
Development of an Eye-controllable Self-Driving Wheelchair

A Master's thesis by Sjoerd de Jong

Interaction Technology, EEMCS

19-07-2023

Supervisors:
dr.ir. Edwin Dertien

dr. ir. Douwe Dresscher
dr. Khiet Thruong

University of Twente



Acknowledgements

I would like to thank my supervisor Edwin Dertien for his continuous support
throughout the project.
I would also like to thank Andrei and his father Arie Fokkink for working with me on
this project.

1



Abstract

This graduation thesis involves the design and implementation of an eye-controlled,
self-driving wheelchair for people who are unable to control conventional, often
joystick operated, wheelchairs. The wheelchair is developed in co-creation with a fully
immobile person and his father. Literature reviews show existing research on
eye-controlled wheelchairs, but current implementations require tedious user inputs.
There are many examples of indoor mobile navigation systems, however, their
applicability to wheelchairs is limited. Therefore a need for a self-driving wheelchair
with minimal required eye input, including adhering to strict safety requirements, was
established. Suitable hardware was chosen and implemented, as well as software in
ROS for controlling the wheelchair. Furthermore, different eye-tracking based GUIs
were designed and tested to determine the best way to use eye tracking for
wheelchair control. All elements were combined into a final prototype, of which its
validity was proved with user tests. While the user was able to use the prototype to
move himself around, full self-driving capabilities were not achieved, and thus more
research is needed to improve the self-driving abilities of the wheelchair.
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1. Introduction

1.1 Motivation and scope

People with disabilities often experience difficulties in their daily lives. Activities of
Daily Living (ADL) like washing, dressing, eating and using the toilet, which are routine
tasks that most young, healthy individuals can perform without assistance, are for
others a daily battle. Furthermore, people with (physical) disabilities in some cases
lose one of their most important social rights; the right to move. The physically
disabled are often wheelchair-bound and unable to perform the daily activities that
others deem normal, and in many cases can make them feel socially excluded.

In more severe disabilities, like locked-in syndrome (LiS) [1], patients are not
just wheelchair bound, but also completely dependent on caregivers. An individual
with LiS is in most cases not cognitively impaired, but does not have control over any
part of their body except for their eyes. The inability to communicate and perform
ADL’s can reduce the individuals quality of life, and also make it very difficult for them
to actively be a part of the community.

Assistive technologies can give disabled individuals more freedom and
increase their abilities to perform certain tasks. They can reduce the impact the
disability has on their lives and improve their wellbeing. Assistive technologies can be
any item, piece of equipment, software program or product system, and can be
anything from simple things like cardboard communication boards, to prosthetics,
head trackers and computer programs.

The main challenge with developing assistive technologies, however, is the
wide variety of disabilities and problems for which they are needed. Each person may
have different abilities and disabilities, along with different ADL’s they struggle with.
Building a gaming interface for an individual with duchenne may be completely
different from building a gaming interface for an individual with LiS. This poses a
challenging task for developers of assistive technologies, as each product they design
often has to be tailored to only a small minority of users, and more often than not,
tailored to single individuals.

This research will focus on researching, developing and testing a self-driving
wheelchair, as well as an user interface that can be controlled using eye-tracking. The
wheelchair will be developed in co-creation with a patient with locked-in syndrome and
his father, who set up a platform called Ability Tech (https://abilitytech.nl/). Ability Tech
aims to develop innovative, mostly technology-based solutions for problems that less
abled people are struggling with. The wheelchair will be developed for Andrei Fokkink,
a 26 year old man (also see https://www.andreitekent.nl/). While Andrei is not able to
control any part of his body, he is able to fully control his eyes, which he also uses to
control a gaze-tracking tablet which he uses to communicate and for entertainment.
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The main goal of this project is to develop a (semi-)self-driving wheelchair that allows
him to drive to a desired location using his eyes.

1.2 Research questions

The research questions that will be addresses in this project are:
Main RQ:

- “How can we develop and evaluate an eye-controllable, self-driving wheelchair
for (partly) immobile people?”

Sub RQ:
- “Which method of input controls suits both the user and application the best

when normally functioning muscle control is absent? (eye-tracking, brainwaves,
etc.)”

- “What are the best methods of making the wheelchair environment-aware and
what software algorithms are needed? (Lidar, 3D camera, etc.)”

- “How can an interface be developed that will both be efficiently usable by the
user, as well as provide enough input for the driving algorithms?”

1.3 Approach and outline

This report will start by performing a literature review to get a better understanding of
the problem statement, related work, ethical and liability implications, and
stakeholders. After that, interviews will be carried out to obtain more specific
requirements from the stakeholders. Thereafter, the wheelchair hard- and software will
be designed, implemented and tested. The report will conclude by stating a conclusion
and discussion, and proposing further work.
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2. Background / Related work

2.1 Locked-In Syndrome

Locked-in syndrome (LiS) is a rare condition caused by damage to the brainstem,
most commonly by a stroke, hemorrhage or trauma. Patients affected by LiS retain
consciousness, but are unable to produce any or very little voluntary movements
(apart from eye movement), as well as the inability to speak. It can occur in both
males and females at equal rates and at all ages. Affected individuals have to rely
completely on caregivers. [1]

While cognitive function is usually unaffected, their attention, executive
function, intellectual ability, perception, and visual and verbal memory can in some
cases be affected as well. Patients are still able to hear and see, and in some cases
the patient is able to feel physical pain, but this depends on the form of LiS. [2]

Someone with LiS is unable to control their voluntary muscles, apart from the
muscles controlling the eyes. Some individuals can only move their eyes up-and-down
(vertically), but not side-to-side (horizontally). In most cases, individuals can blink as
well. [3] In a majority of cases, the patient can still produce (unarticulated) sounds, but
they cannot speak or control these sounds in any meaningful way. [2]

There are 3 main forms of locked-in syndrome: [1]
- Classic, where the individual has complete loss of motor functions but has

preserved consciousness and vertical eye movement.
- Incomplete, which is the same as classic but with remnants of voluntary

movement apart from vertical eye movement.
- Total, which involves total immobility and inability to communicate. (no eye

movement either)
Each form of LiS has its own complications, quality of life and requirements. An

individual suffering total LiS is not able to communicate with the outside world at all,
except for possibly brain waves. This leads to many misdiagnoses from LiS patients
as being in a vegetative state or other, and can have a negative effect on the recovery
of the patient. Diagnosing patients with Classic or Incomplete forms is less prone to
errors, but due to the rarity of the condition, can still go misdiagnosed for a while as
well if no one notices the eye movements. [3]
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2.2 Existing assistive technologies

2.2.1 Communication

There are various existing assistive technologies that help fully or partially immobile
patients to communicate with the world. The technologies used depend on the abilities
and disabilities of each individual patient. In LiS, communication is usually done using
eye-movement. If the patient has more control over their body, things like vocal
sounds or muscle movement can be used. In extreme cases where even the eyes
cannot be used, patients may still be able to communicate using brainwaves.

The most simple way of communication using eye-movement is to, for example,
look up or down, or to blink once or twice, for ‘yes’ and ‘no’. This is a good way of
being able to ask simple yes/no questions and receive a quick answer back, but does
not allow the patient to fully express themselves.

One of the most low-level assistive technologies for communication is the Letter
Board [4], shown in figure 1, with which patients can construct words and sentences
by using their eyes or other signals to confirm whether to select a certain row/column
pointed at by a caregiver. The caregiver calls every color, “red”, “yellow” … until the
patient blinks, looks up, makes a sound or other. This is then repeated for every letter
in that row. Although this method is slow and intensive for the patient, this allows them
to communicate and express themselves. Digital versions of the Letter Board exist
already, allowing patients to communicate without the need of the presence of a
caregiver, and also speeds up the process by utilizing auto-complete. [5]

Figure 1: Letter board

In recent years, more high-end solutions have been developed. For patients
who have more or less full control over their eye-movement, special tablets with
eye-trackers can be used. Tobii Dynavox products [6] are widely used, and are also
used by the person for which the solution will be made in this project. Eye-tracking
tablets allow people to do almost anything that can be done with a regular mouse,
from typing on a virtual keyboard, to surfing the web, making music and drawing.
Because of small inaccuracies in the eye-tracking hard- and software, and the inability
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for patients to keep their eyes a hundred percent focussed and steady for a prolonged
period of time, however, the tablets usually come with their own user-interface with
bigger buttons, and extra confirmation steps to increase the accuracy of the user
input. An example of such an eye-tracking tablet is shown in figure 2.

Figure 2: Tobii Dynavox eye-tracking tablet

2.2.2 Wheelchairs

People with physical disabilities often have trouble moving themselves around. A
wheelchair can be utilized to increase the mobility of physically challenged people.
Normal, non motorized wheelchairs are most commonly used by people who are
either able to push forward themselves, in cases where they retained enough control
and power over their upper limbs, or by caregivers to move lesser-abled people to
their destination. [7]

However, operating a regular wheelchair can be quite difficult for a patient,
even when they still have control over their upper limbs, since it requires a lot of
muscle strength and endurance. Wheelchair users also have an increased risk of
upper-limb extremity injuries compared to non-wheelchair users, due to repetitive
loading of the upper limb. [8] In cases where the person is not able to propel himself
forward, they have to rely on a caregiver. This can both lead to social exclusion for the
patient, and increased stress/pressure for the caregiver. [7]

To fix this, an electric wheelchair can be used. Usually, electric wheelchairs
consist of two independently moving wheels with two non-driven wheels, along with a
wireless power source and a joystick for control. Electric wheelchairs greatly reduce
the loading of the upper-limbs and increase the independence of the user, giving them
more freedom on where and when they want to move around. [8]

Wheelchairs can come in many different shapes and sizes, in some cases
tuned specifically for the end user. Depending on the specific needs and requirements
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of the end user and the environments and scenarios in which the wheelchair is used,
different elements of the wheelchair can be adjusted. These include things like the
weight of the wheelchair, whether it is foldable or not, or whether or not it has an
adjustable chair. [9]

There can also be a variety of different wheel configurations, depending on the
specific requirements, as shown in figure 3. Most commonly, electric wheelchairs have
two independently moving wheels, along with one or more non-driven wheels for
stability. Some smart wheelchairs have also been developed which can deal with more
challenging terrains like rocks and stairs, or can maneuver in more narrow spaces by
using for example omni-wheels for a smaller turning radius. [9]

Figure 3: Different types of wheelchairs

Some people, like people with LiS, are not able to control the joystick due to
limited control of their hand movement, which is required to hold and move the
joystick. Users need to keep putting a certain amount of effort to operate the
wheelchair continuously until it reaches the destination by using the joystick, which
may be challenging even for people who still have some degree of hand control. [8]

Self-driving wheelchairs can in this case be a solution. Self-driving wheelchairs
use environmental sensors to map their surroundings, and use that information to
drive the user to their desired destination. They require little to no physical input from
the user.

