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Equilibria in the Two-Stage Facility Location Game With
Unsplittable Clients

M.C. Vos

July 21, 2023

Abstract

We consider a non-cooperative facility location game where facility and client play-
ers strategically interact on a given host graph. This is represented as a sequential
game comprised of two stages, where each stage is a simultaneous game with disjoint
player sets. In the first stage, each facility player chooses a vertex of the host graph
on which to place their facility. In the second stage, each client player strategically
chooses a probability distribution over the facilities in their neighborhood, denoting
the likelihood of visiting each facility. Facility players aim to maximize the expected
attracted purchasing power. Clients aim to minimize the expected congestion they
encounter, where we assume that the congestion at each facility is proportional to
the total purchasing power of clients patronizing the facility. In contrast to recent
publications on similar games, we assume that clients cannot split up their purchas-
ing power over multiple facilities. We demonstrate the existence of instances of this
game that admit no subgame perfect equilibria and show that determining the exis-
tence of such equilibria is NP-hard. Additionally, we establish sufficient conditions for
the existence of such equilibria, notably the condition of all clients possessing equal
purchasing power. For this unweighted game, we present an algorithm to compute sub-
game perfect equilibria and analyze their efficiency by providing bounds on the price
of anarchy and stability. Lastly, we examine the existence of approximate subgame
perfect equilibria.
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1 Introduction

1.1 History and Context

Facility location games have been a common topic of research in the fields of economics,
mathematics, and theoretical computer science for several decades. In the broadest sense,
facility location games deal with a set of facilities that must be placed on some underlying
space to serve a set of clients. The chief distinction between different settings within the
field of facility location games is whether it is cooperative or non-cooperative/competitive.

In cooperative settings, there is some central authority that chooses the location for
all facilities. The goal in such games is to determine what placements are optimal with
respect to some function, usually related to the distance from customers to the facilities.
Examples include the geographical distribution of hospitals, police, or fire stations by a
government. Techniques from optimization and combinatorics are well-suited to solve such
problems.

In this thesis, we focus on competitive facility location games. Competitive facility
location games deal with the placement of facilities (e.g., ice-cream trucks, shops, bars) by
competing players. These players selfishly place their facilities to maximize some individual
payoff function. These games are often analyzed using game-theoretic techniques.

The origin of this field is Hotelling’s [14] seminal paper from 1929. This work con-
cerns a model of a one-dimensional space (e.g., a street) on which multiple competing
entrepreneurs want to open a facility. Like most subsequent work, Hotelling’s primary
focus was developing insight into the equilibrium patterns within these games. He showed
the importance of the geographical location of a facility in relation to that of the competi-
tor(s) in competitive markets. He proved what we now know as the principle of minimum
differentiation, the tendency for competing businesses to make their product and geograph-
ical location as similar as possible. His model was refined to the Hotelling-Downs model
by Downs [7] when he applied it in a more abstract way to the field of political science.
He represents the political spectrum as a line, on which all voters are located according to
their political ideology. The location chosen by a party represents its political position. In
this model, the clients (i.e., the customers/voters) choose the facility (i.e., the store/party)
closest to them on the line.

The majority of subsequent literature in the field results from changing this basic model
in various ways. Examples are: relaxing different assumptions on this basic model, adding
more decision variables (e.g., price), changing the space on which the game is played (e.g.,
d-dimensional spaces, networks), and changing the behavior of the clients. Much of this
was influenced by the wide range of applications of the basic model. For a broad overview
of results in different dimensions of choice, we refer to survey papers ([13], [20]).

The client behavior in the Hotelling-Downs model is very basic. In most applications,
clients determine which facility is most attractive based on more than just the travel
distance. Modeling this gets especially involved when this depends on the choices of other
clients. Kohlberg [16] assumed that the clients choose a facility based on both the distance
and the congestion at each facility, the latter depending on the market share of the facility.
One could view this as the clients competing with each other and having to strategize
accordingly. In Kohlberg’s model, equilibria do not exist for games with three or more
players.

Another interesting assumption regarding client behavior is considered by Feldman et
al. [10]. They assume that clients have some maximum distance that they are willing to
travel and that if there is no facility within this range, they simply choose not to patronize
any facility. For this model, equilibria always exist, independent of the number of facility
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players.
Recently, Krogmann et al. [17, 18] published two papers on a model which combines

the models of Kohlberg and Feldman. They move the game to a graph network, with a
discrete, weighted client located on each vertex. The directed edges of the graph encode
which locations can reach other locations, to easily represent the limited ranges of the
clients. The game is played in two stages. In the first stage, each facility player selfishly
chooses a location (vertex) for their facility. Then, given this facility placement, the clients
selfishly distribute their purchasing power over the facilities they can reach. The facility
and client players thus both face strategic decisions, resulting in a sequential game of two
stages, where each stage is a simultaneous game. In their first paper [17], the clients aim to
minimize their maximum waiting time. In their second paper [18], the clients instead aim
to minimize their total waiting time. The authors show that subgame perfect equilibria
always exist in the former case, but not necessarily in the latter case.

In this thesis, we present a third type of client behavior for this two-stage facility loca-
tion game. We consider unsplittable clients: clients who cannot distribute their purchasing
power over different facilities and aim to minimize the expected waiting time (congestion)
at the one facility they patronize. As we allow clients to randomize their behavior, i.e.,
play mixed strategies, we consider the expected waiting time of each client, which is re-
lated to the expected load on each facility. We show that for this client behavior, subgame
perfect equilibria do not exist in general, and find classes of problems where their existence
is guaranteed.

1.2 Further Related Work

There is ongoing research in various fields within the broader topic of competitive facility
game analysis. One area that has seen significant activity is the study of (strategy-proof)
mechanism design for facility location problems. Strategy-proof mechanisms are rules
designed to discourage players from misrepresenting their intended actions to gain an ad-
vantage in situations where information asymmetry is a factor. The objective of such rules
is to maximize the social welfare of the clients, often measured as some function of their
distance to the closest facility. Procaccia and Tennenholtz [26] studied this problem on a
line, providing tight bounds on the approximation ratio for certain mechanisms. Subse-
quently, researchers explored different underlying spaces and objective functions [2, 19, 11,
10]. Moreover, there has been growing interest [4] in games involving “obnoxious” facili-
ties, where clients aim to maximize their distance from facilities due to factors like noise
or pollution. We refer to the survey by Chan [3] for an extensive overview of mechanism
design for facility location games.

Another type of facility location game is the “Voronoi game”. In this game, two com-
peting players take turns placing facilities in a given space. The clients then patronize the
closest facility. The goal for the facility players is then to maximize the portion of the
clients that patronizes one of their facilities. Ahn et al. [1] studied the game played on a
line segment or a circle, while Cheong et al. [5] examined the “One-Round” Voronoi game,
where one player places all their facilities first, followed by their opponent. Both publica-
tions analyze optimal strategies in such games. Dürr et al. [8] analyzed Nash equilibria in
a variation of Voronoi games played on a graph with more than two players, where each
player is only allowed to place one facility.

Lastly, numerous publications focus on different types of “pure” Hotelling games. Núñez
and Scarsini [23] demonstrated that in a model where all clients have strict preferences
over a finite number of possible facility locations, pure equilibria exist when the number
of facilities is sufficiently large. Fournier [12] analyzed approximate equilibria in pure
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Hotelling games on a graph, proving that such equilibria always exist when the number
of facilities is large. Peters et al. [25] iterated on Kohlberg’s [16] model, and derived
conditions under which subgame perfect equilibria exist for an even number of facility
players.

1.3 Outline of the Thesis

The main goal of this thesis is to analyze equilibria for two-stage facility location games
with unsplittable clients, with a primary focus on subgame perfect equilibria. In Chapter
2, we formally introduce the mathematical model and examine both stages of the two-stage
game as independent, single-stage games. We discuss the concept of Nash equilibria for
these single-stage games. Finally, we introduce the concept of subgame perfect equilibria
within the context of the two-stage model and show that these subgame perfect equilibria
may not exist in general.

In Chapter 3, we evaluate some of our model choices. We argue that certain instances
may be interpreted as different representations of the same underlying problem, and show
how to map instances in one representation to those in another. These different repre-
sentations are useful for the construction of examples. The chapter serves two additional
purposes: firstly, it allows the reader to become familiar with the model before getting to
the more complex results. Secondly, it provides meaningful discussion on which properties
of an instance are fundamental to the underlying problem, and which are only consequences
of the way we choose to represent the problem. Although the results of this chapter are
interesting, they do not directly pertain to the main topics of this thesis. Therefore, read-
ers can choose to skip this chapter without any loss of comprehension in the subsequent
chapters.

In Chapters 4 and 5, we examine sufficient conditions for the existence of subgame
perfect equilibria. Chapter 4 contains most of the theoretical foundations necessary for
these results. It also demonstrates that subgame perfect equilibria are guaranteed to exist
for instances that admit a so-called balanced client equilibrium profile. Additionally, we
present an algorithm that finds a specific client strategy profile, which is utilized in later
results. In Chapter 5, we employ the developed theory to show that unweighted instances
always admit subgame perfect equilibria. The chapter also includes counterexamples for
some classes of problems which one may expect to always admit subgame perfect equilibria.

In Chapter 6, we investigate the efficiency of subgame perfect equilibria (when they
exist) by establishing bounds on the price of anarchy and the price of stability.

Chapter 7 concerns the problem of deciding whether a given instance of the two-stage
facility location game admits a subgame perfect equilibrium. We show that this decision
problem is generally NP-hard.

In Chapter 8, we consider approximate (subgame perfect) equilibria, which are states
out of which facility players may be able to improve, but so that no player can improve by a
factor greater than a certain value α. We show the existence of instances that do not admit
any ϕ-approximate equilibria, even when there are only two facility players, with ϕ denoting
the golden ratio. We show that the problem of deciding whether a given instance of the
two-stage facility location game admits an α-approximate subgame perfect equilibrium
is NP-hard, for any given α < ϕ. Moreover, we show that a k-approximate equilibrium
is guaranteed to exist, where k denotes the number of facility players. Additionally, we
outline our efforts to narrow the gap between these two numbers for games with two facility
players.
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2 The Two-Stage Facility Location Game

2.1 Model and Notation

We consider a model similar to the one formulated by Krogmann et al. [17, 18], with some
changes and additions to enable the description of the different client behavior. We consider
the two-stage facility location game (2-FLG), where two types of players, k facilities and n
clients, strategically interact on a given vertex-weighted directed host graph H = (V,A,w)
where V = {v1, . . . , vn} is the vertex set, A is the arc set and w : V → Q+ is the
vertex weight function. Each vertex vi ∈ V represents a client with weight w(vi), while
simultaneously functioning as a possible facility location. We denote the set of facility
players as F = {f1, . . . , fk}. The location function U : F → 2V denotes the location set
U(fj) of each facility player fj ∈ F . The location set U(fj) ⊆ V denotes the set of vertices
that facility player fj may choose as their location. An instance of 2-FLG is denoted using
the tuple (H,U , k).

The two-stage facility location game consists of two stages, which are played sequen-
tially by disjoint sets of players. Each of these stages is a simultaneous game. In the
first stage, each facility player fj selects a single location vertex sj ∈ U(fj) to place their
facility, where multiple players can select the same vertex. We call the resulting vector
of location vertices s = (s1, . . . , sk) the facility placement profile (FPP), and denote with
S ⊆ V k the set of all possible facility placement profiles.

After all facility players have chosen a location, the second stage of the game starts.
In this stage, each client may consider patronizing any facility in their shopping range
N(vi) := {vi} ∪ {z | (vi, z) ∈ A}. Similarly, we define the attraction range As(fj) of a
facility fj as the set of clients it can serve for the given facility placement profile. That
is: As(fj) := sj ∪ {vi | (vi, sj) ∈ A}. For a facility placement profile s ∈ S, we denote
with V cov(s) ⊆ V the set of covered clients: clients with at least one facility in their
shopping range. Every covered client vi ∈ V cov(s) must patronize exactly one facility and
strategically decides on a probability distribution representing the likelihoods of patronizing
each facility in their shopping range. Let σ(s) : V → [0, 1]k denote the client subgame
(strategy) profile resulting from the decisions of the clients. Here, σ(s)i,j denotes the
probability that client vi patronizes facility fj . The term subgame refers to the fact that
σ(s) characterizes the behavior of the clients for a specific part of the two-stage game:
the subgame related to the facility placement profile s. We call σ(s) feasible if all covered
clients choose a probability distribution over the facilities in range, and all uncovered clients
are guaranteed not to patronize any facility:

Definition 2.1. For some instance of 2-FLG and some facility placement profile s ∈ S, a
client subgame profile σ(s) is feasible if for each client vi ∈ V , we have:

σ(s)i,j = 0 ∀ fj /∈ Ns(vi)

σ(s)i,j ∈ [0, 1] ∀ fj ∈ Ns(vi)∑︂
fj∈Ns(vi)

σ(s)i,j =

{︄
1 if Ns(vi) ̸= ∅,
0 else.

In sequential games, the strategy of a player characterizes their behavior for every
possible situation. The strategy of a client player in the two-stage facility location game
thus describes their behavior in response to every facility placement profile. A strategy
profile characterizes the strategies of all players. As such, let σ : S × V → [0, 1]k denote
the client (strategy) profile, which is characterized by a client subgame profile corresponding
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to every facility placement profile s ∈ S. Naturally, we call a client profile σ feasible if
σ(s) is feasible for each s ∈ S. Let Φ denote the set of feasible σ, and let Φs denote the
set of feasible client subgame profiles for each s ∈ S. Then, Φ = (Φs)s∈S .

A state (s, σ) of 2-FLG is determined by a facility placement profile s ∈ S and a client
profile σ ∈ Φ. A state induces expected (facility) loads on all facilities. The expected load
on facility fj for state (s, σ) is ℓj(s, σ) :=

∑︁n
i=1 σ(s)i,j · w(vi). Hence, ℓj(s, σ) naturally

models the total expected congestion at facility fj , given client profile σ. Facility players
aim to maximize their expected load, and will strategically place their facilities to achieve
this. We further assume that the quality of the facilities, e.g., the waiting time, deteriorates
with increasing congestion. Hence, for a client vi, the expected facility load corresponds
to the waiting time of vi at the facility. However, the client vi considers the expected
facility loads, conditional on vi patronizing that facility. This is generally different from
the unconditional expected facility load considered by the facility player. Specifically, the
client always incurs the full cost of their own weight, independent of their chosen strategy.
The client, therefore, exclusively considers the load caused by other clients when deciding
which facilities to patronize. To this end, we define the vi-excluded facility load ℓ−i,j(s, σ)
as the expected load on fj caused by clients other than vi:

ℓ−i,j(s, σ) :=
n∑︂

i′=1
i′ ̸=i

σ(s)i′,j · w(vi′)

The expected load experienced by client vi, referred to as the cost of client vi, is then
given by:

Li(s, σ) = w(vi) +

k∑︂
j=1

σ(s)i,j · ℓ−i,j(s, σ). (1)

Each client aims to minimize their cost and picks their strategy accordingly. Note
that the expected facility loads and the costs incurred by the clients for state (s, σ) are
independent of the behavior of the clients for facility placements other than s. The tuple
(s, σ(s)) contains sufficient information to determine the payoffs for all players. As such,
we sometimes denote a state (s, σ) as (s, σ(s)), when we are only interested in the payoffs
resulting from FPP s.

When a client patronizes a facility fj with probability 1 (i.e., the client plays a pure
strategy), the cost of this client is simply the expected load on fj . When σ(s) is a mixed
client subgame profile, the cost of the client for (s, σ(s)) naturally equals the weighted
average of the costs of the pure client subgame profiles in the support of σ(s).

In this report, we often consider two specific classes/types of 2-FLG: unweighted 2-FLG
and unrestricted 2-FLG.

Definition 2.2. An instance of 2-FLG is unweighted if all clients have equal weight.

We assume that all client weights are one for unweighted 2-FLG, as scaling all client
weights by some nonzero number does not meaningfully change an instance.

Definition 2.3. An instance (H,U , k) of 2-FLG with H = (V,A,w) is unrestricted if each
facility player is allowed to select every vertex in V as their location. That is, if U(fj) = V
for each facility fj ∈ F .

We commonly denote unrestricted instances as (H, k) instead of (H,U , k).

7



2.2 Equilibria and Subgame Perfection

Both stages of the two-stage facility location game can be considered independent single-
stage games, if the behavior of the players in the other stage is fixed. Every facility
placement s ∈ S induces a (single stage) client game, where the client players seek to min-
imize their cost by strategically picking which facilities in their neighborhood to patronize.
Similarly, every σ ∈ Φ induces a (single stage) facility game, where the facility players
strategically pick locations to place their facilities.

The Client Game

Single-stage client games are an example of the well-studied congestion games (see Rosen-
thal [27]). Specifically, it is a weighted singleton congestion game. The client game is
weighted as every client vi has a weight w(vi), and it is singleton as every client ends up
patronizing exactly one facility, unlike for more general non-singleton congestion games
where players (clients) select subsets of the total set of available resources (facilities).

For the client game induced by s ∈ S, the set of feasible strategy profiles is Φs. A
strategy profile for the client game is thus a client subgame profile for the two-stage game.
A client subgame profile σs ∈ Φs is a Nash equilibrium for this client game if no client can
decrease their cost by unilaterally changing their strategy from σ(s). To formalize this, let
σ(s)−i denote the profile describing the strategies for σ(s) of all clients except vi. Then
σ(s) is a Nash equilibrium for the client game if for all clients vi ∈ V , we have:

Li(s, (σ(s)i, σ(s)−i)) ≤ Li(s, (σ′(s)i, σ(s)−i)) for all (σ′(s)i, σ(s)−i)) ∈ Φs (2)

We call a Nash equilibrium for a client game a client equilibria, and denote with Ωs ⊆ Φs
the set of all client equilibria for the client game induced by s.

The definition in (2) is cumbersome to work with. Therefore, we provide a different
characterization of client equilibria in Theorem 1, for which we require some new defini-
tions. We say that a client vi considers facility fj for σ(s) if vi patronizes this fj with
a nonzero probability. Furthermore, we denote with Fi(s, σ) ⊆ Ns(vi) the set of facilities
considered by vi for (s, σ).

Theorem 1. A client subgame profile σ(s) ∈ Φs is a Nash equilibrium for the client game
induced by s if and only if for all clients vi ∈ V , the set Fi exclusively contains facilities
with minimal vi-excluded load among the facilities in the attraction range of vi.

Proof. Assume by contradiction that there is a client vi that considers a facility that does
not have minimal vi-excluded load. That is, there exist fj , fx ∈ Ns(vi) such that σ(s)i,j > 0
and ℓ−i,j(s, σ(s)) > ℓ−i,x(s, σ(s)). Then vi can improve by playing strategy σ′(s)i instead of
σ(s)i, where σ′(s)i,j = 0, σ′(s)i,x = σ(s)i,x + σ(s)i,j and σ′(s)i,y = σ(s)i,y for all y /∈ {j, x}.
As an improving move exists, σ(s) cannot be a Nash equilibrium for the client game.

Nash equilibria for the client game always exist. Even the existence of a pure Nash
equilibrium is guaranteed, as shown by Rosenthal [27]. However, client equilibria are not
generally unique. The following trivial example shows that the number of client equilibria
may be infinite, and that each of these may induce different facility loads.

Theorem 2. The number of client equilibria of a client game is not generally bounded,
and different client equilibria for the same client game may induce different facility loads.

Proof. Consider the instance of 2-FLG with host graph H = ({v1}, ∅, (w(v1) = 1)), k = 2
and facility placement profile s = (v1, v1) ∈ S. Then, for every γ ∈ [0, 1], the client
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subgame profile σ(s) with σ(s)1 = (γ, 1 − γ) is a client equilibrium. Furthermore, the
expected facility loads are ℓ1(s, σ(s)) = γ and ℓ2(s, σ(s)) = 1 − γ. These loads are thus
different for every value of γ. The number of such client equilibria is unbounded.

Theorem 2 shows that even if we assume that the clients’ behavior always results in
a client equilibrium, we do not generally know the facility loads resulting from a facility
placement profile s when σ(s) is not given.

The Facility Game

In the single-stage facility game, the facility players each choose a location to place their
facility and aim to maximize their expected facility load. A (single-stage) facility game is
induced by a client profile σ ∈ Φ. Thus, the client behavior resulting from each facility
placement profile is known. That is, the facility players know the loads resulting from each
facility placement profile s ∈ S.

A facility placement profile s ∈ S is a Nash equilibrium (facility equilibrium) for the
single-stage facility game induced by σ if no facility player can improve their load by
unilaterally changing their strategy. Formally, s ∈ S is a facility equilibrium if for all
facilities fj ∈ F :

ℓj(s, σ) ≥ ℓj(s′, σ) ∀s′ ∈ S s.t. s′i = si for i ̸= j.

The facility game is a normal-form game with a finite number of pure strategies and
players. Nash [22] showed that mixed Nash equilibria always exist for such games. However,
we are only interested in pure facility equilibria, which do not generally exist. Analyzing
under which conditions pure facility equilibria exist is the primary focus of this thesis.

Subgame Perfect Equilibria

Recall that client games may admit multiple client equilibria, and that these may induce
different facility loads. It is infeasible to determine the facility loads knowing only a facility
placement profile. This complicates our analysis of equilibria with respect to the facility
players, as a procedure similar to that used by Krogmann et al. in [17] and [18] is infeasible.
We must consider the behavior of both types of players simultaneously. This leads us to
analyze the subgame perfect equilibria (SPE) of the two-stage game.

In line with the literature [24], we call a state (s, σ) ∈ S × Φ a subgame perfect equi-
librium for the two-stage facility location game if and only if the following two conditions
hold:

1. s is a facility equilibrium for the facility game induced by σ.

2. For all s′ ∈ S, σ(s′) is a client equilibrium for the client game induced by s′.

We call client profiles σ ∈ Φ that satisfy the second condition client equilibrium profiles
and denote the set of all client equilibrium profiles as Ω, with Ω ⊆ Φ.

Since single-stage games (both client and facility games) always admit mixed Nash
equilibria, two-stage games always admit a mixed SPE. However, we only consider subgame
perfect equilibria where the facility players play pure strategies. Client players are allowed
to randomize their behavior, however. For the rest of this report, all mentions of subgame
perfect equilibria implicitly refer to subgame perfect equilibria that are pure with respect to
the facility strategies. Lemma 1 shows that the existence of such an SPE is not guaranteed,
not even for unrestricted 2-FLG.
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Lemma 1. Instances of the two-stage facility location game might not admit any subgame
perfect equilibria. This is even true for unrestricted 2-FLG.

v1

w=3

v2

w=2
v3

w=1

Figure 1: Host graph H

Proof. Consider instance (H, 2) of unrestricted 2-FLG where H is the host graph shown in
Figure 1. We claim that no subgame perfect equilibrium exists. To show this, we determine
the set of client equilibrium profiles Ω by finding the set of client equilibria for each induced
client game. An exhaustive list of all client equilibria is given in Table 1.

