

University of Twente

The Influence of Code Complexity on Review Efficiency, Effectiveness and Workload in

Embedded Software Development

Master Thesis

Human Factors & Engineering Psychology

Student: Gina Jahncke

Student number: s 3052206

1st Internal Supervisor:

Martin Schmettow

2nd Internal Supervisor:

Dr. Funda Yildirim

External Supervisor:

Jonas Wolf

Date: 19.07.2023

 2

Table of Contents

1 ABSTRACT .. 4

2 INTRODUCTION .. 5

2.1 CODE REVIEW ... 6

2.2 HUMAN FACTORS IN CODE REVIEW .. 7

2.3 CODE COMPLEXITY AND COMPLEXITY METRICS .. 7

2.3.1 CODE COMPLEXITY AND UNDERSTANDABILITY ... 8

2.3.2 CODE COMPLEXITY AND MENTAL WORKLOAD.. 9

2.3.3 CODE COMPLEXITY AND REVIEW PERFORMANCE ..10

3 METHODS .. 12

3.1 PARTICIPANTS .. 12

3.2 DESIGN ... 13

3.3 MATERIALS .. 13

3.3.1 MICROSOFT FORMS ...13

3.3.2 CODE SNIPPETS ..13

3.3.3 REVIEW TOOL..14

3.3.4 REVIEW REPORT FORM ..14

3.3.5 NASA-TLX ...15

3.4 PROCEDURE ... 16

3.5 DATA ANALYSIS .. 16

4 RESULTS ... 18

4.1 COMPLEXITY METRICS AND WORKLOAD ... 18

4.1.1 EFFORT ..19

4.1.2 FRUSTRATION ..20

4.1.3 MENTAL DEMAND ..20

4.1.4 TEMPORAL DEMAND ..21

4.2 COMPLEXITY METRICS AND PERFORMANCE .. 22

4.2.1 TIME ON TASK ...22

 3

4.2.2 DEFECT DETECTION ..24

5 DISCUSSION ... 26

5.1 COMPLEXITY METRICS AND WORKLOAD ... 26

5.2 COMPLEXITY METRICS AND PERFORMANCE .. 28

5.2.1 REVIEW EFFICIENCY ..28

5.2.2 REVIEW EFFECTIVENESS ...30

5.3 PRACTICAL IMPLICATIONS .. 30

5.4 LIMITATIONS AND DIRECTIONS FOR FUTURE RESEARCH .. 31

6 CONCLUSION ... 34

7 REFERENCES ... 35

8 APPENDICES ... 41

8.1 APPENDIX A: QUESTIONNAIRE .. 41

8.2 APPENDIX B: R SYNTAX ... 45

 4

1 Abstract

Code review plays a crucial role in ensuring the quality and reliability of software.

However, its effectiveness depends on the cognitive abilities and performance of individual

programmers. Drawing upon the theoretical framework of human factors psychology, this

study investigates the impact of code complexity on code review workload, efficiency, and

effectiveness. An experiment was conducted involving developers from a software

development company, Vector Informatik GmbH, who reviewed code samples of varying

complexity levels. Subjective workload ratings, review times, and defect detection rates were

examined to test the influence of two common code complexity metrics, i.e., cyclomatic

complexity and nesting depth on these outcomes. The findings indicate that higher levels of

code complexity are associated with elevated workload, increased review times, and decreased

fault detection rates. If these results turn out to be true, they suggest that code complexity poses

challenges for reviewers in comprehending and maintaining complex code, potentially

hindering effective code review. By applying insights from human factors psychology, this

study emphasises the cognitive challenges associated with code complexity and highlights the

need for strategies to mitigate its negative effects on code review.

Keywords: code review, code complexity, mental workload, performance, defect detection,

human factors

 5

2 Introduction

In the early 2000s, several Toyota vehicles were involved in a series of accidents caused

by unintended acceleration. Without driver input, the vehicles suddenly accelerated, sometimes

leading to serious injuries and loss of life. Consequent investigation revealed that the source of

the issue was a software bug in the electronic throttle control system (ETCS). This bug resulted

in the system misinterpreting signals from the accelerator pedal, causing an unintended

acceleration. After a lengthy search for a cause, the origin of the problem was attributed to

inadequate code review practices during the development of the ETCS software. The review

process failed to identify the defect, resulting in significant safety risks for drivers and

passengers (Barr, 2013).

This incident highlights the importance of effective code review in software

development, especially when dealing with safety-critical systems. Code review enables

developers to identify problems early in the development process and provides an opportunity

resolve issues before software is deployed in real-world settings (Bavota & Russo, 2015).

Reviewers thereby ensure that a given code performs as intended, potentially preventing

catastrophic consequences such as those experienced by Toyota.

The effectiveness of code review is therefore contingent upon the performance of

individual coders. In code review, individual programmers must comprehend and resolve

problems, rendering it an intellectual task that heavily depends on human cognition (Huang et

al., 2015). Therefore, human factors psychology provides a theoretical and methodological

framework for understanding the cognitive and perceptual processes involved in this task. It

explores how human capabilities and limitations affect human perception and performance in

various situations and interactions (Wickens et al., 2021). In the context of code review, it is

the software developer that interacts with the code under review.

One of the factors that appears to influence this interaction is the complexity of code.

Code complexity is an integral concept in software engineering and describes the level

difficulty involved in comprehending and maintaining source code (Curtis et al., 1979).

Summarised by numerous metrics, it encompasses various factors such as code size, structural

complexity, and many more (Nuñez-Varela et al., 2017). If such complexity levels are high,

they may negatively impact software quality by making it difficult for reviewers to understand

and consequently maintain code (Bacchelli & Bird, 2013).

Yet, there is limited research on the effects of code complexity on review workload and

performance. The current study aims to fill this gap and investigates the impact of code

 6

complexity on code review workload, efficiency, and effectiveness. To test this impact, an

experiment in which participants reviewed code samples of varying levels of complexity was

conducted. Subjective workload ratings, review times, and fault detection rates were measured

to evaluate the effect of code complexity on these outcomes.

2.1 Code review

Software development is a complex process, involving several phases such as planning,

design, coding, testing, and maintenance of software. An important step in this process is code

review. First formally introduced as “code inspection” by Fagan (1976), it involved a highly

structured review process that included planning, preparation, review, and follow-up meetings.

However, in recent years, this type of formal inspection was largely replaced by a modern,

more practicable process, that is suitable for the iterative nature of software development

(Bacchelli & Bird, 2013; Stein et al., 1997). Modern code review now relies more heavily on

tools and involves a more informal process where developers collaborate asynchronously on

smaller code changes (Rigby & Bird, 2013; Sadowski et al., 2018).

The primary purpose of code review is to identify defects before a software is deployed.

A survey by Bacchelli & Bird (2013) showed that the majority of managers as well as

developers consider the identification of bugs as one of its central goals. In fact, almost half of

the managers as well as programmers considered it the number one reason for code review.

This is not unjustified. Several studies have shown that poorly reviewed code has a detrimental

impact on software quality. For example, Bavota & Russo (2015) found that unreviewed code

is over two times more likely to introduce bugs than reviewed code. Correspondingly, a case

study of various projects estimated that inadequate code review coverage can result in the

production of components with up to two additional post-release defects (McIntosh et al.,

2014).

Thus, by identifying shortcomings, reviewers ensure that software code is of high

quality and thereby ensure the safety of a system. Ensuring software quality in this way is

especially important in embedded software development. In embedded software systems, the

software interacts directly with hardware. This has two consequences. Due to its embedded

nature, faults in embedded systems are less observable and therefore difficult to detect once

the system is employed. Additionally, any undetected error can cause a significant impact on

the system's functionality and safety, meaning failure can result in significant financial and

personal loss, including loss of life, as seen in various related accidents (Barr, 2013; Leveson,

2011). Therefore, in embedded software projects, code review is particularly crucial due to the

 7

critical nature of the systems they control. It is imperative to detect and fix errors, including

unhandled conditions, effectively to avoid fatal consequences.

2.2 Human factors in code review

Despite the apparent importance of code review, its effectiveness seems to be deficient.

A recent study by Khoshnoud et al. (2022) has shown that there is a considerable amount of

left-over defects, even after a code has been reviewed. After manually examining pull requests

from 77 open-source Github projects, they discovered that in 173 pull requests, at least 187

defects were missed. A taxonomy of the identified defects can be found in their paper. These

figures raise concerns about the ability of reviewers to detect errors and highlight the

importance of enhancing review effectiveness. Consequently, there is a spreading interest in

understanding the role of human factors in code review.

Despite the increasing automation in software development, code review remains a

predominantly manual process, that is involving human beings (e.g. Sadowski et al., 2018).

The review process requires programmers to read code, understand its functionality and

behaviour, and resolve potential errors. Given that this task relies on human cognition, its

effectiveness depends on the performance of the individuals involved. In fact, industrial data

suggests that 87 percent of residual software defects can be attributed to individual cognitive

failure (Huang et al., 2015). This is likely to be particularly relevant for modern code review,

where review quality is dependent on single coders rather than a team. Consequently, modern

code review is especially susceptible to human error.

Previous research has demonstrated human factors to be a major contributor to code

review quality. In software engineering, human error may originate from various sources (Anu

et al., 2018; Huang et al., 2012; Reason, 1990). Among the factors affecting review quality

specifically, the difficulty in comprehending code stands out as one of the most commonly

cited. A survey conducted by Kononenko et al. (2016) shows that developers consider

understanding the to be evaluated code a major challenge. Similarly, Bacchelli & Bird (2013)

have shown that understanding code is an integral aspect of code review as it allows reviewers

to analyse the code more quickly and provide more valuable feedback. Unfortunately,

qualitative as well as quantitative research shows that understanding code can be a time-

consuming and mentally demanding task, particularly when dealing with complex code (Huang

et al., 2012; Peitek et al., 2021).

2.3 Code complexity and complexity metrics

 8

Code complexity is a common concept in software engineering and describes the level

of difficulty involved in comprehending, modifying, and maintaining source code (Curtis et

al., 1979). It is a multidimensional construct that, depending on the exact metric, encompasses

factors such as code size, path complexity, and various others (Zuse, 1991). Consequently,

numerous metrics have been developed to quantify, measure and track complexity in practice.

These different complexity metrics quantitatively represent different aspects of the software

(Nuñez-Varela et al., 2017).

One of the most widely known complexity metrics is McCabe’s cyclomatic complexity

(V(g)), which assesses the number of independent paths that can be taken through a piece of

code (McCabe, 1976). A higher cyclomatic complexity value indicates a more complex

codebase with a greater number of decision points and possible paths. Although popular, the

metric inadequately captures complexity arising from nesting, wherein a control structure is

enclosed within another control structure (Shepperd, 1988; Sarwar et al., 2013). This means

that code with equal cyclomatic complexity can have very different levels of nesting depth.

Consequently, nesting depth has become another important measure and represents the number

of control structures (e.g., if statements, loops) that are nested within one another. A higher

nesting depth value indicates a more complex, deeply nested code. (Alrasheed & Melton, 2022;

Harrison & Magel, 1981).

2.3.1 Code complexity and understandability

Subjective perceptions of developers suggest that increasingly complex code becomes

increasingly difficult to understand and consequently review. For example, Kononenko et al.

(2016) interviewed developers and found that they consider larger and more complex code

difficult and time-consuming to review, as it makes understanding the code in general as well

as the code change in particular a more demanding cognitive task. Likewise, Ebert et al. (2021)

found that the most frequent reason for confusion during code review is the length or

complexity of a code change. Comparing 11 complexity metrics, a survey by Antinyan et al.

(2017) revealed that most software engineers consider lack of structure and nesting depth to

have the biggest influence on complexity and subsequent understandability.

A recent quantitative study by Peitek et al. (2021) supports these findings. Making a

first attempt to investigate the relationship between code complexity metrics, comprehension,

and its neural correlates, they showed that more complex code reduces comprehension and puts

increased demand on brain areas related to cognitive effort. Participants were asked to read and

understand Java snippets with varying levels of various complexity metrics while their brain

 9

activity was recorded using functional magnetic resonance imaging (fMRI). The study found a

negative correlation between code complexity metrics such as cyclomatic complexity and

comprehension accuracy, indicating that more complex code is harder to understand.

2.3.2 Code complexity and mental workload

In addition to showing that complexity reduces understandability of code, Peitek et al.

(2021) showed that brain regions activated during program comprehension were associated

with cognitive control, working memory, and attention. This indicates that cognitive load may

play a central role in code understanding and consequently reviewer performance. It refers to

the amount of mental effort, working memory capacity, and attentional resources that is

required to perform a task successfully (Sweller, 1988) and is influenced by various factors

such as task complexity, information processing demands, and individual cognitive abilities

(Sweller et al., 2011a). For example, in the context of code review, reduced mental load and

increased working memory capacity have been shown to increase review performance (Baum

et al., 2017, 2019).

While cognitive load refers to the objective amount of mental effort and resources

required for a task, mental workload refers to the subjective perception of that effort and can

be assessed using various scales, such as the NASA Task Load Index (NASA-TLX; de Winter,

2014; Sweller et al., 2011b). While there is a substantial amount of research around complexity,

metrics, and their role in software quality, to date, only few studies have focused on their

influence on human mental workload, particularly in code review. To support this claim, a

search for relevant literature was conducted on the metadata, specifically on the title, abstract

and keywords. Given that human factors engineering is a multidisciplinary field, and this

research lies at the junction of software engineering and psychology, multiple electronic

databases were chosen to search for relevant literature. Web of Science and Scopus databases

were selected as they are multidisciplinary and likely to yield diverse studies. Additionally,

IEEE was included as it hosts journal papers related to the field of engineering specifically.

The criteria for inclusion were as follows:

- An article should have quantitative empirical work (i.e., involve the use of actual

quantitative data) illustrating the link between at least one code complexity measure

and any of the dependent variables under investigation, namely workload, review

efficiency, or effectiveness.

- An article should relate to human, not automated performance.

 10

The exclusion of papers was done by screening the titles and abstracts against the

inclusion criteria. The remaining relevant papers were then assessed based on their full text.

Papers that did not fulfil all three of the aforementioned criteria were excluded.

Table 1

Search terms used for systematic review and respective hits after exclusion.

Search Term IEEE Hits Web of Science Hits Scopus Hits

(“code review” OR “software review” OR “reviewing

code”) AND “complexity” AND “workload”

1 0 1

(“code review” OR “software review” OR “reviewing

code”) AND “cyclomatic complexity” AND “workload”

0 0 0

(“code review” OR “software review” OR “reviewing

code”) AND “nesting depth” AND “workload”

0 0 0

Excessive workload has been consistently linked to performance losses across contexts

(e.g. Bruggen, 2015; Dehais et al., 2020; Fan & Smith, 2017). Thus, when code reviewers

experience overwhelming levels of complexity, it may lead to overall reduced review

performance. Therefore, to ensure sustainable workload levels during code review and optimise

the effectiveness of the review process, it is crucial to first gain a comprehensive understanding

of how code complexity impacts reviewers' workload. In the context of code review, only one

study was found to have investigated mental workload in relation to complexity metrics (Table

1). In this study, Hijazi et al. (2023) compared the mental effort ratings on the NASA-TLX

scale between more complex programs and less complex programs during code review. They

found that the more complex programs had comparatively higher mental effort ratings on the

NASA-TLX. However, the study did not examine the precise impact of increasing complexity

metrics on these outcomes. Consequently, we aim to answer the following research questions:

𝑹𝑸𝟏: What is the impact of cyclomatic complexity on subjective mental workload during code

review?

