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Fig. 1. Trajectory Prediction

ABSTRACT
Trajectory prediction is a crucial task for ensuring the safety and reliability
of transportation systems, including bicycles. While the Multi-State Con-
straint Kalman Filter (MSCKF) algorithm has been successfully applied to
trajectory prediction for drones and cars, its effectiveness for predicting
bicycle trajectories remains uncertain. In this study, we investigate the fea-
sibility and accuracy of using the MSCKF algorithm for bicycle trajectory
prediction. The aim is to utilize a cost-efficient setup, employing a simple
low-cost camera and an inexpensive IMU. We compare the performance
of the different algorithms on existing data sets to determine whether the
MSCKF is a suitable algorithm. This study serves as a significant step to-
ward the development of more effective and accurate trajectory prediction
methods tailored specifically for bicycles.

Additional Key Words and Phrases: Accuracy, MSCKF, OpenVINS, Bicycle
safety, Autonomous bicycles, Trajectory prediction

1 INTRODUCTION
Accurately predicting bicycle trajectories is crucial for ensuring
safety and efficiency in modern transportation systems. The amount
of deadly bicycle accidents in the Netherlands has increased with
54% 2, therefore it is important to implement measures to help
reduce these numbers. This study investigates whether MSCKF is
a feasible method for the trajectory prediction of bicycles. Despite
encountered challenges, this research sheds light on limitations and
provides insights for improving bicycle trajectory prediction.

The problem of predicting bicycle trajectories accurately and ef-
ficiently is important for the safety and reliability of bicycles in
modern traffic. Despite the development of trajectory prediction
methods for other types of autonomous vehicles, such as drones and
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Fig. 2. CBS data on deadly accidents

self-driving cars, there has been limited research on these methods
for the prediction of bicycle trajectories. One of the reasons which
make it a challenge for bicycles is due to the characteristics of a
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bicycle, its limited capacity for the hardware and their limited com-
puting power. Therefore, there is a need for research to investigate
the feasibility and accuracy of using trajectory prediction methods
for predicting bicycle trajectories, as well as identifying potential
areas for improvement in these methods. The first step is to research
the different algorithms that exist for the prediction of a trajectory.
This leads to the following research question: What trajectory
prediction algorithm is best suitable for a bicycle given its
constraints?

1.1 ResearchQuestions
(1) What hardware should we use?
(2) What algorithms are applicable to a trajectory prediction?
(3) How is the MSCKF the most suitable algorithm for a bicycle

trajectory prediction?

2 ANALYSIS OF THE STATE-OF-THE-ART
In order to conduct the research on bicycle trajectory prediction,
several sources were used to obtain relevant research papers. The
sources used were Google Scholar, IEEE, and ScienceDirect, all of
which provided access to various articles on the subject. Keywords
such as "MSCKF", "OpenVINS", "Trajectory Prediction", "Bicycle
Trajectory Prediction" and "Autonomous Vehicle Safety" have been
used to retrieve the research papers.

As for the field of autonomous vehicles, a lot of research has been
conducted, which can be categorized into surveys [5, 6], experimen-
tal studies [1, 13], and theoretical studies [7, 11, 15]. Surveys provide
an overview of the current state of the field, highlighting possible
advancements and identifying areas for future improvement. Ex-
perimental studies involve actual testing of autonomous vehicles to
evaluate their performance in various situations. Theoretical studies
dive into the underlying algorithms and mathematical models of
the autonomous vehicles.

Many of these papers provide detailed insights into trajectory
prediction systems and suggest possible ways to enhance the accu-
racy of the prediction models on autonomous vehicles. However,
there has been relatively little research conducted on bicycle tra-
jectory prediction in specific. While some papers have presented
theoretical methods for predicting certain trajectories of cyclists,
such as starting and stopping motions [16], there is still much to be
explored in this field.

With the increasing popularity of bicycles as a mode of transporta-
tion, the need for more effective and accurate trajectory prediction
methods is becoming increasingly urgent. Accurate trajectory pre-
diction is vital for ensuring the safety of cyclists, particularly when
it comes to interactions with other autonomous vehicles.

2.1 Existing Algorithms
Existing algorithms for the problem can be broadly categorized into
three types: physics-based models, data-based models, and hybrid
models.

