
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Towards Future Proof Cryptographic
Implementations:

Side-Channel Analysis on Post-Quantum Key
Encapsulation Mechanism CRYSTALS - Kyber

J.J.W. Meijer
M.Sc. Thesis - Embedded Systems

June 2023

Supervisors:
dr.ir. M. Ottavi

B. Endres Forlin
Committee:

prof.dr.ir A.L. Varbanescu
dr.ir. A. Continella

L. Mariot

Computer Architecture for Embedded Systems
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Contents

List of acronyms v

1 Introduction 3
1.1 Context . 3
1.2 Research objective . 5
1.3 Outline . 6

2 Background 7
2.1 CRYSTALS - Kyber . 7

2.1.1 Learning With Errors . 7
2.1.2 Kyber’s Building Blocks . 9
2.1.3 The Fujisaki-Okamoto transform 11
2.1.4 Parameter Sets . 12
2.1.5 The IND-CPA Kyber public-key encryption (PKE) algorithm . . 13
2.1.6 Overview of Kyber Decryption and Encryption 15
2.1.7 The IND-CCA Kyber KEM algorithm 17
2.1.8 Fast Polynomial Multiplication using the Number Theoretic Trans-

form . 19
2.1.9 Implementations . 20

2.2 Side-Channel Analysis . 20
2.2.1 Side-Channel Analysis History 22
2.2.2 Power Side-Channel Analysis Techniques 23
2.2.3 Countermeasures . 27

2.3 RISC-V . 28
2.4 Related Work . 28

3 Simple Power Analysis on Kyber 33
3.1 Experimental Setup . 34

3.1.1 Hardware . 34
3.1.2 Software . 38

3.2 Leakage of ordered key coefficients 38

iii

3.2.1 Chosen Ciphertexts . 39
3.2.2 Hypothesis . 40
3.2.3 Experimental Procedure . 41
3.2.4 Results . 41
3.2.5 Implication of results . 42

4 Correlation Power Analysis 45
4.1 Identifying Leakage . 45

4.1.1 Experimental Procedure . 45
4.1.2 Results . 46

4.2 Correlation Power Analysis Attack . 47
4.2.1 The Leakage Model . 50
4.2.2 Dealing with the case: ski = 0 52
4.2.3 Attack Procedure . 53
4.2.4 Experiment Procedure . 54
4.2.5 Results . 56

5 Countermeasures against the proposed attack 63
5.1 Preventing Malicious Ciphertexts . 64
5.2 Software Countermeasures . 65

5.2.1 Countermeasure 1: Random Delays 65
5.2.2 Countermeasure 2: Shuffling 66

5.3 Considering side-channel analysis (SCA) during Implementation De-
velopment . 67

6 Discussion 69
6.1 Summary . 69
6.2 Interpretation of Results . 70
6.3 Limitations . 71

7 Conclusions and recommendations 75
7.1 Conclusions . 75
7.2 Recommendations . 76
7.3 Contributions . 77

References 79

Appendices

A Computing ’compression resistant’ ciphertext coefficient values. 87

List of acronyms

NIST National Institute of Standards and Technology

PQC post-quantum cryptography

KEM key encapsulation mechanism

PKE public-key encryption

IoT internet of things

EM electromagnetic

SCA side-channel analysis

SPA simple power analysis

DPA differential power analysis

CPA correlation power analysis

SASCA soft-analytical side-channel analysis

SNR signal-to-noise

ISA instruction set architecture

LWE learning with errors

R-LWE ring learning with errors

M-LWE module learning with errors

CVP closest vector problem

IND-CPA indistinguishability under chosen plaintext attack

IND-CCA indistinguishability under chosen ciphertext attack

FO-transform Fujisaki-Okamoto transform

v

NTT number-theoretic transform

XOF extendable output function

PCC Pearson correlation coefficient

DUT device under test

USB universal serial bus

GPIO general purpose input-output

SoC system-on-a-chip

FPU floating-point unit

MCU microcontroller

SAD sum of absolute difference

TVLA test vector leakage assessment

NICV normalized inter-class variance

PGE partial guessing entropy

Acknowledgement

I would like to express my sincere gratitude to all my supervisors for providing me
with valuable feedback and guidance. I am grateful for the opportunities that I have
been given and for the educational experience that this turned out to be. I would
especially like to thank my daily supervisor Bruno for contending with my daily ques-
tions and helping me navigate through the scientific work that was required for this
thesis. His guidance and expertise have been instrumental in shaping the outcome
of this thesis.

1

Chapter 1

Introduction

1.1 Context

Modern-day digital infrastructure depends heavily on cryptographic algorithms, which
allow for secure communication. Many digital activities require security guarantees,
which cryptographic algorithms can provide. A common usage of cryptography is to
encrypt messages and guarantee their integrity and authenticity. Often parties use
a symmetric cryptography method. In symmetric cryptography, both parties have
the same private key, which they use to encrypt and decrypt their communication.
In asymmetric encryption, there are different keys. A key pair consisting of a pub-
lic key and a private key is used to encrypt and decrypt data. This is also known
as PKE. PKE tends to require more resources than symmetric cryptography. Of-
ten PKE is used to establish a symmetric key after which symmetric cryptography
is used to communicate. Cryptographic primitives can provide security through the
use of specific mathematical problems, which are deemed hard to solve. The in-
teger factorization problem, discrete logarithm problem, and elliptic-curve discrete
logarithm problem are some examples of commonly used mathematical problems.
One of the most used PKE algorithms is RSA [1], which makes use of the integer
factorization problem.

In the last decade, significant progress has been made in a new computing con-
cept, namely quantum computing. Quantum computers leverage quantum physics
to significantly increase computational power. Theoretically, quantum computing will
be able to solve particular problems with orders of magnitude faster than classical
computing. In 1994 Shor [2] proposed a quantum algorithm that is able to solve
the integer factorization problem and discrete logarithm problem within polynomial
time. With the advent of quantum computing some of our most used cryptographic
primitives have become threatened. Fortunately, as of today (2023), no quantum
computer is powerful and stable enough to break current cryptographic standards.

3

Algorithm Cryptographic Scheme Mathematical basis

CRYSTALS-Kyber Key Encapsulation Scheme Lattice-based
CRYSTALS-DILITHIUM Signature Scheme Lattice-based

FALCON Signature Scheme Lattice-based
SPHINCS+ Signature Scheme Hash-based

Table 1.1: Selected candidates to be standardized (2022)

The field of quantum computing is constantly advancing, and thus the threat to cryp-
tography is ever looming. With the future in mind, we should look for new encryp-
tion schemes that are not vulnerable to quantum algorithms. This area of study
is called post-quantum cryptography (PQC). With this goal in mind, the National
Institute of Standards and Technology (NIST) initiated the PQC standardization pro-
cess. The goal of this process is to find suitable post-quantum secure encryption
algorithms. The NIST PQC competition is currently in its fourth round. Already,
four algorithms have been selected for standardization. Three of which are digital
signature schemes (CRYSTALS-DILITHIUM [3], SPHINCS+ [4], FALCON [5]). Dig-
ital signature schemes are designed to verify the authenticity and integrity of digital
messages. The remaining candidate CRYSTALS-KYBER [6] is a key encapsula-
tion mechanism (KEM). The goal of a KEM is to facilitate the establishment of a
shared symmetric key between two parties. PQC algorithms leverage mathematical
problems that are hypothesized to be computationally hard for quantum algorithms.
Table 1.1 gives an overview of the four candidates that have been chosen for stan-
dardization by the NIST PQC process.

However secure an encryption algorithm might be, an insecure implementation
can still be compromised. A special attack can be designed that does not focus on
the algorithm itself, but instead on the way that the algorithm has been implemented
on a device. When data is processed physical properties can be observed. For
example, when many lines of a data bus are set to logic level ’high’, one might notice
an increase in power consumption. These physical properties can be leveraged
by an attacker to possibly reveal secrets used by an encryption scheme. Possible
sources of information are timing, power consumption, electromagnetic radiation
temperature, and sound. Attacks utilizing these unintended sources of information
are referred to as SCA attacks [7]. They aim to reveal secrets by cleverly associating
leakage channels with secret variables. Successful side-channel attacks require
significant setup and expertise. Physical access to the device is often necessary
to perform successful attacks. Historically, for practical reasons, this was often too
large a boundary to overcome. However, with the ever-increasing number of internet
of things (IoT) [8] devices and embedded devices, this threshold has decreased

significantly. Due to the pervasive nature and safety-critical position of these devices
security is of great importance [9]. An important area of research, therefore is the
susceptibility to SCA attacks of these devices [10].

Many of the NIST PQC standardization competition candidates’ SCA charac-
teristics have already been studied. It has been found that PQC implementations
without SCA countermeasures in mind are vulnerable to possible SCA attacks [11]
[12] [13] [14].

1.2 Research objective

The previous section has highlighted the importance of finding new quantum-resistant
cryptographic schemes. The section also discussed how new cryptographic imple-
mentations should be evaluated on their resistance to SCA attacks. Currently, Kyber
seems one of the most promising PQC candidates. The scheme is currently the
only KEM that has been selected to be standardized by the NIST PQC competi-
tion. The SCA resilience of IoT implementations is especially important. Not only
is physical access to IoT devices often easier, they are often used in pervasive and
safety-critical applications. As of today (2023), the SCA resistance of Kyber imple-
mentations on RISC-V processors has not been extensively studied. To investigate
these issues this thesis will try to answer the following research questions:

RQ 1. How resistant are RISC-V Kyber implementations to power side-
channel analysis attacks?

RQ 2. What protection mechanisms can be implemented on RISC-V
Kyber implementations to protect against power side-channel analysis
attacks?

The research questions mentioned above were formulated at the outset of this
thesis. Answering the research questions stated above is non-trivial as many differ-
ent aspects are involved. While quantitative metrics such as normalized inter-class
variance (NICV) [15] and test vector leakage assessment (TVLA) [16] can provide
some insights and help answer RQ 1, they do not provide a comprehensive under-
standing of how leakages can lead to exploitation. Relying solely on metrics has
its shortcomings as metrics only focus on side-channel leakage and not on the ex-
ploitation of these leakages [17]. To overcome these limitations, a more explorative
approach was adopted in this study. This approach involved analyzing Kyber for
weaknesses and then attempting to exploit these weaknesses through a SCA. By

developing an attack, a better comprehension of the exploitation of identified weak-
nesses can be obtained, partially addressing RQ 1. Furthermore, a new imple-
mentation with countermeasures can be developed that should mitigate the derived
attack. Which in turn addresses RQ 2. Although this methodology might not yield
a quantitative review of SCA characteristics of Kyber implementations, it will con-
tribute to a deeper understanding of how SCA can attack Kyber, which in turn will
aid in ensuring the security of possible future Kyber implementations.

