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I 

ABSTRACT 

Extreme weather events such as hailstorms pose a substantial risk due to their unpredictable nature and 

potential to damage infrastructure and agricultural yield severely. In India, these hailstorms have emerged 

as a significant concern due to the extensive damage they inflict on crops. Evaluating this damage in terms 

of location and severity is pivotal in formulating appropriate strategies to mitigate crop loss and adequately 

compensate the affected farmers. However, current assessment methods, predominantly field surveys and 

visual inspections are expensive, labour-intensive, and deficient in transparency and efficiency. 

This research aimed to create a Machine Learning (ML) model using multi-temporal Remote Sensing (RS) 

data to quantify the crop damage caused by hailstorms. The model was trained and tested using in-situ 

data collected from the Kathumar block in the Alwar district of Rajasthan province, India. We explored 

the performance of both Pixel Based Classification (PBC) and Object Based Classification (OBC) 

techniques using Random Forest (RF) model. The analysis utilized open-source Sentinel datasets, 

particularly the Sentinel-1 Synthetic Aperture Radar (S1) and the Sentinel-2 Multispectral Instrument (S2). 

Following this, we combined S1 and S2 data, prioritizing variables based on their importance for the 

model based on Mean Decrease Accuracy (MDA) and Mean Decrease Gini (MDG). We extracted a total 

of 15 features, inclusive of polarimetric features from the pre and post-hail event S1 data, and the 

differences in these features were used as input variables for the RF model. 

Furthermore, we extracted the original S2 channels, excluding B1 and B10, along with 19 vegetation 

indices, and their difference band was used as input variables. The model underwent training and testing 

procedures employing both PBC and OBC methods. For the PBC, 40,157 in-situ data samples derived 

from 3,394 polygons were utilized. The same polygons were also used in the training and testing processes 

for the OBC approach. To ensure a balanced representation across three damage categories, i.e.             

low (0-33%), moderate (33-50%), and high (50-75%) damage, we allocated 70% of the data for training 

and 30% for testing using stratified random sampling. The research also encompassed stakeholder analysis 

and the impacts of the intervention on various stakeholders. This was achieved by interviewing a farmer 

from the same region and reviewing relevant literature and news articles. 

The research results suggest that the PBC approach produced significant results when using combined S1 

and S2 data. It accurately identified damage classes with F1 scores of 0.97, 0.93, and 0.94 for low, 

moderate, and high damage classes, respectively, after majority classification. In contrast, when using a 

single dataset for damage assessment, the OBC approach with the S1 data yielded the highest accuracy, 

with F1 scores of 0.96, 0.90, and 0.85 for the low, moderate, and high damage classes, respectively. The 

study further revealed that the accuracy in PBC was enhanced when both S2 and S1 data were combined, 

compared to their individual usage. However, for the OBC approach, where statistical parameters were 

employed, a marginal decrease in accuracy was noted when compared to the exclusive use of the SAR 

data. 

This research has social significance as it attempts to mitigate the wicked problem associated with current 

field-based crop damage evaluations and their effects on the farming community. This impact can lead to 

financial instability and, in extreme cases, suicide. The current process tends to perpetuate a sense of 

inequality and unfairness. Consequently, the broader aim of this research is to present a proof of concept 

aimed at enhancing the current scenario using RS based approach for crop damage assessment. 

Stakeholder analysis indicates that the developed model has the potential to act as an instructive 

geoprocessing tool, which could significantly reduce the necessity for field surveys and accelerate the 

evaluation process. Moreover, it offers a robust solution to the lack of transparency in damage assessment 

categorization. 
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1. INTRODUCTION 

1.1. Background 

The global surface temperature has experienced a significant upward trend from 2011 to 2020, showing an 

increase of 1.1°C compared to the period between 1850 and 1900 (Portner et al., 2022). This temperature 

rise is largely attributed to the greenhouse gas emissions caused by human activities (NASA, 2023). The 

planet's temperature is influenced by the presence of carbon dioxide in the atmosphere, leading to climate 

change. Within a span of fewer than 200 years, human actions have significantly increased the 

concentration of carbon dioxide in the atmosphere by 50% (NASA, 2023). The graph presented in   

Figure 1 depicts the variations in global surface temperature from 1880 to 2020 compared to the long-

term average observed from 1951 to 1980 and atmospheric CO2 levels measured from 1960 to 2020 

(NASA, 2023). 

This man-made climate change is triggering changes in weather and climate extremes across the globe, 

resulting in significant harm to both the natural world and human societies (Portner et al., 2022). Farmers, 

policymakers, and government authorities are constantly concerned about the state of the climate and its 

effects on crop production. Changes in the world's hydrological cycle due to climate change, including 

increased variability in rainfall and occurrences of floods and droughts, are already affecting agriculture. 

These impacts have resulted in reduced yields of key crops. For instance, from 1981 to 2010, changes in 

precipitation led to yield decreases of 4.1% for maize, 4.5% for soybeans, 1.8% for rice, and 1.8% for 

wheat (Portner et al., 2022). 

 

The risk associated with crop yield varies from region to region and is influenced by factors such as soil 

type, climate, farming techniques and water sources. One of these factors that has the most influence on 

agricultural production is the weather. In rain-fed agriculture, weather conditions can account for up to 

80% of the variation in agricultural productivity (Wang et al., 2012). Climate change, including increases in 

frequency and intensity of weather extremes like floods, droughts, hailstorms, rainfall, wind, heat waves 

and continued sea level rise, have reduced food and water security, obstructing efforts to meet Sustainable 

Development Goals (Portner et al., 2022). Although agricultural productivity has increased, climate change 

has slowed this growth over the past 50 years (Portner et al., 2022). 

 

Figure 1. Change in global surface temperature (Left) from 1880 to 2020 and atmospheric CO2 levels (Right) 
measured from 1960 to 2020 (Source: NASA, 2023) 
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Increasing weather and climate extremes have exposed millions of people to acute food insecurity and 

reduced water security (Portner et al., 2022). The most significant impacts have been observed in many 

locations and communities in Africa, Asia, Central and South America, Small Islands and the Arctic 

(Portner et al., 2022). The Intergovernmental Panel on Climate Change (IPCC) suggests that severe 

weather events in the Indian subcontinent may rise (Portner et al., 2022). The advancements in climate 

research have facilitated the prediction of weather patterns, a critical development offering significant 

opportunities for agricultural stakeholders. They can proactively respond to potential risks or exploit 

beneficial conditions by utilising climate forecast data. However, the successful prediction of inherently 

unpredictable meteorological events, including hailstorms, droughts, floods, and frigid temperatures, 

remains a considerable challenge (Wang et al., 2012). Unpredictable extreme weather conditions like 

hailstorms can gravely damage property and agricultural yields (Wang et al., 2012).  

 

Hail consists of solid ice chunks originating in thunderstorm updrafts, where raindrops freeze into 

hailstones. These hailstones can expand as liquid water droplets freeze onto their surface. The slow 

freezing process allows air bubbles to escape, producing clear ice. Hailstones begin to fall when they 

become sufficiently large, or the thunderstorm's updraft weakens (Rao et al., 2014). Smaller hailstones with 

less than 2.5 cm in diameter can fall at speeds between 14 and 40 km/h, while larger ones, between 2.5 

and 4.5 cm in diameter, can fall at 40 to 64 km/h (NSSL, 2022). Huge hailstones of 4.5 to 10 cm in 

diameter, produced by the strongest supercells, can fall at speeds ranging from 71 to 116 km/h (NSSL, 

2022). There's some uncertainty in these estimates because factors like hailstone shape, melting, fall 

orientation, and environmental conditions can influence their fall speed. Nonetheless, hailstones exceeding 

10 cm can fall at rates greater than 160 km/h (NSSL, 2022). Changing climate patterns, potentially due to 

rising global temperatures, could intensify hailstorms, resulting in larger ice chunks and heavier rainfall 

(BBC Future, 2022). Countries that experience the most destructive hailstorms include the United States, 

China, Russia, Italy, and India (NSSL, 2022).  

 

Hailstorms, possessing significant impulse and kinetic energy, frequently result in substantial physical harm 

to agricultural yield (BBC Future, 2022). The severity and extent of crop damage hinge on various 

elements, such as the hailstone's size, the duration of the hailstorm, the wind speed, and the crop category 

(Angearu et al., 2022). The susceptibility of crops and their recovery capability after hail event depends on 

the period of agriculture season, development level and phenological stage of the crop (Ha et al., 2022).  

 

Generally, hail damage to field crops is classified as (i) leaf defoliation, (ii) plant stand loss, (iii) stem 

amputation, and (iv) grain loss (Ha et al., 2022). Hailstorms may cause severe plant damage, including 

significant leaf area loss and laceration. Foliage, flowers, and fragile stem tissues are susceptible to hail 

damage, manifesting as bruising, shredding, defoliation, or physical mutilation (Ha et al., 2022). Some 

studies have shown that even small hailstones can damage plants, but the damage to fruits, flowers, leaf 

buds, and seedlings is not always apparent in the early stages (Leite et al., 2002). Hail may cause several 

problems for plants, such as the lodging and breaking of stems, the breaking of branches, the threshing of 

grain, the loss of leaf area, and the destruction of leaves (Fernandes et al., 2011). However, torn holes may 

only be visible on larger leaves (Schubert, 1991). In addition to the direct damage triggered by hail, there 

are indirect consequences, such as the loss of photosynthetically active areas and the facilitation of disease 

entry produced by the impact of hailstones on branches and leaves. These indirect consequences raise the 

probability of disease, rot, and insect infestation (Leite et al., 2002; Schubert, 1991; Singh et al., 2017).  

 

Hailstorms pose a substantial challenge in India, causing considerable crop damage (Ray et al., 2016). The 

spatial pattern of hail events in India over 39 years (1972–2011) indicated that incidents were typically 

confined and occurred predominately between January to March (Rao et al., 2014).  
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Some districts are affected frequently more than others in all parts of India, especially in north India (Rao 

et al., 2014). In 2015, hailstorms, thunderstorms, heavy rain, and strong winds hit several areas of northern 

India, causing an estimated 106730 km2 in agricultural damage across 14 provinces in India (Prabhakar et 

al., 2019). the primary states impacted included Rajasthan, which was affected over an area of 45,530 km2, 

Uttar Pradesh, with damage spanning across 26,790 km2, Haryana, which experienced impact over 18,750 

km2, Madhya Pradesh, where the affected area extended across 5,700 km2, and Maharashtra, which saw 

damage over a region of 3,950 km2, most severely affected districts were found in Haryana, Rajasthan and 

Madhya Pradesh (Ray et al., 2016). 

Figure 2 shows the districts most impacted by 

hailstorms, as identified in the research conducted 

by (Ray et al., 2016). After a hailstorm, it is 

essential to evaluate the damage in terms of its 

location and severity so that appropriate actions 

can be taken to lessen the loss of crops and 

compensate the impacted farmers. In India, the 

damage is documented through damage 

assessment surveys using field observation and 

sometimes aerial photography or videography; 

however, there have been limited research efforts 

focused on utilizing Remote Sensing (RS) data to 

evaluate the extent of destruction caused by 

hailstorms (Prabhakar et al., 2019). 

 

1.2. Remote Sensing for crop damage assessment 

RS is an efficient and distinctive method for conducting quick and accurate studies of natural disasters 

(Sosa et al., 2021). Due to extensive coverage, precise geocoding, frequent revisit, rapid data distribution, 

comparatively low data cost, and robust crop and land discrimination, remotely sensed data have been 

proven useful in crop loss assessments (Shrestha & Rahman, 2021). With the introduction of advanced 

platforms and sensors offering improved spatial, temporal, and spectral capacities, there has been a 

significant increase in RS studies offered to agricultural applications in recent years. (Weiss et al., 2020).  

 

RS involves acquiring information from a distance, facilitated by remote sensors mounted on satellites or 

aircraft that detect and record reflected or emitted energy (NASA (ESDS), 2022). Optical RS gathers 

reflected and emitted radiation from the observed surfaces within wavelengths that span from visible to 

shortwave infrared (VSWIR, 0.4-2.5 µm) and thermal infrared (TIR, 8-14 µm) (Berger et al., 2022). At 

different wavelengths, different materials reflect and absorb light differently. Thus, the targets' spectral 

reflectance characteristics in multispectral satellite images can be used to distinguish them (Sosa et al., 

2021). Concerning discerning plant responses to various crop stresses, reflectance in the visible (VIS, 0.4–

0.7 µm), near-infrared (NIR, 0.7–1.3 µm), and shortwave infrared (SWIR, 1.3–2.50 µm) spectra, alongside 

TIR and solar-induced fluorescence (SIF, commonly at 0.687 µm and 0.76 µm, or across the entire 

emission wavelength from 0.65 to 0.8 µm), have been the most utilized passive sensing signals (Gerhards 

et al., 2019).  

 

Multispectral sensors are more responsive to physiological changes appearing in canopy colour (Sosa et al., 

2021). Hailstorms induce stress in plants, leading to reduced photosynthetic efficiency, cellular damage, 

increased vulnerability to pathogens, and yield reduction (Szabó et al., 2021).  

Figure 2. Most affected districts by hailstorm during 
February -March 2015 (Source: Ray et al., 2016) 
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The visible spectrum (VIS, 0.4–0.7 µm) is significant as plants under stress, possessing reduced 

chlorophyll, tend to reflect more red and blue light. Sensors can capture this variation and identify stressed 

crop areas (NASA EO, 2000). The near-infrared range also plays a crucial role, as healthy plant leaves 

demonstrate strong light reflection due to their structure and water content (NASA EO, 2000). Any 

stress-induced changes in plant structure or hydration levels would decrease this NIR reflectance, enabling 

the detection of stressed plants. SWIR is critical for gauging plant water content. As plants undergoing 

stress lose water, their reflectance increases in the SWIR range, facilitating the identification of stressed 

plants. The utility of vegetation indices such as the Advanced Vegetation Index (AVI), Enhanced 

Vegetation Index (EVI), Green Normalized Difference Vegetation Index (GNDVI), Normalized 

Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Modified Soil Adjusted 

Vegetation Index (MSAVI), Plant Senescence Radiation Index (PSRI), Moisture Stress Index (MSI),  

Green Normalized Difference Water Index (NDWIg) and Normalized Pigment Chlorophyll Ratio Index 

(NPCRI) for evaluating crop damage due to hail has been highlighted in prior research (Zhou et al., 2016; 

Prabhakar et al., 2019; Sosa et al., 2021; Ha et al., 2022). 

 

Furthermore, Synthetic Aperture Radar (SAR) is a valuable tool for monitoring crops due to its sensitivity 

to geometrical structures and dielectric properties of targeted objects. The backscattered microwave signal 

reflected to the sensor from a vegetated surface is directly influenced by the plant coverage, the soil 

(mediated through the plant canopy), and the interactions between the vegetation and the soil beneath 

(Karam et al., 1992). This interaction suggests that microwave signals are sensitive to fluctuations in the 

architecture and geometric structure of the canopy, irrespective of whether these changes are brought 

about by ordinary plant maturation or a hailstorm incident (Sosa et al., 2021). Microwave signals are also 

sensitive to variations in surface roughness and the dielectric coefficient associated with the observed 

materials (Arciniegas et al., 2007). In agricultural applications, changes in the backscattering between two 

consecutive SAR images acquired under identical conditions, such as the same wavelength, identical look 

angle, equal slant range distance, and identical polarization, can be attributed to either standard plant 

growth patterns (Karam et al., 1992) or significant weather events such as a hailstorm. 

 

In SAR imaging, the backscattering coefficient measures how much a radar signal is scattered back 

towards the source when it hits a target or surface. The backscattering coefficient's value is influenced by a 

combination of system and target parameters, as outlined by (Ackermann, 2015). System parameters 

encompass the frequency, incidence angle, and polarization, while target parameters include the dielectric 

constant, temperature, orientation, and surface roughness (Periasamy, 2018). In biomass assessment, 

including crop growth tracking, crop stress monitoring, and yield estimation, the system parameter known 

as ‘Polarization’ assumes a more significant role than other parameters (McNairn & Shang, 2016). 

 

Following intense hail events, multispectral imagery procured from passive RS satellites offers valuable 

assistance during crop damage assessment (Jedlovec et al., 2006). While optical data offers many benefits, 

its application faces certain constraints, including its dependency on weather and daylight conditions. 

Furthermore, it necessitates rectifying sun glint effects induced by atmospheric disturbances and 

identifying clouds and their shadows (Sosa et al., 2021). Conversely, SAR provides neither weather-

dependent nor time-restricted data making it capable of effectively penetrating cloud cover, giving it an 

edge over optical data as it's typically not susceptible to atmospheric interference and, therefore, does not 

generally need atmospheric corrections (Mulla, 2013). However, SAR data's complexities in processing and 

its limited ability to provide visual and colour information remain challenges (Mulla, 2013). The 

combination of both optical and SAR data can offset these limitations, offering researchers a more in-

depth and comprehensive overview of a given study area (Mulla, 2013; Sosa et al., 2021).   
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Recent studies have focused on evaluating the potential of various multispectral and microwave indices 

and parameters for assessing hailstorm damage. Research conducted by Zhou et al. (2016) used 

multispectral imagery captured by unmanned aerial vehicles (UAVs) to evaluate the extent of hail damage 

in potato crops at different growth stages. The damage levels ranged from 0% to 33%, 66%, and 99%, and 

the assessment was conducted during the tuber initiation, early bulk, and late bulk stages of growth for 

two potato varieties. Vegetation indices, specifically GNDVI, NDVI, and SAVI, were computed. Results 

indicated that potato plants damaged during the tuber initiation stage exhibited substantial recovery, as 

evidenced by high GNDVI values 32 days after damage, which correlated well with final crop yield data. 

Conversely, severe damage during the early bulk stage (99% defoliation) resulted in significantly lower 

GNDVI values and reduced yield. The study also found a strong correlation (r > 0.77) between vegetation 

indices and crop yield at the early bulk stage than at other stages. 

 

In the study conducted by Prabhakar et al. (2019), a differential analysis of the NDVI (before and after 

hail) events was utilized, with Landsat 8 data for identifying hail-induced crop damage. The study included 

examining six hail-affected sites, ranging in width from 3 to 8 km and length from 6 to 33 km. The crops 

were classified into four categories: young grape orchards (grape-1, less than 3 years old), old grape 

orchards (grape-2, more than 3 years old), papaya, and sugarcane. By monitoring changes in the NDVI 

profiles across these crop types, a simple linear model was developed to estimate the changes resulting 

from hail damage. High-resolution LISS-IV satellite data from IRS-Resourcesat-2, along with in situ data, 

was used to classify crops using a maximum likelihood classifier. The study findings highlighted grape 

crops as the most damaged, followed by sugarcane and papaya, with a crop damage assessment accuracy 

of 69.6%. 

 

In their study, Sosa et al. (2021) focused on identifying Homogeneous Damage Zones (HDZ)- sections of 

a crop field that have incurred comparable levels of damage following a hailstorm event. They performed 

unsupervised K-means clustering to delineate HDZ using remotely sensed data automatically. They used 

Sentinel-1 SAR (S1) and Sentinel-2 MSI (S2) data. They analysed ten indices, five microwave indices, 

including Dual-Pol Diagonal Distance (DPDD), Inverse Dual-Pol Diagonal Distance (IDPDD), Vertical 

Dual Depolarization Index (VDDPI), Microwave Polarization Difference Index (MPDI), and Dual 

Polarization SAR Vegetation Index (DPSVI), and five spectral indices, namely NDVI, EVI, SAVI, AVI, 

and NPCRI before and after a hailstorm across areas exhibiting various degrees of damage. The study 

established that DPSVI and NPCRI were most responsive to hail-induced changes. Temporal data and 

change rates of these indices served as input variables for the K-means clustering algorithm, which aimed 

to classify pixels into consistent damage zones. The algorithm's efficiency in identifying homogeneous hail 

damage areas was demonstrated through the validation process, which involved analysing in situ data from 

91 soybean, wheat, and corn fields. The results showed a significant classification output of HDZ, 

indicating its successful performance in 87.01% of cases. The authors suggested future algorithm 

enhancements, including crop-specific index selection and consideration of crop phenological stages and 

varying soil types within the cultivation region, to improve the accuracy of hailstorm event classification. 

 

Recent research conducted by Ha et al. (2022) utilized the capabilities of S2 data within a cloud computing 

platform to assess field crops damaged by hailstorms. Multiple indices were employed, including the 

NDVI, NDWI, EVI, GNDVI, MSAVI, PSRI, MSI and NDWIg. It was found that S2 time-series data 

effectively monitored the hail-induced damage and subsequent recovery of canola, wheat, and lentil crops 

over time. NDVI temporal profiles revealed that crops affected by hail recuperated approximately a 

month post-damage. The area under the curve (AUC) dataset for one month could precisely quantify hail-

impacted crops, accounting for both direct damage and plant recovery, without cloud cover hindrance.  
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The 32-day AUC of NDVI, NDWI, and PSRI showed a robust correlation with ground-estimated hail 

damage for canola (r = -0.90, RMSE = 8.24), wheat (r = -0.86, RMSE = 12.27), and lentil (r = 0.80, 

RMSE = 17.41). The research was confined to a single hailstorm event with a limited number of fields 

under observation, suggesting that future studies should validate the methodology across larger areas, 

multiple crop species, and different growing stages. 