Table 1: Possible client equilibria for every facility placement profile

s = (s1, s2) Ωs induced loads (ℓ1, ℓ2)

(1, 1) {
(︁
(γ, 1− γ), (0, 0), (0, 0)

)︁
| γ ∈ [0, 1]} (γ, 3− γ), γ ∈ [0, 3]

(1, 2) {
(︁
(1,0), (0,1), (0,0)

)︁
} (3, 2)

(1, 3) {
(︁
(1,0), (0,0), (0,1)

)︁
} (3, 1)

(2, 1) {
(︁
(0,1), (1,0), (0,0)

)︁
} (2, 3)

(2, 2) {
(︁
(0,1), (1,0), (0,0)

)︁
, (2, 3)(︁

(1,0), (0,1), (0,0)
)︁
, (3, 2)(︁

(0.5,0.5), (0.5,0.5), (0,0)
)︁
} (2.5, 2.5)

(2, 3) {
(︁
(0,1), (1,0), (0,1)

)︁
} (2, 4)

(3, 1) {
(︁
(0,1), (0,0), (1,0)

)︁
} (1, 3)

(3, 2) {
(︁
(1,0), (0,1), (1,0)

)︁
} (4, 2)

(3, 3) {
(︁
(0,1), (0,0), (1,0)

)︁
, (1, 3)(︁

(1,0), (0,0), (0,1)
)︁
, (3, 1)(︁

(0.5,0.5), (0,0), (0.5,0.5)
)︁
} (2, 2)

Now consider the facility game induced by some σ ∈ Ω. This game can be written as
a bimatrix game with the following payoff matrices:

v1 v2 v3
v1 a1,1, b1,1 3, 2 3, 1
v2 2, 3 a2,2, b2,2 2, 4
v3 1, 3 4, 2 a3,3, b3,3

Here, the diagonal entries depend on the choice of σ. We do not need to know the
payoffs on the diagonal to conclude that none of the off-diagonal strategy profiles are Nash
equilibria. For each of these six strategy profiles, some player can improve by moving to
another off-diagonal strategy profile. Next, consider the diagonal strategy profiles:

• s = (v1, v1): for this to be a Nash equilibrium, we require: a1,1 ≥ 2, b1,1 ≥ 2. This
cannot hold as a1,1 + b1,1 = 3 for all σ ∈ Ω.

• s = (v2, v2): for this to be a Nash equilibrium, we require: a2,2 ≥ 4, b2,2 ≥ 4. No
σ ∈ Ω satisfies this.
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• s = (v3, v3): for this to be a Nash equilibrium, we require: a3,3 ≥ 3, b2,2 ≥ 3. No
σ ∈ Ω satisfies this.

Thus, there is no σ ∈ Ω for which the induced facility game admits a pure Nash equilibrium.
We conclude that the instance does not admit a subgame perfect equilibrium.

In Chapter 4, we start the search for classes of 2-FLG that are guaranteed to admit
subgame perfect equilibria. Before that, however, we take a detour to gain more insight
into our model choices and investigate which parts of the representation of a problem
instance are fundamental. The reader may skip this chapter to get to the main results of
the thesis without risking the subsequent loss of comprehension.
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3 Different Problem Representations

This chapter introduces two classes of 2-FLG: bipartite and uniformly restricted 2-FLG.
We argue that for any instance of bipartite, uniformly restricted, or unrestricted 2-FLG,
there are instances of the other two classes that are equivalent for all practical purposes.
These classes of instances may thus be interpreted as different representations of the same
underlying problems. We refine this notion of equivalence by introducing the concept of es-
sentially equivalent instances. However, we refrain from formally stating the consequences
of this definition, as this would necessitate excessively cumbersome notation and handling
several technicalities.

One goal of this chapter is to show that all results for unrestricted 2-FLG also hold
for the other two classes. Additionally, unrestricted instances are particularly well-suited
to visualizations, as their host graphs are comparatively small, and the lack of location
sets makes them easier to understand at a glance. However, the property that the facility
locations are represented with the same vertices as the clients, complicates the construction
of (counter)examples in proofs. Bipartite 2-FLG avoids this problem. We get the best of
both worlds by constructing bipartite examples and mapping them to essentially equivalent
unrestricted instances. We introduce the new classes first and define the concept of essential
equivalence later.

Definition 3.1. We call an instance (H,U , k) of 2-FLG with H = (V,A,w), uniformly
restricted if the location set of every facility is the same. That is, if there is a set U ⊆ V
such that U(fj) = U for all facilities fj ∈ F .

Note that every instance of unrestricted 2-FLG is uniformly restricted (with U = V ).

Next, we define Bipartite 2-FLG. One may intuitively interpret bipartite 2-FLG as a
version of unrestricted 2-FLG where each vertex of the host graph represents either a client
or a possible facility location, but not both. The class derives its name from its bipartite
host graphs, where all edges are incident to one “client vertex” and one “location vertex”.
Of course, this interpretation is inconsistent with our definition of 2-FLG, where every
vertex represents a client. We solve this using clients with zero weight. Such clients cannot
influence the behavior of other players, and can thus mostly be ignored.

Definition 3.2. We call an instance (H,U , k) of 2-FLG with H = (V,A,w) bipartite if
the location set U ⊆ V of every facility is the same, all clients in U have zero weight, and
all edges in A are of the form (vi, vj) with vi ∈ V \ U and vi in U .

Note that every instance of bipartite 2-FLG is uniformly restricted. We often de-
note instances of bipartite or uniformly restricted 2-FLG with a tuple (H,U, k) instead of
(H,U , k), where U denotes the location set of all facilities.

3.1 Defining Equivalence

Before defining essential equivalence, we provide some arguments for why this definition
implies “equivalence for all practical purposes”. We argue that the location of a facility
matters only insofar as it affects the attraction range of the facility. That is, we implicitly
assume that clients can or do not distinguish between two distinct facility placement pro-
files if each client has identical shopping ranges for both profiles. As an example, consider
instance (H, 2) of unrestricted 2-FLG with host graph H as shown in Figure 2. We argue
that all four facility placement profiles in S induce the same client game since both clients
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can reach both facilities for each FPP. Additionally, if the client subgame profile corre-
sponding to a set of facility placement profiles is the same, then these FPPs are equivalent
from the perspective of the facilities. We argue that all such facility placement profiles
are equivalent for all practical purposes and that two location vertices corresponding to
identical attraction ranges are therefore redundant (for the purpose of facility placement).
Therefore, refining the location set U(fj) of a facility fj by removing such redundant
vertices does not change the instance.

v1

w=1
v2

w=2

Figure 2: Host graph H

Additionally, we argue that client subgame profiles are only determined by the choices
of clients with nonzero weight. Clients with zero weight cannot affect the behavior of any
other players (both facilities and other clients). Lastly, we argue that clients that are not
covered for any facility placement profile in S do not matter, since such clients cannot
affect the behavior of other players. We argue that adding or removing such clients does
not meaningfully change an instance. These arguments bring us to the following definition
of essential equivalence.

Definition 3.3. We call two client games essentially equivalent if the sets of covered clients
with nonzero weight are identical (including their weights), and the shopping ranges of all
of these clients are identical for both games.

Definition 3.4. We call two facility placement profiles essentially equivalent if they induce
essentially equivalent client games.

Definition 3.5. We call two instances of 2-FLG essentially equivalent if the following
conditions hold:

1. Both instances have the same set of facility players

2. Both instances have the same set of client players (including weights), excluding
clients with zero weight and clients that are uncovered for all facility placement
profiles.

3. For every facility placement profile in either instance, there is an essentially equivalent
facility placement profile in the other.

This definition ensures that any two essentially equivalent instances are identical for
all practical purposes. Intuitively, a state (s, σ) of one instance can be mapped to an
equivalent one in the other. However, we would need to define equivalence between client
subgame profiles, client profiles, and facility games to formally prove this property. Seeing
as this is not the primary focus of this report, we refrain from doing so.

Note that essential equivalence is transitive. That is, if an instance (H,U, k) is essen-
tially equivalent to both (H ′, U ′, k) and (H∗, U∗, k), then (H ′, U ′, k) and (H∗, U∗, k) are
also essentially equivalent to each other.

13



3.2 Essentially Equivalent Instances of Bipartite 2-FLG

To prove the main result of this chapter, we need to develop some theory on augmenting
instances of bipartite 2-FLG to ones that are essentially equivalent. Lemma 2 shows that
applying certain operations to bipartite instances results in new bipartite instances that
are essentially equivalent to the original.

Lemma 2. Augmenting an instance (H,U, k) of bipartite 2-FLG with H = (V,A,w) by
performing any of the following operations, results in a new instance that is essentially
equivalent to the original instance.

1. Adding or removing vertices with degree 0 from V \ U .

2. Adding or removing edges (vi, uj) with vi ∈ V \ U, uj ∈ U and w(vi) = 0.

3. Removing a redundant location vertex. That is, removing a vertex ui ∈ U from the
host graph if there exists another location vertex uj ∈ U, uj ̸= ui with an identical
neighborhood N(uj) to that of ui.

4. Adding a redundant location vertex. That is, adding a vertex uj with w(uj) = 0 to V
and U , and edges {(v, uj) | v ∈ N(ui)} for some ui ∈ U to A.

Proof. 1. These vertices correspond to clients that are not covered for any facility place-
ment profile. The existence of these clients does not affect the essential equivalence of
instances. 2. These edges only affect the shopping ranges of clients with zero weight. By
definition, these shopping ranges do not affect the essential equivalence of instances. 3.
The removed vertex ui corresponds to a client with zero weight, which does not affect the
essential equivalence of instances. Furthermore, any FPP in the original instance which
made use of the removed vertex ui is essentially equivalent to an FPP in the new instance
where every occurrence of ui is replaced by uj . 4. The added vertex ui corresponds to a
client with zero weight, which does not affect the essential equivalence of instances. Any
FPP in the new instance which makes use of the added vertex uj is essentially equivalent
to an FPP in the original instance where every occurrence of uj is replaced by ui.

We use Lemma 2 and the transitivity of essential equivalence to show that every instance
of bipartite 2-FLG is essentially equivalent to a non-degenerate instance of bipartite 2-FLG.

Definition 3.6. We call an instance (H,U, k) of bipartite 2-FLG non-degenerate if every
client vi ∈ V \ U has nonzero weight and degree, and every location vertex u ∈ U has a
unique neighborhood. An instance of bipartite 2-FLG that is not non-degenerate is called
degenerate.

Lemma 3. Every degenerate instance of bipartite 2-FLG is equivalent to a non-degenerate
instance of the same problem.

Proof. Follows immediately from Lemma 2.

An application of this concept of non-degeneracy is finding a contradiction on the graph
structure of certain instances. It permits one to consider only non-degenerate instances
when proving that instances with some property cannot exist, as long as this property
is shared between essentially equivalent instances. If one shows that there are no non-
degenerate instances with this property, then there are no bipartite instances with this
property in general (by Lemma 3). We apply this idea in Chapter 8.
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3.3 Equivalence of Different Classes

We now show how to map bipartite, unrestricted, and uniformly restricted instances to
essentially equivalent ones of the other classes. First, we show how to map instances of
uniformly restricted instances to bipartite ones. The general idea is to add a new vertex
with weight zero to the graph for every vertex in the location set of the original instance.
Then, we add edges so that each new vertex can be reached by all clients that could reach
the corresponding original vertex in the original instance. Figure 3 shows an example of
this mapping, where we represent U and U ′ using square vertices. We omit the weight
label for vertices in the location set of bipartite instances, as these are zero by definition.

v1

w = 1

v2

w = 2

v3

w=3

(a) Uniformly Restricted

v1

w = 1

v2

w = 2

v3

w=3

u2 u3

(b) Bipartite

Figure 3: Equivalent instances of uniformly restricted and bipartite 2-FLG

Lemma 4. For every instance of uniformly restricted 2-FLG, there is an essentially equiv-
alent instance of bipartite 2-FLG.

Proof. Let (H,U, k) denote an instance of uniformly restricted 2-FLG, with H := (V,A,w)
and V := {v1, v2, . . . , vn}. We construct an instance (H ′, U ′, k) of bipartite 2-FLG that is
essentially equivalent to (H,U, k). We define U ′ := {ui | vi ∈ U}, where all vertices in U ′

are new. Next, we define host graph H ′ := (V ′, A′, w′) with:

V ′ = V ∪ U ′

A′ =
{︁
(vi, uj) | vi ∈ V, uj ∈ U ′, (vi, vj) ∈ A

}︁
∪
{︁
(vi, ui) | i = 1, 2, . . . , |U |

}︁
w′(x) =

{︄
w(x) if x ∈ V

0 if x ∈ U ′.

We consider the same set of facility players as in (H,U, k). By construction, (H ′, U ′, k)
is an instance of bipartite 2-FLG. We claim that (H,U, k) and (H ′, U ′, k) are essentially
equivalent. To see this, note that the sets of facility players and the sets of client players
with nonzero weights are the same for both instances. Furthermore, the attraction range
(in terms of clients with nonzero weight) of a facility located on some vi ∈ V in (H,U, k) is
the same as for a facility located on ui ∈ U ′ in (H ′, U ′, k). As such, any facility placement
profile for either instance can be mapped to an essentially equivalent one for the other. We
conclude that the two instances are essentially equivalent.

Next, we show how to map instances of bipartite 2-FLG to unrestricted ones. The
general idea is to first construct a new bipartite instance of 2-FLG, essentially equivalent
to the original, that admits a perfect matching of the graph. Then, we construct the
unrestricted instance by merging every pair of matched vertices in a specific way. We
provide an example of the host graphs at different points in this process in Figure 4. For
the bipartite instances, we indicate a maximum matching by bold edges. Be mindful that
the procedure relabels the vertices of U .
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Lemma 5. For every instance of bipartite 2-FLG, there is an essentially equivalent instance
of unrestricted 2-FLG.

Proof. Let (H,U, k) denote an instance of bipartite 2-FLG with host graph H := (V,A,w).
We first construct another instance (H ′, U ′, k) of bipartite 2-FLG that is essentially equiv-
alent to (H,U, k). In particular, we construct an instance that admits a perfect matching
of the graph. We construct this instance by applying the operations described in Lemma
2.

First, we find a maximal matching M in (H,U, k). Then, for every vertex ui ∈ U that
is not matched by M , we augment H by adding a vertex vi with weight zero to V and
an edge (vi, ui) to A. Let M ′ denote the matching obtained from M by adding all newly
added edges. By construction, M ′ is a maximum matching of the augmented host graph
H ′ = (V ′, A′, w′). Next, we consider vertices in V ′ \ U that are unmatched by M ′. For
each such (client) vertex vj we consider some vertex ux ∈ U that is adjacent to vj . We
“duplicate” this vertex ux and match it to vj . That is, we augment H ′ by adding a new
vertex uy to U and adding edges {(v, uy) | v ∈ N(ux)} to A′. Additionally, we augment
M ′ by adding edge (vj , uy).

Each augmentation of H is an application of Lemma 2. As such, the augmented instance
(H ′, U ′, k) is essentially equivalent to (H,U, k). Furthermore, M ′ is a perfect matching of
the graph for this instance. For ease of notation, we now relabel the vertices of U ′ such
that M ′ := {(vi, ui) | i = 1, 2, . . . , |U |}. Since all these vertices in U have weight zero, the
instance obtained by this relabeling is essentially equivalent to the original.

We use the perfect matching to construct an instance (H∗, k) of unrestricted 2-FLG
that is essentially equivalent to (H ′, U ′, k). We define H∗ := (V ∗, A∗, w∗) as follows:

V ∗ = V ′ \ U ′

A∗ = {(vi, vj) | (vi, uj) ∈ A′, i ̸= j}
w∗(v) = w′(v) for all v ∈ V ∗

Let (H∗, k) use the same facility set as (H ′, U ′, k). By construction, the sets of facilities
and the sets of clients with nonzero weights are the same for both instances. Furthermore,
the attraction range of a facility located on any vi ∈ V ∗ in (H∗, k) is the same as for a
facility located on ui in (H ′, U ′, k). As such, the two instances are essentially equivalent.
We conclude by transitivity that (H∗, k) and (H,U, k) are essentially equivalent.
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u1 u2 u3 u4

(a) Original host graph H, maximal matching in bold

v1

w = 1

v2

w = 2

v3

w=3
v4

w=4
v5

w=0

u1 u2 u3 u4 u5

(b) Augmented host graph H ′, perfect matching in bold

v1

w = 1

v2

w = 2

v3

w=3

v4

w = 4

v5

w = 0

(c) Host graph H∗ for unrestricted 2-FLG

Figure 4: Essentially equivalent instances for bipartite an unrestricted 2-FLG

We now have all necessary results for the main theorem of this chapter.

Theorem 3. For every instance of either bipartite, uniformly restricted or unrestricted
2-FLG, there are essentially equivalent instances in both other classes.

Proof. Recall that every instance of unrestricted 2-FLG is also uniformly restricted, and
note that every instance of unrestricted 2-FLG is essentially equivalent to itself. For every
instance of unrestricted 2-FLG, there is thus an essentially equivalent instance of uniformly
restricted 2-FLG. Combining this with Lemmas 4 and 5 completes the proof.

Theorem 3 shows the modeling power of unrestricted 2-FLG: every problem that can
be modeled as a bipartite or uniformly restricted instance can also be modeled as an
unrestricted instance. We find this especially striking for uniformly restricted instances,
as one would assume that the addition of location sets increases modeling power. Lastly,
we note that the results of this chapter do not hold for unweighted 2-FLG, as the proofs
make heavy use of clients with zero weight.
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4 Balancedness and the Class Set

In this chapter, we define the concept of balanced client (subgame) profiles. The theory we
develop around this type of client behavior provides us with the tools necessary to show
that two different conditions are sufficient for the existence of subgame perfect equilibria.
The first of these conditions, the existence of a balanced client equilibrium profile, is shown
to be sufficient in this chapter. The second condition, that of equal client weights, is
discussed in Chapter 5.

4.1 Balanced Client Profiles

We define a specific type of client behavior, which we call balanced. Intuitively, one may
consider a balanced client subgame profile σ(s) as the fairest possible assignment of the
clients to the facilities for the client game induced by s. This notion of fairness is some-
times referred to as the egalitarian rule or max-min fairness [28]. Formally, we define
balancedness as follows:

Definition 4.1. Consider some instance of 2-FLG and facility placement profile s ∈ S. We
call a client subgame profile σ(s) balanced if for any pair of (distinct) facilities fi, fj ∈ F ,
one of the following holds:

1. ℓi(s, σ(s)) = ℓj(s, σ(s))

2. ℓi(s, σ(s)) > ℓj(s, σ(s)) and none of the clients in As(fi) ∩As(fj) consider fi.

3. ℓj(s, σ(s)) > ℓi(s, σ(s)) and none of the clients in As(fi) ∩As(fj) consider fj .

Definition 4.2. For the two-stage facility placement game, we call a client profile σ ∈ Φ
balanced if for every FPP s ∈ S, σ(s) is a balanced client subgame profile.

Mind that a client subgame profile being balanced, and it being a client equilibrium,
are largely unrelated. Balancedness relates to how the behavior of the clients affects the
facilities, while being a client equilibrium relates to how the behavior of the clients affects
the clients themselves. Some balanced client subgames profiles are not client equilibria,
and some client equilibria are not balanced.

As an example, consider instance (H, 3) of unrestricted, unweighted 2-FLG, where H
is the host graph shown in Figure 5, and FPP s = (v1, v2, v3).

v1

f1

v2

f2

v3

f3

v4

Figure 5: Host graph H with facility placement profile s = (v1, v2, v3)
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There are (infinitely) many balanced client subgame profiles for the client game induced
by s. Two such profiles are:

• σ1(s) =
(︂
(1, 0, 0), (0, 12 ,

1
2), (0, 0, 1), (0, 1, 0)

)︂
• σ2(s) =

(︂
(1, 0, 0), (0, 34 ,

1
4), (0, 0, 1), (0,

3
4 ,

1
4)
)︂

There are a few things to note. First, the induced facility loads are the same for both
of these client subgame profiles (1, 1.5 and 1.5 for f1, f2 and f3 respectively). This is no
coincidence; we show in Lemma 6 that all balanced client subgame profiles induce identical
facility loads. Next, note that a balanced client subgame profile can be a client equilibrium,
but is not necessarily one; σ1(s) is a client equilibrium since no client can improve, but
σ2(s) is not, since both v2 and v4 can improve.

We mentioned earlier that balanced client subgame profiles may be seen as the fairest
possible assignment of the clients over the facilities. We formalize this notion by introducing
the vector of sorted facility loads ℓsort.

Definition 4.3. Consider some instance of 2-FLG and some state (s, σ) ∈ S×Φ. Then we
denote with ℓsort(s, σ) the vector of sorted facility loads. That is, the sequence of induced
facility loads for state (s, σ) in increasing order.

Theorem 4. For the client game induced by s, a client subgame profile σ(s) is balanced if
and only if it maximizes ℓsort lexicographically.

Proof. We consider an instance (H,U , k) of 2-FLG with H = (V,A,w) and some facility
placement profile s ∈ S. Let σ(s) denote a client subgame profile for the client game
induced by s.

We assume that σ(s) is balanced, and show that it maximizes ℓsort lexicographically.
Assume by contradiction that there is a some other FPP σ′(s) ∈ Φs such that ℓsort(s, σ′(s))
is lexicographically greater than ℓsort(s, σ(s)). Let fi denote a facility with minimal load
for state σ(s) among those facilities whose load for σ(s) is strictly smaller than for σ′(s).
Let F ′ := {fj ∈ F | ℓj(s, σ) ≤ ℓi(s, σ)} denote the set of facilities that had smaller or
equal load than fi for σ(s). As ℓsort increases lexicographically when moving from σ(s)
to σ′(s), we find that ℓx(s, σ) ≤ ℓx(s, σ′), for all fx ∈ F ′. Thus, the sum of the loads of
the facilities in F ′ has strictly increased. It follows that some client in As(F ′) must have
shifted probability density from a facility in F\F ′ to one in F ′. But by the balancedness
of σ(s), clients in As(F ′) could not have patronized any facility in F \ F ′ for σ(s). We
conclude that σ′(s) cannot exist.

Now assume that σ(s) is not balanced. By definition, there is a client vi ∈ V and
facilities fj , fx ∈ As(vi) with ℓj(s, σ(s)) < ℓx(s, σ(s)), but vi considers fj for σ(s). Consider
client subgame profile σ′(s) identical to σ(s) except that the probability that vi patronizes
fj is ϵ higher, and the probability that they patronize fx is ϵ lower. For ϵ > 0 sufficiently
small, we find:

min(ℓj(s, σ′(s)), ℓx(s, σ′(s))) > ℓj(s, σ(s)). (3)

Since the load on all facilities except fj and fx is the same for σ(s) and σ(s), we find
that ℓsort(s, σ′(s)) > ℓsort(s, σ(s)) lexicographically. Thus, σ(s) does not maximize ℓsort
lexicographically.

One may interpret Theorem 4 as follows: a balanced client equilibrium maximizes
the minimum facility load of any facility as the highest priority. Among such profiles, it
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maximizes the second lowest facility load, and so on. Theorem 4 trivially implies that
the vector of sorted facility loads is identical for every balanced client subgame profile.
Moreover, all induced facility loads are identical for a pair of balanced client subgame
profiles, as proven in Lemma 6.

Lemma 6. Consider some instance of 2-FLG and some s ∈ S. Each balanced client
subgame profile for the client game induced by s induces the same facility loads.

Proof. Assume by contradiction that there is a pair of balanced client subgame profiles
σ(s), σ′(s) that do induce different facility loads. We denote with F the set of facilities
that have different loads for σ(s) and σ′(s). By assumption, F is nonempty. Let fj denote
a facility in F that has minimum load for σ(s), and define α := ℓj(s, σ(s)). We claim that
all facilities in F have a load of at least α for both profiles. To see this, note that since
the vector of sorted loads is the same for both profiles (Lemma 4), F contains the same
number of facilities whose load for σ′(s) is smaller than α as facilities whose load for σ(s)
is smaller than α. Since the latter number is zero by the choice of fj , so is the former.

Now consider client subgame profile σ∗(s), which we define as the “average” of σ(s)
and σ′(s). That is, σ∗(s)i,j = 1

2(σ(s)i,j + σ′(s)i,j) for all i, j. Note that the number of
facilities whose load for σ∗(s) is strictly less than α is the same as for both original profiles.
Furthermore, facilities with load exactly α for σ∗(s) have load exactly α for both original
profiles as well. Since fj has load α for σ(s), but not for σ′(s), the number of facilities
with load α for σ∗(s) is strictly smaller than for σ(s). It follows that ℓsort(s, σ∗(s)) >
ℓsort(s, σ(s)) lexicographically. Applying Lemma 4 shows that σ(s) is not balanced; a
contradiction.

