundaryEstimation appended
produces slightly worse results in comparison with the baseline.
The feature DifferenceOfNormals stays on top of this baseline for
the whole 200 epochs this test was run.
From this test, it can be concluded that features which fill most

dimensions have a negative influence on the f1-score of the model.

3



TScIT 39, July 7, 2023, Enschede, The Netherlands J.H. Snoijer

Table 2. Features to be tested

Feature Amount of dimensions

BoundaryEstimation 1
DifferenceOfNormalsEstimation 1
RSDEstimation 2
MomentInvariantsEstimation 3
LinearLeastSquaresNormalEstimation 3
NormalEstimation 1
IntegralImageNormalEstimation 1
PPFEstimation 5
NormalBasedSignatureEstimation 12
GRSDEstimation 21

Features that only add 1 or 2 dimensions to the data and leave
enough dimensions open for the model to learn, seem to either
follow the baseline or have a positive effect on the f1-score of the
model. This makes further research into features which add 33 or
more dimensions not interesting for this research. This leaves the
features listed in table 2.

Further investigation into these features makes IntegralImageNor-
malEstimation not applicable for this research because it requires
organized point clouds and the point clouds provided by ModelNet-
10 are not organized. PPFEsimation returns features for each point
pair in the given point cloud. This is a long list of data which can
not be traced back to a point. This makes the feature not compatible
with the data structure of PyTorch-geometric. NormalBasedSigna-
tureEstimation produces for an unknown reason no results and thus
can not be used for this research as well. GRSDEstimation returns
the error "Leaf size is too small for the input dataset. Integer indices
would overflow". This error can not be traced back because of the
Python bindings. Also, the documentation of the Point Cloud Li-
brary does not provide a solution. This means the feature is not
usable as well.
The two features for calculating normals do not produce results

as well. At first, the features seem promising but the model gets for
both features stuck on an accuracy of 0.0551 and the f1-score stays
at 0.0057. The reason for this is unknown. Changing the learning
rate to a lower value does not seem to help. So the features Lin-
earLeastSquaresNormalEstimation and NormalEstimation are not
usable for this research

This leaves the top 4 features of the table 2: BoundaryEstimation,
DifferenceOfNormalsEstimation, RSDEstimation, and MomentIn-
variantsEstimation.

RSDEstimation [6, 7] estimates the Radius-based Surface Descrip-
tor (minimal and maximal radius of the local surface’s curves) for
a given point cloud dataset containing points and normals. This
feature results in 2 dimensions, one for the minimal and one for the
maximal radius.

MomentInvariantsEstimation estimates the 3 moment invariants
(j1, j2, j3) at each 3D point. This feature appends 3 dimensions to
the data.

Fig. 4. This graph shows the f1-score over the number of epochs. The model
consists of 2 layers and 32 features. The items in the graph are different
features which are appended to the input data of the model and the baseline.

Table 3. Metrics for the f1-scores gathered in sub-questions 2

Feature mean max mean last

Baseline 0.521 0.656 0.597
DifferenceOfNormalsEstimation 0.554 0.696 0.626
BoundaryEstimation 0.502 0.657 0.598
RSDEstimation 0.497 0.667 0.596
MomentInvariantsEstimation 0.054 0.131 0.044

5.2 The combination of features with the highest f1-score
The results are presented in figure 4. This figure shows that Mo-
mentInvariantsEstimation achieves poor results. The f1-score seems
to fluctuate around 5%. The features BoundaryEstimation and RS-
DEstimation achieve until epoch 38 the same results as the Baseline.
However, from epoch 38 onwards, the Baseline keeps achieving a
higher f1-score. The feature DifferenceOfNormals achieves a 13%
higher f1-score at epoch 12. But from epoch 50 onwards, they achieve
about 2% more f1-score than the baseline.

The metrics are presented in table 3. Clearly, the DifferenceOfNor-
malsEstimation is the best-performing feature. For the second best,
it would be either BoundaryEstimatoin or RSDEstimation. Bound-
aryEstimation has a higher overall mean and mean-last-10 f1-score,
but RSDEstimation has a higher maximum f1-score. Since the max-
imum could be an outlier and the mean-last-10 is deemed most
important, BoundaryEstimation is chosen as the second best fea-
ture.

5.3 When is adding features most useful
The results for this experiment are displayed in figures 5, 6 and 7
and in the tables 4, 5 and 6. In the figure 5, there is a large differ-
ence in the f1-score between the baseline and the features. With
a model consisting of two layers, that difference becomes smaller,

4



Are classical features still relevant in the era of deep learning? TScIT 39, July 7, 2023, Enschede, The Netherlands

Fig. 5. This graph shows the f1-score over the number of epochs. The model
consists of 1 layer and 32 features. DifferenceOfNormalsEstimation is the
baseline + 1 dimension gained from that feature. BoundaryEstimation is
the baseline + 1 dimension gained from that feature. And Combination is
the baseline + 2 dimensions gained from the previous two features.

Fig. 6. This graph shows the f1-score over the number of epochs. The model
consists of 2 layers and 32 features. DifferenceOfNormalsEstimation is the
baseline + 1 dimension gained from that feature. BoundaryEstimation is
the baseline + 1 dimension gained from that feature. And Combintation is
the baseline + 2 dimensions gained from the previous 2 features.