1.3. Machine Learning (ML) 

Artificial Intelligence (AI) involves developing computer systems to perform tasks requiring human-like 

intelligence. It encompasses algorithms and models enabling machines to perceive and interpret data, 

make decisions, and adapt to different situations (Camps Valls, 2008). ML, a subfield of AI, focuses on 

algorithms and models that enable computers to learn from data training. ML algorithms automatically 

identify patterns, make predictions, and develop methods that iteratively enhance their performance by 

learning from data (Camps Valls, 2008; Maxwell et al., 2018). ML provides an opportunity for accurate and 

efficient classification of remotely sensed imagery.  

 

The advantages of ML lie in its ability to handle high-dimensional data and effectively classify classes with 

intricate characteristics (Maxwell et al., 2018). ML offers improved accuracy, efficiency, adaptability, and 

scalability in RS applications, making it preferred over conventional approaches like visual interpretation 

and parametric classifiers such as maximum likelihood classifiers (Maxwell et al., 2018). It leverages the 

power of data-driven models and automated learning to extract meaningful information from RS data and 

aid in better decision-making for various environmental and geospatial applications (Camps Valls, 2008; 

Maxwell et al., 2018). 

 

Research done by (Maxwell et al., 2018) employing various ML algorithms, including Random Forest (RF), 

Support Vector Machines (SVM), Decision Trees (DT), Boosted Decision Trees (BTD), Artificial Neural 

Network (ANN), and k-Nearest Neighbors (k-NN), for a classification problem. The research findings 

highlighted that the choice of ML algorithm depends on several factors. Firstly, the sample size and quality 

of training data significantly impact classification accuracy. Secondly, training data imbalance can affect 

accuracy, especially for rare classes, thus necessitating the selection of an appropriate method that 

effectively handles data imbalance. Thirdly, feature selection is crucial in simplifying the model while 

maintaining sufficient accuracy. 

 

RF, in particular, exhibits notable advantages in managing large datasets with high-dimensionality and 

multiple input variables, making it well-suited for complex classification problems (Belgiu & Drăgu, 2016; 

Breiman, 2001; Liaw & Wiener, 2002). RF also excels in handling the inherent non-linearity often 

encountered in classification tasks. Additionally, RF serves as a powerful tool for dimensionality reduction, 

as it assesses the significance of each feature relative to the problem at hand (Breiman, 2001; Izquierdo-

Verdiguier et al., 2017). Unlike other techniques, RF effectively handles the diverse, dynamic ranges of 

parameters without requiring scaling or normalization (Hariharan et al., 2022). This characteristic is 

advantageous in crop classification scenarios where polarimetric parameters exhibit varied ranges 

(Hariharan et al., 2022). An additional strength of RF is its inherent resistance to overfitting, a common 

issue in many ML models (Belgiu & Drăgu, 2016; Breiman, 2001). Furthermore, RF demonstrates 

robustness against noise and outliers, contributing to the stability of the model (Belgiu & Drăgu, 2016).  
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As delineated in section 1.2, combining optical and SAR data can counteract their respective constraints, 

presenting researchers with a more exhaustive and comprehensive overview of a given study area (Mulla, 

2013; Sosa et al., 2021). In the context of our present research, the utilization of the SAR and optical data 

with RF model is justified due to its advantageous characteristics compared to other ML models. Given 

the complexity of our dataset, which incorporates both optical and SAR data, RF model offers a robust 

solution that can handle diverse data types and effectively capture complex relationships.  

1.4. Research Identification 

The literature review revealed a gap in research focusing on utilising multi-temporal data from different 

satellite sensors, such as optical and SAR, using ML techniques like RF to assess crop damage caused by 

hailstorms. To address this gap, our research aims to leverage both optical and SAR time series data, in 

combination with various vegetation indices and polarimetric parameters, to investigate the applicability of 

the RF method. By examining Pixel Based Classification (PBC) and Object Based Classification (OBC) 

individually on optical and SAR data, as well as on combined datasets, we aim to assess the performance 

and accuracy of the RF model in different situations.  

 

In addition, this research acknowledges the importance of promoting open science and enhancing 

reproducibility. To achieve these objectives, a focus will be placed on utilizing open-source satellite data, 

open-source software, and openly shared codes throughout the research process. 

1.5. Research Objectives & Research Questions 

This research aims to develop a RS-based crop damage assessment model in order to support decision-

makers and farmers to access the hail damage in crops quickly and accurately for large geographical areas. 

A supervised ML method is developed to map RS image information to the field and in-situ crop damage 

data. The model developed in this study was trained and tested using in-situ data from hail-affected 

regions. The dataset encompasses about 2036 hectares and roughly 3400 parcels from five villages, as 

listed in Table 2, in the Kathumar tehsil, Alwar district, from the year 2020. The three sub-objectives and 

six research questions (RQs) outlined below have been formulated in alignment with the primary objective 

of this research. 

1.5.1. Main objective. 

The primary objective is to propose a remote sensing-based crop damage assessment method 

using multi-temporal data from S1 and S2 and a RF classifier. 

1.5.2. Sub-objectives.  

1) To evaluate crop damage caused by hailstorms using a RF classifier on S1 and S2 data 

separately. 

 

RQ 1: How can using RF classifier on S1 data improve the present field survey-based crop 

damage assessment approach? 

 

RQ 2: How can using RF classifier on S2 data improve the present field survey-based crop 

damage assessment approach? 

 

RQ 3: Which classification approach, PBC or OBC, results in a more accurate assessment of 

hailstorm-related crop damage when utilizing S1 and S2 data separately? 
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2) To evaluate crop damage caused by hailstorms using a RF classifier on a combination of 

S1 and S2 data. 

 

RQ 4: How can using RF classifier on combined S1 and S2 data improve the present field survey-

based crop damage assessment approach? 

 

RQ 5:  Which classification approach, PBC or OBC, results in a more accurate assessment of 

hailstorm-related crop damage when utilizing a combination of S1 and S2 data? 

 

3) To assess the potential impact of the new procedure on different stakeholders involved. 

 

RQ 6: How would the proposed remote sensing-based crop damage assessment method impact 

different stakeholders? 

1.6. Study Area  

In the past five years, various districts in Rajasthan, India, had severely affected by hailstorms. Hail event 

dates and affected districts can be seen in  

Table 1. The study focuses on five villages listed in Table 2 of tehsil Kathumar, district Alwar, which is 

situated in the northeast part of Rajasthan, as depicted in Figure 3.  

 

Alwar district plays a significant role in Rajasthan's agricultural production. The district encompasses a 

total area of 7,82,897 ha, or approximately 2.5% of the state (KVK, 2023). The district's total cultivated 

Figure 3. Study Area (Parcel map: Revenue Department, Rajasthan; Satellite Data: QGIS base map) 
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area is 7,81,615 ha. In the Kharif season (July-October), maize, sorghum (jowar), millet, pigeon pea 

(arhar), sesamum, cotton, etc., are sowed on approximately 3,29,088 ha (42%), whereas in the Rabi season 

(November-March), wheat, mustard, gram, barley, rabi pulses, etc., are planted on approximately 

4,525,250 hectares (58%) (KVK, 2023). The ten-year average precipitation is 724 mm. The agriculture in 

the district is largely dependent on the distribution of precipitation (KVK, 2023). 
 

Table 1. Hailstorm events in the past five years in Rajasthan, India 

Sr. No. hailstorm date Districts affected Source 

1 14 February 2019 
Bundi, Baran, Jhalawar, Kota, Nagaur, Churu, 

Sriganganagar, Bikaner, Jaisalmer, Barmer and Jodhpur 
(DNA, 2019) 

2 05 March 2020 Alwar, Bharatpur, Dausa, Jaipur 
(India Today, 
2020) 

3 
5 January 2021 and 
12 March 2021 

Bundi, Baran, Jhalawar, Kota 
(Times of 
India, 2021) 

4 
8 January 2022 and 
8 March 2022 

Alwar, Bharatpur, Jaipur, Sikar 
(Times of 
India, 2022) 

5 
29 January 2023 
and 8 March 2023 

Ajmer, Alwar, Jaipur, Jaisalmer, Udaipur 
(Patrika 
News, 2023) 

 

Rabi (November-March) and Kharif (July-October) are the two main crop seasons in the region. In India, 

crops cultivated during the rainy season are known as Kharif crops, while those cultivated during the 

winter are known as rabi crops.  Kharif crops’ seeds are planted at the beginning of the monsoon season 

(the start of July). These crops are harvested after the monsoon season (end of October). Rabi season crop 

seeds are planted in mid-November at the beginning of winter and harvested by the end of the winter 

season (end of February or March). Mustard, wheat, barley and gram are the principal rabi crops in the 

region. In the present study, we are focusing on rabi crops because rabi crops are the most affected crops 

by hailstorm events in the region (Bal et al., 2014; Interview, 2023).  

 
Table 2. Study area villages 

Sr. Village Name Area (ha) Tehsil, District Province, Country 

1 Badangarhi 115.17 

Kathumar, Alwar Rajasthan, India 

2 Daroda 448.61 

3 Nagla Khooba 105.60 

4 Nagla Madhopur 339.89 

5 Garoo 1029.32 

1.7. Stakeholders 

In order to determine the main stakeholders, a review of relevant literature is carried out, involving 

thorough reviews of relevant ministry websites and newspaper articles. Stakeholder identification was 

further enriched through an interview conducted with a local farmer from the study area. The purpose of 

this section is to convey the understanding of the stakeholder's roles concerning the problem at hand. The 

stakeholders are identified, and their roles are subsequently outlined. They are classified into primary and 

secondary groups, depending on the importance pertaining to the problem. In the context of the present 

research, the term 'importance' signifies the level of attention that needs to be given to meeting the 

requirements and concerns of various stakeholders involved in the project (Olander & Landin, 2005). Five 

primary and eight secondary stakeholders are identified, which are listed below. 
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Primary Stakeholders: 

I. Farmers: They are the main stakeholders in hailstorm damage assessment research as they are the 

ones who bear significant impacts from such incidents (News NCR, 2022; Patrika News, 2023; 

Times of India, 2020; Times of India, 2021). 

 

II. Agricultural Labourers: They are landless farmers who lease land from other farmers to carry 

out their farming activities. They utilize their own resources for cultivation and face an added 

burden as they are typically not eligible for compensation in the event of crop damage. Instead, 

such compensation is usually directed towards the land's registered owners. They have the most 

significant impact from such incidents (News NCR, 2022; Patrika News, 2023; Times of India, 

2020; Times of India, 2021). 

 

III. Rajasthan State Government: The state government has control over fund allocation and 

departmental directives, which allows them to ensure that all processes work smoothly and the 

farmers receive their due compensation. They hold ultimate control over the budget and policy 

direction, making them highly influential and important. Despite not being directly involved in 

damage assessment or compensation distribution, their decisions significantly affect the overall 

process (DMRD, 2023; State Portal Rajasthan, 2023). 

 

IV. Disaster Management, Relief & Civil Defence Department (DMR): The DMR's role 

extends to the efficient processing of damage reports received from the Board of Revenue and 

compensation disbursement. They are to operate within the constraints of a fixed budget while 

ensuring the compensation process is efficient, and the farmers are adequately compensated for 

their loss. Their direct involvement in the compensation process explains their high influence and 

importance scores (DMRD, 2023). 

 

V. Board of Revenue (BoR): The organization has the direct responsibility of evaluating the degree 

of damage and recording it via its regional revenue departments in accordance with government 

guidelines (BoR, 2023). 

 
Secondary Stakeholders: 

VI. Local Communities: The inhabitants of the affected areas often depend on the local agricultural 

sector for their livelihood, sustenance, and economic progression. This includes agriculture 

workers on daily wages who assist with all stages of crop cultivation, from sowing to post-harvest, 

some of whom are temporarily or seasonally employed labourers. Local workers of food 

processing, biofuel production, or seed and fertilizer companies, whose operations are reliant on 

farm outputs. Additionally, local small vendors, such as vegetable and fruit or grain sellers, source 

their goods from local farms. 

 
VII. Agriculture Department: The department serves multiple functions focused on improving 

agricultural productivity and enhancing the income of farmers (Agriculture Dept., 2022). 
 

VIII. Central Government: This authority is responsible for allotting central funds to the DMR 

(Annual Progress Report DMR, 2023). 

 

IX. Print and Electronic Media: Print and electronic media play a significant role in the event of 

crop damage due to hailstorms, as they are primarily responsible for disseminating information 
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and raising awareness about the situation. They provide critical updates on the extent of damage, 

the response from authorities, and the impact on the affected communities. They also publish 

important weather forecasts and predictions, helping communities prepare for potential 

hailstorms (News NCR, 2022; Patrika News, 2023; Times of India, 2020; Times of India, 2021). 

 

X. Crop Insurance Providers: These stakeholders play an indirect yet significant role in the 

situation. As insurance companies, their interest primarily lies in maintaining a balanced portfolio 

of risks to ensure profitability. This balance is achieved by ensuring a sufficient number of 

farmers are insured or that there is a large enough area of farmland covered under their policies. 

(PMFBY Crop Insurance, 2023). 

 

XI. Research Institutions: These include universities and other organizations that conduct research 

on hail events, crop damage, and agricultural resilience to shape future policies or mitigation 

plans. 

 

XII. Non-Governmental Organizations (NGOs): NGOs often step in to provide support to 

communities affected by hailstorm-induced crop damage. This can include distributing emergency 

aid, providing support in navigating compensation procedures, and offering resources for 

recovery and rebuilding. NGOs may also advocate for affected communities, pushing for fair 

practices and sufficient aid. 

 

XIII. Local Supply Chain Entities: These businesses, including seed suppliers, fertilizer companies, 

and agricultural equipment providers, might experience changes in demand following a hailstorm. 

1.8. Problem Analysis  

1.8.1. Problem tree. 

In order to come up with an intervention that reduces a part of wickedness in the present situation, a 

problem tree has been developed. The problem tree illustrated in Figure 4 showcases what the author sees 

as the main causes contributing to the problem. One key issue is climate change, which is causing 

hailstorms to become more severe, producing larger ice pieces and heavier rain due to the increasing 

global temperatures (BBC Future, 2023).  Hailstorm events cause an abrupt loss of harvestable crops and, 

in some cases, the complete destruction of mature crops (DNA, 2019). Hail-affected areas are occasionally 

inaccessible, and damage assessment accuracy mostly depends on the visual evaluation of HDZs in the 

field (Sosa et al., 2021).  

 

Farmers attempt to limit the effects of natural disasters by implementing management measures inside 

their agricultural operations, but certain risks, such as hailstorms, are beyond their financial resources 

(Sosa et al., 2021). Enumerating crop loss and compensating impacted farmers has proven to be 

challenging (Prabhakar et al., 2019). Currently, the process of assessing crop damage largely depends on 

field surveys and visual checks, which are costly, time-consuming, and require a lot of human resources. 

Moreover, these methods can be less transparent, as visual checks might sometimes be biased for personal 

gain (Prabhakar et al., 2019; Rao & Raju, 2010). 

 

The existing process for assessing damage is identified as the central research problem in this study and 

can be seen as represented by the light orange box in Figure 4. Delays in evaluating crop damage lead to 

delays in compensation, which can result in farmers losing trust in the government. These delays cause 

financial instability for farmers and can also cause delays in planting the next crop.  
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This impacts not only farmers but also the local economy, as farmers are major buyers of farming inputs 

and the main providers of agricultural products to local markets. Delays in planting the next crop can also 

negatively impact food security in the area, affecting not only the farmer's family but also the wider 

community. Sudden financial losses due to hail-damaged crops can cause health problems for farmers and 

make them feel financially insecure. These factors can lead to severe outcomes, including suicide among 

farmers (Times of India, 2023). 

 

The assessment of crop damage is categorized into four segments: 0-33%, 33-50%, 50-75%, and 75-100%. 

However, compensation is only provided to farmers when the damage exceeds 33% of the total crop area 

(DMRD, 2023). also, there is a lack of transparency in the assessment of the damage category, leading to 

disagreements between officials from the BoR and farmers. Farmers have expressed their discontent with 

the assigned damage categories and the compensation provided when the damage surpasses the 33% 

threshold, as well as the predetermined compensation per hectare established by the government 

(Interview, 2023). To address this, farmers are advocating for a revision of the categorization, proposing 

narrower intervals such as 0-15%, 15-30%, 30-45%, and so on or 10% bin increments for more precise 

assessment (Interview, 2023). 

 

Farmers express discontent with the drawn-out procedures and time required for damage assessment and 

distribution. The wicked nature of this issue is causing considerable disturbances in the workings of the 

government (Times of India, 2020). 

Figure 4. Problem tree in crop damage assessment 
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1.8.2. Wicked problem analysis. 

The analysis of the wicked problem was formulated utilizing the complex problem framework, as 

represented in Table 3, proposed by Georgiadou & Reckien (2018). The table displays the four categories 

of policy problems alongside the tools designed to address them. When it comes to wicked problems, 

stakeholders often engage in ongoing debates regarding the exact nature of the problem and the best 

strategies for resolution. The optimal outcome is to lessen the wickedness of the problem, which involves 

reducing uncertainty in knowledge and facts and fostering agreement among stakeholders (Georgiadou & 

Reckien, 2018).  

 

The existing system in Rajasthan employs a method known as 'girdavari', executed by the BoR. This 

process involves village-level officials recording crop losses and inputting essential details such as land 

ownership, irrigation source, cultivator's name, and other relevant data. The DMR uses this report form 

each regional office of BoR to determine the compensation amount for each region (DMRD, 2023; The 

Hindu, 2023). Compensation is awarded to farmers when damage surpasses 33% of the total crop area. 

The compensation disbursed aligns with the pre-approved amount per hectare, with damage estimates 

segmented into four categories: less than 33%, 33-50%, 50-75%, and 75-100% (DMRD, 2023). Farmers 

have expressed discontent with the prolonged damage evaluation process and the government's 

predetermined compensation per hectare (Interview, 2023; Times of India, 2020).  

 

The field-based assessment techniques do not clearly delineate whether the damage results from the 

hailstorm or from other factors such as suboptimal farming practices, inferior soil quality, inadequate 

water supply, crop diseases, tainted seeds, inappropriate use of fertilizer, or unsuitable cultivation materials 

(CMDA, 2022). Additionally, the funds allocated for disaster management are restricted. For the fiscal year 

2021-22, the state's share was 134,284,473 euros, and the central government's contribution was 

44,761,491 euros, culminating in a total reserve fund of 179,045,964 euros (DMRD, 2023) for disaster 

management operations state-wide. The ambiguity inherent in the visual assessment process, coupled with 

the lengthy timeframe for damage assessment, financial constraints, and lack of personnel and spatial 

information, significantly intensifies the problem. 

 

Disagreements have emerged between farmers and the government for various reasons, like lack of 

transparency in assessing the damage category, as farmers contest the surveyors' identification method 

without any quantitative measurement, leaning more towards a subjective analysis (Interview, 2023). The 

current damage category divisions or bins (0-33, 33-50, 50-75, 75-100) are not aligning with farmers' 

perspectives. They advocate for smaller categories or bins to distribute proportional compensation among 

the affected (Interview, 2023).  

 

The time lag in damage assessment and compensation disbursement by the department also raises 

disagreement, as farmers require funds promptly to sow the next crop (Interview, 2023). Farmers who 

have connections with government authorities frequently obtain increased compensation by being 

classified into higher damage categories, regardless of experiencing comparable losses (Interview, 2023). 

This leads to an unfair allocation of resources, introducing inequality in the process. Occasionally, they 

might even procure compensation for crops that are distressed and damaged due to the other reasons 

discussed above (Interview, 2023). Moreover, mustard crops are harvested about 20 to 25 days earlier than 

wheat. Thus, if a hailstorm happens within this period, farmers may submit compensation claims, 

mentioning hail-induced crop losses.  
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The success of these claims frequently depends on the farmers' existing networks and relationships 

(Interview, 2023). Thus, the presence of corruption within the system is a substantial cause for 

disagreement. The government's guideline that compensation is only provided when damage surpasses the 

33% mark and pre-set compensation per hectare, as defined by the government, is another significant 

point of contention (Interview, 2023). However, this issue hinges on the government's financial resources 

and is a matter of debate. 

 

Concerning the understanding of crop damages, a notable knowledge gap exists in assessing the amount 

of damage and proper damage categorisation within the limited time frame. This uncertainty complicates 

the formulation of effective solutions. The conflict of differing goals and values and the inadequate 

understanding of spatial knowledge make this issue wicked. As per the wicked problem framework by 

Georgiadou & Reckien (2018), this issue can be characterized as a wicked or unstructured problem, 

landing in quadrant four, as highlighted in green colour. Here, an RS-based model can be implemented as 

a key Geo-information tool to bridge this gap. Encouraging active dialogue among stakeholders 

concerning their goals and values is of utmost importance. 