Theorem 4 has another important consequence: it implies the existence of a balanced
client subgame profile for every client game.

Theorem 5. Consider some instance of 2-FLG. For every s ∈ S, the client game induced
by s admits a balanced client subgame profile.

Proof. Every client game admits a feasible client subgame profile. As such, there is always
one that maximizes the vector of sorted facility loads lexicographically. By Theorem 4,
this client subgame profile is balanced. We conclude that a balanced client subgame profile
exists for every client game.

The existence guarantee of balanced profiles is what makes them such a powerful tool.
We later provide an algorithm for finding a balanced client subgame profile in any client
game. Next, we discuss the implications of the existence of a client subgame profile that
is not only balanced, but also a client equilibrium. Such balanced client equilibria possess
several useful properties.

Lemma 7. Let σ ∈ Ω be a balanced client equilibrium profile, and let Fi(s, σ) denote the
set of facilities considered by client vi for state (s, σ). Then for any s ∈ S and vi ∈ V ,
client vi patronizes each facility in Fi(s, σ) with equal probability in state (s, σ).

Proof. As σ(s) is balanced: every facility in Fi(s, σ) has equal load. If not, we can select
a pair of facilities with different loads and contradict the definition of a balanced client
subgame profile. Furthermore, as σ(s) is a client equilibrium, the vi−excluded loads of all
these facilities are equal. It follows that the contribution of vi to each induced facility load
is equal. That is, vi patronizes each facility with the same probability.

Corollary 5.1. For any instance of 2-FLG, the number of balanced equilibria is finite.
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Proof. Let (H, k) denote some instance of 2-FLG. We show that for every s ∈ S, the number
of balanced client equilibria is finite. By Lemma 7, every balanced client equilibrium can
be characterized by a unique tuple (F1(s, σ(s)), F2(s, σ(s)), . . . , Fn(s, σ(s))). The set of
possible values attainable by Fi(s, σ(s) is bounded above by the size of the power set of
Ns(vi), which is finite. As such, there is only a finite number of balanced client equilibria
σ(s) for each s ∈ S, and thus only a finite number of balanced client equilibria σ ∈ Ω.

We now show that the existence of a balanced client equilibrium profile is a sufficient
condition for the existence of a subgame perfect equilibrium. To prove this, we show
that the facility game induced by any balanced client profile (not just equilibria) always
admits a pure Nash equilibrium. To this end, we prove that the vector of sorted facility
loads is a lexicographical potential function for facility games induced by balanced client
profiles. A lexicographical potential function is a function that increases lexicographically
whenever one of the facility players performs an improving move. The existence of a
(lexicographical) potential function proves that any sequence of improving moves leads to
a pure Nash equilibrium, as cycling is impossible:

Theorem 6. An instance of 2-FLG admits a subgame perfect equilibrium if there exists a
balanced client equilibrium profile σ ∈ Ω.

Proof. Let σ ∈ Ω denote a balanced client equilibrium profile. We consider the facility
game induced by σ and show that ℓsort increases lexicographically whenever a facility
player performs an improving move.

Consider some facility placement profile s ∈ S and let fim denote the facility player
which performs an improving move. Let s′ denote the FPP that would result from this
move, and assume by contradiction that ℓsort(s′, σ) ≤ ℓsort(s, σ). Then there must be at
least one facility whose load was decreased. Construct the set F ′ ⊆ F as follows:

1. Let F ′ denote the set of facilities with smaller load for (s′, σ) than for (s, σ).

2. Refine F ′ by only keeping the facilities with minimal load for (s′, σ).

3. Refine F ′ again, by only keeping the facilities with maximal load for (s, σ).

Since at least one facility’s load was decreased, F ′ cannot be empty. Thus, there is some
facility fdec ∈ F ′. If ℓdec(s′, σ) ≥ ℓim(s′, σ), then ℓsort has increased, and we are done.
Now assume that ℓdec(s′, σ) < ℓim(s′, σ). Since the load on fdec decreased, there must be
some client vi that patronizes fdec with a strictly smaller probability for state (s′, σ) than
for (s, σ). Let Fi(s

′, σ) denote the set of facilities considered by vi for (s, σ). Then, since
σ is balanced and ℓdec(s′, σ) < ℓim(s′, σ), we find fim /∈ Fi(s

′, σ). Since fim was the only
facility that moved, we find that Fi(s

′, σ) ⊆ Ns(vi).
Since σ is balanced, we find that ℓj(s′, σ) ≤ ℓdec(s′, σ) for all facilities fj ∈ Fi(s′, σ).

Since each such facility is also in Ns(vi), and vi considered fdec for state (s, σ), this implies
that ℓj(s, σ) ≥ ℓdec(s, σ). By the construction of F ′, we know every facility with a strictly
larger load than fdec for (s, σ), also has a strictly larger load for (s′, σ). We conclude
that fj(s, σ) = fdec(s, σ) and fj(s′, σ) = fdec(s′, σ) for all fj ∈ Fi(s′, σ). In other words:
Fi(s′, σ) ⊆ F ′.

Next, let VF ′(s, σ) ⊆ V denote the set of clients that consider at least one facility
in F ′ for state (s, σ). Since fdec and vi were chosen arbitrarily, Fi(s′, σ) ⊆ F ′ for all
vi ∈ VF ′(s′, σ). Furthermore, any client in VF ′(s, σ) is also in VF ′(s′, σ). This gives:∑︂

fj∈F ′

ℓj(s′, σ) = w(VF ′(s′, σ)) ≥ w(VF ′(s, σ)) ≥
∑︂
fj∈F ′

ℓj(s, σ). (4)
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As the load of the facilities in F ′ all have an equal load for state (s′, σ), none of these
facilities’ loads were decreased by the move; a contradiction.

Thus, ℓdec(s′, σ) ≥ ℓim(s′, σ). It follows that ℓsort(s′, σ) > ℓsort(s, σ) lexicographically,
which shows that every improving move increases ℓsort lexicographically. As |S| is finite,
any sequence of improving moves reaches some pure facility equilibrium s∗ in a finite
number of moves. Since s∗ is a facility equilibrium for the facility game induced by client
equilibrium profile σ, (s∗, σ) is a subgame perfect equilibrium. We conclude that a subgame
perfect equilibrium exists.

We have shown that the vector of sorted loads works as a lexicographical potential
function. This raises the question of whether an exact potential function also exists.
Monderer and Shapley [21] showed that such potential games posses many useful properties.
Lemma 8 shows that no such function exists for our model, not even for unweighted 2-FLG.

Lemma 8. Facility games induced by a client equilibrium profile for an instance of 2-FLG
are not generally exact potential games. This is independent of the chosen equilibrium
profile, and also holds for unrestricted and unweighted games.

v1

v2

v3 v4 v5

v6 v7

Figure 6: Host graph H with all client weights equal to 1

Proof. Consider instance (H, 2) of unweighted. unrestricted 2-FLG, where H is the graph
shown in Figure 6. Next, consider the facility game induced by some equilibrium σ ∈ Ω.
Note that for each of the facility placement profiles (v2, v1), (v6, v1), (v2, v7) and (v6, v7),
only one client equilibrium exists. The facility loads for each of these profiles can be found
in Table 2.

Table 2: Facility loads for different facility placement profiles

s = (s1, s2) ℓ1(s, σ) ℓ2(s, σ)
(v2, v1) 2 1
(v6, v1) 2 1
(v2, v7) 3 2
(v6, v7) 2 2

Now we check what happens to the load of the moving facility when moving from
(v1, v2) to (v2, v7) in two different ways: through (v6, v1) and through (v6, v7). We sum the
changes in load resulting from the moves in both cases. When moving through (v6, v1), we
find: (︂

ℓ1(v6, v1)− ℓ1(v2, v1)
)︂
+
(︂
ℓ2(v6, v7)− ℓ2(v6, v1)

)︂
= (2− 2) + (2− 1) = 1.

When moving through (v2, v7), we find:(︂
ℓ2(v2, v7)− ℓ2(v2, v1)

)︂
+
(︂
ℓ1(v6, v7)− ℓ1(v2, v7)

)︂
= (2− 1) + (2− 3) = 0.
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As these two values are different, an exact potential function cannot exist. As we made
no assumptions on the client equilibrium profile, this result holds for all possible client
equilibria.

We conclude that the use of a lexicographical potential function is warranted.
The existence of a balanced client equilibrium profile σ ∈ Ω is thus a sufficient condition

for the existence of an SPE. This warrants some research into what the class of instances
that admit balanced equilibria looks like. Lemma 9 provides a nontrivial class of instances
that always admit a subgame perfect equilibrium.

Lemma 9. Every instance (H,U , 2) of unweighted 2-FLG with two facility players admits
a balanced client equilibrium profile.

Proof. Consider some instance (H,U , 2) of unweighte, 2-FLG. We provide an algorithm
that greedily constructs a balanced client equilibrium for any FPP s ∈ S. We will fix the
strategies for the clients sequentially and consider only the facility loads caused by the
already assigned clients. First, fix the strategies of all clients that have at most one facility
in their shopping range. These clients only have one feasible strategy, so no decision can
be made yet. This leaves only the clients in As(f1) ∩ As(f2). If this set is empty, we
may terminate and the resulting client subgame profile is clearly balanced and a client
equilibrium. If it is not, we consecutively assign these clients to the facility with lesser
load, until we either run out of clients or the loads on the facilities become equal. Here,
assigning a client to a facility means that this client patronizes the facility with probability
one.

If we run out of clients, we terminate the algorithm, and claim that the resulting client
subgame profile is balanced and a client equilibrium. If the load on the facilities is equal,
both of these are trivially true. If not, then the facility which is considered by all clients
in As(f1) ∩ As(f2) is the facility with the smaller load. To see this, note that the facility
to which all clients in As(f1)∩As(f2) were assigned must have had a strictly smaller load
than the other facility prior to the assignment of the last client. Furthermore, as the load
on both facilities is integer at every step of the algorithm, the difference must be at least 1.
We conclude that the former facility has a load at most equal to that of the other facility
at termination. As all clients in As(f1) ∩ As(f2) consider the facility with a smaller load
exclusively, the client subgame profile is both balanced and a client equilibrium.

If the loads ever become equal, we fix the strategies of all remaining unassigned clients
to (12 ,

1
2). It follows that the load on both facilities is equal for the resulting client subgame

profile. The client subgame profile is thus balanced. It is also clear that none of the clients
can improve. Thus, The resulting client subgame profile is a balanced client equilibrium.
We can construct a balanced client equilibrium profile σ ∈ Ω by applying this algorithm
for every FPP s ∈ S.

Neither the assumption of equal client weights, nor the assumption of exactly two
facility players may be dropped, as shown in Lemmas 10 and 11.

Lemma 10. An instance (H,U , k) of unweighted 2-FLG with k > 2, Ω might admit no
balanced client equilibrium profile.

Proof. Consider the unweighted, unrestricted instance (H, 3) and facility placement profile
s = (v1, v2, v3) ∈ S, with H as shown in Figure 7.
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v1

f1
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Figure 7: Host graph H with facility placement s

For the client game induced by s, the unique balanced client subgame profile is:

σ(s) =
(︂
(1, 0, 0), (

2

3
,
1

3
, 0), (0,

1

3
,
2

3
), (0, 1, 0), (0, 0, 1)

)︂
This induces facility loads ℓ1(s, σ(s)) = ℓ2(s, σ(s)) = ℓ3(s, σ(s)) = 12

3 . As all facility loads
are equal, ℓsort must be lexicographically maximal, which proves that σ(s) is balanced.
Note that no other client subgame profile induces these facility loads. However, σ(s) is not
a client equilibrium, as clients v2 and v3 can both improve.

Lemma 11. An instance (H, 2) of 2-FLG might admit no balanced client equilibrium.

v1

w=2
v2

w=1

Figure 8: Host graph H

Proof. Consider instance (H, 2) of unrestricted 2-FLG, with H as shown in Figure 8.
Then for the client game induced by s = (v1, v2), the only client equilibrium is σ(s) =
((1, 0), (0, 1)). However, σ(s) is not balanced, as ℓ1(s, σ(s)) = 2 > 1 = ℓ2(s, σ(s)) but
client v1 ∈ As(f1)∩As(f2) patronizes f1 with a nonzero probability. We conclude that no
balanced client equilibrium profile exists.

Note that while neither of the instances used in the proofs of Lemmas 10 and 11 admits
a balanced client equilibrium profile, both do admit a subgame perfect equilibrium. The
existence of a balanced client equilibrium profile is thus not necessary for the existence of
an SPE:

Lemma 12. The existence of a balanced client equilibrium profile is not necessary for the
existence of a subgame perfect equilibrium.

Proof. Consider instance (H, 2) of 2-FLG where H is the host graph shown in Figure 8. In
the proof of Lemma 11, we showed that (H, 2) does not admit a balanced client equilibrium
profile. However, it does admit a subgame perfect equilibrium (s, σ):

s = (v1, v2)

σ(s′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(12 ,

1
2), (0, 0)} for s′ = (v1, v1)

{(1, 0), (0, 1)} for s′ = (v1, v2)

{(0, 1), (1, 0)} for s′ = (v2, v1)

{(1, 0), (0, 1)} for s′ = (v2, v2)

It is trivial to verify that this state is a subgame perfect equilibrium.
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Lemma 12 suggests that further sufficient conditions for the existence of SPE might
exist, besides the existence of a balanced client equilibrium profile. The condition of equal
client weights is one such condition; the existence of an SPE for unweighted 2-FLG is
guaranteed. We now develop further results concerning balancedness to prove this.

4.2 The Class Set

In many cases, balanced client subgame profiles induce identical loads on many facilities.
Furthermore, the sets of clients considering such a group of facilities are the same for all
balanced client subgame profiles. In this chapter, we introduce the class set of a client
game; a great tool for analyzing balanced client subgame profiles for that client game.
The class set is a partitioning of the facilities and the covered clients into different classes,
based on their interactions for balanced client subgame profiles.

Definition 4.4. Consider some instance of 2-FLG and a facility placement profile s ∈ S.
For the client game induced by s, we define the class set C = {C1, . . . , Cm} with classes
Cp := (Fp, Vp) for p = 1, . . . ,m as the set of maximum cardinality satisfying the following
conditions:

1. {Fp | p = 1, . . . ,m} is a partition of F

2. {Vp | p = 1, . . . ,m} is a partition of the set of clients covered by s.

3. For every balanced client subgame profiles σ(s) ∈ Φs and class (Fp, Vp) ∈ C, the
clients in Vp exclusively consider facilities in Fp.

Theorem 7. For every instance of 2-FLG and facility placement profile s, the client game
induced by s has a unique class set C.

Proof. Note that {(F , Vcov(s))} trivially satisfies all conditions in the definition for the
class set, except possibly the maximum cardinality requirement. If {(F , Vcov)} is not the
class set, then there is another set satisfying the conditions that is of maximal cardinality,
which is then the class set. Thus, the class set always exists.

To see that the class set is unique, assume by contradiction that there exist two distinct
class sets C and C′. Then there are a client vi ∈ Vcov and a facility fj ∈ F which are in
the same class in C but in different classes in C′. If not, then every class in C is a subset of
a class in C′, which means that either C = C′ or the class sets have different cardinalities;
both contradictions.

Let Cj = (Fj , Vj) and C ′
j = (F ′

j , V
′
j ) denote the classes containing fj in C and C′

respectively. Define Cα := (Fα, Vα) = (Fj ∩F ′
j , Vj ∩ V ′

j ), and define Cβ := (Fβ, Vβ) as the
class containing all clients and facilities of Cj that are not in Cα. We claim that replacing
Cj with both Cα and Cβ in C does not violate any of the conditions in the definition of the
class set. We first show that Fα,Fβ, Vα, and Vβ are nonempty. Since fj and vi are in Fα

and Vβ respectively, these sets are both nonempty. Vα is nonempty as it contains all clients
that consider fj for some balanced σ(s). Since the balanced load on each facility is nonzero,
at least one such client exists. Fβ is nonempty as it contains all facilities considered by
vi for some balanced client subgame profile. As every client in Vcov considers at least one
facility for every client subgame profile, this set is nonempty. To see that condition (3.)
holds, consider some vi ∈ Vα. Since vi ∈ Vj and vi ∈ V ′

j , all facilities considered by vi
for some balanced client equilibrium are in both Fj and F ′

j , and thus in Fj ∩ F ′
j = Fα.

Similarly, for any client vi ∈ Cβ , we know that vi /∈ V ′
j . As such, vi is in some other class

of C′. All facilities considered by vi for any balanced client subgame profile are also in this
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other class of C′, and thus not in F ′
j . As such, all these facilities are in Fβ . We conclude

that C can be refined without violating the conditions for a class set. Thus, C was not a
set of maximal cardinality satisfying these conditions; a contradiction.

For ease of notation, we define the balanced load of a facility for FPP s as the load on
this facility for state (s, σ(s)), where σ(s) is some balanced client subgame profile.

Lemma 13. Consider some instance of 2-FLG and an FPP s ∈ S, and let C denote the
class set for the client game induced by s. Then, for any class (Fp, Vp) ∈ C, all facilities
in Fp have the same balanced load for s.

Proof. Assume the opposite is true. Then there is a class Cp := (Fp, Vp) ∈ C such that
not all facilities in Fp have equal balanced loads for s. Let Fmin denote the set of facilities
in Fp with minimal balanced load for s. By the definition of balancedness (Def. 4.1) the
clients in As(Fp)∩Vp exclusively consider facilities in Fmin for any balanced client subgame
profile. Thus, we can refine C by replacing Cp by two new classes: (Fmin, As(Fmin) ∩ Vp)
and (Fp\Fmin, Vp\As(Fmin)). We conclude that C is not a class set as it is not of maximum
cardinality; a contradiction.

Since the balanced load is equal for all facilities in a class, we can view this load as a
property of the class itself.

Definition 4.5. Consider some instance of 2-FLG and some facility placement profile s.
Let C denote the class set for the client game induced by s. For any class Cp = (Fp, Vp) ∈ C,
we define the class load ℓ(Cp) as the balanced load of the facilities in Fp.

Next, we establish two properties of the class set that are useful for later proofs. These
properties explain why a class set might contain multiple classes with the same class loads,
and are a consequence of the assumption that the class set cannot be refined (i.e., that it
has maximum cardinality among all sets satisfying certain conditions).

The first property concerns proper, nonempty subsets of the set of facilities of a class
(Fp, Vp). In particular, the total weight of clients in the intersection of the attraction
range of any such subset and Vp is strictly larger than the sum of the balanced load on the
facilities in this subset:

Lemma 14. Let C be the class set for host graph H and s ∈ S, and some class Cp =
(Fp, Vp) ∈ C. Then the total weight of clients in the intersection of Vp and the attraction
range of any proper, nonempty subset of Fp is strictly larger than the total balanced load
on that subset of facilities. That is:

w(As(F ) ∩ Vp) > ℓ(Cp)|F | ∀F ⊊ Fp s.t. F ̸= ∅

Proof. Consider some class Cp = (Fp, Vp) and some set of facilities F ⊊ Fp, F ̸= ∅. For
any balanced σ(s), the facilities in F can only be considered by clients in As(F ) ∩ Vp.
Since the balanced load on each of these facilities is ℓ(Cp), we find: As(F )∩Vp ≥ ℓ(Cp)|F |.
Now assume by contradiction that this holds with equality. Then, for any balanced client
subgame profile σ(s), the clients in As(F )∩Vp must exclusively consider facilities in F . But
then we can refine C by splitting Cp into classes (F,As(F ) ∩ Vp) and (Fp \ F, Vp \As(F )).
Thus, C is not a class set.

As an example, consider the two unweighted, unrestricted instances (H, 2) and (H ′, 2)
of 2-FLG, where H and H ′ are the host graphs shown in Figure 9. Let s = (v1, v2) and
s′ = (w1, w2) denote facility placement profiles for the respective instances, and consider
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the induced client games. In both games, the balanced load on both facilities is 2. However,
the class set C for s contains two classes, while the class set C′ for s′ contains just one:

C =
{︂(︂
{f1}, {v1, v4}

)︂
,
(︂
{f2}, {v2, v3}

)︂}︂
C′ =

{︂(︂
{f1, f2}, {w1, w2, w3, w4}

)︂}︂
.

This difference naturally follows from the definition of the class set. For both graphs,
every balanced client subgame profile must induce a load of 2 on both facilities. To achieve
this for f1 in host graph H, we require all clients in As(f1) = {v1, v4} to consider f1
exclusively. As such, there is no balanced client equilibrium where v1 or v4 considers f2.
The maximum cardinality requirement ensures that C is the unique class set. This is
exactly what Lemma 14 states; if we were to (incorrectly) assume that all facilities and
clients belong to the same class for the client game induced by s, then the lemma is violated
for F = {f1}, which implies that the “class set” can be refined.

On the other hand, applying this lemma to C′ does not give a contradiction. This is
correct, as C′ cannot be refined. To see this, note that both w1 and w3 may consider either
f1, f2 or both, for different balanced client subgame profiles. As such, w1, w3, f1, and f2
all belong to the same class. Furthermore, w2 and w4 are in the same class as f2 and f1
respectively. We conclude that C′ is indeed the class set.

v1

f1

v2

f2

v3v4

(a) Host graph H with facility place-
ment s = (v1, v2)

w1

f1

w2

f2

w3w4

(b) Host graph H ′ with facility place-
ment s′ = (w1, w2)

Figure 9: Two similar instances with different class sets

The second property we discuss may be intuited as the condition that each class consists
of one “connected component”. Formalizing this notion of “connectivity” is somewhat
cumbersome, however. We consider a “path” connecting two elements of the class as an
alternating sequence of clients and facilities, where every facility in the sequence is in the
shopping range of the clients preceding and succeeding it. For every class, such a sequence
must exist from every client or facility to every other client or facility. If we can split a
class into two or more “components” between which no “paths” exist, then we can refine
the class set by replacing that class with its “components”.

All connected graphs possess the property that for every partition (V ′, V \ V ′) of its
vertex set V , the cut-set of the cut induced by this partition is nonempty. In Lemma 15, we
characterize our notion of the “connectivity” of a class Cp = (Vp,Fp) somewhat similarly:
for every partition (F,Fp \F ) of the class’ facilities, we require at least one client in Vp to
be in the attraction range of both F and Fp \ F .

Lemma 15. Consider an instance of 2-FLG with host graph H and some facility placement
profile s ∈ S. Let C denote the class set for client game induced by s. Then for any class
Cp = (Fp, Vp) ∈ C, we find:

Vp ∩As(F ) ∩As(Fp \ F ) ̸= ∅ for every partition (F,Fp \ F ) of Fp (5)
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Proof. Consider some class Cp = (Fp, Vp) ∈ C. Now assume by contradiction that there
exists F ⊊ Fp, F ̸= ∅ such that Vp ∩As(F )∩As(Fp \F ) = ∅. Then for any balanced client
subgame profile, clients in As(F ) ∩ Vp exclusively consider facilities in F , and clients in
As(Fp \F )∩Vp exclusively consider facilities in Fp \F . As such, we can replace Cp by the
classes (F,As(F ) ∩ Vp) and (Fp \ F,As(Fp \ F ) ∩ Vp). Since C can be refined, it is not a
class set; a contradiction.

4.3 An algorithm for finding balanced profiles and the class set

In this chapter, we provide a basic algorithm for finding a balanced client subgame profile
and the class set and investigate its running time. In particular, we show that for un-
weighted 2-FLG, we can always find a balanced client subgame profile and the class set in
time polynomial in the input size. The same is true for general instances of 2-FLG, given
some minor assumptions on the representation of the client weights in the input.

Finding Balanced Client Profiles

The key idea for the algorithm is to relate client games to maximum flow networks. For
any client game, we construct a flow network for which there is a bijective relation between
feasible client subgame profiles and maximum flows. Furthermore, the facility loads induced
by a client subgame profile equal the flow through specific edges for the corresponding
maximum flow. We can control the capacity of these edges to find balanced client subgame
profiles.