10



2.3 Input methods

An important aspect in self-driving wheelchairs is the ability for users to decide where
to drive to, with minimal to no physical effort. Depending on the specific abilities and
disabilities of the user, different input methods can be used. Parikh et al. described
how the best method for each individual user can be established. [10]

2.3.1 Touch

For users with some degree of control over their upper limbs, a touch screen
can be used where the user can either tap or draw a path to the desired destination.
This reduces the strain on their hand which would be the case with prolonged joystick
driving, to a short, minimal input.

2.3.2 Brain waves

In case a user is not able to sufficiently move their upper limbs, a brain wave
interface (BCI) can be used. These devices are placed on the skin close to the brain,
and are able to measure and interpret brain activity. BCI technology has come quite
far over the past few years. They do however still have their drawbacks with regards
to comfortability of the hardware and their accuracy. The model used to interpret the
signals also has to be trained on each individual separately, which may not be
practical. Abiyev et al. integrated a BCI for the control of a wheelchair using EEG
signals. A neural network is used to predict the intended control commands from the
user. They stated that they were able to achieve a 100% accurate classification rate
using this method. [11]

2.3.3 Cloud

In case the user does not have sufficient cognitive and/or physical abilities to be
able to safely control the wheelchair, a remote operator can control and give directions
to the wheelchair from a distance. While this cloud-based control works, it still requires
a remote operator to be available, and still requires a way for the patient to make
known where he wants to move to. [10]

2.3.4 Voice

If the user is able to speak, voice commands like “go left”, “stop” or “drive to the
front door” can be used. Even when the patient is not able to produce articulated
words, the produced sounds can be analyzed in terms of duration, pitch and other
features and used to control the wheelchair.
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2.3.5 Other input methods

As Plotkin et al. [14] showed, it is also possible to control a wheelchair using
sniffing. Their setup consisted of a sniff sensor, which can detect when a user sniffs in
and out, while being able to filter out regular breathing patterns. This was then hooked
up to the wheelchair controls, where two sniffs in meant forward, two sniffs out meant
backwards, and one-out/one-in and one-in/one-out meant turn left and right,
respectively. They proved that it was possible to control a wheelchair using this setup
with reasonable accuracy.

Harish et al. [15] developed a wheelchair that is controllable with movement of
the tongue, for persons disabled with quadriplegia(paralysis below the neck). An
infrared sensor is used to determine the orientation of the tongue, which is used to
directly control the wheelchair. The tongue can be moved to the left of the mouth to
turn left, right to turn right, and moved forward and backward to drive forward and
backwards.

2.3.6 Eye movement

Aforementioned input methods may not be suitable for people who have no
voluntary muscle control. Mainly for locked in patients, controlling the wheelchair with
eye-movements could be a better solution. Eye-movements can be tracked with a
readily available eye-tracking camera. This input can then be used to either control a
virtual joystick, clicking buttons for step-based movement, or by looking at the desired
destination on a top-view map.

There is existing research towards eye-controllable wheelchairs, like the
Eyedrivomatic [12], which is a low-cost solution that uses small servo motors to
actuate the joystick of a wheelchair, and uses simple on-screen buttons to indicate the
direction. While this works, the wheelchair itself is not aware of its surroundings and
thus cannot intervene when the user gives an unintended input, which in turn can lead
to unsafe situations. The setup also requires the user to constantly interact with the ui
while driving. It uses a step-based control, where the user can click buttons to make
the wheelchair e.g. drive forward for 5 seconds or turn left for 2 seconds. Especially
for longer distances, this is not ideal and can become discomforting, as after every few
meters, the user has to interact with the screen again. The hard- and software of the
Eyedrivomatic can be seen in figure 4.

An alternative solution is the one proposed by Dahmani et al. [13], which does
not make use of any visual user interface, but rather takes the point where someone is
looking at and drives to there. Using this gaze data, they showed that it was possible
to control a wheelchair this way. The main challenge with this solution, however, is to
distinguish between normal eye-movement and intended driving inputs of the user.
E.g. not everything you look at is a waypoint. When you drive around, you may want to
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be able to look around, for example to scan for obstacles or have a conversation, and
this should not cause the wheelchair to move into that direction.

Figure 4: Eyedrivomatic hardware kit and software interface

In order to know what the user is looking at, a suitable eye tracker has to be
used. An eye tracker is able to deduce where the user is looking at in 3d space, just
from the observed position of the pupils in the eyes. Most modern eye trackers use
near-infrared beams along with a high resolution camera. First, a simple face tracking
algorithm is used to estimate the position of the eyes, after which the infrared beams
are directed to shine onto the pupil. A camera is then capturing these reflections, and
using calibrated user data and complex algorithms, it is able to extract the gaze data.
All of this can be done in a non-intrusive way from a nearby placed module, without
the need to attach anything to the user. [20] This method is visualized in figure 5.

There are many commercially available eye-tracking systems which can do this
all for us. For this project, a Tobii eye-tracker will be used of which its input can be
integrated like a normal mouse, although with less precise movements.

Figure 5: Eye tracking explanatory visuals
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2.4 Self-driving wheelchairs

For some groups of users, even relatively simple inputs can be challenging to operate.
Especially during driving, the user may have to continuously repeat these inputs. E.g.
a certain eye-tracking wheelchair may require the user to always look at a screen, or
always look in the direction they want to go. Applying self-driving features to the
wheelchair can minimize the needed user input while still getting the user to the
desired destination. Self-driving algorithms can do all the heavy lifting using
path-finding and obstacle detection, while the user only needs to roughly indicate
where he wants to go. Various research regarding self-driving wheelchairs has been
done already.

A recent implementation can be found in Schiphol, which ran a trial of a
self-driving wheelchair that can take passengers to where they are going, without the
need for human input [17]. The wheelchair, shown in figure 6, can only follow fixed,
preset routes, and will stop when it detects an obstacle. The passenger has to input
the desired destination on a touchscreen. An emergency button is present in case the
wheelchair malfunctions. The wheelchair cannot deviate from its programmed path
and thus when it detects dynamic obstacles, it has to alert bystanders to get out of its
way. While this implementation may be great for an airport, for the case of this project,
the wheelchair needs to be “smarter”. The user should have more control over the
destinations and the path it is taking, and the user input should be made more
accessible as well.

Figure 6: Self driving wheelchair in Schiphol
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Hye-Yeon et al. developed an autonomous self driving wheelchair for the
physically weak [18]. They implemented SLAM in ROS with three Lidar sensors to
create a map of the environment, and then generate a path from the current
wheelchair position to the target position. The performance of the proposed solution
was evaluated by comparing the path and driving behavior of the self-driving algorithm
with real human input, and it was found that the applied methods were effective in
driving from A to B. However, they also state that they did not implement many safety
features. The target destinations also have to be typed into a chatbot, which is not
convenient for an individual who can only use their eyes. Their prototype can be seen
in figure 7 below.

Figure 7: Self driving wheelchair by Alkhatib et al.

Another autonomous wheelchair was developed by Alkhatib et al. [19]. It uses
so-called April Tags, which look like QR-codes. These tags are sparsely stickered onto
the walls around a building. The wheelchair is equipped with a simple camera. When
the camera sees a tag, it can determine its current position and orientation based on
the pattern, position and orientation of the tag in the camera frame. It combines this
with simple infrared obstacle avoidance to be able to autonomously drive from A to B.

While there are various other autonomous wheelchairs being developed, there
does not yet exist a robust, commercially available, eye-driven solution including all
the safety precautions needed for the wheelchair to be operable in daily life.
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2.5 Environment mapping techniques

In order to make a wheelchair “self-driving”, it needs to be equipped with the right
sensors and software to make the equipment aware of its environment. Having a
vulnerable person in a self-driving wheelchair comes with a lot of safety
considerations, and thus the wheelchair needs to be smart enough to cope with
different terrains, environments and weather-and lighting conditions, as well as the
ability to react to unexpected situations that may occur. In order to achieve this, the
wheelchair can be equipped with various sensors to map the surroundings and detect
obstacles.

2.5.1 SLAM

Simultaneous Localization and Mapping (SLAM) is the term used for mapping
an unknown environment while simultaneously estimating the robot’s position within
that environment. SLAM allows a robot to build a 2d or 3d map of its surroundings by
combining multiple sensor measurements and its own odometry information to
iteratively estimate its current pose. SLAM is often the preferred method for indoor
localization, as it can provide more accuracy and granularity than other localization
methods like GPS. It can also function in dynamically changing environments, such as
crowded places, where pre-constructed maps would be insufficient. [20] An example
of a map created with SLAM can be seen in figure 8.

Figure 8: Example of a map created with SLAM

2.5.2 Sensors used in SLAM

In order to be able to run SLAM, the robot needs to be equipped with various
sensors. The choice of sensors depends on the specific requirements, available
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technologies and environmental conditions. In the most basic implementation, a Lidar
and odometry sensor are used.

A LiDAR(Light Detection and Ranging) sensor emits laser beams and
measures the time it takes for the laser pulse to return. Often this laser is mounted on
a rotating element which allows it to take multiple readings per rotation to create a
real-time 2d scan. Some more advanced LiDAR sensors can also create 3d scans.
LiDAR sensors are used in many robotic applications, like self-driving cars, and can
work both indoor and outdoor.