𝑹𝑸𝟐: What is the impact of nesting depth on subjective mental workload during code review?

2.3.3 Code complexity and review performance

While above research suggests that code complexity may have a significant impact on

code comprehension and workload, little is known about the impact of the different complexity

 11

metrics on reviewer performance. Review performance in the context of code review refers to

the ability of reviewers to work efficiently and effectively. In human factors research, the

former describes the amount of time it takes an individual to complete a task while the latter

describes the ability of an individual to achieve a desired outcome (Wickens, 2014). In the

context of code review, they therefore refer to the time needed to finish a review and the ability

of a reviewer to detect shortcomings respectively.

Previous research provides initial evidence that code complexity may negatively affect

review performance. Subjective experiences of software developers suggest that complexity

may negatively affect review time. When asked to estimate the additional time needed to

maintain complex code compared to simple code, most software engineers believe complex

code to increase maintenance time by a factor of at least two (Antinyan et al., 2017).

Furthermore, Baum et al. (2019) examined the relationship between code changes and defect

detection effectiveness and found that larger, more complex code changes are associated with

lower defect detection effectiveness for delocalised defects. This suggests that complexity may

in fact have a substantial effect on performance outcomes of individual code reviewers. Yet,

most research does not measure the impact of complexity metrics specifically. To date, no

studies have investigated the impact of increasing code complexity metrics on code review

performance in a controlled experimental setting (Table 2).

Table 2

Search terms used for systematic review and respective hits after exclusion.

Search Term IEEE Hits Web of Science Hits Scopus Hits

(“code review” OR “software review” OR “reviewing

code”) AND (“complexity” OR “cyclomatic

complexity” OR “nesting depth”) AND (“fault

detection” OR “bug detection” OR “detecting faults” OR

“detecting bugs” OR “debug”)

1 1 1

(“code review” OR “software review” OR “reviewing

code”) AND (“complexity” OR “cyclomatic

complexity” OR “nesting depth”) AND (“defect” or

“bug”)

1 1 1

(“code review” OR “software review” OR “reviewing

code”) AND (“complexity” OR “cyclomatic

complexity” OR “nesting depth”) AND “performance”

0 0 0

(“code review” OR “software review” OR “reviewing

code”) AND (“complexity” OR “cyclomatic

complexity” OR “nesting depth”) AND “effectiveness”

0 0 0

 12

(“code review” OR “software review” OR “reviewing

code”) AND (“complexity” OR “cyclomatic

complexity” OR “nesting depth”) AND (“efficiency”

OR “time”)

1 1 1

In their recent paper, Hijazi et al. (2023) used a combination of experience level,

cognitive load as measured by heart rate variability and task-evoked pupillary responses, time

on task, and code complexity measures to predict review quality in terms of defect detection

effectiveness. While they found that this approach can predict review quality with roughly 87

percent accuracy, they did not systematically investigate the impact of increasing code

complexity on review performance. Therefore, this study aims to fill this gap. By using a

within-subject design and systematically varying code complexity metrics it aims to provide

quantitative insights into the impact of code complexity on code review performance.

Specifically, it investigates the effects of cyclomatic complexity and nesting depth on review

efficiency (i.e., time on task) and effectiveness (i.e., defect detection) during code review.

Accordingly, we aim to answer the following research questions:

𝑹𝑸3: What is the impact of cyclomatic complexity on time on task during code review?

𝑹𝑸4: What is the impact of nesting depth on time on task during code review?

𝑹𝑸5: What is the impact of cyclomatic complexity on defect detection during code review?

𝑹𝑸6: What is the impact of nesting depth on defect detection during code review?

Both efficiency and effectiveness are central to a successful code review process.

Improving efficiency allows for faster development cycles while enhancing effectiveness

improves the overall quality of the code. By considering the impact of different complexity

metrics on reviewer performance, insights into how different kinds of complexity influence

both the efficiency and effectiveness of code review can be gained. This knowledge can inform

best practices for code review and inspire the development of strategies, tools, and guidelines

that optimise the review process.

3 Methods

3.1 Participants

 13

17 participants were recruited from the embedded software development division of

Vector Informatik GmbH, a large software company. All participants were experienced

embedded C programmers. The experiment was approved by the faculty’s ethics committee

and all participants provided informed consent before taking part in the study.

3.2 Design

The study used a within-subjects design, in which each participant reviewed eight code

snippets with varying levels of cyclomatic complexity and nesting depth. The independent

variables were the level of cyclomatic complexity and nesting depth. The dependent variables

were subjective workload, defect detection, and time on task. For each code snippet, subjective

workload was measured using the NASA-TLX scale, defect detection was measured as a binary

(yes/no) variable and time on task was measured as minutes spent on reviewing a snippet.

3.3 Materials

3.3.1 Microsoft Forms

Microsoft Forms was used as the survey tool to collect data from participants. It is not

only easily accessible and user friendly. It also provides all the necessary functionality and is

the commonly used survey tool that participants are already familiar with, thereby enhancing

ease of use.

3.3.2 Code snippets

The study used eight code snippets, each categorised by three levels of cyclomatic

complexity and three levels of nesting depth. The cyclomatic complexity levels were low (CC

= 0-9), medium (CC = 10-19), and high (CC = 20-30). The nesting depth levels were low (ND

= 0-2), medium (ND = 3-5), and high (ND = 6-8). To ensure that the code snippets used in the

study were representative of real-world code, existing snippets utilised at Vector were used as

a basis. Each snippet was written in C and entailed exactly one defect. If necessary, the defect

was artificially produced. Subsequently, three experienced software developers reviewed the

snippets to confirm their representativeness. Table 3 summarises the characteristics of each

code snippet.

Table 3

Code snippets used in the study and their respective complexity metric scores.

 14

Snippet Cyclomatic Complexity Nesting Depth LOC

1 Low (CC = 3) Low (ND = 1) 49

2 Low (CC = 6) Medium (ND = 4) 96

3 Low (CC = 9) High (ND = 7) 125

4 Medium (CC = 12) Low (ND = 2) 117

5 Medium (CC = 15) Medium (ND = 5) 222

6 Medium (CC = 18) High (ND = 8) 273

7 High (CC = 21) Low (ND = 3) 183

8 High (CC = 27) High (ND = 6) 370

3.3.3 Review Tool

To ensure that code review is performed in a manner that reflects usual practices and

preferences, participants were given the flexibility to use the review tool of their choice during.

Commonly used review tools include text editors like Microsoft Visual Studio, Visual Studio

Code, Eclipse CDT, vim, Notepad ++, or any other text editor that supports syntax highlighting.

3.3.4 Review report form

The review report form used to collect data on review outcomes and time needed was

an Excel sheet, which is a commonly utilised tool for code review in the participants'

organisation. The Excel sheet was specifically designed to capture only relevant information

during the code review process, namely details on identified defects, and the time spent on each

review. Participants simply had to report the line in which they found a defect, the nature of

that defect, what needs to be changed, and how long the review took. Any fields that contained

personally identifiable information or data that was not relevant to the research objectives were

omitted (Figure 1). By utilising the existing review report form, we aimed to ensure familiarity

and ease of use for the participants, minimising any additional cognitive load that may arise

from adapting to an unfamiliar tool.

Figure 1

Review report form.

 15

3.3.5 NASA-TLX

The NASA-TLX is used to assess and quantify the perceived workload during code

review, the third dependent variable. It is a subjective workload questionnaire that is widely

used and validated in human factors research (de Winter, 2014; Sweller et al., 2011b). In

general, the overall workload rating is based on the average of six dimensions, including (1)

mental demand, (2) physical demand, (3) temporal demand, (4) performance, (5) effort, and

(6) frustration (Hart, 2006; Hart & Staveland, 1988). The physical demand dimension was

deemed irrelevant in the context of code review. Likewise, the performance dimension was

deemed irrelevant as performance was assessed by objectives measures, i.e., time on task and

fault detection. Therefore, these dimensions will be excluded from the scale employed for the

present study.

Consequently, this study focused on four remaining key dimensions of mental workload:

mental demand, temporal demand, effort, and frustration (Figure 2). The mental demand scale

measured the mental activity required to perform the review and provided insights into the

complexity of cognitive processes such as code understanding and defect detection. The

temporal demand scale provided insights into the time pressure experienced by participants

during review. The effort scale assessed the perceived level of mental effort participants had to

recruit to accomplish the respective level of performance and highlighted the intensity of

cognitive engagement required for the review. Lastly, the frustration scale measured

participants' negative emotional reaction, namely their level of annoyance, stress, and irritation

experienced during the review. As we were interested in each measure separately, the workload

ratings were not averaged across scales.

Figure 2

Modified NASA-TLX.

 16

3.4 Procedure

Each participant completed a pre-test survey (Microsoft Forms) to collect demographic

information, self-reported measures of programming experience, familiarity with the C

programming language, frequency of programming and code review, tiredness (i.e., working

hours before the experiment), perceived fitness, and confidence in the ability to detect mistakes.

After completing the survey, participants received a compressed file with the review materials.

It included eight distinct folders, each containing one snippet, one report form and one NASA-

TLX form. Participants were given unlimited time to review each code. After downloading the

file, participants were required to (1) use their preferred tool to review the code snippet, (2)

report any detected defects and the self-measured duration of the review in the report form, and

(3) complete the NASA-TLX. As there were eight snippets, participants had to perform these

three steps eight times, one time per snippet. They were then requested to upload the

compressed file via the provided forms. As participants were performing the code review

according to their familiar procedures and using familiar tools, a practice session was omitted.

3.5 Data Analysis

The data collected in this study were analysed using R statistical software (version

2022.07.2). The analysis aimed to explore the relationships between the independent variables,

namely cyclomatic complexity and nesting depth, and the dependent variables, namely

workload, time on task and defect detection. First, the data were imported and cleaned. The

survey results were read from the "MS_results.csv" file, and the experimental results, were

read from the "Snippet_results.csv" file. Next, the data was joined to create a merged dataset

 17

that included both the survey results and the experimental results. The variables were

appropriately renamed and converted. Descriptive analyses by means of scatterplots and line

plots were conducted to summarise the data and gain a preliminary understanding of the

relationship between variables.

In a first attempt to analyse the data, the exact model specification used for the analysis

was determined using the glmulti package, a program used to explore multiple potential model

configurations (Calcagno & de Mazancourt, 2010). However, these models showed

paradoxical results and were not interpretable, likely due to the small sample size. In addition,

the variable lines of code (LOC) was initially considered as a potential control variable in the

analysis. However, prior to inclusion in the regression models, the correlation between LOC

and the complexity metrics was investigated, to check for possible multicollinearity. As LOC

exhibited high correlations with both complexity metrics (Figure 3) and regression analyses

including lines of code as a predictor yielded paradoxical results, with unexpected and

contradictory relationships between the variables, we made the decision to exclude LOC from

the final analysis to mitigate the potential issue of multicollinearity and ensure more reliable

and interpretable results.

Figure 3

Correlations between predictor variables.

 18

Therefore, we chose to explore only the population data of the theoretically minimal

model and the reported findings and interpretations focus solely on the effects of cyclomatic

complexity and nesting depth on the outcome variables of interest. To examine this

relationship, a multivariate regression model was fitted using the brm function from the brms

package (Bürkner, 2017). Fixed effect estimates were extracted using the summary function.

4 Results

4.1 Complexity metrics and workload

To examine the impact of these complexity metrics on perceived workload, a

multivariate regression model including all workload scales was fitted. A graphical

presentation of the correlations and multi-level effects of cyclomatic complexity and nesting

depth on workload ratings can be found in figure 4 and 5 respectively. Coefficient estimates,

along with their 95% credibility intervals, are shown in Tables 4-7.

Figure 4

Correlations between complexity metrics and workload.

Figure 5

Multilevel plots of the effect of cyclomatic metrics on workload.

 19

4.1.1 Effort

Figure 4 shows moderate positive correlations between cyclomatic complexity and

effort (r = .361) and between nesting depth and effort (r = .368). However, the multilevel plots

in Figure 5 reveal that the effect of cyclomatic complexity on effort varies among individual

participants. This suggests that the observed positive association may not be universally

applicable. One participant even shows the inverse relationship. Yet, this participant can be

considered an outlier as they abandoned the review of the more complex code snippets,

subsequently reporting lower workload ratings. On the other hand, the relationship between

nesting depth and effort consistently shows a positive trend among the majority of reviewers,

with only the outlier displaying a negative trend.

The regression model supports these observations (Table 4). Specifically, for every unit

increase in cyclomatic complexity, there is an associated increase in effort of an estimated 0.76

points. As cyclomatic complexity spans from zero to 27, this amounts to an average total

increase of roughly 20 points. Similarly, for nesting depth, a one unit increase in nesting depth

increases effort by an estimated 2.79 points. As nesting depth spans from zero to eight, the

model suggests an estimated total effort increase of about 22 points. The credibility intervals

for both complexity metrics do not include zero, therefore the true association is likely to be

positive. However, both intervals are wide, making the exact magnitude of the impact of

complexity on effort uncertain.

 20

Table 4

Regression coefficients for effort.

Predictor Centre Lower Upper

Intercept 25.75 15.61 35.76

Cyclomatic Complexity 0.76 0.12 1.37

Nesting Depth 2.79 0.72 4.76

4.1.2 Frustration

The data shows a positive population effect of both complexity metrics on frustration,

with a slightly stronger association observed for cyclomatic complexity (Figure 4).

Specifically, the correlation between cyclomatic complexity and frustration is .428, while that

between nesting depth and effort is .305. The positive trend is observed in all participants

except for one identified outlier (Figure 5).

Consistent with the correlational findings, the multivariate regression model confirms

the positive effects of both complexity metrics on frustration (Table 5). Each unit increase in

cyclomatic complexity leads to an average increase in frustration of 1.45 points. This means

that the highest level of cyclomatic complexity increases frustration by almost 40 points on

average. The credibility interval (95% CI: [0.73, 2.18]) provides confidence that the true effect

is positive. The effect of nesting depth is slightly smaller, with each unit increase resulting in

an average increase in frustration of 1.82 points. Therefore, the highest level of nesting depth

increases frustration by an average of 15 points. However, the credibility interval for the

nesting depth includes zero (95% CI: [-0.51, 4.26]), resulting in a higher degree of uncertainty

in the true effect of nesting depth on frustration.

Table 5

Regression coefficients for frustration.

Predictor Centre Lower Upper

Intercept 21.26 9.54 33.17

Cyclomatic Complexity 1.45 0.73 2.18

Nesting Depth 1.82 -0.51 4.26

4.1.3 Mental demand

 21

Overall, the participant data seems very similar to the effort scale. There seems to be a

positive population effect of both complexity metrics on mental demand, with both correlations

being .398 (Figure 4). However, when examining the individual participant data, some

variability is evident, particularly for cyclomatic complexity, suggesting that the positive trend

may not be universally applicable (Figure 5). Even after exclusion of the outlier two

participants do not show a positive association. The picture is clearer when looking at nesting

depth. Excluding the outlier, all participants show a positive trend.