Definition 4.6. Consider an instance (H,U , k) of 2-FLG with host graph H = (V,A,w)
and some s ∈ S, and let W :=

∑︁
v∈V cov(s)w(vi) denote the sum of the weights of the clients

covered by s. Then, flow network G = (V ′, E′
1 ∪ E′

2 ∪ E′
3) is the client game flow network

for the client game induced by s if:

V ′ := V cov(s) ∪ F ∪ {s, t}
E′

1 := {(s, vi, w(vi)) | vi ∈ V cov(s)}
E′

2 := {(vi, fj ,∞) | fj ∈ Ns(vi)}
E′

3 := {(fj , t, cj) | fj ∈ F},

where we denote edges as (tail, head, capacity).

The capacities of the edges in E′
3 are not fixed, as these are the aforementioned edges

that can be used to control which maximum flows may be found. As an example, consider
the instance of 2-FLG with 3 facility players and host graph H as shown in Figure 10.
Further assume that facility placement profile s := (v2, v4, v5) is in S. Figure 11 shows the
client game flow network G for the client game induced by s.
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Figure 10: Host graph H
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Figure 11: Client game flow network G for s = (v2, v4, v5)

The dashed lines indicate which edges belong to E′
1, E

′
2, and E′

3 respectively, and do
not represent edges themselves. Note that v1 does not appear in the network, as it is not
covered by s. Further note that any (maximum) s, t-flow φ has flow value at most W = 8,
since the flow value cannot exceed the sum of the capacities of edges in E′

1. We now show
how to relate each (maximum) s, t-flow in G to a specific client subgame profile for the
client game induced by s.

Definition 4.7. Consider some instance of 2-FLG and let G = (V ′, E′
1 ∪E′

2 ∪E′
3) denote

the client game flow network for the client game induced by some FPP s ∈ S, with some
given capacities on the edges of E′

3. Let φ denote some s, t-flow in G. Then, the client
subgame profile σφ(s) defined by:

σφ(s)i,j =

{︄φ(vifj)

w(vi)
if vi is covered by s

0 else
(6)

is called the profile representation of φ. Similarly, φ is called the flow representation of
σφ(s).

We claim that the profile representation of some flow φ is a feasible client subgame
profile if and only if φ has flow value W :
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Lemma 16. Consider some instance of 2-FLG and let G′ = (V ′, E′
1 ∪E′

2 ∪E′
3) denote the

client game flow network for the client game induced by some FPP s ∈ S. Let φ denote
some s, t-flow in G. Then, the profile representation σφ(s) of φ is a feasible client subgame
profile if and only if φ has flow value W .

Proof. φ saturates each edge in E′
1 if and only if it has flow value W . By the flow conser-

vation constraints on the vertices of V cov(s):∑︂
fj∈As(vi)

σφ
i,j =

∑︂
fj∈As(vi)

φ(vifj)

w(vi)
=

c(s,vi)

w(vi)
= 1

is satisfied for all clients vi ∈ V cov(s) if and only if φ has flow value W . This a necessary
condition for feasibility (see Definition 2.1). It is self-evident that the other conditions for
feasibility are satisfied for any s, t-flow. We conclude that σφ(s) is feasible if and only if φ
has flow value W .

Finding the (unique) flow representation φ for any feasible client subgame profile σφ(s)
is trivial. The flow through the edges of E′

2 is given by (6). Furthermore, the flow conser-
vation constraints ensure that every s, t-flow is uniquely characterized by the flow through
the edges of E′

2. By Lemma 16, φ has flow value W , which requires all edges in E′
1 to be

saturated by φ. The flow through an edge (fj , t) in E′
3 equals the load on facility fj for

(s, σφ(s)):

φfj ,t =
∑︂

vi∈V s.t.
(vi,fj)∈E′

2

φvi,fj =
∑︂

vi∈V s.t.
(vi,fj)∈E′

2

w(vi)σ
φ(s)i,j =

∑︂
vi∈As(fj)

w(vi)σ
φ(s)i,j = ℓj(s, σφ(s)).

As such, the relation between feasible client subgame profiles and s, t-flows in G with flow
value W is bijective. For the flow representation of some client subgame profile to be
feasible in G, we require the capacities on E′

3 to be sufficiently large. This can be used to
our advantage: to find a client subgame profile for which the loads on certain facilities are
bounded from above, we set the capacities of E′

3 in G accordingly and find a maximum
flow. If the maximum flow has flow value W , then the profile representation of this flow
is a feasible client subgame profile satisfying the given bounds on the facility loads. If the
flow value is less than W , then no client subgame profile satisfying the given bounds exists.
In particular, if the total capacity on E′

3 is W , then this procedure finds a client subgame
profile for which the induced loads on all facilities equal the capacities exactly (assuming
such a profile exists). Recall that, by Theorem 4 and Lemma 6, a client subgame profile
is balanced if and only if it induces a unique vector of facility loads. If this vector of
facility loads is known, the procedure can find a balanced client subgame profile by finding
a maximum flow.

To find this vector, we consider the client games as resource allocation problems. We
aim to find an allocation of the clients (resources) to the facility players satisfying max-min
fairness. Our algorithm is based on the bottle-neck algorithm [15] for finding max-min fair
resource allocations. We first provide the mathematical representation of the algorithm
and prove its correctness, and then apply it to an example. The reader is encouraged to
consider the mathematical representation and the example side by side.
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Algorithm 1 ComputeBalancedProfile(H = (V,A,w),F , s)
1: construct directed graph G = (V ′, E′

1 ∪ E′
2 ∪ E′

3)
2: V ′ ← V cov(s) ∪ F ∪ {s, t} ▷ Construct client game flow network
3: E′

1 ← {(s, vi, w(vi)) | vi ∈ V cov(s)} ▷ We denote edges as (tail, head, capacity)
4: E′

2 ← {(vi, fj ,∞) | fj ∈ Ns(vi)}
5: E′

3 ← {(fj , t, cj) | fj ∈ F}
6: J ← {1, 2, . . . , |F|}, Ĵ ← ∅ ▷ Initialize other variables
7: W ←

∑︁
vi∈V cov(s)w(vi)

8: ϵ← sufficiently small strictly positive number
9: for j ∈ J do

10: cj ←W ▷ Set capacities to guarantee existence of flow with value W
11: end for
12: while J ̸= ∅ do ▷ Uniformly decrease the capacities of edges in E′

3

13: γ ← FindNextThreshold(G, J)
14: for j ∈ J do
15: cj ← γ
16: end for
17: for j ∈ J do ▷ Check for each edge in E′

3 if we can decrease capacity
18: cj ← γ − ϵ
19: φ̂← maximum (s, t)-flow in G
20: cj ← γ
21: if |φ̂| < W then
22: move j from J to Ĵ
23: end if
24: end for
25: end while
26: φ← maximum (s, t)-flow in G ▷ Find max. flow and profile representation
27: for vi ∈ V do
28: for fj ∈ F do

29: σφ(s)i,j ←

{︄φ(vifj)

w(vi)
if vi is covered by s

0 else
30: end for
31: end for
32: return σφ(s)

The function FindNextThreshold returns the smallest value γ, such that the network
with cj = γ for all j ∈ J , still admits a s, t-flow with flow value W . We discuss the
implementation of this function at a later point. For now, we simply assume that this
function exists.

Theorem 8. Assuming a working implementation of the function FindNextThreshold is
used, Algorithm 1 computes a balanced client subgame profile for any client subgame profile
given an instance of 2-FLG and FPP s.

Proof. We first show that the algorithm terminates. Note that |J | is finite, and nothing is
added to J after initialization. To prove that the central while loop (line 17) has a finite
number of iterations, it thus suffices to show that at least one element is moved from J to
Ĵ in each iteration. To this end, consider an iteration with threshold value γ and assume
by contradiction that for every j ∈ J , decreasing cj to γ − ϵ does not lower the maximum
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attainable flow value. Then, for each j ∈ J , let φj denote the maximum flow found in line
19 of the algorithm (related to that j). By assumption, all of these flows have flow value
W . Consider flow φ∗ = 1

|J |
∑︁

j∈J φ
j and the network with cj = γ for all j ∈ J . In this

network, φ∗ has flow value W , but does not saturate (fj , t) for any j ∈ J . But then γ
was incorrectly chosen as a threshold value; a contradiction. It is self-evident that every
other loop in the algorithm also only has a finite number of iterations. By assumption,
“FindNextThreshold” always terminates, and so does a reasonable algorithm for finding
maximum s, t-flows (e.g., the Edmonds-Karp algorithm[9]). We conclude that Algorithm
1 terminates when applied to any client game.

By Lemma 16, σφ(s) is a feasible client subgame profile. To prove that is also balanced,
we need an intermediate result. We claim that, at any point in the algorithm, any flow with
flow value W saturates all edges (fj , t) for j ∈ Ĵ . To see this, note that j is moved from J
to Ĵ only if decreasing cj would lower the maximum attainable flow value over the network
(so flow value W is no longer attainable). At that iteration of the algorithm, every flow
with flow value W thus saturates (fj , t). Since any flow that is feasible at a later iteration
of the algorithm is also feasible at every preceding iteration, this saturation property still
holds at every later iteration. Since Ĵ = {1, 2, . . . , k} at termination, φ saturates all edges
in E′

3.
We now show that σφ(s) is balanced. Assume by contradiction that it is not. Then

there are facilities fi, fj ∈ F such that ℓi(s, σφ(s)) < ℓj(s, σφ(s)), and there is a client v
in As(fi) ∩ As(fj) that considers fj . Since ℓi(s, σφ(s)) < ℓj(s, σφ(s)) and φ saturates all
edges in E′

3, we find that cj > ci. Consider G at the iteration when j was moved to Ĵ .
Since i was moved to Ĵ at some later iteration (since ci < cj), φ does not saturate (fi, t) at
this iteration. Let ϵ > 0 denote some sufficiently small, strictly positive number, and let φ′

denote the flow obtained from φ by decreasing the flow along (v, fj) and (fj , t) by ϵ, and
increasing the flow along (v, fi) and fi, t) by ϵ. Then, φ′ has load W and does not saturate
(fj , t). But then j would not have been moved to Ĵ in this iteration; a contradiction.

We conclude that Algorithm 1 always finds a balanced client subgame profile for the
client game induced by s.

We now apply Algorithm 1 to an example. In particular, we revisit the instance of
2-FLG with the host graph as shown in Figure 10, and again consider the client game
induced by s := {v2, v4, v5}. We apply Algorithm 1 with arguments (H, {f1, f2, f3}, s). At
initialization, we construct the flow network G as shown in Figure 11 and assign c1 = c2 =
c3 = W = 8, J = {1, 2, 3} and Ĵ = ∅.

Next, we iterate through the main part of the algorithm. We uniformly decrease c1, c2
and c3 until we reach the first threshold value: γ = 3. Ways to find this value will
be discussed later, although we do verify its correctness now. To see that the threshold
value cannot be larger, apply a max-flow algorithm for γ = 3 to obtain a (s, t)-flow with
flow value W = 8. To see that it cannot be smaller, note that the (s, t)-cut (Q,R) with
Q = {s, v2, v3, v4, f1, f2}, R = (v5, f3, t} has a capacity of 2 + c1 + c2 = 2 + 2γ. By the
max-flow min-cut theorem, no s, t-flow with flow value W = 8 can exist for γ < 3.

Next, we determine which facility indices to move from J to Ĵ . A facility index j is
moved if and only if (fj , t) is saturated for every maximum flow. This is true for 1 and 2,
but not for 3. Note the relation to the client game, where clients {v2, v3, v4} have only f1
and f2 in range. For any client subgame profile, the combined load on f1 and f2 is therefore
at least w(v2) + w(v3) + w(v4) = 6. By construction, the sum of the flows through (f1, t)
and (f2, t) is thus also at least 6. We fix c1 = c2 = 3 and move 1 and 2 from J to Ĵ . This
gives J = {3} and Ĵ = {1, 2}. In the next iteration, we decrease c3 until another threshold
is reached. Since the next threshold value is γ = 2, we fix c3 = 2 and move 3 from J to Ĵ .
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After the second iteration, J is empty. The final step of the algorithm is to find a
maximum flow φ and construct its profile representation σφ(s). In this example, φ is the
(unique) maximum flow shown in Figure 12. In general, the maximum flow is not unique,
however. σφ(s) is the pure, balanced client subgame profile where v2 and v3 consider f1,
v4 considers f2, and v5 considers f3. One can easily verify that this client subgame profile
is balanced.

s

v3

v4

f1

f2

f3

v2

v5

t
1/1

3/3

2/2

2/2

1/∞

0/∞

3/∞

2/∞
0/∞

0/∞

2/∞

3/3

3/3

2/2

Figure 12: Network G at termination, flow φ is shown in red

Thresholds and Complexity

So far, we refrained from describing methods for finding threshold values. We now establish
some naive implementations that are quite straightforward. However, proving polynomial
running time for these methods is highly technical. As such, we seek to find a balance
between providing a convincing argument and keeping the technical details to a minimum.

Lemma 17 shows how to construct a finite set X of candidate threshold values.

Lemma 17. Consider an instance of 2-FLG with host graph H := (V,A,w) and k facility
players, and some FPP s ∈ S. Let

X :=
{︂1

y

∑︂
vi∈V ′

w(vi)
⃓⃓⃓
y ∈ {1, 2, . . . , k}, V ′ ⊆ V cov(s)

}︂
denote the threshold candidate set. Then, all threshold values used when applying Algorithm
1 for H and s belong to the threshold candidate set X.

Proof. The threshold value γ corresponding to some iteration of Algorithm 1 equals the
balanced load of each facility that is moved from J to Ĵ at that iteration. Recall that
the balanced load of any facility equals the class load ℓ(Cp) of the class Cp containing
that facility. Furthermore, for a class Cp := (Fp, Vp), all facilities in Fp are considered
exclusively by clients in Vp and clients in Vp exclusively consider facilities in Fp. We find:

ℓ(Cp) =
1

|Fp|
∑︂
vi∈Vp

w(vi).

Note that the number of facilities in a class |Fp| is an integer between 1 and k. Since a
threshold value γ equals the class load of some class in the class set, we conclude that γ is
in X.
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Since the cardinality of the candidate set is finite, we have shown how to construct
a finite set that contains all threshold values. A naive implementation of the function
FindNextThreshold is to determine the candidate set, sort it, and perform a binary
search to find the smallest value γ ∈ X for which setting cj = γ for all j ∈ J admits a
flow on G with flow value W . Note, however, that X may contain up to k · 2n elements,
which is exponential in the number of players, and thus in the input size. Constructing and
sorting the candidate set may thus take time exponential in the input size. For instances
of unweighted 2-FLG, this problem is easily solved. For unweighted 2-FLG, the sum of the
weights of the clients in any subset of V is integer and at most W = |V cov(s)|. As such, X
contains at most kn elements. The size of X is thus polynomial in the number of players.

Lemma 18. For unweighted instances 2-FLG, we can find threshold values in time poly-
nomial in the input size.

Proof. Consider some instance of unweighted 2-FLG and a facility placement profile s ∈ S.
Define W = |V cov(s)| ≤ n. Then, the threshold candidate set X defined in Lemma 17 is:

X = {y
z
| y ∈ {1, 2, . . . ,W}, z ∈ {1, 2, . . . , k}}. (7)

Constructing and sorting this set can then be done in time O(|X| log(|X|)) = O(kn log(kn).
Finding the next threshold value may be done by checking all values of X in descending
order. This requires at most O(kn) verifications (this is the maximum number of verifica-
tions over the whole of Algorithm 1, not just for one function call). Performing a binary
search over X instead of checking all values further speeds up this process. A verifica-
tion step requires finding a maximum flow in G, which was shown to be possible in time
O(k + n)(k2n2)). We conclude that finding the next threshold value can be done in time
O((k + n)k3n3), which is polynomial in the input size.

To use a similar argument for general instances, we must consider the binary representa-
tion of client weights in the input. We argue that for any reasonable binary representation
of the client weights in the input, there exists a λ ∈ N+ such that scaling all client weights
by λ results in an instance where all client weights are integer, and the maximum client
weight is at most exponential in the size of the input. We refrain from discussing the
technical details of this argument. Given this instance with integer weights, we further
scale all loads by “k!” to guarantee that the candidate set X includes only integer val-
ues. The resulting client weights, and thus W , are still at most exponential in the size
of the input. The threshold candidate set X for the scaled client game is a subset of
X ′ = {1, 2, . . . ,W − 1,W}, where W denotes the sum of the weights of the scaled client
game. Performing a binary search on X ′ allows us to find threshold values in polynomial
time with respect to the input size. The threshold values for the original game and the
scaled game are proportional. We conclude that finding threshold values can be done in
polynomial time with respect to the input size, given a reasonable binary representation
of the input. Theorem 9 shows that Algorithm 1 runs in polynomial time for all instances
under this assumption, and runs in polynomial time for unweighted instances either way.

Theorem 9. Algorithm 1 runs in time polynomial in the input size, given that the threshold
values can be found in polynomial time.

Proof. To find the balanced client subgame profile, we apply Algorithm 1. Each loop in
the algorithm has a polynomial number of iterations. The only operation that may still
exceed polynomial time in the input size are running the FindNextThreshold function
and finding a maximum (s, t)-flow in G. The latter can be done in O(|V ′||E(G)|2) time
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using Edmonds-Karp [9]. Since |V ′| ≤ k + n + 2 and |E(G)| ≤ n + k + kn, maximum
flows can thus be found in time O

(︁
(k+n)k2n2

)︁
, which is polynomial in the input size. We

conclude that if FindNextThreshold runs in polynomial time, so does Algorithm 1.

Finding the Class Set

We now show how to use Algorithm 1 to efficiently find the class set. We use the flow
representation φ of a known balanced client subgame profile σφ(s) to accomplish this. We
also use the network G, where the capacities on E′

3 are those found by the algorithm. That
is, cj = ℓj(s, σφ(s)) for each fj ∈ F . Lemma 19 shows how to use the residual graph of φ
in G to efficiently determine whether two distinct facilities belong to the same class. This
lemma is applied multiple times to obtain the partition of the facilities into classes.

Lemma 19. Consider some instance of 2-FLG and s ∈ S, to which Algorithm 1 was
applied. Let G and φ denote the network and maximum flow found by the algorithm.
Then, two distinct facilities fi and fj belong to the same class if and only if the residual
graph of φ contains an (fi, fj)- and an (fj , fi)-path.

Proof. Assume that for a pair of facilities fi, fj ∈ F , the residual graph of φ contains a
(fi, fj)-path and a (fj , fi)-path. Then there is a tour T in the residual graph where fi and
fj are both in the vertex sequence of T . This vertex sequence cannot contain s or t since
the residual graph contains no edges with s as the tail vertex or t as the head vertex. The
vertex sequence of T is thus an alternating sequence of client vertices and facility vertices.
Consider flow φ′ obtained from φ by sending some strictly positive amount of flow along
T , and let σφ′

(s) denote the profile representation of φ′. Then, each client vi in the vertex
sequence of T considers the facility preceding it in the sequence for client subgame profile
σφ(s), and the facility succeeding it in the sequence for σφ′

(s). Since both are balanced
subgame profiles, all consecutive facilities in the sequence belong to the same class. We
conclude that all facilities in the vertex sequence of T belong to the same class, which
includes fi and fj .

Now assume that fi and fj belong to the same class Cp = (Fp, Vp). We iteratively
construct a set F ∗ ⊆ Fp with the property that for all f ∈ F ∗, either f = fi, or there
exists a (fi, f)-path in the residual graph. It suffices to give a procedure that adds fj
to F ∗ while maintaining the aforementioned property of F ∗ throughout this procedure.
We initialize F ∗ = {fi} and repeatedly apply Lemma 14 with F = Fp \ F ∗. The lemma
states that there is some client vi ∈ As(F ) that does not exclusively consider facilities in
F for σφ(s). This means that vi considers some facility fx in F ∗ and has a facility fy ∈ F
in their shopping range. This implies that the residual graph contains edges (fx, vi) and
(vi, fy). By the induction hypothesis, the residual graph contains a (fi, fx)-path and thus
a (fi, fy)-path. We add fy to F ∗ and continue to the next iteration. Since the number of
facilities in a class is finite, this procedure eventually adds fj to F ∗. We conclude that the
residual graph contains a (fi, fj)-path. By the same argument, the residual graph contains
a (fj , fi)-path, as well.

If a balanced client subgame profile σ(s) is known, but was not obtained from Algorithm
1, then it is possible to use Lemma 19 without running the entire algorithm. In this case,
the client game flow network G is constructed as usual, where the capacities on E′

3 follow
immediately from the (known) balanced facility loads. As a maximum flow in G, we use
the flow representation of σ(s), which is trivial to find. Independent of how the balanced
client subgame profile was found, we can use it to find the class set in polynomial time.
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Theorem 10. Given a balanced client subgame profile σφ(s) for the client game induced
by s, we can find the class set C for this client game in polynomial time.

Proof. As discussed, the flow network G and flow φ defined in Algorithm 1 for σφ(s) can
be found in polynomial time. We apply Lemma 19 to every pair of facilities to find the
partition of F into classes. As there are k(k−1)

2 distinct pairs of facilities, this requires O(k2)
applications of Lemma 19. Each application requires checking whether two directed paths
between the facility vertices exist. This takes O(kn) time using a BFS/DFS algorithm.
Partitioning the facilities is thus done in O(k3n) time. To partition the covered clients into
classes, simply add each client vi ∈ V cov(s) to the class containing the facilities considered
by vi for σφ(s). This is the correct partition since each client is in the same class as every
facility they consider for any balanced client subgame profile. Partitioning the clients is
done in time O(kn). Using this procedure, the class set is found in O(k3n) time, which is
polynomial in the input size.

In practice, one would not apply Lemma 14 to every pair of facilities, but only those
with equal balanced loads. After all, facilities with different balanced loads cannot belong
to the same class.
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5 Subgame Perfect Equilibria in Different Types of 2-FLG

In the previous chapter, we defined the concept of balanced client subgame profiles and
showed that the existence of a balanced client equilibrium profile is a sufficient condition
for the existence of SPE. In this chapter, we find further types of instances which are
guaranteed to admit SPE. In particular, we show that every instance of unweighted 2-FLG
admits a subgame perfect equilibrium. Additionally, we consider some types of instances
that do not generally admit SPE, although one may expect them to.

5.1 Subgame Perfect Equilibria in Unweighted Games

We need several intermediate results to show that unweighted instances always admit
subgame perfect equilibria. We first apply the theory of balanced client subgame profiles
and the class set to show the existence of a specific type of client equilibria: rounded
client equilibria. Next, we show how to find a pure, rounded client equilibrium profile that
consistently favors the same facilities in tie-breaker scenarios, which we call favoring client
equilibrium profiles. We prove the existence of a sequence of states with different favoring
client equilibria and facility placement profiles that leads to a subgame perfect equilibrium.
This result follows from the observation that the vector of sorted facilities loads increases
lexicographically along this sequence of states and that it can only terminate at an SPE. As
this proof is constructive, it also provides the outline for an algorithm for finding subgame
perfect equilibria.

The types of client equilibria discussed in this chapter are based on balanced client
subgame profiles, and thus on the class set. However, the definition of the class set is too
constraining for these purposes. As such, we define the tier set T , a coarser version of the
class set. The tier set groups classes by their class loads. Even-indexed tiers contain all
classes that have a specific integer load, while odd-indexed tiers contain all classes with
loads in the open interval between two specific consecutive integers.

