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Predicting Ego-Bicycle Trajectory: An LSTM-based Approach Using 

Camera and IMU 

Jelte Koornstra, University of Twente, The Netherlands 

In order to make bicycles with driver assistance systems a reality, a 
suitable trajectory prediction must be developed. This research will 
investigate sensor and trajectory prediction models that are suitable for 
the task, and develop such a model. In addition, two datasets consisting 
of sensor data collected with bicyles are created to train the model. Two 
different types of  Long Short Term Memory (LSTM) trajectory 
prediction models are evaluated, one using a Convolutional Neural 
Network LSTM  hybrid architecture, and one using only LSTM by itself. 
The performance of these different models is then evaluated and 
compared.  

Additional Key Words and Phrases smart-bicycle, trajectory prediction, 
lstm, machine learning, sensors, internet of things 

1 INTRODUCTION 

Cars are getting smarter and smarter, many modern cars 
already use systems to assist the driver. These so-called 
Advanced Driver Assistance Systems are able to use sensors to 
detect driver mistakes and potential obstacles. While there has 
been a big push towards smarter cars, the same cannot really 
be said about bicycles. Modern e-bikes might have some safety 
features [8], but they are not equipped with sensors and driver 
assistance systems to the same extent modern cars are. These 
systems could still be beneficial to cyclists to assist them in 
avoiding collisions, and potentially correct some of their 
mistakes during cycling.  
 
In order to make these so-called ‘smart bicycles’ possible, 
several subsystems would have to be developed. One of the 
subsystems that would be required for this is trajectory 
prediction. Trajectory prediction is a computational technique 
used to anticipate and forecast the future path or movement of 
an object or entity based on its past behavior and surrounding 
context. It involves analyzing patterns, historical data, and 
relevant factors such as velocity, acceleration, and 
environmental conditions to estimate the likely trajectory of an 
object over a specific period of time. Through applying 
mathematical models and/or machine learning algorithms, 
trajectory prediction aims to provide valuable insights for a 
wide range of applications, including autonomous navigation 
systems, object tracking, collision avoidance, and predictive 
analytics.  
Current state of the art trajectory prediction methods used in 
cars often rely on data provided by expensive sensors, such as 
3D Lidar. These advanced sensors use light pulses to accurately 
measure the distance of objects around the vehicle.  
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Although Lidar sensors are impressive, they are also costly, 
with prices ranging from close to a thousand to several 
thousand euros. Moreover, many Lidar sensors are not suitable 
for smaller form factors. In light of these challenges, this 
research adopts an alternative approach by utilizing more 
affordable and compact sensors: a monocular camera and an 
IMU connected to a Raspberry Pi. 
 
Currently there does not exist a publicly available dataset with 
sensor data collected by bicycles. Bicycle movement may be 
more unpredictable and different from that of automobiles or 
drones, which have been used to create the most popular 
datasets in the field. Therefore, two datasets will be created, 
consisting of sensor data collected by bicycles, to enhance the 
training of the trajectory prediction model. 
 

1.1 Research Question 

The objective of this research is to develop a bicycle trajectory 
prediction model using affordable sensors. We address this 
objective with the following research question:  
How accurately can a smart-bicycle predict its trajectory using 
affordable sensors?  
 
In order to answer this question, the following sub-questions 
should be answered first: 

(1) Which sensors should be used? 
(2) What is a suitable trajectory prediction method given the 

time and cost limitations? 
(3) How accurately can this method predict the trajectory of 

the bicycle? 
 

2     RELATED WORKS 

In this section, we take a look at some of the commonly used 
trajectory prediction methods in the industry. There are many 
different approaches to do this, however they can generally be 
classified into four methods: physics-based, classic machine 
learning based, deep learning based and reinforcement learning 
based methods [3]. It is important to note that although there 
are many trajectory prediction methods, there is no definitive 
state of the art when it comes to bicycles specifically. The 
methods discussed in this section are generally tailored to 
automobiles.  
 
Physics-based models generally require fewer computational 
resources to function than machine learning and deep learning 
based approaches. This characteristic makes them an attractive 
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choice for devices with limited computational resources, 
including smart bicycles. One of the physics-based methods is 
the family of Kalman Filtering methods. They are able to model 
uncertainty about the vehicle’s state unlike several other 
physics-based approaches that assume the vehicle state is 
known. Lefkopoulous et al. [2021] propose an Interacting 
Multiple Model Kalman Filter for trajectory prediction. Their 
method not only considers the motion of the vehicle itself, but it 
also takes the intention of the driver into account. Furthermore, 
their model also considers other traffic participants. Their 
model was comparable to state-of-the-art models for 
predictions up to 5 seconds while being easier to train than 
deep learning-based models [5].  
 