The multivariate regression model confirms the positive effects of both complexity

metrics on mental demand (Table 6). Cyclomatic complexity showed an estimated coefficient

of 0.84, meaning that for each additional unit of cyclomatic complexity, mental demand

increased only by approximately 0.84 points. Thus, on average, the highest level of cyclomatic

complexity increases frustration by almost 23 points. Nesting depth appeared to have the same

effect on mental demand, with an estimated coefficient of 2.86. Like cyclomatic complexity,

the highest level of nesting depth increases frustration by almost 23 points on average. Again,

it is important to note the credibility intervals surrounding these estimates (95% CI: [0.26, 1.43]

and [0.97, 4.65] respectively), indicating some uncertainty about the exact magnitude of these

effects.

Table 6

Regression coefficients for mental demand.

Predictor Centre Lower Upper

Intercept 28.19 18.94 38.12

Cyclomatic Complexity 0.84 0.26 1.43

Nesting Depth 2.86 0.97 4.65

4.1.4 Temporal demand

The data reveals weak correlations between complexity metrics and temporal demand,

with cyclomatic complexity showing a correlation of 0.172 and nesting depth showing a

correlation of 0.075 (Figure 4). The multilevel plots also indicate no clear effect of complexity

metrics on temporal demand, as many participants' temporal demand remained stable across

complexity levels (Figure 5). Some participants experienced a slight increase in temporal

demand with higher complexity, while others experienced the opposite. These findings suggest

that any impact of complexity on temporal demand is not consistent among individuals.

 22

Consistent with the correlational data, the multivariate regression model shows that

both cyclomatic complexity and nesting depth show only small associations with temporal

demand (Table 7). Cyclomatic complexity demonstrates an estimated coefficient of 0.55,

suggesting that for each unit increase in cyclomatic complexity, the temporal demand increases

by an average of 0.55 points. Thus, the highest level of cyclomatic complexity leads to a

temporal demand that is approximately 15 points higher than the lowest level. Nesting depth

has a smaller positive association, with each unit increase resulting in a 0.02-point increase in

temporal demand. At the highest nesting level, the increase in temporal demand is only 0.16

points. However, it is important to note that the credibility intervals include zero, indicating a

high level of uncertainty in the effect of these metrics on temporal demand. Overall, the

relationship between complexity metrics and temporal demand appears to be limited,

considering the wide confidence intervals and relatively small coefficients.

Table 7

Regression coefficients for temporal demand.

Predictor Centre Lower Upper

Intercept 33.64 24.01 43.23

Cyclomatic Complexity 0.55 -0.05 1.16

Nesting Depth 0.02 -1.95 1.90

4.2 Complexity metrics and performance

4.2.1 Time on task

Both complexity metrics show a positive association with time on task (Figure 6). While

cyclomatic complexity has a correlation coefficient of .292, nesting depth exhibits a stronger

correlation coefficient of .426. The multilevel plots further illustrate the nature of these effects

(Figure 7). The relationship between nesting depth and time on task appears to be universal,

with all participants displaying a positive trend. On the other hand, the effect of cyclomatic

complexity on time on task varies significantly among individual participants. Some

participants show little to no impact of cyclomatic complexity on time on task, while others

exhibit a reverse relationship, i.e., increased complexity corresponds to decreased time on task.

Qualitative analysis of the review forms revealed that several participants decided to skip

the review of highly complex code snippets, specifically snippets 5, 6, and 7. Consequently,

these participants reported a notably reduced time on task (as low as 5 minutes) or did not

 23

record any time at all. This behaviour has likely distorted the true effect of complexity on the

time needed to review the code Regarding nesting depth, there is a consistent positive

association between complexity and time on task. Higher nesting depth corresponds to a greater

amount of time needed for code review. This effect appears to be universal, as the majority of

participants exhibit a positive trend in their slopes.

Figure 6

Correlation plot of the effect of cyclomatic complexity and nesting depth on ToT.

Figure 7

Multilevel plot of the effect of cyclomatic complexity and nesting depth on ToT.

 24

Overall, the fitted regression model supports this interpretation (Table 8). A one-unit

increase in nesting depth is associated with an average increase in review time of approximately

1.37 minutes. This amounts to a total average increase of 11 minutes. While there is some

uncertainty surrounding the precise magnitude of the effect, as indicated by the moderately

wide credibility interval (95% CI: [0.69, 2.06]), we can confidently say that this effect truly

exists. In contrast, the relationship between cyclomatic complexity and time on task appears to

be less pronounced. The estimated coefficient for cyclomatic complexity is 0.14, indicating

that a one-unit increase in cyclomatic complexity leads to an average review time increase of

approximately 0.14 minutes. In other words, at the highest level of cyclomatic complexity,

reviewers require around 4 minutes more to complete the code review. However, this effect

needs to be considered with caution given that the credibility interval (95% CI: [-0.08, 0.35])

includes negative values as well as zero as possible outcomes.

Table 8

Regression coefficient estimates for time on task.

Predictor Centre Lower Upper

Intercept 5.30 1.76 8.89

Cyclomatic Complexity 0.14 -0.08 0.35

Nesting Depth 1.37 0.69 2.06

4.2.2 Defect detection

 25

Figure 8 shows that there is a negative correlation between both complexity metrics and

fault detection. Specifically, cyclomatic complexity shows a correlation coefficient of -.261,

while nesting depth shows a slightly smaller negative correlation of -.193.

Figure 8

Correlation plot of the effect of cyclomatic complexity and nesting depth on defect detection.

Table 9 presents the estimates, along with their corresponding confidence intervals, for

the population-level effects of the complexity metrics on defect detection. The results indicate

that higher values of both cyclomatic complexity and nesting depth are associated with a

reduced likelihood of detecting defects during code review. Specifically, cyclomatic

complexity shows a negative effect on defect detection (odds = 0.94), implying that for each

unit increase in cyclomatic complexity, the odds of detecting defects decrease by

approximately 6%. The narrow credibility interval (95% CI: [0.88, 0.99]) provides reasonable

confidence in the existence of this effect. Similarly, nesting depth was found to have a negative

effect on defect detection (odds = 0.92), with each unit increase in nesting depth decreasing the

odds of detecting defects by approximately 8%. However, unlike for cyclomatic complexity,

the credibility interval for nesting depth is wide (95% CI: [0.76, 1.07]) and includes 1 as a

possible outcome, making the effect of nesting depth uncertain.

 26

Table 9

Regression coefficient estimates for the odds of defect detection.

Predictor Centre Lower Upper

Intercept 2.71 1.05 7.10

Cyclomatic Complexity 0.94 0.88 0.99

Nesting Depth 0.92 0.76 1.07

5 Discussion

The aim of the present study was to examine the impact of code complexity, i.e.

cyclomatic complexity and nesting depth on various aspects of code review performance, i.e.,

mental workload, review efficiency, and review effectiveness. Initially, it was intended to

include LOC as a control variable in the analysis. However, due to strong correlations with the

other metrics, problems stemming from multicollinearity led to distortions in the estimation of

their individual effects. Furthermore, the decision to omit LOC is supported by the broader

literature on code quality. Using LOC as a measure of performance and quality outcomes has

long been subject to criticism. Numerous studies have challenged the validity and reliability of

using LOC as an indicator of code quality and performance (e.g. Barb et al., 2014) and metrics

such as nesting depth have emerged as more robust indicators of code vulnerabilities (Shin &

Williams, 2008).

5.1 Complexity metrics and workload

Cognitive load theory predicts that more complex tasks should increase the mental work

needed to perform a task (Sweller et al., 2011a). Consistent with this theory, previous research

has shown first indications that more complex code leads to higher subjective workload ratings

(Hijazi et al., 2023), and that this effect is reflected in brain activity (Peitek et al., 2021). Our

study supports and extends these findings, demonstrating the magnitude with which complexity

metrics, such as cyclomatic complexity and nesting depth, increase the perceived mental and

effort required for code review. Specifically, at their maximum, these metrics similarly increase

mental demand and effort by a little more than 20 points on average. This aligns with previous

reports of developers who noted that more complex code is considered more difficult to review

(Kononenko et al., 2016).

 27

Interestingly, our study revealed that despite showing similar impact across their range,

that different complexity metrics differ in the strength with which they affect mental demand

and effort. Specifically, a one-step increase in nesting depth shows a stronger impact on mental

demand and effort than cyclomatic complexity. A potential explanation may be that nesting

depth increases mental demand and effort in a less linear manner than cyclomatic complexity.

For cyclomatic complexity, each additional path introduces an additional, yet distinct piece of

logic to keep track of. Thus, the load imposed on cognition increases in a linear manner.

However, for nesting depth, each nested level introduces a new context. Consequently, the code

reviewer must understand the logic at the current level, while still retaining the contexts of all

enclosing levels. Switching between these contexts and understanding their interplay is a more

cognitively challenging task, significantly increasing the need for logical reasoning (Alrasheed

& Melton, 2022). As such reasoning requires one to retain several mental models in working

memory, each level of nesting significantly increases working memory demand (Barrouillet &

Lecas, 1999). To examine this differential effect on working memory, future research could

introduce additional tasks that put load on working memory capacity while participants engage

in code review. This would allow for a more comprehensive understanding of how different

complexity metrics influence such cognitive processes during code review.

Despite having unequal impact on mental demand and effort, a one-step increase in

cyclomatic complexity and nesting depth on average increase frustration in a similar manner.

Consequently, as cyclomatic complexity ranges until 27, it increases frustration by an average

of 40 points at its maximum. As nesting depth only ranges until 8, its highest level merely

increases frustration by an average of 15 points. Frustration, as a psychological construct, is

often associated with the experience of encountering obstacles while trying to achieve a goal

and represents a more general emotional response to difficulty (Berkowitz, 1989). The similar

influence on frustration on a one-step level, despite the differential impact on mental demand

and effort, supports this notion. It suggests that frustration in code review may be primarily

driven by the general increase in obstacles, that is added complexity levels, regardless of the

specific form these obstacles take.

Finally, on average, temporal demand did not seem to be affected much by code

complexity. However, the effect of temporal demand varied substantially between people. For

many participants, complexity did not show any influence on temporal demand and there are

several explanations for this. First, as the experiment was not time constraint, it did not impose

any inherent temporal pressure, perhaps introducing validity issues. In real life, reviewers have

reported to experience time pressure – formally or informally – and our results may not be

 28

representative (Kononenko et al., 2016). Future research should consider incorporating time

constraints that align with company practices and pressures. Some companies may prioritise

thoroughness and encourage reviewers to invest more time in their assessments, while others

may emphasise speed and quick turnaround. Second, reviewers reported experiencing high

levels of time pressure even in the absence of code complexity. Conducting the study during

regular working hours may have influenced participants' subjective experience of time

pressure, as they were likely juggling their regular work responsibilities alongside the

experimental task. This pre-existing time pressure could have overshadowed any additional

temporal demand introduced by manipulating code complexity. Future studies could consider

conducting experiments during dedicated time slots or adjusting the workload distribution to

minimise external time pressures. Third, there is a possible self-selection is bias. Developers

that currently experience, or frequently suffer from time pressure, were less likely to sign up to

the study. As a result, the sample of reviewers in the experiment may have consisted of

individuals who are less affected by time pressure.

However, some participants did in fact observe either a positive or negative association

between complexity and time pressure. Such individual differences may have stemmed from

perceived relevance and consequent task engagement. Participants who are engaged and

motivated may invest more time and effort into thoroughly reviewing complex code, resulting

in a positive association between complexity and temporal demand. Conversely, participants

who are less motivated may not allocate as much time to complex code, leading to a weaker or

non-existent association. For those reviewers showing a negative association, it is possible that

they counteracted increasing pressure by switching strategies to only skim the code as it got

more complex. This may have offset subjective temporal demand with increasing complexity.

Future research could leverage technologies such as eye-tracking to explore whether increased

code complexity triggers changes in code review strategies.

5.2 Complexity metrics and performance

5.2.1 Review efficiency

This study highlights the fact, that increasing code complexity can in fact affect the

efficiency of code review. It was found that higher levels of nesting depth were associated with

increased time on task, suggesting that reviewers must spend more time understanding,

navigating, and evaluating the code as its structure becomes more nested. Specifically, for each

added nesting level, the review time on average increases by a little more than a minute. This

implies that the inherent complexity associated with deeper nesting presents a cognitive

 29

challenge for reviewers, affecting their ability to efficiently review code. This was expected as

the review of many execution paths was likely more challenging comprehend, which in turn

increased the time required to complete the code review. Contrastingly, the study found that

cyclomatic complexity has a much smaller effect on time on task, increasing review time only

by a few seconds per level. Thus, at the highest complexity level, cyclomatic complexity

increases review time by only 4 minutes, while nesting depth increases it by 11 minutes on

average. This aligns with previous reasoning that cyclomatic complexity may be easier to

manage than complexity arising from nesting depth. While this increase in time may seem

small, over the course of a project these additional seconds or minutes can aggregate into a

substantial amount of time, potentially leading to significant delays.

Interestingly, this study further found that reviewers might abandon the review when

faced with excessive complexity. This finding raises questions about the psychological effects

of complexity on reviewer motivation and perseverance. For example, a study by Wang et al.

(2008) found that reviewers are not willing to do their best work when they are assigned to

poorly written code. It is possible, that code complexity that is considered “too high” may have

a similar effect. Future research should investigate the existence of a complexity "tipping point"

beyond which reviewers are more likely to give up on the review process or reject a pull request

from the onset. With code review being the last line of defence against defects, such behaviour

has the potential to result in serious defects and severe consequences like in the case of Toyota.

However, it is important to note that the participants in this study were aware that the code

review was conducted solely for experimental purposes. Such awareness may influence

perceptions of the potential consequences of errors, likely lowering the threshold for giving up.

In real-world code review scenarios, where the stakes are perceived as higher, this threshold

may be much higher as well.

Such motivational factors may further provide a possible explanation for the observed

between participant variability. Multilevel plots (Figure 7) indicate that the effect of complexity

on the time spent to review the code may vary between people. Such individual differences

may stem from various factors such as expertise (Sharif et al., 2012) and working memory

capacity (Baum et al., 2019) but perhaps also differences in intrinsic motivation. Individuals

with strong intrinsic motivation for code review may exhibit higher levels of persistence, effort,

and focus when faced with complex code, leading to more effective and efficient review

processes. On the other hand, individuals with lower levels of intrinsic motivation may be more

prone to experiencing frustration and reduced performance when encountering increasing

complexity (Chen & Caza, 2018). As defect detection has been linked to the rigour with which

 30

code is reviewed, such behavioural reactions to complexity can have detrimental consequences

for code quality (Thongtanunam et al., 2015).

5.2.2 Review effectiveness

Overall, this study demonstrates that higher levels of both cyclomatic complexity and

nesting depth are associated with a decreased likelihood of detecting defects during code

review. This aligns with previous research by Baum et al. (2019) who were the first to find that

larger, more complex code change seems to reduce defect detection effectiveness during

review, at least for delocalised defects. Our study provides a more detailed understanding of

these findings by providing insights into the exact magnitude with which specific complexity

metrics reduce this effectiveness. Specifically, we found that each additional level of

cyclomatic complexity reduces the odds of detecting defects by 6.1% while each additional

level of nesting reduces these odds by 8.9%.