1.3 Outline

In chapter 2 the necessary background for understanding this thesis will be given.
Most importantly the Kyber algorithm and side-channel analysis attacks will be de-
scribed. Chapter 3 lays out the experimental setup and argues why the PQCLEAN
implementation has been chosen as a target. Then simple power analysis (SPA) is
performed on the target implementation for both an ARM and RISC-V microcontroller
(MCU). SPA could identify leakage on the ARM MCU, but not on the RISC-V MCU.
In chapter 4 power side-channel leakage is identified through the use of correlation
power analysis (CPA) for both MCUs. Furthermore, a chosen-ciphertext CPA attack
on the decryption procedure is proposed and experimentally validated. In chapter 5
possible countermeasures to the attack are considered and experimentally verified.
In chapter 6 the relevance and implications of the results are discussed. Further-
more, the limitations of the research are considered. Finally, in chapter 7 the thesis
is concluded and future avenues of research are suggested.

Chapter 2

Background

In this chapter general background is presented to provide the reader with the nec-
essary preliminary understanding of the various subjects discussed in this thesis.
Section 2.1 provides an introduction to the Kyber algorithm. Section 2.2 introduces
the concept of side-channel analysis and its potential for compromising cryptosys-
tems. Section 2.3 introduces the RISC-V instruction set architecture (ISA). Lastly,
section 2.4 will list related work and their corresponding findings.

2.1 CRYSTALS - Kyber

Kyber [18] is currently the sole KEM that has been selected to be standardized in the
PQC standardization competition. The purpose of a KEM is to facilitate establishing
a shared symmetric secret-key between two parties. Kyber falls into the category of
lattice-based cryptography. Currently, three out of the four algorithms selected to be
standardized in the NIST process belong to this category [3], [5], [18]. Lattice-based
cryptosystems have been shown to have attractive properties for cryptography, as
they allow for the construction of multiple ”hard” computation mathematical prob-
lems. Examples of such problems include SVP, GapSVP, CVP, and GapCVP. O.
Regev states that one might even conjecture that lattice-based problems are hard
for quantum computers [19]. Adding to the appeal of lattice-based cryptosystems
for PQC. However, the only evidence for this is that as of today (2023), no quan-
tum algorithms exist that solve lattice problems faster than classical algorithms. This
conjecture is an important area of study within lattice-based PQC.

2.1.1 Learning With Errors

In 2005, O. Regev [20] introduced the learning with errors (LWE) problem. It is hy-
pothesized that there exists no quantum algorithm that can solve LWE in polynomial

7

time. Regev’s main result was the reduction of the worst-case GapSVP problem
to the LWE problem. His reduction required the use of a quantum algorithm. The
requirement of a quantum algorithm for his proof implies that if a quantum algorithm
can efficiently (polynomial complexity) solve LWE, then there also exists a quan-
tum algorithm capable of efficiently solving the GapSVP problem. Not only did O.
Regev prove the reduction in his paper, but he also constructed a PKE scheme that
is based on the LWE problem. In doing so, Regev provided an initial foundation for
constructing quantum-resistant cryptosystems.

Problem Description The LWE can be described as a system of equations with
errors. Given n ≥ 1 and a modulus q ∈ Z We have an error distribution χ : Zq → R+

and a secret vector s ∈ Zn
q . One can request polynomially many equations with

errors. The equations are of the following form:

a1
T s+ e1 = b1 mod q

a2
T s+ e2 = b2 mod q

...

For every i’th equation ai is sampled uniformly from Zn
q and the error ei is sampled

from the error distribution χ. The goal is to determine s when only given ⟨a1, a2, ...⟩
and ⟨b1, b2, ...⟩.

Without the introduced error term this problem would be trivial to solve using
Gaussian Elimination. Figure 2.1 provides a visualization of the closest vector
problem (CVP) in two dimensions. This problem can be reduced to the LWE problem
and serves as an illustrative example. The basis vectors form a lattice. The basis
vectors are highlighted in blue in the figure. Furthermore, a point on the lattice is
given with some error added to it. This point has been highlighted in red. The goal
of CVP is to find the point on the lattice that is closest to the point with error. In this
case, the green point is closest to the point with error. Although this might seem like
a trivial problem in two dimensions. In higher dimensions, this problem becomes
significantly more difficult.

Multiple variations of the LWE problem exist. The problem described above is
the search variant of LWE. A decision variant also exists, where one has to distin-
guish whether the input is taken from the problem above or uniformly sampled. It
is also possible to take a discrete error distribution, such as the discrete Gaussian
distribution. A disadvantage of using LWE to build a cryptosystem is that it requires
large key sizes. An alternative version of LWE is ring learning with errors (R-LWE).

Figure 2.1: CVP in 2-dimensional lattice

The advantage of R-LWE is that it requires fewer resources than LWE. The disad-
vantage of R-LWE is that an additional structure is introduced into the problem. This
additional structure might be leveraged by an attacker. The CRYSTALS-Kyber algo-
rithm is based on module learning with errors (M-LWE). M-LWE provides a middle
ground between LWE and R-LWE. It has larger resource requirements compared to
R-LWE but is also thought to be more secure than R-LWE. Yet it does not have the
stringent resource requirements that LWE requires. Because of these reasons the
M-LWE problem is a suitable candidate for developing practical PQC cryptosystems.
Because of the addition of random noise, there is a chance that the key exchange
procedure fails. The probability of failure is referred to as correctness probability.
By choosing appropriate parameters, this probability can be minimized, rendering it
practically negligible.

2.1.2 Kyber’s Building Blocks

Polynomial Rings Kyber’s basic building blocks are elements from the polynomial
ring denoted by Rq:

R3329 : Z3329[X]/(X256 + 1)

An element from the polynomial ring above will be a 255-degree polynomial with all
coefficients belonging to Z3329. Mathematically, Z3329 is the group of integers modulo
3329. Since the coefficients belong to Z3329, their values belong to the range of

{0, 3328}. These polynomials are closed under addition, subtraction, and polynomial
multiplication. After polynomial multiplication, it is possible to have a polynomial with
a degree bigger than 255. These polynomials will be reduced by the polynomial
X256 + 1. In essence, X256 + 1 acts as a modulus. One can compute the result
of the reduction by performing a long division of the polynomial by X256 + 1 and
taking the corresponding remainder. Kyber also makes use of vectors and matrices.
The elements of these objects belong to the polynomial ring R3329. Vectors and
matrices will be denoted by x and X font respectively. The dot product and matrix
multiplication are defined where the inner elements are multiplied using polynomial
multiplication.

Binomial Distribution Kyber also makes use of the centred binomial random dis-
tribution. It is defined for some positive integer η to be:

Sample uniformly {(ai, bi)}ηi=1 ← ({0, 1}2)η and output
∑η

i=1(ai − bi).

This means that if η = n the possible range of values is equal to {−n, n} centred
around 0. The binomial distribution is denoted by βη. If a variable is taken from the
binomial distribution βη this is denoted by v ← βη. If a k-sized vector v is sampled
by the binomial distribution this is denoted by v← βk

η

Compression and Decompression To reduce the size of the public key and ci-
phertext Kyber applies compression. Kyber defines the functions Compress(x, d)

and Decompress(x, d) for compression and subsequent decompression. These func-
tions are defined as:

Compressq(x, d) = ⌈(2d/q) · x⌋ mod +2d

Decompressq(x, d) = ⌈(q/2d) · x⌋

Where d is a parameter that indicates how many bits should be used to represent x.
The purpose of these compression functions is to get rid of the least-significant bits.
This can be done, since these bits do not have a large influence on the correctness
probability δ.

Montgomery Reduction Kyber’s basic elements belong to the polynomial ring
R3329. This means that every coefficient is an element of the multiplicative group of
integers modulo 3329. The general approach to multiplying two coefficients is to per-
form multiplication followed by modular reduction. However, a naive implementation

of modular reduction requires costly operations like integer division. Montgomery in-
troduced a modular reduction technique that allows efficient modular reductions [21].
His clever idea was to replace expensive divisions with inexpensive divisions by R,
where R = 2r. Divisions by R can be implemented with bit shifts instead of an
expensive multi-cycle division operation because R is a power of two. The only dif-
ference to using the Montgomery reduction is that the result will be congruent to
a · R−1 mod Q, instead of a mod Q. This difference can be easily negated by mul-
tiplying a with R before performing the Montgomery reduction, as the result will be
congruent to a ·R ·R−1 ≡ a mod Q. Algorithm 1 presents the Montgomery reduction
operation as described in Montgomery’s paper. It is worth noting that the division
(a + mQ)/R can be implemented using bit shifts if R is a power of two. In the Ky-
ber implementation, some optimizations were made to the Montgomery reduction.
These optimizations are possible because R and Q are known beforehand.

Algorithm 1 montgomery reduce(a)

1: m← (a mod R) ·Q−1 mod R

2: t← (a+mQ)/R

3: if t ≥ Q then
4: return t−N

5: else
6: return t

7: end if

2.1.3 The Fujisaki-Okamoto transform

The basic form of Kyber has a notion of security known as indistinguishability un-
der chosen plaintext attack (IND-CPA) [22] This is considered to be a requirement
for provably secure asymmetric encryption schemes. Intuitively this notion of se-
curity requires that an attacker cannot get additional information from the cipher-
text. This notion is a weaker version of indistinguishability under chosen ciphertext
attack (IND-CCA) introduced by [23]. Since IND-CCA has stronger security than
IND-CPA it is desirable for Kyber to adhere to this IND-CCA notion of security. This
is achieved through the Fujisaki-Okamoto transform (FO-transform) [24] The FO-
transform lifts Kyber from IND-CPA to IND-CCA security. This is achieved by wrap-
ping the IND-CPA version of the algorithm by another algorithm. Because of this,
we are dealing with two different versions of Kyber which we will refer to as IND-
CPA Kyber and IND-CCA Kyber. IND-CPA Kyber is a PKE cryptosystem whereas
IND-CCA Kyber is a KEM. The specific KEM variant of FO-transform with ’implicit
rejection’ used for Kyber is described in [25].