An odometry sensor provides an estimate of the robots pose based on the
rotations of the wheels. Given the wheel mounting positions and the wheel radius, it’s
possible to calculate the relative path the robot is taking from its starting position by
counting how many times each wheel has rotated. Wheel encoders are placed onto
the wheels to be able to measure this. Odometry alone is, however, prone to drift over
time. This can be due to inaccuracies in the wheel rotation measurements, slight
inaccuracies in the static robot parameters, softening of the tires and slipping of the
tires. Inertial Measurement Units (IMU’s) are commonly used in conjunction with
odometry sensors to counter this drift and obtain a more robust estimate of the robots
pose.

In addition to LiDAR and odometry, other sensors like distance sensors, 2d-
and 3d cameras, bumper sensors and GPS to obtain a better localization estimate and
create more accurate maps with SLAM. [20]

2.5.3 SLAM software

To be able to process this sensor data and turn it into a usable localization and
mapping, the right software has to be used. There are open source implementations
available, almost all of which are on ROS.

The Robot Operating System (ROS) provides a set of tools, libraries and fixed
protocols for building robotic systems. Many robots in development use ROS as its
various open source libraries make it easy to prototype stuff, as well as make
high-end, robust, low-latency implementations. It can work with almost any sensor and
actuator, as long as it provides or accepts the right message formats. Code in ROS is
most commonly written in C++ or Python. ROS also provides a standard
communication protocol based on a publish-subscribe messaging model. This
communication layer facilitates data exchange and coordination between different
nodes within the ROS system. Each node can be a different sensor, actuator or piece
of code, that can communicate with each other over the local network.

For SLAM, the most used open source libraries on ROS are GMapping, Hector
Mapping and Google Cartographer. Each of which work in slightly different ways and
their performance depends on the used hardware components and the environment in
which the robot is deployed.
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2.6 Control, Safety and liability

The development and deployment of a self-driving wheelchair raises important safety,
liability and ethical considerations. How do we design the system in such a way that it
runs stable and does not put the user in unnecessary dangerous situations? How
should the system act when (parts of) the software or hardware malfunctions? In what
ways can both the user and bystanders intervene when other software precautions
fail? Who is liable in the case of physical damage to either the user or the
surroundings? Questions like these are important to ask to make sure that the
developed solution is both safe and does not cause any ethical concerns.

In order to address these questions, the Robotics Primer by Mataric [22] can be
used as a guide. In this publication, different architectures related to control and safety
are outlined.

2.6.1 Control

In order to ensure the safety of the developed system, eliminating potential
hard- and software malfunctions is very important. This can be achieved by using
high-end sensors, but mostly relies on how this data is processed and how the data
flows through the different parts of the system. Since (wireless) communication is
never perfectly reliable, it is safer to perform all needed processing on the robot itself.
Sensors, actuators, and decisions need to interact in an effective way to get the robot
to do its job. It is recommended to avoid controlling all of those elements from a single
centralized program, and instead split them up into different blocks that are each
responsible for a separate part of the system.

Control architectures provide guiding principles for designing programs and
algorithms. The different architectures can differ substantially in how they handle time,
modularity and representation, and the choice of architecture depends on the exact
requirements of the solution, including but not limited to, the robustness to noise,
static/dynamic environment, available sensor data, speed requirement, and the ability
to look back, predict or learn.

The main robot control architectures are deliberative, reactive, hybrid, and
behavior-based. In a deliberative architecture, every module (part) of the robot
performs its task in sequence, where the output of one module is an input to the next.
First they sense, then they plan, then they act. Things happen one at a time, and if
one module fails, the whole system does. In reactive control, things happen at the
same time, with multiple modules running simultaneously. There is a direct mapping
between sensors and actuators; If sensor1, do actuator1. The whole system runs on a
set of predetermined rules that act like reflexes, which makes it fast. In hybrid control,
both deliberative and reactive control are combined.
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The best known architecture for reactive control is Subsumption Architecture.
The basic idea behind it is to build systems incrementally, from the simple parts to the
more complex, and reuse already existing components as much as possible. They
consist of a collection of modules or layers, each of which achieves a task. All of these
modules work in parallel. When developing a robot using this architecture, we start at
layer 0, e.g. move-around. Once this works, we add layer 1, avoid-obstacles, which
works together with layer 0 to move around without bumping into obstacles. All layers
can work together to achieve a certain task. Each layer can run independently, and
when one layer fails, other layers can keep running unaffected.

An important aspect of the subsumption architecture is the ability for higher
layers to temporarily disable one or more of those below them. When avoid-obstacle
detects a too close by obstacle, it can disable move-around to stop the robot from
moving. This allows for the implementation of layers with different priorities, where for
example an emergency stop button is able to override the whole system.

A fully reactive control has its limitations, however, since it does not use any
memory, there is no learning, and it does not use any internal models/representations
of the world, which is something that may be required for a self driving wheelchair.
That is why a hybrid control can be used, which combines deliberative and reactive
control. Hybrid controllers can be made more robust and smarter than a reactive
control. A hybrid system typically consists of three components; a reactive layer, a
planner, and a middle layer that links the two components together. This is visualized
in figure 9.

Figure 9: A possible hybrid controller design
For a self-driving wheelchair, the system needs to be able to quickly respond to

unexpected obstacles and emergency stops, for which it needs a robust reactive
controller. For determining a path for the wheelchair to travel, the system needs to use
a deliberative controller to create an internal map of the perceived world. This makes
hybrid control a suitable controller for a self driving wheelchair.

Designing the middle layer can be complex, as this layer is responsible for
making sure that the two systems are brought together in a way that results in
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consistent, timely and robust behavior. For example; how should the path planner
respond when the reactive layer detects a dynamic obstacle that is in its way for
longer than 10 seconds?

Instead of a hybrid controller, a behavior based controller can also be used. A
behavioral controller is similar to a reactive controller, but allows for learning and
representation as well. For a self-driving wheelchair, however, building a good internal
map of the surrounding environment is essential, and with recent developments, map
building and path planning can be done in close to real time, which means that the
solution would not benefit much from switching to a slightly faster behavior based
system.

Any developed system is never 100% reliable. Robots can produce unexpected
behavior, also known as emergent behavior. Especially in dynamic environments, like
the ones that a wheelchair may be used in, it is important to understand what
emergent behaviors may occur, and how to deal with these in a safe way. The
wheelchair may exhibit different behaviors than what it is designed for. Some of these
behaviors may be features; an obstacle avoidance algorithm may cause the
wheelchair to follow walls better, while other behaviors are not desirable; too strict
obstacle avoidance can cause the robot to get stuck in a loop in certain situations.

2.6.2 Safety

While having a robust, reliable and responsive controller will make the solution
a lot safer, it still depends on the right sensory data and reliable actuators in order for
the whole system to be safe. A self-driving wheelchair cannot be completely safe if it is
unable to detect tables, ledges, overhangs and cars, things which may be tricky or
impossible for a single 2d lidar to detect. And even with the right sensor setup, no
sensor is 100% reliable, and thus various emergency stops have to be implemented
for the other 0.1%.

The sensor choice depends on the environment in which the wheelchair is
used. If the environment contains tables with narrow legs or low overhangs, a 3D
depth camera can be used to map those obstacles better. In order to prevent the
wheelchair from driving off stairs, downward facing distance sensors around the
wheelchair can be used to stop the wheelchair when it gets close to a ledge. When it
bumps into something, a bumper sensor can be used to stop the robot. Furthermore,
low acceleration and low maximum speeds can give the wheelchair more time to
process data and reduce the braking distance.

Furthermore, both the user and caregiver should be trained in advance on how
to control the wheelchair, and also how to identify and deal with potential unsafe
situations.

Still, some situations can occur where despite all the precautions, the system
puts the user in a dangerous situation. In this case, either the user or a bystander
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needs to be able to intervene. In case of the user, this can be done by big on-screen
emergency buttons where the user can look at. Ideally, however, if the user is able to
control some other part of their body faster and more reliably, this should be used as
an emergency input instead. Bystanders/caregivers need a way to intervene when the
user is unable to. This is usually done with one or more big buttons on the robot,
which can be pressed to shut down the full system. Caregivers can also be given a
remote emergency button so they can intervene more rapidly. Emergency stops
should always be implemented at the lowest possible level of the control architecture,
and should override all other layers.

When an emergency stop gets triggered, whether from a manual intervention or
from a dangerous situation detected by the software, there needs to be a way to
re-activate the system as well. This could be done by the user, but it would be safer for
a caregiver to assess the situation, make sure it is safe, and restart the system.

2.6.3 Liability

With any product, especially products in the medical (aids) industry, important
liability concerns may be raised. Who is responsible if the wheelchair drives off and
falls down stairs? Is it the manufacturer for not making a product that is able to detect
100% of all stairs, 100% of the time? Or is it the user who should have driven more
carefully around the stairs and should have intervened when they saw the wheelchair
drive toward the stairs? Do things change when the manufacturer advised beforehand
to not use the wheelchair in spaces with exposed stairs?

Product liability law holds manufacturers responsible for accidents, injuries or
damages caused by defects or malfunctions in the technology. No manufacturer
intends to harm its users, and manufacturers will make sure their products are safe to
use by both careful considerations during the development phase, but also with
rigorous testing. Regulations and guidelines are established by governments to which
they need to adhere to as well.

2.6.4 Ethical considerations

A self driving wheelchair can also cause ethical concerns. What if the
wheelchair decides to go to a destination where the user does not want to go? It is
crucial that the user remains in control all the time. But if the user has too much
control, the wheelchair may pose risks to others. There needs to be a well considered
balance between full autonomy and user control.

Another thing to consider is privacy and data protection. In order to realize the
self-driving features, sensors like lidar and cameras need to be used, which gather
personal data that the user may not want to share. It is therefore crucial that this data
is safeguarded, for example by making sure that all of the data processing is done
locally on the machine itself, without any data leaving it and without the ability for the
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manufacturer to access private data. Still, the user may agree for the manufacturer to
collect anonymized data to improve the system, which would also have to be done in a
safe way.

Since this project is part of a bigger Ability Tech initiative, concerns about ethics
and liability can be solved by partnering with existing companies like RDG Companje
or Louwman, which have a lot of experience with helpcare assistive aids and mobility
solutions. It can be hard to find and resolve all ethical, safety and liability issues by
ourselves, but by sharing and collecting insights from companies who operate in the
same market, many of these issues can be addressed.
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2.7 Stakeholder analysis

2.7.1 Defining the stakeholders

Various stakeholders can be identified in this project. These include developers, end
users and other related parties. Here follows a more thorough overview.