 
Table 3. Four types of policy problems and related tools (Source: Georgiadou & Reckien, 2018) 

The government is already showing interest in leveraging modern technologies to enhance the 

transparency and efficiency of the damage assessment process. This existing momentum provides a 

favourable environment for the proposed research. In a significant step forward, the Government of 

Rajasthan declared in March 2023 that they are developing a mobile application. This app will empower 

farmers in Rajasthan to independently evaluate and report the damage caused to their crops by natural 

disasters (The Hindu, 2023). And colouration of this app with the proposed RS model could make it more 

valuable for farmers as well as related departments. While farmers are not currently aware of such 

applications, they express a positive attitude towards the possibility of using such tools directly    

(Interview, 2023). 

 

To better support farmers, policy strategists, government officials, and agricultural insurance firms in their 

decision-making, there is a critical need for an enhanced process to assess crop damage, specifically in 

monitoring and evaluating the impact of hailstorms. Given the diversity of stakeholder opinions and 

current debates surrounding the limitations of the existing system, as highlighted in the problem tree, this 

thesis principally seeks to establish a RS-based model. This innovative model can be utilised to assist 

authorities in performing rapid and precise assessments of crop damage. 
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2. DATA DESCRIPTION 

The analysis was primarily focused on the 

identification of the impact of a significant 

hailstorm that took place after midday on the 5th 

of March 2020. This hailstorm event is selected as 

the subject of a detailed examination and analysis. 

The following section elaborates on the data 

utilized in this study. Figure 5 shows the picture 

of 5 March 2020 after the hailstorm. 

 

 

2.1. Sentinel-1 SAR  

The Sentinel-1 (S1) mission is comprised of a two-satellite constellation, namely Sentinel-1A (S1A) and 

Sentinel-1B (S1B), in polar orbit. S1 operate continuously, day and night, utilizing the capabilities of C-

band SAR imaging. The active sensing technology allows to capture images irrespective of prevailing 

weather conditions. Each S1 satellite provides a revisit time of 12 days at the equator. However, when 

working synergistically, they can reduce this to a revisit period of 6 days. The C-band SAR aboard the 

satellites can provide data in varying polarization modes, either single (HH or VV) or dual HH+HV or 

VV+VH (ESA Sentinel Mission, 2023). 

 

The satellites have the capacity to acquire data in four distinct acquisition modes: Interferometric Wide 

Swath (IW), Extra Wide Swath (EW), Strip Map (SM), and Wave (WV). They yield two different kinds of 

data products: Single Look Complex (SLC) and Ground Range Detection (GRD). While the SLC product 

maintains both phase and amplitude information, the GRD product imparts amplitude information only 

(ESA Sentinel Mission, 2023). S1B mission was suspended on 03 august 2022 after an anomaly was detected 

on 23 December 2021. Now the Sentinel-IC mission, scheduled for launch in 2023, will carry on radar 

imaging for a wide variety of applications. 

 

S1 is suitable for the present study because high-frequency radar penetrates cloud cover and doesn’t 

dependent on solar light. Therefore, it can deliver the reliable and timely observations required for 

agricultural applications (Bush & Ulaby, 1978). Low-frequency radar is ideal for monitoring soil moisture, 

water content, and structural changes in crops (Khabbazan et al., 2019). S1 uses more than one 

polarisation to emit and record the signals. The polarisation characteristic of S1 allow extraction of ample 

information from the earth surface. For instance, surface scattering (e.g., sea surface) have different 

polarisation than volume scattering (e.g. forest). Polarimetric methods allow the separation of different 

scattering contribution and can be used to extract information about scattering process (ESA - Sentinel-1, 

2022), which contribute to improved classification. The present research has been conducted utilizing data 

from the dual polarization mode VV+VH of the Sentinel-1A SLC product. The specifics of this data are 

comprehensively delineated in Table 4. 
 

 

 

 

Figure 5. Picture of 5 March 2020 after hailstorm event 
(Source: DNA, 2019) 
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Table 4. Details of SAR data from Sentinel-1 used in the research. 

Sensor Sentinel-1A SAR 

Product Type SLC -IW 

Bandwidth, Central Frequency,  
Resolution (rg x az) 

C band 0-100 MHz, 5.405 GHz,  
(2.7x22 m to 3.5x22 m) 

Polarisation Dual (VV, VH) 

Pre event date, time, and orbit 5 March 2020, 00:52:59 UTC, 031533 

Post event date, time, and orbit 17 March 2020, 00:52:54 UTC, 031708 

2.2. Sentinel-2 MultiSpectral Instrument (MSI) 

The Copernicus Sentinel-2 (S2) initiative involves a pair of satellites - S2A and S2B - that orbit in a polar 

configuration, located in a shared sun-synchronous orbit, with a phasing of 180° between them. The 

mission's broad swath size (290 km) and frequent repeat intervals (once every 10 days with a single satellite 

and once every 5 days with both satellites in operation) are among its key features (ESA Sentinel Mission, 

2023). 

 

The S2 encompasses 13 unique spectral bands: four bands (B2: Blue, B3: Green, B4: Red, B8: NIR) with a 

spatial resolution of 10 metres, and six bands (B5, B6, B7, B8a, B11, B12) offering a resolution of 20 

metres, and three bands (B1: Coastal aerosol, B9, B10: Cirrus) with a 60-metre resolution. The sensors 

possess a radiometric resolution of 12 bits, which facilitates the identification of minor differences in 

surface reflectance (ESA Sentinel Mission, 2023).  

 

The spatial, spectral, radiometric, and temporal resolution and open access data policy of S2 is suitable for 

monitoring changes in agriculture and forest areas (Sanchez et al., 2020). The Sentinel 2 Level-2A product 

was utilized in the present research. This product provides surface reflectance that have been 

atmospherically corrected and are presented in cartographic geometry. All the bands were incorporated in 

the analysis except B1 band (Coastal aerosol) and the B10 band (Cirrus) because Band 1 primarily aids in 

coastal and aerosol studies, and Band 10 is sensitive to high-altitude cirrus clouds rather than terrestrial 

features. The specifics of this data are comprehensively delineated in Table 5. 
 

Table 5. Details of Multi Spectral Instrument data from S2 used in the research. 

Sensor Sentinel-2A-MSI 

Product Type L2A 

Spatial Resolution 10-60 m 

Temporal Resolution 5 days 

Spectral resolution 12 bands (Visible to SWIR) 

Radiometric Resolution 12 bits 

Pre event acquisition date, time, orbit no, tile no 05-03-2020, 05:27:11 UTC, R105, T43RGL 

Post event acquisition date,  time, orbit no, tile no 25-03-2020, 05:26:41 UTC, R105, T43RFL 
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2.3. Field Data 

For the research at hand, field data was meticulously compiled from five villages in the Alwar district, as 

delineated in Table 2. This data encompassed three crucial elements: cadastral maps, Revenue Records, 

and Hailstorm Reports. Cadastral maps, which present parcel boundaries with corresponding parcel or 

survey numbers, were obtained from the Land Revenue Department, District Alwar. This valuable set of 

information is also readily available for online access via https://bhunaksha.raj.nic.in/.  

 

Another source of vital data came in the form of the Revenue Record or Registry of Records (RoR), 

providing specific details about each parcel or survey number, including land area, ownership status 

(whether private or government-held), and land type (such as agricultural, residential, waterbody, 

grassland, forest land, etc.). This information can be conveniently accessed on the website 

http://apnakhata.raj.nic.in/.  

 

Furthermore, communication was established with the DMR of the Government of Rajasthan in order to 

procure crop damage assessment reports. These reports are comprehensive, categorizing crop damage 

levels into four groups as per government guidelines: low (0-33%), moderate (33-50 %), high (50-75%), 

and severe (75-100%). This gradation of data is particularly useful for understanding the impact of the 

hailstorm event and subsequently shaping the analysis. The specifics of this data are comprehensively 

delineated in Table 6. 

 
Table 6. Field data utilized in the research. 

Sr. Type Description Agency 

1 
Cadastral 
Map 

Village cadastral map showing parcel 
boundary with parcel number/survey 
number 

Land Revenue Department, District 
Alwar (works under BoR, Rajasthan 
Government) 
URL: https://bhunaksha.raj.nic.in/ 

2 

Revenue 
Record/ 
Registry of 
Records 
(RoR) 

Village RoR containing parcel 
number/survey number-specific 
information on land area, farmer details 
(name, father name), land ownership 
(private/government), and land type 
(agriculture, residential, waterbody, 
grassland, forest land, etc.). 

Revenue Officer, Land Revenue 
Department Tehsil Kathumar, District 
Alwar (works under BoR, Rajasthan 
Government) 
URL: http://apnakhata.raj.nic.in/ 

3 
Hailstorm 
damage 
report 

The report comprises four categories of 
crop damage level information due to 
hailstorms according to government 
guidelines. 

I. Low (0-33%) 
I. Moderate (33-50 %) 

II. High (50-75%) 
III. Severe (75-100%) 

Disaster Management, Relief & Civil 
Defence Department (DMR), Govt. of 
Rajasthan 
URL: https://dmrelief.rajasthan.gov.in/ 

2.4. Software & Packages used 

To accomplish the objectives of this research, a variety of specialized software tools were utilized, each 

serving unique and essential functions within the data processing and analysis workflow. Table 7 provides 

a detailed overview of the functions of each software used in this study. 

 

 

https://bhunaksha.raj.nic.in/
http://apnakhata.raj.nic.in/
https://bhunaksha.raj.nic.in/
http://apnakhata.raj.nic.in/
https://dmrelief.rajasthan.gov.in/
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Table 7. Software utilized for data processing and analysis in the research. 

 

Sr Software/Packages  
Developer 
(license) 

Function 

1 SNAP 
European Space 
Agency (Open 
source) 

Sentinel Application Platform (SNAP) was employed to 
conduct pre-processing operations on data derived from 
the S1 and S2 satellites. 

2 QGIS 

QGIS 
Development 
Team 
(Open source) 

QGIS was a fundamental tool used in this research for 
georeferencing cadastral images. This ensured the spatial 
accuracy of the images in relation to real-world 
coordinates. Additionally, QGIS was used to prepare 
shapefiles that served as training and testing datasets, 
which was essential in creating and validating our spatial 
models. 

3 R Studio 
Posit, PBC 
(Open source) 

R Studio was used specifically to develop a Random 
Forest Classification Model. This model was integral to 
our research, as it facilitated the detection of hail damage 
on a parcel-by-parcel basis, thereby enhancing the 
specificity and accuracy of our damage assessment. 

4 PolSARpro 
European Space 
Agency  
(Open source) 

This specialized software was crucial in processing 
polarimetric SAR data. The usage of PolSARpro ensured 
comprehensive handling and interpretation of the SAR 
data, which was critical in achieving a detailed 
understanding of the radar returns within the context of 
my study. 

5 Python  
Python Software 
Foundation 
(Open source) 

A Python script was utilized to assign coordinates to the 
outputs from PolSARpro. 

6 CRIB 
ITC Geospatial 
Computing 
Platform 

GPU-assisted computing capabilities for ML involving 
geospatial data 
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3. METHODOLOGY 

3.1. Methodological Workflow 

As explained in Section 1.8, there is a essential requirement for an improved methodology to evaluate crop 

damage, particularly in tracking and assessing the ramifications of hailstorms. This need is essential to 

augment the decision-making capabilities of policy planners, governmental authorities, agricultural 

insurance companies and farmers. Accordingly, this study is designed with the intention of formulating a 

RS-centred crop damage assessment model. The goal is to expedite and enhance the accuracy of hail 

damage assessment for crops, particularly over broad geographical areas. 

The methodological workflow for the present study is visually represented in Figure 6. The research 

incorporates multi-temporal data from S1 (as catalogued in Table 4) and S2 (as outlined in Table 5). These 

data have been employed to extract features that serve as input to the RF model.  

Figure 6. Methodological workflow for the present research. 
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In addition, The field data summarised in Table 6 has been used to create training and testing datasets for 

supervised learning within the RF model. The model incorporates both PBC and OBC approaches, 

generates predictive outputs, and performs accuracy analyses. An analysis of stakeholders has also been 

undertaken to examine their interests and influence within the context of the current research, along with 

assessing the impact of the proposed intervention. The research concludes with recommendations derived 

from its findings. The software outlined in Table 7 is employed to execute the analysis stages depicted in 

the methodological workflow. The distinctive steps represented in this workflow are described 

comprehensively in Sections 3.2 to 3.8. 

3.2. Data Pre-Processing  

3.2.1. Sentinel-1 SAR. 

In the scope of RS data, pre-processing holds significant importance. This study investigates the 

polarimetric features and microwave vegetation Dual-pol Radar Vegetation Index (DpRVI) derived from 

S1- Single Look Complex (SLC) data. A systematic series of steps is necessary to extract features from S1 

data, which were meticulously followed in this research. The pre-processing and feature extraction from 

the S1 data were facilitated by the SNAP and PolSARpro software, as outlined in Table 7. 

 

The methodological workflow (Figure 6) outlines the pre-processing steps undertaken for both the pre 

and post-hail event datasets. S1 SLC data is divided into three sub-swaths, each comprising of nine bursts. 

The split tool allowed me to isolate sub-swath IW1 pertinent to my study area. Thereafter, an orbit file 

was applied, a process which refines the preliminary state vectors in the SAR product's metadata with 

more accurate ones. The subsequent step involved radiometric calibration. Considering the use of both 

real and imaginary parts of the data, it was crucial to save the data in a complex output format, which 

retains both amplitude and phase information. After preserving the complex output, TOPSAR deburst 

procedure was used, which seamlessly fuses separate image bursts into one comprehensive image. Since 

data was derived from a single swath, there was no need for the TOPSAR merge tool. A subset operation 

was then performed, aligning with the study area. Figure 7 shows the workflow of processing steps. 

 

 

 

Figure 7 Flowchart of the steps followed during S1 pre-processing and generation of polarimetric and 
decomposition parameters. 
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Following operations were performed subsequently. 

3.2.1.1. Polarimetric Speckle filter 

Speckle filtering was applied to a subset image. Speckle is a granular, salt-and-pepper type noise that is 

inherent to SAR images. It is caused by the coherent nature of the radar signal, meaning that the returned 

waves interfere constructively and destructively, leading to bright and dark pixels in the radar image.  

(Emery & Camps, 2017). To address this, a Lee speckle filter (Rubel et al., 2021)was implemented in the 

research. Lee speckle filter is renowned for its adaptability and capability to preserve image details. The 

kernel size of 7x7 window was opted. This size was selected based on its effective balance between 

reducing noise and maintaining image detail. After a careful review of the results, the refined Lee filter 

with a 7x7 kernel proved to be an optimal choice for this application. 

3.2.1.2. Terrain correction. 

Terrain correction is a crucial step in SAR data processing. The primary purpose of terrain correction is to 

compensate for topographic distortion in the radar image. It transforms SAR data from the slant range or 

ground range geometry to map coordinates (P. Wang et al., 2013). This correction ensures that the ground 

features in the image are in their correct geographic locations and that the pixel values accurately represent 

the radar backscatter of the ground surface. 

 

In the SNAP software, the range doppler terrain correction was performed under the radar section in the 

following sequence: Radar →Geometric → Terrain Correction → Range Doppler Terrain Correction. For 

precise topographic correction, the Copernicus 30 m global DEM was employed in the processing 

parameters, and the map projection utilized was the UTM WGS 84 system. Owing to its capability of 

generating smoother images than the nearest-neighbor method while ensuring satisfactory computational 

efficiency, the bilinear interpolation resampling method with a pixel spacing of 10 meters was chosen. 

3.2.1.3. Co-registration.  

Following terrain correction, co-registration was performed on the pre and post-hail event datasets. This 

step is vital when dealing with a sequence of images or when merging images from different dates, orbits, 

or sensors for analysis activities like change detection, interferometry, or multi-temporal studies. The 

implementation of the co-registration procedure is based on the cross-correlation technique (Wu et al., 

2017). Co-registration guarantees that identical pixels in each image align with the same ground location, 

allowing for precise comparison or mathematical operations between the images. Even minor 

misalignment can lead to false outcomes. Given my research focus on detecting crop damage after hail 

events, this step is indispensable for achieving the most accurate results. SNAP software was used to 

perform co-registration in the following sequence: Radar →Coregistration. 

3.2.1.4. Covariance Matrix. 

Polarimetric data offers the capability to extract details such as orientation, shape, and dielectric properties 

from backscattered information. The dataset in use features two polarimetric channels: VV and VH. We 

utilized SNAP to produce a dual polarimetric covariance matrix. As described by (Mandal et al., 2020), we 

can generate the diagonal elements of the C2 matrix for the VV and VH (dual pol) S1 data according to 

equation (1). In this equation, SVV stands for the backscatter measured when both the transmitted and 

received electromagnetic waves are vertically polarized. Similarly, SVH refers to the backscatter measured 

when the transmitted wave is vertically polarized but the received wave is horizontally polarized. 

 

 (1) 
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S*
VV is the complex conjugate of SVV, and S*

VH is the complex conjugate of SVH, and the notation 〈.〉 

signifies a spatial average over a moving window. The elements C11 and C22 in the covariance matrix are 

real numbers, representing backscatter measured of respective polarization channels. Conversely, C12 

represents the complex covariance between the two polarizations (Mandal et al., 2020). It is a complex 

number composed of both a real and an imaginary part containing intensity and phase values. These 

elements C11, C12, and C22 are utilized later in the report as three separate bands serving as input features 

for a RF model. 

 

The produced C2 matrix was converted into PolSARpro format to facilitate the derivation of numerous 

polarimetric parameters, such as matrix elements, Stokes parameters, and H/Alpha decomposition. A 

more comprehensive discussion of the feature extraction process can be found in section 3.3. Figure 8 

depicts the C11 channels before and after the hailstorm event extracted from S1. 

3.2.2. Sentinel-2 MSI. 

S2 Level 2A images were acquired from the ESA Open Access Hub (Copernicus Open Access Hub, 2022). 

Level 2A images have undergone 'atmospheric correction', meaning the effects of atmospheric gases and 

aerosols have been mathematically removed from the data. This results in bottom-of-atmosphere (BOA) 

reflectance values that more accurately represent the Earth's surface. 

 

The implementation of a Gaussian filter with a 7x7 kernel size was chosen for the S2 Level 2A datasets 

obtained before and after the hail event. It was found that this kernel size produced the most satisfactory 

results by suppress the high frequency without losing image information. The key motivation behind using 

the filter was to suppress the high-frequency noise present in the imagery, which was instrumental in 

enabling a smoother and more precise mapping of the damaged areas. The S2 Level 2A dataset includes 

bands with varying spatial resolutions: four bands (B2, B3, B4, B8) at 10 meters, six bands (B5, B6, B7, 

B8A, B11, B12) at 20 meters, and three bands (B1, B9, B10) at 60 meters resolution. 

Figure 8. C11 image of pre-event (Left) and post-event (Right). 
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A resampling at a 10-meter resolution was carried out following the filtering process to maintain 

uniformity across all bands and enable accurate comparisons. This procedure is crucial given the distinct 

spatial resolutions of various bands in S2 Level 2A data. After the resampling operation, as outlined in the 

above section, co-registration step was performed using SNAP software under the raster section in the 

following sequence: Raster →Geometric →Collocation. This alignment operation is crucial, especially 

when working with time series data or combining data from different periods for a thorough and accurate 

analysis, like our current investigation of crop damage caused by the hail event. Figure 9 depicts the S2 

healthy vegetation index RGB (B8, B11, B2) for before and after the hailstorm event. 

 

3.2.3. Field data.  

The dataset employed for preparing the training and testing datasets required for the supervised learning 

process of the RF model is outlined in Table 6. The data preparation process for the cadastral data 

proceeded as follows. Initially, the cadastral maps for selected five villages, obtained in hardcopy format, 

were scanned and imported in tiff format. Following this, georectification of the digital map was 

performed utilizing QGIS software. Ground control points (GCPs), which were distinguishable and 

uniformly dispersed throughout the image, were identified within both the satellite data and the cadastral 

map. Notable features such as parcel boundary corners, and intersections of roads served as these GCPs. 

These identified GCPs were then linked, facilitating the alignment of the cadastral map points with the 

satellite data within the real-world geographic coordinate system. The Universal Transverse Mercator 

(UTM) World Geodetic System (WGS) 84 Projection system was employed during this stage of the 

process. Subsequently, the parcel boundaries contained within the georectified cadastral maps were 

digitized. Each digitized parcel was assigned a relevant parcel ID, which was then populated in an attribute 

field. Finally, a vector shapefile comprising these digitized parcels was created. 

 

Figure 9. S2 image of pre-event (Left) and post-event (Right) with healthy vegetation index RGB (B8, B11, B2). 



