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Abstract

Detecting speech with a radar has several benefits over a regular microphone, i.e., the radar
is tolerant to ambient noise. In addition to this, a radar based microphone could locate the
exact location of the speaker, which is not possible with a single microphone. In this thesis
we study the implementation of detecting speech with a Frequency Modulated Continuous
Wave (FMCW) radar. A spectrogram of a viseme is extracted using the Short Time Fourier
Transform (STFT). These visemes are the input of a Convolutional Neural Network (CNN),
which can classify the visemes. Eventually, it was shown that there is uniqueness in the
spectrograms of visemes. The proposed CNN has an accuracy of 70% in detecting the right
visemes.

1 Introduction

This thesis is about using Frequency Modulated
Continuous Wave (FMCW) radar to detect what a per-
son is saying. The recent advancements of semiconduc-
tor devices and signal processing have improved the
performance and reduced the price and size of FMCW
radars [1]. FMCW radars are used in a wide variety
of applications, i.e. weather forecasting, surveillance
systems and automotive vehicles [1].

FMCW radars can achieve operating frequencies of
extremely high frequencies (between 30 and 300 GHz).
As the wavelength of these frequencies are in the order
of millimeters, these radars are also called millimeter
wave (mmWave) radars. Because of the small wave-
lengths, it is possible to detect small movements. Lots
of research has already been done in monitoring vital
signs (heart rate and breathing rate) [2], [3] and [4].
These sources show that it is possible to detect the
small movements of a person’s chest and retrieve the
vital signs from this.

There are already studies showing possibilities in
”hearing” with antennas. WiHear [5] is a system that
utilizes WiFi signals to detect movements of the lips.
WiHear can recognize a set of vowels and consonants.
So, when a word is said, it combines the detected vowels
and consonants into words. It is able to have an accu-
racy of 91% in detecting words on one person speaking
not more than 6 words [5]. WiHear did not make use
of FMCW radar, however there is research that does
make use of FMCW for speech detection. In [6] and [7],
a FMCW radar is used to detect the vibrations in vo-
cal folds. When speaking, these vocal folds vibrate at
different frequencies, which can be converted to speech.

The main question of this thesis is: Is it possible to
”hear” with radar?. The goal is to aim the radar at

the face of the user and convert the facial movements
to speech. Facial movements could be the movements
of lips, jaws, tongue, etc.

A system like this would be applicable in a scenario
where there is a lot of ambient audible noise. An audio
based microphone is based on sound waves, which are
disturbed with this noise. A system which can detect
speech by means of FMCW radar, has immunity to this
audible noise, making them able to detect speech, even
in such environments. In addition, the radar based sys-
tem would be able to detect exactly where the sound
was coming from. This is not possible with using a
single microphone.

In this thesis, theory about FMCW radar and
about visemes will be covered. Visemes are what the
radar is going to detect. In the following section the
processing methods will be explained. How the data
is stored and what algorithms are applied to go from
raw radar data into a spectrogram that can be used
for classification. After that the results will be shown,
followed with a discussion and conclusion.

2 Theory

2.1 FMCW Radar

In FMCW radar, the transmitted signal is fre-
quency modulated by so-called chirps. These chirps
increase the frequency linearly over time. In Fig. 1
both the transmitted and received chirps are displayed.
When the signal gets reflected by a target, a frequency
shift (fD) and/or time shift (∆t) occurs. This signal is
picked up by the receivers. From the frequency shift,
the velocity of the target can be determined. This is
due to the Doppler effect. From the time shift, the
range can be determined. Since a greater distance
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means more time is passed before the signal hits the
target and reflects back to the receiver. Both the
Doppler shift and time shift contribute to a combined
frequency shift (∆f). The transmitter sends out both
an in-phase and a quadrature-phase signal. This is
necessary to determine the direction of the target. If
only an in-phase signal was transmitted, the frequency
difference will still be the same if the velocity would
change sign. However, for a quadrature phase signal,
there will be a phase shift of π relative to the in-phase
signal, when this sign change occurs. Meaning the in-
phase signal will lead or lag depending on if the target
moves closer or away. We obtain the frequency dif-
ference (∆f), by mixing the transmitted and received
signals. This difference is called the beat frequency.
The beat frequency is important since it contains both
information on the velocity and range.