Table 4. Metrics for the f1-scores gathered in sub-questions 3, 1 layer model

Feature mean max mean last

Baseline 0.241 0.458 0.333
DifferenceOfNormalsEstimation 0.467 0.608 0.534
BoundaryEstimation 0.398 0.558 0.497
Combination 0.493 0.627 0.583

Fig. 7. This graph shows the f1-score over the number of epochs. The model
consists of 3 layers and 32 features. DifferenceOfNormalsEstimation is the
baseline + 1 dimension gained from that feature. BoundaryEstimation is
the baseline + 1 dimension gained from that feature. And Combination is
the baseline + 2 dimensions gained from the previous two features.

Table 5. Metrics for the f1-scores gathered in sub-questions 3, 2 layer model

Feature mean max mean last

Baseline 0.521 0.657 0.598
DifferenceOfNormalsEstimation 0.555 0.697 0.627
BoundaryEstimation 0.503 0.657 0.598
Combination 0.535 0.670 0.605

Table 6. Metrics for the f1-scores gathered in sub-questions 3, 3 layer model

Feature mean max mean last

Baseline 0.496 0.662 0.581
DifferenceOfNormalsEstimation 0.522 0.675 0.597
BoundaryEstimation 0.501 0.670 0.594
Combination 0.534 0.676 0.624

but appending the classical features makes the f1-score of the best-
performing feature in the end, 2,9% above the baseline. Then with
three PointNet layers, the f1-score of the best-performing feature
in the last epochs is 3.3% above the f1-score of the baseline. For
the models with 1 and 3 layers, the best-performing feature is the
Combination of DifferenceOfNormalsEstimation and BoundaryEsti-
mation. For the model with 2 layers, the best-performing feature is
DifferenceOfNormalsEstimation.
Looking at the number of epochs and the difference in f1-score

between the baseline and feature-lines. It can be seen that for the
1-layer model and the 2-layer model, appending features to the data
results at the beginning of the training stage for a larger advantage
compared to the end of the training stage.

5



TScIT 39, July 7, 2023, Enschede, The Netherlands J.H. Snoijer

If we compare for each graph the differences between the three
models for the best-performing feature and the baseline. The differ-
ence for the best-performing feature in the last 10 epochs between
model 3 and 2 is an increase of 0.4% and from the 2-layer to the
1-layer model is a decrease of 4,4%. While for the baseline these
differences are an increase of 1,7% and a decrease of 26,8%.

6 DISCUSSION
From the results in the third sub-questions, it can be seen that
appending features increases the f1-score of the model in all test
cases. This would mean that appending features could potentially
always benefit the model. The most significant difference is between
models of different complexity. When no features are appended to
the data, decreasing the complexity of a model can decrease the
f1-score significantly. However, appending features to the data and
decreasing the complexity of the model only gives a small decrease
in the f1-score. In the case of this research, the differences are 26,8%
in comparison to 4,4%. This is a significant change in results.

7 CONCLUSION
On the first sub-question "What features are available for a point
cloud?" is concluded that features which fill most dimensions do
not have a positive effect on the f1-score of the model. Features
that only add 1 or 2 dimensions to the data and leave enough di-
mension for the model to fill, seem to have a positive effect on the
f1-score of the model. From the second sub-question, "What features
achieves the highest f1-score?" is concluded that with this PointNet++
model, ModelNet-10 dataset and available features, BoundaryEsti-
mation, DifferenceOfNormals and the combination of both seem to
achieve the highest f1-score. On the final sub-question, "When is
adding features most useful?" is concluded that the models with a
low complexity benefit the most from appending features.
With the results from the sub-questions, the research question

"What is the impact on f1-score when classical features are appended
to the input data of a deep-learning AI model with a low complexity
for classifying point clouds?" can be answered. The impact on the
f1-score is that this increases when classical features are appended
to the data. How much the f1-score increases depends on the com-
plexity of the model. The test results also indicate that for a model
with low complexity, appending features could increase the f1-score
by 20%. And if the complexity of a model needs to be decreased,
appending features would decrease the f1-score by just 4,4% instead
of 26,8% when features are not used.

8 LIMITATIONS AND FUTURE WORK
The first limitation of this work is that not a lot of time is spent
optimizing the model. The learning rate variable has been tweaked
but not thoroughly tested. Optimizing the model in different ways
may affect the f1-score of the results and thus might influence the
results.
The second limitation would be that the number of dimensions

for the PointNet layer is set to 32 except for 1 test. The effect of
changing this to a higher or lower value is unknown and might
influence the results of this research as well. The number of dimen-
sions added by classical features is not thoroughly tested as well.

The test performed is between adding 1, 2, 3 or 33 dimensions to
the data. But an optimum of dimensions can not be found in the
tests performed for this research.
A third limitation is that a sliding-window-average with a win-

dow size of 5 is used. This average makes the graphs more readable
and thus makes it easier to deduct conclusions from the data. How-
ever, this sliding-window-average makes the data less precise. If
the data points follow a more logical sequence, the necessity for
a sliding-window average can be avoided. This might be possible
by performing tests more often than was done, this is left as future
work.