 

 

 

 

ASSESSING HAILSTORM DAMAGES IN CROPS USING MULTI-TEMPORAL REMOTE SENSING DATA AND MACHINE LEARNING SOLUTIONS 

 

 
24 

The RoR for five chosen villages were subsequently gathered. These records summarized information 

related to parcel or survey number, farmer's detail (name, father's name), land area, ownership (whether 

private or government-held), and land type, which include categories such as agricultural, residential, 

waterbody, grassland, and forest land. This data was organized according to parcel ID, which facilitated 

the extraction of parcel-specific information. Following this, the data was compiled into CSV files. CSV 

files, standing for Comma-Separated Values, are a simplistic file format used to house tabular data, like to 

databases or spreadsheets. Each record in the file is represented by a line, with individual fields within the 

record divided by commas. These prepared CSV files were partitioned by village. Using the parcel ID as a 

unique identifier within the CSV files made it easier to join the data with its associated parcel vector 

shapefile. 

 

Subsequently, the hailstorm damage reports for the designated five villages were obtained. These reports 

included specific data regarding the extent of crop damage due to the hailstorm, which were classified into 

four distinct severity levels according to governmental standards: Low (0-33%), Moderate (33-50%), High 

(50-75%), and Severe (75-100%). It is noteworthy that the dataset used in this study did not contain 

instances of the Severe category. The link between the hailstorm damage reports and the revenue record 

was established via the farmer details, which served as a common attribute. A complexity was encountered 

when single farmers owned multiple parcels. In these circumstances, the total land area affected by the 

hailstorm was summarized into a single record in the hailstorm report. The process of identifying the 

distinct parcels that sustained damage was challenging and required the exploration of various 

combinations and permutations of land area to accurately discern the corresponding land parcels. 

 

Ultimately, upon the 

integration of the revenue 

records and the hail damage 

report, a consolidated CSV 

file was produced. This file 

organized data on a per-

parcel ID basis, which was 

then utilized for 

amalgamation with the vector 

shapefile. Figure 10 illustrates 

three components. In the top 

left, there is a scanned 

cadastral map of the village 

Nagla Khooba. The top right 

portion of the figure displays 

a sample of the Revenue 

Record. Finally, the bottom 

section presents a processed 

shapefile that includes an 

attribute field populated with 

pertinent information. 

 

 

 

Figure 10. Scanned cadastral map of the village Nagla Khooba (Top Left), 
sample of the Revenue record (Top Right) and processed shapefile that includes 

an attribute field populated with pertinent information (Bottom).  
Images have been blurred for ethical considerations 
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Figure 11. Parcel boundaries refinement for training and testing dataset generation. 

3.2.3.1. Training and testing dataset preparation. 

Polygons corresponding to non-agricultural classes such as roads, buildings, forests, water bodies, and 

pasture lands were excluded from the dataset. Similarly, within the agricultural parcels themselves, any 

parcels containing objects like buildings, huts, and iron sheds were removed. These measures were 

implemented to preserve the integrity and enhance the accuracy of the training and testing samples, 

ensuring that the focus remains strictly on agricultural land. 

 

Moreover, for the creation of training and testing dataset parcels, the boundaries of each parcel were 

systematically reduced by a proportion of 10% area. This was to reduce the impact of extraneous 

vegetation, such as weeds and shrubs, which are often utilized to delineate parcel boundaries. These 

vegetative elements can introduce potential interference when undertaking damage assessments utilizing 

S1 and S2 data, specifically affecting backscattering and reflectance measures. By accounting for these 

factors and making necessary adjustments to the parcel boundaries, we can ensure a more accurate 

interpretation of the RS data within the training and testing dataset. Figure 11 showcases a three-part 

comparison. It includes the initial cadastral map, the refined parcel boundaries following the removal of 

irrelevant classes, and the final stage of generating the training dataset (yellow parcels), a process achieved 

through a systematic 10% area reduction of each parcel. A comprehensive collection of 3,394 field 

samples (polygon layer) was prepared for training and testing purposes. 
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3.3. Feature Extraction 

3.3.1. Sentinel-1 SAR. 

After polarimetric C2 matrix preparation as per steps mentioned in section 3.2.1, The produced C2 matrix 

was converted into PolSARpro format to facilitate the derivation of numerous polarimetric parameters, 

such as matrix elements, Stokes parameters, and H/Alpha decomposition. The following parameters were 

extracted into individual bands to serve as input for the model. 

 

1. Stokes Parameters 
1.1. Stokes components S0 
1.2. Stokes components S1 
1.3. Stokes components S2 
1.4. Stokes components S3 
1.5. Eigenvalue L1  
1.6. Eigenvalue L2  
1.7. Degree of Liner Polarization 
1.8. Linier Polarisation Ratio 

 

2. Matrix elements  
2.1. C11  
2.2. C22 
2.3. C21 or C12real  

2.4. Span 
 

3. H/Alpha Decomposition 
3.1. Alpha 
3.2. Entropy  

 
4. Dual-pol Radar Vegetation Index 

 

Figure 12. Showing the Eigenvalue L1 of pre-hailstorm (Upper Left) and 
post-hailstorm (Upper Right) conditions, and DpRVI of pre-hailstorm 

(Lower Left) and post-hailstorm (Lower Right) features of S1. 
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Figure 12 showcases the variation in Eigenvalue L1 and DpRVI for the pre and post features of S1. The 

top half of the figure, on the left and right, represents the Eigenvalue L1 for pre and post conditions, 

respectively. The bottom half, similarly divided, displays the DpRVI for the corresponding pre and post 

conditions.  

3.3.1.1. Stokes Parameters. 

Stokes Components: The Stokes parameters are used to describe the polarization state of 

electromagnetic waves (Lee & Pottier, 2017). For dual-polarized data, the Stokes components are 

calculated as follows: 

S0 = |SVV|2 + |SVH|2     (2) 

S1 = |SVV|2 __ |SVH|2     (3) 

S2 = 2 * (SVH * S*
VV)     (4) 

S3 = -2 * (SVV * S*
VH)     (5) 

3.3.1.2. Eigenvalues (L1 and L2). 

The eigenvalues of the covariance matrix are found by solving the characteristic equation of the matrix 

(Lee & Pottier, 2017). The characteristic equation of a matrix is a polynomial equation that is derived from 

the determinant of the difference between the matrix and an identity matrix multiplied by a scalar, and the 

solutions to this equation are the eigenvalues of the matrix (Lee & Pottier, 2017). The eigenvalues are 

ordered in a way that L1 >= L2, and they represent the total scattering power (L1) and the difference in 

scattering power between different polarization states (L2). 

3.3.1.3. Degree of Linear Polarization. 

This measures the fraction of the electromagnetic wave energy, which is linearly polarized (Lee & Pottier, 

2017). It's calculated as: 
Degree of linear polarization (m) = sqrt (S12+ S22) / S0   (6) 

3.3.1.4. Linear Polarization Ratio.  

The ratio of the minimum to the maximum scattering mechanism. It's calculated as:  
 

Linear polarization ratio  = L2 / L1    (7) 

3.3.1.5. Matrix elements.  

C2 matrix elements C11, C22 and |C12 | have been previously explained in section  3.2.1.  Below are the 

definition and calculations of the additional parameter span. The span is the total power or simply the sum 

of the power in all the polarization channels (Lee & Pottier, 2017). For dual-polarized data, Span (L) is 

calculated as:  

 
Span = |SVV|2 + |SVH|2      (8) 

3.3.1.6. H/Alpha Decomposition. 

Polarimetric decomposition isolates distinct scattering elements, enabling a detailed analysis of the 

scattering process (Cloude & Pottier, 1997). Key parameters such as Anisotropy, Alpha (α), and Entropy, 

derived from eigenvalues and eigenvectors as previously detailed, offer insights into scattering 

mechanisms(Cloude & Pottier, 1997). Alpha reveals the type of dominant scattering mechanism with 

values from 0 to 90 degrees. Entropy illustrates scattering heterogeneity or randomness of the scattering 

process. Alpha (α) and Entropy are extracted into individual bands to serve as input for the model (Lee & 

Pottier, 2017). 
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3.3.1.7. Dual-pol Radar Vegetation Index. 

The DpRVI is derived from the dual-polarized 2x2 covariance matrix C2, as indicated in equation (10). 

The scattering information in terms of the degree of polarization and the eigenvalue spectrum is jointly 

utilized to derive the vegetation index from dual-pol SAR data. The state of polarization of an EM wave is 

characterized in terms of the degree of polarization (m) indicated in equation (9) as proposed by. (Barakat, 

1977; Mandal et al., 2020). 
 

 
(9) 

. 

In this context, Tr signifies the trace of the matrix, which is the sum of the diagonal elements, while |.| 

denotes the determinant of the matrix. The non-negative eigenvalues (L1>=L2>=0) are ascertained from 

the eigen-decomposition of the C2 matrix and subsequently normalized with the total power Span (Tr(C2) 

= L1 + L2). These eigenvalues illustrate the predominance of scattering mechanisms, leading to the 

introduction of the parameter beta, defined as beta = L1/Span. 

 

This principal scattering information is modulated with the degree of polarization (m), which specifically 

characterizes anisotropy for dual-pol SAR data. Scattering randomness is then computed by subtracting 

the product of m and beta from unity, as given in the following equation by (Mandal et al., 2020). 

 
(10) 

 

It's primarily used to estimate vegetation biomass and monitor vegetation health. Its value ranges from -1 

to +1, with positive values indicating higher vegetation density and negative values indicating lower 

vegetation density or non-vegetated areas. All the parameters described above are extracted into individual 

bands to serve as input for RF Model. 

3.3.2. Sentinel- 2 MSI. 

In the study, S2 Level 2A datasets were employed, which underwent a sequence of pre-processing steps, 

including filtering, resampling, and co-registration as detailed in Section 3.2.2. A selection of 11 bands and 

channels was extracted from the processed data. Notably, Band 1 Coastal aerosol (443 nm) and Band 10 

Cirrus (1375 nm) were excluded from this selection. Additionally, a total of 19 vegetation indices were 

computed for both pre and post-hail event data. In total, 30 channels/variables were used to serve as 

input for RF model. The selected original channels from the S2 data included the following parameters 

(showing band number, band name, central wavelength (nm) and spatial resolution n meters (m)): 

 

1. Band 2 - Blue - 490 nm - 10 m 

2. Band 3 - Green - 560 nm - 10 m 

3. Band 4 - Red - 665 nm - 10 m 

4. Band 5 - Vegetation red edge - 705 nm - 20 m 

5. Band 6 - Vegetation red edge - 740 nm - 20 m 

6. Band 7 - Vegetation red edge - 783 nm - 20 m 

 

7. Band 8 - NIR - 842 nm - 10 m 

8. Band 8a - Narrow NIR - 865 nm - 20 m 

9. Band 9 - Water vapor - 945 nm - 60 m 

10. Band 11 - SWIR - 1610 nm - 20 m 

11. Band 12 - SWIR - 2190 nm - 20 m 

 

The diverse spectral channels of S2 provide a wealth of data conducive to analysing vegetation health and 

detecting crop damage (Immitzer et al., 2016). Band 2, the blue band (490 nm), can differentiate between 

soil and vegetation and detect atmospheric particles and (Al-Gaadi et al., 2016). Band 3, or the green band 
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(560 nm), is advantageous during peak vegetation periods for biomass estimation and the recognition of 

plant stress (Delegido et al., 2011). The Red band, or Band 4 (665 nm), is especially absorbed by 

chlorophyll and is instrumental in computing vegetation indices such as NDVI, which can signal the 

vitality and potential damage or stress in plants (Hussain et al., 2013). Bands 5, 6, and 7 (Vegetation Red 

Edge - 705 nm, 740 nm, and 783 nm, respectively) are significant in identifying minor variances in plant 

health. These bands monitor the red edge, a segment in the vegetation reflectance spectrum where 

chlorophyll absorption shifts to leaf scattering. This can assist in identifying plant stress or damage, 

including hail damage (Fassnacht et al., 2016). 

 

Band 8 (NIR - 842 nm) and Band 8a (Narrow NIR - 865 nm) are essential in gauging the structure of 

vegetation and evaluating its health (Löw et al., 2013). The NIR bands find use in multiple vegetation 

indices as they can discriminate between healthy and damaged vegetation. Band 11 (SWIR - 1610 nm) and 

Band 12 (SWIR - 2190 nm) are useful in distinguishing between clouds, snow, and ice and are able to 

identify the water content in soil and vegetation, a vital factor in comprehending plant stress or damage 

(Zhang et al., 2020).  

 

Overall, the S2 bands contribute to the thorough monitoring of plant health, allowing for early crop 

damage detection and timely intervention and damage control. Band 1 (Coastal aerosol, 443 nm) and Band 

10 (Cirrus, 1375 nm) of S2 data are not typically employed in such studies due to their lack of direct 

contribution to understanding vegetation health. Band 1 primarily aids in coastal and aerosol studies, 

capturing the violet-blue light, which is heavily scattered by the atmosphere and can be absorbed by water 

bodies. Conversely, Band 10 is sensitive to high-altitude cirrus clouds rather than terrestrial features and is 

predominantly used for atmospheric corrections. These original channels were integral to the study, as 

they were used to calculate the following vegetation indices. Table 8 shows the list of 19 Vegetation 

Indices used in classification which are extracted using SNAP software. 

 
Table 8. Vegetation Indices used for classification. 

Sr. 
no. 

Vegetation Index Formula (for S2) Source 

1 
DVI (Difference 
Vegetation Index) 

NIR - Red = B8 - B4 Tucker, 1979 

2 
GEMI (The Global 
Environmental 
Monitoring Index) 

eta * (1 - 0.25 * eta) - ((B4 - 0.125) / (1 - B4)) where 
eta = (2 * (B8² - B4²) + 1.5 * B8 + 0.5 * B4) / (B8 + 
B4 + 0.5) 

Pinty & 
Verstraete, 
1992 

3 
GNDVI (Green 
Normalized Difference 
Vegetation Index) 

(NIR - Green) / (NIR + Green) = (B8 - B3) / (B8 + 
B3) 

Gitelson & 
Merzlyak, 2010 

4 
IPVI (Infrared 
Percentage Vegetation 
Index) 

NIR / (NIR + Red) = B8 / (B8 + B4) Naji, 2018 

5 
IRECI (Inverted Red-
Edge Chlorophyll 
Index) 

(NIR / Red_edge - 1) = B8 / B5 – 1 
(Padalia et al., 
2020) 

6 

MCARI (Modified 
Chlorophyll 
Absorption in 
Reflectance Index) 

[(B5 - B4) - 0.2 * (B5 - B3)] * (B5 / B4) 
Daughtry et al., 
2000a 

7 
MSAVI (Modified Soil-
Adjusted Vegetation 
Index) 

(1 + L) * (B8 - B4) / (B8 + B4 + L) where L = 1 - 2 * 
s * NDVI * WDVI (s is the soil line slope, NDVI is 
Normalized Difference Vegetation Index and WDVI is 

Mulla, 2013 
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Sr. 
no. 

Vegetation Index Formula (for S2) Source 

Weighted Difference Vegetation Index) 

8 
MTCI (Meris 
Terrestrial Chlorophyll 
Index) 

 
(B8 - B6) / (B6 - B4) 

Mulla, 2013 

9 
NDI45 (Normalized 
Difference Index using 
Bands 4 and 5) 

(B5 - B4) / (B5 + B4) 
Thenkabail et 
al., 2000 

10 
NDVI (Normalized 
Difference Vegetation 
Index) 

(B8 - B4) / (B8 + B4) 
Lichtenthaler et 
al., 1996 

11 
PSSRA (Pigment 
Specific Simple Ratio 
A) 

B7 / B4, where (Central wavelength/Bandwidth): B7 
= 783 nm (15 nm) and B4 = 665 nm (30 nm) 

Blackburn, 
1998 

12 
PVI (Perpendicular 
Vegetation Index) 

sin(a) * B8 - cos(a) * B4 where: a is the angle between 
the soil line and the NIR axis, in degrees. 

Jordan, 1969 

13 
REIP (Red Edge 
Inflection Point) 

705 + 35 * ((B4 + B7)/2 - B5) / (B6 - B5), where 
(Central wavelength/Bandwidth): B7 = 783 nm (15 
nm), B6 = 740 nm (15 nm), B5 = 705 nm (15 nm), B4 
= 665 nm (30 nm) 

(Mutanga & 
Skidmore, 
2007) 

14 
RVI (Ratio Vegetation 
Index) 

NIR / Red = B8 / B4 Mulla, 2013 

15 
S2REP (S2 Red-Edge 
Position) 

705 + 35 * ((B4 + B7)/2 - B5) / (B6 - B5), where 
(Central wavelength/Bandwidth): B7 = 783 nm (15 
nm), B6 = 740 nm (15 nm), B5 = 705 nm (15 nm), B4 
= 665 nm (30 nm) 

(SNAP S2, 
2023) 

16 
SAVI (Soil-Adjusted 
Vegetation Index) 

((NIR - Red) / (NIR + Red + 0.5)) * (1 + 0.5) = ((B8 - 
B4) / (B8 + B4 + 0.5)) * (1 + 0.5) 

Barati et al., 
2011 

17 
TNDVI (Transformed 
Normalized Difference 
Vegetation Index) 

sqrt ((B8 - B4) / (B8 + B4) + 0.5) 
Gitelson & 
Merzlyak, 2010 

18 
TSAVI (Transformed 
Soil-Adjusted 
Vegetation Index) 

TSAVI = s * (B8 - s * B4 - a) / (s * B8 + B4 - a * s + 
X * (1 + s * s)) where: - a is the soil line intercept - s is 
the soil line slope - X is the adjustment factor to 
minimize soil noise 

Barati et al., 
2011 

19 
WDVI (Weighted 
Difference Vegetation 
Index) 

NIR - a*Red = B8 - aB4 (where 'a' is the slope of the 
soil line, usually determined empirically) 

Naji, 2018 

 

Spectral indices, derived from optical RS data, serve as effective tools for monitoring and quantifying 

characteristics such as chlorophyll content, structural composition, and moisture content of vegetation 

(Thenkabail et al., 2000). Indices such as the GNDVI and MCARI (Daughtry et al., 2000) are attuned to 

variations in chlorophyll content - a crucial parameter in detecting vegetation stress indicators such as hail-

induced damage. The DVI and IPVI (Naji, 2018), on the other hand, are effective at identifying structural 

alterations in vegetation, a critical factor in pinpointing hail damage. Additionally, MSAVI and SAVI 

(Barati et al., 2011) adjust for soil reflectance, allowing for more accurate detection of stressed or damaged 

vegetation in areas with diverse soil backgrounds. 

 

The NDVI, TNDVI (Gitelson & Merzlyak, 2010)  and TSAVI (Barati et al., 2011), utilize the contrast 

between specific band reflectance to suggest potential compromises in plant health, such as those inflicted 

by hailstorms.  
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Figure 13. MCARI, GNDVI, REIP vegetation indices for 
pre-event (Left) and post-event (Right) of hailstorm. 

The WDVI (Naji, 2018), which accounts for soil background reflectance, is particularly useful in providing 

insight into vegetation health in regions with sparse vegetation. The GEMI (Pinty & Verstraete, 1992) and 

NDI45 (Thenkabail et al., 2000), on the other hand, reduce the effects of atmospheric disturbance and 

employ unique band combinations, respectively, could offer additional perspectives on potential hail-

induced crop damage. Collectively, the above listed 19 indices could provide an array of tools for 

comprehensive hail damage detection and assessment using S2 data. The rationale for utilizing a range of 

bands and vegetation indices originates from the principles of the RF model. It suggests that the 

performance of the model can be enhanced by providing a more extensive set of variables. Figure 13 

shows MCARI, GNDVI and REIP vegetation indices of pre and post hailstorm events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Random Forest Machine Learning Model 

The RF algorithm (Breiman, 2001) is widely regarded as an effective ensemble learning method, frequently 

applied for both classification (Pal, 2007) and regression (Mutanga et al., 2012) tasks. The RF classifier 

operates by combining numerous tree classifiers. Each of these classifiers is created using a random 

vector, which is independently sampled from the input vector. For an input vector classification, every 

tree contributes a unit vote towards the class with the highest popularity (Breiman, 2001).  
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The architecture of the RF model is depicted in Figure 14, as detailed by (Park et al., 2020). here N are 

total number of training samples, and M are total features, wherein each node grew a tree using features 

randomly chosen individually or in combination. The method of bagging, a process that creates a training 

dataset by drawing n(N) (refers as ‘sampsize’ parameter in R package) instances/samples at random with 

replacement, where N corresponds to the original training set's size (Breiman, 2001), was utilized for each 

selected feature combination m(M) (refers as ‘mtry’ parameter in R package). Classification of any instances 

(or pixels) was achieved by identifying the class with the highest number of votes from all tree predictors 

within the forest (Breiman, 2001).  

 

Two user-determined parameters are essential for creating a RF classifier: the number of features or 

variables used at each node to grow a tree and the number of trees (k) (refers as ‘ntree’ parameter in the R 

package) to be developed. For classifying a new dataset, every instance of the dataset is introduced to each 

of the k trees. The forest then selects the class that obtains the majority of the k votes for that specific 

instance (Pal, 2007). 