Although physics-based approaches do have an advantage in 
computational efficiency, they may not always perform as well 
in more complex scenarios as well as deep-learning or 
reinforcement-learning based approaches which can leverage 
large amounts of training data better.  
 
For trajectory prediction in particular, being able to capture 
spatial and temporal dependencies is a valuable property. Deep 
learning-based models are especially adept at this. Compared to 
most physics based and classic machine learning based models, 
they function better in more complex scenes [3]. They possess 
the capability to consider elements of physics, road conditions, 
and interactions among various participants in traffic. 
Convolutional neural networks (CNN) are quite effective at 
handling spatial data, which may be valuable for trajectory 
predictions methods that take environmental factors into 
consideration. CNNs leverage convolutional layers with filters 
that pass over regions of the image, enabling them to recognize 
different groups of pixels. Though, most of the CNN based 
trajectory prediction methods rely on bird-eye view image data, 
which cannot be easily obtained on a smart-bicycle. 
 
Another branch of deep learning-based models is the family of 
recurrent neural networks.  Recurrent neural networks are 
sequential models that retain and utilize information from past 
time steps, incorporating hidden states along with the input to 
compute the output. However, one limitation of recurrent 
neural networks is that they are prone to the exploding and 
vanishing gradient problems due to the way the gradient is 
repeatedly multiplied by the weights of the recurrent 
connections. Long Short-Term Memory and Gated Recurrent 
Unit networks mitigate that problem. LSTM networks solve this 
problem by introducing a specialized memory cell that can 
selectively retain or forget information over multiple time 
steps, whereas GRU networks do this by using update and reset 
gates that dictate how much of the previous hidden state should 
be retained or forgotten, and how much new information 
should be added to the current hidden state. The LSTM model 
proposed by Hyeon Park et al. uses a decoder-encoder 
architecture that learns the pattern of the past trajectory using 
an LSTM based encoder, and then generates a future trajectory 
using a decoder based on the output of the encoder [5]. This 
model was able to outperform standard LSTM models and basic 
Kalman filter based models by a significant margin, achieving a 
mean absolute error of 0.93 on a prediction horizon of two 
seconds. Sun et al. [2020] were able to design an LSTM based 

trajectory prediction method that only uses data from a single 
monocular camera to make predictions [9].  
The inputs to their network were a set of images obtained by 
the camera, and the output was a trajectory mask that could be 
overlaid onto the current image.  
 
There also exist trajectory prediction models that use a 
combination of the aforementioned techniques. Xie et al. [2020] 
proposed a sequential model that fuses a CNN network and an 
LSTM network [10]. The vehicle data used in this research is 
from the NGSIM 101 dataset, which contains accurate vehicle 
positions collected on a highway.  They use the box plot method 
to eliminate outliers from the vehicle data. The inputs to the 
model are the vehicle speed, left lane distance and right lane 
distance of the vehicles. The convolutional neural network 
performs a one-dimensional convolution on the input data to 
extract features, which are then passed to a max-pooling layer 
to reduce the data size. The resulting output is then passed to 
the LSTM network. Their CNN-LSTM model performed better 
than individual GRU, LSTM and CNN networks while also being 
faster.  
 
Ma et al. [2020] propose a similar CNN-LSTM model for Aircraft 
4D trajectory prediction. A one-dimensional convolution is 
leveraged to derive features from the spatial dimension of the 
trajectory, while Long Short-Term Memory (LSTM) is employed 
to capture features from the temporal dimension of the 
trajectory. This approach results in a 21.62% lower prediction 
error compared to a LSTM model by itself [6].  
 