Definition 5.1. Consider an instance of unweighted 2-FLG with n clients and FPP s ∈ S,
and let C denote the class set for the client game induced by s. We define the tier set T
as the set {T1, T2, . . . , T2n} with:

Ti =

{︄
{C ∈ C | ℓ(C) ∈ ( i−1

2 , i+1
2 )} for i odd

{C ∈ C | ℓ(C) = i
2} for i even

With slight abuse of notation, we will say that some client v ∈ V or some facility f ∈ F
is in some tier Ti when the client or facility belongs to a class that is, in turn, part of Ti.
This is allowed since, like with classes, every facility and every covered client is in exactly
one tier. Note that, due to the choice of indexing, the tier set may contain empty tiers.
We now define the concept of rounded client equilibria

Definition 5.2. Consider some instance of unweighted 2-FLG and s ∈ S. Let T denote
the tier set for the client game induced by s, and let σb(s) denote some balanced client
subgame profile. Then, we call a client subgame profile σ(s) ∈ Φs rounded if for all facilities
fj ∈ F :

ℓj(s, σ(s)) ∈ {⌊ℓj(s, σb(s))⌋, ⌈ℓj(s, σb(s))⌉}

and clients exclusively consider facilities in their own tier. Naturally, we call a client profile
σ rounded if σ(s) is rounded for each s ∈ S.
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As their name suggests, rounded client subgame profiles may be interpreted as profiles
obtained by “rounding” a balanced client subgame profile to guarantee integer facility loads.
Like balanced profiles, rounded client subgame profiles are easy to work with, especially so
when they are also pure. We will show that pure, rounded client equilibria exist for every
client game for unweighted instances of 2-FLG. This holds even if we require clients to
exclusively consider facilities in their own class, not just in their own tier. We later provide
an algorithm for finding a pure, rounded client equilibrium that always finds one also
satisfying this stricter condition. To construct and prove the correctness of this algorithm,
certain preliminaries are necessary. First, Lemma 20 gives a characterization of pure client
equilibria specific to unweighted instances.

Lemma 20. Consider some instance of unweighted 2-FLG and facility placement profile
s ∈ S, and let σ(s) denote some pure client subgame profile. Then, σ(s) is a client
equilibrium if and only if the following holds for each client vi ∈ V :

ℓj′(s, σ(s)) ≥ ℓj(s, σ(s))− 1 ∀fj′ ∈ Ns(vi),

where fj denotes the (unique) facility considered by vi.

Proof. Since vi exclusively considers fj , it is trivial to find the vi-excluded loads for all
facilities:

ℓ−i,j′(s, σ(s)) =

{︄
ℓj′(s, σ(s)) for j′ ̸= j

ℓj′(s, σ(s))− 1 for j′ = j.

Substituting these values in Theorem 1 gives the desired result.

For some of the upcoming proofs, it is useful to characterize client games as bipartite
graphs, where pure client subgame profiles are represented by the set of edges we call
saturated. To this end, we define client graphs, client class graphs, and client tier graphs.

Definition 5.3. Consider instance (H,U , k) of unweighted 2-FLG and facility placement
profile s ∈ S. The client graph G for the client game induced by s is the bipartite,
undirected graph with vertex set V (G) and edge set E(G) with:

V (G) := V cov(s) ∪ F
E(Gp) := {(vi, fj) ∈ V cov(s)×F | vi ∈ As(fj)}

That is, a client vertex and a facility vertex in the client graph are connected by an edge
if the facility is in the clients’ shopping range.

Definition 5.4. Consider instance (H,U , k) of unweighted 2-FLG and facility placement
profile s ∈ S, and let C denote the class set for the client game induced by s. Then, for each
class (Fp, Vp) ∈ C, we define the client class graph Gp := (V (Gp), E(Gp)) as the subgraph
induced by Fp ∪ Vp in the client graph. That is,

V (Gp) := Vp ∪ Fp

E(Gp) := {(vi, fj) ∈ Vp ×Fp | vi ∈ As(fj)}

We define the client tier graph for a tier Ti ∈ T analogously to the client class graph.

As an example, consider the instance of unweighted 2-FLG with facility players F :=
{f1, f2, f3} and the host graph shown in Figure 13 (left). The client graph for the client
game induced by s := {v2, v4, v5} ∈ S is shown in Figure 13 (right). Note the similarities to
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the (weighted) instance shown in Figure 10 and its accompanying client game flow network
in Figure 11: the client graph is the “E′

2-part” of the flow network.

v1 v2 v3

v4 v5

(a) Host graph H

v3

f1

f2

v4

f3

v2

v5

(b) Client graph G for s = (v2, v4, v5)

Figure 13: Example for client graph

Theorem 11. For every instance of unweighted 2-FLG and facility placement profile s ∈ S,
there exists a pure, rounded client equilibrium σ(s) for the client game induced by s.

Proof. Consider some instance of unweighted 2-FLG and client equilibrium s ∈ S, and
let C denote the class set for the client game induced by s. For each class Cp ∈ C, let
Gp = (V (Gp), E(Gp)) denote the client class graph (see Definition 5.4) for Cp. We now
show how to construct a pure, rounded client equilibrium σ(s).

We initialize σ(s)i,j = 0 for all vi ∈ V, fj ∈ F and repeatedly augment σ(s) by assigning
clients sequentially, on a class-by-class basis. At any step in the procedure, we call an edge
(vi, fj) in E(Gp) saturated if σ(s)i,j = 1, and unsaturated otherwise. Furthermore, we
call a trail between two elements of V (Gp) odd-alternating if all odd-numbered edges are
unsaturated and all even-numbered edges are saturated.

For every class Cp = (Vp,Fp) ∈ C, we apply a two-phase procedure. In the first phase,
we assign clients in Vp to facilities in Fp until each of these facilities has a load of ⌊ℓ(Cp)⌋.
This is achieved with the following steps:

1. Choose some fj ∈ Fp with current load 0. If no such facility exists, terminate.

2. Find an odd-alternating (fj , vi)-trail in Gp for a yet unassigned client vi ∈ Vp.

3. Augment σ(s) such that the saturation of all edges in the trail is swapped. If
ℓj(s, σ(s)) = ⌊ℓ(Cp)⌋, return to step 1. Else, return to step 2.

It remains to be shown that we can always find a trail in step 2. Assume by contradiction
that at some point, there is no trail satisfying our criterion for some facility fj ∈ Fp. Let
F̃ j denote the set of facilities in Fp that can be reached from fj by some odd-alternating
trail in Gp for σ(s) at that point in the algorithm. Then, every client in Ṽ j := As(F̃ j) ∩
Vp is connected to F̃ j by some saturated edge. Furthermore, none of these clients are
adjacent to a facility in Fp \ F̃ j , as otherwise the edge connecting them would necessarily
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be unsaturated, meaning that the facility belongs to F̃ j by definition. Thus, Ns(Ṽ j)∩Fp =
F̃ j . But since the maximum load on any facility for the current σ(s) is ⌊ℓ(Cp)⌋, and strictly
less on fj , we conclude that |As(F̃p)∩Vp| < |F̃ j | · ⌊ℓ(Cp)⌋, which contradicts the existence
of a balanced flow with class load ℓ(Cp). We conclude that we can always find a trail in
step 2.

Next, note that applying step 3 increments the load on fj by one, and does not affect
the load of any other facility. As both the balanced load and the number of facilities in a
class are finite, the algorithm must terminate. At termination, ℓj(s, σ(s)) = ⌊ℓ(Cp)⌋, for
each fj ∈ Fp, and σ(s) is pure.

If ℓ(Cp) is integer, this first phase of the procedure assigns all clients in Vp. In this
case, we are done with class Cp. If ℓ(Cp) is non-integer, we apply the second phase of the
procedure, where we consecutively assign the remaining clients. We repeatedly perform
the following operations until all clients in Vp are assigned:

1. Choose an unassigned client vi ∈ Vp.

2. Find a odd-alternating (vi, fj)-trail in Gp, where fj is a facility with ℓj(s, σ(s)) =
⌊ℓ(Cp)⌋.

3. Augment σ(s) such that the saturation of all edges in the trail is swapped.

Again, we must show that we can always find a trail in step 2. Assume by contradiction
that at some point, there is no trail satisfying the criterion for client vi ∈ Vp. Let Ṽ i denote
the set of clients reachable from vi by odd-alternating trails. By assumption, each facility
in Ns(Ṽ i) ∪ Fp has load ⌈ℓ(Cp)⌉ > ℓ(Cp). Since these facilities are exclusively considered
by clients in Ṽ i for any balanced client subgame profile, the average load on these facilities
is strictly larger than ℓ(Cp) for any balanced client subgame profile; a contradiction. We
conclude that we can always find a trail in step 2.

Next, note that applying step 3 increases the number of assigned clients by one. Since
the number of clients is finite, the algorithm always terminates. Furthermore, every appli-
cation of step 3 increases the load on fj from ⌊ℓ(Cp)⌋ to ⌈ℓ(Cp)⌉ and does not affect the
other facility loads. After applying the algorithm for Cp, the load on every facility in Fp

is therefore either ⌊ℓ(Cp)⌋ or ⌈ℓ(Cp)⌉.
The client subgame profile σ(s) obtained by applying the two-phase procedure to every

class is thus pure and rounded. Since all covered clients are assigned to some facility in
their shopping range, σ(s) is also feasible. To show that σ(s) is a client equilibrium, we
apply Lemma 20. Assume by contradiction that some client vi ∈ V considers facility fj ,
and that there is another facility fj′ ∈ Ns(vi) with ℓj′(s, σ(s)) < ℓj(s, σ(s)) − 1. Since all
loads are integer, this implies ℓj′(s, σ(s)) ≤ ℓj(s, σ(s))− 2. We find:

⌈ℓj′(s, σb(s))⌉ < ℓj′(s, σ(s)) + 1 ≤ ℓj(s, σ(s))− 1 < ⌊ℓj(s, σb(s))⌋,

where σb(s) denotes some balanced client subgame profile. By definition, fj and fj′ are in
different tiers and classes, with fj belonging to the higher tier. As such, vi cannot consider
fj for σ(s) by construction; a contradiction. We conclude that σ(s) is a pure, rounded
client equilibrium.

There are generally many ways to decide which facilities get their load rounded up
and down respectively. This means that pure, rounded client equilibria are not generally
unique and that different client equilibria might induce distinct facility loads. However,
Lemma 21 shows that the vector of sorted facility loads is identical for each pure, rounded
client subgame profile, and thus for each pure, rounded client equilibrium.
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Lemma 21. Consider some instance of unweighted 2-FLG and let s ∈ S denote some
facility placement profile. Let σ(s) and σ′(s) denote two pure, rounded client subgame
profiles for the client game induced by s. Then, ℓsort(s, σ(s)) = ℓsort(s, σ′(s)).

Proof. Let T denote the tier set for this client game, and let V (Tp) and F(Tp) denote the
sets of clients and facilities in tier Tp ∈ T , respectively. Note that each client in V (Tp)
considers exactly one facility in F(Tp) and that the tier set is independent of the chosen
client subgame profile. This implies that for every pair of pure, rounded client subgame
profiles σ(s), σ′(s), we have:∑︂

fj∈F(Tp)

ℓj(s, σ(s)) =
∑︂

fj∈F(Tp)

ℓj(s, σ′(s)) for all Tp ∈ T .

This, combined with the definition of rounded client subgame profiles, implies that the
number of facilities in F(Tp) whose load got rounded down (and thus also the number of
facilities whose load got rounded up) must be the same for both client subgame profiles.
Since this holds for all Tp ∈ T , the vector of sorted loads is identical for both profiles.

Unfortunately, ℓsort is not a lexicographical potential function for facility games in-
duced by (arbitrary) pure, balanced, client equilibria. Cases exist where ℓsort decreases
lexicographically as a consequence of an improving move. However, we can prove that
for every facility placement profile s ∈ S, there exists a pure, rounded client equilibrium
profile σ such that every improving move away from s in the facility game induced by σ
strictly increases ℓsort lexicographically. Using this fact and Lemma 6, we can prove the
existence of SPE in unweighted instances. The main idea behind this client equilibrium
profile is to control which facilities get their load rounded up or down. In particular, we
want to prevent the situation where some facility fj in tier Tp that gets rounded down by
for s, can perform an improving move resulting in FPP s′, where fj stays in the same tier
(that is, the index of its tier in the tier set for both profiles is the same), but now gets
rounded up, while one or more facilities in Tp get rounded down for s′ while they did not
for s. This situation is undesirable, as such a move might cause ℓsort to remain constant
or decrease. To accomplish this, we choose a pure, rounded client equilibrium profile that
consistently rounds the same set of facilities up and down over different facility placement
profiles. In other words, it favors the facilities based on some ordering of the facilities.

Definition 5.5. Consider some instance of 2-FLG with k facility players, and let β denote
some permutation of the integers 1 up to k. We define the β-ordering of the facilities
as the permutation of F , where fβ(j) is the jth element, for each j ∈ [1, k]. Let Iβ :
F → N denote the function which maps each facility to its position in the β-ordering
of F . For any state (s, σ), we define the vector of β-ordered facility loads ℓβord(s, σ) :=(︁
ℓβ(1)(s, σ), ℓβ(2)(s, σ), . . . , ℓβ(k)(s, σ)

)︁
.

We now define favoring client equilibria: a type of pure, rounded client equilibria that
favors the facilities according to some ordering β.

Definition 5.6. Consider an instance of 2-FLG with k facility players. Let s denote some
facility placement profile, and β some permutation of the integers from 1 to k. A client
equilibrium σ(s) is said to be β-favoring if it is a pure, rounded, client equilibrium that
minimizes the vector of β-ordered facility loads lβord lexicographically. Similarly, a client
equilibrium profile σ is said to be β-favoring if σ(s′) is a β-favoring client equilibrium for
every s′ ∈ S.
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β-favoring client equilibria are useful for several reasons. Firstly, for any choice of β,
a β-favoring equilibrium always exists, since the set of pure, rounded client equilibria is
non-empty. Secondly, β-favoring client equilibria are not significantly harder to find than
arbitrary pure, rounded client equilibria. We can adapt the algorithm for finding arbitrary
pure, rounded client equilibria to one for finding β-favoring ones. We describe the algorithm
and its correctness later, as we are only concerned with their existence for now. Lastly, for
any facility placement profile s ∈ S, there exists a permutation β such that for the facility
game induced by a β-favoring client equilibrium profile, every improving move away from
s strictly increases ℓsort lexicographically. To prove this, we define the assignment graph,
which characterizes any state (s, σ) as a bipartite graph.

Definition 5.7. Consider an instance of 2-FLG and a state (s, σ) with σ pure, and let G′

denote the client graph for the client game induced by s. Then, we define the assignment
graph for (s, σ) as the subgraph of G′ with the same vertex set, but which only contains
edges (vi, fj) ∈ E(G′) if vi considers fj for σ(s). The tier assignment graph for a tier Tp is
analogously obtained from the corresponding client tier graph.

Lemma 22. Consider some instance of 2-FLG with k facility players, some facility place-
ment profile s, and some pure, rounded client equilibrium σ(s). Let β denote a permutation
of the integers from 1 to k that satisfies the following two properties:

1. for all fi, fj ∈ F where fj is in a strictly higher tier than fi, we have Iβ(fi) < Iβ(fj)

2. for all fi, fj ∈ F with ℓi(s, σ′(s)) < ℓj(s, σ′(s)), we have Iβ(fi) < Iβ(fj)

Let σ denote a β-favoring client equilibrium profile, where σ(s) is the previously defined
β-favoring client subgame profile. Then, in the facility game induced by σ, every improving
move away from s strictly increases ℓsort lexicographically.

Proof. Let β denote a permutation of the integers from 1 to k satisfying the conditions
of the lemma, and let σ denote a β-favoring client equilibrium profile. We consider the
facility game induced by σ and show that every improving move away from s increases ℓsort
lexicographically. Assume by contradiction that some facility fim can improve by moving
to s′, but that this move does not increase ℓsort lexicographically. Then, there exists some
facility player fd ∈ F , for which the following hold:

ℓd(s′, σ) < ℓd(s, σ)
ℓd(s′, σ) ≤ ℓim(s, σ) (8)

Let G = (VG, EG) and G′ = (VG′ , EG′) denote the assignment graphs for (s, σ) and
(s′, σ) respectively. Consider the bipartite graph G∗ = (V ∗, E∗) := (VG ∪ VG′ , EG△E′

G),
where △ denotes the symmetric difference. Our aim is to find an alternating (fd, fu)-
trail Q in G∗, where fu is a facility player whose load was increased by the move, i.e.,
ℓu(s′, σ) > ℓu(s, σ). Here, alternating means that all odd-numbered edges belong to EG

and all even-numbered edges belong to EG′ .
We greedily construct Q by starting at fd and adding edges from EG and E′

G alternately
until we reach a facility vertex fu with ℓu(s′, σ) > ℓu(s, σ). Since the number of edges is
finite, the procedure finds a valid trail Q unless it gets stuck at some facility or client vertex
(i.e., there is no viable edge to add). This cannot occur at a client vertex, since each client
vertex either has degree zero or is incident to exactly one edge from EG and one edge from
EG′ . The only client vertices that may pose an exception are those exclusively adjacent to
fim. However, it is impossible to reach these client vertices without first visiting fim, and
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the procedure would have terminated upon visiting fim since the load on fim increased by
the move. Hence, the procedure cannot “get stuck” at these client vertices either. The same
is true for the facility vertices. It cannot occur at fd, since fd is incident to strictly more
edges from EG than from EG′ . Likewise, all facility vertices fj with ℓj(s′, σ) ≤ ℓu(s, σ) are
incident to at least as many edges from EG as from EG′ . We conclude that the procedure
always finds an alternating (fd, fu)-trail with ℓu(s′, σ) > ℓu(s, σ).

Let T ′ denote the tier set for s′ and let FQ denote the sequence of facilities in the vertex
sequence of Q. That is, the subsequence of the vertex sequence of Q containing only the
odd-numbered elements. We claim that the facilities in FQ belong to non-ascending tiers
in T ′. To see this, assume by contradiction that there exists a pair of facilities fi, fj ,
consecutive in FQ, such that fj belongs to a higher tier in T ′ than fi. Then, the client
positioned between these two facilities in the vertex sequence of Q considers a facility that
does not belong to the minimal tier among the facilities in its range. As clients always
belong to the same tier as the lowest-tiered facility in their shopping range, it follows that
there is a client considering a facility outside their tier. We conclude that σ(s′) is not
rounded; a contradiction.

Next, we consider two distinct cases and show that in either case, all facilities in FQ

belong to the same tier in T ′. In the first case, we assume that fim is not in FQ. Then,
an analogous argument to the earlier one proves that the facilities in FQ belong to non-
descending tiers in T , where T denotes the tier set for s. Next, note that the move
decreased and increased the loads on fd and fu respectively. As such, fd cannot be in a
strictly higher tier in T ′ than in T , and fu cannot be in a strictly lower tier in T ′ than in
T . It follows that all facilities in FQ belong to the same tier in T ′.

In the second case, we assume that fim is in FQ. That is, fim = fu. As the location
of fim is not the same between s and s′, we cannot use the same argument as before.
However, by assumption, ℓd(s′, σ) ≤ ℓim(s, σ) < ℓim(s′, σ). This implies that fim is not in
a strictly lower tier in T than fd. Since the facilities in FQ are in non-ascending tiers in
T ′, we conclude that they are all in the same tier in T ′. In either case:

ℓd(s′, σ) = ℓu(s′, σ)− 1. (9)

This equation, the integrality of the facility loads, and the fact that moving to s′ decreased
and increased the loads on fd and fu respectively, prove that ℓd(s, σ) > ℓu(s, σ). By the
choice of β, we conclude that Iβ(fd) > Iβ(fu)

Next, consider the assignment graph obtained from G′ by replacing the edges in Q∩EG′

with the edges in Q ∩ EG. Let σ∗(s′) denote the pure client equilibrium characterized by
this assignment graph. We find that:

ℓj(s′, σ∗(s′)) =

⎧⎪⎨⎪⎩
ℓj(s′, σ(s′)) for j /∈ {d, u}
ℓj(s′, σ(s′)) + 1 for j = d

ℓj(s′, σ(s′))− 1 for j = u.

(10)

(9) and (10) show that the only difference between σ(s′) and σ∗(s′) is that the loads of
fu and fd are swapped. Since all facilities in FQ are in the same tier of T ′, σ∗(s) is a
pure, rounded client equilibrium. Since Iβ(fd) > Iβ(fu), it follows that lβord(s

′, σ∗(s′)) is
bigger than lβord(s

′, σ(s′)) lexicographically. We conclude that σ(s′) is not β-favoring; a
contradiction.

Thus, fd cannot exist. We conclude that ℓsort(s′, σ) is lexicographically strictly larger
than ℓsort(s, σ).
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Lemma 22 only holds for improving moves away from s. If some facility improves by
moving to s′ from s, ℓsort increases lexicographically. However, this may greatly affect
the facility loads, thereby invalidating the condition on the ordering of the facility loads
with respect to β. Consequently, further improving moves do not generally increase ℓsort
lexicographically.

To address this, we consider a different client equilibrium profile following each improv-
ing move. This way, we may continue to apply Lemma 22. The key insight that makes this
work is Lemma 21. This lemma shows that switching to a different pure, rounded client
equilibrium does not affect the progress made in increasing ℓsort.

Theorem 12. Every instance of unweighted 2-FLG admits a subgame perfect equilibrium.
More so, it always admits one with a pure client equilibrium profile.

Proof. Consider an instance of unweighted 2-FLG. Let k denote the number of facility
players and let S denote the set of facility placement profiles. We provide an algorithm for
finding a subgame perfect equilibrium:

1. Choose an arbitrary facility placement profile s1 ∈ S and set i = 1. i will denote the
iteration of the algorithm.

2. Find some pure, rounded client equilibrium σ1(s1) for the client game induced by s1.

3. Find some permutation βi of the integers from 1 to k that satisfies the conditions
of Lemma 22 for σi(s) and find a βi-favoring client equilibrium profile σi. Note
that σi should “include” the previously defined σi(s), as this client subgame profile
is βi-favoring.

4. Consider the facility game induced by σi. If si is a facility equilibrium for this game,
then terminate with solution (si, σi). Else, let si+1 denote the facility placement
resulting from some improving move.

5. Set σi+1(si+1) = σi(si+1). Increment i by one and return to step 3.

This algorithm returns a subgame perfect equilibrium whenever it terminates. Fur-
thermore, it cannot get stuck at any step, as pure, rounded client equilibria always exist.
To prove that it always terminates, it thus suffices to show that the number of iterations
is finite. To this end, consider how the vector of sorted facility loads changes over the
iterations. For any i ∈ N, we apply Lemma 22 to find:

ℓsort(si+1, σi) > ℓsort(si, σi), (11)

where “>” denotes the lexicographical relation. Furthermore, since σi is a pure, rounded
client equilibrium for every iteration i ∈ N , we apply Lemma 21 to find that:

ℓsort(sj , σi) = ℓsort(sj , σ1), (12)

for every j ∈ N. Note that there is nothing special about σ1; any pure, rounded client
equilibrium profile works as a reference point to establish the relations between other
profiles. Applying (11) and (12) with j = i+ 1 yields:

ℓsort(si+1, σ1) = ℓsort(si+1, σi) > ℓsort(si, σi) = ℓsort(si, σ1).

Applying transitivity, we find that for i, j ∈ N with j > i:

ℓsort(sj , σ1) > ℓsort(si, σ1),
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which implies sj ̸= si. We conclude that all facility placement profiles visited by the
algorithm are unique. Since the number of facility placement profiles |S| ≤ |V |k is finite,
the algorithm always terminates in a finite number of iterations. The algorithm finds
a subgame perfect equilibrium (s, σ) for every instance of unweighted 2-FLG. Moreover,
the found σ is pure (and rounded). We conclude that every instance of unweighted 2-FLG
admits a subgame perfect equilibrium (s, σ) where σ is a pure client equilibrium profile.

The existence of SPE for unweighted instances is our main result for this chapter and
one of the main results of this thesis. Theorem 12 is useful for more than just this existence
result, however. Since the proof is constructive, it provides an outline of an algorithm for
finding subgame perfect equilibria for unweighted instances. The only things that are yet
unclear are the procedure for finding β−favoring client equilibria and the running time of
the algorithm.