 

The RF classifier employs the Gini index as a tool to measure an attribute’s impurity in relation to 

different classes. Mean Decrease Gini (MDG) measures the total decrease in node impurities, measured 

using the Gini index, from splitting on the variable and averages this across all trees. Mean Decrease 

Accuracy (MDA) is calculated by permuting the values of a particular feature, making predictions using 

the model, and measuring the decrease in accuracy caused by the permutation. A high value of either 

MDA or MDG indicates a variable of high importance (Díaz-Uriarte & Alvarez de Andrés, 2006). The 

Out-Of-Bag (OOB) error in RF is a predictive error estimate made from the instances left out during the 

bootstrapping process(Breiman, 1996). These unused instances, known as OOB instances, help to validate 

the model internally without needing a separate test set.  

 

Figure 14. Architecture of the Random Forest model (Source: Park et al., 2020) 
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This method efficiently addresses the challenges associated with high-dimensional input data and the 

inherent non-linearity often found in classification problems. Additionally, RF has the added advantage of 

serving as a strong tool for dimensionality reduction, as it can ascertain the significance of each feature in 

relation to the problem under consideration (Izquierdo-Verdiguier et al., 2017). One notable advantage of 

this ensemble method is its inherent resistance to overfitting, a common pitfall in many ML models. This 

is mainly due to the diversified array of trees created during the model's construction (Breiman, 2001).  

 

Further, RF demonstrates robustness against noise and outliers, contributing to the model's stability. They 

are capable of efficiently managing large datasets with high dimensionality and multiple input variables, 

making them versatile for complex classification problems (Liaw & Wiener, 2002). Another distinctive 

advantage of RF is its ability to measure and rank the importance of features, thereby providing critical 

insights into the underlying data and enhancing model interpretation (Díaz-Uriarte & Alvarez de Andrés, 

2006). 

3.5. Random Forest Pixel based Classification 

3.5.1. Sentinel-1 SAR. 

The input variables for the RF model were obtained by extracting features discussed in section 3.3.1. 

These variables were computed for both pre-event and post-event data, as well as ratio and difference 

bands derived from the post-event and pre-event data using the band math function in SNAP software. 

The formulas presented in  

Table 9 were utilized to compute the difference and ratio bands. In these formulas, t2 represents the band 

data after the hail event, while t1 represents the band data before the hail event. The calculations involved 

logarithmic transformations with a base of 10, and absolute values (denoted by ||) were employed. The 

polarimetric matrix element bands, namely C11, C22, and C12 was explained in section 3.2.1 
 

Table 9. S1 difference and ratio band calculation formula.

Sr  Difference band Ratio bands  Description 

1 |log(𝐶11 𝑡2) − log 𝐶11 𝑡1| |C11 t2 | ÷ |C11 t1 | For band C11 

2 |log(𝐶22 𝑡2) − log 𝐶22 𝑡1| |C22 t2 | ÷ |C22 t1 | For band C22 

3 |log(|𝐶12 𝑡2|) − log(|𝐶12 𝑡1|)| |C12 t2 | ÷ |C12 t1 | For band C12 

4 |𝑡2 − 𝑡1| |𝑡2 ÷ 𝑡1| For Other bands 

 

The dataset was processed using R-studio, involving the stacking of a total of 60 layers. Including 15 

original features from pre data, 15 original features from post data, 15 features from difference data and 

15 features from ratio data. Subsequently, the pixel values of these bands were normalized using min-max 

normalization, employing the formula NV= (OV- MV) / (MXV - MV), where NV represents the normalized 

pixel value, OV denotes the original pixel value, MXV corresponds to the maximum pixel value, and MV 

indicates the minimum pixel value in the band. 

 

As outlined in section 3.2.3, a comprehensive collection of 3,394 field samples (polygon layer) was 

meticulously prepared. To facilitate PBC, approximately 12 points were randomly generated for each 

polygon, culminating in a total of 40,157 points. Subsequently, stratified random sampling was executed to 

ensure the representation of distinct damage classes, i.e. Low, medium, and high in a proportionate 

manner. This approach guaranteed that each damage class was adequately represented within the sample.  
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Moreover, the collected samples were subsequently partitioned into training and testing sets, allocating 

70% for supervised training of the RF model, while the remaining 30% was designated for testing 

purposes. 

 

Various combinations of bands were investigated, and different parameter values of the randomForest 

function in R software, including k= ‘ntree’, m(M)= ‘mtry’, and n(N)= ‘sampsize’, were tested to train the RF 

model and attain optimal accuracy. The importance parameter was utilized to identify significant variables 

based on their MDG and MDA values. Specifically, ‘mtry’ determines the number of randomly selected 

input features considered at each split of a decision tree, often employing the square root of the total input 

features. ‘sampsize’ indicates the number of randomly selected samples used for constructing each decision 

tree. ‘ntree’ denotes the number of decision trees included in the RF, where increasing this value improves 

performance but also extends computation time. 

 

Change detection techniques, specifically image differencing and image ratioing, are fundamental tools in 

RS studies (Lu et al., 2010). Given that our research focuses on identifying crop damage, a task essentially 

involving the detection of changes, we employed these methodologies in our investigation. As initially 

stated, we utilized 60 layers, including difference and ratio bands. However, we found that only the 

difference bands yielded the highest MDG and MDA values in every test. As a result, we ultimately 

decided to use only the difference band's 15 features to conduct our experiment. 

 

3.5.2. Sentinel-2 MSI. 

The RF model's input variables were obtained by extracting features, as discussed in section 3.3.2. These 

variables were computed for both pre-event and post-event data, including ratio and difference bands 

derived using the R software. A total of 30 variables consisting of 11 original channels and 19 vegetation 

indices were extracted for the pre-event data, post-event data, as well as their respective ratio and 

difference bands. The difference bands were calculated using the formula t1 - t2, where t1 represents the 

band data before the hail event, and t2 represents the band data after the hail event. The ratio bands were 

calculated using the formula t1 ÷ t2. (Lu et al., 2010) 

 

The dataset was processed using R-studio, involving the stacking of 120 layers, with 30 layers each for the 

pre-data, post-data, difference data, and ratio data. Subsequently, the pixel values of these bands were 

normalized using min-max normalization. As described in section 3.5.1, supervised training was conducted 

to train the RF model. Various combinations of bands were investigated, and different parameter values of 

the randomForest function in R software, including ‘ntree’, ‘mtry’, and ‘sampsize’, MDG and MDA were 

tested to optimize the model's accuracy.  

 

As initially stated, we utilized 120 layers. However, we found that only the difference bands produced the 

highest MDG and MDA values in every test. As a result, we ultimately decided to use only the difference 

band's 30 features to conduct our experiment. 

 

3.5.3. Combination of Sentinel-1 and Sentinel-2. 

RF has the advantageous capability of evaluating and ranking the importance of features, offering valuable 

insights into the underlying data and enhancing model interpretation(Díaz-Uriarte & Alvarez de Andrés, 

2006). In this study, the importance parameter was employed to determine the significance of variables 

based on their MDG and MDA values. The model achieved the highest accuracy for both the S1 dataset 

and the S2 dataset.  
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From each dataset, the top four variables or bands with the utmost importance were selected. 

Subsequently, these eight bands were stacked together, and training and testing processes were conducted 

to attain optimal accuracies after generating the final prediction output.  

 

After generating the final prediction output, the majority pixel classification approach was employed. This 

procedure incorporated a parcel boundary layer to determine the dominant crop damage class within the 

pixels encompassing the parcel boundaries. Subsequently, the identified majority class was assigned to the 

corresponding parcel boundary. This technique enables a more precise evaluation of the predominant 

crop damage class within each distinct parcel, thereby enhancing the accuracy of the classification results. 

3.6. Random Forest Object based Classification  

3.6.1. Sentinel-1 SAR. 

In the OBC approach, each polygon in the field data was treated as an individual object, and 11 statistical 

parameters (Mean, Standard Deviation, Median, Mode, Minimum, Maximum, Quantiles, Interquartile 

Range, Skewness, Kurtosis) were computed. These parameters were selected based on their importance in 

analyzing datasets and understanding their characteristics. For instance, the mean provides an average 

value indicating the dataset's typical value, while the standard deviation measures variability around the 

mean. The median, less influenced by extreme values, offers insight into the dataset's central tendency. 

Mode identifies dominant characteristics, and minimum/maximum values establish the data range. 

Skewness measures asymmetry, and kurtosis assesses the distribution's shape. These parameters help in 

comprehending central tendency, spread, shape, and potential outliers. 

 

In Section 3.5.1, a total of 15 difference band layers were finally used, while in Section 3.2.3, a 

comprehensive collection of 3,394 polygons of field data with damage level information was utilized for 

OBC. For each polygon, 11 statistical parameters were computed for each band, resulting in a total of 165 

variables (11 parameters × 15 bands) per polygon. A data frame was created, comprising 3,394 rows and 

165 columns. Stratified random sampling was then employed to ensure a proportional representation of 

distinct damage classes within the sample. This approach guaranteed adequate representation of each 

damage class. The collected samples were divided into training and testing sets, allocating 70% for 

supervised training of the RF model and reserving 30% for testing purposes. 

 

Exploration of different column variables from the data frame was conducted, and various parameter 

values of the randomForest function in R software, specifically ‘ntree’, ‘mtry’, and ‘sampsize’, were tested to 

train the RF model and achieve optimal accuracy. The importance parameter was utilized to identify 

significant variables based on their MDG and MDA values. Finally, model accuracies and testing 

accuracies were assessed, and the class prediction was performed on the data frame to obtain the predicted 

output for the classified damage levels. 

3.6.2. Sentinel-2 MSI. 

As described in section 3.6.1, In the OBC  approach, each polygon in the field data was treated as an 

individual object, and 11 statistical parameters (Mean, Standard Deviation, Median, Mode, Minimum, 

Maximum, Quantiles, Interquartile Range, Skewness, Kurtosis) were computed. As described in Section 

3.5.2, 30 difference band layers were finally used for experiments. As mentioned in Section 3.2.3, a total of 

3,394 polygons of field data with damage level information were utilized for OBC. For each polygon, 11 

statistical parameters were computed for each band, resulting in a total of 330 variables (11 parameters × 

30 bands) per polygon. A data frame was created, comprising 3,394 rows and 330 columns.  
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As discussed in section 3.6.1, stratified random sampling was performed. Subsequently, RF model was 

trained with optimal accuracies considering different parameters. Finally, the class prediction was 

performed on the data frame to obtain the predicted output for the classified damage levels. 

3.6.3. Combination of Sentinel-1 and Sentinel-2. 

In this section, we selected the top four variables or bands from each dataset based on their MDA and 

MDG values. These eight bands were then stacked together, and for each polygon, we calculated 11 

statistical parameters for each band. This resulted in a total of 88 variables per polygon, derived from the 

product of 11 parameters and 8 bands.  

 

Following this, a RF model was trained, optimizing for accuracy with different parameters. Finally, we 

applied class prediction on the data frame to obtain the output, which was the predicted damage levels. 

3.7. Accuracy Assessment 

The confusion matrix is a commonly used tool in assessing the performance of a model for classification 

tasks, whether it's binary or multiclass classification (Kulkarni et al., 2020). This matrix displays                  

(Figure 15) the count of predicted versus real labels. True Negative, or "TN", represents the count of 

accurately classified negative instances, while True Positive, or "TP", represents the correctly classified 

positive instances. On the other hand, False Positive, "FP", shows the count of negative instances 

erroneously classified as positive, and False Negative, "FN", indicates the count of positive instances 

classified as negative. Figure 15 represents the confusion matrix structure and its elements. The accuracy 

of a model is calculated using the formulas represented in Table 11.  Accuracy measures the proportion of 

correct predictions out of all predictions made. However, this metric can be misleading when dealing with 

imbalanced datasets, prompting the need for alternative performance indicators derived from the 

confusion matrix (Kulkarni et al., 2020). 

 

Precision or user's accuracy measures the accuracy of positive predictions made by the model. It focuses 

on the proportion of correctly identified positive instances out of all instances predicted as positive. A 

higher precision value indicates fewer false positives and better quality of positive predictions.  

Figure 15. Confusion matrix structure and elements (Source: Ma et al., 2019). 
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On the other hand, recall or producer's accuracy, also known as sensitivity, measures the proportion of 

actual positive instances that are correctly identified by the model. Table 9 provides an illustration of the 

labels of the confusion matrix in the present case. 

 
The F1 score, a commonly employed metric, is the harmonic mean of precision and recall, offering a 

balanced evaluation of accuracy. This metric integrates precision and recall into a unified measure, 

effectively considering both positive and negative predictions in its assessment. Accuracy, F1 score, 

precision, and recall all have values that fall within the range of 0 to 1. A score of 0 indicates poor 

performance, while a score of 1 denotes perfect performance. (Ma et al., 2019). Hence, we have used F1, 

precision and recall to examine the model accuracies in the present study. The assessment of accuracy was 

conducted separately for PBC and OBC for each dataset, including S1, S2, and the merged product of 

both. 

 

Table 10. Confusion matrix elements for accuracy assessment  

Accuracy component Specification in terms of crop damage classes 

True Positive (TP) The pixel/object correctly predicted as the respective damage class 

False Positive (FP) The pixel/object of other damage classes predicted as the current class 

True Negative (TN) The pixel/object correctly rejected for the respective damage class 

False Negative (FN) The pixel/object of the respective damage class predicted as other classes 

 

Table 11.Formulas used to calculate different accuracy scores (Source: Ma et al., 2019) 

Accuracy Score Formula 

Accuracy (TP + TN) / (TP + TN + FP + FN) 

Precision (User's Accuracy) TP / (TP + FP) 

Recall (Producer's Accuracy) TP / (TP + FN) 

F1 Score 2 * (Precision * Recall) / (Precision + Recall) 

3.8. Stakeholder Analysis 

In relation to the current issue, the appropriate stakeholders were identified as outlined in Chapter 1, 

Section 1.7 The stakeholders were categorized into primary and secondary groups based on their 

importance in the project. A stakeholder classification matrix was created using Microsoft Excel. The 

interests and influence of each stakeholder were charted to help us decide the engagement strategy, 

whether to involve them extensively, engage when needed, keep them informed, or address their concerns. 

Moreover, the potential impact of interventions on all stakeholders was thoroughly assessed in Chapter 5.  
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4. EXPERIMENTS AND RESULTS 

4.1. Random Forest Pixel based Classification 

4.1.1. Experiment 1: Sentinel-1. 

An experiment utilising the S1 with PBC approach explained in Section 3.5.1, was used to train and 

validate a RF model. We used a collection of 40,157 in situ data samples, which included 25,051 from the 

low damage class, 10,744 from the moderate damage class, and 4,362 from the high damage class. These 

samples were subdivided using a stratified random sampling technique to ensure a more accurate 

representation of each damage class. Specifically, 70% (28,111 samples) were allocated for training 

purposes, and the remaining 30% (12,046 samples) was dedicated to testing. 

 

In its initial configuration, the RF model deployed default parameter values: ‘ntree’=500 and ‘mtry’=square 

root (√) of the total number of variables. The ‘ntree’ parameter defined the forest's total trees, ‘mtry’ 

indicated the number of variables randomly sampled at each node for tree construction, and ‘sampsize’ 

prescribed the sample size for each tree's development. As outlined in Section 3.3.1, the 15 difference 

bands from the pre- and post-event data were calculated using eight Stokes parameters, four covariance 

matrix elements, two H/Alpha decomposition parameters, and the DpRVI index (see Table 9) As outlined 

in Section 3.5.1, these 15 difference bands were used for the present analysis. 

 

The model underwent four iterations to investigate inherent uncertainty, optimising the ‘mtry’ value based 

on the minimal OOB error. The ‘ntree’ value was selected at the point of error rate stabilisation. The 

model's optimal configuration was ultimately determined as ‘ntree’=400 and ‘mtry’=3, ‘sampsize’ = default 

value achieving optimal accuracies. Accuracy assessment was done using a confusion matrix, and F1 score, 

precision (user's accuracy) and recall (producer's accuracy) were extracted as detailed in section 3.7. The 

accuracies derived from these results are illustrated in Table 12. In evaluating the accuracy results of 

testing, we found that the low-damage class (0-33%) produces the highest F1 score (0.859), along with 

higher precision and recall values compared to other classes. 

 
Table 12. Accuracy results of PBC using S1. 

Type Damage level Precision Recall F1 Score Overall Accuracy 

Training (S1) 
 

Low damage (0-33%) 0.842 0.899 0.869 
0.785 

 
Moderate damage (33-50%) 0.633 0.604 0.618 

High damage (50-75%) 0.749 0.569 0.646 

Testing (S1) 

Low damage (0-33%) 0.899 0.823 0.859 

0.763 Moderate damage (33-50%) 0.605 0.632 0.618 

High damage (50-75%) 0.535 0.694 0.603 

4.1.1.1. Qualitative analysis. 

The qualitative evaluation for all the experiments was undertaken through visual interpretation. As 

depicted in Figure 16, the colours green, blue, and red correspond to low, moderate, and high damage 

classes, respectively.  

Figure 16. Qualitative assessment of correct and incorrect class predictions. 
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The solid colours with no border outlines represent the model's predicted outcomes for the three different 

damage categories, while the polygon outlines represent the damage classes based on in-situ data. Areas, 

where the filled-in colour (representing model prediction) matches with the colour of the polygon outline 

(representing in-situ data) signify instances where the damage classes were classified correctly. On the 

other hand, instances, where the polygon outline colour doesn't matches with the background colour 

indicate incorrect predictions (as demonstrated in Figure 16). 

 

The qualitative analysis of all experiments is conducted on three tiles (Tile 1, Tile 2 and Tile 3), each from 

different locations within the study area. 

Figure 17. Sentinel-1 damage class prediction output of PBC  (experiment 1). 
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Figure 17 displays the damage class prediction output from experiment 1. When comparing the 

quantitative and qualitative accuracies, the figure clearly illustrates that the low-damage classes, denoted by 

green, have been accurately classified with minimal intermixing of classes. On the other hand, there is a 

notable intermixing of classes evident within the moderate and high-damage classes. Here, class 

intermixing refers to pixels from different damage classes occurring within the same polygon area, leading 

to confusion in class attribution. 

4.1.2. Experiment 2: Sentinel-2. 

An experiment utilising the S2 with PBC approach explained in Section 3.5.2, was used to train and 

validate a RF model. As mentioned in section 4.1.1, we utilized a sample size of 40,157 in situ data, 

following the same approach as in experiment 1. 

 

Figure 18. Sentinel-2 damage class prediction output of PBC (experiment 2) 
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In accordance with the methods described in Sections 3.3.2 and 3.5.2, we used difference bands 

comprised of 30 channels as input for the RF model in this experiment. These 30 channels were calculated 

by subtracting pre-event images from post-event images that included 11 original channels and 19 

vegetation indices. The model underwent four iterations to investigate inherent uncertainty, optimising the 

‘mtry’ value based on the minimal OOB error. The ‘ntree’ value was selected at the point of error rate 

stabilisation. The model's optimal configuration was ultimately determined as ‘ntree’=450 and ‘mtry’=12, 

‘sampsize’ = default value achieving optimal accuracies. The accuracies derived from these results are 

illustrated in Table 13. 

 

When we assessed the accuracy results from our tests, we noted that the class representing low damage  

(0-33%) achieved the highest F1 score (0.775), along with superior precision and recall values compared to 

other classes. However, these figures fall short when compared to the results from the S1 experiment, 

which exhibited a higher F1 score (0.859). Notably, the accuracies for the moderate and high damage 

classes were significantly lower, 0.421 and 0.397, respectively, than those in the S1 experiment, which 

demonstrated higher accuracies, 0.618 and 0.603, respectively. The experiment's qualitative analysis was 

conducted through visual interpretation, as described in Figure 16 and Section 4.1.1.1. 

 
Table 13. Accuracy results of PBC using S2. 

Type Damage level Precision Recall F1 Score Overall Accuracy 

Training (S2) 
 

Low damage (0-33%) 0.727 0.899 0.804  
0.687 

 
Moderate damage (33-50%) 0.478 0.364 0.414 

High damage (50-75%) 0.555 0.27 0.364 

Testing (S2) 

Low damage (0-33%) 0.889 0.687 0.775 
 

0.652 
Moderate damage (33-50%) 0.363 0.504 0.421 

High damage (50-75%) 0.302 0.58 0.397 

 

Figure 18 displays the S2 experiment's damage class prediction output for 3 tiles from the study area. 

When evaluating both quantitative and qualitative accuracy assessments, Figure 18 shows a precise 

classification for low-damage classes, represented in green, with minimal class overlap. However, there is a 

considerable intermixing of classes within the moderate and high-damage levels. In comparison with the 

S1 experiment, there is a notable increase in category intermixing, which accounts for the reduced 

accuracy scores related to moderate and high damage classes.  