3    METHODOLOGY  

3.1 Designing the Hardware Setup 

When deciding which sensors to use for data collection on the 
bicycle, we need to consider the cost of the sensors. Most state-
of-the-art prediction models rely on accurate 3D object maps 
obtained through Lidar sensors. However, for smart bicycles, 
we need to use more affordable sensors to keep costs in check. 
The core of our system is the Raspberry Pi 4B provided by the 
university. We opt for a monocular camera, such as the 
Raspberry Pi NoIR V2 camera, as some trajectory prediction 
models, like the one described by Sun et al. [7], can effectively 
work with it. In addition to being a rather inexpensive camera, 
this camera is also able to operate in low light conditions due to 
its ability to capture infrared light. However, relying solely on 
camera data might not be reliable in suboptimal weather or 
lighting conditions. To gather additional information, we 
consider accelerometer and gyroscope sensors. The 
accelerometer detects changes in velocity, while the gyroscope 
identifies changes in the bicycle's orientation. The university 
provides us with the Arduino Nano33 BLE Sense, equipped with 
a 6-axis Inertial Measurement Unit (IMU) that includes 
accelerometer and gyroscope data. The combined cost of these 
sensors is approximately €80, making the setup relatively 
affordable. Nonetheless, we still need another sensor to 
establish a reliable ground truth for the dataset. While GPS 
initially seems viable, it tends to be inaccurate, with deviations 
of several meters. For higher accuracy, GNSS-RTK sensors are 
ideal, achieving centimeter-level precision. Therefore, we use 
the Waveshare ZED-F9P GPS-RTK HAT, which offers the 
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desired accuracy and has the quickest delivery time of the 
eligible sensors. The camera is mounted on the front of the 
bicycle to have a clear view, the IMU is also mounted on the 
front next to the camera to ensure that its data does not deviate 
much from the camera data, and the GNSS sensor is mounted on 
the back of the bicycle.  The Raspberry Pi is powered by a 
powerbank attached to the bicycle.  
 

 
Fig. 1. The camera with the Raspberry Pi on the front of the 
bicycle 
 

 
Fig. 2. The GNSS-RTK sensor on the back of the bicycle 
 
 

3.2 Creating the Datasets 

For the initial datasets, we choose two roads on the university 
campus. One is ‘De Zul’ behind Ravelijn, and the other one is a 

smaller bicycle lane parallel to this road, named ‘Oude 
Drienerloweg’. These roads are chosen because they are 
relatively straight and do not have a high traffic density, which 
allows us to assess whether the model performs well with a 
limited number of external factors. We use Python code to 
obtain the data from the sensors, which is run by using 
TeamViewer on an external computer to access the Raspberry 
Pi. Several python libraries such as pyrtcm, opencv, picamera2 
and pynmea are used to read and collect the data from the 
sensors, and for the GNSS-RTK sensor it is necessary to contact 
a valid NTRIP caster in order for it to yield data. The 
APEL00NLD0 NTRIP caster provided by Kadaster is chosen for 
this purpose, as it is relatively close to Enschede.  
 
During the data collection process, the cyclist tries to maintain a 
constant speed of 13 km/h to further reduce the complexity of 
these first two datasets. The data is collected at around 5:00 PM 
in good lighting conditions in moderate traffic density. The 
grayscale images are collected at a resolution of 640x480 pixels 
and a frequency of 75 images per second, the IMU data at 
119Hz. However, the GNSS data is only collected at 1Hz. This is 
not a technical limitation of the sensor, rather the NTRIP caster 
only sends a single measurement per second. In total, 
approximately 8000 image and IMU datapoints have been 
collected across the two datasets.  
 

 
Fig. 3. The roads that are chosen for data collection 

 
 

3.3 Preprocessing the Data 

The data that is collected in the dataset must undergo several 
preprocessing steps before it is usable for the trajectory 
prediction model. Firstly, copies of the original images are 
downscaled to 224 by 224 pixels to reduce the complexity of 
the model later, and to increase training speed. Additionally, the 
IMU data values are normalized to be within a [-1,1] interval. 
The GNSS data is in decimal latitude and longitude degrees, 
however that is not representative of a 2D or 3D environment 
where trajectory prediction models are generally trained on. 
Therefore, the GNSS coordinates are converted to a cartesian 
coordinate system. This is done using pyproj which is a python 
library capable of performing cartographic transformations. 
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The WGS84 decimal degree latitude and longitude coordinates 
are accurately transformed to X and Y coordinates on the 
Mercator projection using pyproj’s transform function. This 
pair of X and Y coordinates is used as the ground truth for the 
model. Height is not included in the dataset since it cannot not 
be determined with the sensors we have at our disposal, but the 
two roads the data is collected on are flat regardless, thus 
height should remain relatively constant. Furthermore, since 
the GNSS datapoints have been collected at a frequency of 1Hz, 
the missing datapoints need to be interpolated. Linear 
interpolation is performed on the dataset since the speed was 
kept constant during data collection. Moreover, since the IMU 
data was collected at a higher frequency than the images, only 
the IMU datapoints closest to the image captures are used.  
 