2.1.4 Parameter Sets

Kyber offers multiple different parameter sets [6]. These various versions of Kyber
are referred to as Kyber512, Kyber768, and Kyber1024. The purpose of parame-
ter sets is to offer more flexibility by choosing between different security and per-
formance trade-offs of Kyber. The parameters need to be considered carefully as
they have a significant influence on the accuracy, security, and performance of the
algorithm. Furthermore, wrongly chosen parameters can make the algorithm com-
pletely invalid. The various parameters are listed in table 2.1. Table 2.2 lists sizes
of secret-key, public-key, and ciphertext corresponding to the parameter sets. The
next section will explain the different parameters in more detail.

n k q η1 η2 (du, dv) δ

Kyber512 256 2 3329 3 2 (10,4) 2−139

Kyber768 256 3 3329 2 2 (10,4) 2−164

Kyber1024 256 4 3329 2 2 (11,5) 2−174

Table 2.1: Kyber parameters sets

secret-key public-key ciphertext

Kyber512 1632 800 768
Kyber768 2400 1184 1088
Kyber1024 3168 1568 1568

Table 2.2: Packet sizes for Kyber (bytes)

The most notable difference is the k parameter, which refers to the dimension
of the vectors and matrices in the algorithm. A higher k is considered to be more
secure but comes at the cost of higher resource requirements, both in key size and
execution time. This higher cost increases linearly with k.

The parameter q refers to the modulus of the coefficients. This parameter needs
to be considered very carefully as it has a big influence on the polynomial multiplica-
tions done in the algorithm. This is chosen to be 3329 for all versions of Kyber. Both
η1 and η2 refer to the η used for the binomial distribution. The difference between the
two is that different distributions need to be used for different variables.

Compression and decompression are influenced by (du, dv). Both parameters in-
dicate how many bits are used to represent different parts of the ciphertext. Smaller

Figure 2.2: IND-CPA Kyber PKE

values result in more least-significant bits being discarded.

The final parameter δ refers to the correctness probability of Kyber. Kyber has a
small probability of failing. Failure is defined as being the case where both parties
obtain different keys. When parameters are chosen correctly the probability of this
happening is so small that the failure probability is considered negligible.

2.1.5 The IND-CPA Kyber PKE algorithm

IND-CPA Kyber can be considered to be PKE. A secret message is sent from one
party to another using asymmetric cryptography. This scheme requires three main
steps. Key generation, encryption, and decryption. For illustration purposes say
Alice wants to send a secret message m ∈ M = {0, 1}256 to Bob. Kyber achieves
this with three main steps. Key-pair generation, encryption, and decryption. In
the key-pair generation step, Bob will generate a public-key pk and a private-key
sk. Then Bob will publish the public-key pk and keep the secret-key secret. In the
second step, Alice will use Bob’s public-key to encrypt the secret message m and
create ciphertext c. Alice will publish the ciphertext. Finally, in the third and last step,
Bob will use his secret-key to decrypt the previously obtained ciphertext and obtain
the original message m. In Kyber these three steps are done by the algorithms
Kyber.CPA.KeyGen, Kyber.CPA.Enc and Kyber.CPA.Dec respectively. The following
sections will introduce and explain each of the previously mentioned algorithms.
Section 2.1.6 will give an intuition and general overview of how the encryption and
decryption procedures work. Figure 2.2 shows the full encryption scheme and how
each of the three algorithms should be applied.

IND-CPA Key-pair Generation Algorithm 2 lists the steps required for key genera-
tion. The result is a public-key pk and a secret-key sk. Firstly, ρ and σ are bit-strings
that are uniformly sampled. These are used as inputs for an extendable output
function (XOF) that is used to generate pseudo-random bit-strings of any desired
length. To denote that we would like to use an XOF to sample a y from a distribution
S or uniformly from a set S we use y ∼ S := Sam(x). It should be noted that the
function y = Sam(x) is deterministic and always produces the same y for a given x.

A ∼ Rk×k
q := Sam(ρ) denotes that A is sampled uniformly from the set Rk×k

q with
the use of the XOF Sam(ρ). A is part of the public-key pk = (A, t). Since Sam()

is deterministic, we can instead send ρ to the other party. The other party can then
perform Sam(ρ) to generate the A. Effectively reducing the public-key to pk = (t, ρ).
This is an optimization done to reduce key size.

v ← βη denotes that v is generated from a distribution where all coefficients are
sampled from βη. Similarly v ∼ βk

η := Sam(α) denotes a k-dimensional polynomial
vector v where every polynomial is generated by βη. Both t and e1 are generated
this way. The error term e is the first error (or alternatively thought of as noise) that
forms an integral part of the LWE problem. It can be seen that the algorithm relies
heavily on randomness. Every implementation must make sure that the (pseudo-
random) generation of elements does not introduce any weaknesses that can be
leveraged by an attacker.

Algorithm 2 Kyber.CPA.KeyGen(): key generation

1: ρ, σ ← {0, 1}256

2: A ∼ Rk×k
q := Sam(ρ)

3: (s, e1) ∼ βk
η1
× βk

η1
:= Sam(σ)

4: t := As+ e1

5: return (pk := (t, ρ), sk := s)

IND-CPA Encryption Algorithm 3 lists the steps required for encryption. This re-
quires that Alice received the public-key pk from Bob. Alice will encrypt the secret
message m into ciphertext c using Algorithm 3. Firstly, the exact same A is gen-
erated as in Algorithm 2. Secondly, three random variables are sampled from the
binomial distribution. Of which r and e2 are polynomial vectors. And a single poly-
nomial e3. Again we see two error terms being introduced into ciphertext, which is
integral to the LWE problem. After this the two parts of the ciphertext c = (u, v)

are created. Most importantly the message is encoded into v. This is done through

⌈ q
2
⌋ ·m, where ⌈x⌋ is rounding. Every coefficient vi will have ⌈ q

2
⌋ added to it depend-

ing on whether mi = 1. The actual message bits are hidden because v also has
tT r and e3 added to it. Finally, Both parts of the ciphertext will be compressed with
different compression parameters du and dv.

Algorithm 3 Kyber.CPA.Enc(pk = (t, ρ), m ∈ {0, 1}256): encryption

1: r ← {0, 1}256

2: A ∼ Rk×k
q := Sam(ρ)

3: (r, e2, e3) ∼ βk
η2
× βk

η2
× βη2 := Sam(r)

4: u := Compressq(A
T r+ e2, du)

5: v := Compressq(t
T r+ e3 + ⌈ q2⌋ ·m, dv)

6: return c := (u, v)

IND-CPA Decryption Algorithm 4 shows the steps for decryption. Firstly the two
parts of the ciphertext are decompressed with the same decompression parameters
du and dv. Afterwards the secret-key of Bob s is combined with the two parts of
the ciphertext. Finally, the result is decompressed with parameter 1. This is a trick
that will convert every coefficient closer to ⌈ q

2
⌋ than 0 to a 1. It can be seen that

m = Compressq(⌈ q2⌋ ·m, 1), since Compressq(⌈ q2⌋ ·m, 1) = ⌈2
q
⌋ · ⌈ q

2
⌋ ·m mod +2d ≈

m. The result r of v − sTu contains ⌈ q
2
⌋ · m with some additional error. Since this

error is small, the actual coefficient values ri will be close to 0 if mi = 0 and close
to ⌈ q

2
⌋ if mi = 1. Hence after the final compression step, we will get our original

message m back. Section 2.1.6 gives a general explanation of how the encryption
and decryption step will result in the original message.

Algorithm 4 Kyber.CPA.Dec(sk = s, c = (u, v): decryption

1: u := Decompressq(u, du)

2: v := Decompressq(v, dv)

3: return Compressq(v − sTu, 1)

2.1.6 Overview of Kyber Decryption and Encryption

Figure 2.3 shows how the key-pair should be generated for Kyber512. The secret-
key and error term are generated from the binomial distribution βk

η1
. In the case of

Kyber512, we have η1 = 3 and k = 2 as can be seen in the parameter set listed in
table 2.1. Therefore, we know that the coefficients of the polynomials in s and e1

belong to the range of [−3, 3]. The matrix A is uniformly sampled from the set R2×2
3329.

Matrix multiplication of A with the secret-key s and some added additive noise will

Figure 2.3: Key-pair Generation (IND-CPA Kyber512)

(a) ciphertext v

(b) ciphertext u

Figure 2.4: Creation of ciphertext (IND-CPA Kyber512)

be sent as part of the public-key. Because of the added error e, it is non-trivial to
recover the secret-key s through t according to the LWE problem.

Bob can now create the ciphertext which consists of two parts, v and u. The
message bits will be encoded in v, whereas u is constructed in a specific way that
aids Alice in recovering the original message. Figure 2.4 illustrates how Bob creates
v and u. Again the distributions are listed on top of the elements. Note that A and t

have been provided by Alice. Again we can see the application of the LWE problem
where noise is added to hide the elements r and m in the ciphertext.

After the ciphertext has been transmitted to Alice. Alice can use the secret-key
s to retrieve the original message m. This is done in the final step of algorithm 4,
where Alice will compute v − sTu. Why this process results in something close to

the original message can be seen in the following equations:

v − sT · u = (As+ e1)
T r+ e3 + ⌈

q

2
⌋ ·m− sT (AT r+ e2)

= (As)T r+ e1
T r+ e3 + ⌈

q

2
⌋ ·m− sTAT r− sTe2

= (As)T r+ e1
T r+ e3 + ⌈

q

2
⌋ ·m− (As)T r− sTe2

= e1
T r+ e3 + ⌈

q

2
⌋ ·m− sTe2

≈ ⌈q
2
⌋ ·m

The final result is: e1T r+e3+ ⌈ q2⌋ ·m− sTe2. Since s, r, e1, e2, and e3 are all taken
from the binomial distribution we know that they are small. Therefore, the final result
will be ⌈ q

2
⌋ ·m with some additional noise. Alice can now find the bits of message m

by checking whether the coefficients are close to zero or close to ⌈ q
2
⌋. The values of

the corresponding bits will be 0 and 1 respectively.

