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ABSTRACT 

Air pollution poses a significant threat to public health and the environment, making understanding its 

causes and implications essential. Several factors, rooted in the underlying processes in urban areas, affect 

air quality. Urban forms, the subject of study in urban morphology, impact the dispersion of pollutants. 

Understanding the interactions between urban forms and air quality is crucial for effective urban 

development and environmental management.  

The main problem of this research is the limited access to vector data for urban form studies on air 

pollution and the lack of consideration for combined measurements, creating different urban patterns. To 

address this issue, This research aims to analyze, model, and develop the relationship between urban 

forms and PM2.5 concentration using a deep learning-based model with scene-based comprehension to 

capture complex interactions applied to earth observation data. The Local Climate Zones (LCZ) 

framework, a standardized classification system for urban form, is selected for this research. The research 

objectives include developing an accurate deep learning model for LCZ classification, and training a 

suitable model to represent the impact of LCZ on PM2.5 distribution, followed by analyzing the sensitivity 

and feature importance of different LCZ categories. 

The study presents a two-stage framework that classifies local climate zones (LCZ) using three supervised 

convolutional neural networks models, namely the designed CNN by the author, ResNet-50, and 

EfficientNet models in the first stage and predicts PM2.5 concentration through the regression task of 

both XGBoost and LSTM models. The methodology involves data acquisition, preparation, and modeling 

using Sentinel-2 imagery, PM2.5 measurements, meteorological data, and traffic data. The period of the 

temporal data covers the hourly values between 2021 and 2022.  A noteworthy aspect of this research 

involves citizen science data for air pollution.  

The results demonstrate the efficacy of the ResNet-50 model for LCZ classification with an overall 

accuracy of 87 percent and the LSTM model for PM2.5 prediction, with the R-squared of 0.75 on unseen 

data. The sensitivity analysis highlights the positive contribution of LCZ to PM2.5 prediction, and the 

feature importance analysis reveals the varying contributions of different urban form categories, with the 

significance of the open-highrise type as the most contributor. 

Overall, this research provides insights into the relationship between urban morphology and air pollution, 

facilitating informed urban development decisions and environmental planning. 

 

Keywords: urban morphology, urban form, local climate zones,  air pollution, PM2.5 concentration, deep 

learning, convolutional neural networks, Earth observation data, citizen science.  
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1. INTRODUCTION 

1.1. Background 

Air pollution is an important phenomenon that can negatively affect public health. Chronic exposure to air 

pollutants in the environment can result in severe problems for people, e.g., asthma and lung disorders (Li 

et al., 2019). Moreover, air pollution can cause serious environmental issues, namely acid rain, smog, and 

haze. Particulate matter, one of the significant contaminants in the air, can result in rainfall shortage due to 

changes in cloud properties. Plants and crop production can also be affected in air-polluted areas. On a 

global level, the dramatic increase in the emission of air pollutants contributes to climate change. (Saxena 

& Srivastava, 2020). These show the importance of good air quality for humans and nature. Thus, 

scientific communities must investigate air pollution models and identify the influencing factors that 

increase air pollutants (Speak et al., 2012, as cited in Saxena & Srivastava, 2020). 

Human-driven activities that have many manifestations in urban areas exacerbate air pollutant emissions 

(Speak et al., 2012, as cited in Saxena & Srivastava, 2020). Air quality in cities is negatively impacted by 

increasing urbanization directly and indirectly. The population growth in urban areas directly worsens air 

quality through increases in emissions by vehicles and industrial activities. In contrast, different 

combinations of urban forms, e.g., open spaces and high-rise building blocks, indirectly affect the 

dispersion of pollutants (Kim & Gim, 2022). Replacing natural landscapes with large areas of roads, 

buildings, and urban landscapes, intensified by rapid urbanization, is correlated with poor air quality (Yang 

et al., 2022). The complex urban elements, e.g., land use, transportation, and infrastructure, can 

considerably affect health by reducing air quality (Ahn et al., 2022). Moreover, Microclimate and air quality 

are both consequences and prerequisites of urban planning and design (Yuan et al., 2014). Different 

characteristics of urban forms, such as high-rise urban blocks, street networks, and open spaces also have 

a direct impact on wind velocity and circulation, which contribute to the accumulation or dispersion of air 

contaminants (Yang et al., 2020). Particulate matter (PM), an air pollutant commonly observed in 

industrial and urban settings, is characterized by a complex mixture of solid and liquid particles that 

remain suspended in the air. This pollutant is divided into three categories for measuring air quality 

depending on its aerodynamic diameter. PM10 is a particle with a diameter of less than ten μm, and 

PM2.5, known as fine particulate matter, includes particles with a diameter of fewer than 2.5 μm. The 

third category is ultrafine particles, defined as a particle with less than 0.2 μm diameter, which has the 

worst effect on health (Saxena & Srivastava, 2020). The data availability and the high correlation of the 

PM2.5 index in urban environments led to choose this pollutant as the representative for air pollution in 

this research. 

Several factors, rooted in the underlying processes in urban areas, affect air quality.  It is necessary to find 

measurable proxies to understand them and discover their effect on different problems, such as air 

pollution. Urban forms, the subject of study in urban morphology, provide such proxies (Barke, 2018). 

Chen (2014) defines urban morphology as “the study of urban form that focuses on the formation and 

transformation of urban forms of cities, towns, and villages over time; their spatial patterns at different 

scales; and physical characteristics to inform appropriate urban interventions to promote sustainable urban 

development” (Chen, 2014). Another definition states that “urban morphology is the study of physical 

forms of human settlements, i.e., how the cities, towns, or villages used to be and how it has physically 

transformed over the years” (Aslam & Rana, 2022). Urban morphology plays an indispensable role in 

representing spatial urban form parameters. It can help find clues to how different combinations and 

patterns in a city appear and how they are likely to influence air quality in urban environments. (Shi et al., 

2017). As a result, urban forms that include different combinations and three-dimensional structures of 

urban elements influence air quality in different ways. One of the challenges is finding a proper framework 
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for urban form, which will be addressed in the second chapter of this research, answering one of the 

research questions. 

Numerous cities have undergone dramatic changes in recent decades, creating new types of urban fabrics 

with complex components, e.g., urban canyons. New urban patterns can have different effects on air 

pollution. It is crucial to develop new methods for classifying urban forms to keep track of their effects on 

various phenomena like air pollution (Cai & Chen, 2022). Urban morphology studies traditionally focused 

on qualitative methods that generally resulted in conceptual urban models as an outcome. In contrast, 

several studies have recently implemented quantitative methods along with qualitative approaches to 

analyze urban forms (Moosavi, as cited in Carta, 2022). In recent years, some researchers have 

concentrated on data-driven approaches using machine learning models for the quantitative study of 

urban morphology by taking into account the techniques for multi-dimensional aspects of urban form (Cai 

et al., 2021).  

In summary, one of the significant phenomena affected by urban formation processes is air pollution. 

However, not many studies focus on the effect of urban form on air pollutants. Limited access to data as 

well as a lack of methodology covering large-scale datasets could be essential reasons (Kim & Gim, 2022). 

Thanks to the availability of open-source earth observation data, there would be more opportunities to use 

large-scale datasets with more accurate results. Although several works have been done with new methods 

for quantifying urban morphology and investigating its relationship with socio-economic and 

environmental issues, there are many domains to develop this new approach. Few studies used remote 

sensing data as an input dataset to extract morphological characteristics, especially in the application of air 

pollution. Huang et al. (2022) also claim that despite studies on the impact of urban morphologic-related 

measurements on air quality, these results cannot be generalized to actual city blocks due to being modeled 

in ideal structures (Huang et al., 2022). However, working on earth observation data for examining such a 

correlation using advanced deep learning techniques, e.g., CNN, could provide a more reliable outcome 

and higher accuracy. This study aims to use this technique to interpret the effect of urban forms on air 

pollution. The outcomes of this research can help influential groups on urban development to know what 

they should not do and how they can act to mitigate the effect of urban forms on air pollution. 

1.2. Problem statement 

Several studies have focused on quantitative urban form studies using individual measurements for air 

pollution effects. This approach seems to be problematic in two ways. Firstly, Accessing vector data for 

such analysis might be limited. In contrast, The possibility of using openly accessible Earth Observation 

(EO) data with new machine learning methods can provide the opportunity to investigate urban forms 

directly without creating vector data from raster data. The advantage of extracting morphological 

information from the raster data such as satellite images is their short update cycle, which can detect 

changes in the urban environment. This capability cannot be observed using vector data for all places due 

to the time-consuming process of digitizing and updating the data. Additionally, extracting information 

about urban forms from open-access EO data could be helpful in underdeveloped and developing 

countries, where up-to-date vector representation of urban environments is unavailable. To the author’s 

knowledge, only a few studies in urban morphology have investigated the possibility of extracting different 

types of urban forms from EO data. Chen et al. (2021) worked on a convolution neural network 

technique to automatically classify street networks, one of the main elements of urban morphology (Chen 

et al., 2021). In another study, urban form characteristics were delineated in seven classes using an 

unsupervised deep-learning method in a metropolitan area (Cai and Chen, 2022).  

Secondly, several studies have investigated the relationship between urban form and air pollution. 

However, most of them focused on using measurements related to urban form variables individually. This 

means they did not consider the combination of measurements that can make different urban patterns in a 
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city. As an example of such an approach, Kim and Gim (2022) explored the correlation between urban 

form and the PM2.5 index. Using long short-term memory (LSTM) and random forest algorithms, Kim 

and Gim (2022) predicted the dispersion of PM2.5 using six urban form variables. They discovered the 

importance of urban form features on PM2.5 concentration (Kim & Gim, 2022). In another study, Huang 

et al. (2022) obtained nine urban morphological-related indicators of high-density areas as predictors for 

the level of PM2.5 and PM10 pollutants using mobile monitoring data (Huang et al., 2022). However, by 

utilizing the scene-based comprehension of deep learning models, this research takes a novel direction in 

comprehensively capturing the complex interactions and relationships between urban form and  PM2.5 

concentration. 

1.3. Research objectives and questions 

 

This research aims to analyze, model, and develop the relationship between urban forms and PM2.5 

(particulate matter with a diameter of 2.5 micrometers or smaller) with severe adverse effects on 

human health using a deep learning-based model applied to earth observation datasets. To achieve this 

goal, I need to tackle the following objectives. It is necessary to follow the right direction to 

accomplish the research goal. Research questions point to the direction of objectives, and answering 

them can lead to accomplishing the main research goal.  

 

1. Objective (1): To achieve a deep learning model with high performance to classify urban forms 

using open-access Earth observation data. 

1.1. Which classification framework is effective for training deep learning models and utilizing 

Earth observation data to classify urban form? 

1.2. Which Convolutional Neural Networks architecture from deep learning can provide an 

acceptable accuracy to predict the urban form classes using EO data? 

1.3. What criteria should be considered for tuning hyperparameters in the CNN model? 

 

2. Objective (2): To select and train a suitable model representing urban form classes impact on the 

spatial distribution of PM2.5, which is applicable in large-scale areas. 

2.1. What modeling techniques are most suitable for examining the impact of urban form 

classes on the concentration of PM2.5? 

2.2. To what extent does urban form contribute to the concentration of PM2.5?  

2.3. Which types of urban forms have the strongest impact on the dispersion of PM2.5? 

1.4. Thesis outline 

 

The rest of the research thesis is organized into five chapters. The next chapter provides a review of the 

relevant and related work. The third chapter describes the data used in the research. The fourth chapter 

outlines the research methodology, explaining the methods and required steps to address each research 

question. The results are presented in the fifth chapter, followed by discussions. The final chapter includes 

the conclusion, the limitations of the research, and future work.  
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2. RELEVANT AND RELATED WORK 

2.1. Urban morphology and local climate zones (LCZ) classes 

For this research, it is necessary to find a suitable framework for urban form categorization.  

Several studies focused on finding a framework for categorizing urban forms. Table 1 shows the most 

relevant framework widely used in recent years. 

Table 1:  The list of different frameworks for urban form classification 

Categories Source 

1. Ground Plan (Streets, Blocks, Buildings) 

2. Building form pattern (2D form, 3D form) 

3. Land use pattern (land use function, land use intensity) 

(Wu et al., 2022) 

1. Morphological attributes: Centrality, Density(intensity), Diversity 

2. Socioeconomic Livability: Economic Vitality, Accessibility, Affordability, Social Diversity 
(Martino et al., 2021) 

1. building coverage ratio 2. floor area ratio 3. low building area 4. high 

building area 5. sources area such as roads and plants 6. green area 
(Kim and Gim, 2022) 

Two-dimensional variables: (1. Impervious Surface Ratio, 2. Vegetation Ratio, 3. Water 

Ratio, 4. Soil Ratio, 5. NDVI) 

Three-dimensional variables (1. Floor Area Ratio, 2. Building Density, 3. Sky View Factor) 

Distance variables (1. distance to industrial areas, 2. distance to main road, 3. distance to 

parks, 4. distance to water) 

(Gao et al., 2021) 

Local climate zones (LCZ) (Stewart and Oke, 2012),  

Wu et al. (2021) divided urban form into three components. The ground plan consists of the road 

network, block pattern, and building scale, followed by measurements related to 2D and 3D aspects of 

buildings, such as building area and building height, respectively. Regarding land use patterns, they 

considered the functions related to land use, such as their proportion (Wu et al., 2022). The other study 

focused on predicting livability from urban form, considering centrality, density, and diversity as the 

morphological attributes of a metropolitan area (Martino et al., 2021). Studying the effect of urban form 

on air pollution, Kim&Gim (2022) considered six individual measures concerning urban density, urban 

height, and open spaces and roads to represent urban characteristics (Kim and Gim, 2022). Gao et al. 