4.1.3. Experiment 3: Combination of Sentinel-1 and Sentinel-2. 

In this experiment, a combination of S1 and S2 datasets was used, as detailed in Section 3.5.3. We trained 

and validated a RF model. As mentioned in section 4.1.1, we utilized a sample size of 40,157 in situ data, 

following the same approach as in experiments 1 and 2. From both experiments model's most important 

variables or bands were identified by leveraging MDG and MDA. These were integral in achieving the 

highest accuracy in both experiments. From each experiment, 4 most important variables were selected, 

and a total of eight bands from S1 and S2 datasets were used for model training and testing, as tabulated in 

Table 14. 

 

The model underwent five iterations to investigate inherent uncertainty, optimising the ‘mtry’ value based 

on the minimal OOB error. The ‘ntree’ value was selected at the point of error rate stabilisation. The 

model's optimal configuration was ultimately determined as ‘ntree’=350 and ‘mtry’=3, ‘sampsize’ = default 

value achieving optimal accuracies. The accuracies derived from these results are illustrated in  

Table 15.  
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Table 14. Variables used for combined (S1 and S2). 

 Variables with highest MDA and MDG used for combined (S1 and S2) 

dataset 1 2 3 4 

S1-difference Image  
(t2-t1) 

|C11| Stokes L1 Entropy Stokes S0 

S2-difference Image  
(t1-t2) 

Band 11 - SWIR -
1610 nm  

Band 12 - SWIR - 
2190 nm  

MCARI* REIP 

 

In evaluating the accuracy results of testing, we perceived that the low-damage class (0-33%) yields the 

highest F1 score (0.877) along with higher precision and recall values as compared to other classes. When 

these accuracy scores are contrasted with those obtained from the S1 experiment, they are also found to 

exceed the S1 experiment's F1 score (0.859). Notably, the accuracy scores for the moderate class (0.645) 

and high class (0.666) surpass those of the S1 experiment, which scored 0.618 and 0.603, respectively. 

Figure 19. Combined (S1 and S2) damage class prediction output of PBC (experiment 3). 
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The qualitative analysis of this study was performed through visual examination, as evidenced by Figure 

19, which displays the combined (S1 and S2) experiment's damage class predictions for three tiles within 

the study area. Figure 19 depicts high accuracy in classifying low-damage areas (highlighted in green) with 

minimal intermixing of classes. However, more class intermixing is observed within moderate and high-

damage categories, leading to lower accuracies. Nonetheless, when comparing these classes from 

Experiment 3 with those from Experiments 1 and 2, there is a clear improvement with increased F1 

scores and better precision and recall rates. 
 

Table 15. Accuracy results of PBC using combined (S1 and S2). 

Type Damage level Precision Recall F1 Score 
Overall 

Accuracy 

Training  
(S1 and S2) 

 

Low damage (0-33%) 0.856 0.913 0.884 
0.803 

 
Moderate damage (33-50%) 0.658 0.631 0.644 

High damage (50-75%) 0.77 0.597 0.674 

Testing  
(S1 and S2) 

Low damage (0-33%) 0.912 0.845 0.877 

0.772 Moderate damage (33-50%) 0.635 0.655 0.645 

High damage (50-75%) 0.59 0.762 0.666 

 

To augment the precision of the classification results, a technique known as majority pixel classification 

was implemented. In this method, each parcel is classified as either low, moderate, or high damage, 

depending on the dominant pixel class within that specific parcel boundary. By adopting this method, 

potential misclassification errors are substantially reduced, thereby improving the accuracy of our final 

classification map. The accuracies derived from these results are illustrated in Table 16. This method could 

be applied to both S1 and S2 experiments as well, but for the sake of concision, it is only reported for the 

combined dataset. 

 

In evaluating the accuracy results, we perceived that classification accuracies for all 3 classes significantly 

improved, and F1 scores are 0.97, 0.923, and 0.938 for low, moderate, and high classes, respectively.  The 

experiment's qualitative analysis was conducted through visual interpretation. Figure 20 displays the 

combined (S1 and S2) experiment's damage class prediction output. It reveals a high accuracy classification 

result for all 3 classes. 

 

Regions where the colour of the filled background (model prediction-majority class) aligns with the 

polygon outline (in situ data), indicate correctly classified damage classes (see Figure 16). Conversely, 

mismatches between the polygon outline colour and the background colour denote inaccurate predictions 

are marked in circles in Figure 20. 

 
Table 16. Accuracy results of majority pixel classification using combined (S1 and S2). 

Type Damage level Precision Recall 
F1 

Score 
Overall 

Accuracy 

Majority 
Classification 

(S1 and S2) 
 

Low damage (0-33%) 0.999 0.942 0.97 
 

0.945 
Moderate damage (33-50%) 0.883 0.968 0.923 

High damage (50-75%) 0.887 0.994 0.938 
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4.2. Random Forest Object based Classification 

4.2.1. Experiment 4: Sentinel-1. 

Following the OBC methodology detailed in Section 3.6.1 and applying S1 data, an experiment was 

conducted to train and test a RF model. A sample size of 3394 polygons in situ data was used, comprising 

of 2138 polygons from low damage, 916 polygons from moderate damage, and 340 polygons from high 

damage categories.  

Figure 20. Majority pixel classification of combined (S1 and S2) damage class prediction output. 
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A stratified random sampling method was employed to subdivide these samples, enhancing the 

representation of each damage category. Specifically, 70% of these samples (2377) were used for training, 

while the remaining 30% (1017 samples) were used for testing purposes. 

 

In its initial configuration, the RF model deployed with default parameter values. As outlined in Section 

3.5.1, 15 difference bands, including 8 stokes parameters, 4 matrix elements, H/α Decomposition 

parameter and DpRVI bands, were used for the present analysis to serve as input variables in the RF 

model. And for each training polygon, 11 statistical parameters (Mean, Standard Deviation, Median, Mode, 

Minimum, Maximum, Quantiles, Interquartile Range, Skewness, and Kurtosis) were computed. So total 

(11*15=165) variables were used in the model. Consequently, a data frame was structured, comprising 

3394 rows (representing samples) and 165 columns (representing variables). 

 

The model underwent five iterations to investigate inherent uncertainty, optimising the ‘mtry’ value based 

on the minimal OOB error. The ‘ntree’ value was selected at the point of error rate stabilisation.  

Figure 21. Sentinel-1 damage class prediction output of OBC  (experiment 4). 
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The model's optimal configuration was ultimately determined as ‘ntree’=450 and ‘mtry’=40, ‘sampsize’ = 

default value achieving optimal accuracies. The accuracies derived from these results are illustrated in 

Table 17. 

 

In evaluating the accuracy results of testing, we found that all 3 classes are classified with good accuracies 

with more than 0.85 F1 score. The low-damage class (0-33%) yields the highest F1 score (0.9564), along 

with higher precision and recall values as compared to other classes. 
 

Table 17. Accuracy results of OBC using S1. 

Type Damage level Precision Recall F1 Score 
Overall 

Accuracy 

Training (S1) 
 

Low damage (0-33%) 0.9583 0.9686 0.9634 
0.9583 

 
Moderate damage (33-50%) 0.8888 0.8941 0.8914 

High damage (50-75%) 0.9295 0.8151 0.8685 

Testing (S1) 

Low damage (0-33%) 0.9473 0.9658 0.9564 

0.9235 Moderate damage (33-50%) 0.8991 0.8989 0.8990 

High damage (50-75%) 0.8373 0.8719 0.8543 

 

The experiment's qualitative analysis was conducted through visual interpretation. Upon comparison of 

qualitative accuracy assessments, Figure 21 clearly indicates the accurate classification for all 3 classes 

except for some misclassifications, which are marked by circles. 

 

4.2.2. Experiment 5: Sentinel-2. 

An experiment utilising the S2 with OBC methodology, explained in Section 3.6.2, was used to train and 

validate a RF model. As mentioned in section 4.2.1 we utilized a sample size of 3394 in situ data, following 

the same approach as in experiment 4. 

 

In the initial setup, the RF model was implemented with default parameter settings. As established in 

experiment 2, 30 difference bands served as the input variables for the RF model. Furthermore, for each 

training polygon, 11 statistical parameters were computed, which included Mean, Standard Deviation, 

Median, Mode, Minimum, Maximum, Quantiles, Interquartile Range, Skewness, and Kurtosis. Therefore, 

a comprehensive set of 330 variables (11*30) was introduced into the model. Consequently, a data frame 

was structured, comprising 3394 rows (representing samples) and 330 columns (representing variables).  

 

The model underwent four iterations to investigate inherent uncertainty, optimising the ‘mtry’ value based 

on the minimal OOB error. The ‘ntree’ value was selected at the point of error rate stabilisation. The 

model's optimal configuration was ultimately determined as ‘ntree’=400 and ‘mtry’=12, ‘sampsize’ = default 

value achieving optimal accuracies. The accuracies derived from these results are illustrated in Table 18. 

The quantitative assessment shows that the class representing low damage (0-33%) garnered the highest 

F1 score of 0.7703, along with higher precision and recall values compared to other classes. However, the 

F1 scores for the moderate and high damage classes were found to be inadequate, standing at only 0.3711 

and 0.2131, respectively. The qualitative evaluation of the experiment was carried out using visual 

interpretation. By comparing these qualitative accuracy assessments with those from Experiment 4, it 

becomes evident, as depicted in Figure 22, that particularly the moderate and high damage classes have 

been incorrectly classified, as highlighted within the circled areas. 
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Table 18. Accuracy results of OBC using S2. 

Type Damage level Precision Recall F1 Score Overall Accuracy 

Training (S2) 
 

Low damage (0-33%) 0.7435 0.8931 0.8111 
0.6668 

 
Moderate damage (33-50%) 0.4325 0.3380 0.3796 

High damage (50-75%) 0.5556 0.1303 0.2125 

Testing (S2) 

Low damage (0-33%) 0.8259 0.7218 0.7703 

0.6427 Moderate damage (33-50%) 0.4878 0.2971 0.3711 

High damage (50-75%) 0.3889 0.1474 0.2131 

 

Figure 22. Sentinel-2 damage class prediction output of OBC (experiment 5). 



 

 

 

 

ASSESSING HAILSTORM DAMAGES IN CROPS USING MULTI-TEMPORAL REMOTE SENSING DATA AND MACHINE LEARNING SOLUTIONS 

 

 
48 

4.2.3. Experiment 6: Combination of Sentinel-1 and Sentinel-2. 

In this experiment, a combination of S1 and S2 datasets was used, as detailed in Section 3.6.3. An In-situ 

data sample size of 3394 was used, as described in experiment 4. From experiments 4 and 5 RF model’s 

most important variables were identified by leveraging MDG and MDA values. From each experiment, 4 

most important bands were selected, and a total of eight bands from S1 and S2 datasets were used for 

model training and testing. Table 19 presents the four most important bands according to MDA and MGA 

values of statistical variables derived from Experiments 4 and 5. We observed that Median, Mean, Q25, 

and Q75 played important role for OBC in experiment 4 and 5.  

 

Furthermore, for every polygon, 11 statistical parameters were calculated, including Mean, Standard 

Deviation, Median, Mode, Minimum, Maximum, Quantiles (Q25, Q75), Interquartile Range, Skewness, 

and Kurtosis. Consequently, a total of 88 variables (11*8) were integrated into the model. The model 

underwent four iterations to investigate inherent uncertainty, optimising the ‘mtry’ value based on the 

minimal OOB error. The ‘ntree’ value was selected at the point of error rate stabilisation. The model's 

optimal configuration was ultimately determined as ‘ntree’=430 and ‘mtry’=19, ‘sampsize’ = default value 

achieving optimal accuracies. The accuracies derived from these results are illustrated in Table 20. 
 

Table 19. Variables used for combined (S1 and S2). 

Data Sr. no. Difference bands  Statistical parameters with highest MDA and MDG 

Sentinel 1 

 

1 |C11| Median, Q25, Mean, Q75, Min, Max, Skewness, SD 

2 Stokes L1 Q25, Median, Mean, Min, Q75 

3 SPAN Median 

4 Stokes S0 Median 

Sentinel 2 

 

1 MCARI Median, Q25, Mean, Q75 

2 B11 Q25, Median, Q75, Mean 

3 B12 Mean, Median, Q75, Q25 

4 REIP Median, Mean 

 

When examining the testing accuracy results, it was found that all three classes were well-classified, with 

F1 scores surpassing 0.80. The class indicating low damage (0-33%) produced the highest F1 score 

(0.8997), along with elevated precision and recall figures compared to other classes. However, we noticed 

that the accuracies resulting from the combined (S1 and S2) data were somewhat less than those from the 

experiment with S1. The combined experiment yielded F1 scores of 0.8997, 0.8111, and 0.8318, while 

experiment 4 achieved F1 scores of 0.9564, 0.8990, and 0.8543 for low, moderate, and high damage 

classes, respectively. Visually analysing the prediction output from the combined experiment establishes 

the connection with quantitative accuracies, Figure 23, marked with circles, indicates areas where class 

misclassification occurred when compared to Experiment 4. 

 
Table 20. Accuracy results of OBC using combined (S1 and S2). 

Type Damage level Precision Recall F1 Score 
Overall 

Accuracy 

Training 
(combined (S1 and S2)) 

Low damage (0-33%) 0.9269 0.9523 0.9394 

0.8696 Moderate damage (33-50%) 0.8469 0.8051 0.8255 

High damage (50-75%) 0.8676 0.8148 0.8404 

Testing 
(combined (S1 and S2)) 

Low damage (0-33%) 0.8844 0.9154 0.8997 

0.8332 Moderate damage (33-50%) 0.817 0.8052 0.8111 

High damage (50-75%) 0.835 0.8286 0.8318 
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4.3. Result Comparison  

4.3.1. Pixel-based classification vs Object-based classification. 

Table 21 presents a summary of the accuracy results for all six experiments discussed in sections 4.1 and 

4.2. Our observations indicate that the highest accuracy levels were obtained using PBC from the 

combined (S1 and S2) dataset, especially after assigning the majority pixel classification to each parcel. The 

F1 scores for the low, moderate, and high damage classes were 0.97, 0.92, and 0.94 respectively. Figure 24 

illustrates the F1 score, precision (also referred to as user's accuracy), and recall (producer's accuracy) for 

all the experiments. 

Figure 23. Combined (S1 and S2) damage class prediction output of OBC  (experiment 6). 
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Table 21. Accuracy results from all 6 experiments. 

RF model 
used 

Experiment 
no 

Satellite data used 
Damage 

level 
Precision Recall 

F1 
Score 

Pixel based 
RF model 

1 Sentinel 1 

Low 0.899 0.823 0.859 

Moderate 0.605 0.632 0.618 

High 0.535 0.694 0.603 

2 Sentinel 2 

Low 0.889 0.687 0.775 

Moderate 0.363 0.504 0.421 

High 0.302 0.580 0.397 

3 
 

Combined (S1 and S2) 

Low 0.912 0.845 0.877 

Moderate 0.635 0.655 0.645 

High 0.590 0.762 0.666 

Combined (S1 and S2) with 
majority classification 
method 

Low 0.99 0.942 0.97 

Moderate 0.883 0.968 0.923 

High 0.887 0.994 0.938 

Object 
based RF 

model 

4 Sentinel 1 

Low 0.947 0.966 0.956 

Moderate 0.899 0.899 0.899 

High 0.837 0.872 0.854 

5 Sentinel 2 

Low 0.826 0.722 0.770 

Moderate 0.488 0.297 0.371 

High 0.389 0.147 0.213 

6 Combined (S1 and S2) 

Low 0.884 0.915 0.899 

Moderate 0.817 0.8052 0.8111 

High 0.835 0.8286 0.8318 

 

Figure 24. Accuracy comparison of PBC and OBC for S1, S2, and combined (S1 and S2). 
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We examined the qualitative accuracies using tile 1 for all experiments, which are displayed in Figure 25. 

Various coloured circles indicate the same location in tile 1. The yellow circle highlights that the classes 

within the circle are correctly classified in PBC, although there is intermixing of classes observed in the S2 

data compared to the S1 data. Nevertheless, it is classified correctly in OBC with combined data. The blue 

circle reveals that PBC offers more accurate results compared to OBC. S1 with OBC also being accurate 

in this instance. The red circle illustrates correct classifications with the exception of OBC with S2. 

Ultimately, we found that PBC, when coupled with majority classification, yields the most accurate results. 

Figure 25. Qualitative variations of results from different experiments for tile 1. 
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5. STAKEHOLDER ANALYSIS 

5.1. Stakeholder Analysis 

As explained in Section 1.7, stakeholders were identified and classified into primary and secondary groups, 

depending on their importance. Their roles were subsequently outlined. This section delves into the 

exploration of the connections among stakeholders, including their interests, importance and their 

respective levels of influence or power. These groups were then evaluated using a scale from 1 to 10. As 

previously stated, this evaluation was carried out using stakeholder interview with farmer and insights were 

also obtained through a comprehensive review of the existing literature. Table 22 summarises this 

information, and Figure 26 visualizes the stakeholder classification matrix developed by the scale factor of 

importance and influence. 

 
Table 22. Stakeholder with Interest, Importance, Influence and Strategy for current research problem (adapted from 
Olander & Landin, 2005). 

Stakeholders 
Type & 
Impact of 
Hailstorm 

Source of 
Income 

Interest 
Importance 
with scale 

Influence 
with scale 

Strategy 

Farmers 
Primary- 
Direct 
Impact 

Predominantly 
from the sale of 
crops and/or 
leasing of land 

Quick and 
accurate damage 
assessment and 
fair 
compensation 

9.5 (Directly 
affected by the 
lack of 
transparency, 
quality and 
time frame of 
damage 
assessment and 
compensation) 

3 (Limited 
influence over 
the 
assessment 
and 
compensation 
process) 

Address 
their 
concerns 

Agricultural 
Labourers 

Primary- 
Direct 
Impact 

Wages earned 
from farming 
activities 

Retention of job 
security and 
income stability 
despite crop 
damage 

8 (Their 
livelihoods are 
directly 
affected, and 
they don’t get 
any 
compensation 
due non 
ownership of 
land) 

2 (No direct 
influence over 
the process) 

Address 
their 
concerns 

Rajasthan 
State 
Government 

Primary-
Indirect 
Impact 

Various forms 
of state revenue 
such as taxes, 
royalties, 
central 
government 
grants, etc. 

Efficient use of 
resources in 
disaster 
management, 
considering a 
fixed budget 

9 (Ensures all 
processes work 
smoothly and 
farmers are 
compensated 
through the 
departments 
involved) 

10 (Control 
over fund 
allocation and 
departmental 
directives) 

Involve 
extensively 

 
DMR, 
Rajasthan 
Government 

 
Primary-
Indirect 
Impact 

State and 
central 
government 
funding 
through 
disaster 
response funds 

Efficient 
centralised 
processing of 
damage reports 
and 
compensation 
disbursement 
within the 
constraints of a 
fixed budget 

8 (Directly 
responsible for 
compensation 
management) 

9 (Controls 
execution of 
the 
compensation 
process) 

Involve 
extensively 
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Stakeholders 
Type & 
Impact of 
Hailstorm 

Source of 
Income 

Interest 
Importance 
with scale 

Influence 
with scale 

Strategy 

Board of 
Revenue, 
Rajasthan 
Government 

Primary-
Indirect 
Impact 

Funded by the 
Rajasthan state 
government 

Streamlined and 
cost-effective 
assessment 
process within 
the constraints 
of a fixed 
disaster 
response budget 

8 (Their 
actions directly 
affect the 
compensation 
received by 
farmers) 

8 (Controls 
execution of 
the survey of 
the extent of 
damage) 

Involve 
extensively 

Local 
Communities 

Secondary-
Indirect 
Impact 

Diverse 
sources, largely 
related to the 
agricultural 
sector, 
including agro-
based jobs 

Community 
resilience in the 
face of 
agricultural 
disasters 

7 (Community 
livelihood is 
heavily 
dependent on 
agriculture and 
indirectly 
affected by 
crop damage) 

2 (No direct 
influence over 
the process) 

Address 
their 
concerns 

Agriculture 
Department, 
Rajasthan 
Government 

Secondary-
Indirect 
Impact 

Funded by the 
state 
government 

Implementation 
of resilient 
farming 
practices to 
mitigate 
hailstorm 
impacts 

5.5 (Their 
policies can 
lead to 
improved 
resilience but 
don't affect 
immediate 
post-disaster 
response) 

6 (Not directly 
involved in 
the process 
but provide 
policy 
guidance and 
provide 
feedback for 
optimal 
agriculture 
practices) 

Involve 
extensively 

Central 
Government 

Secondary-
Indirect 
Impact 

National 
revenue 
sources 

Timely 
disbursement of 
NDRF funds 
for disaster 
management 

4 (Fund 
disbursement 
affects overall 
damage 
mitigation) 

8 (Disburses 
funds but not 
directly 
involved in 
local level 
execution, this 
is not the 
matter of 
central govt. 
directly) 

Involve as 
needed 

Print and 
Electronic 
Media 

 

Secondary-
Indirect 
Impact 

Revenue from 
advertisements, 
subscriptions, 
etc. 