2.1.7 The IND-CCA Kyber KEM algorithm

IND-CPA Kyber is a PKE with IND-CPA notion of security. It would be preferable for
Kyber to have stronger security guarantees. The FO-transform facilitates the lifting
of IND-CPA to IND-CCA. The authors of Kyber apply this transformation to the IND-
CPA version of Kyber to obtain the IND-CCA version of Kyber. They use a variant of
the FO-transform which also transforms Kyber from a PKE to a KEM. This means
that IND-CCA cannot be used to send secret messages. Instead, it is a method of
obtaining a shared secret-key between two parties. From now on IND-CCA Kyber
will be referred to as Kyber.

IND-CCA Kyber makes use of algorithms 5 and 6. Key generation is still done
using algorithm 2 with the only difference being that the secret-key sk also includes
the public-key pk and a secret random seed z.

IND-CCA Key Encapsulation Key Encapsulation is the process of forming the ci-
phertext with the secret-key hidden in the ciphertext. Algorithm 5 shows the steps re-
quired for encapsulation. We also require two hash function G : {0, 1}∗ → {0, 1}2×256

and H : {0, 1}∗ → {0, 1}256. Contrary to algorithm 3, Bob now has to generate
a random message m instead of providing m as input. Firstly, Bob will gener-
ate two hashes K̂ and r. The r will be used as a random seed when calling the
Kyber.CPA.Enc function in the next step. In the next step, Bob will generate the
ciphertext c using the public-key and randomly generated message m. Finally, he

can generate the shared secret-key K by hashing K̂ together with a hash of the
ciphertext c.

Algorithm 5 Kyber.Encaps(pk = (t, ρ)): encapsulation

1: m← {0, 1}256

2: (K̂, r) := G(H(pk),m)

3: (u, v) := Kyber.CPA.Enc((t, ρ),m; r)

4: c := (u, v)

5: K := H(K̂,H(c))

6: return (c,K)

IND-CCA Key Decapsulation Algorithm 6 shows the decapsulation procedure for
Kyber. The most notable change to the input of the function is that the secret-key
besides s now also includes the public-key pk = (t, ρ). Additionally, the secret-key
also contains a secret random seed z. Furthermore, the same hashes G and H

are used. The decapsulation procedure decrypts the ciphertext and re-encrypts
it. This re-encryption is to verify that the ciphertext is valid. If re-encryption fails
then the algorithm returns a pseudo-random key, which has been generated using
z. If re-encryption succeeds Alice can now apply the final hash H on a hash of the
ciphertext H(c) and K̂ to obtain the shared secret-key K.

Algorithm 6 Kyber.Decaps(sk = (s, z, t, ρ), c = (u, v)): decapsulation

1: m′ := Kyber.CPA.Dec(s, (u, v))

2: (K̂ ′, r′) := G(H(pk),m′)

3: (u′, v′) := Kyber.CPA.Enc((t, ρ),m′; r′)

4: if (u′, v′) = (u, v) then
5: return K := H(K̂ ′,H(c))

6: else
7: return K := H(z,H(c))

8: end if

With the above KEM, it is possible to create multiple protocols that facilitate key
exchange. One can construct an unauthenticated, one-sided authenticated, and
authenticated key exchange protocol.

2.1.8 Fast Polynomial Multiplication using the Number Theoretic
Transform

Kyber requires the multiplication of polynomials in the polynomial ring R3329. After
two polynomials have been multiplied they will be reduced to a polynomial of max-
imally degree 255 by the modulus X256 + 1. Normally, polynomial multiplication is
a costly operation. A naive implementation of polynomial multiplication would be
O(n2), where n is the degree of the polynomials. Given that Kyber needs to multiply
multiple polynomials of 255-degree this is not desirable. Fortunately, under special
circumstances, it is possible to significantly speed up polynomial multiplication us-
ing the number-theoretic transform (NTT). The NTT can be applied to polynomials
to convert a polynomial to the NTT domain. Polynomial multiplication in the NTT
domain can be done point-wise and is thus much faster than regular polynomial
multiplication. When NTT is applied the complexity is reduced to O(n · log n).Kyber’s
parameters have been chosen in such a way that it facilitates the NTT operation.
Specifically for this reason the choice of the prime modulus q = 3329 has been
made. As it is a suitable candidate for the NTT. Note that the NTT for Kyber is a little
bit more involved because of the choice for q = 3329. The NTT can only be applied
partially and the multiplication of polynomials is not exactly point-wise. The specifics
of the mathematics for NTT are omitted from this thesis. Please refer to [26] [27] for
introductory reading on how to apply the NTT for polynomial multiplication.

NTT (a)→ â (2.1)

NTT−1(â)→ a (2.2)

Intuitively the NTT can be thought of as a discrete integer version of the Fast
Fourier Transform. Say we want to apply the NTT on 255-degree polynomials (256
coefficients). By doing this we can convert a single polynomial a into 256 0-degree
polynomials. It is also possible to think of the 256 0-degree polynomials as a single
255-degree polynomial in the NTT domain. We will denote a as a polynomial in
the NTT domain by â. If we do this for two polynomials, we will have two sets of
256 0-degree polynomials. Now that we have converted both polynomials to the
NTT domain we can multiply them together. To multiply two 0-degree polynomials
together we only need to do a single multiplication. We can do this for every pair.
This only requires 256 operations. Finally, we can apply the inverse NTT operation
to get back the result of the multiplication of the two original polynomials. Figure
2.5 gives an overview of how two polynomials a and b can be multiplied into c using
the NTT. The process is akin to how the Chinese Remainder Theorem can be used
to form a Residue Number System. Where one can operate on smaller elements

(a) Polynomial multiplication O(n2)

(b) Polynomial multiplication using NTT and point-wise operator O(n · log n)

Figure 2.5: Multiplication of polynomials

to perform a computation on a bigger element. In this case, we can multiply many
smaller-degree polynomials in order to multiply two larger-degree polynomials.

2.1.9 Implementations

Currently, there are multiple Kyber software implementations available for study. The
PQC library PQCLEAN [28] offers multiple clean implementations for Kyber. One
notable implementation is a clean reference implementation that is not architecture
specific. Additionally, PQCLEAN contains implementations that are optimized for
specific ISAs. Another PQC library called PQM4 [29] also provided PQC implemen-
tations, including Kyber. These implementations have been specifically optimized
for the ARM Cortex-M4 embedded processor.

2.2 Side-Channel Analysis

A lot of attention is given to ensuring that cryptosystems are hard to break the-
oretically. Messages and secret keys should be hidden from possible observers.
At some point, practical cryptosystems need to be implemented on physical hard-
ware. If the design of an algorithm or cryptographic protocol is flawless a specific
implementation still can cause security issues. Hardware processing data can re-
veal possibly secret information through data-dependent side-channels. Examples
of possible side-channels are power consumption, electromagnetic radiation, tim-
ings, optics, thermal radiation, and acoustics. The field of study called side-channel

Figure 2.6: Power trace showing 16 DES rounds (CC 4.0)

analysis (SCA) focuses on the study of these side-channels. Using these channels
a possible attacker could perform a SCA attack, where side-channels are used to
retrieve secret information. Figure 2.6 shows a power trace of the DES encryp-
tion process. The 16 rounds of the algorithm are very clearly visible in the power
trace. One can imagine that in some cases this might leak information about the
data being processed. SCA attacks are not the only form of attacks that can be
used to compromise implementations. One can also do invasive attacks by physi-
cally disturbing the device. These attacks are referred to as fault-injection attacks.
Examples of fault-injections are clock glitching and disturbing the supply voltage. A
fault-injection may cause the device to behave in unexpected unintended ways. One
example is an instruction jump, which can be used to skip a conditional check. In
some cases this allows an attacker to bypass security checks. Side-channel attacks
often require physical access to the device in question. Historically, side-channels
were not really considered when building cryptosystems. Side-channel attacks have
become increasingly more viable in the last couple of decades. Firstly, the rise of
IoT has made side-channels increasingly more accessible. Secondly, increases in
computing power led to the development of stronger SCA techniques.

In this thesis, only power side-channel analysis is considered. Power side-
channel analysis focuses on the power consumption of a device to retrieve secret
information. Section 2.2.1 gives a small overview of the developments in the field
of side-channel analysis. Section 2.2.2 will introduce different power analysis tech-
niques that can be applied to attack a victim. Finally, section 2.2.3 will introduce
countermeasures that can be applied to mitigate SCA attacks.

Figure 2.7: Modular exponentiation using square and multiply (CC 4.0)

2.2.1 Side-Channel Analysis History

In 1996 Kocher showed that it was possible to break cryptographic implementations
using a timing attack [30]. By measuring the power consumption and inspecting
how long it takes to perform the modular exponentiation algorithm. The trace in fig-
ure 2.7 clearly shows a difference in the trace between the square operation and the
square-and-multiply operation. This observable difference leaks information about
the data being processed. The reason for this is that the operation used depends
on the bits used for input. Thus by observing this behaviour, it is possible to retrieve
bits of the secret input. This example is both a timing attack and a simple power
analysis attack. This vulnerability can be easily removed by using a constant-time
algorithm.

A possible attack scenario is shown in figure 2.8. There is an embedded de-
vice with a secret-key stored on it. When operating the device causes observ-
able changes in side-channels. Possible examples of observable side-channels are
power consumption, electromagnetic radiation, acoustics, and temperature. The at-
tacker can observe these side-channels using a measurement device. If the device
leaks secret information through these side-channels the attacker might be able to
obtain the secret-key. In this scenario, the attacker is also able to provide input and
observe the output of the device (this is not always the case). Being able to provide
input and observe output can be very valuable for an attacker. The main reason for
this is that it becomes easier for the attacker to correlate the side-channel obser-
vations to the processed data. Possible examples of inputs in the case of a PKE
implementation is the plaintext or ciphertext. Attacks utilizing this are referred to as
chosen-ciphertext side-channel analysis and chosen-plaintext side-channel analysis
attacks respectively.