5.2 Finding Equilibria in the Unweighted Game

We first analyze the complexity of finding balanced client subgame profiles.

Lemma 23. Consider an instance of 2-FLG with k facility players and a facility placement
profile s ∈ S. Let β denote some permutation of the integers from 1 to k. If the class set
C for the client game induced by s is known, we can find a β-favoring client equilibrium
σ(s) in polynomial time with respect to the input size.

Proof. We describe a procedure for finding a β-favoring client equilibria, establish its cor-
rectness, and discuss its running time.

We adapt the procedure outlined in the proof of Lemma 11. First, we execute only
the first phase of the procedure for all classes. At this point, each facility receives a load
equal to their balanced load rounded down. Subsequently, we execute the second phase
per tier, instead of per class. To ensure that we find the pure, rounded client equilibrium
σ(s) that maximizes ℓβord(s, σ(s)), we select a specific facility fj in step 2 of the second
phase, instead of an arbitrary one satisfying the criteria. In particular, we determine the
set facilities reachable via an odd-alternating trail in the client tier graph. From this set,
we select the facility with the smallest index in β.

We denote the client equilibrium obtained from this augmented procedure with σ(s).
By the same arguments as for the original algorithm, σ(s) is pure and rounded. To prove
that it is β-favoring, we assume by contradiction that it is not. This implies the existence
of a β-favoring client equilibrium σ′(s).

Let fj denote the facility with the smallest index in β that has its load rounded down
by σ(s) but rounded up by σ′(s). The existence of such a facility is guaranteed by our
assumptions. Let Tp denote the tier containing fj and let Gp and G′

p denote the tier
assignment graphs (see Definition 5.4) for tier Tp for σ(s) and σ′(s), respectively. Consider
bipartite graph G∗ = (V ∗, E∗) := (V (G), E(G)∆E(G′)), where ∆ denotes the symmetric
difference. We greedily construct a trail Q starting from fj where all odd-indexed edges of
Q belong to E(G′) and all even-indexed edges belong to E(G), until we reach some facility
that gets rounded down by σ′(s), but not by σ(s). This construction always yields the
desired trail, since it is always possible to add an edge unless some facility satisfying the
criterion has first been reached. Let fx denote the facility vertex at the end of this trail.
Since ℓβord(s, σ

′(s)) is lexicographically larger than ℓβord(s, σ(s)), it follows that Iβ(fx) >
Iβ(fj).

Next, let vi denote the client assigned in the iteration of the second phase that increased
the load on fx. Let Q′ denote the odd-alternating (vi, fx) trail used to assign vi in the
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algorithm. Note that Q is an alternating trail in the client tier graph for the iteration
which assigned vi. Thus, there was an odd-alternating (vi, fj)-trail in this graph: either
Q+Q′ or just the parts of Q′ and Q until the first edge contained in both trails (this would
be the “start” of Q′ and the “end” of Q′). Since Iβ(fx) > Iβ(fj), the algorithm would have
increased the load on fj instead of fx; a contradiction. We conclude that σ′(s) cannot
exist and that σ(s) is β-favoring.

Each iteration (in either phase) of this algorithm assigns one additional client. As
such, the total number of iterations equals the number of clients n. The running time of
an iteration of the algorithm is dominated by finding the alternating trails, which can be
done using a breadth-first search in the client class/tier graph. Since the number of edges
in these graphs is at most kn, each iteration takes O(k+n+kn) = O(kn) time. Assuming
that the class set is known, a β-favoring client equilibrium can thus be found in O(kn2)
time, which is polynomial in the input size.

Finding favoring client equilibria is thus possible in polynomial time. However, it is not
possible to find a subgame perfect equilibrium (s, σ) in polynomial time since σ consists
of an exponential number of client subgame profiles. In practice, we try to find only s,
and σ(s′) for those facility placement profiles s′ that differ in at most one element from s.
This “partial” client equilibrium profile is sufficient to show that s is a facility equilibrium
for the facility game induced by any extension of this partial client equilibrium profile to a
true one. Similarly, the client subgame profiles for “local” facility placement profiles are all
that is needed to find improving moves in the algorithm described in the proof of Theorem
12. We claim that, if we only find the necessary client equilibria in step 3 of the procedure,
each iteration of this algorithm takes only polynomial time.

Lemma 24. Each iteration of the algorithm discussed in the proof of Theorem 12 can be
done in time polynomial in the input size.

Proof. Consider an iteration i ∈ N of the algorithm. First, βi can be found in O(k log(k))
by simply sorting the facilities based on their known loads and the known tier set. To check
whether improving moves exist, we find β-favoring client equilibria for the k(n−1)+1 ≤ kn
facility placement profiles that differ from si in at most one element. It thus suffices to
find a polynomial number of β-favoring client equilibria. By Theorem 10 and Lemma 23,
finding the class set and then using this to find a β-favoring client equilibrium can be
done in polynomial time. It follows that iteration of step 3 can similarly be done in time
polynomial in the input size. In step 4, we check for each of the k(n− 1) unilateral moves
of the facilities, whether the load on the moving facility increases. Computing the load on
a facility for some state can be done in polynomial time. We conclude each iteration can
be done in time polynomial in the input size.

Since the initialization of the algorithm also takes only polynomial time, we can find
subgame perfect equilibria for unweighted instances if the number of iterations of the
algorithm is polynomially bounded. Note that, since the facility placement profiles corre-
sponding to each iteration are unique, the number of iterations is bounded by |S| ≤ kn,
which is exponential in the input size. Unfortunately, we were unable to prove that the
number of iterations is polynomially bounded, and neither were we able to construct an in-
stance that required an exponential number of iterations. It is currently unknown whether
one can find a subgame perfect equilibrium in uweighted 2-FLG in time polynomial in the
input size.
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5.3 Types of Games that May Admit No Subgame Perfect Equilibrium

So far, we have found two sufficient conditions for the existence of SPE. However, neither
of these conditions is necessary for the existence of SPE. As such, there might be further
sufficient conditions for their existence. We discuss some types of games that do not
generally admit subgame perfect equilibria, although one may expect them to. The first
of these is the class of (unrestricted) 2-FLG where the host graph is a line (i.e., all vertices
have in- and outdegree at most one).

Lemma 25. There are instances (H, k) of unrestricted 2-FLG, with H := (V,A,w) s.t.
δ+(v), δ−(v) ≤ 1 ∀v ∈ V , that do not admit a subgame perfect equilibrium.

Proof. We give an example of such an unrestricted instance of 2-FLG. Let H denote the
host graph shown in Figure 14, which satisfies the degree constraints. We claim that (H, 2)
does not admit a subgame perfect equilibrium.

v1

w=3
v2

w=1
v3

w=2
v4

w=4
v5

w=1

Figure 14: Host graph H for counterexample

The proof requires listing all twenty-five facility placement profiles in S and show-
ing that none of them correspond to an SPE (see the proof of Lemma 1 for an ex-
ample of this procedure). We omit this proof for the sake of brevity, and only pro-
vide some intuition. Note that for any FPP where the facilities choose different lo-
cations, a unique client equilibrium exists. The main idea behind the construction of
this counterexample is that any sequence of improving moves ends up in the cycle C :=(︂
(v2, v4), (v5, v4), (v5, v2), (v4, v2), . . .

)︂
. For the FPPs where the two facilities are at the

same location, the facility receiving the lesser (or equal) load can improve by moving to
either v2, v4 or v5, which again leads to cycle C.

Another idea is to restrict the client weights. After all, if all weights are equal, the
existence of an SPE is guaranteed. Since uniformly scaling weights does not affect the
existence of SPE, we may assume that 1 is the smallest weight in any graph. It turns out
that even the unrestricted instances where the cient weights are restricted to two distinct
values (1 and some β > 1), do not generally admit an SPE.

Lemma 26. For every rational number β strictly larger than 1, there exists an instance
of unrestricted 2-FLG where all client weights are either 1 or β that admits no subgame
perfect equilibrium.

Proof. We give three families of examples depending on the value of β. If β ∈ (1, 2), let H
denote the host graph shown in Figure 15. We claim that (H, 2) does not admit a subgame
perfect equilibrium.
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Figure 15: Host graph without SPE for β ∈ (1, 2)

If β = 2, let H denote the host graph shown in Figure 16. We claim that (H, 2) does
not admit a subgame perfect equilibrium.
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Figure 16: Host graph without SPE

If β > 2, let H denote the host graph shown in Figure 17. We claim that (H, 2) does
not admit a subgame perfect equilibrium.
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Figure 17: Host graph without SPE for β > 2

Again, proving that these instances admit no SPE is done by listing all possible facility
placement profiles and verifying that none of them correspond to an SPE. We omit this as
this process is time-consuming and uninteresting.

There is one final, somewhat interesting class of 2-FLG for which the existence of SPE
might be guaranteed: the class of instances where the number of facility players equals
or exceeds the number of client players. We conjecture that such instances always admit
SPE. Our brief efforts to prove this conjecture did not yield a proof, however. We did not
consider this problem to be of sufficient interest to pursue further.
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6 Efficiency of Equilibria

We have shown that certain classes of instances of 2-FLG admit subgame perfect equilibria.
The most important of these is the class of unweighted instances. In the following, we
analyze the efficiency of subgame perfect equilibria by considering the ratio between the
social payoff of specific subgame perfect equilibria and the maximum attainable social
payoff over all states. Here, the social payoff refers to the sum of all facility loads. That is,
the sum of the weights of the set of clients covered by the facilities. We provide bounds on
the price of anarchy and the price of stability for 2-FLG. The price of stability is the ratio
between the maximum attainable social payoff over all states and the maximum attainable
social payoff over the set of subgame perfect equilibria. The price of anarchy is the ratio
between the maximum attainable social payoff over all states and the minimum attainable
social payoff over the set of subgame perfect equilibria.

Theorem 13. For the class of problems in 2-FLG that admit subgame perfect equilibria,
the price of anarchy with respect to the facility players is 1 for k = 1, and 2 for k ≥ 2. This
result also holds for the class of unrestricted instances, the class of unweighted instances,
and their intersection.

Proof. As stated, the social payoff is simply the weight of the covered clients. For k = 1,
any SPE maximizes this value, so the price of anarchy is 1. Next, we consider k ≥ 2. In
their paper, Krogmann et al. [17] showed that for arbitrary client behavior, the price of
anarchy is at most 2. However, they consider the unrestricted version of the two-stage
facility location game. As such, it remains to be shown that this bound also holds for
the more general version of 2-FLG considered in this thesis. To see that it does, consider
some instance (H,U , k) of 2-FLG with k ≥ 2, and let (s, σ) denote some subgame perfect
equilibrium.

We say a set of uncovered client vertices V ′ ⊆ V is a fj-cluster if they can all be covered
by facility fj at the same time. That is, if there exists a vertex vi ∈ U(fj) such that for
all v ∈ V ′: v = vi or (v, vi) ∈ A. Let w(V ′) denote the weight of V ′, which we define as
the sum of the weights of all clients in V ′. Since s is a facility equilibrium, the maximum
weight of an fj-cluster is ℓj(s, σ). After all, if an fj-cluster V ′ with larger weight were to
exist, then fj could improve by moving to a vertex that covers all clients in V ′. fj would
then be the only facility in the attraction range of the clients in V ′, meaning that all these
clients must exclusively consider fj after the move.

For each fj ∈ F , let V j denote an fj-cluster of maximal weight, and let V un(s) denote
the set of clients not covered by s. Then the total weight of clients in V un(s) covered by
any facility placement profile is at most

∑︁
fj∈F w(V j). There could be an FPP that covers

the maximum number of clients in V un(s), while still covering all clients in V cov(s). As
such, we can bound the social optimum popt as follows:

popt ≤
∑︂
fj∈F

ℓj(s, σ) + w(V j) ≤
∑︂
fj∈F

ℓj(s, σ) + ℓj(s, σ) = 2ps,

where ps denotes the social payoff in the subgame perfect equilibrium with FPP s. We
conclude that the price of anarchy is at most 2.

Next, we show that this bound is tight for every k ≥ 2, even for unrestricted, unweighted
2-FLG. To this end, consider instance (H, k) of unrestricted, unweighted 2-FLG with k ≥ 2,
where H = (V,A) is the host graph with:

V = {v1, v2, . . . , vk, w1, w2, . . . , wk}
A = {(vi, vj) | i, j ≤ k, i ̸= j, } ∪ {vi, wi | i ≤ k}
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As examples, the host graphs for k = 2 and k = 3 are shown in Figure 18.
Consider facility placement profiles sopt := (w1, w2, . . . , wk) and s = (v1, v2, . . . , vk).

Note that sopt covers all clients, and is thus a social optimum profile. On the other hand,
s covers exactly half as many clients. To prove the tightness of the bound, it suffices to
find a client equilibrium profile σ such that (s, σ) is an SPE. To construct such a client
equilibrium profile, we find some pure client equilibrium σ(s) that induces a load of 1 on
all facilities. Next, we consider facility placement profiles that differ from s in exactly one
element. Let s′ denote the facility profile resulting from a move by facility player fj . If
s′j = vi for some i ≤ k, we set σ(s′) = σ(s), so ℓj(s, σ) = ℓj(s′, σ).

If s′j = wi for some i ≤ k, we set σ(s′) to some pure client subgame profile where wi

patronizes fj , vp patronizes fx for all x ̸= j, and vj patronizes some facility fy with y ̸= j.
For this choice, σ(s′ is a client equilibrium and ℓj(s, σ) = 1 = ℓj(s′, σ).

For any FPP s∗ that differs from s in two or more elements, we set (σ(s)) to some
arbitrary client equilibrium for the client game induced by s∗. These client subgame
profiles do not affect whether s is a facility equilibrium. The constructed client profile σ is
a client equilibrium profile, and none of the moves away from s in the facility game induced
by σ are improving moves. We conclude that (s, σ) is a subgame perfect equilibrium and
that the upper bound of 2 on the price of anarchy is tight.

w1 v1 v2 w2

(a) Graph for k=2

v1

v2v3

w1

w2w3

(b) Graph for k=3

Figure 18: Example graphs for small number of facilities

Theorem 14. For the class of problems in 2-FLG that admit subgame perfect equilibria, the
price of stability is at least 2− 1

k . This result also holds for unrestricted 2-FLG, unweighted
2-FLG, and their intersection.

Proof. This lower bound was established by Krogmann et al. [17] for arbitrary client
behavior. We refer to their paper for the proof. Since they use an unweighted and un-
restricted instance in their proof, this lower bound on the price of stability also holds for
unweighted, unrestricted 2-FLG.
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7 Complexity of the Decision Problem

We wish to show that the problem of deciding whether an instance of 2-FLG admits an
SPE is NP-complete. We first show that given the right certificate, we can verify that an
SPE exists in polynomial time, which proves that the decision problem is in NP. Note that
since the size S is exponential in n and k, so is any client (equilibrium) profile. Therefore,
we cannot use an SPE (s, σ) as a (polynomial size) certificate, nor can we verify that σ
is a client equilibrium profile in time polynomial in the input size. However, it suffices to
show that an SPE exists; we do not need to find one.

Theorem 15. The problem of deciding whether an instance of 2-FLG admits an SPE is
in NP.

Proof. Consider an instance of 2-FLG with SPE (s, σ). Let S′ ⊆ S denote the set of facility
placement profiles that differ in at most one element from s. Then, |S′| ≤ k(n − 1) + 1,
which is polynomial in the number of players. Let σ(S′) :=

(︁
σ(s′)

)︁
s′∈S′ denote the part of

σ defined on S′. As a (polynomial size) certificate, we use (s, σ(S′)). We can verify that s
is a facility equilibrium for the game induced by σ knowing only the client subgame profiles
σ(s′) for s′ ∈ S′. Additionally, since a client equilibrium exists for every client game, it
is always possible to extend a “partial” client equilibrium profile σ(S′) to a “full” client
equilibrium profile σ. To prove that an SPE exists, it thus suffices to show the following:

1. s ∈ S (i.e., s is pure and feasible)

2. s is a facility equilibrium for the facility game induced by any σ ∈ Φ with σ(S′) as
given by the certificate.

3. For s′ ∈ S′, σ(s′) is feasible and a client equilibrium for the client game induced by
s′.

Verifying the first condition takes O(nk) time. To verify the second, we consider all
unilateral moves and confirm that these do not increase the load on the moving facility.
Note that the facility placement profiles resulting from such moves are all in S′. Since
finding the facility loads takes O(nk) time, we can verify that s is a facility equilibrium in
O(n2k2) time. Verifying the feasibility of a client subgame profile is done in polynomial
time using the definition of feasibility. We use Theorem 1 to verify that a client subgame
profile is a client equilibrium. To apply the theorem, we compute all vi-excluded facility
loads for each client vi ∈ V . This process takes O(nk) time for each client subgame profile.
Since the number of client subgame profiles in S′ is |S′| = k(n−1), we can verify the third
condition in time O(n3k2).

Verifying all three conditions can thus be done in O(n3k2) time, which is polynomial
in the input size. We conclude that the decision problem is in NP.

Next, we show that the decision problem is also NP-hard. We accomplish this using a
polynomial time reduction from the boolean satisfiability problem.

Theorem 16. The problem of deciding whether an instance of 2-FLG admits an SPE is
NP-hard. This is even true for unrestricted 2-FLG.

Proof. To show that the decision problem is NP-hard, it suffices to find a polynomial time
reduction from the decision problem to an NP-hard problem of our choice. In this proof,
we use the boolean satisfiability problem (SAT), which was shown to be NP-hard by Cook
[6]. SAT is the following problem: Given a set of m boolean variables x = {x1, x2, . . . , xm}
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and t clauses C1, C2, . . . , Ct (disjunctions on the variables of x and their negations), decide
whether there exists an assignment of the variables x that satisfies C1 ∧ . . . ∧ Ct.

Assume that we are given an instance of SAT, consisting of a set of clauses C1, . . . , Ct,
on a set of m boolean variables x. Without loss of generality, we assume t ≥ 4. We
construct an instance of unrestricted 2-FLG with k = m+ 1 and host graph H. Here, H
consists of components G1 = (V1, A1, w1) and G2 = (V2, A2, w2). The structure of G1 is
dependent on the given instance of SAT:

• V1 := {v1, . . . , vm, w1, . . . , wm, c1, . . . , ct, b1, . . . , b(m−1)·t},

• w1(e) = 1 ∀e ∈ A1,

• A1 contains the following edges:

(wi, vi) for i = 1, . . . ,m

(vi, wi) for i = 1, . . . ,m

(bj , vi) for i = 1, . . . ,m and j = 1, . . . , (m− 1) · t
(bj , wi) for i = 1, . . . ,m and j = 1, . . . , (m− 1) · t
(cj , vi) for i = 1, . . . ,m and all j s.t. xi ∈ Cj

(cj , wi) for i = 1, . . . ,m and all j s.t. ¬xi ∈ Cj .

Component G2 is the graph shown in figure 19.

µ1

w= t
2 + 2

µ2

w= t
2 + 1

µ3

w= t
2

Figure 19: Component G2

We show that (H, k) admits a subgame perfect equilibrium if and only if there exists a
satisfying assignment to the variables of x. Assume that there exists a satisfying assignment
to the variables of x, and let y be one such assignment. We consider facility placement
profile s ∈ S with

sj =

⎧⎪⎨⎪⎩
vj if j ≤ m and yj is true
wj if j ≤ m and yj is false
µ2 if j = m+ 1.

By construction, s covers all clients in V1. We claim that a pure, balanced client
equilibrium σ(s) exists for the client game induced by s, and show how to construct one.
We start by assigning each client in {w1, . . . , wm, v1, . . . , vm, c1, . . . , ct} to some arbitrary
facility in their shopping range. After this step, the maximum load on any facility fj is
t+2; it is t+2 if clients vj , wj and c1 up to ct were all assigned to fj . Next, we assign the
clients in {b1, . . . , b(m−1)·t} to facilities in such a way that all facility loads, except that of
fm+1, become t + 2. Since each client in {b1, . . . , b(m−1)·t} can reach all facilities except
fm+1, it is trivial to achieve this condition. Finally, we assign µ1 and µ2 to fm+1. The
client subgame profile constructed this way is pure, balanced, and a client equilibrium.
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Let σ denote some pure client equilibrium profile with client equilibrium σ(s) balanced.
We claim that (s, σ) is an SPE. To prove this, it suffices to show that s is a facility
equilibrium for the facility game induced by σ. First note that since σ(s) is balanced,
ℓj(s, σ(s)) = t + 2 for j ≤ m and ℓm+1(s, σ(s)) = t + 3, since all loads are equal to those
induced by the previously constructed balanced client equilibrium. We show that for the
facility game induced by σ, no facilities can improve by moving away from s.

• A facility fj ∈ F cannot improve by moving to bi or ci for i ∈ N, since the reach of
these vertices is 1, which is less than the current load of all facilities.

• A facility fj ∈ F with j ≤ m cannot improve by moving to a vertex in V2, as this
results in a load of at most t+2 for the moving facility, which equals their load before
the move. fm+1 also cannot improve by moving to either µ1 or µ3.

• A facility fj ∈ F cannot improve by moving to vi or wi for i ∈ N. Assume by
contradiction that fj can improve by moving to vi or wi. Since σ is pure, their new
load is at least t + 3. It follows that some client bx ∈ {b1, . . . , b(m−1)·t} considers fj
after the move. Since |V1| = m(t + 2) and there are at least m facilities located on
V1, there must be some facility located on V1 with load at most t + 1. Since bx can
reach this facility, σ is not a client equilibrium profile; a contradiction. Thus, the
improving move cannot exist.

We conclude that s is a facility equilibrium for the facility game induced by σ and that
(s, σ) is an SPE.

Now assume that no assignment to the variables of x is satisfying. Assume by contra-
diction that (H, k) admits an SPE (s, σ), and let χ denote the number of facilities located
on V2 for s. We show that for each possible value of χ, s is not a facility equilibrium for
the facility game induced by σ.

• χ = 0. Since all m+ 1 facilities are located on V1, the sum of the facility loads is at
most |V1| = m(t+2). It follows that there is a facility fj with load strictly less than
t+ 2. fj can improve their load to t+ 3 by moving to µ2.

• χ = 1. The one facility located on V2 is located on µ2. Otherwise, this facility can
improve by moving to µ2, meaning that s is not a facility equilibrium. Now assume
that none of the facilities located on V1 can improve by moving to µ3, meaning that
the load on each of these facilities is at least t+2. It follows that all clients in V1 are
covered, and thus that there is a facility located on vi or wi for every i ∈ {1, 2, . . . ,m}.
As there are exactly m facilities on V1, this means that there is no i for which both
wi and vi are used as facility locations. Consider assignment y of the variables of x
where xi is True if and only vi is used as a facility location. Since clients c1, . . . ct
are all covered by s, y must satisfy C1 ∧ . . . ∧Ct; a contradiction. We conclude that
some facility located on V1 is able to improve by moving to µ3, and thus that s is
not a facility equilibrium.

• χ = 2. One of the facilities on V2 can improve by moving to another vertex in V2, as
shown in the proof of Lemma 1. Thus, s is not a facility equilibrium.

• χ ≥ 3. The sum of the loads of the facilities located on V2 is at most 1.5t + 3.
Thus, at least one of these facilities has load at most 0.5t + 1 ≤ t − 1 (recall the
assumption t ≥ 4). Let fj denote one such facility. We claim that fj can improve
by moving to v1, where it will get a load strictly larger than t − 1. Let s′ denote
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the facility placement profile resulting from this move. Assume by contradiction that
ℓj(s′, σ) ≤ t − 1. Then, there exists a client γ in {v1, w1, b1, b2, . . . , b(m−1)·t} that
considers a facility with load strictly larger than t, since all clients in this set are
covered and exclusively consider the m− 1 facilities located on V1. Since fj is in the
shopping range of γ, the assumption that the load on fj is at most t− 1 contradicts
Theorem 1. We conclude that σ(s′) is not a client equilibrium; a contradiction. Thus,
fj can improve by moving to v1.