2.1.1 Model based. One area of research focuses on model-based
approaches for trajectory prediction. Kalman Filters (KF) have been
widely employed in trajectory prediction due to their ability to es-
timate the state of an object based on noisy measurements [12].
However, the assumption of linear motion dynamics limits its appli-
cability to scenarios with simple motion patterns and noise charac-
teristics.
To overcome the limitations of KF, researchers have explored

extensions such as the Extended Kalman Filter (EKF) and Unscented
Kalman Filter (UKF). The EKF linearizes the motion and measure-
ment equations, enabling the estimation of nonlinear systems [12].
The UKF, on the other hand, employs a deterministic sampling
technique to propagate the state distribution through the nonlinear
motion model, resulting in more accurate predictions.

TheMulti-State Constraint Kalman Filter (MSCKF) is an extension
of the Kalman Filter that addresses the limitations of traditional KF
and UKF approaches. The MSCKF represents the state as a set of
both camera poses and IMU states and maintains a joint state for all
the camera poses and the bicycle’s dynamics [8]. This representation
allows for better modeling of the system and better integration of
sensor information.

2.1.2 Data based. Data-driven approaches have also gained signifi-
cant attention in trajectory prediction. Machine learning techniques,
such as Support Vector Machines (SVM), have been used to learn
patterns from historical data and make predictions based on the
learned model [5]. SVM-based methods extract relevant features
from the data and learn decision boundaries that separate different
classes of trajectories.
Deep learning approaches, particularly Recurrent Neural Net-

works (RNNs) and Long Short-Term Memory (LSTM) networks,
have shown promising results in trajectory prediction. RNNs and
LSTMs are capable of understanding how things change over time
in trajectory data and can use this sequential information to make
accurate predictions [2, 5]. These deep learning models have been
applied to various scenarios, including pedestrian trajectory predic-
tion and autonomous driving.

2.1.3 Hybrid. Researchers have also investigated hybrid approaches
that combine model-based and data-driven methods. One such ap-
proach is the use of Particle Filters, also known as Monte Carlo
Methods. In Particle Filters, the object’s state is represented by a
group of particles, and their distribution is updated based on sensor
measurements [5]. This combination of motion models and likeli-
hood estimation helps in making reliable predictions, especially in
complex situations.

Furthermore, there is a growing interest in leveraging deep learn-
ing techniques within the framework of model-based approaches.
Deep Kalman Filters (DKF) have been proposed to learn the dynam-
ics of object motion from data and perform probabilistic trajectory
prediction [3]. These methods combine the modeling capabilities
of deep neural networks with the probabilistic inference of Kalman
Filters, leading to improved trajectory prediction accuracy.

2.1.4 Summary. In summary, trajectory prediction has been a sub-
ject of extensive research, with various algorithms and techniques
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proposed in the literature. Model-based methods, such as Kalman Fil-
ters and their extensions, have been widely used but have limitations
in handling nonlinear motion. Data-driven approaches, including
SVM and deep learning models, offer promising results by learn-
ing patterns from data. Hybrid approaches that combine motion
models and likelihood estimation, such as Particle Filters, provide
reliable predictions. The recent integration of deep learning tech-
niques into model-based approaches shows potential for further
improving trajectory prediction accuracy.

2.2 Why Multi-State Constraint Kalman Filter?
For bicycle trajectory prediction, the Multi-State Constraint Kalman
Filter (MSCKF) is a suitable choice of algorithm due to several rea-
sons.

Firstly, the MSCKF is designed to combine information from dif-
ferent sensors, such as cameras and inertial measurement units
(IMUs), to make accurate predictions about how the bicycle will
move. This is especially beneficial in the context of bicycle trajec-
tory prediction, as the use of multiple sensors allows for a better
understanding of the bicycle’s dynamics that may affect its motion.

Secondly, the MSCKF is known to perform well in different situa-
tions, even when there are obstacles in the environment or lighting
conditions vary. This is crucial for bicycle trajectory prediction,
as bicycles often navigate through complex environments where
obstacles, such as vehicles, pedestrians, and road infrastructure, can
significantly impact their motion. The ability of the MSCKF to han-
dle such scenarios enhances its applicability for bicycle trajectory
prediction.

Thirdly, the MSCKF provides real-time estimates of the bicycle’s
trajectory even with limited hardware, which is important when
quick results are required. In applications such as real-time naviga-
tion assistance or collision avoidance systems for bicycles, having
timely and accurate trajectory predictions is crucial for ensuring
safety and efficiency. The MSCKF’s ability to provide real-time esti-
mates aligns well with the requirements of such applications.