Figure 1: Time-frequency plot of chirps [8].

The chirps have certain parameters which can be
tuned and adjusted to the scenario in which the radar
is used. The chirp bandwidth (B) can be adjusted.
This is the bandwidth of the linear sweep. This sweep
happens with a frequency slope (S), which determines
the rate in which frequency increases. The chirps du-
ration (TC) and the amount of chirps (NC) can also be
adjusted.

These parameters together influence the range res-
olution, maximum unambiguous range, velocity resolu-
tion and maximum unambiguous velocity of the radar.
The formulas for these are given in (1) and (2) from
[9]. Where λ is the wavelength, which is the speed of
light divided by the operating frequency of the radar,
λ = c/fc. And, fmax is the maximum frequency sup-
ported by the radar, which is is 0.9 times the ADC
sampling frequency (fs) [9].

dres =
c

2B
and dmax =

fmaxc

2S
(1)

vres =
λ

2NCTC
and vmax =

λ

4TC
(2)

The radar module also has 4 transmitters and 3 re-
ceivers, creating a virtual array of 12 antennas. This
creates the possibility to determine the angle of the
target. In this thesis the virtual array will not be used
to estimate the angle of the target. This is because the
location and the angle of the target are already known
Therefore the principle on the angle estimation will not
be covered. However, it is convenient to be aware of

the fact that there are multiple transmit-receive pairs
from which the data can be processed.

The radar module used in this thesis is the Texas
Instruments’ IWR1443BOOST. It is a FMCW radar
operating at a frequency ranging from 71 GHz up to
81 GHz [10]. The IWR1443BOOST is connected to
Texas Instruments’ DCA1000EVM capture card. This
device captures and saves the data, such that it can be
processed later on.

2.2 Visemes

We take inspiration from lip readers for speech de-
tection. Lip readers make use of visemes. These are
the visual representation of phonemes. Lips, jaws,
tongue and other facial features will move differently
for different phonemes. Visemes are common utilized
in lip-reading detection techniques [11]. Note that
there is no one-to-one relation between visemes and
phonemes. There are more phonemes than visemes.
Several phonemes can fit into one viseme. For instance,
the viseme for pronouncing the letter b is identical to
the letter p. Therefore it becomes a complex task to
translate visemes back to words. There are algorithms
available to convert a sequence of visemes into a sen-
tence by making use of machine learning [11]. However,
converting visemes to speech is outside the scope of this
thesis.

Compared to the phonemes, for which an extensive
library and proper documentation is available, visemes
are less common and therefore have not much clear doc-
umentation. A vocabulary of visemes is created, based
on [12]. These include the visemes and phonemes dis-
played in Table 1. For simplicity, not every viseme is
used in this thesis. A selection has been made, which
can be seen in Table 1.

Viseme Phoneme Sound Used?

P p, b, m october

F f, v final

T t, d, s, z, th, dh tea

W w, r water

CH ch, jh, sh, zh change

K k, g, n, ng, hh, y case

IY iy, ih bit

EH eh, ae second

AA aa garden

AH ah garden

ER er bird

AO ao over

UH uh, uw book

Table 1: Viseme Vocabulary.

There are more approaches to detecting what a per-
son is saying. Another approach could be to monitor
entire words, instead of each viseme. However, this
would create a large database and make processing
more complex. Visemes can be seen as building blocks
of words, with a small set of visemes a lot of words can
be made. Resulting in a larger range of words that can
be detected.
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Previous research shows that it is possible to de-
tect sections of words and combine them into words.
In [5], a system was created that detects consonants
and vowels and converts those into words. This shows
that there are possibilities in detecting smaller portions
of words, and converting them into words.

3 Methods

The following section covers the processing of the
data. The measurements itself are done using the
mmWave Studio software from Texas Instrument. In
this program, the radar can be connected and the pa-
rameters can be set. After doing the measurements in
mmWave Studio, the data is exported to a .bin file and
processed in MATLAB. In Fig. 2 the pipeline of the
data processing is displayed.