- End User:
Users with physical disabilities for which the wheelchair will be developed. This
is the primary stakeholder and can provide valuable insights and feedback
throughout the project through interviews and user tests.

- Caregiver and/or family members:
As it is more challenging for the end user to communicate their exact needs,
the input of caregivers can be helpful. The caregivers and family members have
experience with caring for the end user, and their perspective can supply more
information about their needs and can help think about possible solutions.

- Government:
Who set up specific laws one needs to abide by, and can provide necessary
funding for the project.

- University:
Sets up specific time constraints and requirements for the project.

- Maker spaces:
Work spaces like the Designlab and Fablab that provide equipment like
3D-printers, laser cutters, woodworking tools, etc.

- Hardware suppliers:
Webshops and local stores where required components can be purchased.
Need to monitor their stock and shipping durations. These can include
webshops like Conrad and Tinytronics for electronics, but also local hardware
stores like Karwei for materials and equipment.

- Soft- and hardware engineers:
Developers who are working on the realization of the project, both in the
hardware and software side. For this wheelchair project, this mostly consists of
me, with occasional help of two other people. For further development in the
scope of Ability Tech, possibly expertise from outside the university is needed.
This can be R&D facilities or existing mobility and healthcare aids companies.
(e.g. RDG Companje or Louwman)

- Ethics Committee:
Board which needs to give approval to perform various interviews and user
tests.

- Medical departments
Departments that operate in and regulate products and services related to the
medical (aids) sector. These can include medical insurance agencies, health
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and social care assessors, and WMO (Medical Research Involving Human
Subjects Act) consultants.

- General public:
Since the wheelchair is being operated in a public environment, bystanders can
also be considered stakeholders. The wheelchair may need to navigate through
busy areas, and may need to indicate to people where it intends to move and
possibly make known that someone is blocking its path. Furthermore, the ability
move will extend the possibility to socialize for the end user.

2.7.2 Stakeholder matrix

All defined stakeholders have been placed in a stakeholder matrix to get a better
overview of the involvement of each stakeholder. It’s important to inform and monitor
the stakeholders before, during and after the project, to make sure that the
requirements are up-to-date and there are no unforeseen problems arising that could
delay or otherwise negatively impact the process of the project.

For this project, a stake-holder matrix can be created as shown in figure 10:

Figure 10: Stakeholder matrix
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2.8 Requirements

To be able to come up with a concise set of requirements, an interview was carried out
with both the caregiver and the end user. The interview questions can be found in
Appendix A. The main goal of the interview was to create a clear overview of the exact
needs and desires of the user, as well as getting some practical information that may
be useful during the development of the project.

2.8.1 End user profile

Based on this interview, we can come up with a detailed profile of the end user:
The end user for which the wheelchair will be developed is Andrei Fokkink, a 26 year
old male. Due to birth complications, Andrei is unable to voluntarily control any of his
muscles except for his eyes. He does have a small degree of control over his neck
movement, but not consistent enough to be usable. He is also spastic, which leads to
random unvoluntary muscle movements from time to time. Andrei is wheelchair bound
and relies on caregivers to move around and perform daily tasks like eating.

Despite this, his cognitive functions are mostly unaffected and his senses like
seeing, hearing, feeling, tasting and smelling are working normally as well. He uses
simple eye movements (looking away/at something to indicate a no or yes) to
communicate, and also uses a Tobii eye-tracking tablet to construct full words or
sentences. This allows him to participate in social interactions and make known his
needs.

In his free time, he likes to go scouting, make music and make art. Using his
Tobii tablet, he is able to control a pen tool in a paint-like program, in which he draws
abstract art, which he also sells. He also uses the tablet to write emails, send text
messages, and to browse the web. The accuracy of the eye-tracking and the focus of
his eyes is enough to be able to perform these tasks, although misclicks do happen
and clicking on small on-screen elements can be challenging. Using the eye-tracking
for a prolonged period of time can also lead to discomfort.

Ideally, the wheelchair should be usable on regularly visited locations at the
least, being two houses and the day care. Andrei said that he would also like to be
able to drive around outside, for example on the streets or in the park. He expects to
actively drive around with the wheelchair for around two hours a day, but that may
change when he has more freedom of moving around.

When asked why Andrei wants a self-driving wheelchair, he indicated that he
mainly wants to be able to move from A to B whenever he wants, without needing to
wait for a caregiver, and to “unburden” the caregiver by not needing someone to drive
him around. He wants to become more independent and be able to more actively be a
part of the society.
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2.8.2 Project requirements

Based on the interviews and technical possibilities, the following list of project
requirements can be established, according to the MoSCoW priority categories [16]:

MUST HAVE
1. The end user should be able to move from A to B completely independent of

caregivers in a spacious, pre-known environment .
2. The wheelchair should be safe to use and should not expose the user to any

unnecessary risks. This can be achieved with the use of simple obstacle
detection, as well as accurately being able to detect user input and possibly
adding emergency stops. Together with the ethics committee, the risks
associated with the user tests should be considered.

3. A way for the user to make known his desired destination should be created,
most likely using an interface on an eye-tracking tablet.

SHOULD HAVE
4. A way to map the environment to be able to implement more advanced

obstacle detection
5. A low-effort GUI which allows the user to make known his desired destination

without needing to focus on the screen 100% of the time while driving.
6. The ability to navigate and drive around in new environments

COULD HAVE
7. Long-lasting battery so the user can satisfy his driving needs for a full day (~2

hours of driving)
8. Robust hard- and software that are not specific for the used wheelchair frame,

but is able to be integrated into a variety of existing wheelchairs with low effort.
9. Full path-finding using SLAM, where the user only needs to click on a point on

a map, after which the wheelchair fully autonomously drives to the destination.
10.The ability to detect dynamic obstacles (e.g. humans) and be able to notify

them to move out of the way in case they are blocking the path.

WON’T HAVE
11. The ability to drive around outside. Given that there are no walls outside to use

as a point of reference, the requirement for sensors to function in different
weather conditions, and the safety considerations needed with respect to traffic
situations, making the wheelchair be fully operable outside will most likely be
out of scope for this project. However, driving outside is a wish of the client, and
wheelchair users in general, so during development, certain hard- and software
decisions will be made so that these could work outside in future iterations.
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3. Ideation

In order to meet the requirements, a basic ideation about what the final setup may
look like can be established.

A basic high level diagram of the intended solution can be found in figure 11.
First, a map is built using SLAM. The user can see the map and the current position
and orientation of the wheelchair in that map on his screen. He can input a target
destination, after which a path is created. This path is then shown to the user for
confirmation. After confirmation, the wheelchair drives to the destination using the
generated path, whilst continuously updating its path based on changes in the
environment. During the driving phase, the user is able to intervene when needed.

Figure 11: Basic block diagram of the system

A possible way of displaying this information to the user can be seen in a
mock-up user interface in figure 12:

Figure 12: Sketch of a possible user interface
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4. Method/setup

In order to answer the research questions stated in Chapter 1.2, and to translate the
requirements of Chapter 2.8, one or more prototypes will be developed. These
prototypes will be iteratively improved and tested, adding more layers of complexity
after each iteration. The first prototype(s) will consist of simple, non-autonomous
controls, to get a feel of the platform and the abilities of the user. After this, the
self-driving features will be implemented.

4.1 Wheelchair setup

4.1.1 Wheelchair base

For the prototype, an old wheelchair base was in possession by my supervisor
and readily available to be used. Ideally, a more modern setup would be used, since
they include built-in batteries and often useful built-in sensors. However the decision
was made to go with the current base since it would cost more time/money to obtain a
modern base, and would possibly require more complicated fiddling with protocols to
be able to tap into the controls and sensor data.

The used wheelchair base is made by Dynamic and is a differential drive setup,
with two swivel wheels at the front. Originally, the wheelchair can only be controlled
using a joystick, but using digital potentiometers the joystick input is simulated, which
allows the base to be controlled programmatically. Two large 23V SEM motors power
the two main wheels, which have solenoid brakes at the back side of the motor shaft
for mechanical braking. A control box is attached to the motor controller, which houses
a joystick, an on/off button and a rf-receiver. A separate remote controller with a Wii
Nunchuk is used to be able to easily control the base from a distance.

The base is powered by a modified uninterruptible power supply (UPS). The
electronics in the UPS are used for charging and protecting the batteries, while the
two 12V lead batteries are connected in series to the motors and the rest of the
system for a 24V power supply. The batteries each have a capacity of around 20Ah,
which should be enough for a few hours of driving. The wheelchair base, along with its
controllers, can be seen in figure 13.
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Figure 13: Wheelchair base with controls

4.2 Odometry

4.2.1 Encoders

In order to get reliable position data for SLAM, and for being able to apply PID control,
having good odometry information is a must. The standard way of adding odometry to
a differential drive robot is to add two encoder disc sensors to the back of the motors.
These encoder discs consist of many small holes or small magnets at consistent
angular intervals, and are combined with sensors. The sensor counts the number of
ticks to determine how fast and in which direction the motor is turning.

Modern electric wheelchairs have built-in encoders, of which the values can be
obtained by tapping into the communication protocol used by that wheelchair.
Depending on the age and brand of the wheelchair, different protocols may be used.
These protocols are often not open source, and may require a direct line of
communication with the wheelchair manufacturer to get the exact specifications of the
protocol.

The wheelchair base in the used setup is relatively old, and does not include
any built-in encoders. It was also not feasible to use a conventional encoder, since the
motor shaft on the back of the motor was occupied by the brakes. Furthermore, there
was also not much room to put an encoder disc directly on the wheel-axis behind the
wheel, especially while needing to be sturdy and weather-proof. Therefore a different
odometry setup had to be designed. Designing a suitable odometry setup will not only
be useful for this project, but having a setup that can fit on any type of wheelchair may
also be useful for future implementations where direct odometry information from the
wheelchair may not be available.
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4.2.2 Encoder design

The two main types of encoders are Optical and Magnetic. In the case of
optical encoders, encoder discs are used with many small holes along the edge,
through which an LED shines through. This is not usable in our setup since there is no
room to put encoder discs. Therefore, the decision was made to go with a magnetic
encoder.