(2021) extracted 2D features from satellite imagery and 3D factors from vector data to represent urban 

morphology on a block scale to discover their impact on urban heat islands (Gao et al., 2021). In addition, 

several works used the local climate zones (LCZ) framework to represent urban form (Stewart and Oke, 

2012, Xu et al., 2019, Demuzere et al., 2019, Bechtel et al., 2017).  

Among different ways for urban form classification, the Local Climate Zones (LCZ) will be selected for 

this research. LCZ is one of the urban form classification systems widely used in climate-based studies of 

urban environments. This scheme was introduced by Stewart and Oke in 2012. As the authors define it, 

“The LCZ system is segmented into 10 “built” types (LCZ 1–10) and 7 “natural” types (LCZ A–G), based 

on the regional landscape patterns. Every class exhibits a distinct urban form, which can be identified by 

specific spectrums of values for spatial and land cover attributes (Stewart & Oke, 2012). Figure 1 shows all 

LCZ categories and each class's visual concept. 

The local climate zone types not only cover both built and natural environments but also recognize the 

physical and functional characteristics of an urban area. However, physical characteristics are the core of 

the classification, and the functionality is used as a supporter to distinguish between similar physical 

characteristics. LCZ provides a standardized classification system for urban form, resulting in consistent 

categorization and applicability across different regions. In addition, this scheme offers several measures 
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related to morphological characteristics in one category suitable for scene understanding by deep learning 

models, and the Earth observation data has proven supervised LCZ mapping effectively based on 

previous research findings (Bechtel et al., 2015).  

Discovering the spatial structures in a city and their effect on climate-based applications is widely 

conducted by LCZ classes. By utilizing this type of classification, the description of different elements of 

urban environments can be generalized in urban scientific communities (Aslam & Rana, 2022). Mix forms 

of urban elements might appear in different urban blocks, representing urban morphological 

characteristics. The building’s compactness and the ratio of open spaces exemplify the measurements, 

indicating different urban forms. Recently, LCZ maps have been prepared using different techniques to 

provide input to different urban subjects affected in urban areas, e.g., urban climate, air pollution, and 

energy (Aslam & Rana, 2022). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: local climate zone(LCZ) classification types and definitions (Stewart and Oke 2012; Demuzere et 
al., 2020) 

)  
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2.2. Deep learning and Earth observation for LCZ classification 

 

Deep learning has gained significant traction in Earth observation for image classification tasks. It includes 

a computational approach that utilizes neural networks to learn and extract complex patterns automatically 

from remote sensing data. Deep learning models can efficiently capture the spatial and spectral 

characteristics of the data, leading to improved classification performance and the ability to handle large-

scale and high-dimensional remote sensing datasets (Li et al., 2018). 

Among deep learning approaches, convolutional neural networks have demonstrated remarkable success 

in classifying scenes due to their exceptional capability to acquire knowledge about the composition and 

contextual details in image scenes (Yao et al., 2022). Convolutional Neural Networks (CNNs) are a widely-

used deep learning technique, and it has demonstrated their advantage in automatic detection and the 

capacity to represent unstructured features (Huang et al., 2021).  

CNNs used for image classification typically consist of three main sections: convolutional layers, pooling 

layers, and fully-connected layers (Li et al., 2018). The convolutional layers employ learnable kernels in the 

form of filters to capture and represent important patterns and information by convolving the input 

images. The fusion of local spatial connectivity and spectral bands within the local receptive field enables 

the generation of high-level image representations and the extraction of valuable features (Kim et al., 

2021). Figure 2 illustrates a basic example of CNNs architecture.  

In the context of urban form classification, the patch-based convolutional neural network models, which 

consider smaller parts of an image as a patch for identifying different classes, are more successful than 

pixel-based classifiers, such as random forest modeling for urban form classification (Yoo et al., 2019). 

The reason could be the nature of the urban form, which is recognizable in the scale of urban blocks 

rather than individual buildings.  

Several studies have worked on classifying local climate zones using machine learning techniques. The 

World Urban Database and Access Portal Tools(WUDPT1) is a world urban database for providing LCZ 

maps globally. This platform also uses ensemble machine learning models, e.g., random forest, for the 

classification task. In recent years, thanks to developing state-of-the-art CNNs techniques, several studies 

have paid attention to using convolutional neural networks to classify local climate zones on a scene-based 

level. They usually use remote sensing or ground-level imagery data and, in some cases, a combination of 

multiple earth observation data or other datasets, providing higher accuracy in urban form classification. 

These studies can be divided into three groups. The first group used transfer learning techniques to 

implement the advanced models for doing classification tasks on LCZ types. Xu et al. (2019) performed 

Inception-v3 model of convolutional neural networks for LCZ classification. Their model used ground-

 
1 https://www.wudapt.org 

Figure 2: Basic example of convolutional neural networks  

https://www.wudapt.org/
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level images to consider 3D aspects of urban environments. Their model's accuracy reached 69% (Xu et 

al., 2019).  

In their case study, the second group used transfer learning techniques to develop and modify ongoing 

procedures to achieve higher accuracy. One of this group's works is mapping LCZ classification over eight 

German cities. Rosentreter et al. (2020) used supervised convolutional neural networks and Sentinel- 2 

satellite imagery. They adapted VGGNet, one of the famous CNN models for image classification, with 

some modifications in the model architecture, such as adding batch normalization. The result of their 

model obtained an accuracy of 85%. (Rosentreter et al., 2020). In the other research of this approach, Zhu 

et al. (2022) adjusted Resnet-50 CNN-based architecture by reducing the number of residual blocks to 

make the input image patches fit the model. They worked on using both Senl-1 and Senl-2 satellite images 

for training their model (Zhu et al., 2022). 

The last group designed their patch-based CNNs models to classify local climate zones for LCZ 

classification problems. Huang et al. (2021) designed a light-weight model called LCZ-CNN to classify 

LCZ maps using multispectral images of Landsat satellite imagery in 32 large cities in China (Huang et al., 

2021), operating on Google street view images. They achieved an overall accuracy of 80%. In another 

study, a multi-scale, multi-level attention network (MSMLA-Net) was introduced for scene-based LCZ 

classification using deep learning by Kim et al. (2021). They developed advanced computer vision 

techniques by using sentinel-2 imagery, followed by OSM building data, DSM height, and national land 

cover map as additional bands for the input data. Implementing their model resulted in an overall accuracy 

of 87% (Kim et al., 2021). 

This research will label LCZ classes from EO data using deep learning models. Urban form analysis 

traditionally relies on morphological indices to quantify characteristics but often fails to capture the visual 

patterns that can be intuitively recognized by human observation. However, the rapid advancements in 

deep learning techniques have empowered machines to develop a human-like understanding of urban 

form (Chen et al., 2021). It is crucial to consider the combinations of different elements in a city as 

patterns likely to affect air pollution concentration instead of relying on measurements individually. 

Moreover, deep learning methods, e.g., Convolutional Neural Networks (CNN) have been proven to 

reach high accuracy in image recognition tasks. Deep learning models applied to EO data can provide 

such a perspective. This technique has an excellent performance in classifying scenes because of its 

exceptional capacity to learn image composition and unstructured information (Yao et al., 2022). 

2.3. LCZ classes and air pollution measurement 

 

Several factors from urban morphological characteristics influence the dispersion of PM2.5 in an urban 

environment. Moreover, meteorological factors, mainly the spatial distribution of the urban wind 

environment, exhibit significant variation and are heavily influenced by the urban forms features. The 

presence of traffic emissions in the atmosphere greatly impacts the distribution of air pollution, which is 

closely linked to urban morphology (Li et al., 2021). Li et al. (2021) investigated the impact of urban form 

on air pollutants in two urban streets and neighborhood scales. Understanding the neighborhood level, 

they considered urban density, diversity, and spatial characteristics as the influencing components. They 

also evaluated the building height level, the opening, and the separation of buildings at the street level. The 

results of their work show that there is a significant correlation between vertical urban densities and 

dispersion of air pollution as results in airflow reduction. The street-related factors also directly impact 

pollutant concentration (Li et al., 2021). 

In the other study by Gao et al. (2019), land use categories, climate-based factors, traffic flow, the height 

of buildings, and road networks were considered as the influencing factor on air pollution. Their research 
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shows that The primary factors influencing the variation in PM2.5 levels were the traffic volume and the 

heights of buildings (Gao et al., 2019). 

The research of Yang et al. (2022) explains that the previous works have extensively investigated the 

impact of urban landscape composition on air pollution, revealing that industrial and commercial areas are 

major sources of pollutants, while vegetation and urban afforestation systems act as beneficial sinks. 

Additionally, limited studies have explored the indirect effects of landscape configuration on air pollution, 

highlighting the role of microclimate factors in pollutant transport and dispersion. For example, open 

spaces facilitate improved air circulation and reduced pollutant deposition, whereas compact areas 

encounter limited air dispersion, resulting in poorer air quality. However, despite these findings, the 

comprehensive understanding of the impact of urban form on pollutants requires further investigation 

and examination of the combined influence of composition and configuration (Yang et al., 2022). 

The studies highlight the significant urban form indicators and other variables on air pollution dispersion. 

To address this, the emphasis of the research is on using Local Climate Zones (LCZ) classes to 

incorporate various individual factors that have been commonly studied. This approach allows for 

examining the collective impact of each LCZ class, which encompasses multiple measurements, on air 

pollution concentrations. 

For example, the ‘Open Highrise’ LCZ class (class 4) is characterized by an open arrangement of tall 

buildings spanning multiple stories, surrounded by ample greenery and scattered trees. It encompasses 

specific properties such as a mean building height exceeding 25 meters, a sky view factor ranging from 0.5 

to 0.7, and additional defining characteristics. Additionally, the function of this class is related chiefly to 

residential with single-unit housing, high-density housing, and commercial, including small retail shops. 

The class also takes into account certain aspects related to building materials (Stewart, 2011). Therefore, 

the LCZ classification effectively combines multiple individual indicators within its categories. By 

employing such an easily understandable and applicable framework for urban form classification, urban 

planners can facilitate the integration of research findings into urban development strategies focused on 

sustainability (Yang et al., 2022). 

Although the LCZ framework incorporating geometrical, built environment, and human-induced elements 

have been widely utilized in urban heat island studies, few studies used this scheme to discover the effect 

of urban forms on air pollutant concentration. In one study, the researchers utilized the Multiple Linear 

Regression (MLR) and Geographically Weighted Regression (GWR) modeling methods to develop 

estimation models for PM2.5 concentrations. They employed a set of urban form factors through the LCZ 

scheme as the foundation for calculating the metrics. These factors were then employed as independent 

variables to discover the spatial disparities observed in PM2.5 levels. The goal of the research was to 

analyze the impact of urban form on the concentration of PM2.5 (Shi et al., 2017). Specifically, the 

researchers in this study aimed to identify landscape categories that significantly influence PM2.5 

concentration levels. This research’s findings indicate that with only five LCZ classes, around two-thirds 

of the dispersion in PM2.5 can be. This highlights the effectiveness of the LCZ framework in the spatial 

distribution prediction of air pollution. This approach holds significant value in evaluating the air quality 

of urban areas and cities that lack long-term monitoring data, detailed traffic information, and 

comprehensive emission inventories (Shi et al., 2019). 

New research by Yang et al. (2022) classified LCZ types using random forests. They also created seasonal 

spatial PM2.5 maps based on air pollution data and other related data, namely wind speed, traffic, land use, 

and population, using a land use regression model to explore the effect of LCZ classes on PM2.5. The 

findings of this study indicate that there are notable variations in PM2.5 levels across different LCZ 

categories, including differences between built and natural classes as well as within the built classes. This 

suggests that the LCZ scheme can effectively capture the spatial variation of PM2.5 in urban areas. It is 



CLASSIFICATION OF URBAN MORPHOLOGY AND ITS RELATIONSHIP WITH AIR POLLUTION USING DEEP LEARNING 

 

9 

consistently observed that the natural category exhibits lower PM2.5 concentrations compared to the built 

type. Within the built type, there is a general trend of higher PM2.5 concentrations in compact areas 

compared to open areas and higher concentrations in high-rise areas compared to mid-rise and low-rise 

areas. These patterns persist throughout the year (Yang et al., 2022).  

As a result, Investigating urban environments with LCZ classification provides informative outcomes for 

urban experts to consider in planning and designing to reduce air pollution concentration. Accordingly, 

LCZ is helpful for the prediction of air pollutants in urban environments (Shi et al., 2019). 