3.1 Radar Cube

Every chirp has its own amount of samples. This
amount is a parameter that can be adjusted. Meaning
for one chirp, the received data is a one dimensional
array of these samples. However, there is more than
one chirp used in a frame. The samples of all different
chirps are then stored in a two dimensional array. And
since there are multiple transmit-receive pairs because
of the virtual array, which all have their own chirps se-
quence, the final data is stored in a three dimensional
array. The size of this three dimensional array is deter-
mined by the number of ADC samples per chirp, the
number of chirps, and the amount of transmit-receive
pairs. This way of arranging data is referred to as a
radar cube. In Fig. 3 a radar cube is displayed. The
dimension over which all the samples per chirp is given
is called the fast time, the dimension for each chirp
is called the slow time and the sensor space is for each
transmit-receive pair. A MATLAB code will transform
the .bin file from mmWave Studio into a radar cube.

The radar sends out these bursts of chirps in frames.
The duration of the frames (Tf ) and the amount of
frames (Nf ), have influence on how long the measure-
ments goes on. Important is that each frame gets its
own radar cube.

Figure 3: Radar cube dimensions

3.2 Locating The Target

After the radar data is transformed into radar cube,
the target needs to be located. The way to do this is by
making a range profile and implementing a Constant
False Alarm Rate (CFAR) detection. For this, some
assumptions are made. First of all, the target is speak-
ing right in front of the camera with his or her mouth
at the height of the antennas. This makes sure that
the target is in the region of the antenna where it has
the most gain. This results in a strong received signal.
With these assumptions it is possible to find the target
using a one dimensional range profile.

To get the range profile, we need to take the FFT
of the fast time axis of the radar cube. After this, we
choose one transmit-receive pair from the sensor space.
Then, the average over the slow time will be taken re-
sulting in a one dimensional range FFT.

To locate the target, a cell averaging CFAR detec-
tor is used. What CFAR does is taking a cell, often
called the cell under test (CUT), and comparing it to
a threshold. If it exceeds this threshold, a detection
is made. However, this threshold is not a fixed value.
In cell averaging CFAR, the threshold is based on the
average noise power of the cells around the CUT. By
setting a training window size and guard window size,
the cells of which the noise power will be calculated can
be selected. The training window size determines how
many cells around the CUT will be used. However, the
guard cells directly next to the CUT will be neglected
to remove interfering from the power of the CUT. An
schematic of this is given in Fig. 4.

Figure 4: Cell averaging CFAR [13]

The average noise power for the CUT is given with
(3), where xm are the training cells.

Pn =
1

N

N−1∑
m=1

|xm|2 (3)

The algorithm goes through every cell from the
range FFT as a CUT, and compares the noise power
to a set threshold. If this threshold is exceeded, a de-
tection is made.

3.3 Short Time Fourier Transform

We locate the range bin of the target for every frame
and concatenate the slow time arrays of all the frames.
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Figure 2: Pipeline of the data processing

This results in a slow time axis of the entire measure
time. Now the data needs to be processed in such a
manner that different visemes can be distinguished.
Movements in the face cause frequency shifts in the
received signal of the FMCW radar. Therefore we use
the Short Time Fourier Transform (STFT) to capture
these movements. The advantage of the STFT over the
FFT, is that it shows the time at which the frequency
shifts occur. We chose the STFT over the FFT since
not all the visemes take the same amount of time. One
may take a few milliseconds longer than the other. The
STFT shows therefore more information than a FFT.

X[m,ω] =

∞∑
n=−∞

x[n]w[n−m]ejωn (4)

In (4), the mathematical formulation for the dis-
crete STFT is given. Where x[n] is the input signal
and w[n] is a windowing function. The window func-
tions is centered around a certain time m, which means
only the frequency spectrum around this time instance
gets computed. Then the spectrum is computed, the
window shifts forwards in time a little and then an-
other spectrum is calculated. This procedure is then
repeated until there are spectra of the entire time dura-
tion of the signal. When all the spectra are calculated,
they are combined into a spectrogram. In Fig. 5 the
principle of the STFT is shown.

Figure 5: Principle of the STFT [14].