Considering that we could confirm previous studies demonstrating that complexity also

increases mental workload (Hijazi et al., 2023; Peitek et al., 2021), these results may be

explained from a cognitive load perspective. As the complexity of a task increases, the

cognitive resources available for error detection and problem-solving may become overloaded.

In the context of code review, higher levels of cyclomatic complexity and nesting depth may

therefore impose greater cognitive demands on reviewers, potentially leading them to retract

to more shallow processing or unsystematic review (Dehais et al., 2020; Van Der Linden et al.,

2003), reducing mental effort but leaving them unable to find nuanced defects hidden in the

complex code structures. It may be reflected in the fact that that some reviewers did not spend

significantly more time for the review even when complexity increased.

Notably, the uncertainty surrounding the effect of nesting depth on defect detection

suggests that the impact of nesting depth may vary depending on additional contextual factors

or individual differences among code reviewers. Further research is needed to explore these

moderating factors and gain a better understanding of the relationship between nesting depth

and defect detection.

5.3 Practical implications

Overall, our findings suggest that code complexity can have a detrimental effect of the

quality of code review. Recognising the impact of complexity metrics, such as cyclomatic

complexity and nesting depth, on code review effectiveness, organisations can incorporate

complexity-aware practices into their code review processes. Taking measures in the form of

 31

checklists and guidelines for maximum acceptable complexity may be a right step but may not

be enough. Sometimes it may be unavoidable to have a high degree of complexity in a code

change. Some viewpoints argue that certain forms of complexity, such as nesting, can be

beneficial in terms of efficiency (Alrasheed & Melton, 2022). These perspectives emphasise

that complexity should not solely be seen as an obstacle to overcome but rather as a design

choice that balances different factors.

For complex code, companies should therefore consider leveraging multiple reviewers,

thereby decreasing the risk of individual reviewers missing critical defects (Thongtanunam et

al., 2015; Wang et al., 2021). Furthermore, the variability observed in the effects of complexity

on review outcomes highlights the importance of collaboration and knowledge sharing among

code reviewers. Creating an environment that promotes collaboration, open discussions, and

sharing of expertise can help mitigate the challenges posed by complex code. For example, by

using synchronous communication tools for code review, organisations can harness the

collective intelligence of many reviewers, where those who seem better equipped to deal with

increasing complexity can help those that struggle more. In the long run, this may not only lead

to overall improved performance in terms of defect detection ability and time needed for

review. It may also reduce the cognitive strain imposed by reviewing complex code (Pascarella

et al., 2018).

5.4 Limitations and directions for future research

While this study is the first to show the precise impact of complexity metrics on

workload, efficiency, effectiveness, it has several limitations. One significant limitation is the

small sample size of only 17 participants. As the study was conducted with professional

developers in real-world settings participants had to add the review to their usual workload.

Because the general workload was already high and the review of eight code snippets is rather

time consuming, voluntary study participation was low. Additionally, as this study was

voluntary, it is susceptible to self-selection bias. For example, those that decided to participate

may have different characteristics, motivations, or workload compared to those that did not

participate. This can introduce bias in the results, particularly if these factors are related to the

investigated outcome variables.

These circumstances may not only reduce the statistical power but also generalisability

of the findings. Time pressure and knowing that this is only a research project may have

additionally led participants to not review the snippets as thoroughly as the would usually do.

Such an attempt to save time could have further reduced the generalisability of results and

 32

future research should (1) recruit a larger participant pool and (2) take measures to ensure that

participants do not feel pressured by the participation. Yet, results still provide valuable insights

as this study’s focus on within-subject comparisons mitigates these influences. By comparing

the participants' performance and experiences across different levels of complexity, each

participant served as their own control, thereby accounting for some of the potential bias.

Another limitation of this study is the fact that it included a limited number of variables.

First, it only focused on two complexity metrics, namely cyclomatic complexity and nesting

depth. As code can be complex is various ways, other metrics that capture different aspect of

code complexity may have confounded the results and should be included in the analysis. While

future research should explore additional metrics to provide a more comprehensive picture of

their influence on workload and performance, cyclomatic complexity and nesting depth

provide a useful starting point as they are widely used in software development.

Second, this study did not include defect type as a variable. Defect types in this study

included logic errors, signing errors, out-of-bounds, and data race errors that varied between

code snippets. However, different types of defects may have varying degrees of complexity

and may impact reviewer performance differently. For example, signing errors may require

levels levels of cognitive effort to detect than out-of-bounds errors. In fact, Baum et al. (2019)

showed that working memory capacity only affects detection effectiveness of delocalised

defects. To gain better insights into their influence on code review performance, future research

should consider categorising types of defects and incorporate the type as a factor in the analysis.

Alternatively, to gain better insights into the effect of complexity on a certain type of defect, it

should be ensured that the type of defect is held constant across snippets. However, this study

still provides a good first impression about impact of complexity on the overall ability to detect

defects.

Third, this study did not consider code comments. The presence and quality of code

comments can greatly influence the perception of code complexity and the reviewer's

experience. Well-commented code can provide valuable insights into the logic and structure,

potentially reducing the perceived complexity. Conversely, poorly documented code may

exacerbate the perceived complexity and add to the cognitive load of the reviewer (Pascarella

et al., 2018). The absence of a systematic assessment of code comments in this study may have

introduced a confounding factor that could have influenced the results. Future research should

include the presence and quality of code comments as an additional variable that may impact

the perception of code complexity.

 33

Generally, this study serves as an initial exploration of the relationship between code

complexity and review outcomes, providing a foundation for future research to expand the

scope and depth of investigation in this area. Subsequent studies should aim to extend the

current study by exploring additional factors and variables to enhance our understanding of the

complex dynamics underlying code complexity and its impact on review outcomes. This could

involve broadening the participant pool to include a wider range of expertise and experience

levels, exploring individual factors that may influence the relationship between complexity

metrics and code review performance Additionally, investigating different contexts such as

programming languages, review tools, software applications, and stages of software

development would provide valuable insights into the specific impacts of complexity in these

areas and inform tailored complexity management strategies. Investigating the role of team

dynamics and collaboration in code review would provide a more comprehensive

understanding of how complexity interacts with social factors in the review process. Such

modifications to this paradigm would contribute to a more comprehensive understanding of the

complex dynamics between code complexity and review outcomes, thereby advancing the field

of software engineering and human factors research.

Another limitation of this study is the reliance on subjective measures to assess mental

workload. Although subjective measures can be informative, they may be influenced by

situational factors other than the variables of concern (Jahedi & Méndez, 2014). Additionally,

the NASA-TLX employed in this study uses scales ranging from 0-100 without including

anchor points (Hart & Staveland, 1988). This may lead to interpretation and consequently

rating differences between participants, making comparisons between individuals more

difficult (Cockburn & Gutwin, 2019; Hart, 2006). Future studies should explore other measures

of workload to obtain a more comprehensive understanding of workload during code review.

Yet, the NASA-TLX is a valuable tool for assessing workload in human factors research, as

has been widely used, validated, and applied across various domains (Grier, 2015; Hart, 2006).

Furthermore, due to the remote nature of the study, technical constraints did not allow

for a randomisation of snippet order, introducing potential order effects. The fixed order of the

code snippets may have influenced participants' workload and performance, consequently

confounding the results. As participants progressed through the review tasks, changes in

workload and performance may have partially stemmed from the time spent reviewing rather

than the investigated changes in code complexity. Future research should therefore randomise

the order of snippets to reduce this threat to internal validity.

 34

Future research should further explore the effectiveness of interventions aimed at

reducing code complexity or enhancing reviewers' ability to handle complex code. By

implementing training programs or tools designed to improve understanding and management

of code complexity and comparing them to a control group, researchers can validate their

effectiveness, improving the overall code review process.

6 Conclusion

In conclusion, this study examined the impact of code complexity, specifically

cyclomatic complexity and nesting depth, on workload and code review performance,

including efficiency and effectiveness. Our findings shed light on the relationship between

complexity metrics and these measures, providing insights into the challenges and associated

implications for code review in software development. By considering the human factors

involved in code review, organisations can optimise their development processes and promote

more efficient and effective code review practices that put less strain on individual reviewers.

It allows for proactive management and mitigation of the challenges code complexity imposes

on reviewers, ultimately not only improving reviewer experiences but crucially, also the quality

of software systems.

 35

7 References

Alrasheed, H., & Melton, A. (2022). Measuring nesting. IET Software, 16(6), 543–557.

https://doi.org/10.1049/sfw2.12069

Antinyan, V., Staron, M., & Sandberg, A. (2017). Evaluating code complexity triggers, use of

complexity measures and the influence of code complexity on maintenance time.

Empirical Software Engineering, 22(6), 3057–3087. https://doi.org/10.1007/s10664-

017-9508-2

Anu, V., Hu, W., Carver, J. C., Walia, G. S., & Bradshaw, G. (2018). Development of a

human error taxonomy for software requirements: A systematic literature review.

Information and Software Technology, 103, 112–124.

https://doi.org/10.1016/j.infsof.2018.06.011

Bacchelli, A., & Bird, C. (2013). Expectations, outcomes, and challenges of modern code

review. 2013 35th International Conference on Software Engineering (ICSE), 712–

721. https://doi.org/10.1109/ICSE.2013.6606617

Barb, A. S., Neill, C. J., Sangwan, R. S., & Piovoso, M. J. (2014). A statistical study of the

relevance of lines of code measures in software projects. Innovations in Systems and

Software Engineering, 10(4), 243–260. https://doi.org/10.1007/s11334-014-0231-5

Barr, M. (2013). Bookout vs. Toyota. case No. CJ-2008-7969, District Court of Oklahoma

County, http://www. safetyresearch. net/Library/Bookout_v_Toyota_Barr_redacted.

pdf, consultado el, 10.

Barrouillet, P., & Lecas, J.-F. (1999). Mental Models in Conditional Reasoning and Working

Memory. Thinking & Reasoning, 5(4), 289–302.

https://doi.org/10.1080/135467899393940

Baum, T., Schneider, K., & Bacchelli, A. (2017). On the Optimal Order of Reading Source

Code Changes for Review. 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME), 329–340.

https://doi.org/10.1109/ICSME.2017.28

Baum, T., Schneider, K., & Bacchelli, A. (2019). Associating working memory capacity and

code change ordering with code review performance. Empirical Software

Engineering, 24(4), 1762–1798. https://doi.org/10.1007/s10664-018-9676-8

Bavota, G., & Russo, B. (2015). Four eyes are better than two: On the impact of code reviews

on software quality. 2015 IEEE International Conference on Software Maintenance

and Evolution (ICSME), 81–90. https://doi.org/10.1109/ICSM.2015.7332454

 36

Berkowitz, L. (1989). Frustration-aggression hypothesis: Examination and reformulation.

Psychological Bulletin, 106(1), 59–73. https://doi.org/10.1037/0033-2909.106.1.59

Bruggen, A. (2015). An empirical investigation of the relationship between workload and

performance. Management Decision, 53(10), 2377–2389.

https://doi.org/10.1108/MD-02-2015-0063

Bürkner, P.-C. (2017). brms: An R Package for Bayesian Multilevel Models Using Stan.

Journal of Statistical Software, 80(1). https://doi.org/10.18637/jss.v080.i01

Calcagno, V., & de Mazancourt, C. (2010). glmulti: An R Package for Easy Automated

Model Selection with (Generalized) Linear Models. Journal of Statistical Software,

34(12), 1–29. https://doi.org/10.18637/jss.v034.i12

Chen, C., & Caza, A. (2018, January 22). Grit, Intrinsic Motivation, and Costly

Perseverance: Their Interactive Influence in Problem Solving.

Cockburn, A., & Gutwin, C. (2019). Anchoring Effects and Troublesome Asymmetric

Transfer in Subjective Ratings. Proceedings of the 2019 CHI Conference on Human

Factors in Computing Systems, 1–12. https://doi.org/10.1145/3290605.3300592

Curtis, B., Sheppard, S. B., Milliman, P., Borst, M. A., & Love, T. (1979). Measuring the

Psychological Complexity of Software Maintenance Tasks with the Halstead and

McCabe Metrics. IEEE Transactions on Software Engineering, SE-5(2), 96–104.

https://doi.org/10.1109/TSE.1979.234165

de Winter, J. C. F. (2014). Controversy in human factors constructs and the explosive use of

the NASA-TLX: A measurement perspective. Cognition, Technology & Work, 16(3),

289–297. https://doi.org/10.1007/s10111-014-0275-1

Dehais, F., Lafont, A., Roy, R., & Fairclough, S. (2020). A Neuroergonomics Approach to

Mental Workload, Engagement and Human Performance. Frontiers in Neuroscience,

14, 268. https://doi.org/10.3389/fnins.2020.00268

Ebert, F., Castor, F., Novielli, N., & Serebrenik, A. (2021). An exploratory study on

confusion in code reviews. Empirical Software Engineering, 26(1), 12.

https://doi.org/10.1007/s10664-020-09909-5

Fagan, M. E. (1976). Design and code inspections to reduce errors in program development.

IBM Systems Journal, 15(3), 182–211. https://doi.org/10.1147/sj.153.0182

Fan, J., & Smith, A. P. (2017). The Impact of Workload and Fatigue on Performance. In L.

Longo & M. C. Leva (Eds.), Human Mental Workload: Models and Applications

(Vol. 726, pp. 90–105). Springer International Publishing.

https://doi.org/10.1007/978-3-319-61061-0_6

 37

Grier, R. A. (2015). How High is High? A Meta-Analysis of NASA-TLX Global Workload

Scores. Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

59(1), 1727–1731. https://doi.org/10.1177/1541931215591373

Harrison, W. A., & Magel, K. I. (1981). A complexity measure based on nesting level. ACM

SIGPLAN Notices, 16(3), 63–74. https://doi.org/10.1145/947825.947829

Hart, S. G. (2006). Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the

Human Factors and Ergonomics Society Annual Meeting, 50(9), 904–908.

https://doi.org/10.1177/154193120605000909

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index):

Results of Empirical and Theoretical Research. In Advances in Psychology (Vol. 52,

pp. 139–183). Elsevier. https://doi.org/10.1016/S0166-4115(08)62386-9

Hijazi, H., Duraes, J., Couceiro, R., Castelhano, J., Barbosa, R., Medeiros, J., Castelo-

Branco, M., De Carvalho, P., & Madeira, H. (2023). Quality Evaluation of Modern

Code Reviews Through Intelligent Biometric Program Comprehension. IEEE

Transactions on Software Engineering, 49(2), 626–645.

https://doi.org/10.1109/TSE.2022.3158543

Huang, F., Liu, B., & Huang, B. (2012). A Taxonomy System to Identify Human Error Causes

for Software Defects. https://doi.org/10.13140/2.1.4528.5445

Huang, F., Liu, B., Wang, S., & Li, Q. (2015). The impact of software process consistency on

residual defects: Impact of Software Process Consistency on Residual Defects.