While theMSCKF shows promise for bicycle trajectory prediction,
it is important to note that further research is needed to validate
its performance specifically in the context of bicycles. Factors such
as the unique dynamics and maneuverability of bicycles, as well
as the constraints imposed by limited hardware resources, should
be considered and evaluated when implementing the MSCKF for
bicycle trajectory prediction.

In conclusion, the Multi-State Constraint Kalman Filter (MSCKF)
is a suitable algorithm for bicycle trajectory prediction because it
can use information from different sensors, perform well in difficult
situations, and provide real-time estimates, the algorithm has the
advantage of being able to handle complex scenarios with reliable
results. However, further investigation and experimentation are
necessary to assess its effectiveness and optimize its parameters for
the specific characteristics of bicycle motion.

3 HOW DOES A MULTI-STATE CONSTRAINT KALMAN
FILTER WORK?

The Multi-State Constraint Kalman Filter (MSCKF) is a tool that
helps estimate the position and movement of something in real-
time. It does this by combining information from sensors that can
sense motion (like accelerometers and gyroscopes) and cameras that
can see the environment. The information was obtained from the
following sources: [4, 8, 12, 14]

3.1 Representing the System
MSCKF keeps track of two main things:

• Information about the moving object: It remembers where
the object is, how fast it is moving, which way it is facing,
and other important details.

• Information about the visual things it sees: It stores the 3D
positions of objects (like landmarks) that the camera captures.

3.2 Predicting the Future
The MSCKF uses the information from the IMU (like accelerometers
and gyroscopes) and amathematical model to guess where the object
will be in the future based on where it was before and how it was
moving. This helps it make real-time predictions about the object’s
position and movement.

The prediction equations can be represented as follows:

x𝑡 = 𝑓 (x𝑡−1, u𝑡−1) +w𝑡

Where:
• x𝑡 is the estimated state of the object at time 𝑡 .
• u𝑡−1 represents the motion sensor data (e.g., accelerometers
and gyroscopes) at time 𝑡 − 1.

• 𝑓 (x𝑡−1, u𝑡−1) is a mathematical function that predicts the
object’s state based on the previous state and motion sensor
data.

• w𝑡 is a term that accounts for any uncertainty or errors in
the prediction.

3.3 Updating with Camera Information
The MSCKF also looks at what the camera sees. The camera takes
pictures, and from those pictures, the MSCKF can figure out the
position of visual objects (landmarks) in 3D space. It then uses
this information to update its estimate of the object’s position and
movement. An example of the visual odometry can be seen in 3.

4 IMPLEMENTATION
In this study, we tried to expirement with the MSCKF ourselves
using a tool like OpenVINS. We collected the data ourselves on
the bicycle. The first step to conduct this study is to research what
modules are needed. We decided to use a Raspberry Pi as the central
unit, a simple Arduino for the IMU, a Raspicamera for the camera
input, a powerbank with sufficient power to power this setup and a
ZED-F9P GPS-RTK module for the ground-truth Global Navigation
Satelite System (GNSS) data. We ran into issues of insufficient power
at first, the powerbank has to be at least 5 Volts and 2.5 Ampère.
The ZED-F9P was chosen because of its very high accuracy (within
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Fig. 3. Feature extraction from landmarks in an image

centimeter level). A centimeter level accuracy is needed for a bicycle
to determine how accurate the predicted trajectory is compared to
the ground-truth.

4.1 Installation
4.1.1 Modules. Installing the hardware modules correctly on the
bicycle is a time consuming process. The first few data sets that
we collected were invalid, because of the incorrect installation of
the modules on the bicycle. The camera was pointed too much to
the sky and it moved along with the wheel. Having taken that into
consideration in the second attempt: we had to ensure that the
camera and the IMU were attached as close to each other as possible
in front of the bicycle, as can be seen in Figure 4. The camera had
to point downwards to record the road in front of it, without the
mudguard of the front wheel in the frame. A very important detail
is that the camera and IMU have to be attached to a part of the
bicycle that does not move along with the wheel. This is to ensure
that the camera and the IMU are in sync and that the camera does
not suddenly take a different angle while the IMU is going straight.
We attached the GNSS antenna at the back of the bicycle, as can be
seen in Figure 7. All the scripts from the collection of the data to the
post-processing and ROS bag creation were written by ourselves.