Figure 2.8: SCA attack scenario

2.2.2 Power Side-Channel Analysis Techniques

By placing a resistor in series with the power or ground input it is possible to mea-
sure the power consumption of a device. The voltage drop across the resistor can
be measured with an oscilloscope and is directly related to the power consumption
of the device. Through analysis of this power consumption, it is possible to retrieve
secret information. This technique is referred to as power side-channel analysis.
This form of analysis can be done with equipment that is relatively inexpensive. The
biggest downside is that an attacker needs to be able to obtain power measure-
ments. In most cases, this requires physical access to the device in question.

Simple Power Analysis The most simple form of power analysis is SPA. It in-
volves visual inspection of traces and extracting information based on the variance
in power consumption. In most cases, simple power analysis is not powerful enough
to perform an attack. The variations in power consumption tend to be very small and
often do not result in obvious visual differences. The main reason that simple power
analysis is possible in figure 2.7 is because of the difference in execution time and
power consumption between the square and square multiply operation.

Differential Power Analysis In 1998 Kocher introduced differential power analysis
(DPA) [31], which significantly improved the capabilities of side-channel power anal-
ysis attacks. Kocher showed that it is possible to break DES using DPA, where SPA
would not have been sufficient. Power traces often have too much noise or too little
variation in power consumption to make SPA viable. DPA uses a clever technique
which highlights the differences and reduces the noise. The main goal of DPA is two
bin traces into two classes and compare their statistical differences. DPA requires
a selection function that often resembles something like D(x, k), where x is some
observable variable and k is a secret-key guess. A selective function is also often

referred to as a leakage model. DPA is a form of a model-based side-channel anal-
ysis technique. The selection function will return 0 or 1 to indicate to which class a
trace belongs. The selection function needs to be selected carefully according to the
algorithm that is being analyzed. The main goal is to bin the traces into classes with
different power consumption characteristics. For example, if x is chosen such that it
refers to a specific output bit. Then on average, we will expect the class with x = 1

to have larger power consumption than the class where x = 0. If we correctly bin our
traces into the correct class then we can expect the average of one class to have
higher power consumption than the other class. Alternatively, if we bin the traces
randomly with probability 1

2
then we can expect the average power consumption of

the classes to be approximately equal. And the difference between the averages
will tend towards zero. Say we have a collection of m power traces Ti. We also
have a leakage model D(x, k) which selects whether a trace belongs to one of two
classes. With one class having different power consumption characteristics than
the other class. Next, we can compute the differential trace ∆D at point j by using
equation 2.3. If our guess of k is incorrect and the traces are distributed randomly
across the classes, then the difference between the averages of the two classes
will tend towards zero. Conversely, if our guess of k is correct, then one class will
exhibit significantly different power consumption behaviour, leading to a substantial
observable difference.

∆D[j] =

∑m
i=1D(x, k)Ti[j]

D(x, k)
−

∑m
i=1 1−D(x, k)Ti[j]

1−D(x, k)
(2.3)

In equation 2.3 the mean of the power consumption of the two classes is used
as a comparison. One can also opt to use a different statistic such as the standard
deviation in order to perform DPA [7]. Figure 2.9 shows an example of DPA. The
first plot is the average power consumption across the DES operation. The other
three plots are differential traces of ∆D for different guesses of k. The first one has
significant spikes and corresponds to the correct guess of k.

Correlation Power Analysis The introduction of DPA led to further developments
in the field of SCA. In 2004 Brier introduced a powerful technique called CPA [32].
CPA is a model-based SCA that uses the Pearson correlation coefficient (PCC) to
correlate the power consumption with the data that is being processed. The PCC is a
normalized version of the covariance. The covariance is a statistic that is a measure
of the linear relation between two joint variables. PCC is simply a normalization of
the covariance with a range between negative one and positive one. In CPA one
correlates a leakage model to the power consumption. The leakage model requires
a guess of the secret key or subkey. If both the leakage model and the guess

Figure 2.9: Example of DPA

are correct we can expect to see a high PCC value. If the guess is incorrect our
PCC should be significantly lower. Using this we can find the true subkey value
by finding the guess, which results in the highest PCC value. The leakage model
often uses the hamming weight (or hamming distance) of an intermediate variable.
The hamming distance is a measure of the difference between two bit-strings. The
hamming weight is a measure of the number of ones in a bit-string. The definitions
for hamming distance and hamming weight can be found in definition 2.2.1 and
definition 2.2.2 respectively. Say we have a collection of m power traces Ti. Every
trace has an associated intermediate variable xi. Furthermore, we have a leakage
model L(x, k) for the intermediate variable x and secret key guess k. We can use
the following equation to estimate the PCC at time point j:

ρT (k)[j] =
m

∑m
i=1Ti[j]L(xi, k)−

∑m
i=1 Ti[j]

∑m
i=1 L(xi, k)√

m
∑m

i=1T
2
i [j]− (

∑m
i=1 Ti[j])2

√
m

∑m
i=1 L(xi, k)2 − (

∑m
i=1 L(xi, k))2

(2.4)
To find the most likely guess of k we can take the absolute maximum of ρT (k)

across all time points for every guess k. The k guess, which corresponds to the
highest absolute maximum will be the most likely value for the secret key. In practice,
CPA has shown itself to be an effective SCA technique.

Definition 2.2.1 (Hamming Distance) The Hamming Distance HD(a, b) between
two equal lengths bit-strings a and b is the number of positions at which the bits
differ.

Definition 2.2.2 (Hamming Weight) The Hamming Weight HW (a) of a bit-string a

is the Hamming Distance between a and the equal length zero bit-string: HW (a) =

HD(a, 0).

The previous two techniques fall into the category of model-based side-channel
analysis. Multiple power traces are required to find a correlation in the measurement.
An alternative technique is to use profiled side-channel analysis. In profile-based
techniques, a model is built using power trace measurements from a clone device.
The advantage of profiled techniques is that in some cases they only require a single
trace in order to extract secret information. Yet to do so, often millions of traces are
required in advance to build the reference model. Furthermore, access to a clone
device is required.

Template Attacks In 2003 Chari introduced a novel attack method named tem-
plate attacks. Template attacks first make a template for every possible key (or sub-
key). This step is called profiling. To make a template many traces are required. For
every key, we need a significant amount of traces to make sure that our templates
are statistically sound. Commonly multivariate Gaussian distributions are used as
templates. These distributions have an associated probability density function that
indicates how likely it is to measure a specific value. Many traces for every key are
measured and used to estimate the corresponding multivariate Gaussian distribu-
tion. If we are then given a trace for which we would like to know the secret key,
then using the probability density functions it is possible to find the most likely distri-
bution. The key corresponding to this distribution will be the most likely key for the
given trace. Many adaptations of template attacks exist.

Please note that this was not an exhaustive list of all non-invasive side-channel
analysis techniques. Only the most common SCA techniques have been covered.
In the last decades, the field of side-channel analysis has been growing. There is
constant development of side-channel analysis techniques. One can also incorpo-
rate machine learning for more efficient side-channel analysis or construct attacks
that are a hybrid of the techniques listed above. In general, most other analysis tech-
niques have their foundations based on one or more of the four attack techniques
listed above.

2.2.3 Countermeasures

Side-channel attacks can form a serious threat to the digital domain. Countermea-
sures need to be developed in order to combat side-channel attacks. The aim of a
countermeasure is to make it significantly more difficult to do SCA. Multiple differ-
ent strategies exist to make SCA infeasible or impossible. Generally, two strategies
mitigation strategies exist. The first approach involves the reduction and elimination
of valuable leakage. This can be achieved by introducing more noise in the power
consumption, for instance. The second approach is to remove the relation between
secret information and the leakage. Countermeasures can be implemented both in
software and hardware.

Noise generators Noise generators aim to increase the signal-to-noise ratio. Since
noise is normally distributed, the average of many traces will have a constant noise
factor. One can, therefore artificially increase the signal-to-noise ratio by capturing
and averaging many traces. Noise generators should aim to make the number of
required captures infeasible.

De-correlation Both DPA and CPA try to obtain information by comparing differ-
ent traces. These attacks require that the traces are correlated in some way. For
example, by executing the same operation at a specific time step. De-correlation
tries to remove this correlation. A common method of de-correlation is by removing
the synchronization between traces. One method of achieving this is through the
insertion of random delays, for instance.

Masking Masking is an effective, but resource-costly countermeasure technique
[33]. In masking the inputs are split into different shares. These shares are statisti-
cally independent of the original inputs. The algorithm is now executed on the differ-
ent statistically independent shares. Finally, the shares can be combined again into
a single result. This result should be equivalent to the result that would have been
obtained with an unmasked implementation. Masking works, because it removes the
correlation between the actual input values and the leakage of intermediate compu-
tations. Multiple different masking techniques exist depending on the computations
that are being done. Different techniques are necessary, one technique might only
work for a specific subset of operations. One possible technique is boolean masking
works. Boolean masking works in the following manner. Say we have a bit x and
would like to split this bit into two shares. We can compute xr = x ⊕ r, where r is
a random bit value. Since r is random xr will be statistically independent from x.
We can now operate function f on xr and r separately. One requirement is that f

is linear with respect to the ⊕ operator. So ∀a,b : f(a) ⊕ f(b) = f(a ⊕ b). Using this
method one can compute f(x) by computing f(xr)⊕f(r). With the key property that
leakage from f(xr) and f(r) is statistically independent of x. Besides boolean mask-
ing, there are also other masking techniques. Another common masking technique
is arithmetic masking [34].

2.3 RISC-V

The ISA is an abstract model of how a processor should execute machine code. It is
up to the developer to implement the ISA on actual hardware. This abstract model
allows different processors to run the same machine code provided they adhere to
the ISA. Different processors can be developed with different requirements in mind.
RISC-V [35] is an open standard instruction set architecture specification following
the reduced instruction set computer paradigm. The open-access format and cus-
tomizability of RISC-V have attracted many interested parties and researchers. In
the future, it is projected that there will be an increasing number of IoT and embed-
ded devices utilizing the RISC-V ISA.