Journal of Software: Evolution and Process, 27(9), 625–646.

https://doi.org/10.1002/smr.1717

Jahedi, S., & Méndez, F. (2014). On the advantages and disadvantages of subjective

measures. Journal of Economic Behavior & Organization, 98, 97–114.

https://doi.org/10.1016/j.jebo.2013.12.016

Khoshnoud, F., Nasab, A. R., Toudeji, Z., & Sami, A. (2022). Which bugs are missed in code

reviews: An empirical study on SmartSHARK dataset. Proceedings of the 19th

International Conference on Mining Software Repositories, 137–141.

https://doi.org/10.1145/3524842.3527997

Kononenko, O., Baysal, O., & Godfrey, M. W. (2016). Code review quality: How developers

see it. Proceedings of the 38th International Conference on Software Engineering,

1028–1038. https://doi.org/10.1145/2884781.2884840

Leveson, N. G. (2011). Applying systems thinking to analyze and learn from events. Safety

Science, 49(1), 55–64. https://doi.org/10.1016/j.ssci.2009.12.021

 38

McCabe, T. J. (1976). A Complexity Measure. IEEE Transactions on Software Engineering,

SE-2(4), 308–320. https://doi.org/10.1109/TSE.1976.233837

McIntosh, S., Kamei, Y., Adams, B., & Hassan, A. E. (2014). The impact of code review

coverage and code review participation on software quality: A case study of the qt,

VTK, and ITK projects. Proceedings of the 11th Working Conference on Mining

Software Repositories, 192–201. https://doi.org/10.1145/2597073.2597076

Nuñez-Varela, A. S., Pérez-Gonzalez, H. G., Martínez-Perez, F. E., & Soubervielle-

Montalvo, C. (2017). Source code metrics: A systematic mapping study. Journal of

Systems and Software, 128, 164–197. https://doi.org/10.1016/j.jss.2017.03.044

Pascarella, L., Spadini, D., Palomba, F., Bruntink, M., & Bacchelli, A. (2018). Information

Needs in Contemporary Code Review. Proceedings of the ACM on Human-Computer

Interaction, 2(CSCW), 1–27. https://doi.org/10.1145/3274404

Peitek, N., Apel, S., Parnin, C., Brechmann, A., & Siegmund, J. (2021). Program

Comprehension and Code Complexity Metrics: An fMRI Study. 2021 IEEE/ACM

43rd International Conference on Software Engineering (ICSE), 524–536.

https://doi.org/10.1109/ICSE43902.2021.00056

Reason, J. (1990). Human Error (1st ed.). Cambridge University Press.

https://doi.org/10.1017/CBO9781139062367

Rigby, P. C., & Bird, C. (2013). Convergent contemporary software peer review practices.

Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering,

202–212. https://doi.org/10.1145/2491411.2491444

Sadowski, C., Söderberg, E., Church, L., Sipko, M., & Bacchelli, A. (2018). Modern code

review: A case study at google. Proceedings of the 40th International Conference on

Software Engineering: Software Engineering in Practice, 181–190.

https://doi.org/10.1145/3183519.3183525

Sharif, B., Falcone, M., & Maletic, J. I. (2012). An eye-tracking study on the role of scan

time in finding source code defects. Proceedings of the Symposium on Eye Tracking

Research and Applications, 381–384. https://doi.org/10.1145/2168556.2168642

Shepperd, M. (1988). A critique of cyclomatic complexity as a software metric. Software

Engineering Journal, 3(2), 30. https://doi.org/10.1049/sej.1988.0003

Shin, Y., & Williams, L. (2008). An empirical model to predict security vulnerabilities using

code complexity metrics. Proceedings of the Second ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, 315–317.

https://doi.org/10.1145/1414004.1414065

 39

Stein, M., Riedl, J., Harner, S. J., & Mashayekhi, V. (1997). A case study of distributed,

asynchronous software inspection. Proceedings of the 19th International Conference

on Software Engineering - ICSE ’97, 107–117.

https://doi.org/10.1145/253228.253250

Suleman Sarwar, M. M., Shahzad, S., & Ahmad, I. (2013). Cyclomatic complexity: The

nesting problem. Eighth International Conference on Digital Information

Management (ICDIM 2013), 274–279. https://doi.org/10.1109/ICDIM.2013.6693981

Sweller, J. (1988). Cognitive Load During Problem Solving: Effects on Learning. Cognitive

Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4

Sweller, J., Ayres, P., & Kalyuga, S. (2011a). Cognitive Load Theory. Springer New York.

https://doi.org/10.1007/978-1-4419-8126-4

Sweller, J., Ayres, P., & Kalyuga, S. (2011b). Measuring Cognitive Load. In J. Sweller, P.

Ayres, & S. Kalyuga, Cognitive Load Theory (pp. 71–85). Springer New York.

https://doi.org/10.1007/978-1-4419-8126-4_6

Thongtanunam, P., McIntosh, S., Hassan, A. E., & Iida, H. (2015). Investigating Code

Review Practices in Defective Files: An Empirical Study of the Qt System. 2015

IEEE/ACM 12th Working Conference on Mining Software Repositories, 168–179.

https://doi.org/10.1109/MSR.2015.23

Van Der Linden, D., Frese, M., & Sonnentag, S. (2003). The Impact of Mental Fatigue on

Exploration in a Complex Computer Task: Rigidity and Loss of Systematic Strategies.

Human Factors: The Journal of the Human Factors and Ergonomics Society, 45(3),

483–494. https://doi.org/10.1518/hfes.45.3.483.27256

Wang, D., Wang, Q., Wang, J., & Shi, L. (2021). Accept or Not? An Empirical Study on

Analyzing the Factors that Affect the Outcomes of Modern Code Review? 2021 IEEE

21st International Conference on Software Quality, Reliability and Security (QRS),

946–955. https://doi.org/10.1109/QRS54544.2021.00104

Wang, Y., Yijun, L., Collins, M., & Liu, P. (2008). Process improvement of peer code review

and behavior analysis of its participants. ACM SIGCSE Bulletin, 40(1), 107–111.

https://doi.org/10.1145/1352322.1352171

Wickens, C. D. (Ed.). (2014). An introduction to human factors engineering (2. ed., Pearson

new internat. ed). Pearson Education.

Wickens, C. D., Helton, W. S., Hollands, J. G., & Banbury, S. (2021). Engineering

Psychology and Human Performance (5th ed.). Routledge.

https://doi.org/10.4324/9781003177616

 40

Zuse, H. (1991). Software Complexity: Measures and Methods. De Gruyter.

https://doi.org/10.1515/9783110866087

 41

8 Appendices

8.1 Appendix A: Questionnaire

Microsoft forms

 42

 43

 44

 45

8.2 Appendix B: R syntax

1 Install & Load Packages Needed for Analysis

install.packages("knitr")
install.packages("stringr")
install.packages("devtools")
install.packages("haven")
install.packages("broom.mixed")
install.packages("rstanarm")
install.packages("brms")
install.packages("ggimg")
install.packages("ggplot2")
install.packages("bayr")
install.packages("dplyr")
install.packages("GGally")
install.packages("patchwork")

library(tidyverse)

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.2 ──

✔ ggplot2 3.4.2 ✔ purrr 0.3.5

✔ tibble 3.2.1 ✔ dplyr 1.1.2

✔ tidyr 1.2.1 ✔ stringr 1.5.0

✔ readr 2.1.3 ✔ forcats 0.5.2
── Conflicts ── tidyverse_conflicts() ──

✖ dplyr::filter() masks stats::filter()

✖ dplyr::lag() masks stats::lag()

library(rstanarm)

Loading required package: Rcpp
This is rstanarm version 2.21.4
- See https://mc-stan.org/rstanarm/articles/priors for changes to default priors!
- Default priors may change, so it's safest to specify priors, even if equivalent to the
defaults.
- For execution on a local, multicore CPU with excess RAM we recommend calling
options(mc.cores = parallel::detectCores())

library(brms)

Loading 'brms' package (version 2.19.0). Useful instructions
can be found by typing help('brms'). A more detailed introduction
to the package is available through vignette('brms_overview').

Attaching package: 'brms'

The following objects are masked from 'package:rstanarm':

dirichlet, exponential, get_y, lasso, ngrps

The following object is masked from 'package:stats':

ar

options(mc.cores = 4)
library(bayr)

Registered S3 methods overwritten by 'bayr':
method from
coef.brmsfit brms

 46

coef.stanreg rstanarm
predict.brmsfit brms
predict.stanreg rstanarm

Attaching package: 'bayr'

The following objects are masked from 'package:brms':

fixef, ranef

The following objects are masked from 'package:rstanarm':

fixef, ranef

The following object is masked from 'package:tidyr':

expand_grid

library(GGally)

Registered S3 method overwritten by 'GGally':
method from
+.gg ggplot2

library(patchwork)

2 Reading & Cleaning Data

2.1 Import Files

D_Part <- ## participant-level variables
 read.csv("MS_results.csv", sep = ';')%>%
 rename("Part" = "ID",
 "sd_experience_yrs" = "Years.of.experience.with.professional.software.development"
,
 "c_experience_months" = "In.your.life..how.many.months.have.you.predominantly.prog
rammed.using.C.",
 "loc_written_pm" = "Approximately.how.many.lines.of.code.have.you.written.using.C.
each.month.",
 "review_months" = "How.many.months.have.you.already.been.doing.code.review.at.Vect
or.",
 "loc_reviewed_pm" = "Approximately.how.many.lines.of.code.do.you.review.each.month
.",
 "working_hrs" = "How.many.hours.have.you.already.worked.today.",
 "Confidence" = "How.confident.are.you.in.your.ability.to.detect.mistakes.",
 "Fitness"= "How.do.you.perceive.your.current.level.of.fitness.")%>%
 select(-Startzeit, -Fertigstellungszeit, -E.Mail, -Name, -Please.upload.the.completed.rev
iew.zip.file.here..please.rename.the.file.to.have.a...pdf..ending..as.MS.does.not.allow.the
.upload.of.zip.files..)
 print(D_Part)

Part sd_experience_yrs c_experience_months loc_written_pm review_months
1 4 20 228 200 10
2 5 6 24 20 72
3 6 21 252 100 240
4 7 15 60 500 60
5 8 5 36 200 48
6 9 27 270 200 180
7 10 10 98 200 108
8 11 5 100 600 25
9 12 10 120 100 30
10 13 20 180 500 5
11 14 3 32 1000 34
12 15 7 120 500 72
13 16 4 84 3000 42

 47

14 17 4 96 100 46
15 18 20 245 NA 244
16 19 6 60 300 60
17 20 12 100 100 60
loc_reviewed_pm working_hrs Confidence Fitness
1 100 1 Somewhat not confident Not fatigued at all
2 500 1 Somewhat confident A little fatigued
3 100 2 Neutral A little fatigued
4 5000 2 Somewhat confident Moderately fatigued
5 NA 0 Somewhat confident Moderately fatigued
6 500 6 Neutral Not fatigued at all
7 1000 5 Somewhat confident Moderately fatigued
8 80 2 Somewhat confident Not fatigued at all
9 300 4 Extremely confident A little fatigued
10 300 0 Somewhat confident Not fatigued at all
11 1000 4 Somewhat confident A little fatigued
12 400 6 Somewhat confident Moderately fatigued
13 5000 1 Somewhat confident A little fatigued
14 50 0 Somewhat confident Not fatigued at all
15 NA 0 Somewhat confident Not fatigued at all
16 50 5 Somewhat confident A little fatigued
17 100 2 Somewhat confident Moderately fatigued

D_Exp <- # experimental results
 read.csv("Snippet_results.csv", sep = ';')%>%
 rename("Part" = "ID", "cyclomatic_complexity" = "CC", "nesting_depth" = "ND", "lines_of_c
ode" = "LOC", "Fault_detection" = "Fault.Detection", "mental_demand" = "Mental.Demand", "te
mporal_demand" = "Temporal.Demand", "effort" = "Effort", "frustration" = "Frustration")%>%
 select(-Comments)
 print(D_Exp)

Part Snippet cyclomatic_complexity nesting_depth lines_of_code ToT
1 4 1 3 1 49 5
2 4 2 6 4 96 10
3 4 3 9 7 125 5
4 4 4 12 2 117 10
5 4 5 15 5 222 15
6 4 6 18 8 273 NA
7 4 7 21 3 183 15
8 4 8 27 6 370 NA
9 5 1 3 1 49 5
10 5 2 6 4 96 10
11 5 3 9 7 125 10
12 5 4 12 2 117 5
13 5 5 15 5 222 21
14 5 6 18 8 273 13
15 5 7 21 3 183 5
16 5 8 27 6 370 6
17 6 1 3 1 49 5
18 6 2 6 4 96 4
19 6 3 9 7 125 4
20 6 4 12 2 117 4
21 6 5 15 5 222 6
22 6 6 18 8 273 6
23 6 7 21 3 183 7
24 6 8 27 6 370 6
25 7 1 3 1 49 7
26 7 2 6 4 96 12
27 7 3 9 7 125 22
28 7 4 12 2 117 11
29 7 5 15 5 222 9
30 7 6 18 8 273 37
31 7 7 21 3 183 15
32 7 8 27 6 370 NA
33 8 1 3 1 49 5
34 8 2 6 4 96 10

 48

35 8 3 9 7 125 12
36 8 4 12 2 117 5
37 8 5 15 5 222 20
38 8 6 18 8 273 15
39 8 7 21 3 183 5
40 8 8 27 6 370 20
41 9 1 3 1 49 3
42 9 2 6 4 96 3
43 9 3 9 7 125 4
44 9 4 12 2 117 8
45 9 5 15 5 222 8
46 9 6 18 8 273 NA
47 9 7 21 3 183 NA
48 9 8 27 6 370 NA
49 10 1 3 1 49 14
50 10 2 6 4 96 11
51 10 3 9 7 125 15
52 10 4 12 2 117 12
53 10 5 15 5 222 24
54 10 6 18 8 273 40
55 10 7 21 3 183 17
56 10 8 27 6 370 42
57 11 1 3 1 49 10
58 11 2 6 4 96 20
59 11 3 9 7 125 35
60 11 4 12 2 117 15
61 11 5 15 5 222 5
62 11 6 18 8 273 5
63 11 7 21 3 183 15
64 11 8 27 6 370 5
65 12 1 3 1 49 10
66 12 2 6 4 96 20
67 12 3 9 7 125 20
68 12 4 12 2 117 15
69 12 5 15 5 222 30
70 12 6 18 8 273 10
71 12 7 21 3 183 10
72 12 8 27 6 370 15
73 13 1 3 1 49 8
74 13 2 6 4 96 7
75 13 3 9 7 125 17
76 13 4 12 2 117 8
77 13 5 15 5 222 20
78 13 6 18 8 273 22
79 13 7 21 3 183 16
80 13 8 27 6 370 16
81 14 1 3 1 49 7
82 14 2 6 4 96 8
83 14 3 9 7 125 12
84 14 4 12 2 117 13
85 14 5 15 5 222 12
86 14 6 18 8 273 25
87 14 7 21 3 183 4
88 14 8 27 6 370 20
89 15 1 3 1 49 13
90 15 2 6 4 96 28
91 15 3 9 7 125 28
92 15 4 12 2 117 13
93 15 5 15 5 222 30
94 15 6 18 8 273 24
95 15 7 21 3 183 14
96 15 8 27 6 370 25
97 16 1 3 1 49 9
98 16 2 6 4 96 12
99 16 3 9 7 125 13
100 16 4 12 2 117 12