Some more future work would be changing the dataset ModelNet-
10 to the data from Strukton. For achieving this, the model should
be changed such it is made for segmentation and not classification.
An optimisation would be to construct the features without the help
of a library. In the current model, data is constantly converted from
one library to the other. This costs unnecessary computation time.

REFERENCES
[1] David Caron. 2020. pclpy. https://anaconda.org/davidcaron/pclpy.
[2] Matthias Fey. 2022. Point Cloud Classification. https://colab.research.google.com/

drive/1D45E5bUK3gQ40YpZo65ozs7hg5l-eo_U?usp=sharing
[3] Matthias Fey and Jan E. Lenssen. 2019. Fast Graph Representation Learning with

PyTorch Geometric. In ICLR Workshop on Representation Learning on Graphs and
Manifolds.

[4] J. Hentschel. 2023. Point cloud segmentation via active learning in the context of
railway infrastructure. http://essay.utwente.nl/94542/

[5] Yani Ioannou. 2010. Automatic urban modelling using mobile urban lidar data.
Ph. D. Dissertation.

[6] Zoltan Marton, Dejan Pangercic, Nico Blodow, and Michael Beetz. 2011. Com-
bined 2D–3D categorization and classification for multimodal perception sys-
tems. International Journal of Robotic Research - IJRR 30 (Oct. 2011), 1378–1402.
https://doi.org/10.1177/0278364911415897

[7] Zoltan-Csaba Marton, Dejan Pangercic, Nico Blodow, Jonathan Kleinehellefort,
and Michael Beetz. 2010. General 3D modelling of novel objects from a single
view. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.
3700–3705. https://doi.org/10.1109/IROS.2010.5650434 ISSN: 2153-0866.

[8] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. 2017. PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a Metric Space. https://doi.org/10.
48550/arXiv.1706.02413

[9] Radu Rusu, Zoltan Marton, Nico Blodow, and Michael Beetz. 2008. Learning
Informative Point Classes for the Acquisition of Object Model Maps. 643–650.
https://doi.org/10.1109/ICARCV.2008.4795593

[10] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. 2009. Fast Point Feature
Histograms (FPFH) for 3D registration. In 2009 IEEE International Conference
on Robotics and Automation. 3212–3217. https://doi.org/10.1109/ROBOT.2009.
5152473 ISSN: 1050-4729.

[11] Radu Bogdan Rusu, Nico Blodow, Zoltan Csaba Marton, and Michael Beetz. 2008.
Aligning point cloud views using persistent feature histograms. In 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 3384–3391. https:
//doi.org/10.1109/IROS.2008.4650967 ISSN: 2153-0866.

[12] Radu Bogdan Rusu and Steve Cousins. 2011. 3D is here: Point Cloud Library (PCL).
In IEEE International Conference on Robotics and Automation (ICRA). Shanghai,
China.

[13] Radu Bogdan Rusu, Andreas Holzbach, Nico Blodow, and Michael Beetz. 2009.
Fast geometric point labeling using conditional random fields. In 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 7–12. https://doi.org/
10.1109/IROS.2009.5354763 ISSN: 2153-0866.

[14] Nils Rutgers. 2022. Point cloud based semantic segmentation for catenary systems
using deep learning : Compressibility of a PointNet++ network. http://essay.
utwente.nl/92901/

[15] Z.J. Vieth. 2022. Point cloud classification and segmentation of catenary systems.
http://essay.utwente.nl/89565/

[16] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 2015. 3DShapeNets:
A Deep Representation for Volumetric Shapes. In Proceedings of 28th IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR2015). Santiago, Chile.

6

https://anaconda.org/davidcaron/pclpy
https://colab.research.google.com/drive/1D45E5bUK3gQ40YpZo65ozs7hg5l-eo_U?usp=sharing
https://colab.research.google.com/drive/1D45E5bUK3gQ40YpZo65ozs7hg5l-eo_U?usp=sharing
http://essay.utwente.nl/94542/
https://doi.org/10.1177/0278364911415897
https://doi.org/10.1109/IROS.2010.5650434
https://doi.org/10.48550/arXiv.1706.02413
https://doi.org/10.48550/arXiv.1706.02413
https://doi.org/10.1109/ICARCV.2008.4795593
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1109/IROS.2008.4650967
https://doi.org/10.1109/IROS.2008.4650967
https://doi.org/10.1109/IROS.2009.5354763
https://doi.org/10.1109/IROS.2009.5354763
http://essay.utwente.nl/92901/
http://essay.utwente.nl/92901/
http://essay.utwente.nl/89565/

	Abstract
	1 Introduction
	2 Research Question
	3 Related Work
	4 Methodologies
	4.1 The model input
	4.2 The model
	4.3 Experiments
	4.4 Visualizing the results

	5 Results
	5.1 Features available for a point cloud
	5.2 The combination of features with the highest f1-score
	5.3 When is adding features most useful

	6 Discussion
	7 Conclusion
	8 Limitations and Future work
	References