Since we made no assumptions on σ besides it being a client equilibrium profile, we have
shown that (H, k) does not admit an SPE.

The problem of deciding whether an instance of the two-stage facility location game
admits a subgame perfect equilibrium is both NP-hard and in NP. We conclude that the
decision problem is NP-complete.
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8 Approximate Equilibria

The existence of a subgame perfect equilibrium is not guaranteed for general instances
of 2-FLG. This naturally raises questions about the existence of approximate (subgame
perfect) equilibria. In this chapter, we define approximate equilibria in the context of the
two-stage facility location game and discuss their existence.

Definition 8.1. Consider an instance of 2-FLG and some client equilibrium profile σ, and
some scalar α ≥ 1. We call s an α-approximate facility equilibrium for the facility game
induced by σ if no facility player can increase their load by a factor strictly more than α
by moving away from s.

Definition 8.2. Consider an instance of 2-FLG and some scalar α ≥ 1. We call a state
(s, σ) ∈ S × Φ an α-approximate equilibrium if σ is a client equilibrium profile and s is a
α-approximate facility equilibrium for the facility game induced by σ.

In this chapter, we aim to establish for which values of α the existence of an α-
approximate SPE is guaranteed. We do so for different classes of 2-FLG. We first establish
that every unrestricted 2-FLG admits a k-approximate SPE, where k denotes the number
of facility players. We proceed by finding instances of 2-FLG that admit no α-approximate
SPE for small values of α, where we focus on instances with two facility players. We show
how to construct instances of (unrestricted) 2-FLG with two facility players that admit
no α-approximate equilibria for α strictly smaller than the golden ratio ϕ (≈ 1.618). Ad-
ditionally, we prove that for general instances of 2-FLG and α ∈ [1, ϕ), the problem of
deciding whether the instance admits an α-approximate SPE is NP-hard. Despite great
effort, we were unable to prove whether there are instances of unrestricted 2-FLG that do
not admit a α-approximate SPE for α ∈ [ϕ, 2). However, we conjecture that such instances
do not exist, and discuss some results that could be used to prove this. We now define the
reach of a vertex, and use this concept to proof Theorem 17.

Definition 8.3. For host graph (V,A,w) and vertex u ∈ V , we define the reach ρ(u) of
u as the sum of the weights of the clients in the attraction range of a facility placed on u.
That is:

ρ(u) = w(u) +
∑︂

(v,u)∈A

w(u).

Theorem 17. Every unrestricted two-stage facility location game with k facility players
admits an k-approximate SPE.

Proof. Consider an unrestricted instance (H, k) of 2-FLG with host graph H = (V,A,w).
Let vi denote a vertex with maximum reach among the vertices in V , and let s ∈ S denote
the facility placement profile where all facilities are located on vi. Let σ(s) denote the
client subgame profile where every client patronizes each facility in their shopping range
with probability 1

k . This client subgame profile σ(s) is a client equilibrium for the client
game induced by s. Let σ denote some client equilibrium profile where σ(s) is the previously
defined client equilibrium. We claim that (s, σ) is a k-approximate SPE.

Assume by contradiction that some facility player fj ∈ F can improve by a factor
strictly larger than k by moving away from s. Since ℓj(s, σ) =

ρ(v)
k , the load on fj after

this move is strictly larger than ρ(v). It follows that fj moved to a vertex v′ ∈ V with
ρ(v′) > ρ(v). By the choice of v, such a vertex does not exist; a contradiction

This proof does not work when facilities have different location sets, since the facility
placement profile where all facilities are located on the vertex with maximum reach might

55



not exist. As such, we cannot conclude that Theorem 17 holds for general instances of
2-FLG.

8.1 Instances Without α-Approximate SPE for α Smaller Than ϕ

Next, we show that for small values of α, the existence of α-approximate SPE is not
guaranteed. For α ∈ (1, ϕ), we find instances of 2-FLG that do not admit an α-approximate
SPE, where ϕ denotes the golden ratio. These instances are unrestricted and have two
facility players.

v1

w = 2
ϕ

v3

w = ϕ− 2
ϕ

v2

w = 2− 2
ϕ − ϵ

v4

w = ϕ2

2 −
2
ϕ

v5 w = 8
ϕ − 2− ϕ− ϕ2

2
v6

w = 2− 2
ϕ

Figure 20: Host graph H

Lemma 27. Consider the family of instances (H, 2) of unrestricted 2-FLG where H de-
notes the ϵ-dependent host graph shown in Figure 20, and ϕ denotes the golden ratio. For
ϵ > 0 sufficiently small, the instance (H, 2) does not admit a ϕ − ϵ-approximate subgame
perfect equilibrium.

Proof. We first establish that the client equilibrium induced by any facility placement
profile (s1, s2) with s1 ̸= s2, is unique. For any such FPP, the number of clients that can
reach both facilities is at most one. Since the reach of every facility location is distinct, the
unique client equilibrium is the client subgame profile where the client in the intersection
(if there is one) exclusively considers the facility with the smaller reach. If no such client
exists, then there is only one feasible client subgame profile, which is the unique client
equilibrium. We conclude that for a client game induced by a FPP s = (s1, s2) with
s1 ̸= s2, there is a unique client equilibrium. As such, all facilities loads for (s, σ) with
s1 ̸= s2 are independent of the chosen client equilibrium profiles σ ∈ Ω. The reach of each
vertex of H can be found in Table 3.
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Table 3: Reach of each vertex in Figure 20

vertex exact reach decimal reach
v1 2 2
v2 2− ϵ 2− ϵ
v3 ϕ 1.618
v4

ϕ2

2 1.309
v5

2
ϕ 1.236

v6 2− 2
ϕ 0.764

Let σ denote some client equilibrium profile, and consider the facility game induced
by σ. We show that for all s ∈ S, one of the facility players can improve their load by
a factor strictly larger than ϕ − ϵ by moving. By symmetry, it suffices to show this for
{(vi, vj) ∈ S | i ≤ j}. We first consider FPPs where s1 ̸= s2

• For s ∈ {(v1, v2), (v1, v3), (v1, v4), (v2, v3), (v2, v4), (v2, v4)}, the load on f1 is at most
2− 2

ϕ = 2
ϕ2 . f1 can improve by a factor at least ϕ by moving to v5, since this results

in a load of ρ(v5) = 2
ϕ .

• For s ∈ {(v2, v5), (v3, v5), (v4, v5)}, the load on facility f1 is exactly 2
ϕ . f1 can improve

by a factor ϕ by moving to v1, since this results in a load of ρ(v1) = 2.

• For s = (v1, v5), the load on f2 is ρ(v5) =
2
ϕ . f2 can improve by a factor ϕ(1− ϵ

2) >
ϕ− ϵ by moving to v2, since this results in a load of ρ(v2) = 2− ϵ.

• For s = (vi, v6), i ∈ {1, 2, 3, 4, 5}, the load on f2 is 2− 2
ϕ . f2 can improve by a factor

at least ϕ by moving to either v1 or v5 (depending on the location of f1).

Next, we show that for all vi ∈ V , (vi, vi) is not a (ϕ−ϵ)-approximate facility equilibrium
for the facility game induced by σ. When both facilities are located on the same vertex vi,
one of the facilities has a load of at most ρ(vi)

2 . Thus, it suffices to show that for all vi ∈ V ,
there is a vertex vj ∈ V such that ℓ1(vj , vi) > (ϕ − ϵ)ρ(vi)2 . Table 4 lists the vertices vj
corresponding to each profile s with s1 = s2.

Table 4: Best-responses for symmetric profiles

vi
ρ(vi)
2 vj ℓ1(vj , vi)

v1 1 v2 2− ϵ
v2 1− ϵ

2 v3 ϕ

v3
ϕ
2 v4

ϕ2

2

v4
ϕ2

4 v5
2
ϕ = 1.89 · ϕ

2

4

v5
1
ϕ v1 2

v6 1− 1
ϕ v2 2− ϵ

We conclude that there is no (ϕ − ϵ)-approximate facility equilibrium for the facility
game induced by σ. Since σ was chosen arbitrarily, this is true for all client equilibrium
profiles. We conclude that no (ϕ− ϵ)-approximate SPE exists.

Thus, for all ϵ > 0, there exists a host graph H such that the instance (H, 2) of unre-
stricted 2-FLG admits no (ϕ− ϵ)-approximate subgame perfect equilibrium. We conclude
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that, for any α < ϕ, the existence of an α-approximate equilibrium is not guaranteed for
instances of 2-FLG, and that this is even true for unrestricted instances with two facility
players.

8.2 Deciding Whether Approximate SPE Exist

In Theorem 16, we showed that the problem of deciding whether an SPE exists is NP-hard.
We now show the same for approximate equilibria.

Theorem 18. Let α ∈ (1, ϕ) denote some approximation ratio. The problem of deciding
whether an instance (H,U , k) of 2-FLG admits an α-approximate SPE is NP-hard.

Proof. Let α ∈ (1, ϕ) denote some approximation ratio. We adapt the proof of Theorem 16
to the context of approximate equilibria. As before, we find a polynomial time reduction
from the boolean satisfiability problem to the decision problem. Assume we are given an
instance of SAT consisting of a set of t clauses C1, . . . , Ct and a set of m binary variables x =
{x1, . . . , xm}, where we assume t ≥ 4 for simplicity. We construct an instance (H,U , k) of
2-FLG which depends on the instance of SAT. Host graph H consists of three components:
G1, G2 and G3. Component G1 = (V1, A1, w1) is the same graph as in the proof of Theorem
16, except that the client weights are scaled:

• V1 := {v1, . . . , vm, w1, . . . , wm, c1, . . . , ct, b1, . . . , b(m−1)·t},

• w1(x) =
m

m(t+2)−1 ∀x ∈ V1,

• A1 contains the following edges:

(wi, vi) for i = 1, . . . ,m

(vi, wi) for i = 1, . . . ,m

(bj , vi) for i = 1, . . . ,m and j = 1, . . . , (m− 1) · t
(bj , wi) for i = 1, . . . ,m and j = 1, . . . , (m− 1) · t
(cj , vi) for i = 1, . . . ,m and all j s.t. xi ∈ Cj

(cj , wi) for i = 1, . . . ,m and all j s.t. ¬xi ∈ Cj .

The other two components, G2 and G3, are shown in Figure 21. Note that G2 is
the graph used in the proof of Lemma 27, which was shown not to admit any (ϕ − ϵ)-
approximate SPE for two facility players for ϵ > 0 sufficiently small. We choose ϵ ∈(︁
0,min{2−ϕ, 2(1− α

ϕ )}
)︁
, to ensure that the component does not admit any α-approximate

SPE for two facility players.
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2
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w = α
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ϕ·α

Figure 21: Components G2 (top) and G3 (bottom)

We set the number of facility players k to m+2, and use the following location function:

U(fj) =

⎧⎪⎨⎪⎩
V1 ∪ {µ7} for j = 1, 2, . . . ,m

{µ1, µ2, µ3, µ4, µ5, µ6} for j = m+ 1

{µ1, µ2, µ3, µ4, µ5, µ6, µ8} for j = m+ 2

We now show that (H,U , k) admits an α-approximate SPE if and only if there is a
satisfying assignment to the variables of x. Assume that there exists a satisfying assignment
to the variables of x. Let y denote one such assignment and let s denote the following
facility placement profile:

sj =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vj if j ≤ m and yj is true
wj if j ≤ m and yj is false
µ1 if j = m+ 1

µ8 if j = m+ 2.

For the same reasons as in the proof of Theorem 16, the client game induced by s admits
a pure, balanced client equilibrium. Let σ denote some pure client equilibrium profile such
that σ(s) is balanced. To prove that (s, σ) is an α-approximate SPE, it suffices to show
that none of the facility players can improve by a factor α by moving away from s in the
facility game induced by σ. First note that fm+1 and fm+2 cannot improve at all, since
the reach of every vertex they can move to is smaller than their current load. Next, note
that the sum of the loads of facilities f1 up to fm is m(t+2) · m

m(t+2)−1 > m, since s covers
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all clients in V1. Furthermore, (s, σ) induces equal loads for all facilities on V1. Thus, the
loads on facilities f1, . . . , fm are strictly larger than 1. If any of these facilities moves to
µ7, this will not increase their load by a factor α since ρ(µ7) = α. For the same reason as
in Theorem 16, neither can these facilities improve by moving to a vertex in V1. Thus, no
facility can improve by a factor α by moving away from s. We conclude that (s, σ) is an
α-approximate SPE.

Now assume that there exists no satisfying assignment to the variables of x, and assume
by contradiction that an α-approximate SPE (s, σ) exits. We consider the facility game
induced by σ and show that some facility can improve by a factor α by moving away from
s. The proof of Lemma 27 shows that no α-approximate facility equilibrium exists with
exactly two facilities located on the vertices of G2. Since fm+1 and fm+2 are the only
facilities able to pick any vertex on G2 as their location, and fm+1 can only pick these
vertices, fm+2 cannot be located on G2. This gives sm+2 = µ8.

Next, note that sm+1 ̸= µ5, as this would allow fm+1 to improve by a factor ϕ > α by
moving to µ1. It follows that fm+2 can attain a load of 2

ϕ by moving to µ5. By assumption,
this move does not increase the load on fm+2 by a factor α. That is, ℓm+2(s, σ) > 2

ϕ·α . It
follows that client µ7 considers fm+2, which implies that no facility is located on µ7. We
conclude that facilities f1 up to fm are all located on V1.

Since we assumed that there is no satisfying assignment to the variables of x, a set of
m facilities cannot cover all clients in V1. The sum of the loads on facilities f1 up to fm
is therefore at most (m(t + 2) − 1) · m

m(t+2)−1 = m. Thus, there is some facility fj with
j ≤ m with load at most 1. Then, fj can improve their load by a factor α by moving to
µ7, meaning that s is not an α-approximate facility equilibrium; a contradiction.

We have found a polynomial time reduction from SAT to the problem of deciding
the existence of α-approximate SPE in 2-FLG. We conclude that the problem of deciding
whether an instance of 2-FLG admits an α-approximate SPE is NP-hard.

It should be clear that this decision problem is in NP, as verifying that a facility
placement profile is an approximate facility equilibrium is not harder than verifying that
it is a (non-approximate) facility equilibrium. As such, given the right certificate, one can
verify in polynomial time that some instance admits an approximate SPE. We conclude
that the decision problem is NP-complete.

8.3 Towards a Better Bound on the Approximation Constant

So far, we have shown that for all α < ϕ, there are unrestricted 2-FLG with two facility
players that admit no α-approximate SPE. We also proved that all such instances do admit
a 2-approximate SPE. This leads to the following question: do all unrestricted 2-FLG with
k = 2 admit an α-approximate SPE, for α ∈ [ϕ, 2)? To address this question, we define the
approximation constant αmin for an instance of 2-FLG as the smallest value of α for which
an α-approximate equilibrium exists. Establishing upper bounds on αmin is quite difficult.
As such, we again limit our scope to unrestricted instances with two facility players. This
enables the use of the theory developed in Chapter 3. We tried to prove an upper bound on
αmin for these instances, that is strictly smaller than 2. Unfortunately, we did not succeed
in this endeavor. Nevertheless, we believe that our approach has merit and provide an
overview of our efforts.
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Leveling Client Equilibria

Establishing a better upper bound on αmin requires proving that every instance of 2-
FLG with two facility players admits an α-approximate equilibrium for some value of α.
Theoretically, the type of client behavior needed for states to be α-approximate SPE (for
large α) may depend on the instance of 2-FLG. However, we believe this to be unlikely, and
this would make establishing upper bounds exceedingly difficult. Therefore, we choose one
type of client equilibrium that is easy to work with, and which induces facility games that
are likely to admit approximate SPE. If the assumption that there are no α-approximate
SPE using this client equilibrium profile, leads to a contradiction, we will have shown that
every instance of 2-FLG with two facility players admits an α-approximate SPE. These
leveling client equilibria are straightforward in concept; when the reaches for both facility
locations are the same, both facilities get equal loads. When the reaches are different, a
leveling client equilibrium is the pure client equilibrium that maximizes the load on the
facility with the smaller reach. Formally:

Definition 8.4. For an instance of 2-FLG with k = 2, we call a client equilibrium profile
σ ∈ Ω leveling if for every facility placement profile s := (s1, s2) ∈ S:

• if ρ(s1) = ρ(s2), then ℓ1(s, σ(s)) = ℓ2(s, σ(s)).

• if ρ(s1) > ρ(s2), then σ(s) ∈ Ωs is the pure client equilibrium that maximizes
ℓ2(s, σ(s)).

• if ρ(s2) > ρ(s1), then σ(s) ∈ Ωs is the pure client equilibrium that maximizes
ℓ1(s, σ(s)).

Leveling client equilibria have many useful properties to exploit. The first of these is
that leveling equilibria are load-symmetric.

Definition 8.5. Consider some instance of (bipartite) 2-FLG with k facility players. For
any FPP s ∈ S, let s(i,j) denote the FPP obtained from s by interchanging si and sj .
We say that a client equilibrium profile σ ∈ Ω is load-symmetric if for all s ∈ S and all
i, j ∈ {1, 2, . . . , k}, we have:

ℓi(s(i,j), σ) = ℓj(s, σ)

ℓj(s(i,j), σ) = ℓi(s, σ)

ℓx(s(i,j), σ) = ℓx(s, σ) for all x /∈ {i, j}

Lemma 28. Every leveling client equilibrium vector is load-symmetric.

Proof. Let σ denote a leveling client equilibrium profile. By symmetry, it suffices to show
that for every s = (s1, s2) ∈ S, we have ℓ1((s2, s1), σ) = ℓ2((s1, s2), σ). If ρ(s1) = ρ(s2),
then since σ is leveling:

ℓ1((s2, s1), σ) =
w
(︁
As(f1) ∪As(f2)

)︁
2

= ℓ2((s1, s2), σ).

If ρ(s2) > ρ(s1), then σ((s1, s2)) is a pure client equilibrium maximizing the load on f1.
Define the pure client equilibrium σ′(s2, s1) as follows:

σ′(s1, s2)i,2 = σ(s2, s1)i,1 ∀vi ∈ V

σ′(s1, s2)i,1 = σ(s2, s1)i,2 ∀vi ∈ V
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This gives:
ℓ1((s2, s1), σ) = ℓ2((s1, s2), σ

′) ≥ ℓ2((s1, s2), σ).

To show that ℓ2((s1, s2), σ) ≥ ℓ1((s2, s1), σ), define σ′(s1, s2) and apply a similar argument.
Thus, ℓ1((s2, s1), σ) = ℓ2((s1, s2), σ). A similar argument is used to show load-symmetry
holds for (s1, s2) ∈ S with ρ(s1) > ρ(s2).

Leveling equilibria are easy to work with, primarily because these are load-symmetric
and unique with respect to the induced facility loads. Additionally, they possess some
useful minor properties regarding the behavior of the contested clients.

Definition 8.6. Consider some instance of unrestricted 2-FLG with two facility players
and some client profile σ ∈ Φ. For s ∈ S, let I(s) := As(f1) ∩ As(f2) denote the set of
contested clients. Furthermore, let I1(s, σ) and I2(s, σ) denote the sets of contested clients
that consider f1 and f2 for σ(s), respectively.

Note that unlike I(s), both I1(s, σ) and I2(s, σ) depend on the client (subgame) profile.
We will show that for leveling client subgame profiles, at least half of the contested clients
patronize the facility with the smaller reach, assuming that the facilities have distinct
reaches. To this end, we establish Lemma 29, which is not meaningful on its own but is
needed for several proofs.

Lemma 29. Consider an instance of unrestricted 2-FLG with k = 2 and an FPP s ∈ S.
Suppose that for some pure client subgame profile σ(s) we have that:

1. γ := ℓ2(s, σ(s))− ℓ1(s, σ(s)) > 0

2. w(v) ≥ γ ∀v ∈ I1(s, σ(s)).

Then, there exists a pure client equilibrium σ∗(s) such that ℓ1(s, σ∗(s))− ℓ2(s, σ∗(s)) < γ.

Proof. Consider an instance of 2-FLG with k = 2 and let s ∈ S denote a facility place-
ment profile. Assume that a pure client subgame profile σ(s) satisfies the aforementioned
conditions. If σ(s) is a client equilibrium, we set σ∗(s) = σ(s), and we are done. If not, we
can construct a client equilibrium σ∗(s) with the desired properties.

Note that any pure client subgame profile σ′(s) is uniquely characterized by I1(s, σ′(s)).
We define A1 := I1(s, σ(s)) and σ1(s) := σ(s). Client equilibrium σ∗(s) can then be
obtained with the following procedure.

1. Set i = 1

2. Find a client vi of maximum weight among the set of clients in I2(s, σi(s)) that can
improve by moving away from σi(s) in the client game induced by s. If no such client
exists, set σ∗(s) = σi(s) and terminate.

3. Set Ai+1 = Ai ∪ {vi} and let σi+1(s) denote the pure client subgame profile charac-
terized by I1(s, σ(s)) = Ai+1

4. Increment i by one and return to step 2.

As there are only a finite number of clients, this algorithm always terminates. It remains
to be shown that the found σ∗(s) is a client equilibrium. To see this, first note that none of
the clients in I2(s, σ∗(s)) can improve, since this is the stopping criterion for the algorithm.
Next, note that for j = 1, . . . , i− 1, we have:

w(vj) < ℓ2(s, σj(s))− ℓ1(s, σj(s)) ≤ γ,
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since vj was able to improve. Thus, vi−1 is a client of minimal weight in I1(s, σ∗(s)).
Since vi−1 was the last client to move, it does not have an improving move, and thus
neither do any of the clients with equal or larger weight. We conclude that σ∗(s) is a client
equilibrium. Furthermore, ℓ1(s, σ∗(s))− ℓ2(s, σ∗(s)) < w(vi−1) < γ.

Lemma 30. Consider some instance of (bipartite) 2-FLG with 2 facility players and let σ
denote a leveling client equilibrium profile. Then for all s ∈ S with ρ(s1) < ρ(s2), we find
w(I2(s, σ)) ≤ w(I1(s, σ)).

Proof. Assume by contradiction that there is an s ∈ S with ρ(s1) < ρ(s2) and w(I1(s, σ)) <
w(I2(s, σ)). Define A := I1(s, σ) and B := I2(s, σ). Since σ(s) is a pure client equilibrium
for the client game induced by s:

w(v) ≥ ℓ2(s, σ)− ℓ1(s, σ) ∀v ∈ B. (13)

Consider pure client subgame profile σ′(s) characterized by I1(s, σ′(s)) = B and I2(s, σ′(s)) =
A. We define γ := ℓ2(s, σ′(s))− ℓ1(s, σ′(s)) and find that:

|γ| < ℓ2(s, σ(s))− ℓ1(s, σ(s)),

since w(B) > w(A) by assumption. Furthermore, ℓ1(s, σ′(s)) > ℓ1(s, σ(s)).
We now claim that σ′(s) is a client equilibrium if γ ≤ 0. If γ ≤ 0, none of the

clients in I1(s, σ′(s)) can improve by (13). The clients in I2(s, σ′(s)) cannot improve since
ℓ1(s, σ′(s)) ≥ ℓ2(s, σ′(s)). If γ > 0, we can apply Lemma 29 to show the existence of
a client equilibrium σ∗(s) with ℓ1(s, σ∗(s)) ≥ ℓ1(s, σ′(s)) > ℓ1(s, σ(s)). In either case, we
have found a pure client equilibrium that induces a larger load on f1 than σ(s) does. Thus,
σ cannot be leveling; a contradiction.

Another useful property of leveling client equilibria is shown in Lemma 31: if any
contested client patronizes the facility with the larger reach, then the load on this facility
is less than the reach of the location of the other facility.