4.2 Calibration
The next step is to calibrate the camera and IMU to retrieve their
intrinsic and extrinsic values. Extrinsic values deal with the position
and orientation of the camera and IMU relative to each other. They
help align the data from both sensors correctly. Intrinsic values
are specific to each sensor. For the camera, it includes things like
focal length and lens distortion. For the IMU, it involves factors
like biases and misalignments. Calibrating intrinsic values helps
correct errors and ensure accurate measurements. By calibrating
both extrinsic and intrinsic values, we can accurately relate data
from the camera and IMU, correct errors, and obtain precise and
synchronized information as an input to the MSCKF [9].

4.3 Data collection
All the data that was necessary for this study was collected during
the research. We used OpenCV to capture the images while reading
the GNSS data using a PyRTCM. The IMU was read over cable using
Serial. The refresh rate for the GNSS is 1Hz, which is limited by

Fig. 4. Camera and IMU setup

Fig. 5. Raspberry Pi and GNSS module setup
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Fig. 6. Powerbank setup

Fig. 7. GNSS antenna setup

Fig. 8. Long trajectory with turns

the caster of the reference station. The refresh rate for the IMU
and camera are 119Hz and 75Hz respectively. The data contains
gray-scaled images with timestamps, accelerometer and gyroscope
from the IMU with its timestamps and the latitude and longitude
from the GNSS module along with its timestamps.

4.3.1 Trajectories. We decided to take multiple rounds of data on
each trajectory for a total of two different trajectories. The collected
data has a constant speed of 13 kilometers per hour with the same
cyclist in each data set. One of the trajectories contains many turns
and was longer, as can be seen in Figure 8. The other trajectory are
two simple straight paths, as can be seen in Figure 9.

4.4 Post-processing
The post-processing of the data is important to prepare it for the
tools. The recorded images had a consistent 90-degree offset to the
left, because of the setup of the camera on the bicycle. This required
a rotation step in the script to align them correctly. All the images
were saved as a gray-scale 8-bit PNG file with a 480x640 resolution.
All the timestamps of the IMU, GNSS and images were saved in a
date and time format. This had to be translated into nanoseconds
since 1970 (also known as epoch time), as OpenVINS requires this.

4.4.1 ROS Bag. The next step involves creating a ROS bag to store
the data from the IMU and camera. A ROS bag is a file that stores the
received message data in a serialized format [10]. Think of it like a
video playback that consists of frames, which are individual photos.
Similarly, a ROS bag is a collection of IMU data and images that can
be played back. ROS, the Robot Operating System, allows tools like
OpenVINS to read and process this data, and then visualize it using
a tool like RViz. For example, in Figure 10, we used an existing ROS
bag called "neighborhood01.bag" that contains car data from the
Ironsides dataset.
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Fig. 9. Straight trajectory

Fig. 10. neighborhood01.bag in OpenVINS

4.5 GNSS
We utilized the longitude and latitude coordinates from the GNSS
to reconstruct the path taken during the experiment. The resulting
path is visualized in Figures 11, 12, and 13. These figures depict the
actual route we followed, which is further illustrated in Figure 8.
The red dots represent the first collected dataset, and the blue dots
represents the second dataset. By comparing the predicted trajectory
with this ground-truth path, we can evaluate the accuracy of the
trajectory prediction.

4.6 Simulation
Unfortunately, we encountered an unsolvable issue with our cost-
efficient setup. The problem lies in the camera we are using, which
either captures images at a high rate but compresses them, or it
operates at a slow speed without compression. This poses a major

Fig. 11. GNSS locations from the first dataset

Fig. 12. GNSS locations from the first dataset

Fig. 13. GNSS locations from the first dataset

challenge for OpenVINS, as it requires the original, uncompressed
images to function properly. The built-in compression functionality
of OpenCV makes it faster than the Picamera2 library, but the latter
only operates at a maximum rate of 1-2Hz, which is insufficient for
accurate trajectory prediction. In order for OpenVINS to work, it re-
lies on a calculation that involves the size of the images, represented
by the equation:

𝑠𝑡𝑒𝑝 = 𝑤𝑖𝑑𝑡ℎ ∗ 𝑏𝑦𝑡𝑒𝑑𝑒𝑝𝑡ℎ ∗ 𝑛𝑢𝑚𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠
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Fig. 14. Error output from OpenVINS

This equation needs to be satisfied:

ℎ𝑒𝑖𝑔ℎ𝑡 ∗ 𝑠𝑡𝑒𝑝 == 𝑓 𝑖𝑙𝑒𝑠𝑖𝑧𝑒

However, since the images have been compressed, they no longer
meet this requirement, resulting in the error message shown in Fig-
ure 14. To resolve this issue, it is essential to ensure that the images
are not compressed and maintain their original size. Additionally,
all images should have the same file size. Due to this issue, we were
not successful in obtaining an output for the predicted trajectory of
the bicycle.