2.4. Predictive modeling and urban form impact analysis 

Previous studies assessing the relationship between LCZ classes and PM2.5 pollutants mostly relied on 

traditional models that assume linearity in their analysis. However, it is essential to note that the 

contribution of the influential factors on PM2.5, ranging from urban form classes to meteorological data, 

does not necessarily follow a linear pattern. The emergence of advanced machine learning and deep 

learning methods has opened up new possibilities for addressing non-linear and complex problems. These 

methods can uncover more complex interactions among data than deterministic and statistical methods. 

Due to their powerful nonlinear modeling capabilities, the state-of-the-art artificial intelligence methods 

performed at the highest level in forecasting air pollution concentrations (Ma et al., 2020). These cutting-

edge techniques can achieve more accurate and reliable results and comprehensively understand the 

complex dynamics and relationships between LCZ classes and PM2.5 concentrations. 

The ensemble learning methods, one of the machine learning-based algorithms, combines the predictions 

of multiple individual models (decision trees) to make a final prediction. This ensemble approach can 

improve the overall predictive performance of the model and help mitigate overfitting (Breiman, 2001).  

Ensemble algorithms with bagging mechanisms use multiple independent models to make predictions. 

These predictions are then combined through stacking and further improved through boosting. This 

approach allows these models to make more precise predictions with fewer errors. (Lin et al., 2022).  

One of the well-known ensemble learning methods, which can explore the effect of different variables on 

PM2.5, is the eXtreme Gradient Boosting (XGBoost) model. The framework for gradient boosting 

developed by Chen and Guestrin (2016) is effectively implemented in XGBoost. By supporting the 

simultaneous processing of tree building, addressing overfitting, and accelerating the execution, can aid in 

these tasks (Chen and Guestrin, 2016). It is an adaptable and comprehensive tree-boosing mechanism that 

covers the entire process from start to finish., and it has received much application and attained cutting-

edge performance for regression and classification problems (Zheng et al., 2017). XGBoost is able to 

discover feature importance among predictors, providing clear outcomes such as feature importance and 

correlation between variables. This can help find the relationship between urban form and air pollution 

more straightforwardly and clearly. This analysis helps identify the most relevant variables contributing to 

PM2.5 concentrations, enabling enhanced comprehension of the factors influencing air pollution in the 

study area. XGBoost also is known as a high-performance model with acceptable accuracy, especially in 

cases where the dataset has many features or complex relationships between the input features and the 

target variable (Lin et al., 2022). 

Several studies have been conducted on predicting air pollutants using the XGBoost model. The 

contributing variables to air pollution measurements were explored by classification task using XGBoost 

(Nababan et al., 2022). In the other study, the concentration of fine particulate matter was predicted using 

the regressor of XGBoost. Several factors, including geographical, temporal, meteorological, and 

topographic features, followed by population and other air pollutants, were considered as predictors. They 

obtained the R-squared of 0.61 on predicting unseen data (Lin et al., 2022). Ma et al. (2020) used this 
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model to identify the spatial effects of air pollution in order to find the areas that are highly exposed to 

pollutants (Ma et al., 2020). Finally, Joharestani et al. (2019) predicted PM2.5 values using different 

models, including XGBoost, using the regression method, resulting in an R-squared of 0.67 ( Joharestani 

et al., 2019).  

As discussed, there are several advantages to using an XGBoost technique for the problem of this 

research, including indicating the relative contribution of each predictors variable in predicting PM2.5 

straightforwardly, modeling nonlinear relationships to capture complex interactions between LCZ classes 

and PM2.5, and the ability of relative robustness to outliers and handling missing data. However, the 

machine learning models such as XGBoost do not consider the pattern of time stamps in the case of time 

series data for forecasting. This can negatively affect the performance of predicting model. The results also 

might not entirely reflect the nature of the trend-based dataset for the observations of PM2.5 in a certain 

period and with a temporal resolution (Dai et al., 2021).  

This research aims to discover the relationship between local climate zone classes and PM2.5, considering 

hourly values. Therefore, a time series model will also be implemented to use the sequential characteristics 

of the dataset in the prediction. One of the successful techniques for modeling long-term dependencies of 

predictors on PM2.5 concentrations is long short-term memory (LSTM) neural networks, which consider 

the spatiotemporal characteristics of the given dataset for prediction (Li et al., 2017). In 1997, Hochreiter 

et al. introduced LSTM (Long Short-Term Memory) as an efficient architecture within the domain of 

recurrent neural networks (RNNs) (Hochreiter and Schmidhuber, 1997). The design of RNNs aims to 

handle problems where the data changes over time and has non-linear patterns. RNNs have connections 

that allow information to flow forward and backward, making them well-suited for predicting future 

values in time series data. They can learn patterns from the sequence of past data to make predictions 

about what will happen next. However, one drawback of RNNs is the issue of gradient vanishing, where 

the gradients used for training can become very small and lead the network to stop learning effectively. 

This limitation makes simple RNNs less suitable for forecasting problems that involve long-term 

dependencies or relationships between distant events in the time series. (Zheng et al., 2017). 

LSTM was therefore designed to tackle the limitation of dealing with long dependencies. As part of the 

LSTM structure, RNN neurons are provided with input gates, output gates, and forgetting gates to 

overcome the disappearing gradient issue (Graves, 2012). The novelty in LSTM structure is the memory 

cell. This block serves as a container unit for important state information. Figure 3 shows the components 

of an LSTM cell. It consists of several steps as the gates. 

1. The forget gate determines what information to remove from the cell state based on the previous 

hidden state and input. 

2. The input gate decides which information should be updated and creates a vector of new 

candidate values for the next state. 

3. The output gate filters the cell state and calculates the desired output based on the updated cell 

state. 

There are two output information for the block. The cell state is a long-term memory output, and the 

hidden state indicates the short-term memory. These steps involve sigmoid and tanh layers, weight 

matrices, and bias vectors to compute the necessary activations and transformations within the LSTM 

model. The purpose of the memory cell is to keep and update relevant information over time (Zheng et 

al., 2017). 
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Figure 3: The structure of the LSTM memory block2 

Reviewing the related work for predicting air pollution using LSTM, Li et al. (2017) proposed a novel 

model in combination with LSTM for forecasting values of PM2.5 concentrations over a period of two 

years. They considered weather-related data and time stamps of the month of year and hour of the day as 

the independent variables in their model. They compared the result of their model using LSTM with other 

standard techniques in this domain and achieved a more promising outcome (Li et al., 2017). In a further 

study, the integration of CNN and LSTM was applied to predict the level of fine particulate matter. The 

past 24 hours of PM2.5 measurements and aggregated wind velocity and rain were selected as the input 

data to estimate the PM2.5 for the next hour (Huang and Kuo, 2018). Discovering the link between air 

pollution data and meteorological-related measurements, Zhang et al. (2020) introduced a deep neural 

networks model based on long short-term memory layers which operate in both forward and backward 

directions to capture temporal dependencies in the input sequence. The results of their study indicate a 

significant correlation between the two mentioned variables (Zhang et al., 2020). The other valuable study 

used both XGBoost and LSTM techniques to estimate PM2.5 volume. In this study,  Dai et al. (2021) 

used climate-related data, followed by other air pollution indexes except for fine particulate matter as the 

input dataset. Then, using the XGBoost technique, they extracted the most highly correlated variables in 

space and time with Pearson analysis. Finally, they implemented an LSTM model on time series data for 

forecasting PM2.5 concentration (Dai et al., 2021). 

There are several plus points to using the LSTM model for predicting PM2.5 concentration to discover 

the contributing factors of LCZ classes and other predictors in this research. Such advantages can be seen 

in dealing with non-linearity and long-term dependencies in temporal dynamics. However, Interpreting the 

relationship between variables and within LCZ classes and understanding the importance of features 

influencing air pollution concentration is challenging with deep-learning models such as LSTM. This 

difficulty appears because deep-learning models are considered black boxes, meaning their internal 

workings are not easily interpretable or transparent (Ma et al., 2020). In contrast, the XGBoost model 

provides built-in functions for interpreting the performance, such as scoring the feature importance (Chen 

and Guestrin, 2016). 

 

 
2 Source: source: https://towardsdatascience.com/how-to-learn-long-term-trends-with-lstm-c992d32d73be 

https://towardsdatascience.com/how-to-learn-long-term-trends-with-lstm-c992d32d73be
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3. STUDY AREA AND DATA 

3.1. Study area 

This research is conducted in the city of Amsterdam. The study area for modeling is defined by the 

bounding box that includes the entire city of Amsterdam. The coordinates of the study area are reported 

in Table 2 in both the World geodetic system and the Dutch coordinate reference system. 

 
Table 2: The geographic coordinates of the study area 

Coordinate Reference System Geographic Coordinates 

CRS 
Minimum 

Latitude 

Maximum 

Latitude 

Minimum 

Longitude 

Maximum 

Longitude 

WGS 84 – EPSG: 4326 52.3038 52.431 4.7288 5.0792 

Amersfoort/ RD New – EPSG: 28992 110093.2242 134052.4072 479740.4482 493733.9650 

 

Figure 4 shows the location of the study area in the Netherlands. Covering most classes of local climate 

zone schemes and the availability of air pollution data was considered as a motivation to select Amsterdam 

as the study area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The location of study area 
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3.2. Data 

As explained in the previous chapter, several datasets, including remote sensing, meteorological, and 

traffic data, are required for this research. The overview and the resource of each dataset will be explained 

below. 

3.2.1. Earth Observation Data 

In this study, the free accessible satellite data, Sentinel-2 imagery collection, are selected as the input 

datasets for urban form modeling to obtain LCZ classes. The satellite missions are employed by the 

European Space Agency (ESA). Sentinel-2 is an optical satellite producing multispectral images. This 

dataset is selected based on the related previous studies, which can provide a proper resolution to address 

the research problem and the data’s availability. 

3.2.2. Air pollution data 

Conventionally, air quality stations implemented and maintained by the official organizations were 

responsible for collecting air quality data. However, they cannot provide dense coverage. Citizen science 

activities have rapidly increased recently in many fields (Assumpção et al., 2018), including air pollution 

monitoring, providing more data and new views to scientists and the public for scientific research 

(Kullenberg and Kasperowski, 2016). This research will use both citizen scientists’ data for air pollution 

and data collected by governmental sensors.    

The air quality data required for this research will be acquired from the National Institute for Health and 

Environment (RIVM) portal (see http://samenmeten.rivm.nl). This platform provides open access to the 

air quality data measured by citizen scientists’ sensors as well as official measurements, and RIVM 

investigates the quality of data and presents the data. For this research, the hourly values of PM2.5 

concentration for the period of two years, from 2021 to 2022, are selected as the target variable for 

modeling. 

3.2.3. Meteorological data 

One type of data required for air pollution modeling in this research is weather-related data sources. The 

Netherlands’ hourly report of the official meteorological measurements is freely available on the Dutch 

weather service (KNMI) (see https://www.knmi.nl) website. The meteorological data for this research, 

available in the dataset, includes seven factors: wind speed, wind direction, temperature, precipitation, 

humidity, cloudiness, and air pressure. Only one sensor covers the study area based on the official stations’ 

location, and using the same values of weather data for all sensors might affect the modeling results. 

Therefore, in addition to the official measurement, those weather variables (temperature and humidity) 

available from low-cost sensors in the RIVM portal are also used in air pollution modeling. 

3.2.4. Traffic data 

The dataset related to the traffic flow was not available for the research period. Therefore, road network 

data is considered as the basis for creating traffic data based on the distance to different types of roads and 

time stamps of the dataset as the assumption for traffic flow. The road data is extracted from the open 

street map (OSM) database, which is freely available. 

 

 

 

 

 

http://samenmeten.rivm.nl/
https://www.knmi.nl/
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4. METHODOLOGY 

4.1. Method Overview 

This research introduces a two-stage model for classifying local climate zones and predicting PM2.5 

concentration. In the first phase, through the convolutional neural networks model, a supervised 

classification task is implemented on the earth observation data and labeled LCZ training data to classify 

urban local climate zones (LCZ) classes. Sentinel-2 imagery is the input of the first stage, and the image 

patches of this dataset are prepared concerning the LCZ sample data. Three different CNN models, 

namely the designed CNN, ResNet-50, and EfficientNet, are then employed for training patch-based 

classification. The model with the highest performance predicts LCZ categories in the study area. Then, in 

the second phase, the result of LCZ categories and probabilities, in addition to related spatiotemporal 

factors, including meteorological data, traffic data, and time stamps, are used to predict the concentration 

of the PM2.5 index in the study area using the regression task of both XGBoost and LSTM models. 

Finally, the sensitivity and feature importance analyses are conducted to analyze the effect of LCZ 

categories on PM2.5. Each stage of the model follows a three-step process, including data acquisition, data 

preparation, and data modeling and evaluation. There is an additional step in the first stage of the model 

for applying the trained model on the entire study area for creating the LCZ map and an extra step for 

analyzing the impact of LCZ on PM2.5 in the second stage. Figure 5 shows the overall view of the 

methodology. 