Lemma 31. Consider some instance of (bipartite) 2-FLG, and let σ denote a leveling
client equilibrium profile. For all s ∈ S with ρ(s1) > ρ(s2), one of the following holds:

1. ℓ2(s, σ) = ρ(s2)

2. ℓ1(s, σ) < ρ(s2)

Proof. Let s ∈ S denote a facility placement profile with ρ(s1) > ρ(s2). Let σ(s) de-
note the pure client subgame profile where all contested clients exclusively consider f2, so
I1(s, σ(s)) = ∅.

If ℓ2(s, σ(s)) ≤ ℓ1(s, σ(s)), then σ(s) is a pure client equilibrium with ℓ2(s, σ(s)) =
ρ(s2). Since every leveling client equilibrium maximizes the load on f2, we find that
ℓ2(s, σ′(s)) = ρ(s2) for all leveling client equilibria σ′(s) ∈ Ωs. We conclude that statement
(1.) holds.

Now assume ℓ2(s, σ(s)) > ℓ1(s, σ(s)). By Lemma 29, there exists a pure client equilib-
rium σ∗(s) such that:

ℓ2(s, σ(s))− ℓ1(s, σ(s)) > ℓ1(s, σ∗(s))− ℓ2(s, σ∗(s)).

Since the sum of the facility loads is the same for every client subgame profile, we find:

ℓ1(s, σ∗(s)) < ℓ2(s, σ(s)) = ρ(s2).
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Since every leveling client equilibrium maximizes the load on f2, and thus minimizes the
load on f1, we find that ℓ1(s, σ′(s)) < ρ(s2) for all leveling client equilibria σ′(s) ∈ Ωs. We
conclude that statement (2.) holds.

Next, we try to prove that for certain values of α, unrestricted instances with two facility
players admit an α-approximate SPE (s, σ) where σ is a leveling client equilibrium profile.
To this end, we will assume the existence of an instance without such an equilibrium, and
show that this assumption leads to a contradiction. That is, we analyze facility games
induced by leveling client equilibrium profiles, and show that for every s ∈ S, one of the
facilities can improve by a factor α.

Best-Response Cycles

A facility game that does not admit an α-approximate equilibrium, always contains a
cycle of best-responses where the facility player performing the improving move improves
by a factor of at least α. If no such cycle were to exist, then any sequence of best-
improving moves would eventually end up in an α-approximate facility equilibrium. An
elegant way to disprove the existence of such instances is to show that this cycle cannot
exist. Unfortunately, this method cannot work, as there are instances with such a cycle
for values of α arbitrarily close to 2. For example, consider the graph shown in Figure
22. For the facility game induced by any (load-symmetric) client equilibrium profile, C =
{(v1, v2), (v3, v2), . . . , (vm−1, vm), (v1, vm)} is such a cycle of best-responses. Furthermore,
when m→∞, the factor by which the moving player improves their load converges to 2.

v1

w=1

v2

w = m−1
m

. . . vm

w = 1
m

ṽ

w = 1

Figure 22: Host graph with cycle.

It is therefore impossible to disprove the existence of such best-response cycles. Fur-
thermore, proofs using a potential function are unlikely to work, as these generally rely on
contradicting the existence of a cycle of best-responses.

Note, however, that α-approximate facility equilibria do exist for the example instance,
for values of α as low as

√
2. For example, (v1, v⌊m(2−

√
2)⌋−1) is an

√
2-approximate facility

equilibrium for the facility game induced by any leveling client equilibrium profile.
If we can show that the existence of a best-response cycle, implies the existence of

some other α-approximate facility equilibrium, we will have found our contradiction. This
requires some understanding of best-response dynamics in two-player games. Firstly, in a
cycle of best-response moves with two players, the players move alternately. In each step,
a player performs the best-response to their opponent’s strategy. As such, they cannot
improve from the facility placement profile resulting from the move. Secondly, the new
location of the moving player depends only on the location of the opponent, not on the
original location of the moving player. Therefore, if the best-response of f1 in FPP (vi, vj)
is moving to vm, then moving to vm is also the best-response for f1 in (vi′ , vj) for any
vi′ ∈ V .
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To constrain the graph structure of facility games, we consider bipartite instances
of 2-FLG. In particular, we consider non-degenerate bipartite instances (see Definition
3.6). We’ve argued that for any instance of unrestricted 2-FLG, there is a non-degenerate
instance of bipartite 2-FLG that is equivalent for all practical purposes. Therefore, it
suffices to show that these instances admit approximate SPE satisfying the criteria.

Lemma 32 shows that the smallest instance (H,U,w) of bipartite 2-FLG that does not
admit any α−approximate equilibrium must be non-degenerate, and admits a type of cycle
of best-response moves.

Lemma 32. Let (H,U,w) be an instance of bipartite 2-FLG that does not admit an α-
approximate SPE (s, σ) where σ is a leveling client profile. Further assume that (H,U,w)
has the smallest host graph among all such instances (firstly in terms of |U | and secondly
in terms of the number of clients). Then the following conditions hold:

1. (H,U,w) is non-degenerate

2. Let σ denote a leveling client equilibrium profile. Then the facility game induced by
σ admits a cycle of best-responses C where the moving player improves by a factor
larger than α. Furthermore, every location vertex ui ∈ U appears in some element of
C.

Proof. Assume by contradiction that the instance is degenerate. Then there exists an
equivalent non-degenerate instance that is smaller and does not admit an α-approximate
SPE; a contradiction.

Next, we prove the existence of C. Since the number of distinct facility placement
profiles is finite, there must be a cycle of best-responses. Let C denote the shortest such
cycle, and let UC denote the set of location vertices that appear in some element of C.
Then, for all (si, sj) ∈ S with si, sj ∈ UC , one of the players can sufficiently improve by
moving to some location vertex u ∈ UC . Now consider the original host graph H and the
facility game induced by some leveling client profile σ′. By assumption, there is a facility
player that can improve sufficiently by moving away from FPP (si, sj). Furthermore, we
know that the best-response for this player is moving to some u ∈ UC .

Next, consider instance (H ′, UC , 2), where H ′ is the subgraph of H induced by UC∪(V \
U). Let σ′ denote some leveling client equilibrium profile, and consider the facility game
induced by σ′. Since all leveling client equilibrium profiles induce the same facility loads,
the facility loads induced by σ and σ′ are the same for all facility placement profiles in
S′ := U2

C . Thus, for any (si, sj) ∈ S′, one of the players can improve sufficiently by moving
to some u ∈ UC . This implies that instance (H ′, UC , 2) does not admit any α-approximate
SPE (s, σ′), where σ′ is leveling. Since H was assumed to be the smallest host graph with
this property, we conclude that H = H ′ and thus U = UC , which proves that every vertex
in U appears in some element of C.

Although we do not prove this formally, we can assume further structure on a shortest
cycle C. Specifically, we may assume that there is only one best-response for each strategy
of the other facility player. Otherwise, it would be possible to construct a cycle that
includes only a proper subset of the location vertices, which contradicts C being a shortest
cycle. Thus, without loss of generality:

C =

⎧⎨⎩
(︂
(u1, u2), (u3, u2), . . . , (um−1, um), (u1, um)

)︂
if m := |U | is even(︂

(u1, u2), (u3, u2), . . . , (um, u1), (u2, u1), . . . , (u1, um)
)︂

if m := |U | is odd.
(14)
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For the remainder of this chapter, we assume the existence of a cycle C with these
properties. Since labeling of vertices is arbitrary, and we can scale all weights by any
positive nonzero scalar, we assume without loss of generality that u1 is one of the vertices
with maximal reach in U , and that this reach is 2. We formally define the instance satisfying
all these assumptions and summarize the results so far in Lemma 33.

Definition 8.7. Consider some α ∈ [ϕ, 2), and a non-degenerate instance (H,U, 2) of
bipartite 2-FLG. Let σ denote a leveling client equilibrium profile. Then, we call (H,U, 2)
an α-instance if it satisfies the following conditions:

1. (H,U, k) admits no α-approximate SPE where the client equilibrium profile is level-
ing.

2. There is a shortest cycle C of best-responses in the facility game induced by σ, where
every location vertex in U appears in some element of C.

3. C is of the form shown in (14), with ρ(u1) = 2 and ρ(uj) ≤ 2 for all uj ∈ U .

We call this cycle C the α-cycle for this α-instance.

Lemma 33. If no α-instance exists for some α ∈ [ϕ, 2), then αmin < α for all instances
of unrestricted 2-FLG with two facility players.

Contradicting the Existence of α-Instances

Lemma 33 points towards a clear goal: to prove that α-instances cannot exist for certain
values of α. For an α-instance, the α-cycle C characterizes the best-responses to all strate-
gies. Since no α-approximate facility equilibrium exists, one of the two facility playerss
can improve by a factor α by a best-response move for every facility placement profile in
S. We aim to use these relations between facility loads corresponding to different facility
placement profiles to derive a contradiction on the structure of the host graph. We denote
um+i := ui for i ∈ {1, 2, ...,m} and consider facility placement profiles (ui, ui+1) on the
α-cycle C. We find:

ℓ1(ui+2, ui+1) > α · ℓ1(ui, ui+1) ∀i ∈ {1, . . . ,m}, (15)

since the moving player always improves by a factor at least α, and f1 is the moving player
for any (ui, ui+1) on S. For facility placement profiles that are not on C, at least one of the
facility players can improve their load by a factor α by performing a best-response move.
That is, for every (ui, uj) ∈ S, at least one of the following holds:

• ℓ2(ui, ui+1) > α · ℓ2(ui, uj)

• ℓ1(uj+1, uj) > α · ℓ1(ui, uj).

We use these conditions to derive restrictions on the reaches of vertices in U .

Lemma 34. Consider some α ∈ [ϕ, 2), and let (H,U, 2) denote an α-instance with α-cycle
C and leveling client equilibrium profile σ. Then for all i ∈ {1, 2, . . . ,m}, we find:

ρ(ui+1) >
α

2
ρ(ui). (16)
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Proof. Since σ is load-symmetric, we find:

ℓ1(ui, ui) = ℓ2(ui, ui) =
ρ(ui)

2
.

Furthermore, one of the players can improve sufficiently by performing the best-response
move. By symmetry, we assume w.l.o.g. that this is f2. This gives:

ρ(ui+1) ≥ ℓ2(ui, ui+1) > α · ℓ2(ui, ui) =
α

2
ρ(ui)

Lemma 35. Consider some α ∈ [ϕ, 2), and let (H,U, 2) denote an α-instance with α-
cycle C and leveling client equilibrium profile σ. Then, if two consecutive location vertices
ui, ui+1 ∈ C have equal reach, this reach is at most 4

α2 .

Proof. Recall that, ρ(u) ≤ 2 for all u ∈ U and let ui, ui+1 ∈ S be such that ρ(ui) =
ρ(ui+1) = r. We find:

ℓ2(ui+1, ui) = ℓ1(ui+1, ui) > α · ℓ1(ui, ui) = α · ρ(ui)
2

= α · r
2
. (17)

For f2 to sufficiently improve by performing a best-response move for s = (ui+1, ui), we
require that ℓ2((ui+1, ui), σ) < 2

α . After all, the maximum achievable load is at most 2,
and f2 can improve by a factor α. We find:

2

α
> ℓ2(ui+1, ui) > r · α

2
,

and conclude that r < 4
α2 .

Corollary 18.1. Consider some α ∈ [ϕ, 2), and let (H,U, 2) denote an α-instance. Then,
ρ(u2) < 2 and ρ(um) < 2.

Proof. Follows immediately from ρ(u1) = 2, 4
α2 < 2 and applying Lemma 35.

Lemma 36. Consider some α ∈ [ϕ, 2), and let (H,U, 2) denote an α-instance with leveling
client equilibrium profile σ. Then I2((u1, u2), σ) is nonempty. Furthermore, let ṽ denote a
client of maximum weight in I2((u1, u2), σ). Then w(ṽ) ≥ 2− 2

α .

Proof. To see that I2((u1, u2), σ) is nonempty, note that ρ(u1) = 2 and ℓ1((u1, u2), σ) ≤ 2
α .

Thus, w(I2((u1, u2), σ) ≥ 2− 2
α , which requires at least one client in I((u1, u2)) to consider

f2.
To see that there must be some client with weight at least 2 − 2

α , first note that by
Lemma 34, ℓ2((u1, u2), σ) ≥ ϕ. Assume by contradiction that no client in I2((u1, u2), σ) has
a weight of at least 2− 2

α . Then I2((u1, u2), σ) contains at least two clients. Let vi denote
a client in I2((u1, u2), σ) with minimal weight. We find that w(vi) ≤ 1

2w(I2((u1, u2), σ)).
We show that the vi-excluded load on f2 is larger than that on f1, which implies that
σ((u1, u2)) is not a client equilibrium; a contradiction. We find:

ℓ−i,2(u1, u2) ≥ ρ(u2)−
1

2
w(I2((u1, u2), σ))

≥ α− 1

2
(2− ℓ1((u1, u2), σ))

= α− 1 +
1

2
ℓ1((u1, u2), σ)

>
1

α
+

1

2
ℓ1((u1, u2), σ)

≥ ℓ1((u1, u2), σ) = ℓ−i,1((u1, u2), σ)
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The client ṽ mentioned in Lemma 36 plays a key role in α-instances. For the constructed
instances with large αmin (see Figure 20), the best-response is often to move to a vertex
adjacent from ṽ with a slightly smaller reach than that of the opponent, to “steal” ṽ from
this opponent.

The discussed lemmas restrict the possible graph structure of α-instances. Several of
these lemmas only hold because α ≥ ϕ, which shows the significance of the golden ratio
for this problem. These restrictions on the graph structure form our toolbox for deriving
a contradiction. Our efforts to find this contradiction resulted in case distinction upon
case distinction, not all of which we were able to solve. We illustrate how the different
restrictions may lead to contradictions by considering a solved case. We also provide some
intuition for how the restrictions could be used to solve the unsolved case distinctions.

Consider ρ(um) for some α-instance for α ∈ [ϕ, 2). We know that f2 can increase
their load by a factor α by moving from ((u1, um), σ) to ((u1, u2), σ). This implies that
ℓ2((u1, um), σ) ≤ y

α , where we define y := ((u1, u2), σ) < 2. This leads to two cases, both
of which restrict the graph structure in their own ways:

1. ρ(um) ≤ y
α < 2

α .

2. ρ(um) > y
α . This implies that ℓ2((u1, um), σ) < ρ(um).

Intuitively, the first condition makes it difficult for a facility to sufficiently improve when
moving to um. Since moving to um is the best-response when the opponent is located on
um−1, this places strict conditions on facility placement profiles which include location
vertex um−1.

Now consider the case where ℓ2((u1, um), σ) < ρ(um). We make a further case distinc-
tion on based on whether or not um is adjacent to ṽ. We provide some intuition of the
imposed restrictions when um is adjacent to ṽ, but do not consider the case formally. This
adjacency restricts the weight of ṽ; for a large weight of ṽ, the load on f2 in profiles (ux, um)
for ux ∈ U with ρ(ux) > ρ(um) is quite large, as f2 is always patronized by ṽ for such pro-
files. This makes it difficult for um to sufficiently improve by moving to ux+1. Additionally,
it is difficult for ux to improve by moving to u1, since ℓ1((u1, um), σ) ≤ 2−w(ṽ), which is
small for large values of w(ṽ). At the same time, smaller values of w(ṽ) are also restrictive.
It follows that for ux ∈ U with ρ(ux) < ρ(u2), either ℓ1((u1, ux), σ) or ℓ1((u2, ux), σ) is
large since there is no single client of large weight adjacent to u1, u2 and ux. If the reach
of ux is large, neither facility might be able to improve from such profiles.

We now show that assuming that ℓ2((u1, um), σ) < ρ(um), and that ṽ is not adjacent
to um, lead to a contradiction. To this end, we consider the sum of the weights of the
clients adjacent to um and prove that this is strictly larger than ρ(um), which contradicts
the definition of the reach of a vertex. We prove Lemma 37, which gives a lower bound on
w(I(u1, um)).

Lemma 37. Consider some α ∈ [ϕ, 2), and let (H,U, 2) denote an α-instance with α-cycle
C and leveling client equilibrium profile σ. Let ui, uj ∈ U denote a pair of location vertices
with ρ(uj) < ρ(ui) and x := ℓ1((uj , ui), σ) < ρ(uj). Then:

w(I2((uj , ui), σ)) ≥ ρ(uj)− x

w(I1((uj , ui), σ)) ≥ max
(︂
ρ(uj)− x, ρ(ui)− ρ(uj)

)︂
.

Proof. Follows from Lemmas 30 and 31 and the assumption that σ is leveling.
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Theorem 19. Consider some α ∈ [ϕ, 2), and let (H,U, 2) denote an α-instance with α-
cycle C and leveling client equilibrium profile σ. Further assume that ρ(um) > 1

αℓ2((u1, u2), σ).
Then, ṽ is adjacent to um.

Proof. Assume by contradiction that um is not adjacent to ṽ. We will show that ρ(um) <
w(I(u1, um)∪ I(u2, um)), which contradicts the definition of the reach of um. To this end,
we first provide an upper bound on the sum of the weights of the clients adjacent to all
vertices in {u1, u2, um}.

By definition, ṽ ∈ I2((u1, u2), σ). Furthermore, there is no client vi ̸= ṽ in this set,
as this would contradict σ((u1, u2)) being a client equilibrium. To see this, note that
were such a client equilibrium to exist, the vi-excluded load on f1 would be at most
2−w(ṽ)−w(vi) ≤ 2

α −w(vi), while that on f2 would be at least α−w(vi), which is larger.
For ease of notation, we define y := ℓ2((u1, u2), σ). Then, since y < 2− w(I2((u1, u2), σ)),
we find that w(I2((u1, u2), σ)) is at most 2− y. Since ṽ is not adjacent to um, we conclude
that the sum of the weights of the clients in I(u1, u2) that are adjacent to um is at most
2− y.

Next, we establish lower bounds on w(I(u1, um)) and w(I(u2, um)). By Lemma 37 and
ℓ2((u1, um), σ) ≤ y

α :

w(I(u1, um)) = w(I2((u1, um), σ)) + w(I1((u1, um), σ))

≥ ρ(um)− y

α
+max

{︁
ρ(um)− y

α
, 2− ρ(um)

}︁
≥ ρ(um) + 2− 2y

α
.

To establish the bound on w(I(u2, um)), we note that some facility can sufficiently improve
by performing the best-response move for facility placement profile (u2, um). If this facility
is f1, then:

ℓ1((u2, um), σ) <
1

α
ℓ1((u1, um), σ) ≤ 1.

This implies that w(I(u2, um)) ≥ y− ℓ1((u2, um), σ) ≥ y−1. If f2 is the improving facility
instead, then:

ℓ2((u2, um), σ) ≤ ℓ2((u2, u3), σ)

α
≤ 2

α

We apply Lemma 37 to find w(I(u2, um)) ≥ y− 2
α . Since 2

α > 1, we conclude that in either
case, w(I(u2, um)) ≥ y − 2

α .
We now establish a lower bound on w(I(u1, um) ∪ I(u2, um)) using the lower bounds

on w(I(u1, um)), w(I(u2, um)) and upper bound on the sum of the weights of the clients
in I(u1, u2) that are adjacent to um. Recall that y ≥ α to find:

w(I(u1, um) ∪ I(u2, um)) >
(︂
ρ(um) + 2− 2y

α

)︂
+
(︂
y − 2

α

)︂
−
(︂
2− y

)︂
= ρ(um) + 2y − 2y + 2

α

= ρ(vm) + 2y(1− 1

α
)− 2

α

≥ ρ(vm) + 2α(1− 1

α
)− 2

α

= ρ(vm) + 2(α− 1− 1

α
)

≥ ρ(vm),
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where the last inequality follows from α ≥ ϕ. By definition, ρ(vm) ≥ w(I(u1, um) ∪
I(u2, um)). We conclude that ρ(vm) > ρ(vm); a contradiction.

Theorem 19 illustrates how to use the developed theory to restrict the structure of
α-instances. If the remaining open cases could similarly be eliminated for certain values
of α, this would lead to an upper bound on the approximation constant for this class of
2-FLG. However, this is beyond the scope of this thesis.
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9 Discussion and Conclusions

In this thesis, we considered subgame perfect equilibria in a model for the two-stage facility
game with unsplittable clients. Unlike previous publications, the client behavior in our
model allows for non-uniqueness of equilibria in subgames induced by facility placement
profiles. This crucial distinction necessitated the use of different proof techniques. In
particular, our efforts required characterizing several types of equilibria for these client
games. Using these techniques, we demonstrated that instances of the two-stage facility
location game do not generally admit subgame perfect equilibria and that deciding their
existence is NP-hard. However, we identified two conditions under which they do exist: the
existence of a balanced client equilibrium profile and the condition of equal client weights.
Furthermore, we established a tight bound of 2 on the price of anarchy for the class of
instances that admit subgame perfect equilibria.

Additionally, we developed an algorithm to find subgame perfect equilibria in un-
weighted instances of the two-stage facility location game. This algorithm utilizes im-
proving move dynamics for the facility players. We have shown that cycling cannot occur
and that each iteration can be computed in polynomial time. We conjecture that the num-
ber of iterations needed is always polynomial in the input size of the problem, although
we were not able to prove this assertion. Consequently, we could not conclude whether it
is possible to find a subgame perfect equilibrium in unweighted instances in polynomial
time. Discovering a polynomial bound or identifying an instance requiring an exponential
number of iterations would both yield interesting results.

Lastly, we investigated the existence of approximate equilibria, which proved to be
a more challenging topic compared to “true” subgame perfect equilibria. Our focus was
primarily on unrestricted instances with two facility players, as limiting the scope to this
particular scenario kept the challenge somewhat manageable. We demonstrated that 2-
approximate equilibria are guaranteed to exist for such instances. Additionally, we iden-
tified instances of this type that admit no α-approximate equilibria for α values strictly
smaller than the golden ratio ϕ. Although we made substantial efforts to refine these
bounds, we were unable to complete a proof. However, we conjecture that for instances
with two facility players, ϕ-approximate equilibria always exist. Much remains unknown
about the existence of approximate equilibria, including whether and how the number of
facility players affects the values of α for which α-approximate equilibria are guaranteed
to exist. We did prove that deciding whether a general instance of 2-FLG admits an
α-approximate equilibrium, for α smaller than the golden ratio, is an NP-hard problem.
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10 Suggestions for Further Research

The two main open problems presented in this paper offer ample opportunity for further
research on the discussed version of the two-stage facility location game. Foremost is the
running time of the algorithm for finding subgame perfect equilibria in unweighted 2-FLG.
Throughout this thesis, our primary focus was on establishing the existence of equilibria,
rather than designing efficient algorithms. Demonstrating that these equilibria can be
found in polynomial time would thus likely indicate the existence of significantly faster
algorithms compared to the one proposed in this report, even if the latter does turn out to
have a polynomial running time. It might be possible for alternative algorithms to directly
exploit the structure of the host graph to determine which facility placement profiles corre-
spond to subgame perfect equilibria, bypassing the need for considering improving moves
for the facility players. Such an algorithm would likely be orders of magnitude faster than
ones based on improving moves. The availability of an efficient method for finding subgame
perfect equilibria could make the application of this model to real-world problems more
intriguing.

The other major open question pertains to identifying the values of α for which α-
approximate equilibria are guaranteed to exist. Further results on this area would unde-
niably be of great interest, even if they are only applicable to specific classes of instances.
Nevertheless, our experience has shown that obtaining such results is very challenging, even
for the relatively simple case of unrestricted instances with two facility players. Therefore,
time might be better spent researching other open problems, such as those of an algo-
rithmic nature as previously mentioned. Should one attempt to tackle this challenge, we
recommend solving the problem for just two facility players before extending the analysis
to general instances of 2-FLG. The theory developed in this thesis can serve as a solid
foundation for this process, as we believe our approach to be sound.

Additionally, exploring further alternative versions of the two-stage facility game would
be interesting. The research on these games, to which this thesis is but the most recent
addition, has already yielded some results. Investigating further variations could enhance
our overall comprehension of such games, and help identify which conditions are sufficient
for the existence of equilibria.
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