By placing two strong magnets on the wheel at opposite orientations, a
constantly changing magnetic field can be generated as the wheel turns. A hall-effect
sensor can be used to measure the absolute value of the magnetic field. The hall
sensor can be placed on a fixed point on the wheelchair base, close to the magnets.
The resulting output will resemble a periodical, sine-like wave. Adding a second
sensor at a 90 degree angle with regards to the first will result in a cosine-like wave.
The two hall sensors combined will always yield a unique pair of measurement
values for each absolute angle of the wheel.

An illustration of the setup can be seen in figure 14

Figure 14: Odometry setup using two magnets and two hall sensors
This setup should work for any wheelchair, or in fact almost anything with

wheels, as it only requires to have the ability to mount two magnets to the wheels, and
two hall sensors to the base. Magnets can be mounted using screws, clips, glue or
tape, as long as they are fixed in place with minimal chance of displacement over
time.

4.2.3 Encoder setup

The magnets should have a sufficiently strong magnetic field to minimize the
effect that other external magnetic fields(noise) have on the measurements. Therefore
the decision was made to go with N42 magnets, which are strong and relatively
cheap. After some initial tests, it was found that one magnet on each side wasn’t
strong enough, so two magnets were placed on each side. Two hall sensors were
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placed right along the wheel axis, at approximately a 90 degree offset. The placement
of the hall sensors and magnets can be seen in figure 15 below.

Figure 15: Placement of the magnets and hall sensors on the wheelchair.
The sensors are hooked up to a Teensy 4.0, which is reading the values and

printing them out. Teensy 4.0 was used because of the ability to read analog values in
a higher resolution (up to 16 bits), and because it is faster than a standard Arduino, so
more measurements can be done and processed per second. Plotting both values as
the wheel turns at a consistent speed yields the graph shown in figure 16. It can be
seen that both sensors yield a similarly shaped periodic signal with an offset. At no
two points in the same period are A and B the same, e.g. every combination of A and
B measurements yields a unique angle. The signal has a “bump” at the top and
bottom of the curves because two magnets were used on either side. This should
however not impact the accuracy of the angle extraction as each A/B pair of values
still yields a unique angle.

Figure 16: Hall sensor output
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In order to turn the raw hall sensor outputs into absolute angles, a calibration
method was implemented. While turning the wheel at a constant speed, the operator
can push a button connected to the Teensy. This will make it start recording the
readings of both sensors until it has completed a full rotation (at this point the pair of
A, B values is (almost) the same as when it started recording). A buzzer indicates
when this calibration is done. Both sensor values are then saved to an array. Since the
wheel is turning at a constant speed, each reading is a fixed angle apart. E.g. if 1000
readings were made, each reading is 360/1000 = 0.36 degrees. These arrays are
saved into the internal persistent memory of the Teensy.

To compute the current absolute angle, a simple nearest-neighbor algorithm is
used, which takes the current sensor readings, and computes which calibrated
reading pair is closest to it. This results in an array index, which can be converted to
an angle using angle=index/total_calibration_readings*360. A moving average filter is
applied to filter out noise. Since a reasonably powerful Teensy 4.0 is used, readings
are taken 200 times per second, with a 10 reading moving average window. This
results in accurate angle readings with a sufficient resolution, and since the computed
angles are absolute, there is no drift over time, which could be the case with normal
encoders. The resulting angles are integrated over time to get the distance traveled for
each wheel, which are then published in ros.

4.2.4 IMU

Just using wheel encoders for odometry can lead to inaccurate results in some
situations. If the wheelchair drives on a slippery surface and the tires slip, or the
wheelchair is stationary stuck at a wall while the wheels are turning, the wheel
encoders will accumulate a lot of errors. Even in almost perfect conditions, a slight
change in the tire pressure (smaller wheel diameter), or inaccuracies in the calibration
can result in large deviations over time. Therefore, other odometry sensors can be
used to make it more robust.

A commonly used counterpart to the encoders is the IMU. An Inertial
Measurement Unit(IMU) measures triaxial acceleration, triaxial angular velocity, and
sometimes orientation using earth's magnetic field. If the sensor is moved forward one
meter, this results in a certain change in acceleration, which can be integrated to get
distance. IMU’s, especially cheap ones, do drift a lot over time, so cannot reliably be
used on their own as odometry sources. But in combination with wheel encoders, they
can greatly improve the accuracy of the odometry as a whole.

For this project, the Xsens MTI-1 was used, as it is a high-end IMU sensor with
built-in magnetometers.
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4.3 Lidar
During the first phase of the development, the SICK TIM571 was used. This

SICK scanner was salvaged from a different robot that was present at the faculty. The
scanner is high-end with a range of 25 meters and an angular resolution of 0.33
degrees. While it worked really well, the sensor is also relatively expensive, with a new
price of around $2,000. Given that we would like to make the setup production-proof,
the decision was made to switch to a cheaper alternative.

The used lidar sensor is the RPLIDAR S2, which is a 360 degree laser scanner
with a range of 30 meters and an angular resolution of 0.12 degrees. It has better
specifications than the SICK scanner, while also being considerably cheaper at $400.
The lidar is connected to the LattePanda using an USB connection, and is positioned
at the front of the wheelchair base. The lidar, along with its lidar feed, is found in figure
17.

Figure 17: RPlidar S2 and the corresponding lidar feed

4.4 Other hardware components

4.4.1 Processor unit

For the main processing unit, the LattePanda 3 Delta was used. A Raspberry Pi
4 would in theory also work just fine, but to make development more efficient, a more
powerful board was desired. During development, code may not be very optimized,
and (3d) visualizations can be very helpful for understanding why things do and don’t
work. Having a more powerful board means that more rich and informative
visualizations can be made, and prototypes can be built faster. The Raspberry Pi is
also hard to obtain lately as it is often sold out everywhere.

The LattePanda 3 Delta comes with Windows pre-installed, but is manually
flashed with Ubuntu 22.04, since Linux is better for robotics and ROS. It comes with
three USB 3.0 ports, as well as an Ethernet and HDMI port. A HDMI dummy plug is
inserted into the HDMI port in order to make it possible to use a remote desktop
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viewer to control it from a distance. The LattePanda has a built-in Arduino Leonardo
board, of which the pins are directly exposed and ready to be used.

4.4.2 Camera

As the wheelchair user is unable to move their neck, they cannot look next to or
behind them. While the Lidar scanner should be able to detect most obstacles, some
small or low obstacles may be missed, in which case the user needs to be able to
intervene. Therefore a good view of the user’s surroundings is very important.

In order to facilitate this, a wide-angle fish-eye camera is placed about 1 meter
above the wheelchair, pointing down. The camera feed is shown in figure 18. This
allows the user to look around in an approximate 2 meter radius. In future versions,
this can be replaced with an actual spherical 3D-camera, which allows a bigger
viewing radius and doesn’t require to be mounted very high above the wheelchair. An
alternative setup would involve placing multiple cameras around the wheelchair and
stitching the different camera feeds together, in which case the cameras can be
mounted even lower, a setup often used in smart cars.

Figure 18: Top down camera view

4.4.3 Power

Since the wheel motors require 24V and a large current when driving, a suitable
power supply had to be used. The wheelchair base already included a modified
Uninterruptible Power Supply (UPS), with two 12V lead batteries inside. The PSU
electronics are used for battery management and charging, while the two 12V
batteries are connected in series to make 24V, and are connected to the rest of the
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wheelchair. In between the batteries and the wheelchair, a BMS board is placed to
protect against short circuits and for under- and overvoltage protection.

Since the LattePanda requires 12V, a separate 24V->12V 5A DC-DC converter
by VictronEnergy is used to step down the voltage. The LattePanda has an on-board
12V->5V converter which is used to power the Teensy.

4.4.4 Safety components

In order to make the prototype safe enough to perform user tests with, some
emergency stops had to be implemented. During the user tests, the researchers can
override the control at any time. For an extra safety layer, it was desired to attach a
bumper sensor to the wheelchair, in order to make it stop when it hits anything.
However, after some online searching, no suitable bumper sensor could be found that
could fit around the wheelchair.

Therefore, a custom bumper was designed, which can be found in figure 19,
consisting of a long red wire, some bearings and two limit switches. When an obstacle
hits the red wire, the wire bends, causing the limit switches placed near the handles to
be pushed in. The plan was to add small 3d-printer bumper sensors around each of
the bearings, in case the obstacle hits a corner first before hitting the wire, but due to
time constraints we were unable to implement this. Despite being a low-end solution, it
works decently well, although it requires more travel than a normal bumper sensor.

Besides functioning as a bumper sensor, it also provides a clear and easy way
for bystanders to stop the wheelchair in potentially dangerous situations. By pulling the
red wire, this also causes the switches to get activated, and thus functioning as an
emergency stop. The red color of the wire communicates to other people what its
purpose is, and it should be an intuitive way to intervene.

For lower obstacles, a more conventional bumper setup with extrusion profiles
and limit switches was created at the front of the wheelchair base.

35



Figure 19: Red wire emergency sensor
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4.4.5 System overview

A diagram with all main components of the setup can be seen in figure 20
below.

Figure 20: Block diagram of the hardware setup
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A photo of the full wheelchair setup (apart from the red wire bumper), is given in
figure 21:

Figure 21: Wheelchair prototype
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4.5 Software
The software of the wheelchair is designed according to the hybrid control architecture
discussed in chapter 2.6.1. During development, layers are iteratively implemented
starting from simple low-level layers like odometry and joystick control, to more
complex layers like SLAM. When one layer works, a new layer can be added. Different
layers can be combined for different software configurations. The software layers used
in the first and last user tests are almost the same, apart from the main layer that
combines all the inputs. Every sensor runs independently in their own layer(ROS
node), in parallel to all the other sensors. Each prototype has his own middle layer that
processes the sensor data in different ways for different outputs.

The different layer hierarchies have also been implemented. Most of this
happens in the main layer itself, which is responsible for collecting and combining the
sensor data. It will stop the wheelchair if it detects certain sensor feeds are
malfunctioning. It also has different internal hierarchies, for example when close
obstacles are detected on the lidar feed, the whole wheelchair will stop. The
emergency switches are fully in hardware and override all software, they are the
lowest level layer.