5 RESULTS
In this section, we present the results of our analysis, comparing the
performance of the different algorithms for trajectory prediction.
Figures 15 and 16 show the comparison table and performance table,
respectively, sourced from Huang et al. (2022) [5].
Figure 15 provides a comprehensive comparison between the

physics models and data models based on the root-mean-square
error (RMSE). The table highlights that the Kalman Filter is on par
with the LSTM in short-term predictions.

Figure 16 presents the performance table of the different types of
algorithms. This table, obtained from the results, demonstrates the
prediction horizon and the computational cost for the algorithms.
The physics based models overall are better for short prediction
horizons with small computational cost.
These findings strongly support the choice of the MSCKF over

other algorithms for bicycle trajectory prediction. TheMSCKF demon-
strates on par performance in terms of RMSE, which confirms its
ability to provide more accurate predictions of bicycle trajectories.
Bicycles have very limited capabilities in terms of computing power,
making MSCKF the most suitable for a bicycle.
Overall, these results validate the selection of the MSCKF as a

superior algorithm for bicycle trajectory prediction, showcasing its
potential to enhance navigation systems, collision avoidance, and
other applications requiring accurate and real-time bicycle trajec-
tory estimation. However, the actual performance of the MSCKF
algorithm on a bicycle dataset has to be evaluated to confirm its
effectiveness in bicycle trajectory prediction. It is important to note

Fig. 15. Comparison table from [5]

Fig. 16. Performance table from [5]

that the characteristics of a bicycle are different from those of an
autonomous vehicle, which are used in trajectory prediction algo-
rithm evaluations. A bicycle is more susceptible to centimeter-level
disturbances, rider-induced movements, and external factors such
as road conditions and wind.
To assess the performance of the MSCKF on a bicycle dataset,

specific evaluation metrics and methodologies need to be employed.
These metrics should include the Root Mean Square Error (RMSE),
so it can be compared to the performance of other algorithms. Ad-
ditionally, the dataset used for evaluation should be representative
of real-world bicycle trajectories, accounting for factors such as
varying speeds, turning maneuvers, and environmental conditions.

Conducting experiments and comparisons against other trajec-
tory prediction algorithms on dedicated bicycle datasets will provide
valuable insights into the accuracy and reliability of the MSCKF for
bicycle trajectory prediction. This evaluation will help establish the
algorithm’s suitability in real-world bicycle navigation scenarios,
accounting for the unique characteristics and challenges of bicycle
motion.
Note: The figures referenced above are sourced from Huang et

al. (2022) [5].

6 CONCLUSION
In conclusion, our analysis compared the performance of various
trajectory prediction algorithms for bicycle trajectory estimation.
The results, obtained from the comparison table and performance
table sourced from Huang et al. (2022) [5], highlighted the suitability
of the Multi-State Constraint Kalman Filter (MSCKF) for bicycle
trajectory prediction.

The comparison table showed that the MSCKF performed on par
with the Long Short-Term Memory (LSTM) algorithm in terms of
root-mean-square error (RMSE) for short-term predictions. This
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indicates that the MSCKF is just as capable of providing accurate
predictions for bicycle trajectories.
Furthermore, the performance table demonstrated that physics-

based models, including the MSCKF, are recommended when it
comes to short prediction horizons and computational cost com-
pared to data models. This is particularly important for bicycles,
which have limited computing power, making the MSCKF a very
suitable choice for bicycle trajectory prediction.

However, it is essential to evaluate the performance of the MSCKF
algorithm on a dedicated bicycle dataset to account for the unique
characteristics and challenges associated with bicycle motion. This
evaluation should include specific metrics such as RMSE and con-
sider factors like varying speeds, turning maneuvers, and environ-
mental conditions.

In summary, based on the available results and the understanding
of the specific requirements and limitations of bicycle trajectory pre-
diction, the MSCKF emerges as a promising algorithm for accurate
and real-time estimation of bicycle trajectories. Further evaluation
on dedicated bicycle datasets will be needed to validate its effective-
ness and enhancing its applicability in real-world bicycle navigation
systems, collision avoidance, and other related applications.
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