 

 

Figure 5: An overall view of the Methodology  
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4.2. Stage 1: Local Climate Zones Classification 

 

4.2.1. Deep learning model for LCZ classification 

Supervised Convolutional neural networks are trained for LCZ classification. The input data in this model 

are image patches of Sen-2 imagery, and the output will be local climate zone classes per patch. Three 

CNN model architectures are trained using the prepared image patches. The first CNN model is designed 

by the author of this research in the TensorFlow environment of Python. The two other models are 

selected from the state-of-the-art models’ architecture available in this package, which is widely used in 

image classification tasks. These cutting-edge models are often developed and fine-tuned using large-scale 

datasets and advanced techniques. However, only the architecture of those models is used in this research, 

and they are trained on the prepared dataset to gain the weights.  Regarding the previous study in LCZ 

classification, also considering the efficiency of the cutting-edge models for classification tasks in 

computer vision, we selected the two popular models called Resnet-50 (He et al., 2015) and EfficientNet 

(Tan and Le, 2019) for training. Finally, the model evaluation results are compared to select the best 

model for predicting LCZ in the study area. 

4.2.2. Data acquisition  

The data for this stage include Sentinel-2 imagery as remote sensing data and the data required to get a 

better understanding for preparing training data of LCZ labels, containing elevation level (AHN3-DSM), 

the land use map, the building footprint and the aerial imagery of 25 cm resolution.  

 

Earth Engine Python API (ee library) is used to extract Sentinel-2 imagery for the study area. The goal is 

to obtain cloud-free images from the Sentinel-2 collection for 2021 and 2022, with a cloud percentage of 

less than 5%. Using this library which provides interaction with Google Earth Engine, the procedure 

outlined below is followed: 

• Initializing Google Earth Engine API: Authenticating and initializing the Google Earth Engine 

Python API using the ee library. 

• Defining the Study Area: The study area is determined using a polygon geometry by the list of 

geographic coordinates. 

• Collecting Sentinel-2 Images: The COPERNICUS/S2 collection, the data catalog for sen-2 imagery, is 

filtered based on the study area and the date range of the research from January 1, 2021, to December 

31, 2022. The images are further filtered based on a maximum cloud percentage of 5% to ensure 

cloud-free imagery. 

The related data for creating the training area of LCZ classes are acquired from WFS and/or WMS 

services, available in the PDOK platform, using QGIS. 

4.2.3. Data preparation  

Preparing the data for the first stage is done for Sen-2 imagery, the local climate zones sample data, and 

image patches for training from sen-2 imagery and LCZ sample data. 

Sen-2 imagery preparation:  

• All the images collection are aggregated by the median value to create a composite image representing 

the study area as a snapshot. 

• Sent-2 imagery contains 13 spectral bands from which 10 bands with 10 and 20 meters resolution are 

collected. Regarding the previous study using Sen-2 imagery in LCZ classification (Zhu et al., 2022, 

Kim et al., 2021 ), the desired spectral bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12) are selected 

from the composite image. The resolution of the selected bands is close to the resolution of the 
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desired raster imagery, which is 10 meters. The information on the remaining channels with 60 meters 

resolution would not be helpful in the problem of this research. Then, the channels with 20 meters 

resolution are resampled to 10 meters. 

• Finally, the output image is exported in GeoTiff format. The exported image (Figure 6) has a 

dimension of 2399 by 1718 pixels with a spatial resolution of 10m by 10m and is in the Dutch 

reference system (EPSG:28992). 

 

 

LCZ sample data preparation 

We need sample data to train supervised convolutional neural networks for LCZ classification. There is a 

reference data resource called So2Sat LCZ 42 project. This project has provided a benchmark dataset for 

global local climate zone classification. A group of experts labeled LCZ classes for 42 cities worldwide 

based on Sentinel-1 and Sentinel-2 images. However, filtering the labeled data for a specific location is 

impossible. As a result, a training-labeled dataset for the study area is prepared manually for this research., 

The instructions and digitization guidelines provided in the World Urban Database and Access Portal 

Tools (WUDAPT)3 portal are used to create the training area. 

Regarding the suggestion in the portal, google earth pro is used for drawing LCZ polygons. As the CNN 

model is trained on image patches of size 32 by 32 pixels, based on the most recent previous studies for 

LCZ classification, the polygons cover an area of at least 320 m by 320m to ensure that the image patches 

have the most overlap with its corresponding polygons. It is also essential to keep a reasonable distance 

between polygons with the same class to avoid overlapping patches created from polygons of different 

categories. 

 
3 https://www.wudapt.org/digitize-training-areas/ 

Figure 6: The prepared Sentinel-2 imagery for the research 

Pixel size: 10 m 

Number of Bands: 10 

Image Width: 2399 px 

Image Height: 1718 px 

The prepared 

Sen-2 imagery 

https://www.wudapt.org/digitize-training-areas/


CLASSIFICATION OF URBAN MORPHOLOGY AND ITS RELATIONSHIP WITH AIR POLLUTION USING DEEP LEARNING 

 

17 

Several related datasets and factors are considered to help achieve more accurate labeled data, including 

the European LCZ map (Demuzere et al., 2019) and the global LCZ  (Demuzere et al., 2022). Both 

datasets were generated using machine learning models from multiple remote sensing data, and the 

outputs are raster images with a spatial resolution of 100 meters. The dataset is available in the WUDAPT 

portal. In addition, the other factors considered in preparing the training area are acquired from the 

“public services on the map” (PDOK) (see http://pdok.nl/datasets) website, which is a platform for 

finding geo-datasets in the Netherlands. 

Creating training areas is not easy, as there are many similarities between urban form classes, and 

sometimes cannot be discretized by human inspection. Several factors are used to differentiate the LCZ 

classes in digitizing steps and reaching more accurate labels. When the polygons are drawn, the LCZ class 

of the polygon is defined considering the following factors. Figure 7 shows an overview of how LCZ 

polygons are created. 

• Using the available LCZ factsheet4 ( from Stewart, 2011) for the general recognition of categories. 

• Control polygons’ categories with two referenced datasets:  the Global and Europe LCZ maps. 

• Control with elevation level (AHN3- DSM). 

• Control with 3D terrain in google earth pro and street view. 

• Control with the land use map. 

• Control the building footprint. 

• Control with aerial imagery of 25 cm resolution. 

 

The digitized polygons are stored in separate folders with the corresponding class in kmz format using a 

template provided in WUDAPT portal. Then, the polygons in the folders of kmz file are combined in a 

shapefile using merge vector layer tools in QGIS, creating the attribute table for polygons with the name 

of the classes. 

Preparing image patches for training from Sen-2 imagery and LCZ polygons 

The dataset to be served as the training set for the CNN model includes image patches of 32 by 32 pixels 

and a resolution of 10 meters with 10 channels. The area covered by each patch should be good enough to 

represent an urban form type. Several previous studies, such as (Zhu et al., 2020) and  (Rosentreter et al., 

2020), utilized image patches measuring 32 by 32 pixels at a spatial resolution of 10 meters, covering an 

area of 320 by 320 meters on the ground. In a study conducted by Liu and Shi (2020), various patch sizes 

were compared, and it was determined that larger patch sizes ranging from 32 by 32 to 64 by 64 pixels 

 
4 https://www.wudapt.org/wp-content/uploads/2021/05/Stewart_PhD_2011_LCZ_Sheets.pdf 

Figure 7: Creating training areas for local climate zone classification using Google Earth Pro 

 

http://pdok.nl/datasets
https://www.wudapt.org/wp-content/uploads/2021/05/Stewart_PhD_2011_LCZ_Sheets.pdf
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(equivalent to patches of 320 meters by 320 meters and 640 meters by 640 meters, respectively) were most 

effective in enhancing classification accuracy. However, the study found larger patch sizes decreased 

accuracy (Liu and Shi, 2020). Therefore,  the image patches are extracted from Sentinel-2 imagery 

concerning the labels of the Local Climate Zone (LCZ) polygons. 

The procedure described below is followed to prepare the dataset of the image patches for training a 

CNN model for LCZ classification. A sample of creating image patches of Sen-2 imagery from LCZ 

polygons can be seen in Figure 8. 

• Patch Extraction Algorithm: 

- A function is developed to extract image patches from Sen-2 imagery aligned with the LCZ 

polygons. 

- The algorithm considers the patch size and the center point coordinates within each polygon. 

• Patch Extraction Process: 

- The algorithm iterates through each LCZ polygon. 

- For each polygon, it determines the label associated with the climate zone. 

- The bounding box coordinates of the polygon are obtained. 

- The pixel resolution of the Sentinel-2 imagery is calculated. 

- The number of steps in the x and y directions is determined based on the bounding box and pixel 

resolution. 

- A grid of points is generated within the polygon, evenly spaced based on the patch size. 

- For each point in the grid, the algorithm checks if the point lies within the polygon. 

- If the point is within the polygon, an image patch is extracted from the Sentinel-2 imagery 

centered at the point. 

- The extracted image patch is saved to a directory named after the corresponding LCZ label. 

• Dataset Generation: 

- The process generates a collection of image patches, each labeled with its corresponding LCZ 

climate zone. 

- These image patches collectively form the dataset for training the CNN model. 

 

Figure 8: A sample of creating image patches of sen-2 imagery based on the LCZ polygons 

4.2.4. Training and evaluation 

 
The architecture of the designed model begins with rescaling input image patches using the Rescaling 

layer, which normalizes the pixel values by dividing them by the maximum value in the training set. This 

step ensures that the pixel values are in the range of 0 and 1. The subsequent layers consist of two 

Conv2D layers, with the first layer having 32 filters and the second layer having 64 filters, both using a 3x3 

kernel size and ReLU activation. Using a compact kernel with limited dimensions aligns with the state-of-
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the-art models and contributes to the optimal use of parameters. BatchNormalization layers are added 

after each Conv2D layer to normalize the activations. MaxPooling2D layers with a pool size of 2x2 are 

applied for downsampling. The model then uses a GlobalAveragePooling2D layer to reduce the spatial 

dimensions and calculate the mean value of each feature map. Next, a Dense layer with 128 units and 

ReLU activation is added, which is regularized by a Dropout layer with a rate of 0.6 to prevent overfitting. 

Finally, a Dense layer with 15 units and softmax activation is added to output the class probabilities for the 

15 local climate zone classes in the LCZ classification task. Figure 9 shows the CNN model architecture. 

 
Figure 9: The  CNN model architecture for LCZ classification, designed by the author 

The following steps are followed to train the CNN model on the image patches dataset for LCZ (Local 

Climate Zones) classification.  

• A function is defined to load the dataset from a specified directory. Then, it reads the images, 

stores them as a NumPy array, and assigns corresponding labels to another list. The data is then 

shuffled and split into training, validation, and test sets based on the 70 percent for training, 20 

percent for validation, and 10 percent for the testing set. 

• After that, the model is compiled with the Adam optimizer, sparse categorical cross-entropy loss 

function, and the accuracy metrics. 

• Two callbacks are defined: `EarlyStopping` and `ModelCheckpoint`. The `EarlyStopping` 

callback monitors the validation loss and stops training if there is no improvement for a certain 

number of epochs. The `ModelCheckpoint` callback saves the weights of the best model based 

on the validation accuracy. 

• An instance of the `ImageDataGenerator` class is created to augment the training data. It includes 

transformations for rotation of 90 degrees, horizontal flip, and vertical flip. 

• The generator is fit on the training data using the `fit` method, which applies the data 

augmentation transformations to generate augmented batches during training. 

• The model is trained using the `fit` method. The training data is passed through the data 

generator, and the validation data is provided for monitoring the model’s performance.  

• Finally, the trained model is saved for evaluating and predicting unseen images. 

The two other state-of-the-art models, Resnet-50 and EfficientNet, are also trained on the prepared 

dataset. The steps of loading the dataset for training, compiling, and fitting the model follow the same 

procedure as the first model. Resnet-50 and EfficientNet are imported from TensorFlow library. The top 

layer in the models works as a mediator by defining the input shape compatible with the LCZ 

classification dataset. This value is set to (32,32,10), showing the dimension of image patches, followed by 

the number of bands, and a new input layer is created to add the specified input shape to the model.  

The ResNet50 model is loaded, excluding the top layer, and the newly created input layer is used. This 

allows the ResNet50 model to accept input data with the defined shape. The weights of the pre-trained 
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model are set to None, and the include-top argument is set to False. These adjustments are made to 

facilitate learning new weights for the LCZ dataset. To achieve the desired output, a 

GlobalAveragePooling2D layer, followed by a Dense layer with 128 units and ReLU activation, and finally, 

a Dense layer with 15 units (corresponding to the number of LCZ classes) and softmax activation is added 

to the top of the loaded ResNet-50 model (Figure 10). The exact process is done for the EfficientNet 

model as well. The figure below shows the modified model of state-of-the-art models for LCZ 

classification. 

 

Figure 10: The modified CNN model architecture of ResNet-50 for LCZ classification 

The trained three models are then evaluated using train-validation metrics and are fine-tuned by modifying 

hyperparameters. After achieving an acceptable performance, the models predict the testing set, and the 

performance of the models is evaluated using the classification evaluation metrics such as Recall, 

Precision, and F1-score, as well as the confusion matrix to select the best model for the classification of 

LCZ classes. 