 49

101 16 5 15 5 222 30
102 16 6 18 8 273 15
103 16 7 21 3 183 10
104 16 8 27 6 370 NA
105 17 1 3 1 49 8
106 17 2 6 4 96 15
107 17 3 9 7 125 16
108 17 4 12 2 117 8
109 17 5 15 5 222 10
110 17 6 18 8 273 11
111 17 7 21 3 183 10
112 17 8 27 6 370 11
113 18 1 3 1 49 7
114 18 2 6 4 96 9
115 18 3 9 7 125 28
116 18 4 12 2 117 14
117 18 5 15 5 222 30
118 18 6 18 8 273 25
119 18 7 21 3 183 20
120 18 8 27 6 370 13
121 19 1 3 1 49 3
122 19 2 6 4 96 7
123 19 3 9 7 125 13
124 19 4 12 2 117 7
125 19 5 15 5 222 9
126 19 6 18 8 273 18
127 19 7 21 3 183 6
128 19 8 27 6 370 12
129 20 1 3 1 49 5
130 20 2 6 4 96 5
131 20 3 9 7 125 8
132 20 4 12 2 117 9
133 20 5 15 5 222 14
134 20 6 18 8 273 15
135 20 7 21 3 183 15
136 20 8 27 6 370 40
Fault_detection mental_demand temporal_demand effort frustration
1 0 NA NA NA NA
2 1 NA NA NA NA
3 1 NA NA NA NA
4 0 NA NA NA NA
5 1 NA NA NA NA
6 0 NA NA NA NA
7 0 NA NA NA NA
8 0 NA NA NA NA
9 0 30 60 35 45
10 1 60 45 65 45
11 1 75 30 75 40
12 1 25 20 25 20
13 0 90 30 80 80
14 0 65 30 60 35
15 1 35 25 40 25
16 0 45 30 30 85
17 0 25 15 20 45
18 1 15 25 15 45
19 0 30 35 35 55
20 0 30 20 20 60
21 0 55 20 45 90
22 0 55 45 60 90
23 0 60 60 45 95
24 0 65 20 20 100
25 0 35 15 60 40
26 1 70 25 70 35
27 0 85 25 70 75
28 1 30 20 30 35
29 0 95 20 100 100

 50

30 0 90 20 85 75
31 1 NA NA NA NA
32 0 90 20 95 60
33 0 50 25 50 25
34 1 50 20 50 20
35 1 50 55 55 50
36 1 50 20 50 20
37 0 75 75 75 75
38 0 65 60 60 60
39 1 50 50 30 30
40 0 70 60 60 60
41 0 25 50 10 10
42 1 20 50 15 15
43 1 15 50 20 10
44 1 30 75 30 15
45 0 65 60 45 50
46 NA NA NA NA NA
47 NA NA NA NA NA
48 NA NA NA NA NA
49 1 10 55 15 65
50 1 15 25 15 15
51 1 15 15 10 10
52 1 20 25 20 25
53 1 85 65 75 80
54 0 80 60 85 85
55 0 80 40 70 55
56 1 90 65 85 85
57 1 25 45 55 5
58 1 60 55 40 10
59 1 70 35 70 10
60 0 65 35 35 35
61 0 15 5 5 80
62 0 25 15 10 20
63 0 60 60 60 80
64 0 10 10 10 45
65 1 65 60 55 65
66 1 65 30 60 45
67 0 70 55 70 75
68 0 25 15 35 10
69 1 90 50 90 95
70 0 35 40 55 65
71 0 65 40 55 65
72 0 55 40 60 70
73 0 15 5 15 5
74 1 15 5 15 5
75 1 30 15 30 10
76 1 15 15 15 5
77 0 70 35 70 70
78 0 70 35 70 55
79 0 55 25 60 30
80 0 75 60 75 80
81 0 50 50 50 60
82 0 60 55 60 55
83 1 65 65 65 65
84 1 70 70 75 90
85 0 85 90 95 100
86 0 85 50 90 95
87 1 80 80 85 85
88 1 45 50 55 50
89 0 50 40 30 50
90 1 70 50 70 40
91 1 60 35 40 30
92 1 25 40 20 15
93 1 85 75 80 90
94 0 65 50 60 45
95 1 65 45 65 35

 51

96 0 70 45 60 35
97 1 45 35 40 40
98 1 45 45 40 35
99 1 55 50 45 50
100 1 40 40 45 45
101 0 80 90 50 95
102 0 95 90 65 95
103 0 75 80 20 45
104 NA NA NA NA NA
105 0 30 70 15 10
106 0 60 25 45 15
107 1 35 20 20 10
108 1 60 70 40 60
109 0 70 85 90 90
110 0 65 55 45 30
111 1 35 20 30 10
112 0 75 60 80 70
113 1 NA NA NA NA
114 1 NA NA NA NA
115 0 NA NA NA NA
116 1 NA NA NA NA
117 0 NA NA NA NA
118 0 NA NA NA NA
119 1 NA NA NA NA
120 0 NA NA NA NA
121 0 15 75 20 70
122 0 20 20 25 15
123 1 40 15 35 20
124 1 20 15 25 10
125 0 85 15 95 100
126 0 70 45 70 80
127 1 20 15 25 15
128 0 30 35 55 45
129 0 30 10 15 15
130 1 35 10 10 15
131 1 40 15 20 15
132 1 40 20 25 20
133 0 80 65 80 85
134 0 70 60 70 70
135 1 65 60 65 60
136 1 75 65 75 75

D_Snips <- D_Exp %>% ## extracting a Snippet-level table
 distinct(Snippet, cyclomatic_complexity, nesting_depth, lines_of_code)
 print(D_Snips)

Snippet cyclomatic_complexity nesting_depth lines_of_code
1 1 3 1 49
2 2 6 4 96
3 3 9 7 125
4 4 12 2 117
5 5 15 5 222
6 6 18 8 273
7 7 21 3 183
8 8 27 6 370

3 Join Data

D_1 <-
 D_Exp %>%
 left_join(D_Part, by = "Part") %>%
 mutate(Part = as.character(Part),
 Snippet = as.character(Snippet))

D_1

 52

Part Snippet cyclomatic_complexity nesting_depth lines_of_code ToT
1 4 1 3 1 49 5
2 4 2 6 4 96 10
3 4 3 9 7 125 5
4 4 4 12 2 117 10
5 4 5 15 5 222 15
6 4 6 18 8 273 NA
7 4 7 21 3 183 15
8 4 8 27 6 370 NA
9 5 1 3 1 49 5
10 5 2 6 4 96 10
11 5 3 9 7 125 10
12 5 4 12 2 117 5
13 5 5 15 5 222 21
14 5 6 18 8 273 13
15 5 7 21 3 183 5
16 5 8 27 6 370 6
17 6 1 3 1 49 5
18 6 2 6 4 96 4
19 6 3 9 7 125 4
20 6 4 12 2 117 4
21 6 5 15 5 222 6
22 6 6 18 8 273 6
23 6 7 21 3 183 7
24 6 8 27 6 370 6
25 7 1 3 1 49 7
26 7 2 6 4 96 12
27 7 3 9 7 125 22
28 7 4 12 2 117 11
29 7 5 15 5 222 9
30 7 6 18 8 273 37
31 7 7 21 3 183 15
32 7 8 27 6 370 NA
33 8 1 3 1 49 5
34 8 2 6 4 96 10
35 8 3 9 7 125 12
36 8 4 12 2 117 5
37 8 5 15 5 222 20
38 8 6 18 8 273 15
39 8 7 21 3 183 5
40 8 8 27 6 370 20
41 9 1 3 1 49 3
42 9 2 6 4 96 3
43 9 3 9 7 125 4
44 9 4 12 2 117 8
45 9 5 15 5 222 8
46 9 6 18 8 273 NA
47 9 7 21 3 183 NA
48 9 8 27 6 370 NA
49 10 1 3 1 49 14
50 10 2 6 4 96 11
51 10 3 9 7 125 15
52 10 4 12 2 117 12
53 10 5 15 5 222 24
54 10 6 18 8 273 40
55 10 7 21 3 183 17
56 10 8 27 6 370 42
57 11 1 3 1 49 10
58 11 2 6 4 96 20
59 11 3 9 7 125 35
60 11 4 12 2 117 15
61 11 5 15 5 222 5
62 11 6 18 8 273 5
63 11 7 21 3 183 15
64 11 8 27 6 370 5
65 12 1 3 1 49 10

 53

66 12 2 6 4 96 20
67 12 3 9 7 125 20
68 12 4 12 2 117 15
69 12 5 15 5 222 30
70 12 6 18 8 273 10
71 12 7 21 3 183 10
72 12 8 27 6 370 15
73 13 1 3 1 49 8
74 13 2 6 4 96 7
75 13 3 9 7 125 17
76 13 4 12 2 117 8
77 13 5 15 5 222 20
78 13 6 18 8 273 22
79 13 7 21 3 183 16
80 13 8 27 6 370 16
81 14 1 3 1 49 7
82 14 2 6 4 96 8
83 14 3 9 7 125 12
84 14 4 12 2 117 13
85 14 5 15 5 222 12
86 14 6 18 8 273 25
87 14 7 21 3 183 4
88 14 8 27 6 370 20
89 15 1 3 1 49 13
90 15 2 6 4 96 28
91 15 3 9 7 125 28
92 15 4 12 2 117 13
93 15 5 15 5 222 30
94 15 6 18 8 273 24
95 15 7 21 3 183 14
96 15 8 27 6 370 25
97 16 1 3 1 49 9
98 16 2 6 4 96 12
99 16 3 9 7 125 13
100 16 4 12 2 117 12
101 16 5 15 5 222 30
102 16 6 18 8 273 15
103 16 7 21 3 183 10
104 16 8 27 6 370 NA
105 17 1 3 1 49 8
106 17 2 6 4 96 15
107 17 3 9 7 125 16
108 17 4 12 2 117 8
109 17 5 15 5 222 10
110 17 6 18 8 273 11
111 17 7 21 3 183 10
112 17 8 27 6 370 11
113 18 1 3 1 49 7
114 18 2 6 4 96 9
115 18 3 9 7 125 28
116 18 4 12 2 117 14
117 18 5 15 5 222 30
118 18 6 18 8 273 25
119 18 7 21 3 183 20
120 18 8 27 6 370 13
121 19 1 3 1 49 3
122 19 2 6 4 96 7
123 19 3 9 7 125 13
124 19 4 12 2 117 7
125 19 5 15 5 222 9
126 19 6 18 8 273 18
127 19 7 21 3 183 6
128 19 8 27 6 370 12
129 20 1 3 1 49 5
130 20 2 6 4 96 5
131 20 3 9 7 125 8

 54

132 20 4 12 2 117 9
133 20 5 15 5 222 14
134 20 6 18 8 273 15
135 20 7 21 3 183 15
136 20 8 27 6 370 40
Fault_detection mental_demand temporal_demand effort frustration
1 0 NA NA NA NA
2 1 NA NA NA NA
3 1 NA NA NA NA
4 0 NA NA NA NA
5 1 NA NA NA NA
6 0 NA NA NA NA
7 0 NA NA NA NA
8 0 NA NA NA NA
9 0 30 60 35 45
10 1 60 45 65 45
11 1 75 30 75 40
12 1 25 20 25 20
13 0 90 30 80 80
14 0 65 30 60 35
15 1 35 25 40 25
16 0 45 30 30 85
17 0 25 15 20 45
18 1 15 25 15 45
19 0 30 35 35 55
20 0 30 20 20 60
21 0 55 20 45 90
22 0 55 45 60 90
23 0 60 60 45 95
24 0 65 20 20 100
25 0 35 15 60 40
26 1 70 25 70 35
27 0 85 25 70 75
28 1 30 20 30 35
29 0 95 20 100 100
30 0 90 20 85 75
31 1 NA NA NA NA
32 0 90 20 95 60
33 0 50 25 50 25
34 1 50 20 50 20
35 1 50 55 55 50
36 1 50 20 50 20
37 0 75 75 75 75
38 0 65 60 60 60
39 1 50 50 30 30
40 0 70 60 60 60
41 0 25 50 10 10
42 1 20 50 15 15
43 1 15 50 20 10
44 1 30 75 30 15
45 0 65 60 45 50
46 NA NA NA NA NA
47 NA NA NA NA NA
48 NA NA NA NA NA
49 1 10 55 15 65
50 1 15 25 15 15
51 1 15 15 10 10
52 1 20 25 20 25
53 1 85 65 75 80
54 0 80 60 85 85
55 0 80 40 70 55
56 1 90 65 85 85
57 1 25 45 55 5
58 1 60 55 40 10
59 1 70 35 70 10
60 0 65 35 35 35

 55

61 0 15 5 5 80
62 0 25 15 10 20
63 0 60 60 60 80
64 0 10 10 10 45
65 1 65 60 55 65
66 1 65 30 60 45
67 0 70 55 70 75
68 0 25 15 35 10
69 1 90 50 90 95
70 0 35 40 55 65
71 0 65 40 55 65
72 0 55 40 60 70
73 0 15 5 15 5
74 1 15 5 15 5
75 1 30 15 30 10
76 1 15 15 15 5
77 0 70 35 70 70
78 0 70 35 70 55
79 0 55 25 60 30
80 0 75 60 75 80
81 0 50 50 50 60
82 0 60 55 60 55
83 1 65 65 65 65
84 1 70 70 75 90
85 0 85 90 95 100
86 0 85 50 90 95
87 1 80 80 85 85
88 1 45 50 55 50
89 0 50 40 30 50
90 1 70 50 70 40
91 1 60 35 40 30
92 1 25 40 20 15
93 1 85 75 80 90
94 0 65 50 60 45
95 1 65 45 65 35
96 0 70 45 60 35
97 1 45 35 40 40
98 1 45 45 40 35
99 1 55 50 45 50
100 1 40 40 45 45
101 0 80 90 50 95
102 0 95 90 65 95
103 0 75 80 20 45
104 NA NA NA NA NA
105 0 30 70 15 10
106 0 60 25 45 15
107 1 35 20 20 10
108 1 60 70 40 60
109 0 70 85 90 90
110 0 65 55 45 30
111 1 35 20 30 10
112 0 75 60 80 70
113 1 NA NA NA NA
114 1 NA NA NA NA
115 0 NA NA NA NA
116 1 NA NA NA NA
117 0 NA NA NA NA
118 0 NA NA NA NA
119 1 NA NA NA NA
120 0 NA NA NA NA
121 0 15 75 20 70
122 0 20 20 25 15
123 1 40 15 35 20
124 1 20 15 25 10
125 0 85 15 95 100
126 0 70 45 70 80