2.4 Related Work

After the publication of the Kyber algorithm [18], multiple studies have been con-
ducted on the SCA properties of different implementations. Researchers identified
multiple safety-critical operations, which could potentially be leveraged by an at-
tacker. A range of different attack techniques have been proposed. From SPA [12]
to profiled machine-learning based attacks [36] and even fault injection attacks [37],
[38]. Generally, one can categorize the attacks on Kyber into three categories.
Firstly, there is the message recovery attack. In a message recovery attack, the
adversary tries to obtain the message (also known as plaintext) through the use of
side-channel analysis. The advantage of message recovery attacks is that often no
knowledge of the secret key is required. Message recovery attacks are often done
in the message encoding or decoding step. Secondly, there are attacks that aim at
recovering the stored secret-key. Often in a IoT setting a secret-key is permanently
stored on a device. This makes it possible to recover the message after the secret-
key is known. Thirdly, there are attacks that aim at attacking the IND-CCA notion of
security.

Profiled Attacks The first SCA attack applicable on Kyber was already developed
before Kyber’s publication. Primas et al. targeted the NTT operation, which was

commonly used in most lattice-based cryptography algorithms [39], [40]. Their at-
tack technique was a profiled form of SCA known as soft-analytical side-channel
analysis (SASCA). An advantage of their attack is that only a single trace is re-
quired. Thus enabling attacks on applications of Kyber with ephemeral key setting.
Other profile-based SCA attacks were developed that targeted different parts of Ky-
ber such as the NTT, but also message encoding/decoding and modular opera-
tions [36], [41]–[43]. Profiled attacks tend to require a very high number of traces
in advance and access to a clone device. Because of this, it might be preferable
under certain circumstances to do a non-profiled SCA attack. Profiled attacks of-
ten use machine learning to train a model that is able to perform predictions on the
underlying data using side-channel information.

Non-profiled Attacks Multiple non-profiled non-invasive SCA attacks have also
been developed for Kyber [11], [13], [14], [44], [45]. Among these, Xu et al [12]
showed that is possible to perform a SPA attack that utilized the electromagnetic
(EM) side-channel [12]. Most of these attacks targeted correlations between the
power consumption and intermediate variables which consisted of a combination of
the ciphertext and secret-key. Five of the listed attacks use CPA to exploit these cor-
relations to obtain the secret-key. These attacks tend to focus on critical operations
that involve the secret-key in some manner. One example of this is the multiplication
of the secret-key with part of the ciphertext.

Plaintext-checking Oracle Attacks A totally different SCA attack focuses on at-
tacking the IND-CCA notion of security. These attacks try to attack the FO-transform,
which aims to provide IND-CCA security. Multiple of these attacks has been pro-
posed in literature [46]–[50]. These attacks use SCA to instantiate a plaintext-
checking oracle. In the context of a PKE algorithm, a plaintext-checking oracle is
given a message and ciphertext as input. The plaintext-checking oracle is able to
verify that decryption of the ciphertext by the PKE algorithm will result in the pro-
vided message. The existence of a plaintext-checking oracle will break the IND-
CCA security guarantee. Furthermore, using this oracle it is possible to perform
a key-recovery plaintext-checking attack. This shows that it is also of the utmost
importance to protect the FO-transform against SCA attacks.

Fault-injection Attacks All three categories above are forms of non-invasive SCA
attacks. They do not physically interact with the hardware that is running the al-
gorithm. There are also studies that research Kyber’s resistance to invasive side-
channel attacks. One common form of invasive side-channel attack is fault-injections.
Here an attacker tries to make hardware behave in an unexpected way by physically

disturbing it. Examples of physical disturbances are glitching the clock or sending
EM pulses to the device. Hermelink et al suggested a fault-injection attack that re-
quired a single bit-flip [37]. Doing a single bit-flip using a laser requires very expen-
sive and specialized equipment. To this extent, Delvaux et al improved their attack
by relaxing the attack constraints [38]. They also showed that the attack works in
practice by attacking a masked implementation of Kyber with the use of clock glitch-
ing.

Of the previously mentioned different SCA attacks most of them focus on the
pqm4 [29] implementation of Kyber. The pqm4 implementation is specifically op-
timized for the ARM Cortex-M4 processor, which is widely available. That being
said, the pqm4 implementation is not the only implementation that has been studied.
Some attacks also target pqclean [51], which is a clean reference implementation
that can be used as a reference for other implementations. Some attacks target im-
plementations that contain software and hardware countermeasures. The previously
listed results show that implementations of Kyber very much need to take SCA into
account. Unprotected implementations have a high chance of being compromised
due to the susceptibility to SCA. To make Kyber more robust it is paramount that
countermeasures are implemented to prevent possible attacks.

Countermeasures Multiple countermeasures have been proposed for Kyber [52]–
[57]. Possible countermeasures range from shuffling, randomization, and clock de-
lays to masking. In related works, masking seems to be a popular choice for Kyber.
This is because it gives good protection and can be implemented both in software
and hardware. There is often a trade-off between the performance and security of
countermeasures. Masking for example tends to decrease performance or increase
resource utilization by a linear factor. When we consider IoT devices resources tend
to be scarce, but high-security guarantees against SCA are very much required.
The perfect countermeasures would require few resources, but provide high-security
guarantees. Unfortunately, constructing such a countermeasure is not trivial. And
future research is very much required to guarantee the robustness of applications
utilizing Kyber as a KEM.

Most of this thesis is based on the previous work by Xu et al [12]. Their work showed
that it is possible to attack both pqclean and pqm4 implementations of Kyber using
SPA of the EM side-channel. They found that it was almost trivial to break the pq-
clean implementation by visual inspection. This leakage however did not translate
to the pqm4 implementation. To break that implementation they moved to a different
part of the Kyber algorithm and altered their strategy. The fact that it was possible

to break the pqclean through SPA alone makes one wonder about the robustness
of the algorithm with respect to SCA. It would be interesting to see whether this
behaviour is also visible on a Kyber implementation for a RISC-V microprocessor.
Xu et al’s work provide a nice foundation for a possible comparison between RISC-V
and ARM implementations.

Chapter 3

Simple Power Analysis on Kyber

Xu et al were able to do a SPA attack on the PQCLEAN [51] implementation of
Kyber using thresholding [12]. For specific ciphertexts, different key coefficients had
different visual characteristics in the power trace. Their adversary model for their
attack has the following requirements:

• Adversary is able to obtain EM traces of decryption

• Adversary is able to provide chosen ciphertexts

• Kyber PQCLEAN implementation is used

• Implementation uses static key setting

• Adversary can use visual inspection to identify secret-keys.

Xu’s attack methodology was shown to be effective on an STM32F407. In the proof
of concept, EM traces were captured at 2.5GHz and downsampled to 500MHz. Only
four traces were required in order to capture a significant portion of the stored secret-
key. In all cases, at least 99.6% of the secret-key coefficients were recovered for
Kyber512.

The main observation was that the leakage from fqmul in the final step of the
inverse NTT leaked the secret-key coefficients. Depending on the chosen ciphertext
subkeys could be categorized into different partitions. For example, for one specific
ciphertext, one could categorize use the leakage to categorize a subkey into the
partitions of {−2,−1}, {0}, {1, 2}. For the first partition, this means that the subkey
either is equal to −2 or −1. To be able to differentiate between −2 and −1 another
trace is captured using a different chosen ciphertext. In the case of Kyber512, two
traces reveals half of the stored secret-key coefficients. Another two captures are
then required to recover the full-secret key.

33

This chapter investigates the same power side-channel leakage characteris-
tics on a comparable ARM Cortex MCU (STM32F303) and a RISC-V based MCU
(FE310-G002). Rather than analyzing EM leakages, the focus of this thesis is on the
power side-channel. The EM and power side-channel leakage share a strong rela-
tionship, as they both arise from changes in electrical currents within a device. The
EM side-channel can be considered more powerful than the power side-channel.
This is because the EM side-channel corresponds to many different types of ema-
nations that are caused by different components. Contrary to EM, the power side-
channel only gives a net overview of the power consumption. That being said, ob-
taining useful EM measurements can pose challenges because of noise and spatial
factors.

Section 3.1 introduces the experimental setup that has been used to perform the
various experiments. Section 3.2 describes the first SPA study and corresponding
results.

3.1 Experimental Setup

3.1.1 Hardware

In order to perform SCA one has to be able to execute an algorithm and obtain the
corresponding side-channels measurements. The ChipWhisperer is a platform that
facilitates performing power SCA and glitching attacks. To obtain the power con-
sumption of a device a shunt resistor is inserted in serial with the power rail at the
supply voltage or ground level. The voltage drop across the resistor is directly re-
lated to the power consumption of the device under test (DUT). All power traces
of the different experiments were obtained using the ChipWhisperer-Lite capture
board. ChipWhisperer provides a Python library, which allows for easy interfacing
with the ChipWhisperer-Lite over universal serial bus (USB). In our experiments, a
Raspberry Pi was used to interface with the ChipWhisperer. The ChipWhisperer-
Lite utilizes a low-noise amplifier together with a 105MS/s 10-bit Analog-to-Digital
Converter to obtain power measurements. The clock signal of the DUT is provided
by the ChipWhisperer. This way power samples are synchronized with the opera-
tions that are being executed on the DUT. Sampling the power consumption can be
done at a rate four times faster than the clock rate. This increases the time resolu-
tion of the power traces. In total, the ChipWhisperer-Lite has a sample buffer size
of 24573 samples. This is a relatively small buffer size for time-consuming crypto-
graphic operations. As a result of the small buffer, in some cases, more captures
were required to capture the full procedure. The actual capturing can be initiated by

Figure 3.1: Experimental Setup

pulling dedicated trigger general purpose input-output (GPIO) pins to logical high on
the target device. ChipWhisperer provides various target boards, which can be used
as DUTs. The ChipWhisperer UFO (CW308) is a carrier board that is able to sup-
port various target boards. It has onboard voltage regulators and makes it possible
to interface between the different target boards. Experimentation was done on two
different targets. An ARM-based and a RISC-V based MCU. For a general overview
of the setup see figure 3.1. Figure 3.2 and figure 3.3 show the ChipWhisperer-Lite
and CW308 UFO respectively.