4.2.5. Prediction of LCZ  classes on the entire study area 

After selecting the most efficient models for predicting LCZ classes on the testing set, the trained model is 

applied to the whole study area. Below is the explanation of obtaining the final output of the first stage of 

the research, which is the LCZ map in the raster format, containing the LCZ category and the 

probabilities per pixel within the study area.  

Creating Patches: The procedure begins by dividing the large imagery of Sen-2 into patches of size 10 by 

10 pixels with a stride of 10, giving the spatial resolution of 100 meters. The purpose of creating patches is 

to facilitate efficient processing and analysis of smaller sets of large images. 

Loading the Model: The algorithm loads a pre-trained LCZ prediction model, then calls the best-

performed weights corresponding to the model using TensorFlow and Keras libraries. 

Predicting LCZ for Patches: Next, the code accesses the image patches created earlier and predicts the 

probability of  Local Climate Zones classes for each image patch. Additionally, the code determines the 

predicted LCZ class per patch by selecting the category with the highest probability. The predicted LCZ 

probabilities and class labels are calculated and stored in separate channels. 

Merging Predicted Patches: The code proceeds to merge the individual patch files into a single mosaic 

TIFF file using the Rasterio library in Python. This step combines the predicted LCZ patches to generate 

a comprehensive prediction of LCZ for the entire study area. The final output is a tif file containing 16 

bands. The first band represents the LCZ class, and the remaining bands inform the probability value of 

all classes for the corresponding pixel. 
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4.3. Stage 2: PM2.5 prediction 

4.3.1. Data acquisition  

In addition to local climate zone data obtained in the model’s first stage, several other factors also 

contribute to the concentration of PM2.5. In order to implement a model for predicting this pollutant, the 

datasets related to PM2.5 measurements, meteorological data, and traffic data are involved in the model. 
The PM2.5 values as the representative of air pollution for this research are acquired using the RIVM 

portal, including both official and individual air pollutants sensors. It is possible to filter municipalities for 

extracting the data. Therefore, we focus on the Amsterdam municipality area in the map by considering 

the sensors within the bounding box of Amsterdam for collecting the data. When choosing a specific 

municipality, a window shows the number of active sensors at the current time and different types of 

available measured values. Then, we filter the official sensors as the reference measurements and get their 

data and the charts of their distribution during the time as a benchmark. After that, the citizen-science 

sensors are selected considering the calibration and the plausibility of the sensor, the comparison of the 

distribution of the official measurements, and the availability of the data in the research period. 

 

 

Regarding the information provided on the RIVM website5, currently, calibration is only implemented for 

NOVA SDS011 sensors. This is primarily due to the popularity of these sensors, making it convenient to 

compare a significant number of them with reference measurements. While the Sensirion SPS30 is being 

used increasingly for PM2.5 measurements, it is not yet as widely utilized. Furthermore, the SPS30 

indicates lower sensitivity to humidity compared to the NOVA SDS011. Several studies have proven the 

reliability of NOVA SDS011 as a low-cost sensor for measuring fine particulate matter (Badura et al., 

2018). 

However, the reliability and calibration of the sensors can only be demonstrated for the last two weeks, 

and therefore, it cannot be definitively determined whether a sensor is reliable only based on the 

plausibility of stars indicating high or low values. Consequently, it is essential to examine the chart of each 

sensor alongside the official measurements to assess the sensor’s reliability for further use. Two options 

 
5 https://samenmeten.nl/dataportaal/kalibratie-van-fijnstofsensoren 

Figure 11: The overview of the extracting air pollutants sensors within the study area 
source: https://samenmeten.rivm.nl/dataportaal/ 
 

https://samenmeten.nl/dataportaal/kalibratie-van-fijnstofsensoren
https://samenmeten.rivm.nl/dataportaal/
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are available for chart analysis. Firstly, when choosing a specific municipality, a window is opened in which 

we can compare the plot of multiple sensors measurement in the selected city for the last two weeks (See 

Figure 12). Secondly, The measurement distribution of each sensor for the research period is checked with 

the distribution of the closest official sensor to the selected sensor in the map. Finally, the sensors' data 

covering all or most of the research period is downloaded in a CSV format. 

 

Figure 12: The possibility of comparing the sensor's concentration over the last two weeks on the RIVM portal 
source: https://samenmeten.rivm.nl/dataportaal/ 

 

One of the limitations to obtaining sensors’ data from this portal in the way described above is that the 

coordinates of sensors do not exist in the air quality data report. To access the coordinates of the sensors, 

first, the id number of each sensor is obtained using the following URL through API: 

https://api-samenmeten.rivm.nl/v1.0/Things?$filter=startswith(name, 'the name of the sensor e.g., 

LTD_34577'). 

After that, by putting the id number in the URL below, the coordinates of the sensor can be reached on 

the web: https://api-samenmeten.rivm.nl/v1.0/Things(the id number of the sensor, e.g., 2954)/Locations 

The information for the sensor’s location is required later for assigning the LCZ class to the sensor. 

The other required data for this stage is the meteorological data. The official measurement of various 

variables for the hourly values in the Netherlands is available on the KNMI website 6 . Based on 

meteorological station locations, the Schiphol station (station 240) is selected as a data source for 

Amsterdam. The weather-related data from the low-cost sensors are collected with the same procedure as 

PM2.5 data extraction. 

Regarding traffic data, the road data of Amsterdam from the open street map is extracted using the 

OSMdownloader plugin in QGIS. The data attribute includes the road types based on road hierarchy, 

which is used for preparing traffic data. 

4.3.2. Data preparation 

Preparing the data for the second stage is done for PM2.5 measurements which is a target variable of the 

model, the local climate zones sample data, and image patches for training from sen-2 imagery and LCZ 

sample data. In this step, pre-processing actions are taken on each dataset. Then, the dataset is merged to 

create a single tabular data for modeling. Finally, the feature engineering process is conducted to make 

meaningful features of the prepared variables as the inputs for machine/deep learning algorithms.   

 

 

 
6 https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens 

https://samenmeten.rivm.nl/dataportaal/
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Air pollution pre-processing 

It is crucial to perform data-cleaning techniques to achieve the dataset’s reliability and accuracy for 

modeling purposes. Exploring the measurements of PM2.5 values within sensors, we observe that some 

low-cost sensors often report extremely high values, such as 1200. However, when comparing these 

readings to the measurements from an official sensor located nearby and taken at the same datetime, we 

find that the official sensor records much lower values. Two approaches are implemented for cleaning the 

data related to PM2.5 in order to provide a more reliable dataset. First, the measurements with negative 

values are removed from the dataset. Then, the maximum value of PM2.5 among all official sensors is 

defined as a threshold for defining the outliers. Official sensors are typically calibrated to meet specific 

quality standards. By using this value, we establish a reference point for determining outliers within the 

data obtained from other sensors. Therefore, all measurements higher than this value are removed within 

low-cost sensors. This action is necessary to ensure that the dataset used for modeling purposes is 

consistent and free from unreliable measurements. Finally, the PM2.5 files, including the DateTime and 

PM2.5 values, are combined into a single data frame. 

Meteorological data preparation 

The pre-processing for official measurements includes modifying the format of the values and extracting 

the variables defined for this research as weather-related predictors. However, more actions are required 

for preparing temperature and humidity values from low-cost sensors as the additional independent 

variables. After ensuring the data’s reliability and considering the spatial distribution of the sensors to 

ensure that they cover the study area, four other sensors for temperature and humidity observations are 

extracted. The values obtained from the additional temperature and humidity sensors and the official 

sensor(Schiphol) are assigned to all PM2.5 sensors based on their closest distance. This task is performed 

using the ’distance to nearest hub’ function available in the processing toolbox of QGIS. The closest 

sensor's values are assigned by calculating the minimum distance between each PM2.5 sensor and the 

meteorological data sensors, as shown in Figure 13. 

 Figure 13: spatial analysis for finding the closest distance to meteorological sensors 

 

Figure 14: The road density map from KDE function as the representative for traffic data in 
the study areaFigure 15: spatial analysis for finding the closest distance to meteorological 
sensors 
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Two new variables for temperature and humidity are added to the dataset. In the data-cleaning process, if 

there are missing values, they are removed from the dataset. Additionally, the corresponding values from 

the Schiphol station (which is an official sensor) are added to the attributes for the missing DateTime 

values. 

Traffic data  preparation 

As the traffic data is not available for the study area, we assume the combination of the effect of road 

networks and time of the day, as well as time of the year, would allow the model to capture the effect of 

traffic.  The approach used in creating traffic data from road networks by Ghaemi et al. (2018) is 

employed to get such a proxy for traffic data. In this approach, the relationship between air pollution 

caused by traffic and the distance to roads is assumed to be linked. To explore this relationship, a 

technique called kernel density estimation (KDE) is used. This approach involves creating a raster map 

that indicates the density of nearby roads, providing a visual representation of the concentration of roads 

in the surrounding area. Moreover, the type of road based on their importance is considered a weight for 

KDE (Ghaemi et al., 2018).  

Regarding the road types available in the road data, the type of roads related to vehicle transports is 

filtered as follows: motorway, trunk, primary, secondary, tertiary, unclassified, residential, living street, 

service, and pedestrian. Then, weights are assigned to road types based on their importance to have an 

assumption about traffic flow. Therefore, the most important roads are given higher weights, ranging 

from 10 to 1. Then, using Kernel Distance Estimation in ArcMap, a raster output containing the density 

of the surrounding road is created. The function considers the weight of roads, and the kernel density is 

calculated with a maximum distance of 300 meters. Figure 14 shows the road density output raster as the 

traffic data representative data. Finally, the pixel values surrounding air pollution sensors are assigned as 

the traffic value in the dataset.  

 

 

Figure 14: The road density map from KDE function as the representative for traffic data in the study area 
 

 

Table 3: The overview of combined dataset for PM2.5 prediction modelFigure 16: The road density map from KDE 
function as the representative for traffic data in the study area 
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Merge the datasets 

In the next step of data pre-processing, all the data from variables are merged into a single tabular dataset. 

This step is required for training machine learning models. To make the dataset for modeling, the 

dataframe, including the combined PM2.5 measurements, is considered as the basis of the dataset. Then, 

the meteorological data from the official measurements are added to the dataframe. The DateTime 

column is used as the common attribute for merging the datasets. The additional temperature and 

humidity values from low-cost sensors are then added to the dataframe based on DateTime as well as the 

sensor name. Finally, the traffic data, LCZ category, and the probabilities of all classes are joined to the 

dataframe using both DateTime and sensor name as the common columns, representing spatial variables. 

Figure 15 shows the workflow diagram of the procedure for merging the dataset. An overview of the 

combined dataset for PM2.5 prediction can be seen in Table 3. 

 

 

Feature Engineering 

In the final step of data preparation, some actions related to feature engineering are performed for some 

variables to ensure that the model interprets the data correctly. The recommendations mentioned in the 

documentation for time series forecasting in TensorFlow 7  are applied for feature engineering. Some 

modifications are required to make the distribution of the variable more compatible with the model. For 

example, the wind direction values in degrees (90, 180, 270, etc.) are not a good representation of the 

model training because the inputs should not be far apart and should avoid any sudden transitions.  The 

existing values for wind direction do not accurately represent the circular nature of wind direction and 

may not reflect the actual smooth changes in wind patterns. Based on the recommendation,  making a 

vector of wind direction and wind speed makes learning the pattern easier for the model which is 

visualized in Figure 16. 

 

 

 

 

 
7 https://www.tensorflow.org/tutorials/structured_data/time_series 

Figure 15: The workflow of merging dataset in the preprocessing step for PM2.5 modeling  

Sensor 1

DateTime | PM2.5 value

Sensor 2

DateTime | PM2.5 value

Sensor 3

DateTime | PM2.5 value

Sensor 1 | DateTime1 | PM2.5 value1
Sensor 1 | DateTime2 | PM2.5 value2

.

.

.
Sensor 2 | DateTime1 | PM2.5 value1
Sensor 2 | DateTime2 | PM2.5 value2

.

.

.
Sensor 3 | DateTime1 | PM2.5 value2
Sensor 3 | DateTime2 | PM2.5 value2

Sensor 1 | DateTime | PM2.5 value | Meteorological data | LCZ | Traffic
.
.
.

Sensor 2 | DateTime | PM2.5 value | Meteorological data | LCZ | Traffic
.
.
.

Sensor 3 | DateTime | PM2.5 value | Meteorological data | LCZ | Traffic

Individual sensor The combined sensor data The merged dataset for all variables

Table 3: The overview of combined dataset for PM2.5 prediction model 

 

https://www.tensorflow.org/tutorials/structured_data/time_series
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Regarding the DateTime variable, which is the core of the temporal information for the model, its current 

format is not proper for interpretation by the model. Since it represents periodic data, it exhibits distinct 

daily and yearly patterns. One effective method to handle these frequent patterns involves utilizing sine 

and cosine transformations to isolate the "Time of day" and "Time of year" signals. This technique allows 

the model to capture crucial frequency features and obtain meaningful signals for analysis.  