As an additional preprocessing step, the images are fed to a pre-
trained MobileNetV3Small convolutional neural network 
(CNN). This model is capable of recognizing objects and 
extracting features from images. Several features such as edges 
representing roadmarks and objects such as traffic signs may 
be important for the trajectory prediction model to know. This 
particular CNN is tuned for performance to be usable on 
smartphones, making it more suitable for real-time processing 
on low power systems such as the Raspberry Pi as well. The 
feature maps obtained by MobileNetV3 are stored on the disk 
to train the trajectory prediction model later on. 
 

3.4 Choosing the Model 
As discussed in the previous section, there are various 
approaches for a trajectory prediction model. Due to the 
temporal nature of the data, Recurrent Neural Networks are an 
intuitive approach. However, in traditional Recurrent Neural 
Networks, the exploding and vanishing gradient problems 
become more pronounced over long sequences. Long Short-
Term Memory networks avoid this problem through the use of 
memory cells and gated units. LSTM still retains the strengths 
of recurrent neural networks, as it is able to capture long-term 
dependencies and patterns in sequential data. Trajectories 
often exhibit complex temporal dynamics, where past positions 
and velocities significantly influence future trajectory paths. 
LSTM's recurrent structure allows it to remember and utilize 
information from previous time steps, enabling it to model and 
predict these dependencies accurately. 
 
Furthermore, LSTM excels at handling variable-length input 
sequences, which is crucial for trajectory prediction. 
Trajectories can have varying lengths depending on the 
observed time span, and traditional methods struggle to handle 
this variability. LSTM's inherent flexibility in processing 
sequences of different lengths allows it to handle such 
scenarios seamlessly, accommodating the diverse temporal 
nature of trajectory data. 
 
Although LSTM models are well suited for capturing temporal 
dependencies, they are less adept at handling the spatial 
dependencies present in grid-like data structures such as 
images. However, these spatial dependencies are still important 
in the context of trajectory prediction since the trajectory of the 
bicycle could also be affected by the environment. The 

information about the environment needs to be extracted from 
images since we are not able to work with 3D models of the 
environment due to our sensor limitations. For an LSTM model 
this might be a difficult task. 
 
Convolutional Neural Networks on the other hand are quite 
good at handling spatial data and are often used to process 
images. Therefore, we opt for a hybrid approach using both 
CNN and LSTM to try to combine the best of both by first 
passing the image to a CNN (MobileNetV3) and using its feature 
maps as input for the LSTM model, somewhat similar to what 
Xie et al. [2020] have done.  
 
Additionally, we try an alternative approach without the CNN 
network, using only the LSTM network to find out whether the 
CNN actually improves the results. 

 

 

4 EXPERIMENTAL SETUP 

4.1 Dataset 
We use the datasets that are created for the purpose of training 
the model. The two datasets contain data obtained from cycling 
on ‘De Zul’ and ‘Oude Drienerloweg’, consisting of 
approximately 8000 grayscale images and IMU readings. The 
interpolated and converted GNSS coordinates are used as a 
ground truth. The ‘EuRoC MAV dataset’ by Burri et al. [2016] 
will be used as an additional dataset to test the model on. 

 

4.2 Memory Optimization 
Due to the relatively large size of the image data, it becomes 
impractical to load this data into memory simultaneously. As a 
result, a preprocessing step is required to store the image 
features on the disk using a Hierarchical Data Format (HDF). 
This format allows for efficient storage and retrieval of large 
datasets. During the subsequent training phase of the model, 
the stored data is loaded from the disk as needed.  
 

4.3 Validation Metrics 
The dataset is split in three sets, one for training, one for 
validation and one for testing. 70% of the data was used for 
training, 15% for validation and the remaining 15% for testing. 
The metric used to evaluate the performance of the model is 
Mean Squared Error (MSE).  
 