Fair and 
comprehensive 
coverage of 
hailstorm events 
and subsequent 
damage 

5 
(Their 
coverage 
affects public 
perception, 
government 
decisions and 
guidelines, but 
they are not 
directly 
involved in 
disaster 
management) 

7 
(Can influence 
public 
perception 
and, indirectly, 
policy 
decisions) 

Involve as 
needed 

Crop 
Insurance 
Providers 

Secondary-
Indirect 
Impact 

Premiums 
collected from 
crop insurance 
policies 

Fair assessment 
and prompt 
payouts of 
insurance claims 
to the associated 
farmers 

4 
(Affects 
insured 
farmers' 
financial 
recovery ) 

5 
(Determines 
terms of 
coverage and 
pay-outs) 

Involve as 
needed 
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Stakeholders 
Type & 
Impact of 
Hailstorm 

Source of 
Income 

Interest 
Importance 
with scale 

Influence 
with scale 

Strategy 

Research 
Institutions 

Secondary-
Indirect 
Impact 

Various sources 
like grants, 
collaborations, 
etc. 

Development of 
cutting-edge 
methodologies 
for damage 
assessment and 
compensation 
calculation 

4.5 
(Their research 
can lead to 
long-term 
improvements 
in disaster 
response) 

6 
(Potential 
influence by 
shaping future 
policies) 

Involve as 
needed 

NGOs 
Secondary-
Indirect 
Impact 

Donations, 
grants, etc. 

Providing 
support to 
affected 
communities 
and ensuring 
fair practices 
during disaster 
response 

3.5 
(Their efforts 
can augment 
government 
assistance and 
ensure fair 
practices) 

6 
(Can influence 
the narrative 
and assist in 
relief efforts) 

Involve as 
needed 

Local Supply 
Chain 
Entities 

Secondary-
Indirect 
Impact 

Sales of 
agricultural 
products, 
services, and 
related items 

Mitigation of 
supply chain 
disruptions due 
to crop damage 

4.5 
(Their 
functioning 
affects the local 
economy but is 
not directly 
related to 
damage 
assessment) 

2.5 
(Affected by 
but doesn't 
influence 
damage 
assessment 
process) 

Keep 
informed 

 

In the context of the present research, the term 'importance' signifies the level of attention that needs to 

be given to meeting the requirements and concerns of various stakeholders involved in the project 

(Olander & Landin, 2005). For instance, farmers and agricultural labourers are considered highly 

important stakeholders as they are directly impacted by hailstorms, and the effectiveness of damage 

assessment and compensation process can significantly affect their livelihoods and economic well-being. 

Conversely, 'influence' refers to the power or control that these stakeholders carry over the project's 

direction, actions, or outcomes. For example, the Rajasthan State Government, DMR, BoR. They control 

the policy decisions, fund allocation, and the execution of the assessment and compensation processes. 

Their decisions and actions directly impact how effectively the hailstorm damages are assessed and 

compensated, and therefore, they hold significant influence over the project's outcomes.  

 

After analysing the interests, importance, and power dynamics of the stakeholders identified in Table 22, a 

stakeholder classification matrix (Figure 26) was designed to categorize them on the basis of influence and 

importance. This categorization helps to identify the appropriate engagement strategies for the research 

project, determining whose needs should be addressed, who should be extensively involved, who should 

be involved on an as-needed basis, and who should be kept informed.  
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Primary stakeholders (directly impacted) stakeholders include farmers and agricultural labourers. These 

groups have a direct livelihood stake in agriculture and are adversely affected by hailstorm damages. Their 

interests lie in quick and accurate damage assessment and fair compensation. However, they have limited 

influence over the assessment and compensation processes.  

 

Therefore, it is crucial to address their concerns effectively. Additionally, Local communities' secondary 

stakeholders (indirectly impacted) are largely linked to the agricultural sector through agro-based jobs. 

Hence any agricultural disaster indirectly affects them. The resilience of these communities, and their 

ability to adapt and recover in the face of such disasters, is a significant area of focus. On the other hand, 

primary stakeholders (indirectly impacted), such as the Rajasthan State Government, DMR, and BoR, are 

more engaged in disaster management's administrative and financial aspects. Their interests revolve 

around the efficient use of resources, accurate damage assessment, and smooth compensation 

disbursement. They hold significant importance and influence in the process and thus need to be 

extensively involved. Furthermore, the Agriculture Department, primarily tasked with implementing 

policies related to resilient farming practices, holds substantial importance and influence. Therefore, it 

necessitates extensive involvement. 

 

Secondary stakeholders, which include entities like the Central Government, Media, Crop Insurance 

Providers, Research Institutions, NGOs, and Local Supply Chain Entities, play roles that indirectly 

contribute to the hailstorm damage assessment and compensation processes. While their interests and 

influences vary, they generally contribute to broader aspects of disaster management, policy direction, 

financial coverage, public perception, research development, community support, and local economic 

continuity. The matrix illustrates the intricate interaction between various stakeholders during a hailstorm, 

emphasizing the need for strategic engagement and coordination to ensure an efficient and fair response.  

 

 

 

 

Figure 26. Stakeholder classification matrix (Source: Olander & Landin, 2005). 
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5.2. Stakeholder Impact  

After stakeholder analysis, as described in section 5.1, the stakeholder relationships have been examined 

through the lenses of equity, equality, and empowerment concepts. (Espinoza, 2008) explains that the core 

principle of 'equity' theory is the belief that justice or fairness in social interactions is achieved when 

resources, rewards, and punishments are allocated in proportion to one's input or contributions. On the 

other hand, equality is defined as everyone having equal access to resources (Espinoza, 2008), whereas 

empowerment is to give power to someone to do something (Völker & Doneys, 2020). Presently the 

farmers who have damages less than 33% are not entitled to compensation (Interview, 2023). Further 

compounding the issue is the inconsistent categorization of similar types of damage due to a lack of 

transparency in the process. And the farmers utilising their influences to get compensation for undamaged 

or harvested crops creates inequality (Interview, 2023). Also, the amount of compensation is significantly 

lower in terms of investment in seeds, agriculture equipment, seeds fertilizers, workforce, and irrigation to 

grow the crops (Interview, 2023).  

 

The broad ranges used to classify damage levels lead to disproportionate compensation, resulting in an 

inequitable distribution of resources. For instance, a farmer who has experienced 33%, 50%, or 75% 

damage is awarded the same compensation as another farmer who has underwent 50%, 75%, or 100% 

damage, respectively. This lack of proportionality in compensation with respect to the actual extent of 

damage experienced contributes to disparities in resource accessibility among farmers (Interview, 2023). 

There is an imbalance between powers as farmers don’t have access to know how this assessment has 

been done. On the other hand, government officials must comply with financial allotment and resources 

available for such purposes, and they are biased in their decision-making due to this. The unavailability of 

any damage assessment reference system to check whether the assessment is done properly or not is a big 

concern. 

 

Figure 27 shows the current placement of stakeholders within the stakeholder classification matrix, and  

Figure 28 illustrates the transition in stakeholder positions following the execution of the intervention. In 

this current research, the main focus is on farmers, who are anticipated to gain empowerment through this 

RS based damage assessment model. It will enhance transparency in the damage categorization process, 

fostering an environment of equality when dealing with shared resources.  

Figure 27. Current placement of stakeholders within the stakeholder classification matrix. 



 

 

 

 

ASSESSING HAILSTORM DAMAGES IN CROPS USING MULTI-TEMPORAL REMOTE SENSING DATA AND MACHINE LEARNING SOLUTIONS 

 

 
57 

This shift in practice can be visualized as a shift to the second quadrant, as depicted in Figure 28, which 

symbolizes a transition towards a more equitable distribution of resources. Consideration must be given to 

ensuring the accessibility of this RS based damage assessment information to farmers. It is anticipated that 

the government's intention is to promote transparency in the damage assessment process, and thus, 

information derived from the RS method will be within reach for farmers. 

 

To ensure the accuracy and reliability of the model, it is recommended that the damage categorization data 

derived from the model is validated through field checks on a specific percentage of cases, for instance,  

5-10%. This cross-verification process not only bolsters the credibility of the assessment but also 

augments time efficiency and transparency. The acceleration in processing time has further implications. 

By expediting the damage compensation, farmers can secure their financial stability and promptly prepare 

for the next crop cycle. This enhanced productivity, in turn, can provide a significant boost to the local 

economy and augment food security within the region. The possible impact on other stakeholders is 

represented in Table 23. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Illustrating the transition in stakeholder positions following the execution of the 
intervention. 
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Table 23. Impact of the intervention on other stakeholders. 

Stakeholders Description Impact/Function 

Agricultural 
Labourers 

 
The financial security of farmers or landowners due to accurate 
crop loss assessment and timely compensation distribution can 
improve the condition of agricultural laborers. This could lead to 
increased employment opportunities and enhance their financial 
condition. They will experience a sense of empowerment as 
depicted in Figure 28. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Possible Impact 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Local 
Communities 

 
The proposed intervention stands to impact local communities 
positively, given their interdependence with the farming 
population. Improvement in farmers' conditions, driven by 
transparent and timely damage assessments, could potentially lead 
to an upswing in employment opportunities, not only in farming 
but also in sectors closely tied to agriculture. Consequently, these 
communities will experience a sense of empowerment, with a 
discernible increase in their empowerment, as depicted in Figure 
28. 
 

Rajasthan 
State 
Government 

 
The proposed process could enhance trust in governmental 
systems, although it might lead to a rise in compensation amounts. 
To counterbalance this effect, strategies could be established to 
involve crop insurance companies, encourage greater farmer 
participation, and use premium collections from unaffected 
farmers to offset the cost of crop damages. Conversely, if the state 
is currently allocating resources to conduct field inspections, 
employing Remote Sensing (RS) would prevent the need for such 
efforts or considerably lessen the time and number of instances 
requiring on-site presence. This approach could contribute to 
significant cost savings for the state. 
 

DMR, 
Rajasthan 
Government 

 
The DMR will become more empowered (depicted in Figure 28) as 
they will be responsible for the quick disbursement of 
compensation. This intervention can help the DMR achieve its 
goals effectively. 
 

Board of 
Revenue, 
Rajasthan 
Government 

 
The BoR will be more empowered (depicted in Figure 28) by 
having a platform to identify damages and minimise field efforts. 
Moreover, this methodology offers a means to oversee and prevent 
any unethical practices, thus fostering transparency in the 
assessment process - a solution to a significant challenge often 
faced in damage assessment. 
However, if the compensation amount increases due to accurate 
assessment, it requires policy discussions and engagement with 
stakeholders who have more influence. 
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Stakeholders Description Impact/Function 

Agriculture 
Department, 
Rajasthan 
Government 

 
The Department of Agriculture is expected to take an active part in 
the application and orchestration of the RS-driven crop damage 
assessment model. They may be required to adjust their existing 
operations and work in unison with other stakeholders to ensure 
effective implementation. This undertaking will provide the 
department with a sense of empowerment (depicted in Figure 28). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Possible Impact 
 

Crop 
Insurance 
Providers 

 
Crop insurance providers can benefit from accurate crop damage 
assessment as it helps in determining the actual damages and 
payouts to affected farmers. They may need to collaborate with the 
government and other stakeholders to ensure seamless integration 
of the RS-based model into their insurance processes. They will be 
empowered as more farmers would be associated with insurance. 
Moreover, their significance within the system is set to rise due to 
the financial strength they acquire through intensified collaboration 
with the farming community (depicted in Figure 28). 
 

Local Supply 
Chain 
Entities 

 
Local supply chains entities, such as agricultural input suppliers and 
traders, may be impacted by the accurate assessment of crop 
damage. It can help them plan their supply and distribution 
activities better, considering the actual crop losses. They will 
experience a sense of empowerment as depicted in Figure 28. 
 

Central 
Government 

 
The central government may need to provide support and 
resources for implementing the RS-based model on a larger scale. 
They may also need to coordinate with state governments and 
other stakeholders to ensure smooth implementation. 
 

Supportive 
Function 
 

Print and 
Electronic 
Media 

 
The media can play a role in creating awareness about the benefits 
of the RS-based model and its impact on farmers, labourers, and 
local communities. They can also provide updates on the 
implementation progress and communicate success stories 
 

Research 
Institutions 

 
Research institutions can contribute to the development and 
improvement of the RS-based model. They can provide expertise, 
technical support, and research findings to enhance the accuracy 
and efficiency of the assessment process. 
 

NGOs 

 
Non-governmental organizations can play a role in supporting the 
implementation of the RS-based model. They can provide 
assistance in raising awareness, capacity building, and advocating 
for the interests of farmers and local communities. 
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6. DISCUSSION 

This chapter discusses the research outcomes acquired for hailstorm damage evaluation using S1, S2, and 

combined datasets, as discussed in Chapter 4. In Section 6.1, "Performance Analysis of RF Model and 

Datasets," we discuss the role of the RF model and various datasets in identifying crop damage classes. In 

Section 6.2, "Addressing and Mitigating Wicked Problem," the discussion is dedicated to tackling 

wickedness within the scope of our research. Finally, in Section 6.3, "Limitations ", we discussed the 

constraints of the current study. 

6.1. Performance Analysis of RF Model and Datasets  

All the conducted experiments and their corresponding results have been summarized in Table 21. 

Implementing numerous combinations of input data on both PBC and OBC RF models to derive crop 

damage classifications discovered that the PBC analysis delivered superior results when used with the 

combined dataset, particularly after applying majority classification. It became evident that combining 

optical and SAR data bolstered the accuracy compared to their individual use in PBC. On the other hand, 

for OBC, where statistical parameters were employed, a slight decrement in accuracy was observed 

compared to using the S1 dataset alone, as detailed in section 4.2.3. 

 

Our observations of F1 scores indicated that the S1 data was more successful in accurately predicting 

damage classes than S2 in both models. One potential reason for lower S2 accuracies could be the 

differences in acquisition dates of the post-event imagery; the S2 imagery was from 25th March 2020, 

while the S1 image was taken on 17th March 2020. Considering the hailstorm event occurred on 5th 

March, it is plausible that images captured closer to the event might yield more insightful information than 

those taken later. Additionally, there is a possibility that farmers might have commenced ploughing for the 

next crop season, influencing the observed outcomes. Secondly, the sensitivity of microwave signals to 

changes in physical structure and geometry renders them particularly advantageous for damage detection, 

thereby providing S1 with an edge over S2.  

 

The impact of a hailstorm on the ground is not homogeneous, resulting in patchy crop damage with 

variability within the same field. Capturing this information is useful if farmers demand to increase the 

damage bin size (Interview, 2023). Our findings indicate that S2 with PBC delivered more realistic results, 

demonstrating a mix of pixels within the same field, compared to S1, which presented more homogeneous 

patches. This is mainly because multispectral signals are more responsive to changes in plant health, 

usually observed as changes in crop canopy colour. Thus, S2 outperforms S1 in detecting these plant 

health variations caused by a hailstorm, giving it a significant advantage. We have also done qualitative 

analysis for each experiment and found that qualitative accuracies aligned with quantitative accuracies. 

 

The class representing low damage always yields the highest accuracies across all experiments compared to 

the other two classes. This is mainly because most of the samples in both the training and testing datasets 

fall into this class. As detailed in section 4.1.1, out of the 40,157 in situ data points used for PBC, 25,051 

were categorized as low damage, 10,744 as moderate damage, and 4,362 as high damage. An attempt was 

made to ensure a proportional representation of the samples by employing stratified random sampling 

during training and testing. 
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We selected the RF model for this study due to its proficient handling of class imbalances, a situation 

observed in our case. Additionally, it demonstrated an excellent capability to manage high-dimensional 

data. This ensemble method inherently resists overfitting, making it ideal for generalization. Furthermore, 

it exhibits robustness in the presence of noise and outliers. Another advantage of the RF model is its 

ability to rank variables, facilitating dimension reduction. In our study, we utilized multiple layers of S1 

and S2 datasets. Initial experimentation revealed that employing the difference band, as substantiated by 

the MDA and MDG values, provided superior outcomes compared to including all layers. This suggests 

that focusing on changes over time could offer more insightful information. 

 

Furthermore, upon implementing a dimension reduction strategy, we observed a notable enhancement in 

the accuracy of our model. This suggests that simplifying the data inputs by reducing their complexity 

aided the model in making more precise predictions. Because of the RF model's innate resistance to 

overfitting, the testing accuracies closely corresponded to the training accuracies, as outlined in the 

accuracy tables of the experiments. 

 

While the RF model has been used for over two decades, its application for hail-induced crop damage 

detection, especially in combination with SAR and Optical data, has not been explored, adding a novelty 

to our research. 

6.2. Addressing and Mitigating Wicked Problem 

The farmers are the most affected stakeholder in crop damage due to hailstorms. This research aimed to 

develop an ML model using multitemporal RS data to assess crop damage caused by hailstorms. This 

research was motivated by the need to improve upon the existing method, which heavily relies on field 

surveys. There is a transparency deficit in damage categorization assessments and a prolonged period from 

damage assessment to the actual disbursement of compensation, which takes 5-6 months, as elaborated in 

Section 1.8 (Problem Analysis). Several farmers, leveraging their connections, obtain undue advantages 

and compensation, despite suffering the same or even lesser degrees of loss, or sometimes no loss. The 

existence of such issues creates inequality to access to equal resources among farmers.  

 

Farmers have raised several disagreements with the government, detailed in Section 1.8.2 (Wicked 

Problem Analysis). These include their disapproval of the rule that only farmers sustaining more than 33% 

damage qualify for compensation, dissatisfaction with the amount of compensation per hectare, and a 

demand for more damage category bins to ensure compensation proportional to the actual damage. 

 

This model may not directly address the wickedness of policy-related issues such as determining per 

hectare financial allocation or the government guidelines for more than 33% damage for compensation 

eligibility. These issues are linked to policy decisions and require extensive stakeholder consultations and 

participation. However, the present RF model does hold significant potential in tackling two critical areas 

that concern farmers: the obscurity of damage category assessment and the lengthy duration of damage 

assessment. Furthermore, the model could serve as a valuable tool in identifying and effectively handling 

additional challenges. For example, it could provide a satisfactory resolution to farmers' demand for more 

detailed damage categories. Additionally, identifying crop damage from other sources proves challenging 

with the current method, as surveys are conducted post-hailstorm. In contrast, the RS method employs 

both pre- and post-hail imagery, enabling the successful elimination of certain damage sources by verifying 

the presence of a healthy crop in the field before the hailstorm, using the pre-hail images. The utility of RS 

method could enable efficient monitoring of potentially dishonest practices by either department officials 

or farmers. 
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This research offers a proof of concept, illustrating the feasibility of this kind of damage assessment using 

RS and ML approaches. This ML tool can be utilized to create a reference dataset, and by integrating a 

sample survey from 10-15% of land parcels, it can provide a more precise damage assessment process. 

Implementing this model could significantly cut down the assessment duration and foster a sense of 

fairness and equality of access to resources among farmers. 

 

While it is easy to criticize government officials for perceived delays, transparency deficits, and potential 

corruption, it is essential to recognize their efforts in managing a complex scenario, often under immense 

pressure from farmers, the media, and even the state government, all the while juggling with limited 

financial resources. They must navigate this tricky terrain with limited funds, ensuring the budget aligns 

with the funds earmarked for disaster scenarios like hailstorms. The damage category dataset, supplied by 

the department and utilized for both training and testing during the model development, aligns with the 

results generated by the ML model, and it appears that they are managing it in a manner that results in 

systematic errors of damage categorization to align with financial constraints. Therefore, the absence of 

financial resources and the lack of spatial knowledge render the task difficult and time-consuming. 

 

Considering time limitations, an interview was conducted with only one farmer from the region under 

study. Additional analysis was performed through a comprehensive literature review. Table 22 details the 

examination of suitable engagement strategies for different stakeholders. When implementing an RS-based 

method, a similar approach should be taken for an in-depth stakeholder study, taking into consideration 

their interests, impact, and importance. 

6.3. Limitations  

This research serves as a proof of concept, demonstrating the potential of RS and ML methods for 

assessing crop damage, explicitly focusing on the Rajasthan province in India. We only had four damage 

categories available in our in-situ data, and for our specific region, only three damage categories were 

identified. As such, if the number of damage categories increased, the model would require optimization 

with new in situ data of the respective categories for optimal classification. 

 

The training and testing data for the RF model were sourced from the BoR department. Farmers have 

disagreements with BoR on the assessment process. However, our results validate that the damage classes 

are not assigned randomly, implying an unclear field method used by the department. Despite the absence 

of the highest damage category in the department's data, satellite data hints at abrupt physiological changes 

indicative of severe damage. This suggests a proportional shifting of damage categories, confirmed by 

farmers who mentioned that BoR officials tend to change damage categorization by classifying it into less 

severe damage categories than what is truly observed (Interview, 2023). 

 

Moreover, it is worth mentioning that crop damage can occur due to various other factors, including, but 

not limited to, suboptimal farming practices, poor soil quality, insufficient water supply, crop diseases, 

defective seeds, improper use of fertilizers, and unsuitable cultivation materials. The current model is not 

designed to distinguish these types of damages. However, regular crop monitoring throughout the plant 

cycle is possible with RS time series data that detect minor changes not readily apparent to the human eye. 