The final spectrogram shows the magnitude of the FFT
for different frequencies and times. Now we can see at
what times the frequency changes, giving us more infor-
mation on the actual movement of the face compared
to using only one FFT.

3.4 Radar Parameters

For the detection of the small lip movements a high
range resolution is necessary. The range resolution de-
termines how close two objects can be together, whilst
still being two distinguishable targets. Since the lips of
a human are closely spaced, we need the highest range
resolution possible. In addition, we want a high res-
olution STFT spectrogram. Therefore, the slow time
axis of the radar cube needs to be long. This can be
achieved by having many chirps per frame with many
samples. Taking these two requirements into account
resulted in the parameters displayed in Table 2. The
number of frames is not given in Table 2, since it only
determines the total time duration of the measurement,
which may vary depending on what is being measured.

Parameter Value

Frequency slope 39.976 MHz/µs

Idle time 200 µs

ADC start time 6 µs

ADC samples 280

Sample rate 3 Msps

Ramp end time 100

Bandwidth 3997.6 MHz

Number of frames 600

Frame duration 80 ms

Number of chirps 255

Table 2: Used FMCW radar parameters.

These parameters yield a range resolution of 3.75 cm
and an unambiguous maximum range of 10.1 m. As
for the velocity, the resolution is 0.0254 m/s and the
unambiguous maximum is 3.2445 m/s.

3.5 Convolutional Neural Network

After the measurements with the radar have been
performed, we need to have a method to check which
viseme corresponds to the STFT spectrogram. To do
this, a Convolutional Neural Network (CNN) is used.
CNNs are commonly used in image recognition. And
after training the network, it can classify images and
attach a label to it. One of the many advantages of a
CNN is that it is tolerant to translations or rotations
of the image [15]. This makes it ideal to be used for
spectrogram classification.

The CNN is a process that consist of several layers.
An overview of the CNN architecture is given in Fig.
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6. It starts with an input layer and ends with an out-
put layer. In between, there are multiple hidden layers.
The hidden layers contain a repetition of a convolution
filter, a Rectified Linear Unit (ReLU) layer and a pool-
ing layer. The convolution layer convolves the input.
It does this by having a adjustable filter and applying
that on the input. The layer does not apply the filter
directly on the entire image. It divides the image up
into smaller sections and then applies the filter on those
sections. This is why the CNN is tolerant to transla-
tions and rotations as mentioned before. The purpose
of the convolutional layers is to extract features. Then,
the data gets centered and normalized in a normaliza-
tion layer. After this, there is a ReLU layer, which
makes all the negative values equal to zero. This layer
is also called an activation layer. This decreases the
computation necessary. Next, the data goes through
a pooling layer. In this layer the data gets downsam-
pled, which reduces the computational effort. These
layers (convolutional, normalization, ReLu and pool-
ing layer) are repeated several times before going to
the output layer. In this layer there will be classifica-
tions made with a fully connected layer and a softmax
layer. Resulting eventually in probabilities of the fea-
tures present in the image.

Figure 6: CNN Architecture [15].

After the CNN is setup, it needs training before it
can classify images. There are multiple training op-
tions. One which can be used for spectrogram classi-
fication is the stochastic gradient descent [16]. With
this method, parameters such as the learn rate can be
chosen. This value determines how much the network
should change if it occurs an error during training. Also
the amount of epochs can be specified. An epoch is the
amount of times the network runs through the training
data.

3.6 Implementation

For the range FFT, a length of 256 was used. The
CA-CFAR was implemented using the phased array
toolbox from MATLAB. The training window was set
to 32 cells, with a guard window of 8 cells. The noise
power threshold was set to 18 dB. These values are
based on how the mmWave studio typically processes
the data. For the STFT, a periodic Hann window is
used with a length of 450 samples. These windows
overlap with 400 samples. The length of the FFT is
2048.

The setup for the CNN algorithm in this thesis is
based on [16] and [17]. The used CNN in this thesis

has 4 convolutional layers, 4 pooling layers, 4 ReLU
activation layers and batch normalization. The kernel
size of each convolutional layer is 3 by 3. The kernel
numbers of the convolutional layer are 8, 16, 32 and 64
respectively. After each convolutional layer there is a
maximum pooling layer with a 2 by 2 size and a stride
of 2. The input is an image of size 656 by 875, which
is the size of the spectrogram when exporting it as an
image in MATLAB.