Mean Squared Error (MSE) is often used as a loss function for 
trajectory prediction models, including those that use Long 
Short-Term Memory (LSTM) networks, because it 
quantitatively measures the average squared deviations 
between the predicted and actual trajectory values. This 
squaring ensures that all errors are positive and that larger 
errors have more impact, which makes the model strive to 
reduce larger errors. This property aligns well with trajectory 
prediction tasks, where reducing larger deviations—i.e., 
differences between the predicted and actual paths—is 
typically more important than minimizing smaller ones. 
Furthermore, MSE is differentiable, which is a crucial property 
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for optimization algorithms such as gradient descent used 
during model training.  

 
 
 
 

4.4 Implementation Details 
The LSTM model is implemented with the Keras python library 
as a stateless LSTM sequential model. The LSTM layer consists 
of 64 neurons. Following this LSTM layer, there is a FC layer of 
32 neurons, a dropout of 0.5 is applied to this layer meaning 
that there is a 50% chance that any given neuron will be 
dropped during training.  This can help against overfitting by 
reducing co-adaptations of neurons, discouraging scenarios 
where a particular feature is only useful in the context of other 
features. Finally, the output layer is a fully connected layer with 
2 neurons representing the X and Y coordinates of the position. 
Thus, the LSTM model has three layers in total:  the LSTM layer, 
the FC layer and the output layer.  
 
The sequence length of the LSTM model is 75 timesteps, 
representing one second of data. The output of the model is also 
a sequence of 75 X and Y coordinates, meaning the model uses 
the past 75 measurements to predict the future 75 positions. 
The batch size used for training the model is 8. The batch size is 
chosen to be relatively small as it has been shown that using 
large batches may lead to worse generalization [4].  
 

 
Fig. 4. The LSTM model architecture 
 
We test two variations of the model, one is using the image data 
directly as the input for the LSTM, and the other one is a CNN-
LSTM hybrid model which uses the feature maps obtained from 
MobileNetV3.   
 

 
Fig. 5. The CNN-LSTM model architecture 
 
 
 
For the first implementation, we take the grayscale image, 
convert it to a Numpy array and then normalize the values. This 
array is then flattened and concatenated with the normalized 
IMU readings before it is used as input for the LSTM. The 
second implementation uses the MobileNetV3 CNN. Center 
cropping is used to crop a 224x224 region of the center of the 
image, this image is then converted to a torch tensor, which is 
then used as input for the MobileNetV3Small model. MobileNet 
then outputs a feature map tensor, which is flattened and 
concatenated with the normalized IMU readings before it is 
used in the LSTM. 
 
Hence, the input for the model at each timestep is the 
normalized IMU data and the processed image features. The 
model uses the X and Y coordinates obtained during the 
preprocessing as the ground truth. For compiling the model, the 
Adam optimizer is utilized using the Mean Squared Error loss 
function with a learning rate of 0.001.   
 
 

4.5 MobileNetV3 
MobileNetV3 is the CNN used throughout this research, it is 
designed to be used on mobile phone CPUs making it more 
suitable than some of the other CNNs in terms of hardware 
requirements. The MobileNetV3Small model was able to 
achieve state of the art performance at lower performance 
requirements than comparable models. It is 3.2% more 
accurate than its predecessor MobileNetV2 at image 
classification at 20% lower latency [2]. MobileNetV3Small was 
also able to achieve 63.38 mIOU (mean Intersection Over 
Union) on the Cityscapes dataset, indicating it is quite good at 
pixel-level segmentation tasks.  
 
The pre-trained model of MobileNetV3Small that has been used 
in this research is trained on the ImageNet dataset. This dataset 
contains 1000 classes including some traffic related ones such 
as car mirrors, car wheels, bicycles and traffic lights. Though, 
these classes are mainly used for object recognition problems, 
which might not be useful when it comes to trajectory 
prediction.  
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Fig. 7. MobileNetV3 Block [2] 
 
MobileNetV3 is constructed using a stack of repeated blocks. 
These blocks are improved versions of the Inverted Residual 
and Linear Bottleneck structures introduced in MobileNetV2, 
they retain the same general structure but additionally 
Squeeze-and-Excite is applied in the residual layer. Squeeze and 
Excite modules perform 'channel-wise' attention, recalibrating 
the feature maps obtained from convolution operations by 
explicitly modelling the interdependencies between channels. 
This allows the model to emphasize meaningful features and 
suppress less useful ones, improving the overall accuracy. 
 