For the software of the wheelchair, a ROS1 Noetic environment was used.
While there are more recent environments based on ROS2, ROS1 was chosen
because despite ROS2 being advertised as being fully backward compatible, the
Xsens library only seemed to work with ROS1. Furthermore, the Arduino Leonardo
built into the LattePanda could not be gotten to work with ROS2 as well. ROS is a
widely used, open source platform, which makes development easier and also makes
it easier for future work to be built on top of this software.

In figure 22 below, an overview of all the ROS nodes can be seen:

Figure 22: ROS nodes block diagram
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4.5.1 Odometry

The Arduino node receives encoder ticks information from the teensy and
publishes it to the LattePanda in left_ticks and right_ticks topics. These topics
represent the number of encoder ticks that each wheel has turned since the system
booted up. Because of the custom odometry system, this could be set to 100 ticks per
degree. As an example, left_ticks could be -29456 and right_ticks could be 68123,
meaning that the left wheel did almost a full rotation (294 degrees) backwards, while
the right wheel did almost two rotations (681 degrees) forward.

In order for the Arduino to be able to publish ROS messages, the Rosserial
library is used. This package allows devices to communicate over serial using the
ROS protocol.

This data is then passed into a Python node that uses this tick data to compute
odometry information. An odometry message consists of a pose and a twist. A pose is
simply the current position and orientation of the robot, while the twist is the current
velocity expressed in both its linear and angular parts. The pose is computed by taking
the total rotations of each wheel and using math to calculate the current pose. The
twist is calculated by taking the difference between the current last tick messages, and
applying math to that. For this, open source code was used.

In order to make the odometry more robust, the Xsens IMU sensor was added
as well. The xsens_mti_driver package was used to take data from the Xsens and
publish it on the /imu/data topic. In order to fuse both data streams, the
robot_localization package was used. This package can fuse an arbitrary number of
sensors and use filters to combine them into a more reliable data stream. In this case,
an ekf_localization_node was used to fuse the IMU and encoder data. The EKF node
combines both datastreams by using an Extended Kalman filter. The needed
covariance matrix was iteratively tweaked until a smooth fused odometry frame was
obtained.

The resulting odometry output can be seen in figure 23 below. In this example,
the wheelchair was driven around the RAM lab at the University of Twente. In the ideal
case, the wheelchair would start and end in the same position. Even though fused
odometry was used, slipping of the wheels still caused a noticeable drift. However, this
should be accurate enough to be used in SLAM.
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Figure 23, Odometry output in Rviz

4.5.2 Lidar

In order to be able to obtain data from the RPlidar S3, the rplidar_ros package
was used. This package takes the raw lidar data from the RPlidar and transforms and
publishes it as a ROS-compatible LaserScan message.

4.5.3 Gmapping

To be able to construct a map of the wheelchairs environment, the gmapping
package was used. This is the most used SLAM package in ROS, with a lot of
available documentation and example code, which makes it convenient to integrate. It
subscribes to the /laserscan and /odometry topics and turns this into a 2d, grid-like
map.

4.5.4 Main program

The resulting map, as well as the raw odometry and lidar data, is being
published to a main node that combines these data streams in a useful way. This node
is custom written in Python. This node converts the odometry and map information to
a websocket-friendly format, which is sent to the GUI on the user’s tablet, which runs
in a browser. From the GUI, it either receives direct joystick control commands (e.g.
127,231), or a x,y target destination on the map.

In the latter case, it will first compute a path to that target destination. Since I
was struggling with implementing full SLAM-based path finding, the decision was
made to implement a more simple approach with just the odometry information. When
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a target (x, y) destination is given, the program first computes the target heading. If its
current heading has a too large deviation from the target heading, i.e. the wheelchair
is facing the other other way from where it needs to move, the wheelchair will first
rotate around its axis until it is more or less facing the right direction (less than a
quarter pi radians offset). It then starts driving forward, but with a slight x velocity to
correct its heading and steer itself towards the target point. It then keeps driving until it
is less than 10 centimeters away from the target position. This works pretty well,
although inaccuracies in the odometry information (no SLAM is used here), produces
some drift from the intended target destination. This drift is mostly caused by the
slipping wheels, but also by the fact that the swivel wheels at the front are not
modeled and cause the wheelchair to move differently depending on the current
position of the swivel wheels.

In both cases, before the velocity (joystick) input is passed on to the motors, the
lidar feed is used for simple obstacle detection. It will take the intended velocity input,
and translate and rotate the current lidar feed based on what it will look like in about
1-2 seconds if the current velocity input is passed on. This can be seen in figure X
below. The white dots on the left are the current lidar points, while the gray dots are
where they would be 1-2 seconds from now given the current joystick input (right). If
more than 10 points are inside the rectangular perimeter of the wheelchair, it indicates
that the wheelchair is about to bump into something. 10 was chosen to prevent
triggering unwanted behavior due to noise, but at the same time still being able to
detect narrow objects like table legs. If it is about to bump into something, instead of
passing on the velocity commands, it will send a 0-velocity command instead
(127,127), to make the wheelchair break. To keep moving, the user simply has to point
the joystick in an unobstructed direction, or in case of the path finding, set a new
target destination.

The resulting velocity command, either the direct joystick input or the output
from the path finding, is then published to the Arduino, which sends it over RF to the
motor controller.

4.6 User interfaces

4.6.1 UI architecture

Two versions of the UI were made, one written in Pygame, a visualization
library for Python that runs on the Lattepanda, and P5js, a Javascript visualization
library that runs in the user’s browser. The reason for this is that pygame runs on the
wheelchair itself, which makes prototyping more efficient as there does not need to be
any data exchange between the wheelchair and the user’s browser over a (private)
network, and user inputs can be directly published over ROS. However, during user
testing, the user would need to use a remote desktop application like Teamviewer to
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access the Pygame application on the wheelchair, which adds noticeable latency
especially when using the joystick.

Therefore it is better to run the GUI program on the user’s Tobii tablet directly.
To make it more convenient to test things, it was decided to go with a browser
application since this will allow the GUI to run on any machine without needing to
install any programs or dependencies. Since there was previous experience with P5js,
this was chosen as the main programming library to develop this in. Lidar and camera
data are converted into a websocket-friendly format and then sent to the client over a
websocket running on the local wifi. The client then sends back the user input over the
same websocket.

4.6.2 UI design

At first, a simple joystick GUI was made, with which the wheelchair can be
controlled with either a mouse, or with the eye-tracker. The Tobii eye-tracker emulates
a mouse pointer, so both inputs can be treated in the same way. This joystick is helpful
for testing, as it allows for controlling the wheelchair from any device directly. The
joystick area is made as big as possible to allow the user to be less precise in their
eye movements. The wheelchair will only start driving when the user looks at the
joystick area for longer than 0.5 seconds, to avoid triggering on quick glances. When
the user looks away from the joystick area, the wheelchair stops, which means that
the whole rest of the screen can be treated as an emergency stop. This should make it
safe as the user only needs to look away if something goes wrong. The GUI can be
seen in figure 24 below.

Figure 24: Joystick GUI
As per user tests findings outlined in chapter 5.1, the joystick controller was

further developed to display the lidar feed and add a top-down camera feed. The
joystick was moved to the right of the screen to make room for the lidar feed. Right
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was chosen instead of left because the user's tablet is mounted on the left, which
means the right part of the screen is closer to the user’s center field of view. The
joystick is displayed on top of a real-time top-down camera feed, so the user can see
what the impact of his actions are on the driving behavior of the wheelchair without
having to look away from the screen. This has the additional benefit that the
wheelchair will drive toward any point you look at on the camera feed.

On the left, the current lidar feed is displayed such that the user can see nearby
walls and obstacles, and to know where they are in the current environment, without
needing to turn their head. It also provides obstacle detection feedback, where it
shows when and where it detected an obstacle. This feedback is important as it tells
the user exactly why it stopped moving. If the obstacle detection happened without
any feedback, the user would not know which obstacle was detected and how it
should be resolved. The rectangle on the right represents the wheelchair and will turn
red when any lidar point will be inside of the bounding area if the user were to
continue to provide the current joystick input. The joystick pointer circle will also turn
red. Once the obstacle is no longer detected, both will turn green.

A big horn button was added in the bottom right, which the user can click to
produce a friendly horn sound. This feature can be used to either ask someone for
help, or to alert bystanders to move out of its way. The GUI can be seen in figure 25
below.

Figure 25: GUI with joystick, top-down camera, lidar feed and horn button

The final GUI is similar to the second, but for this GUI, the left side of the
screen is translated and rotated according to the odometry information. This way, the
left side resembles a less complex version of a slam map, where the lidar points more
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or less stay in place (apart from odometry drift) as the wheelchair moves. The user
can see where the wheelchair is in this map and where it is pointing towards.

This also allows the user to click on a target point on the map for the wheelchair
to drive to. This can be done by using their tablet to click on a point on the map. Tobii
tablets allow users to enable a two-step mouse clicking feature where the user first
clicks in the general area where the user wants to click, after which the Tobii will pop
up an enlarged version of that area in which the user can click again with more
precision. This should allow the user to select their desired target destination with
reasonable accuracy, even when the map is relatively small. Alternatively, this
two-step click could be implemented into the software directly.

After selecting the destination, the GUI will display the selected point along with
a path drawn from the current to the target destination. The user then has to confirm
whether they want to execute this path by clicking a second button.

Figure 26: Self-driving GUI

After the action has been confirmed, the wheelchair will start driving towards the
target. The joystick area turns into an emergency stop button, which the user can look
at for 0.5 seconds to make the wheelchair stop moving. Looking at it for 2 seconds will
cancel the current path completely.

The joystick is still included in this GUI to provide a way for the user to move
through more tricky areas in which the current self-driving implementation is still
struggling.
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5. Results and discussion

5.1 User test #1: Virtual joystick
For the first user test, the main aim was to create a simple interface and to get a better
understanding of what the user is and is not able to do.

5.1.1 Test setup

Date: 01-12-2022
Location: Designlab, UT
Duration: 20 minutes
Who: Researcher(me), end-user and father
Ethical request filing number: 220197 (see Appendix B)

The first user test took place in the Designlab at the University of Twente, in an
open hallway area with an obstacle-free area of about 6 x 10 meters, where the user
could freely drive around the wheelchair base without having to mind obstacles.