The CNN has been trained with a dataset. This
dataset contains the STFT spectrograms of the 9 differ-
ent visemes from Table 1. For each viseme, a measure-
ment has been made where every 4 seconds, a viseme is
pronounced. The person pronouncing the viseme was
in front of the radar at about 80 centimeters and on the
same height as the antennas of the radar. The STFT
spectrogram is then divided into smaller sections such
that every plot contains one viseme. In total every
viseme has been repeated 90 times. Since there were
measurement for 9 visemes, the total dataset is 810 im-
ages. From the 90 images per viseme, 70 of them are
for training. The remaining 20 images are for valida-
tion. The network itself is trained using the stochastic
gradient descent algorithm with an initial learn rate of
0.01 and the maximum amount of epochs is 20.

4 Results and Analysis

4.1 Separate Visemes

In Fig. 7, the STFT spectrograms of three of the
nine visemes are displayed. On the horizontal axis, the
time is displayed. The entire measurement took 204
seconds in total. The plot shows for clearness only a
section of this total time. The frequency is displayed
on the vertical axis. The movements of the face cause
changes in frequencies, which can be seen in the plots.
The color indicates the magnitude of an included fre-
quency. The horizontal yellow line in the center indi-
cated the non moving parts, which is present during
the entire measurement, because non-moving objects
do not contribute to a change in frequency.

As it can be seen in Fig. 7, there is a repeating pat-
tern in the spectrogram for every viseme. This pattern
is unique for every viseme. This shows indeed possibil-
ity in classifying visemes. However, not all the viseme
patterns are as distinguishable. In Fig. 8, the visemes
for AH and EY are shown. These visemes both have
a big peak going down with a smaller peak going up
at the same time, followed by a smaller peak going up.
Because of this, they are hard to distinguish by obser-
vation.

The frequency range of all the visemes is roughly
between -600 and 600 Hz. The lower frequencies come
from the facial movements of moving the lips, jaws,
tongue, eyebrows. These move at relatively slow veloc-
ities. The higher frequencies come from the vocal folds
in the throat. This results matches with the results of
[6], in which vocal folds vibrations are extracted using
FMCW radar. These frequencies were between -500
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Figure 7: STFT for different visemes.
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Figure 9: Validation of the CNN.

The separate visemes have been put through the
CNN with a testing set. The results of this are plot-
ted in the confusion matrix in Fig. 9a. The total ac-
curacy of the CNN was 70%. The accuracy is lower
than the accuracy of a CNN for gesture recognition. In
[16], they have an accuracy of around 90%. However,

since gestures with hands and arms are more distinct
and unique movements compared to facial movements.
Therefore 70% is a good accuracy. In Fig. 9a, the
rows of the matrix corresponds the true viseme and the
columns to the predicted viseme. The numbers on the
diagonal show correct classifications and the numbers
not on the diagonal are incorrect classifications. Fig.
9b gives the precision per viseme. The visemes that
were overall the most distinguishable were the AO, P,
T, K and W. The least distinguishable visemes were
AA, AH, ER and EY. There are a few weak points in
the classification, where there is a high amount of in-
correct classifications. One of them is the viseme for
ER getting classified as AH (8 times). This is explain-
able, since these visemes correspond both to almost
the same sound. The AH was pronounced as the e in
garden and the ER as the i in bird. Therefore, it is no
coincidence that the algorithm has trouble with clas-
sifying these visemes. Another weak point is the AA
viseme getting classified as an EY viseme (8 times).
These visemes belong to a different phoneme, but they
appear to have a similar STFT pattern. As it can be
seen in Fig. 8. They both have a big peak going down
first, with a smaller peak going up at the same time.
Followed by a small peak going up.