 56

127 1 20 15 25 15
128 0 30 35 55 45
129 0 30 10 15 15
130 1 35 10 10 15
131 1 40 15 20 15
132 1 40 20 25 20
133 0 80 65 80 85
134 0 70 60 70 70
135 1 65 60 65 60
136 1 75 65 75 75
sd_experience_yrs c_experience_months loc_written_pm review_months
1 20 228 200 10
2 20 228 200 10
3 20 228 200 10
4 20 228 200 10
5 20 228 200 10
6 20 228 200 10
7 20 228 200 10
8 20 228 200 10
9 6 24 20 72
10 6 24 20 72
11 6 24 20 72
12 6 24 20 72
13 6 24 20 72
14 6 24 20 72
15 6 24 20 72
16 6 24 20 72
17 21 252 100 240
18 21 252 100 240
19 21 252 100 240
20 21 252 100 240
21 21 252 100 240
22 21 252 100 240
23 21 252 100 240
24 21 252 100 240
25 15 60 500 60
26 15 60 500 60
27 15 60 500 60
28 15 60 500 60
29 15 60 500 60
30 15 60 500 60
31 15 60 500 60
32 15 60 500 60
33 5 36 200 48
34 5 36 200 48
35 5 36 200 48
36 5 36 200 48
37 5 36 200 48
38 5 36 200 48
39 5 36 200 48
40 5 36 200 48
41 27 270 200 180
42 27 270 200 180
43 27 270 200 180
44 27 270 200 180
45 27 270 200 180
46 27 270 200 180
47 27 270 200 180
48 27 270 200 180
49 10 98 200 108
50 10 98 200 108
51 10 98 200 108
52 10 98 200 108
53 10 98 200 108
54 10 98 200 108
55 10 98 200 108

 57

56 10 98 200 108
57 5 100 600 25
58 5 100 600 25
59 5 100 600 25
60 5 100 600 25
61 5 100 600 25
62 5 100 600 25
63 5 100 600 25
64 5 100 600 25
65 10 120 100 30
66 10 120 100 30
67 10 120 100 30
68 10 120 100 30
69 10 120 100 30
70 10 120 100 30
71 10 120 100 30
72 10 120 100 30
73 20 180 500 5
74 20 180 500 5
75 20 180 500 5
76 20 180 500 5
77 20 180 500 5
78 20 180 500 5
79 20 180 500 5
80 20 180 500 5
81 3 32 1000 34
82 3 32 1000 34
83 3 32 1000 34
84 3 32 1000 34
85 3 32 1000 34
86 3 32 1000 34
87 3 32 1000 34
88 3 32 1000 34
89 7 120 500 72
90 7 120 500 72
91 7 120 500 72
92 7 120 500 72
93 7 120 500 72
94 7 120 500 72
95 7 120 500 72
96 7 120 500 72
97 4 84 3000 42
98 4 84 3000 42
99 4 84 3000 42
100 4 84 3000 42
101 4 84 3000 42
102 4 84 3000 42
103 4 84 3000 42
104 4 84 3000 42
105 4 96 100 46
106 4 96 100 46
107 4 96 100 46
108 4 96 100 46
109 4 96 100 46
110 4 96 100 46
111 4 96 100 46
112 4 96 100 46
113 20 245 NA 244
114 20 245 NA 244
115 20 245 NA 244
116 20 245 NA 244
117 20 245 NA 244
118 20 245 NA 244
119 20 245 NA 244
120 20 245 NA 244
121 6 60 300 60

 58

122 6 60 300 60
123 6 60 300 60
124 6 60 300 60
125 6 60 300 60
126 6 60 300 60
127 6 60 300 60
128 6 60 300 60
129 12 100 100 60
130 12 100 100 60
131 12 100 100 60
132 12 100 100 60
133 12 100 100 60
134 12 100 100 60
135 12 100 100 60
136 12 100 100 60
loc_reviewed_pm working_hrs Confidence Fitness
1 100 1 Somewhat not confident Not fatigued at all
2 100 1 Somewhat not confident Not fatigued at all
3 100 1 Somewhat not confident Not fatigued at all
4 100 1 Somewhat not confident Not fatigued at all
5 100 1 Somewhat not confident Not fatigued at all
6 100 1 Somewhat not confident Not fatigued at all
7 100 1 Somewhat not confident Not fatigued at all
8 100 1 Somewhat not confident Not fatigued at all
9 500 1 Somewhat confident A little fatigued
10 500 1 Somewhat confident A little fatigued
11 500 1 Somewhat confident A little fatigued
12 500 1 Somewhat confident A little fatigued
13 500 1 Somewhat confident A little fatigued
14 500 1 Somewhat confident A little fatigued
15 500 1 Somewhat confident A little fatigued
16 500 1 Somewhat confident A little fatigued
17 100 2 Neutral A little fatigued
18 100 2 Neutral A little fatigued
19 100 2 Neutral A little fatigued
20 100 2 Neutral A little fatigued
21 100 2 Neutral A little fatigued
22 100 2 Neutral A little fatigued
23 100 2 Neutral A little fatigued
24 100 2 Neutral A little fatigued
25 5000 2 Somewhat confident Moderately fatigued
26 5000 2 Somewhat confident Moderately fatigued
27 5000 2 Somewhat confident Moderately fatigued
28 5000 2 Somewhat confident Moderately fatigued
29 5000 2 Somewhat confident Moderately fatigued
30 5000 2 Somewhat confident Moderately fatigued
31 5000 2 Somewhat confident Moderately fatigued
32 5000 2 Somewhat confident Moderately fatigued
33 NA 0 Somewhat confident Moderately fatigued
34 NA 0 Somewhat confident Moderately fatigued
35 NA 0 Somewhat confident Moderately fatigued
36 NA 0 Somewhat confident Moderately fatigued
37 NA 0 Somewhat confident Moderately fatigued
38 NA 0 Somewhat confident Moderately fatigued
39 NA 0 Somewhat confident Moderately fatigued
40 NA 0 Somewhat confident Moderately fatigued
41 500 6 Neutral Not fatigued at all
42 500 6 Neutral Not fatigued at all
43 500 6 Neutral Not fatigued at all
44 500 6 Neutral Not fatigued at all
45 500 6 Neutral Not fatigued at all
46 500 6 Neutral Not fatigued at all
47 500 6 Neutral Not fatigued at all
48 500 6 Neutral Not fatigued at all
49 1000 5 Somewhat confident Moderately fatigued
50 1000 5 Somewhat confident Moderately fatigued

 59

51 1000 5 Somewhat confident Moderately fatigued
52 1000 5 Somewhat confident Moderately fatigued
53 1000 5 Somewhat confident Moderately fatigued
54 1000 5 Somewhat confident Moderately fatigued
55 1000 5 Somewhat confident Moderately fatigued
56 1000 5 Somewhat confident Moderately fatigued
57 80 2 Somewhat confident Not fatigued at all
58 80 2 Somewhat confident Not fatigued at all
59 80 2 Somewhat confident Not fatigued at all
60 80 2 Somewhat confident Not fatigued at all
61 80 2 Somewhat confident Not fatigued at all
62 80 2 Somewhat confident Not fatigued at all
63 80 2 Somewhat confident Not fatigued at all
64 80 2 Somewhat confident Not fatigued at all
65 300 4 Extremely confident A little fatigued
66 300 4 Extremely confident A little fatigued
67 300 4 Extremely confident A little fatigued
68 300 4 Extremely confident A little fatigued
69 300 4 Extremely confident A little fatigued
70 300 4 Extremely confident A little fatigued
71 300 4 Extremely confident A little fatigued
72 300 4 Extremely confident A little fatigued
73 300 0 Somewhat confident Not fatigued at all
74 300 0 Somewhat confident Not fatigued at all
75 300 0 Somewhat confident Not fatigued at all
76 300 0 Somewhat confident Not fatigued at all
77 300 0 Somewhat confident Not fatigued at all
78 300 0 Somewhat confident Not fatigued at all
79 300 0 Somewhat confident Not fatigued at all
80 300 0 Somewhat confident Not fatigued at all
81 1000 4 Somewhat confident A little fatigued
82 1000 4 Somewhat confident A little fatigued
83 1000 4 Somewhat confident A little fatigued
84 1000 4 Somewhat confident A little fatigued
85 1000 4 Somewhat confident A little fatigued
86 1000 4 Somewhat confident A little fatigued
87 1000 4 Somewhat confident A little fatigued
88 1000 4 Somewhat confident A little fatigued
89 400 6 Somewhat confident Moderately fatigued
90 400 6 Somewhat confident Moderately fatigued
91 400 6 Somewhat confident Moderately fatigued
92 400 6 Somewhat confident Moderately fatigued
93 400 6 Somewhat confident Moderately fatigued
94 400 6 Somewhat confident Moderately fatigued
95 400 6 Somewhat confident Moderately fatigued
96 400 6 Somewhat confident Moderately fatigued
97 5000 1 Somewhat confident A little fatigued
98 5000 1 Somewhat confident A little fatigued
99 5000 1 Somewhat confident A little fatigued
100 5000 1 Somewhat confident A little fatigued
101 5000 1 Somewhat confident A little fatigued
102 5000 1 Somewhat confident A little fatigued
103 5000 1 Somewhat confident A little fatigued
104 5000 1 Somewhat confident A little fatigued
105 50 0 Somewhat confident Not fatigued at all
106 50 0 Somewhat confident Not fatigued at all
107 50 0 Somewhat confident Not fatigued at all
108 50 0 Somewhat confident Not fatigued at all
109 50 0 Somewhat confident Not fatigued at all
110 50 0 Somewhat confident Not fatigued at all
111 50 0 Somewhat confident Not fatigued at all
112 50 0 Somewhat confident Not fatigued at all
113 NA 0 Somewhat confident Not fatigued at all
114 NA 0 Somewhat confident Not fatigued at all
115 NA 0 Somewhat confident Not fatigued at all
116 NA 0 Somewhat confident Not fatigued at all

 60

117 NA 0 Somewhat confident Not fatigued at all
118 NA 0 Somewhat confident Not fatigued at all
119 NA 0 Somewhat confident Not fatigued at all
120 NA 0 Somewhat confident Not fatigued at all
121 50 5 Somewhat confident A little fatigued
122 50 5 Somewhat confident A little fatigued
123 50 5 Somewhat confident A little fatigued
124 50 5 Somewhat confident A little fatigued
125 50 5 Somewhat confident A little fatigued
126 50 5 Somewhat confident A little fatigued
127 50 5 Somewhat confident A little fatigued
128 50 5 Somewhat confident A little fatigued
129 100 2 Somewhat confident Moderately fatigued
130 100 2 Somewhat confident Moderately fatigued
131 100 2 Somewhat confident Moderately fatigued
132 100 2 Somewhat confident Moderately fatigued
133 100 2 Somewhat confident Moderately fatigued
134 100 2 Somewhat confident Moderately fatigued
135 100 2 Somewhat confident Moderately fatigued
136 100 2 Somewhat confident Moderately fatigued

D_2 <-
 D_1 %>%
 pivot_longer(mental_demand:frustration,
 names_to = "Item",
 values_to = "response")

D_2

A tibble: 544 × 17
Part Snippet cyclomatic_complexity nesting_depth lines_of_code ToT
<chr> <chr> <int> <int> <int> <int>
1 4 1 3 1 49 5
2 4 1 3 1 49 5
3 4 1 3 1 49 5
4 4 1 3 1 49 5
5 4 2 6 4 96 10
6 4 2 6 4 96 10
7 4 2 6 4 96 10
8 4 2 6 4 96 10
9 4 3 9 7 125 5
10 4 3 9 7 125 5
ℹ 534 more rows
ℹ 11 more variables: Fault_detection <int>, sd_experience_yrs <int>,
c_experience_months <int>, loc_written_pm <int>, review_months <int>,
loc_reviewed_pm <int>, working_hrs <int>, Confidence <chr>, Fitness <chr>,
Item <chr>, response <int>

4 Data Summary & Exploration

4.1 Metric Correlations

ggpairs(D_Snips, columns =2:4, lower = list(continuous = "smooth"))

 61

4.2 Workload

4.2.1 Cyclomatic Complexity -> Workload

corr_cc_workload <- D_1[, c("cyclomatic_complexity", "effort", "frustration", "mental_deman
d", "temporal_demand")]

ggpairs(corr_cc_workload, lower = list(continuous = "smooth"))

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

 62

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

 63

D_2 %>%
 ggplot(aes(x = cyclomatic_complexity, y = response, group = Part)) +
 geom_smooth(aes(colour = "Participant"), size = .5, se = F, method = "lm") +
 geom_smooth(aes(group = 1, colour = "Population"), size = 2, se = F, method = "lm") +
 labs(colour = "Level of Effect") +
 facet_wrap(Item ~ 1) +
 ylim(0, 100)

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
ℹ Please use `linewidth` instead.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
generated.

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 84 rows containing non-finite values (`stat_smooth()`).

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 84 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 16 rows containing missing values (`geom_smooth()`).

 64

4.2.2 Nesting Depth -> Workload

corr_nd_workload <- D_1[, c("nesting_depth", "effort", "frustration", "mental_demand", "tem
poral_demand")]

ggpairs(corr_nd_workload, lower = list(continuous = "smooth"))

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

 65

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

 66

ggsave("scatterplot.png", plot = last_plot(), dpi = 300)

Saving 5 x 4 in image

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

 67

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 21 rows containing missing values

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 21 rows containing missing values (`geom_point()`).

Warning: Removed 21 rows containing non-finite values (`stat_density()`).

D_2 %>%
 ggplot(aes(x = nesting_depth, y = response, group = Part)) +
 geom_smooth(aes(colour = "Participant"), size = .5, se = F, method = "lm") +
 geom_smooth(aes(group = 1, colour = "Population"), size = 2, se = F, method = "lm")

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 84 rows containing non-finite values (`stat_smooth()`).

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 84 rows containing non-finite values (`stat_smooth()`).

 68

 labs(colour = "Level of Effect") +
 facet_wrap(Item ~ 1)

NULL

4.3 ToT

corr_tot <- D_1[, c("cyclomatic_complexity", "nesting_depth", "ToT")]

ggpairs(corr_tot, lower = list(continuous = "smooth"))

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 7 rows containing missing values

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 7 rows containing missing values

Warning: Removed 7 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 7 rows containing missing values (`geom_point()`).

Warning: Removed 7 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 7 rows containing missing values (`geom_point()`).

Warning: Removed 7 rows containing non-finite values (`stat_density()`).

 69

Plot for cyclomatic complexity
plot_cc <- D_1 %>%
 ggplot(aes(x = cyclomatic_complexity, y = ToT, group = Part)) +
 geom_smooth(aes(colour = "Participant"), size = .5, se = F, method = "lm") +
 geom_smooth(aes(group = 1, colour = "Population"), size = 2, se = F, method = "lm") +
 labs(colour = "Level of Effect") +
 ggtitle("Cyclomatic Complexity") +
 coord_cartesian(ylim = c(0, 40)) +
 theme(legend.position = "none")

Plot for nesting depth
plot_nd <- D_1 %>%
 ggplot(aes(x = nesting_depth, y = ToT, group = Part)) +
 geom_smooth(aes(colour = "Participant"), size = .5, se = F, method = "lm") +
 geom_smooth(aes(group = 1, colour = "Population"), size = 2, se = F, method = "lm") +
 labs(colour = "Level of Effect") +
 ggtitle("Nesting Depth") +
 coord_cartesian(ylim = c(0, 40))

Combining plots
combined_plot <- plot_cc + plot_nd +
 plot_layout(ncol = 2)

print(combined_plot)

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 7 rows containing non-finite values (`stat_smooth()`).