The initial layers of the network perform low-level feature 
extraction, identifying simple patterns like edges and textures. 
Whereas the deeper layers of the network are able to identify 
higher level features and classes. Changes in the feature maps 
obtained by MobileNetV3 across different frames may be useful 
for the LSTM model to track the movement of the bicycle. 
However, the object recognition-oriented classes present in the 
pretrained model are not quite tuned for traffic-specific object 
recognition, so the model may not be able to detect the high-
level features well in our case.  
 

5    RESULTS 

5.1 Dataset 1 
This dataset is the obtained from ‘Oude Drienerloweg’. In this 
section we first examine the metrics obtained after 100 epochs 
of training the CNN-LSTM hybrid model. Then we compare this 
to the alternative approach which only uses the LSTM. We also 
show the graphs that show the predicted and the actual 
trajectory of the test set. The X and Y units shown are in meters, 
the prediction horizon is one second.  

 

CNN-LSTM Approach: 
 

 

Fig. 8. The predicted trajectory on dataset 1 using the CNN-
LSTM approach 

 

 
 

 

 
Fig 9. The MSE loss of the model using the CNN approach on the 
first dataset 

 
The CNN-LSTM model achieves an MSE of 0.03 on the test set of 
this dataset. 

 

LSTM Approach: 
 

 
Fig. 10. The predicted trajectory on dataset 1 using the non-
CNN approach 
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Fig. 11. The loss function of the model on the first dataset using 
the LSTM approach 

 
The LSTM model achieves an MSE of 0.03 on the test set of this 
dataset. 

 

 
 

5.2 Dataset 2 
This dataset is the obtained from ‘De Zul’. In this section we 
first examine the metrics obtained after 100 epochs of training 
the CNN-LSTM hybrid model. Then we compare this to the 
alternative approach which only uses the LSTM. We also show 
the graphs that show the predicted and the actual trajectory of 
the test set. The X and Y units shown are in meters, the 
prediction horizon is one second.  

 
CNN-LSTM Approach: 

 

 
Fig. 12. The predicted trajectory on dataset 2 using the CNN 
approach 
 

 
Fig. 13. The loss function of the model using the CNN approach on 

the second dataset 
 
The CNN-LSTM model achieves an MSE of 0.04 on the test set of 
this dataset.  
 
 
 

 

 
 
 
 

 
 

 
LSTM Approach: 
 

 
Fig. 14. The predicted trajectory on dataset 2 using the non-
CNN approach 
 

 
Fig. 15. The loss function of the model using the non-CNN 

approach on the second dataset 
 
The LSTM model achieves an MSE of 0.05 on the test set of this 
dataset. 
 

5.3 EuRoC MAV Dataset 
This dataset is the ‘Machine Hall 01’ sequence from the EuRoC 
MAV dataset [1]. This dataset contains image and IMU data 
collected by a Micro Aerial Vehicle (MAV). It is used to test 
whether the model is able to perform better on a dataset with 
accurate ground truth. The LSTM model has been trained for 
100 epochs here. The model has been slightly modified for this 
dataset since the positions are in 3D instead of 2D, meaning 
that the model now has to predict X, Y and Z coordinates.  
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CNN-LSTM Approach:  
 
Fig. 16. The predicted trajectory on the EuRoC MAV dataset 
using the CNN-LSTM approach 

 
Fig. 16. The predicted trajectory on the EuRoC MAV dataset 
using the CNN-LSTM approach 
 

 

 
Fig. 17. The loss function of the model on the EuRoC MAV dataset 

using the CNN-LSTM approach 

 
The CNN-LSTM model achieves an MSE of 3.4 on the test set of 
this dataset. 

 

 
 

 
 

 
 
 

 
 

 
 

LSTM Approach: 
 

 
Fig. 18. The predicted trajectory on the EuRoC MAV dataset 
using the LSTM approach 

 

 
Fig. 19. The loss function of the model on the EuRoC MAV dataset 

using the LSTM approach 

 
The LSTM model achieves an MSE of 5.6 on the test set of this 
dataset. 
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6    DISCUSSION 

6.1 Research Questions 
After this research, we have obtained the relevant results to 
answer our main research question: 

(1) Which sensors should be used? The results show that it is 
possible to obtain sufficient results using just camera and 
IMU data. 

(2) What is a suitable trajectory prediction method given the 
time and cost limitations? Due to the fact that we are 
dealing with temporal data, LSTM is a solid option as it is 
a recurrent neural network that does not suffer from the 
exploding and vanishing gradient problems 

(3) How accurately can this method predict the trajectory of 
the bicycle? The previously shown results seem to 
indicate that the approach using the combination of CNN 
and LSTM is able to predict the trajectory to some 
degree, though this is not the case with the non-CNN 
approach. 