4.3.3. Training and evaluation 

The prediction of PM2.5 concentration is modeled using the eXtreme Gradient Boosting (XGBoost) 

model as one of the effective ensemble learning models, as well as the long short-term memory (LSTM) 

model as the time series model. Then, the model with the more acceptable performance is chosen for 

further analysis of urban form impact on air pollution. 

 

XGBoost model 

A supervised XGBoost model is trained for PM2.5 prediction using a regression task. The independent 

variables in this model are those prepared in the previous steps: meteorological data, LCZ label and 

probabilities data, traffic data, and time stamp data of the time of day and time of year. The target variable 

is PM2.5 concentration.  

XGBoost offers three strategies to address overfitting and enhance prediction accuracy effectively. These 

techniques consist of a regularized objective, shrinkage, and column subsampling. The regularized 

objective helps discourage complexity, enabling the selection of a more straightforward yet powerful 

model. Shrinkage reduces the influence of each tree, allowing subsequent trees to make incremental 

improvements. Regarding efficiency and preventing overfitting, column subsampling proves to be more 

efficient for using memory than row subsampling (Lin et al., 2022). 

The following steps are taken for modeling the dataset with the XGBoost model: 

• Split train/validation and test set: First, the dataset is split into training/validation and test sets. 

The two last months of the dataset (The hourly values from 01-11-2021 to 31-12-2022) is cut for 

the testing set, and the remaining dataset is used for the train/validation set. 

• Split train and validation set: Then, the dataset for training/validation is split into training and 

validation based on sensor names. 80 percent of sensors (20 sensors) are used for training, and 20 

percent (5 sensors) are used for validation. Random sampling is then used to select the sensors for 

each set. Next, the input features and output target (PM2.5 values) are extracted from the 

respective dataframes, and the data is transformed into arrays (X_train, y_train, X_valid, y_valid, 

X_test, y_test) for training and evaluating the XGBoost model. This methodology allows for 

random and sensor-based partitioning of the dataset, ensuring diverse sensor representation in 

each set for robust model training and evaluation. 

• Normalize the data: After that, all X_columns (input features) from the training, validation, and 

testing set are normalized by subtracting the mean and dividing by the standard deviation of the 

Figure 16: The distribution of wind date before(left) and after(right) feature engineering 
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input features in the training set. This normalization process ensures that all input features have a 

similar scale, which can improve the performance and stability of machine learning models. 

• Train XGBoost model: An XGBoost regression model is constructed and trained. The model is 

defined with specific parameters, including the objective function, the number of estimators, 

maximum depth, learning rate, and early stopping rounds. The training process includes 

monitoring the model's performance on the validation set. The model is trained, and the training 

and validation root mean squared error (RMSE) metrics are extracted from the results.  

• Fine-tune the model hyperparameters: Finally, a grid search approach is used to optimize the 

hyperparameters of the XGBoost regression model. The GridSearchCV class from the Scikit-

learn library in Python is employed, configured with the model, hyperparameter grid, 5-fold cross-

validation, and the negative mean squared error as the scoring metric. The grid search is then fit 

to the training data. Afterward, the best hyperparameters and model are obtained from the grid 

search results, which are used for the final training. 

 

LSTM model 

In the other method,  LSTM neural network model is designed for predicting PM2.5. The input and target 

variables are the same as XGboost model. The LSTM model is developed in the TensorFlow environment 

of Python. Several arrangements of layers are examined to achieve the most proper model for the dataset.  

The final model architecture for time series forecasting of PM2.5 starts with a series of LSTM layers, 

which allow the network to learn and capture long-term dependencies in the sequential data. In this case, 

there are four LSTM layers, each with a decreasing number of units: 256, 128, 64, and 32. The 

'return_sequences' parameter of the first three layers of LSTM is set to True, ensuring that the output of 

each LSTM layer is fed as input to the next LSTM layer, maintaining the sequential nature of the data. 

Following the LSTM layers, there are dense layers for prediction. The dense layers provide additional 

learning capabilities for the model. The first dense layer has 128 units with a ReLU activation function, 

which introduces non-linearity to the model. A dropout layer with a rate of 0.5 is added to prevent 

overfitting and improve regularization by randomly dropping out units during training. Finally, the output 

layer consists of a single neuron with the default activation function, which is the linear function, 

predicting a continuous output. Figure 17 shows the LSM model architecture for PM2.5 prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: The LSTM model architecture for PM2.5 prediction, designed by the author 
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The following steps are followed to train the LSTM model for forecasting PM2.5: 

• Split train and test set: Similar to the splitting strategy in the XGBoost model, the two last 

months of the dataset are considered for the test set, and the remaining data belong to the train 

set. 

• Normalize the data: Similar to the normalization approach in the XGBoost model, the input 

variables of the train and test set are normalized with respect to the mean and standard deviation 

of predictors in the train set. 

• Windowing: As we deal with time series prediction, we need to provide the data in the sequential 

windows for the model. The windowing procedure is an exclusive step for implementing the 

LSTM model. A 'WindowGenerator' class is responsible for preparing data for training the LSTM 

model. It takes three important parameters: 'input_width', 'label_width', and 'shift'. These 

parameters determine the configuration of the input and label windows used for training the 

LSTM model, which is explained below: 

o input_width: It determines the number of time steps to be used as input features for the 

model. This parameter defines the length of the input sequence that the LSTM model will 

process at each time step. 

o label_width: It determines the number of time steps in the future for which the model needs 

to make predictions. This parameter defines the length of the output sequence that the model 

is expected to predict. 

o shift: It represents the time shift or the time gap between sequential input and label windows. 

This parameter determines how much the input and label windows are offset from each other. 

It allows the model to learn temporal relationships and make predictions at different temporal 

intervals. 

The WindowGenerator also takes parameters for input train data and test data, label column to 

define the target variable, followed by the stratification column parameter. When stratification is 

applied, the data is divided into groups based on the unique values in this column. Each group 

represents a distinct subset of the data. The separate datasets are then created for each group. The 

column of sensor names is defined as the stratification column in this model. 

• Split train and validation set: After applying the windowing function on the train and test set, 

the train set is split to train and validation set with the proportion of 80 and 20 percent, 

respectively. 

• Compile and train LSTM model: Finally, the LSTM model is compiled using Mean Squared 

Error (MSE) as the loss function and Mean Absolute Error (MAE) as the metrics, followed by 

setting the optimizer and learning rate. The model is then fit, where the training dataset and 

validation dataset are provided. The weight of the best epoch performance is saved for evaluation 

and further analysis. 

 

Model Evaluation and urban form impact analysis 

After obtaining the best-trained model of both XGBoost and LSTM approaches, the test set is predicted 

by both models. Then, the performance of the two models is evaluated using metrics such as R-squared, 

means square error (MSE), and route means, square error (RMSE). Then, the analysis of the LCZ classes' 

impact is done by prediction models with the best performance. Two approaches, including Sensitivity 

analysis and Feature importance analysis, are employed to investigate the effect of LCZ on PM2.5, which 

are explained below: 
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Sensitivity analysis: This analysis aims to discover to what extent the LCZ, as the predictor, influences 

the concentration of PM2.5 in the model. Several alternatives for involving input variables are examined. 

The results of the performance metrics of the model clarify the contribution of LCZ on the level of 

PM2.5. 

Feature importance analysis: This analysis intends to investigate the significance of each LCZ type on 

PM2.5 prediction in the model.  In this method, the probabilities of LCZ act as the representative for the 

corresponding category beside the other predictors, including traffic, meteorological data, and time stamp 

data. The results of the feature importance are reported as the scores. The score represents the proportion 

or percentage of the overall importance related to that variable within the model. The higher scores 

indicate the higher importance of the independent variable for predicting PM2.5.  

 

Finally, a heat map is created in the study area to visualize the relative importance of LCZ categories and 

their potential impact on the concentration of PM2.5 based on the results of the feature importance. This 

heat map provides a comprehensive overview of areas likely to experience higher levels of PM2.5, as 

influenced by the different LCZ categories. 
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5. RESULTS AND DISCUSSION 

This chapter is divided into three sections, including local climate zone classification, PM2.5 prediction, 

and the effect of LCZ on PM2.5. Each section starts by presenting the research results on the related 

subject. Then, the interpretation of the results, the main reasons for achieving them, and their limitations 

will be discussed.  

5.1. Local climate zones classification 

Three CNN models, namely the designed CNN, ResNet-50, and EfficientNet, were trained on the image 

patches, including the LCZ classes. Based on the provided training area, 15 classes out of 17 classes of the 

LCZ scheme were found in the study area. Class 7 represents the light-weight low-rise area mostly 

observed in the slums area, and class C belongs to Bush and Scrub's natural land cover, which does not 

exist in the study area. The training set includes 1072 samples, followed by 229 and 231 samples for testing 

and validation sets, respectively. Table 4 shows the number of samples per class for all datasets. 
 

Table 4: the distribution of samples per class within the training, validation, and testing set 

Class label Class name Train 

Count 

Validation 

Count 
Test Count 

Built types 

1 Compact high-rise 33 5 9 

2 Compact mid-rise 90 24 22 

3 Compact low-rise 17 6 3 

4 Open high-rise 67 12 19 

5 Open mid-rise 106 17 17 

6 Open low-rise 64 8 23 

8 Large low-rise 104 21 22 

9 Sparsely built 41 7 13 

10 Heavy industry 45 12 7 

Land cover types 

A Dense trees 55 14 12 

B Scattered trees 46 11 13 

D Low plants 141 31 25 

E Bare rock or paved 89 17 17 

F Bare soil or sand 26 6 6 

G Water 148 38 23 

 

In deep learning modeling, the number of samples per class is recommended to be in the same range as 

possible to get the more proper dataset for a model to learn the pattern and also reach more reliable 

evaluation results. However, providing the labeled samples in this subject is a time-consuming process. 

Moreover, based on the size of the image patches covering 320 meters by 320 meters, it is hard to find a 

homogeneous area for the classes that do not cover a considerable area on the ground. For example, the 

land cover types such as water and dense trees are usually expanded over an area. In contrast, built types 

classes such as compact high-rise and open high-rise classes are hard to be covered in a polygon with 

enough size for sampling, especially in the case of Amsterdam. 
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The designed CNN model LCZ classification was then trained on the training set and was monitored by 

the validation set. The model was fine-tuned using changes in hyperparameters and redoing the training 

process several times. Table 5 shows the hyperparameters of the final model. 

Table 5: The hyperparameters of fine-tuned CNN model for LCZ classification 

Hyperparameter Value 

Number of Convolutional 
Layers 

2 

Number of Filters 32 and 64 

Kernel Size (3, 3) 

Activation Function ReLU 

Pooling Type MaxPooling 

Pooling Size (2, 2) 

Number of Dense Layers 2 

Number of Units in Dense 
Layers 

128 and 15 

Dropout Rate 0.5 

Learning Rate Adam optimizer default value 

Loss Function Sparse Categorical Crossentropy 

Batch Size 32 

Number of Epochs 500 

Early Stopping Patience 300 

Checkpoint Saving Criteria Validation accuracy (monitor='val_accuracy', mode='max') 

Image Data Augmentation Rotation Range: 90 degrees, Horizontal Flip: True, Vertical 
Flip: True, Fill Mode: 'nearest' 

 

The two other state-of-the-art models, ResNet-50 and EfficientNet, were also trained with the same 

values as the designed CNN model for the number of epochs, batch size, loss function, learning rate, and 

early stopping hyperparameters. 

Based on the analysis of the train-validation loss and train-validation accuracy metrics, Which is shown in 

Figure 18, all three models present acceptable metrics during the training. The training loss, which 

measures the error between the predicted and actual values, gradually decreases as the models are trained 

over multiple epochs. This indicates that the models are learning and improving their ability to make 

accurate predictions. However, some sudden jumps are observed in the validation loss during training the 

ResNet-50 model, followed by a few jumps in loss metrics of the EfficientNet model. These jumps in the 

validation loss suggest that the models' performance on unseen data temporarily worsens. This can 

happen because the models become too focused on the training data and struggle to make accurate 

predictions on new examples, resulting in overfitting. Similar to the pattern of loss metrics, the validation 

accuracy in the designed CNN model is smoothly increased during the training epochs. However, a 

sequence of fluctuation is observed during the accuracy metrics of both state-of-the-art models. In 

particular, the ResNet-50 model exhibits more frequent fluctuations compared to the EfficientNet model. 

Validation accuracy fluctuations can be due to the considerable number of trainable parameters in the 

cutting-edge architectures, also complex patterns or outliers in the data, and the model's sensitivity to 

features and data variations. 
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After achieving the best performance of trained models, we used three models to predict the same testing 

set. As shown in Table 6, the ResNet-50 model earned the highest validation accuracy of 0.8366, 

outperforming the designed CNN model (0.7948) and the EfficientNet model (0.8122). Compared to the 

other models, the ResNet-50 model also achieved the highest test accuracy of 0.8766,  indicating its 

superior performance in predicting LCZ on unseen data. The higher accuracy of the Resnet-50 model on 

the testing set compared to the validation set proves that this model can generalize and predict unseen 

patterns. 