STM32F303 The STM32F303 is the first of the two targets used in the exper-
iments. It is an ARM Cortex-M4 MCU from the popular STM32F series. The
Cortex-M series dedicates itself to a wide range of embedded applications. The
STM32F303 processor contains several hardware peripherals that allow for signal-
processing applications. Another important feature is the floating-point unit (FPU),
which allows efficient operations on floating-point numbers. The target is provided
a clock signal of 7.37MHz and sampling is done at four times the clock rate. The
processor also contains 256KB FLASH and 40KB SRAM memory. ChipWhisperer
provides a dedicated STM32F303 target for the ChipWhisperer UFO. A neat feature
is that the processor can be programmed over serial by the ChipWhisperer-Lite via
a serial bootloader.

FE310-G002 The second target that has been used for our experiments, is the
FE310-G002. ChipWhisperer provides a dedicated UFO version that allows for easy
interfacing with the ChipWhisperer platform. RISC-V is an upcoming ISA. Currently,
the availability of RISC-V boards is limited. One of the options is the FE310-G002.
The FE310-G002 is one of the ASIC RISC-V boards available on the market. The

Figure 3.2: ChipWhisperer-Lite

Figure 3.3: CW308 UFO with STM32F303 target

FE310-G002 is designed as a system-on-a-chip (SoC) and incorporates several
hardware peripherals. As well as common serial interfaces (SPI, I2C, UART). The
board is provided a clock signal of 7.37MHz. The target also has hardware sup-
port for multiplication and division. Contrary to the STM32F303, the FE310-G002
requires multiple cycles to perform multiplication operations. Additionally, it lacks a
dedicated FPU. The FE310-G002 has 32MB of FLASH memory and 16KB of dedi-
cated SRAM memory. This is a limited amount of RAM and memory usage must be
managed carefully. The FLASH memory of the FE310-G002 can be programmed
through JTAG. The ChipWhisperer-Lite offers a special MPSSE mode. This mode
allows for direct communication with the FE310-G002 through OpenOCD. In our
case, this mode can be used to communicate directly between the Raspberry Pi
and FE310-G002 with OpenOCD. The Raspberry Pi uses OpenOCD to program the
FE310-G002 directly with the ChipWhisperer-Lite acting as a bus.

3.1.2 Software

All experiments were done using the PQCLEAN library. The PQCLEAN library is
a collection of clean reference implementations for various PQC schemes. Ky-
ber is also included in the PQCLEAN library. There is also a PQC library that is
specifically optimized for the ARM Cortex-M4 family, namely PQM4 [29]. For all ex-
periments, the PQCLEAN library has been used. This has been done to prevent
significant software changes between experiments involving the STM32F303 and
FE310-G002. That being said, the software between STM32F303 and FE310-G002
will differ significantly. Not only do the two targets have different hardware capabili-
ties, but they also have different ISAs. Software for the ARM processor is compiled
using gcc-arm-none-eabi (15:9-2019-q4-0ubuntu1) 9.2.1. The RISC-V software
is compiled using
riscv64-unknown-elf-gcc (SiFive GCC 8.2.0-2019.05.3). ChipWhisperer pro-
vides a communication protocol named SimpleSerial. This makes it possible to
communicate with the target while it is running. The memory constraints of the tar-
gets make it impossible to fully fit Kyber in memory. In these cases, data is prepared
externally on the Raspberry Pi and sent to the target with the SimpleSerial protocol.
The critical section for which power traces should be captured can then be executed
locally on the target using the prepared data.

3.2 Leakage of ordered key coefficients

This experiment investigates whether secret-key coefficients can be visually iden-
tified from a power trace using SPA. Xu et al [12] observed significant visual dif-

ferences for secret-key coefficients in the range {−2, 2} when using specific cipher-
texts. They targeted a specific section of the inverse NTT shown in algorithm 7
Algorithm 7 shows the final step of the inverse NTT after which sT ·u has been com-
puted. Before the loop r[j] contains all coefficients of sT · u times a factor 128 · R−1.
To correct for the factor, we need to do modular multiplication of all coefficients by
128−1 ·R. This is done using the fqmul(a, b) function, which does a multiplication of
a and b followed by Montgomery reduction (see: 2.1.2). Since fqmul also introduces
another factor R−1, we need to multiply with 128−1 ·R2 instead.

Algorithm 7 Critical Section

1: f ← 128−1 ·R2

2: trigger high()

3: for j ∈ {0, 255} do
4: r[j]← fqmul(r[j], f)

5: end for
6: trigger low()

3.2.1 Chosen Ciphertexts

Under normal circumstances, leakage from the fqmul function in every iteration of
the loop corresponds to a combination of secret-key coefficients.

To illustrate this we will consider two polynomials:

u = u0 + u1 ·X
s = s0 + s255 ·X255

Then:

u · s = u0s0 + u1s0 ·X + u0s255 ·X255 + u1s255 ·X256

u · s/ mod (X256 + 1) = (u0s0 − u1s255) + u1s0 ·X + u0s255 ·X255

Now the first coefficient of the polynomial multiplication contains information
about two secret-key coefficients. In this case, the very first iteration of the loop
in the critical section would leak information corresponding to two secret-key coeffi-
cients. In the worst case, the first coefficient could even contain information about
all 256 other secret-key coefficients. In that case, a SCA attack would be impractical,
because there are just too many possible combinations. Ideally, we would like to find
a way such that every iteration only leaks information corresponding to a single sub-
key. We cannot control the secret-key polynomial s. What we can control however is

the ciphertext polynomial u. By appropriately selecting the ciphertext it is possible to
make it such that every iteration leaks information corresponding to a single subkey.
We can do this by choosing u = u0 + 0 · X + · · · + 0 · X255. Now the result will be
equal to u · s = u0s0 + u0s255 ·X255. Now the first iteration will leak information corre-
sponding to u0s0. We have successfully leaked information corresponding to only a
single subkey.

For now, we have only considered polynomials. In Kyber we are dealing with
polynomial vectors. Fortunately, the above example can be easily extended to deal
with polynomial vectors. In the case of Kyber512, we have two-dimensional vectors.
The variable r[j] will contain the dot product of the ciphertext vector and the secret-
key vector. The elements will be multiplied using polynomial multiplication followed
by modular reduction. Say we have two vectors s and u. The dot product of the two
vectors will be equal to sT ·u = u0 · s0+u1 · s1. If we choose u0 = u and u1 = 0, then
sT ·u = u · s0 +0 · s1 = u · s0. In that case, r[j] will contain information about the first
half of the secret-key. To get the second half we can repeat the process but with u0

and u1 reversed. This technique can also be applied to the other versions of Kyber.

Compression and Decompression To reduce the ciphertext size, Kyber makes
use of a lossy compression technique. The ciphertext will be compressed before
it is transmitted. Then during decryption, the ciphertext will be decompressed.
The compression technique discards some least significant bits for every coeffi-
cient. This can be done because the least significant bits have a very small in-
fluence on the correctness probability of the key encapsulation procedure. When
choosing ciphertexts it is important to take compression and decompression into
account. As the decompressed ciphertext may be different from the original cipher-
text. Choosing from a special subset of coefficient values is a simple method of
guaranteeing that the original ciphertext is the same as the decompressed cipher-
text. If we consider the crafted ciphertext described previously, then of the pos-
sible 3329 ciphertexts, there are 1024 possible ciphertexts satisfying the condition
ct = Decompress(Compress(ct)). The code which generates this subset is listed in
appendix A. All other experiments described in this thesis use this method to select
appropriate ciphertexts.

3.2.2 Hypothesis

Say we choose the ciphertext using the technique described above. We indicate the
value of the first coefficient of u0 by u (all other coefficients are zero). Furthermore,

we partition the secret-key coefficients to be:

s0[i] =

−2, for i ∈ {0, 49}
−1, for i ∈ {50, 99}
0, for i ∈ {100, 155}
1, for i ∈ {156, 205}
2, for i ∈ {206, 255}

Considering Xu’s results we could hypothesize that there should be clear visual
differences between the different secret-key partitions depending on the value cho-
sen for u. Xu also observed that the observed leakage heavily depended on the
values used for u.

3.2.3 Experimental Procedure

Both the ARM and RISC-V processors have been programmed with the critical sec-
tion and SimpleSerial protocol. The data is prepared externally on the Raspberry Pi,
such that it contains r[j] prior to the loop. This data is transferred to the target. The
target will then execute the critical section and trigger the capture process. This is
done for all possible values of u. On the STM32F3 and FE310, a single loop itera-
tion takes 18 and 30 instructions respectively. In the case of the FE310 two captures
are required to obtain the full critical section. This is because of the ChipWhisperer-
Lite’s limited buffer size. These two captures are combined into a single trace after
measurements.

3.2.4 Results

Figure 3.4 and 3.6 show power traces of the critical section shown in algorithm 7 with
u = 55. The first figure belongs to the ARM MCU and the second figure belongs to
the RISC-V MCU. The secret key coefficient partitions have been labelled in red
above the trace belonging to STM32F303. The secret-key coefficients have been
partitioned in the same way on the FE310-G002. The loop on the STM32F3 takes
approximately 18500 samples. The loop on the FE310 takes about 30800 samples.
Note that the traces also contain some samples from after the critical section. In the
graph, low values on the y-axis indicate samples with high power consumption. This
has to do with the way that the measurement probe and shunt resistor have been
placed. When the power consumption is high, lower voltages will be observed.

There is a stark visual difference between the two MCUs. The different key par-
titions are visible in the STM32F303. There is also some surprising behaviour when

key transitions occur. When a key transition occurs there is a spike and some
decaying behaviour. These have been highlighted in figure 3.4b. Contrary to the
STM32F303, in the FE310 the trace is fairly constant. The partitions that were visi-
ble in the STM32F303 cannot be seen.
A simple post-processing technique we can do is to look at the rate of change be-
tween different samples. We can do this by applying the finite difference method.
The new samples s′ are defined as s′[i] = s[i] − s[i − 1] for i = 1...n, where n is
the number of samples. Figure 3.5 shows the resulting post-processed trace. The
different key partitions are even more visually discernible.