This test had a few goals. The first goal was to assess the eye control abilities
of the user and the Tobii tablet. Controlling a wheelchair with just a joystick requires
some level of accuracy and stability in the gaze data, and thus is a good way to test
this. Observations before/after the test were also made when the user started up or
closed the application, to observe in what ways the user is able to use the tablet and
with what accuracy they are able to click on small on-screen elements.

The second objective was to see whether the user would be able to control a
wheelchair with a simple eye-controlled joystick. In advance, the expectation was
already that this would not be a good solution, but since the user has a lot of
experience using eye-tracking devices, there is a chance that the user is able to
control the wheelchair in this way, which may be a good alternative control method for
areas where self-driving may not work well.

The setup can be seen in figure 27.

Figure 27: Setup for the first user test.
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The user was asked to control the base of the wheelchair from a distance, by
using his eyes to control a virtual joystick. The joystick application was built in P5.js
and ran in a browser window on the user’s Tobii tablet. This input was then sent to the
Lattepanda, through an intermediary server, which added around 0.5 seconds of
latency. When the user looks into the circle, the x,y coordinates are directly used as
inputs for the wheelchair control. When looking outside the circle, the wheelchair
stops.

First, the controls were explained to the client, after which the client was
instructed to try and drive around the wheelchair to arbitrary locations in the room, and
get accustomed to the controls. He was then given around 10-15 minutes to drive
around. The researchers noted down observations and helped the user where
needed.

5.1.2 Test results

The client struggled to get proper control of the wheelchair. This could be because of
the following four reasons:

● The first reason that can be identified is that the user could not see the
wheelchair while he was using the joystick. You can only focus your eyes on
one thing at any given moment, and thus when controlling the joystick, the user
was unable to see what the effect of his actions were on the movement of the
wheelchair itself. The moment the user did look at the wheelchair, the mouse
moved out of the joystick area and the wheelchair stopped moving.

● The second reason is that the eye-tracking software that is used on the user’s
tablet does not work well with the joystick. When looking at the same point for
around 2 seconds, the tablet registers it as a clicking action. It then first
enlarges the area where the click was registered, after which the user can click
again with more precision. With the joystick, the user needs to look at the same
point for multiple seconds, thus triggering this behavior. This is however a
setting in the tablet that the user can switch on/off, after which it is a little bit
better, but still not ideal.

● The third reason is that the wheelchair was not equipped with any sensors yet,
and thus was unaware of its environment. This led to it bumping into walls a lot,
and required the researchers to intervene and correct its course regularly.

● The fourth reason is the amount of effort that is required by the user to control
the joystick. Controlling a joystick requires a constant focus for an extensive
period of time. During the research this could also be observed, as the user
noticeably experienced it as tiring and frustrating.
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5.2 User test #2&3: Joystick + Lidar + Camera
Given the findings of the first user tests, a second user test was done which
implemented some improvements.

5.2.1 Setup
Date: 27-01-2023 & 03-07-2023
Location: Designlab, UT
Duration: 20 minutes
Who: Researcher(me), end-user and father
Ethical request filing number: 220197 & 230178 (see Appendix B & C)

The second user test took place in the same setting as the first, with a similar
procedure. This user test was done twice, once with the user controlling the
wheelchair from a distance, and another test a few months later after more safety
features were added and the main ethical request was approved, where the user was
seated into the wheelchair prototype himself. The same UI was used in both tests,
where the only difference was that in the second test, the emergency wire sensor was
added, as well as remote stop buttons controlled by the researchers.

The main goal of this test was to see whether the addition of a map and
top-down camera would make the joystick controller more usable, and to see whether
this type of control would be suitable for situations where the self-driving feature would
not work well. For the second test, we also wanted to see how the user responded to
physically being in the wheelchair and to relinquish some level of control, and wanted
to see whether his physical presence would improve his performance.

The setup is depicted in figure 28 and 29.

Figure 28: GUI for user test 2
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Figure 29: The end user controlling the wheelchair from his tablet
The setup used in the second user test consists of a top-down camera above

the wheelchair, which allows the user to get direct visual feedback on what their
joystick inputs do to the wheelchair, without needing to look away. Furthermore, the
lidar sensor was used to implement basic obstacle detection. The lidar feed (white) is
translated and rotated to what its future position and orientation would be in about 1
second, given the current joystick input. If too many lidar points are inside the
wheelchair outline, the wheelchair will stop, after which the user can simply move in a
non-restricted direction again.

In addition, the communication between the wheelchair and the Tobii tablet was
now done directly over the local wifi network, instead of routed via an external server,
which greatly reduced the latency.

5.2.2 Results

In the second user test it was found that the performance of the wheelchair
increased as compared to the first user test, due to the ability for the user to see in
real time what the impact of his actions were. The obstacle avoidance helped with
preventing the wheelchair from bumping into things, which made the test more
smooth.

In the second test where the user was seated in the prototype, the performance
was better, most likely because the user felt more in control. However, the joystick
control still did not work very well, partly because of the clicking behavior of the eye
tracking software, and the amount of effort it takes to keep focus on the screen, as
described in 5.1.2. Thus a different way has to be found where the amount of user
input is minimized.
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5.3 Self driving interface

While the self-driving feature works, it did not work sufficiently reliable enough to
perform a final user test with the current setup. The wheelchair is able to move in a
straight line from its current position to the target position on the map, but due to drift
in the odometry data, the wheelchair often misses the target destination by a few
meters, especially when it has to do a lot of heading correction and cover a relatively
long distance. While the encoders work reliably, the drift is mainly caused by the
slipping of the wheels. The wheelchair base is quite old, and the tires are worn out and
have a large contact area, causing a low friction. The areas in which the wheelchair
was driven also had smooth floors, which did not help with this matter. While the IMU
is able to correct this to some degree, the drift is still noticeable. A proper
implementation of SLAM would solve this issue.

The slipping of the wheels mainly causes an issue when someone is inside the
wheelchair, as with this additional weight, the wheelchair is struggling to accelerate,
brake, make tight turns or to rotate around its axis. The reason for this is that the
weight of the seat and the user is, due to the wheelchair structure, mainly exerted on
the front wheels of the wheelchair base. This causes the back wheels to require more
friction to be able to push the wheelchair forward. This required friction is not available
on the worn out wheels, causing them to slip. This caused the implemented
self-driving feature to work decently well with an empty wheelchair, but considerably
worse with an occupied wheelchair.

It was hard to tweak the velocity commands in such a way that the wheels
would not slip, while applying enough force to move the wheelchair in the desired
direction. Possibly, a feedback system with a P(I)D controller could work for this, but
since this issue can be solved more easily by simply attaching different wheels, or
using a more modern wheelchair base entirely, putting more time and effort into
implementing this for this wheelchair seemed not very productive. Also because for
further iterations, more focus should be on making a ubiquitous kit that can fit on 90%
of (modern) wheelchairs, of which can be assumed that this slipping problem is not
present.
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5.4.2 Project requirements review

In chapter 2.X, specific requirements for this project were established. These
requirements will be reviewed below

MUST HAVE
The end user should be able to move from A to B completely independent of

caregivers in a spacious, pre-known environment.
While the self-driving function of the wheelchair works, it only works over short
distances and without there being any obstacles in its way. It can move in straight line
sequences from different x, y coordinates in the room. The wheelchair will stop for
obstacles but not move around them on its own.

The wheelchair should be safe to use and should not expose the user to any
unnecessary risks. This can be achieved with the use of simple obstacle detection, as
well as accurately being able to detect user input and possibly adding emergency
stops. Together with the ethics committee, the risks associated with the user tests
should be considered.
Various safety measures were implemented, including the use of a robust control
software architecture, the addition of emergency stops, and thorough ethics checks.
During user tests, a researcher was always nearby to intervene where needed.

A way for the user to make known his desired destination should be created,
most likely using an interface on an eye-tracking tablet.
Multiple GUI interfaces were developed and tested, and it was shown that the user
was able to move the wheelchair by only using his eyes.

SHOULD HAVE
A way to map the environment to be able to implement more advanced

obstacle detection
This was not achieved during this project. While basic versions of SLAM were
successfully implemented, actually using the map proved to be more challenging.
Instead, the raw lidar feed was used, which allows the wheelchair to navigate over
short distances and avoid obstacles.

A low-effort GUI which allows the user to make known his desired destination
without needing to focus on the screen 100% of the time while driving.
Multiple GUIs were designed. The joystick version was not low-effort since it requires
full 100% focus and also requires a lot of precision from the user. The map click
control, however, is easy to use and only requires a few interactions.

The ability to navigate and drive around in new environments
The self-driving feature uses the current lidar feed and is not dependent on having
pre-built maps. However, advanced navigation was not implemented.
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COULD HAVE
Long-lasting battery so the user can satisfy his driving needs for a full day (~2

hours of driving)
No extra effort was made to obtain this goal, nor was the battery life measured. During
testing, however, the wheelchair was able to keep driving for longer than an hour, so
this requirement may have been met.

Robust hard- and software that are not specific for the used wheelchair frame,
but is able to be integrated into a variety of existing wheelchairs with low effort.
None of the software/components were specifically tailored to the wheelchair, and thus
should be able to be applied to other existing differential-drive wheelchairs. However,
while the used odometry solution should be applicable to other wheelchairs, a way to
use the built-in odometry sensors of more modern wheelchairs would make the
solution even more ubiquitous.

Full path-finding using SLAM, where the user only needs to click on a point on
a map, after which the wheelchair fully autonomously drives to the destination.
SLAM and advanced path finding could not be implemented successfully and thus this
requirement was not met.

The ability to detect dynamic obstacles (e.g. humans) and be able to notify
them to move out of the way in case they are blocking the path.
Since the lidar feed is used, dynamic obstacles are detected and the wheelchair will
stop in case someone is blocking its path. The user also has the ability to press a
button to make the wheelchair produce a horn sound. This will urge people to get out
of the way. More research could be done on how to automate these signals and to
implement more or different levels of feedback, e.g. light, voice, ringing, horn, etc.