Despite having a significantly smaller number of trainable parameters, the designed CNN model achieved 

acceptable performance. The model's architecture and fine-tuning actions seem to be effective in 

capturing relevant features for LCZ classification. The model's relatively simple structure may have 
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Figure 18: the metrics monitoring of training LCZ classification models 
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contributed to its ability to avoid overfitting and maintain a proper balance between model complexity and 

generalization performance. 

In contrast, although the EfficientNet model has a relatively high number of trainable parameters, its 

validation and test accuracy performance is slightly lower compared to ResNet-50. This suggests that 

having a larger number of trainable parameters does not always guarantee better performance.  
 
Table 6: the overall accuracy and loss of three trained CNN models for LCZ classification 

Model 
Trainable 

Parameters 
Validation 

Loss 
Validation 
Accuracy 

Test 
Accuracy 

Designed CNN 31663 0.5858 0.7948 0.76 

ResNet-50 23820751 0.7418 0.8366 0.8766 

EfficientNet 64120735 0.7243 0.8122 0.7878 

 

The metrics of the classification evaluation report for predicting the testing set by three models (Table 7) 

show that ResNet-50 achieved the highest Recall, indicating its ability to identify many positive instances 

correctly. It also reached a value of 0.89 in the Precision metric, which measures the accuracy of positive 

predictions. High Precision in this model indicates its ability to minimize false positive examples. The F1-

score is the other classification metric, which combines Recall and Precision. It was also the highest for 

ResNet-50. This implies a balanced performance in terms of identifying positive instances while avoiding 

false positives. The Designed CNN model achieved slightly lower metrics compared to ResNet-50. 

EfficientNet shows moderate performance. 
 
Table 7: The evaluation metrics report for LCZ classification by three CNN models 

Model Recall Precision F1-score 

Designed CNN 0.75 0.76 0.75 

ResNet-50 0.92 0.89 0.89 

EfficientNet 0.8 0.79 0.78 

 

Finally, the confusion matrix results for three models (Figure 19) are discussed to compare the 

performance of the models.  

Regarding the two types of categories in LCZ classes for built and land cover types, the prediction of land 

cover types, which are mostly related to natural categories on the ground, is done more accurately 

compared to the built type in all models. This would be due to the simplicity of the patterns of these 

classes for recognition by the model. The categories “low plants” (D), “Bare rock or paved” (E), “Bare 

soil or sand” (F), and water (G) are perfectly classified in the designed CNN and ResNet-50 models, 

followed by some misclassification between class E and F in Efficientnet model. There is also 

misclassifications between "Scattered trees" (B) and "Dense trees" (A). 

The results of built types categories vary within the models. All classes of built types have a level of 

accuracy in ResNet-50. However, the class of "Compact low-rise" (3) is not recognized in two other 

models as the true prediction. In two other models, this category is mostly misclassified as "Open high-

rise" (4). When it comes to classifying "Compact high-rise" (1) and "Compact mid-rise" (2), all three 

models show relatively high accuracy. However, the designed CNN model struggles to distinguish 

between "Compact high-rise" (1). Regarding categories in the open-built types (4,5,6), "Open mid-rise" (5) 

are well classified into three models. However, there is some misclassification for "Open high-rise" (4) and  

"Open low-rise" (6) within these three categories. "large low-rise" (8), and "sparsely-built" (9) are classified 

mostly truly. In contrast, predicting the "Industrial" (10) category indicates challenges for three models. It 

is mostly misclassified with "large low-rise" (8), and "Open low-rise" (6). Especially, a considerable 
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amount of misclassification with “Bare rock or paved” (E) is observed in the designed CNN model. The 

shared features with other categories contribute to the difficulty in distinguishing "Industrial" structures. 

 

In terms of the effect of LCZ (Local Climate Zone) classes on the accuracy and predictions of the models, 

we can observe the following patterns: 

• Distinctions between different types of high-rise buildings in both compact and open types seem to 

be challenging for all models. This could be due to similarities in their visual features or variations in 

the dataset. 

• Misclassifications between high-rise and mid-rise buildings are commonly observed, indicating 

difficulty in discerning subtle differences in building types. This suggests considering elevation-related 

factors as the supporting variable for training the model. 

• The distinction between "Open low-rise" and other low-rise classes seems relatively more 

straightforward for the models. 

• Recognizing between different types of vegetation classes (e.g., "Dense trees" and "Scattered trees") 

is sometimes challenging for the model. Involving vegetation-related factors such as NDVI in the 

training process can help face this issue. 

Figure 19: The confusion matrix of LCZ classification by three CNN models 

Designed CNN 

 

ResNet-50 

 

EfficientNet 
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After assessing the results of the LCZ classification, the ResNet-50 is selected as the best model for 

predicting the entire study area. To visually see the prediction of the model, the prediction of one sample 

per label can be seen in Figure 20. 

Finally, the LCZ map for the bounding box of Amsterdam was created by predicting categories with the 

ResNet-50 model (Figure 21). The output is a raster map with a spatial resolution of 100 meters. The 

raster has 16 bands, and each pixel of the raster represents the LCZ class stored in the first channel. The 

probabilities of all 15 classes in a certain pixel are accessible in channel 2 to channel 16, respectively. 

 

Figure 21: The LCZ classification map of the study area, predicted by ResNet-50 model 

Figure 20: The visualization of predicted samples of LCZ classification by ResNet-50 model 
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5.2. PM2.5 prediction 

In this section, before going through the results of the models, the prepared PM2.5 sensors and the 

dataset for the modeling are explored. In total, the hourly values data of a two-year period (2021-2022) 

were collected for eight official sensors within the bounding box of Amsterdam. Regarding low-cost 

sensors, 17 sensors from 37 existing sensors were collected based on the reliability criteria explained in the 

methodology chapter. Therefore, 25 sensors of PM2.5 observation, including eight official sensors and 17 

individual sensors, are involved in the modeling. Figure 22 shows the location of all PM2.5 sensors in the 

study area with the id of the sensors, which is used in the dataset. 

 

 

Each sensor was then assigned to its corresponding LCZ category, identifying nine distinct LCZ 

categories in the proximity of the sensors. These categories include "Compact mid-rise" (2), "Open high-

rise" (4), "Open mid-rise" (5), "Open low-rise" (6), "sparsely-built" (9), "Industrial" (10), "Scattered trees" 

(B), “low plants” (D), and “Bare rock or paved” (E). However, the distribution of LCZ categories within 

sensors is not the same. However, it is important to note that the distribution of LCZ categories across 

the sensors was not uniform. Specifically, LCZ 6 was found to cover nine sensors, LCZ 4 covered five 

sensors, LCZ 5 covered three sensors, LCZ 9 covered three sensors, and the remaining LCZ classes were 

represented by a single sensor each.  

The dataset was prepared based on the procedure described in the methodology. The dataset presents 28 

independent variables, followed by PM2.5 as the target variable. The predictors include nine 

meteorological-related variables, 14 variables related to LCZ (LCZ category and probabilities), one for 

traffic, and four for periodicity for the time of day and the time of year. Table 8 shows the details of the 

variables in the dataset. 

 

 

 

Figure 19: the location of PM2.5 sensors in the study area 

 

Figure 20: The distribution of variables related to PM2.5 prediciotn over the time period 
of the datasetFigure 21: the location of PM2.5 sensors in the study area 

Figure 22: the location of PM 2.5 sensors in the study area 
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Table 8: The details of variables of the dataset for PM2.5 prediction 

 

 

Before modeling, to get an overview of variables, we do some data explanatory by visualizing the 

distribution of the variables over two years of the dataset (Figure 23 ). Certain variables, such as 

temperature and humidity, exhibit a distinct periodic pattern characterized by a symmetrical arrangement 

of data points between the two halves of the dataset representing 2021 and 2022. Conversely, variables 

like pressure do not display a discernible temporal pattern or exhibit any regularity in their fluctuations 

over time. 

 

According to the strategy described in the methodology section for splitting the data into training, 

validation, and testing subset sets, the training set has 271752 hours of data, followed by 67938 hours in 

the validation set and 33578 hours in the testing set.  

 

 

 

 

 

 

 

 

 

 

 

variable 

column 
Description unit Spatial/temporal 

PM25 PM2.5 observation µg/m³ - 

temperature Temperature of official sensor 0.1 degrees Celsius Temporal 

precipitation Precipitation of official sensor 

(in 0.1 mm) 

 (-1 for <0.05 

mm) 

Temporal 

humidity Humidity of official sensor % Temporal 

cloudiness Cloud cover of official sensor octant Temporal 

pressure Air pressure of official sensor 0.1 hPa Temporal 

Wx 
The vector of wind speed-direction in X 

dimension 
- Temporal 

Wy 
The vector of wind speed-direction in Y 

dimension 
- Temporal 

temperature1 Temperature of low-cost sensors 0.1 degrees Celsius Spatio-temporal 

humidity1 Humidity of low-cost sensors % Spatio-temporal 

lcz LCZ category - Spatial 

1,2,3,4,5,6,8, 

9,10,A,B,D,E 
Including 13 columns for LCZ probabilities - Spatial 

traffic The value of kernel density estimation  - Spatial 

Day sin Sine transformation for time of the day - Temporal 

Day cos Cosine transformation for time of the day - Temporal 

Year sin Sine transformation for time of the year - Temporal 

Year cos Cosine transformation for time of the year - temporal 
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Regarding implementing the XGBoost model on the dataset, the initial hyperparameters for max_depth 

and learning rate were set, then the model was fine-tuned using a grid search technique with defining 

multiple values for these parameters. A ten-fold cross-validation strategy, considering negative mean 

square error scoring, was employed to achieve the optimal hyperparameters. The XGBoost model was 

then trained using the optimal parameter values, shown in Table 9. 

Table 9: The hyperparameters of fine-tuned XGBoost model for PM2.5 prediction 

 

 

 

 

 

 

 

Parameter Value 

Objective (Loss function) Mean square error 

n_estimators 1000 

max_depth 3 

learning_rate 0.1 

early_stopping_rounds 250 

Figure 23: The distribution of variables related to PM2.5 prediction over the time period of the dataset 
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During the training of the LSTM model, the dataset was first split into training and testing sets, followed 

by data normalization. The windowing technique was applied with specific parameters to create sequential 

data for training. The input_width was set to 24, indicating the number of input time steps. The 

label_width was set to 1, representing the number of output time steps. The shift value of 1 determined 

the time shift between consecutive windows. The hyperparameters presented in Table 10 were obtained 

through a process of fine-tuning the LSTM model. As the model's training process was computationally 

intensive, a batch size of 128 was chosen to reduce training time. However, such a batch size may require 

a more powerful computing environment for efficient training. 
 
Table 10: The hyperparameters of fine-tuned LSTM model for PM2.5 prediction 

 

 

 

 

 

 

 

 

 

 

 

The results of training and evaluation of the dataset using the XGBoost and LSTM models (Table 11) 

shows that the LSTM model outperforms XGBoost for predicting PM2.5 values. It achieved a validation 

RMSE of 1.8057 and a validation R-squared of 0.9589, indicating a highly accurate fit to the training data. 

While the LSTM model indicates impressive results during the training, its performance on the testing set 

resulted in a higher RMSE of 5.1270 and a lower R-squared of 0.7521. This suggests that the model might 

have to overfit the training data. However, the LSTM model still outperformed the XGBoost model 

regarding prediction accuracy, showcasing its ability to capture the temporal patterns in PM2.5 pollutant 

concentrations. 

 
Table 11: The results of the evaluation metrics of XGBoost and LSTM models for PM2.5 prediction 

 

Figure 24 shows the performance of two models on the comparison between the actual and the predicted 

values. According to the plots of actual data and predicted, we see that the predicted values are closer to 

their corresponding actual values LSTM model, as they are closer to the reference line (the red line), 

representing the scenario where the predicted values perfectly match the actual values. 

The superior performance of the LSTM model in the dataset can be rooted in its capability to handle 

sequential data. By considering the sequential nature of the predictors and the target variable, the LSTM 

model can effectively capture time-dependent patterns and correlations. This is especially beneficial for 

predicting PM2.5 levels, as they are influenced by factors that change over time, such as weather, traffic, 

and seasons. In comparison to the LSTM model, the XGBoost model also demonstrated acceptable 

performance in predicting PM2.5 pollutant levels, achieving a test RMSE of 5.87 and a validation R-

squared of 0.57. One of the strengths of the XGBoost model lies in its ability to handle a wide range of 

Hyperparameter Value 

Loss Function MeanSquaredError 

Optimizer Adam  

Learning rate 0.001 

Batch size 128 

Epochs 200 

Monitor val_loss 

Dropout rate 0.5 

Model 
trainable 
parameters 

Validation set Test set 

MAE RMSE R-squared MAE RMSE R-squared 

XGBoost - 3.80 5.87 0.61 4.32 5.93 0.57 

LSTM 559233 1.1383 1.8057 0.9589 3.19 5.127 0.7521 
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predictors and capture complex interactions among them. However, compared to the LSTM model, the 

XGBoost model is not able to learn the temporal dependencies present in the nature of the dataset. 

The LSTM model, which proved a better performance, is used for analyzing the possibility of the LCZ 

impact on PM2.5 concentrations as a more reliable outcome. However, the analysis of feature importance 

for exploring to what extent different LCZ classes affect the PM2.5 levels are conducted using the 

XGBoost model. While the performance of the XGBoost model may be comparatively less reliable, it 

offers a more straightforward interpretation of variable importance on PM2.5 prediction. 