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 7 rows containing non-finite values (`stat_smooth()`).

 70

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 7 rows containing non-finite values (`stat_smooth()`).

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 7 rows containing non-finite values (`stat_smooth()`).

4.4 Fault Detection

corr_fd <- D_1[, c("cyclomatic_complexity", "nesting_depth", "Fault_detection")]

binomial_plot <- function(data, mapping, ...) {
 ggplot(data = data, mapping = mapping) +
 geom_count() +
 geom_smooth(method = "glm", method.args = list(family = "binomial"), colour = "black")
+
 theme_bw()
}

ggpairs(corr_fd, lower = list(continuous = binomial_plot))

Warning in ggally_statistic(data = data, mapping = mapping, na.rm = na.rm, :
Removed 4 rows containing missing values

`geom_smooth()` using formula = 'y ~ x'

Warning: Computation failed in `stat_smooth()`
Removed 4 rows containing missing values
Caused by error:
! y values must be 0 <= y <= 1

Warning: Removed 4 rows containing non-finite values (`stat_sum()`).

 71

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).
Removed 4 rows containing non-finite values (`stat_sum()`).

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 4 rows containing non-finite values (`stat_smooth()`).

Warning: Removed 4 rows containing non-finite values (`stat_density()`).

5 Model with LOC (as check)

bf_cont <-
 bf(mvbind(effort, frustration, mental_demand, temporal_demand, ToT) ~ cyclomatic_complexi
ty + nesting_depth + lines_of_code, family = gaussian())
bf_bi <-
 bf(Fault_detection ~ cyclomatic_complexity + nesting_depth + lines_of_code, family = bern
oulli(link = "logit"))

M_1 <- brm(bf_cont + bf_bi + set_rescor(FALSE), data = D_1, prior = set_prior("normal(0, 10
)", class = "b"))

Warning: Rows containing NAs were excluded from the model.

Warning: Specifying global priors for regression coefficients in multivariate
models is deprecated. Please specify priors separately for each response
variable.

Compiling Stan program...

Trying to compile a simple C file

 72

Running /Library/Frameworks/R.framework/Resources/bin/R CMD SHLIB foo.c
clang -mmacosx-version-min=10.13 -I"/Library/Frameworks/R.framework/Resources/include" -
DNDEBUG -I"/Library/Frameworks/R.framework/Versions/4.2/Resources/library/Rcpp/include/"
-I"/Library/Frameworks/R.framework/Versions/4.2/Resources/library/RcppEigen/include/" -I"/
Library/Frameworks/R.framework/Versions/4.2/Resources/library/RcppEigen/include/unsupported
" -I"/Library/Frameworks/R.framework/Versions/4.2/Resources/library/BH/include" -I"/Librar
y/Frameworks/R.framework/Versions/4.2/Resources/library/StanHeaders/include/src/" -I"/Libr
ary/Frameworks/R.framework/Versions/4.2/Resources/library/StanHeaders/include/" -I"/Librar
y/Frameworks/R.framework/Versions/4.2/Resources/library/RcppParallel/include/" -I"/Library
/Frameworks/R.framework/Versions/4.2/Resources/library/rstan/include" -DEIGEN_NO_DEBUG -DB
OOST_DISABLE_ASSERTS -DBOOST_PENDING_INTEGER_LOG2_HPP -DSTAN_THREADS -DBOOST_NO_AUTO_PTR
-include '/Library/Frameworks/R.framework/Versions/4.2/Resources/library/StanHeaders/includ
e/stan/math/prim/mat/fun/Eigen.hpp' -D_REENTRANT -DRCPP_PARALLEL_USE_TBB=1 -I/usr/local/
include -fPIC -Wall -g -O2 -c foo.c -o foo.o
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.2/Resources/library/Sta
nHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.2/Resources/library/Rcp
pEigen/include/Eigen/Dense:1:
In file included from /Library/Frameworks/R.framework/Versions/4.2/Resources/library/Rcp
pEigen/include/Eigen/Core:88:
/Library/Frameworks/R.framework/Versions/4.2/Resources/library/RcppEigen/include/Eigen/s
rc/Core/util/Macros.h:628:1: error: unknown type name 'namespace'
namespace Eigen {
^
/Library/Frameworks/R.framework/Versions/4.2/Resources/library/RcppEigen/include/Eigen/s
rc/Core/util/Macros.h:628:16: error: expected ';' after top level declarator
namespace Eigen {
^
;
In file included from <built-in>:1:
In file included from /Library/Frameworks/R.framework/Versions/4.2/Resources/library/Sta
nHeaders/include/stan/math/prim/mat/fun/Eigen.hpp:13:
In file included from /Library/Frameworks/R.framework/Versions/4.2/Resources/library/Rcp
pEigen/include/Eigen/Dense:1:
/Library/Frameworks/R.framework/Versions/4.2/Resources/library/RcppEigen/include/Eigen/C
ore:96:10: fatal error: 'complex' file not found
#include <complex>
^~~~~~~~~
3 errors generated.
make: *** [foo.o] Error 1

Start sampling

summary(M_1)

Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian, bernoulli)
Links: mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = logit
Formula: effort ~ cyclomatic_complexity + nesting_depth + lines_of_code
frustration ~ cyclomatic_complexity + nesting_depth + lines_of_code
mental_demand ~ cyclomatic_complexity + nesting_depth + lines_of_code
temporal_demand ~ cyclomatic_complexity + nesting_depth + lines_of_code
ToT ~ cyclomatic_complexity + nesting_depth + lines_of_code
Fault_detection ~ cyclomatic_complexity + nesting_depth + lines_of_code
Data: D_1 (Number of observations: 114)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat
effort_Intercept 28.06 5.31 17.29 38.51 1.00

 73

frustration_Intercept 27.25 5.89 15.76 38.95 1.00
mentaldemand_Intercept 29.74 5.12 19.73 39.79 1.00
temporaldemand_Intercept 35.17 5.24 24.69 45.29 1.00
ToT_Intercept 6.02 1.84 2.40 9.52 1.00
Faultdetection_Intercept 0.56 0.52 -0.43 1.59 1.00
effort_cyclomatic_complexity -0.48 0.84 -2.14 1.14 1.00
effort_nesting_depth 1.33 1.33 -1.29 3.88 1.00
effort_lines_of_code 0.12 0.08 -0.03 0.27 1.00
frustration_cyclomatic_complexity -1.70 0.91 -3.44 0.07 1.00
frustration_nesting_depth -1.93 1.50 -4.83 1.12 1.00
frustration_lines_of_code 0.30 0.08 0.15 0.46 1.00
mentaldemand_cyclomatic_complexity 0.11 0.79 -1.47 1.60 1.00
mentaldemand_nesting_depth 1.99 1.26 -0.48 4.45 1.00
mentaldemand_lines_of_code 0.07 0.07 -0.06 0.21 1.00
temporaldemand_cyclomatic_complexity -0.27 0.80 -1.84 1.29 1.00
temporaldemand_nesting_depth -0.99 1.30 -3.52 1.56 1.00
temporaldemand_lines_of_code 0.08 0.07 -0.06 0.22 1.00
ToT_cyclomatic_complexity -0.22 0.29 -0.79 0.37 1.00
ToT_nesting_depth 0.94 0.47 0.02 1.86 1.00
ToT_lines_of_code 0.03 0.03 -0.02 0.09 1.00
Faultdetection_cyclomatic_complexity 0.26 0.09 0.09 0.42 1.00
Faultdetection_nesting_depth 0.34 0.15 0.05 0.64 1.00
Faultdetection_lines_of_code -0.03 0.01 -0.05 -0.02 1.00
Bulk_ESS Tail_ESS
effort_Intercept 4298 2982
frustration_Intercept 4322 3212
mentaldemand_Intercept 4328 3535
temporaldemand_Intercept 4122 3400
ToT_Intercept 3477 3278
Faultdetection_Intercept 3946 2699
effort_cyclomatic_complexity 3474 3276
effort_nesting_depth 4040 3193
effort_lines_of_code 3405 2764
frustration_cyclomatic_complexity 3742 3094
frustration_nesting_depth 4354 3269
frustration_lines_of_code 3686 3035
mentaldemand_cyclomatic_complexity 4158 3157
mentaldemand_nesting_depth 4564 3128
mentaldemand_lines_of_code 3956 3323
temporaldemand_cyclomatic_complexity 3864 2980
temporaldemand_nesting_depth 4074 2880
temporaldemand_lines_of_code 3612 2618
ToT_cyclomatic_complexity 3501 2800
ToT_nesting_depth 4076 3021
ToT_lines_of_code 3362 2587
Faultdetection_cyclomatic_complexity 3926 2942
Faultdetection_nesting_depth 4184 3019
Faultdetection_lines_of_code 3618 2500

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
sigma_effort 22.44 1.52 19.67 25.57 1.00 5742
sigma_frustration 25.04 1.69 21.98 28.64 1.00 6393
sigma_mentaldemand 21.31 1.45 18.68 24.39 1.00 5500
sigma_temporaldemand 21.53 1.43 19.01 24.58 1.00 5709
sigma_ToT 7.75 0.52 6.80 8.87 1.00 5754
Tail_ESS
sigma_effort 3031
sigma_frustration 2699
sigma_mentaldemand 2433
sigma_temporaldemand 2892
sigma_ToT 3090

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

 74

6 Model without LOC

bf_cont <-
 bf(mvbind(effort, frustration, mental_demand, temporal_demand, ToT) ~ cyclomatic_complexi
ty + nesting_depth, family = gaussian())
bf_bi <-
 bf(Fault_detection ~ cyclomatic_complexity + nesting_depth, family = bernoulli(link = "lo
git"))

M_2 <- brm(bf_cont + bf_bi + set_rescor(FALSE), data = D_1, prior = set_prior("normal(0, 10
)", class = "b"))

Warning: Rows containing NAs were excluded from the model.

Warning: Specifying global priors for regression coefficients in multivariate
models is deprecated. Please specify priors separately for each response
variable.

Compiling Stan program...

Start sampling

summary(M_2)

Family: MV(gaussian, gaussian, gaussian, gaussian, gaussian, bernoulli)
Links: mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
mu = logit
Formula: effort ~ cyclomatic_complexity + nesting_depth
frustration ~ cyclomatic_complexity + nesting_depth
mental_demand ~ cyclomatic_complexity + nesting_depth
temporal_demand ~ cyclomatic_complexity + nesting_depth
ToT ~ cyclomatic_complexity + nesting_depth
Fault_detection ~ cyclomatic_complexity + nesting_depth
Data: D_1 (Number of observations: 114)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000

Population-Level Effects:
Estimate Est.Error l-95% CI u-95% CI Rhat
effort_Intercept 25.71 5.30 15.33 36.30 1.00
frustration_Intercept 21.29 6.04 9.34 33.28 1.00
mentaldemand_Intercept 28.22 4.94 18.35 37.74 1.00
temporaldemand_Intercept 33.58 4.88 23.87 42.96 1.00
ToT_Intercept 5.34 1.81 1.84 8.90 1.00
Faultdetection_Intercept 1.01 0.47 0.12 1.95 1.00
effort_cyclomatic_complexity 0.76 0.31 0.17 1.37 1.00
effort_nesting_depth 2.79 1.01 0.82 4.76 1.00
frustration_cyclomatic_complexity 1.45 0.37 0.73 2.16 1.00
frustration_nesting_depth 1.81 1.18 -0.57 4.15 1.00
mentaldemand_cyclomatic_complexity 0.85 0.31 0.24 1.47 1.00
mentaldemand_nesting_depth 2.83 0.96 0.99 4.76 1.00
temporaldemand_cyclomatic_complexity 0.56 0.31 -0.06 1.18 1.00
temporaldemand_nesting_depth 0.02 0.97 -1.91 1.92 1.00
ToT_cyclomatic_complexity 0.14 0.11 -0.08 0.35 1.00
ToT_nesting_depth 1.37 0.35 0.69 2.05 1.00
Faultdetection_cyclomatic_complexity -0.06 0.03 -0.12 -0.00 1.00
Faultdetection_nesting_depth -0.07 0.09 -0.26 0.10 1.00
Bulk_ESS Tail_ESS
effort_Intercept 11159 2594
frustration_Intercept 7730 2887
mentaldemand_Intercept 8642 3085

 75

temporaldemand_Intercept 8100 3150
ToT_Intercept 8600 3019
Faultdetection_Intercept 9196 3520
effort_cyclomatic_complexity 6327 3157
effort_nesting_depth 5528 3240
frustration_cyclomatic_complexity 5710 3522
frustration_nesting_depth 6300 3390
mentaldemand_cyclomatic_complexity 5645 2873
mentaldemand_nesting_depth 5891 3294
temporaldemand_cyclomatic_complexity 5515 3296
temporaldemand_nesting_depth 6026 3470
ToT_cyclomatic_complexity 6560 3470
ToT_nesting_depth 6855 2927
Faultdetection_cyclomatic_complexity 5896 3577
Faultdetection_nesting_depth 5437 3465

Family Specific Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
sigma_effort 22.59 1.55 19.79 25.79 1.00 7985
sigma_frustration 26.44 1.83 23.15 30.40 1.00 7115
sigma_mentaldemand 21.31 1.46 18.71 24.48 1.00 6732
sigma_temporaldemand 21.55 1.43 18.98 24.62 1.00 6573
sigma_ToT 7.78 0.52 6.83 8.90 1.00 6725
Tail_ESS
sigma_effort 3207
sigma_frustration 2938
sigma_mentaldemand 3309
sigma_temporaldemand 3272
sigma_ToT 3159

Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).

	1 Abstract
	2 Introduction
	2.1 Code review
	2.2 Human factors in code review
	2.3 Code complexity and complexity metrics
	2.3.1 Code complexity and understandability
	2.3.2 Code complexity and mental workload
	2.3.3 Code complexity and review performance

	3 Methods
	3.1 Participants
	3.2 Design
	3.3 Materials
	3.3.1 Microsoft Forms
	3.3.2 Code snippets
	3.3.3 Review Tool
	3.3.4 Review report form
	3.3.5 NASA-TLX

	3.4 Procedure
	3.5 Data Analysis

	4 Results
	4.1 Complexity metrics and workload
	4.1.1 Effort
	4.1.2 Frustration
	4.1.3 Mental demand
	4.1.4 Temporal demand

	4.2 Complexity metrics and performance
	4.2.1 Time on task
	4.2.2 Defect detection

	5 Discussion
	5.1 Complexity metrics and workload
	5.2 Complexity metrics and performance
	5.2.1 Review efficiency
	5.2.2 Review effectiveness

	5.3 Practical implications
	5.4 Limitations and directions for future research

	6 Conclusion
	7 References
	8 Appendices
	8.1 Appendix A: Questionnaire
	8.2 Appendix B: R syntax

	1 Install & Load Packages Needed for Analysis
	2 Reading & Cleaning Data
	2.1 Import Files

	3 Join Data
	4 Data Summary & Exploration
	4.1 Metric Correlations
	4.2 Workload
	4.2.1 Cyclomatic Complexity -> Workload
	4.2.2 Nesting Depth -> Workload

	4.3 ToT
	4.4 Fault Detection

	5 Model with LOC (as check)
	6 Model without LOC