 
To answer our main research question, a smart-bicycle can 
predict its trajectory approximately using affordable sensors, 
but more work is needed to achieve accurate results.  
 

6.2 Datasets 
Three datasets have been used in this research, two of which 
were custom made for this research and the other one being the 
EuRoC MAV dataset.  

 
The datasets that were created for this research were lacking 
an accurate ground truth. This is due to the fact that the GNSS-
RTK sensor was only limited to 1Hz, so linear interpolation had 
been used to fill in the missing data. This may have resulted in 
inaccuracies in the dataset, which may have affected the 
trajectory prediction model as well. 
 
Furthermore, the datasets are relatively small compared to 
traditional datasets that are used in the field. Each dataset 
consists of approximately 4000 images, however due to the fact 
that the images were taken at 75Hz this only represents 
roughly a minute of data. Additionally, the images were of 
lower quality than expected, despite having a resolution of 
640x480. This could be due to compression. 
 
The datasets created for this research also consist of relatively 
simple straight-line trajectories, which may not be 
representative of trajectories in practice.  
 

6.3 CNN-LSTM versus LSTM 

The model using the CNN-LSTM approach seems to perform a 
bit better than the model using only the LSTM approach. On the 
first dataset both models perform relatively well, achieving a 
low MSE and a trajectory that is somewhat accurate. On the 
second dataset, both models perform worse. The MSE on the 
test set of the models is still relatively low but the trajectories 
are somewhat strange.  
This may suggest potential inaccuracies in the model's 
performance evaluation. It is possible that the employed 
metrics might not represent the most optimal selection for 
assessing the model's effectiveness. 

 
On the EuRoC MAV dataset both models performed significantly 
worse than on the other two datasets. The MSE is relatively 
high and the predicted trajectories appear to be far from the 
actual trajectories. The only difference with the other two 
datasets is that the model is now predicting the position in 3D 
rather than 2D. That could be one possible reason for the 
underwhelming performance. However, it is more probable 
that the model is not using the correct features to make 
accurate predictions.  

 
From the results it appears that the CNN-LSTM model 
performed slightly better. It was able to achieve a lower MSE 
than the models which did not use the CNN and produced 
better graphs. Though, the difference is not significant enough 
to conclude that the CNN-LSTM approach is better.  
 

6.4 CNN 
Although a Convolutional Neural Network can improve the 
accuracy of LSTM trajectory prediction models as shown by Xie 
et al. [2020] and Ma et al. [2020], it is most likely not necessary 
to use a deep CNN like MobileNet. In the aforementioned 
research, only a single convolutional layer is used with a 
pooling layer, whereas a deep CNN like MobileNetV3 contains 
multiple convolutional layers and significantly more layers in 
total. This may not be necessary to achieve accurate results, and 
using a smaller CNN would improve the computational 
efficiency as well. In the context of smart bicycles it may 
therefore be better to opt for a smaller CNN than the one used 
in this research.  
 
 

7   CONCLUSION 

In conclusion, our findings show that an LSTM based approach 
for trajectory prediction using affordable sensors can predict 
the trajectory approximately. The CNN-LSTM hybrid 
architecture produced slightly better results, though these 
results are not convincing enough to conclude that the CNN-
LSTM approach is superior. MobileNet, the CNN used in this 
research, may not have been the best choice. It is a deep 
network meaning that it may not be the best choice for 
performance constrained devices such as smart bicycles. Using 
a simpler CNN could improve computational efficiency and can 
still lead to good results as shown in other research.  
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The fact that relatively inexpensive sensors were used in this 
approach though does show that it is not necessary rely on 
expensive sensors such as Lidar for trajectory prediction. When 
it comes to accuracy though, the models shown in this research 
did not perform as well as they should, which indicates future 
research is necessary before these systems are usable in driver 
assistance systems for cyclists. The datasets created in this 
research were unfortunately lacking an accurate ground truth 
due to a sensor limitation. Though, even on the EuRoC MAV 
dataset with an accurate ground truth the models did not 
perform well, indicating a better trajectory prediction model 
architecture is needed.  Potential improvements therefore 
include creating a larger and more accurate dataset for bicycles 
to train the model on, and an improved model architecture.  
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