4.2 Combining Visemes Into Words

In addition to analyzing single visemes, the detec-
tion of words was also investigated, to see if it was
possible to split up a word into its visemes and de-
duce what word is said. In Fig. 10a, the spectrogram
for the word time is given. The white lines indicate
the the end and start of the visemes, which have been
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Figure 8: STFT of viseme for AH and EY.

placed in manually. The visemes of the word time are,
according to [12], T-AH-P. These visemes have been
displayed in Fig. 10b. After inspection, the resem-
blance of the viseme for T and AH from Fig. 10b can
be seen in Fig. 10a. For the T, there is a small peak
going down first and then one peak of approximately
the same size going up. The AH viseme has a peak
going downwards followed by a smaller peak going up.
However, the viseme for P is a little different. In Fig.
10b, this viseme has one peak going up and one going
down of about the same amplitude at the same time.
Whereas the P in Fig. 10a only has a significant peak
going down. The peak going up is less distinct. This
can be explained by the fact that the letter pronounced
is a m. In [12], the pronunciation of the m is classi-
fied under the viseme P (see Table 1). However, the
database of the viseme P is filled with someone repeat-
ing the letter p, instead of the m. The pronunciation of
m has apparently different facial movements compared
to the pronunciation of p, which results in a different
spectrogram pattern.

The spectrogram of the word in Fig. 10a has been
separated into three images indicated by the white
lines. The CNN classified these images with the fol-
lowing visemes: T-AH-AA, meaning the CNN deals
with the same problem.

5 Discussion

There are still improvements to be made. The first
part that can be improved is the vocabulary. The con-
cept of using visemes might not be accurate enough.
The main motive for choosing visemes was because the
radar was supposed to do something similar to lip read-
ing. However, as it turned out, the radar captures more
than just lip movements. Movements of the jaws, eye-

brows and vocal folds, give information beyond just lip
movements. Meaning the viseme library might come
short. An example of this was seen in the conclusion,
where the letter m from the word time did not corre-
spond with its viseme. The reason for this is probably
that the lips do correspond to approximately the same
movements, but the rest of the face does not. There-
fore it might be better choice to base the vocabulary
on phonemes, instead of visemes.

To increase the accuracy of the CNN, better pa-
rameters need to be chosen. The parameters for the
networks were inspired on two image recognition net-
works [15] and [16]. There was some trial and error
in seeing which parameters worked best, however more
testing and a deeper understanding of the CNN might
yield a higher accuracy. More training data would also
increase the accuracy.

A final improvement that could be made to the sys-
tem is regarding its robustness. In this thesis, the loca-
tion of the target was given, which makes the detection
of the target relative easy. In addition to this, the tar-
get was in a convenient position right in front of the
radar and not that far away. As mentioned briefly in
Section 2.1, the used radar has an array of antennas.
This feature allows the antenna to distinguish the angle
of targets and makes it possible to process multiple tar-
gets at once [18]. Combining this with beamforming,
which steers the aperture of the antenna, the system
could also locate the targets itself.

Next to this, all the patterns of the visemes were
measured on a non-moving target. If there were body
movements from the target, it may cause interference
in the spectrograms. Therefore the system can become
more robust if a body movement cancellation was ap-
plied. This filters out body movements making the
system usable in an environment in which the target
has movement [3]. Thus, applying the virtual array
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(a) STFT of the word time.
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Figure 10: STFT of time and its visemes.

for angular separation, beamforming for target detec-
tion and body movement interference removal makes
the system overall more robust.

6 Conclusion

In this thesis, it was investigated whether it is possi-
ble to ”hear” what someone is saying by using FMCW
radar. The parameters of the radar were set up in
such a way that it could detect the small movements
of the face. This was achieved by having a high range
resolution and high sample rates. After obtaining the
location of the target by applying cell averaging CFAR
on the range FFT, the corresponding range bin is pro-
cessed with a Short Time Fourier Transform. This re-
sulted in a spectrogram of the facial movements. A
vocabulary of visemes was used to distinguish the dif-
ferent pronunciations, meaning that every viseme has
its own spectrogram pattern. These spectrograms were
input for a Convolutional Neural Network, which after
training, could classify 70% of the visemes correctly.
Also it was shown that a word can be separated into
its visemes and a CNN can be applied on these visemes.
Further improvements are necessary to refine the sys-
tem. Such as a more extensive vocabulary and a more
accurate CNN. Nevertheless, this thesis shows poten-
tial in detecting speech with FMCW radar.
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