WON’T HAVE
The ability to drive around outside. Given that there are no walls outside to use

as a point of reference, the requirement for sensors to function in different weather
conditions, and the safety considerations needed with respect to traffic situations,
making the wheelchair be fully operable outside will most likely be out of scope for this
project.
While the wheelchair was not tested outside, the chosen hardware should function
normally outdoors (although eye-tracking may not work reliably in direct sunlight).The
software (joystick and click-on-map controls) are not dependent on static features in
the environment and thus should function the same. The emergency stops should also
help to make it safer to drive outside, although more safety implementations such as
car or sidewalk detection are needed to make it truly usable outside.
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6. Conclusion

In this master thesis, research was executed towards developing a safe, easy-to-use
and effective way for a (partly) immobile user to drive around in a wheelchair.
Literature research on different input methods, related work and control, safety and
liability aspects was carried out, after which a wheelchair prototype was developed
and tested. While some progress was made towards a fully functional and
autonomous wheelchair, the goal of a fully self-driving wheelchair was not achieved.
Yet this report could be an important basis for future research.

The research questions defined in Chapter 1 are answered below:

“How can we develop and evaluate an eye-controllable, self-driving wheelchair
for (partly) immobile people?”

The development and evaluation of an eye-controllable, self-driving wheelchair
involves several key steps. First, a suitable user interface has to be developed which
works around the limitations of an eye-tracking device. Secondly, a reliable and robust
SLAM system must be implemented to be able to create a map of the wheelchairs
environment, in order to give the wheelchair the ability to compute and follow paths. In
order to ensure safety, the software should be designed using robust control
architectures, and emergency stops should be implemented.

“Which method of input controls suits both the user and application the best
when normally functioning muscle control is absent? (eye-tracking, brainwaves,

etc.)”
For the case of this user, eye-tracking was most reliable, as normal motor

functions in other parts of the body were absent, and the user already has a lot of daily
experience with eye tracking. However, for other users, other input methods could
yield more accurate results, and especially for emergency stops, having a secondary
method that can react faster and be detected with higher accuracy than eye
movement would be beneficial.

“What are the best methods of making the wheelchair environment-aware and
what software algorithms are needed? (Lidar, 3D camera, etc.)”

SLAM algorithms can be used to create a map of the environment. The
minimum choice of sensors would be a Lidar sensor with odometry, but ideally other
sensors like a 3D camera would be used in addition, to create a more accurate map.
This can help with being able to more accurately detect obstacles and thus making the
wheelchair safer.
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“How can an interface be developed that will both be efficiently usable by the
user, as well as provide enough input for the driving algorithms?”
The interface should be designed in such a way that the user is able to select

his target destination with minimal effort. During user tests it was found that operating
the wheelchair with a virtual joystick, which requires 100% of the user's focus while
driving, does not work very well. Extra confirmation steps may be needed due to
inaccuracies in the eye tracking.
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7. Future work

In future research, the main focus should be on continuing the effort of making the
wheelchair self-driving, by properly implementing slam and path finding, something I
was unable to fully get working in this project. In order to achieve this, besides better
software, the wheelchair should be equipped with more sensors that can create a
more accurate map of the environment. In the current setup, the wheelchair is able to
accurately detect and avoid walls, but it struggles with obstacles that lie above or
below the lidar range, e.g. tables and chairs. Future research could be done on which
exact sensor configuration is needed, while retaining the goal of modularity and
affordability.

Other research could focus on making the wheelchair able to safely navigate
and drive outside. Indoor, there are many static reference points like walls and
furniture that can be used for accurate localization, while outside, there are many open
areas with people and traffic, in which case the wheelchair would mostly have to rely
on odometry, IMU and GPS data. Furthermore, the wheelchair would have to be able
to distinguish between a sidewalk and a road, and between a pebble path and grass.
It also needs to be able to be robust enough to not cause any car collisions and not
drive into a lake. Eye-tracking also does not work reliably outside on sunny days, for
which either a more robust eye-tracking system needs to be developed, or some
shade flaps have to be added. Making it work outside was out of scope for this project,
but can be an interesting topic for future research.

Lastly, development of the prototype was made harder and more time
consuming by the fact that a relatively old wheelchair base was used. The tires were
worn out and slipped easily, the solenoid brakes often malfunctioned and turned on
randomly, and the lack of built-in odometry sensors made it harder to get reliable
odometry information. Therefore it is recommended for future research to use a more
modern base.
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9. Appendices
Appendix A: User interview questions

This interview is meant to get more clarity in what is actually required.
Why does the client think he needs a self-driving wheelchair?
Where does the client intend to use the self-driving wheelchair?
What is the client able/not able to do?

The interview will be semi-structured.
Since the client has a harder time to answer open-questions, questions directed towards the
client will be formulated as yes/no questions as much as possible.
Yes/no questions can possibly be answered by the client using the ‘fist’ method where the
client looks at my fist when he agrees, or looks away from my fist when he disagrees.

Questions will be asked in Dutch

Globale vragen over de cliënt om de cliënt beter te leren kennen
1. Hoe oud is de user?
2. Hoelang heeft de user al Locked-in? Hoe is het ontstaan?
3. Wat vindt de user leuk om te doen? (hobby’s)
4. Wat zou de user willen doen maar niet kan?
5. Wat vindt de cliënt het grootste nadeel van het hebben van locked-in?
6. Voelt de cliënt zich gezien / buitengesloten / gerespecteerd / begrepen door de rest

van de maatschappij?
7. Kan ik jullie naam en/of fotos gebruiken in mijn verslag
8. Breekt de user snel dingen?

Vragen m.b.t. de vaardigheden van de cliënt
9. Wat is de exacte aandoening? (Is het ‘gewoon’ locked-in, of een variatie erop?)
10. Over welke lichaamsdelen (afgezien van de ogen) en in welke mate heeft de user

controle?
11. In hoeverre heeft de user controle over zijn ogen?

- Patiënten met locked-in kunnen vaak hun ogen nog bewegen, maar is dit in
dezelfde mate als iemand zonder locked-in? Of juist beter omdat ze regelmatig
oefenen met een eye-tracking tablet?

- Wat kan de user buiten het tekenen nog meer met zijn ogen? (typen, gamen)
- De user heeft ook vormen van spasme. In hoeverre beïnvloed dit zijn

oogfuncties? Schieten zijn ogen soms een andere kant op bij een spasme?
Kan hij 100% van de tijd de focus behouden?

12. In hoeverre werken de zintuigen? Kan de hij alles zien / horen / voelen / proeven /
ruiken?

13. Er is al onderzoek gedaan naar een rolstoel die met neus-snuiven bestuurd kan
worden. Zou de cliënt dit ook kunnen?

14. Heeft de cliënt op intellectuele vlakken een beperking?
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15. Kan de cliënt Engels (voor het geval engelse software gebruikt moet worden)
16. Is er altijd een begeleider in de buurt (mocht er ondanks alle veiligheidsmaatregelen

toch iets mis gaan met de rolstoel)

Vragen m.b.t. de wensen van de cliënt
17. Waarom wil de cliënt een zelfrijdende rolstoel?

- Zelfstandiger worden?
- Meer vrijheid willen?
- Andere mensen willen ontlasten door minder afhankelijk van anderen te zijn?
- Niet hoeven wachten op hulp maar zelf direct ergens heen kunnen?
- Meer betrokken zijn bij de maatschappij?

18. Wat voor oplossingen heeft de cliënt al geprobeerd? (Parrot etc.). Wat waren daar de
bevindingen (plus/min punten) van?

19. Hoe denkt de cliënt de rolstoel het liefst te besturen?
- Volledige pathfinding? (kijk naar een punt op een kaart, computer berekent

route en gaat volledig automatisch daarheen. Cliënt geeft controle uit handen
en doet zelf niet veel)

- Route tekenen? (zelf een lijn tekenen van een route waar de rolstoel heen
moet, rolstoel volgt zoveel mogelijk deze lijn Cliënt behoud nog een beetje
controle, maar rolstoel doet het meeste)

- Joystick? (met ogen een virtuele joystick besturen, altijd zelf de controle
houden waar de rolstoel heen rijdt. Cliënt behoud zelf de controle)

- Of juist niet met de ogen maar met brainwaves of een ander lichaamsdeel dat
nog wel werkt?

- *In alle opties grijpt de rolstoel in als er een drempel/obstakel dichtbij is
20. Wat voor functies denkt de cliënt dat de rolstoel moet hebben?

- Obstacle detection
- Auto-path finding
- Knipperlichten voor omstanders
- “Fietsbel”/”toeter” om omstanders te waarschuwen
- Achteruitrij camera
- Licht (ledstrips, koplampen) voor in het donker
- Auditory feedback, bijvoorbeeld als er een obstakel dichtbij is

Vragen m.b.t. het beoogde gebruik van de rolstoel
21. Op welke locaties denkt de cliënt de rolstoel te gaan gebruiken?

- Als het alleen thuis en dagbesteding is, dan zijn er minder complexe
hardware/algoritmes nodig dan wanneer de cliënt er ook buiten over een
drukke straat met verschillende weersomstandigheden wil rijden.

- Waar bevindt de cliënt zich het vaakst? Als de cliënt zegt dat hij het op straat
wil gebruiken, maar zich daar maar 2 uur per week bevindt, dan is dat
misschien overbodig.

- Hoe zien deze locaties eruit? Zijn het grote of juist smalle ruimtes?
22. Voor hoeveel uur per dag denkt de cliënt te rijden met de rolstoel? (accu grootte)

60



Praktische vragen
23. Hebben jullie nog hardware liggen dat geleend kan worden? (eye-tracker,

rolstoel-stoel)
24. Waar draait de Tobii tablet op (Windows denk ik), Kan ik elke windows applicatie erop

runnen of zitten er limitaties aan mbt opslag grootte / cpu performance etc.
25. Kennen jullie andere mensen die baat kunnen hebben bij een soortgelijke rolstoel

(Locked in of anders)? En zouden jullie mij met hun in contact kunnen brengen?
26. Zijn er restricties voor het gewicht van de rolstoel? (ivm met vervoer, (trap)liften, moet

over drempels te tillen zijn door begeleider, etc.)
27. Hardware specs (Welke poorten zijn beschikbaar op zijn tablet, windows versie,

CPU/GPU/RAM, etc.)
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Appendix B: Ethics consent form for user test 1
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Appendix C: Ethics consent form for user test 2
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