5.3. Effect of LCZ on PM2.5 

5.3.1. Sensitivity analysis 

The LSTM model was employed for sensitivity analysis on PM2.5 prediction to explore if there is a 

significant impact of LCZ on PM2.5 prediction. Six scenarios involving predictors in training were 

examined to compare the performance results on PM2.5 prediction. First, the model was trained by all 

variables, and the evaluation metrics were considered as the benchmark for comparison. The next 

experiment considered all variables except the LCZ class variable as the input variables for training. In the 

third condition, all variables related to LCZ, including LCZ and its probabilities, were excluded from 

predictors. Forth scenario trained the model by putting aside all spatial variables, consisting of LCZ 

classes, LCZ probabilities, and Traffic. In addition, two other approaches with the same involved 

predictors in the first and second scenarios were trained, considering the observations related to all PM2.5 

concentrations, including the values that were removed previously as the outlier. 

Interpreting the results of training metrics, shown in Table 12, we see a slight drop in the performance of 

the model by removing the variables related to LCZ from R-squared 0.7521 on the test set to 0.7399. This 

proves the existence of LCZ impact on PM2.5 predictions. The model performance difference was even 

larger when the model was trained without any spatial variables (LCZ and Traffic). The greater decrease in 

the model’s performance, the higher the importance of the removed variables from predictors on the 

PM2.5 prediction. This shows both LCZ and traffic are sensitive variables for forecasting the PM2.5 

pollutant levels.  

 
 

 

XGBoost model LSTM model 

Figure 24: The plot of predicted vs actual PM2.5 values of XGBoost and LSTM models on testing set 
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Table 12: The results of sensitivity analysis for PM2.5 prediction 

Scenario Predictors 
Validation set Test set 

MSE RMSE R-squared RMSE R-squared 

1 All variables 2,4199 1,8057 0,9589 5,1270 0,7521 

2 Remove LCZ probabilities 2,4487 1,5670 0,9700 5,3099 0,7341 

3 Remove LCZ class and probabilities  2,4839 1,5845 0,9652 5,25187 0,7399 

4 
Remove LCZ class, LCZ 
probabilities, and traffic 

3,2002 1,9487 0,9524 5,2355 0,7415 

5 
All variables  
(including outliers of PM2.5 for records) 

6,8408 2,8207 0,9116 6,77 0,6857 

6 
Remove LCZ class and probabilities 
(including outliers of PM2.5 for records) 

6,075 2,6531 0,9275 6,873 0,6761 

 

Regarding the implementation of the model on all records, including the outlier samples, we can see that 

generally, the performance of the model has become worsen. However, In the case of excluding LCZ-

related variables, the decrease in model performance shows a proportional similarity to the drop observed 

when training the model in the first and second scenarios, using the dataset without outliers. This indicates 

that Local climate zones (LCZ) types are not that much sensitive to the prediction of higher values of 

PM2.5 within sensors, and the other variables should have caused it. 

The comparison between the second and third scenarios demonstrates that although the model achieves 

better results during training(R-squared of 0.97), its performance on unseen data deteriorates. This 

highlights the significance of incorporating the probabilities of LCZ to enhance the model's ability for 

generalization. 

A sample of daily and weekly predictions of PM2.5 are visualized in Figure 25 to get a more precise 

understanding of the performance of the models in different scenarios (Scenarios 1, 3, and 4). 

5.3.2. Feature importance analysis 

 

In the feature importance analysis, we discover to what extent different LCZ categories affect PM2.5 

concentration. The results of the feature importance function of the XGBoost model on predicting PM2.5 

value are shown in Figure 26. Regarding LCZ classes' contribution to PM2.5, the LCZ class labeled “Open 

highrise” (4) has the most effect on prediction among all predictors, scoring approximately 0.15. It means 

Figure 25: Comparison of predicted and actual PM2.5 values for 24 hours and one week in different scenarios 
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that this category contributes 15% to the overall importance of the model in predicting PM2.5 

concentration. The traffic variable demonstrates the second highest level of influence on PM2.5, with a 

score of 0.13 . Among the remaining LCZ categories,  four LCZ, namely "large low-rise" (8), "Compact 

low-rise" (3), "Open low-rise" (6), and  "Compact high-rise" (1), show the next levels of importance 

among variables, ranging from scores of 0.10 to 0.04 respectively. Other LCZ classes, including 

"Industrial" (10), "Compact mid-rise" (2), and "sparsely-built" (9), indicate minor importance for 

predicting fine particulate matter levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Although the results of the feature importance and the reliability of feature importance results derived 

from the XGBoost model may not be completely reliable due to the performance level of the XGBoost 

model, it can still provide an overview of the contribution of LCZ on PM2.5 concentration. Another 

factor that could have impacted the reliability of these scores is the insufficient availability of actual LCZ 

classes on PM2.5 sensors, resulting in the use of class probabilities instead. The example showing the 

effect of this limitation can be seen in the industrial category, which is typically expected to have a 

significant influence on PM2.5 levels but does not exhibit high importance according to the results of this 

model. 

Finally, the map of the importance of LCZ categories on PM2.5 (Figure 27) was created to highlight the 

potential areas affected by different types of LCZ. According to the map, the areas with stronger red have 

more influence on the concentration of PM2.5. This can be proven by the location of some industrial 

areas in the north-western part of Amsterdam, followed by the area covered by Schiphol airport in the 

southwest of the city. Some areas with moderate impact are detected in the western and southeast parts of 

the city, belonging to light industry and commercial areas. The central area of the city has a different range 

of influence on PM2.5.  

Figure 26: The feature importance of independent variables in predicting 
PM2.5 in the XGBoost model 
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This map can be a guideline for urban management to mitigate the concentrations of PM2.5, which are 

caused by urban forms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: The map of the level of LCZ importance on PM2.5 concentration 
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6. CONCLUSION AND FUTURE WORK 

This research developed a two-stage framework to investigate the impact of urban form on air pollution, 

focusing on modeling, evaluating, and analyzing the problem to accomplish the goal. Local climate 

zones(LCZ) were employed as a comprehensive scheme for introducing physical and functional 

characteristics of an urban environment to represent different types of urban forms. Concerning air 

pollution, PM2.5 was selected as the pollutant index, representing the most influential factors caused by 

urban environments and the data's availability. In previous studies, the analysis of urban form's impact on 

air pollution primarily focused on considering individual measurements of urban form as influencing 

factors. However, this research takes a different approach by designing a comprehensive framework that 

incorporates urban form categories and probabilities derived from Local Climate Zones (LCZ). This two-

directional approach allows for a more thorough investigation of urban form and its relationship to air 

pollution. Additionally, a noteworthy aspect of this research involves citizen science data for air pollution, 

which sets it apart from previous works in the field. 

Two objectives were defined regarding completing each stage of the research framework, followed by 

introducing the related research questions. The answers to the questions are discussed as follows: 

1.1. Which classification framework is effective for training deep learning models and 

utilizing Earth observation data to classify urban form? 

The initial intention of this research is to find a classification scheme for urban forms to be used in deep 

learning models. The selected system is LCZ. Compared to other frameworks, LCZ integrates multiple 

factors such as physical properties, land cover, and land use, providing a comprehensive representation of 

urban form. This makes this framework more compatible with those deep learning models such as CNN, 

which learn patterns on scene-based understanding for classification. In addition, LCZ provides a 

standardized and widely accepted framework for classifying urban areas that researchers have adopted 

globally. LCZ classification, which can be derived from remote sensing data, is particularly advantageous 

in addressing the limitations of using direct measurements to characterize urban form. 

1.2. Which Convolutional Neural Networks architecture from deep learning can provide an 

acceptable accuracy to predict the urban form classes using EO data? 

This research implemented three different CNN models for the LCZ classification task. The author 

developed the first model, and the two other model architectures from well-known state-of-the-art 

models, namely ResNet-50 and EfficienNet, were adjusted to the problem of the research. Although all 

models resulted in an acceptable accuracy, the ResNet-50 model indicated the highest performance with 

an overall accuracy of 87 percent on unseen data. Regarding the evaluation metrics, this model obtained 

92 percent for Recall and 89 percent for both Precision and F1-score. However, in all models, some 

categories could not be predicted with high accuracy. This issue can be seen in class 3 and class 10, 

representing compact low-rise and industrial areas, respectively. The lack of enough sample data and the 

ability to distinguish the pattern of these classes from the data of single satellite imagery might be the main 

reasons for such a performance. 

1.3. What criteria should be considered for tuning hyperparameters in LCZ classification 

using the CNN model? 

Several hyperparameters configuration should be considered in this model to make the optimal 

performance. In this research, the criteria focused on the efficiency of the model on generalization also 

make the model the model to learn the patterns of classes comprehensively. The hyperparameters related 

to compiling the model, including the number of epochs (set to 500), batch size (32), and early stopping 

(300) were set to the values in which the model is able to capture the image patterns considering the 
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efficient computational tasks and the existing capacity. Data augmentation technique is also applied to 

increase the number of samples in the training set. Regarding the parameters in designing the model 

architecture, Preventing overfitting and underfitting the data was considered the most crucial factor in 

defining convolutional layers, dropout layers, and regularization techniques. 

 
2.1. What modeling techniques are most suitable for examining the impact of urban form 

classes on the concentration of PM2.5 pollutant? 

In this research, we predicted the concentration of PM2.5 using two models, considering several 

predictors such as LCZ classes and probabilities, meteorological factors, traffic, and time stamp data. The 

first approach focused on implementing the XGBoost model from ensemble learning techniques, and the 

second one employed an LSTM model from neural networks. The results of the evaluation metrics 

indicate that the model that considers the sequential trend of the dataset and involves spatiotemporal 

characteristics in prediction shows more precise performance, which can be present in the LSTM model. 

This is proved by the R-squared, RMSE, and MAE of 0.96, 1.80, and 1.14 on the validation set and 0.75, 

5.12, and 3.19 on unseen data.  

 

2.2. To what extent does urban form contribute to the concentration of PM2.5?    

Using the designed LSTM model for pM2.5 prediction, we applied sensitivity analysis to discover the 

possibility of the impact of the LCZ variable as the representative of urban form on PM2.5 by training the 

model on different alternatives involving predictors and records. This analysis shows that removing LCZ 

categories and probabilities from independent variables resulted in a drop in the model performance of 

around 2.30 percent in R-squared. This proves the positive contribution of urban form on PM2.5 

prediction. In addition, the similar performance of the model on all records and the records without 

outliers show that the prediction of much higher values of PM2.5 out of the range of the observations are 

rooted in other predictors, or the errors in the sensors measurements might cause it. 

 

2.3. Which types of urban forms have the strongest impact on the distribution of PM2.5? 

The task of feature importance analysis on the XGBoost model determined the effect of LCZ classes as 

the representative of urban form on  PM2.5 concentrations. The results show the significance of the open-

highrise category at the highest level, with a score of around 14 percent, the highest among all predictors 

in the model. This LCZ type consists of height buildings with more than eight floors covered by scattered 

trees in the open spaces, and it typically has a residential function.  The large low-rise, the compact low-

rise, and the open low-rise types received lower levels of importance among LCZ classes. The light 

industry, transportation hubs and commercial, and the city center area highlight the urban functions within 

these categories. 

6.1. Limitations 

This research selected one urban area, Amsterdam, as the study area. Although several factors were 

considered in choosing a location that covers most LCZ classes and the availability of air pollution 

sensors,  we faced some limitations during the research procedure. The most critical restrictions were 

related to providing the training area for LCZ classification, also covering all built types by PM2.5 sensors. 

The former was addressed by using augmented techniques in the training set, and the latter was handled 

by involving probabilities of LCZ in addition to the category in the location of each sensor. However, 

using more number of cities as the study area might give more promising data to manage imbalance in the 

input categories for LCZ classification. Moreover, more air pollution sensors can cover all LCZ categories 

and provide a more reliable dataset for PM2.5 observations. 
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6.2. Future work and recommendations 

This research adopted a two-stage approach: the first stage for classifying urban forms using deep learning 

and the second stage for predicting PM2.5. However, an alternative can be considered where all 

procedures are conducted within a single-stage model. It means that the input data in this one-stage 

approach would be both data related to urban form classification, such as the EO data and sample data (in 

this case, LCZ training data), followed by other related data contributing to predicting air pollution. The 

output data would also be both classification results of urban form and PM2.5 prediction. By integrating 

these diverse datasets into an integrated framework, the model can benefit from the combined 

information to make simultaneous predictions for both urban form classification and PM2.5 levels. This 

might improve accuracy and predictive performance. However, It may bring more complexities regarding 

data integration, model design, computational requirements, and, more importantly, the interpretation of 

the results.  Another recommendation for improving the accuracy of the classification task of urban form 

is to fuse additional datasets that give information about the elevation and visual characteristics, such as 

street view imagery, for training a deep learning model. 

 

 

All reproducibility materials for this research can be found on: 

https://github.com/Morteza-Amouei/MSc-Thesis 
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