Spectral signatures used to identify changes in crop health, structure, and hydration levels, thereby 

enabling the early identification of problems across wide areas. Hence, the model would require further 

modification, training and optimization to monitoring other damages. 
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Crop damage due to hailstorms is influenced by numerous factors, such as crop type, the crop's 

phenological stage at the time of the hailstorm, soil type, cultivation region, hail size and duration, and 

wind speed. These factors can lead to varied manifestations of damage across different crops. The model 

developed in this study utilized in situ data from fields primarily composed of nearly mature mustard 

crops. Hence, the model would require further training and optimization for different scenarios. 
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7. CONCLUSION AND RECOMMENDATIONS  

7.1. Conclusion  

The primary objective of this study was to develop an ML model utilizing multitemporal RS data to assess 

crop damage caused by hailstorms. The model was trained and tested using in-situ data gathered from the 

Kathumar block in the Alwar district of Rajasthan Province, India. We examined the effectiveness of PBC 

and OBC RF models, employing open-source Sentinel datasets, including S1 and S2. Later, we 

incorporated the combined S1 and S2 data into the model. 

 

In our findings, PBC utilizing combined data exhibited compelling results, accurately identifying damage 

classes with an F1 score exceeding 0.90 after applying majority classification. Comparatively, OBC using 

S1 data offered the highest accuracy when considering a single dataset for damage assessment, which was 

also reflected in our qualitative analysis. This research also has societal significance as it attempts to reduce 

the wickedness in the challenging issue of present field-based crop damage assessment and its deep impact 

on farmers, which can, unfortunately, lead to financial instability and in some extreme cases, suicide. The 

current assessment process often fosters a sense of inequality and inequity. Thus, the broader goal of this 

research is to provide a proof of concept for addressing such situations in a better way.  

 

This developed model could be further refined and employed to enhance the crop damage evaluation 

process on a larger scale, such as at the district or state level. It could function as a standard reference or a 

directed geoprocessing tool, effectively reducing the need for fieldwork while offering a solid answer to 

the present opacity issues in damage assessment categorization. Furthermore, it could act as a conduit to 

tackle other relevant issues. For example, it could provide a satisfactory resolution to farmers preference 

for a more detailed damage assessment scale, with narrower intervals such as 1-10%, 10-20%, and so on, 

up to 90-100%. Additionally, the utility of RS time-series data could enable efficient monitoring of 

potentially dishonest practices by either department officials or farmers. 

 

In conclusion, this study has addressed and provided answers to the research questions outlined in Section 

1.5, as follows: 

 

RQ 1: How can using RF classifier on S1 data improve the present field survey-based crop damage 

assessment approach? 

 

The limitations of existing techniques, as outlined in Section 1.8.1, can be addressed by implementing the 

model developed in this study. This could limit field inspections to 10-15%, focusing on cross verifying 

the damage categories predicted by the model with ground truth, or focusing on regions where 

disagreements persist. This approach could expedite the assessment process and serve as a baseline 

reference for allocating damage categories. As the department is launching an app to facilitate direct 

damage reporting by farmers, mitigating transparency issues. Integrating the current model with this 

upcoming app could result in a more robust tool, thus substantially reducing the complexity of the 

problem at hand.  

 

The application of the RF model on S1 in OBC results in the second highest accuracies, following the 

pixel-based majority classification. Moreover, when applied to PBC, it achieves the third-highest accuracy. 

In situations of hailstorms, cloud cover is a common occurrence, which can limit the use of S2, as 

observed in our case. However, S1 is not confined by weather or time, allowing it to penetrate cloud cover 
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effectively. Additionally, the sensitivity of microwave signals to changes in physical structure and geometry 

renders them particularly advantageous for damage detection. Polarimetric features like covariance matrix 

elements, stokes parameter and H/α decomposition provide information in better understanding 

backscattering mechanism to identify crop damage. Our findings revealed that S1 outperformed S2 in 

PBC and OBC approaches.  

 

However, SAR data inherently encompasses a high level of 'speckle' noise, which can impact the quality 

and usability of the data. Moreover, the complexities involved in processing SAR data, and its limited 

capability to offer visual and colour information present challenges. 

 

RQ 2: How can using RF classifier on S2 data improve the present field survey-based crop damage 

assessment approach? 

 

The benefits of RS over field-based methods, particularly with the use of S2 data, lie in its sensitivity to 

changes in plant health, usually observed as physiological changes appearing in canopy colour. In the 

present research MCARI and REIP vegetation indices and S1 SWIR bands b11 and b12 was the most 

important variable as per MDA and MDG values. MCARI and REIP vegetation indices, due to their 

sensitivity to chlorophyll content and b11 and b12, due to their sensitivity to the moisture content in 

crops, was able to identify crop stress due to hail. The impact of a hailstorm on the ground is not 

homogeneous, resulting in patchy crop damage with variability within the same field.  

 

Our findings indicate that with PBC, S2 delivered more realistic results. also, combining with S1 in PBC 

increased the accuracies. Open source S1 brings considerable advantages with a spatial resolution (10-

60m), spectral capabilities (13 bands from visible to SWIR), five days temporal resolution and radiometric 

quality (12-bit), ease of interpretation and less complex processing.  

 

However, its usage is bounded by certain limitations, including dependence on weather and daylight 

conditions. It also requires rectifying sun glint effects, brought about by atmospheric disruptions and the 

identification of clouds and their shadows. 

 

RQ 3: Which classification approach, PBC or OBC, results in a more accurate assessment of hailstorm-

related crop damage when utilizing S1 and S2 data separately? 

 

Our experiments of PBC and OBC models applied to individual datasets showed that the OBC approach 

with S1 data yields the highest F1, precision, and recall scores for all three damage classes. Specifically, we 

noted F1 scores of 0.9564, 0.8990, and 0.8543 for the low, moderate, and high damage classes. When 

considering the datasets individually, the OBC performed better with the S1 data, while S2 data yielded 

superior results with PBC. 

 

RQ 4: How can using RF classifier on combined S1 and S2 data improve the present field survey-based 

crop damage assessment approach? 

 

The advantages of RS over field methods and capabilities and limitations of individual datasets are 

described in answering RQ1 and RQ2. We employed both PBC and OBC approach on the combined 

dataset. Upon evaluation, we discovered that the PBC with the combined dataset outperformed all other 

experiments when the majority classification was applied. The corresponding F1 scores for the low, 

moderate, and high damage classes were 0.97, 0.923, and 0.938, respectively.  
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The combination of both optical and SAR data can counterbalance their limitations, providing a more 

comprehensive understanding of the damage correlation with different parameters. In our case PBC for 

combining S1 and S2 data enhanced the classification accuracies compared to separate S1 and S2 datasets 

However, in OBC, accuracies decreased after combining S1 and S2. Hence, it is not conclusive that the 

use of combined data always enhances classification. The decision to use separate or combined datasets 

depends largely on the nature of the application and the methods used. 

 

RQ 5:  Which classification approach, PBC or OBC, results in a more accurate assessment of hailstorm-

related crop damage when utilizing a combination of S1 and S2 data? 

 

In our current study, we employed combined data with PBC and OBC. Results from PBC showed that 

using combined datasets enhanced the classification accuracies. However, in OBC, accuracies decreased. 

The combined S1 and S2 experiment with PCB after applying majority classification provided F1 scores 

for the low, moderate, and high damage classes of 0.97, 0.923, and 0.938, respectively, which was the 

highest in all experiments. 

 

RQ 6: How would the proposed remote sensing-based crop damage assessment method impact different 

stakeholders? 

 

This current research focuses on farmers, who are expected to gain empowerment through this remote 

sensing (RS) based damage assessment model. It will enhance transparency in the damage categorization 

process, fostering an environment of equality when dealing with shared resources and symbolising a 

transition towards a fair distribution of resources. Agricultural labourers and local communities could 

experience enhanced financial security and employment opportunities due to more accurate and timely 

compensation for farmers. The state government, including the DMR and BoR, could increase public 

trust through a transparent, efficient process that also allows for cost savings. However, expected 

increased compensation may necessitate policy discussions and stakeholder engagement. Crop insurance 

providers could gain from more precise damage evaluations as they facilitate determining suitable payouts. 

Given the mutual benefits, this could boost their standing within the farming community and promote 

insurance practices among farmers. 

7.2. Recommendations 

This research utilized dual-polarization data from S1 for the analysis. However, Quad-pol data, with its 

extensive information derived from HH, VV, HV, and VH polarization combinations, can offer a more 

detailed understanding of backscattering mechanisms of crop damage. Consequently, the inclusion of 

Quad-pol data in subsequent studies has the potential to generate diverse outcomes. 

 

Further research into testing additional features generated from other polarimetric decompositions, 

notably polarimetric-interferometric decomposition, is still useful. The interferometric coherence image 

could reveal important information about crop damage. Monitoring the complete crop growth cycle might 

provide additional benefits, enabling us to distinguish between hail-induced crop damages and those 

caused by other factors. It also offers an opportunity to investigate the impact of hailstorms at different 

crop growth stages. The deployment of deep learning methods could further refine our understanding of 

the backscattering mechanism related to hail-induced crop damage. Classifying crops prior to hail damage 

analysis might provide valuable insights into how hail affects different crops based on their structural and 

biophysical properties.  
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In light of these findings, we recommend the government adopt RS based approach for damage 

assessment to expedite the evaluation process and enhance the accuracy of assessments. This strategy can 

foster trust and transparency and empower farmers, who are often marginalized despite their significant 

contributions. Even within the existing four damage categories and the current rules of non-compensation 

for damages less than 33%, the proposed method could be economically efficient. This approach could 

potentially reduce field checks to 10-15% of their current volume, leading to considerable cost savings.     
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APPENDICES 

Transcribed Interview: Stakeholder's Perspective on Hailstorm Damage and Compensation. 

Date: 16 June 2023 Time: 07:37 UTC 

Interviewer: Rishi Pareek (M.SE.) 

Interviewee: Farmar  

Resident: District Alwar, Province Rajasthan, Country: India 

Farming experience: more than 10 years 
 

Experience with Hailstorms 

Q1): How frequently do you encounter hailstorms in your vicinity? 

Interviewee: Almost every year, we encounter hailstorms in our region. Over the past two years, they 

have been occurring more than once a year. 

 

Q2): How often do you face crop damage due to hailstorms annually? In which season do hailstorms 

usually occur? 

Interviewee: Given the yearly occurrence of hailstorms, our crops are affected almost every year. The 

intensity varies; sometimes, it is low, and other times it is high. Hailstorms typically occur in the Rabi 

season, most often in February and March, but occasionally in January and the end of December as well. 

 

Q3): Could you share the types of crops you cultivate and which ones are the most vulnerable to 

hailstorms? 

Interviewee: In the Rabi season, I grow wheat and mustard, and in the Kharif season, I generally cultivate 

millet and maize. The choice of the crop also depends on the expected market prices and experience with 

specific crops. 

 

Q4): Can you elaborate on the impact of hailstorms on various crops in your region and the stages of crop 

growth at which the damages are most severe? Whether it matters if the hailstorm affects a younger or an 

older crop? 

Interviewee: Hailstorms typically affect mature crops due to being harvested in about 15-20 days or those 

in mid-growth. If a storm occurs in the early growth stage, the crops may recover, but mature crops have a 

slim chance of recovery. This also depends on the severity and duration of the hailstorm. In the case of 

wheat, the grain size reduces and turns black. For mustard, the pods break, and the seeds become black. 

 

Q5): Could you narrate your personal experiences dealing with hailstorm-inflicted damage on your crops? 

Interviewee: In 2022, my crops suffered severe damage, for which I received compensation this year. It is 

a distressing situation. We invest financial resources, labour, and time for 4-5 months, and just when we 

expect returns, everything collapses. Sometimes, clearing the damaged crop requires additional manpower 

and resources, which is painful. 

 

Q6): How do you manage crops damaged by hailstorms? Are you able to recover any yield from them, or 

is it a total loss? 

Interviewee: Events like this are beyond our control; we are at the mercy of the weather. Sometimes we 

manage to recover 30-60 percent of the crops, but the quality significantly reduces. 
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Q7): If the damage is minimal, what is the usual yield loss you face? 

Interviewee: Even with minimal damage, the crop quality reduces, and we don't receive prices as high as 

for fresh crops. 

 

Q8): In your estimate, what is the financial impact of hailstorms on your income? 

Interviewee: Two events - heavy precipitation and hail - are the most disastrous. We rely on credit from 

Kisan credit cards or bank loans for our farming activities. If we lose our crop, we sometimes feel it's 

better to engage in other work than farming due to the reduced uncertainty. We bear substantial financial 

losses and are burdened by loans. 

 

Q9): Do hailstorms affect the quality and yield of crops, subsequently impacting the market price? 

Interviewee: Yes, as mentioned before, the quality of crops significantly declines, impacting the market 

prices by 30-50 percent. 

 

Existing Damage Assessment Process 

 

Q10): Can you explain the current damage assessment process led by the department? Is it a 

comprehensive survey of each field, a partial survey, or is it based on past damage records or their 

knowledge? 

Interviewee: The process depends on the patwari (revenue officer), who generally visits the village, 

gathers an overview from farmers and residents about the losses, then checks land parcels and marks the 

homogeneous patches on the revenue map. Sometimes they do this in the office, without visiting the sites, 

by analysing maps and using past experience of the area. Since they know every part of the village well, 

they can anticipate the topography, low-lying areas, and history of damages. 

 

Q11): In the event of area-wide damage assessment, if only certain sections of crops are damaged, how 

does the department carry out the assessment? 

Interviewee: We are not certain about the criteria they follow in such cases. 

 

Q12): Is compensation uniform for fully-grown, partially-grown, and less-grown crops? 

Interviewee: Yes, it is the same, but they generally consider fully grown crops. 

 

Q13): If crops are damaged before a hailstorm due to other factors, does the department take this into 

account? 

Interviewee: Records of such losses are not typically kept. On occasion, farmers might attribute crop 

damage to a hailstorm, and those with considerable influence and connections can secure compensation. 

For instance, since mustard is usually harvested earlier than wheat (about 15-20 days), if a hailstorm takes 

place during that period, farmers might report losses. They assert that they've discarded the affected 

sections of the crop and, thus, attempt to receive compensation. 

 

Q14): Is the process subjective, or are there specific field measurements taken? 

Interviewee: The process is purely subjective. They do it by their own we don’t know how they do it. 

 

Q15): Are you aware of the damage percentage bins (0-33%, 33-50%, 50-75%, 75-100%) set by the 

government for compensation? How satisfied are you with the current method of damage assessment? If 

unsatisfied, could you share your reasons? 

Interviewee: I am not satisfied with the rules, particularly the one that excludes damages less than 33% 

from compensation. The categories for damage assessment are unclear, and officials often attempt to fit us 
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into the lower damage category. I believe compensation should be given in proportion to the loss. 

Moreover, the time taken for assessment and compensation is too long and should be reduced. 

 

Q16): Would you advocate for further division of the damage bins (1-10%, 10-20%, ---- to 90-100%)? 

Why or why not? Should the compensation be proportionate to each damage category? 

Interviewee: Yes, I would prefer the bins to be divided further, allowing for proportional compensation, 

which would be fairer. 

 

Q17): What are your thoughts on the government's policy of not providing compensation for crop 

damage below 33%? 

Interviewee: We disagree with this policy. It contradicts itself by acknowledging a loss but not 

compensating for it. I believe this policy aims to reduce the compensation amount and attempts to fit 

most farmers into this category. 

 

Q18): Do you concur with the compensation rate per hectare set by the government? If not, why? 

Interviewee: The compensation we receive, ranging from 6800/- Indian National Rupees (INR )          

(75 euro) to 18000 INR (200 euro) per hectare based on the damage bin, is substantially less than the 

expenses we bear. However, we appreciate the social initiatives like the PM-Kisan Samman Nidhi Yojana, 

which provides annual support of 6000 INR (75 euro), and PM KUSUM – MNRE, which grants various 

subsidies for the utilization of renewable energy resources. These schemes have indeed been beneficial for 

the farming community. 

 

Q19): What are your options if you disagree with the damage assessment and compensation awarded? Is 

legal recourse possible? 

Interviewee: Legal recourse is theoretically possible but practically unfeasible due to the time and cost 

involved. We would rather focus on the next crop instead. 

 

Suggestions for Improvement 

 

Q20): In your opinion, how can the current damage assessment process be improved? 

Interviewee: The compensation scheme should include damages less than 33%. The amount per hectare 

should be increased. Farmers obtaining undue benefits should be scrutinized and penalized for unfair 

practices. Similarly, unfair government officials should be removed from their positions. Also, farmers 

should receive compensation in proportion to their losses. The current bins are too small and should be 

enlarged like 1-10%, 10-20% ----- to 90-100%. 

 

Q21): What are your thoughts on integrating the existing damage assessment application with a Remote 

Sensing (RS) based model? 

Interviewee: We are not well-informed about such technology. However, if it is something we can use on 

mobile to check damages, that would be helpful. 
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Crop Insurance 

 

Q22): Do you have an insurance policy for your crops? If yes, what is the monthly premium? 

Interviewee: We have PM Fasal Bima Yojana, which costs around 1500 INR (16 euro) per hectare per 

year. Generally, it is 2% of the sum insured. It is very with the type of crop sometimes. 

 

Q23): How do you perceive the Pradhan Mantri Fasal Bima Yojana? How does it differ from private 

insurance policies? 

Interviewee: The scheme is beneficial because the premium is very low. However, premiums for private 

insurance companies not aligned with PMFBY are ten times higher. 

 

Q24): Have you benefited from any crop insurance schemes? 

Interviewee: Yes, we benefited from the PM Fasal Bima Yojana last year when our crops were damaged 

by a hailstorm. We received compensation this year. 

 

Q25): From your perspective, what role do insurance companies play in crop damage compensation? 

Interviewee: I am not familiar with the specific role insurance companies play. Our knowledge is 

primarily centred around the Pradhan Mantri Fasal Bima Yojana. Farmers, including myself, are generally 

not inclined towards private insurance schemes due to the high premium rates they charge. 

 

Q26): Are you familiar with the new mobile application launched by the department for damage 

assessment where farmers can report crop losses? If yes, have you used it? Could you share your 

experience? 

Interviewee: We came across information about a new app in a newspaper article in March 2023, right 

after a hailstorm. However, we have not had the opportunity to use it so far. I believe it hasn't been 

officially launched yet. 

 

Q27): Would you consider using such an application in the future? 

Interviewee: Definitely, yes. 

 

Q28): Are you aware of the application of the Remote Sensing approach for crop damage assessment? 

Interviewee: We aren't familiar with such technology. However, we're interested in any tool that we can 

use on our mobile phones to check for crop damage. 

 

Q29): What are your views on employing satellite imagery for hail damage assessment? 

Interviewee: If it is capable of showing crop damage, we would definitely like to use it on our mobile 

devices. 

 

Additional Concerns 

 

Q30): Do you rely on loans for your agricultural activities? 

Interviewee: Yes, we always rely on loans for our agricultural activities due to our limited financial 

resources. 

 

Q31): What are your thoughts on the incidence of farmer suicides? 

Interviewee: Farmer suicides are tragic and often result from crop loss and overwhelming loan burdens. 

It is distressing to think that those who grow our food sometimes don't have enough for themselves. The 

immense pressure they face is unbelievable. 
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Q32): In case of crop damage on rented farmland, who is eligible for compensation - the landowner or the 

farmer? 

Interviewee: The compensation is given to the landowner. As tenants, they pay rent to the landowner at 

the beginning of the lease. Agreements vary, sometimes they are official, and sometimes they are based on 

mutual discussion. There isn't any discussion on crop losses generally. However, some agricultural 

labourers have started making agreements stating that the compensation should be transferred to their 

accounts if the owner receives it. 

 

Final Remarks 

 

Q33): Would you like to share any other experiences or insights related to hailstorm damage and the 

damage assessment process? Are there any gaps in the system that you believe need addressing? 

Interviewee: I have shared most of my experiences. However, I want to emphasize that farming is 

becoming an increasingly risky business due to unpredicted weather and sudden crop losses. We don't 

have any other option for livelihood because this is all we have learned from early life. In case of crop 

losses, the government should act seriously and provide compensation in a timely manner. Furthermore, 

loans on farmers should be waived. 
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Field Data.  

This section encompasses the field data utilized for training and testing in-situ data development, with 

subsequent sections showcasing land revenue maps. For ethical reasons, data pertaining to the RoR and 

the Hailstorm report haven't been shared as they contain personal information about farmers. 

 

Land Revenue Maps: 

This section includes the original maps of land revenue or parcels from the villages of Daroda, 

Badangarhi, Nagla Khooba, Nagla Madhopur, and Garoo. These maps were utilized for the creation of 

training and testing datasets. 

Figure 29 Parcel map village Daroda (2 sheets) 
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Figure 32 Parcel map of village Nangla Madhopur (2 sheets) 

Figure 31. Parcel map of village Badangarhi Figure 30. Parcel map of village Nangla Khooba  
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Figure 33. Parcel map of village Garoo (3 sheets) 