3.2.5 Implication of results

Firstly, there are different partitions visible on the STM32F3 trace. Yet it is not
immediately clear whether this difference is significant enough to construct an at-
tack. Also, there are spikes visible between certain transitions. These are especially
prevalent in the transitions from −2 to −1 and −1 to 0. If these spikes become more
prevalent when the secret-key is irregular, then recovering the secret-key with SPA
techniques might not be trivial. There is also some discharge (possibly capacitive)
after certain transitions. Most notably between −1 to 0 and 0 to 1. Given that there is
a clear visual distinction between the partitions, there is very significant side-channel
leakage in the power trace. The finite-difference method looks at the rate of change
between the different samples. Specific data-sensitive instructions might require a
large surge of power. This can possibly be an explanation of why the finite-difference
method results in more visually discernible partitions. This simple analysis suggests
that it might be possible to perform key recovery by simply looking at the Even if SPA
might fail, other SCA techniques might be strong enough to form a serious threat to
the security of the cryptographic scheme.
The FE310-G002 did not exhibit clear visual leakage, this does not guarantee that
no leakage is present. Stronger SCA can be explored to show whether sensitive
side-channel leakage is present. In the next chapter CPA is performed on the criti-
cal section.

(a) STM32F303

(b) Spikes and decaying behaviour after key transitions

Figure 3.4: Simple Power Analysis (STM32F303)

Figure 3.5: Finite Difference of Power Trance (STM32F303)

Figure 3.6: Simple Power Analysis (FE310-G002)

Chapter 4

Correlation Power Analysis

In this chapter a novel correlation power analysis (CPA) attack on the pqclean imple-
mentation of Kyber is proposed. Additionally, the attack is experimentally evaluated
on both the STM32F303 and FE310-G002 MCUs. The attack targets the same
critical section as described by algorithm 7.

4.1 Identifying Leakage

Firstly, we want to identify whether there is a relationship between some interme-
diate variable and power consumption. In the critical section, fqmul is the main
operation which might be leaking information. Experiment 1 has shown for sure that
there is visible leakage present on the ARM MCU. The RISC-V trace did not exhibit
any visible leakage. That being said, a lack of visual indication does not guarantee
that there is no leakage. As a matter of fact, in most cases, the leakage will not be
visibly present. In this experiment, we will test for leakage in the fqmul function.
One possible intermediate variable which could be related to the power consump-
tion is the output of the fqmul function. If this is the case, then this could be possibly
leveraged to do an attack, since the fqmul operates on sensitive data. The exper-
iment described in this section tries to identify leakage in the fqmul operation for
both the ARM and RISC-V MCU.

4.1.1 Experimental Procedure

The same hardware setup as described in section 3.1.1 is used for this experi-
ment. Furthermore, very similar firmware has been used. The only adaptation is
that fqmul(a, b) can be invoked individually and not within the context of a loop.

Firstly, multiple captures will be done for different inputs to fqmul(a, b). We fix input

45

b to be equal to 3328. This is done to make sure that the multiplications result in
non-trivial reductions. For a we choose any value in the range of {−3328, 3338}. Us-
ing these inputs it is possible to generate every element in the multiplicative group
of integers under modulo 3329. Furthermore, every possible hamming weight (0-16)
for the output can be obtained using these inputs.

Secondly, the different traces of the captures will be inspected to see whether
there is a relation between leakage and the hamming weight of the output of fqmul.

Thirdly, the PCCs of the hamming weight and power leakage will be plotted. If
there is a correlation, one can expect to see values close to 1 or −1.

4.1.2 Results

The execution of the fqmul operation took 112 and 144 cycles on the ARM and
RISC-V MCU respectively. Figure 4.1 shows a single fqmul call for both the ARM
and RISC-V MCU. Figure 4.2 is a plot of power traces belonging to different val-
ues of the intermediate variable. The darker the colour of the plot, the higher the
hamming weight of the intermediate variable. Figure 4.2b is a close-up of one of the
instructions with the most notable leakage. The window of this close-up is indicated
by the red rectangle on 4.2a. What can be seen from the close-up is that the traces
form a clear gradient. From top to bottom, we see that the traces correspond to
increasingly larger hamming weights. This is expected because lower trace values
correspond to higher power consumption. The ARM and RISC-VMCU had minimum
PCC values of −0.9749 and −0.9152. This suggests that ARM MCU might be slightly
more vulnerable to SCA.

Figure 4.3 and 4.4 plot the traces next to the PCC values for both the ARM and
RISC-V MCU. The PCC values correlate the power leakage at a time point with
the hamming weight of fqmul’s output. The PCC value is a normalized form of the
covariance. Extreme values indicate a very strong positive or negative linear rela-
tion. For both MCU we see a strong negative relation between trace values and the
hamming weight. This is in line with the visual inspection of 4.2b.

Conclusion Both results indicate that there is a strong correlation between the
hamming weight of the output of fqmul and the power leakage. The RISC-V MCU
exhibits a slightly stronger correlation between power consumption and output than
the ARM MCU. This strongly indicates that visual inspection alone does not give a

Figure 4.1: fqmul call on ARM and RISC-V MCU

good indication of leakage.
Leakage has been identified and this indicates a weakness in the Kyber implemen-
tation. The presence of a weakness does not guarantee that the weakness is also
exploitable. However, since fqmul operates on sensitive values in the critical section
there is a high likelihood that secret information can be recovered. It is a good entry
point for further experimentation. The next section (4.2) proposes and experimen-
tally validates a possible CPA attack, which exploits the discovered leakage.

4.2 Correlation Power Analysis Attack

The results of experiment 3 suggest that there is a high correlation between the
output of fqmul and the power consumption. This correlation can be exploited by
a potential adversary through the use of a CPA attack. CPA attack is a form of a
non-profiled SCA attack. In a CPA attack the power side-channel leakage is cor-
related with a theoretical model of the power consumption. See section 2.2.2 for a
more in-depth explanation of the workings of CPA. In this section a CPA attack is
proposed that utilizes the identified leakage to recover the full secret-key. The first
part of this section contains a description of the attack procedure. The second part
describes the experiment done to verify the effectiveness of the attack. Furthermore,
the assumptions that are made for the attack are listed in the adversary model.

(a) Full fqmul procedure

(b) Close-up

Figure 4.2: Leakage for different output values of fqmul (FE310-G002)

Figure 4.3: Pearson Correlation Coefficient STM32F303

Figure 4.4: Pearson Correlation Coefficient FE310-G002

Adversary Model

• Adversary can obtain power traces of the decryption procedure.

• Adversary can provide chosen ciphertexts.

• Adversary can initiate the decryption procedure.

• Adversary can identify the start of the critical section.

• Target uses PQLCEAN implementation of Kyber.

• Target uses static key setting.

4.2.1 The Leakage Model

A leakage model is required to perform a CPA attack. The leakage model gives al-
lows us to correlate the estimated theoretical power consumption to the actual power
consumption. If the leakage model is correct then one can expect to see extreme
PCC values. In section 4.1 was shown that HW (fqmul(a, b)) is a reasonable leak-
age model for the critical section. Under normal circumstances, however, we are not
able to see the inspect intermediate variables and thus we do not know the a or b that
is being used. In the critical section described in algorithm 7 we do know the value
b = 128−1 · R2. The other input a is unknown and is a combination of the ciphertext
and the secret-key. However as seen in section 3.2.1 we can choose ciphertexts,
such that a is a combination of u and a single coefficient from the secret-key ski

(also referred to as a subkey). Given that the result of the computation will be equal
to u · ski mod 3329 and that the leakage corresponds to the hamming-weight of the
output of the fqmul function, one might think to use the following leakage function:

Lexample(u, ski) = HW (u · ski mod 3329)

This, however, does not work in practice due to the implementation of the fqmul

function. The function fqmul has an output range of {−3328, 3328}. This means
that fqmul can output two different values corresponding to a single element of the
integers modulo 3329. For example, 5 and−3324 both represent the same element in
Z3329. They can be considered to be mathematically equivalent. All elements of Z3329

can be represented by a positive and negative value in the range of {−3328, 3328}
(with the exception of zero). We will refer to these values as the positive and neg-
ative remainder. These values will be denoted by x+ for the positive remainder
and x− for the negative remainder. For example, if we have x ≡ 5 mod 3329, then
x+ = 5 and x− = −3324. From a mathematical perspective, these values are equiv-
alent, but when dealing with hardware it is important to make this distinction. The bit

representations of 5 and −3324 are very different (especially in 2’s complement rep-
resentation). As a result, the leakage characteristics of 5 and −3324 will also differ
significantly. We cannot use the leakage function Lexample, because we do not know
whether u · ski mod 3329 will be the positive or negative remainder. The leakage
model would be inaccurately guessing what the hamming weight would be. It would
only be correct 50% of the time. This has been verified through experimentation.

One approach to solving this issue is by investigating whether it would be possi-
ble to predict whether the remainder will be positive or negative. The fqmul function
has the useful property that it is deterministic. If one knows the input, then it is pos-
sible to determine the output. By predicting whether the input to fqmul is positive
or negative, one can accurately determine the output. In the critical section, we are
looking at the last operation done in the inverse NTT. Before this many more fqmul

calls have been executed. To transform polynomials to the NTT domain, but also to
multiply two polynomials in the NTT domain. Throughout this complicated process,
variables get multiplied by ciphertext coefficients and secret-key coefficients. This
results in the sign of the input being dependent on both the ciphertext and secret-
key. As a matter of fact, the sign of r[j] for a single entry depends on all other
secret-key coefficients. This search space is too large and therefore this approach
does not work in practice.

A second approach could be to investigate which of the two options is more
likely to occur. Maybe there is a significant probabilistic difference between the
input being a positive or negative remainder. Experimentation of the fqmul func-
tion led to the following observation. The condition that fqmul(x+, 128−1 · R2) =

fqmul(x−, 128−1 ·R2) holds 98.08% of the time for x ∈ {−3328, 3328}. In other words,
most of the time the inputs x+ and x− will both result in the same output.

With this observation in mind, the following leakage model is proposed:

L(u, ski) = HW (fqmul(u · ski · 128 ·R−1 mod +3329, 128−1 ·R2)) (4.1)

Where u is the ciphertext value as described in section 3.2.1. The guess for
the i’th subkey is represented by ski. And the function x mod +3329 will output the
positive remainder of x mod 3329. Experimentation showed that the leakage model
Lexample(u, ski) is correct 50.05% of the time, whereas L(u, ski) has a success rate of
99.08%. This leakage model can be used to recover the full secret-key one subkey
at a time.

4.2.2 Dealing with the case: ski = 0

There is an issue related to a special case where the subkey is equal to zero. CPA
computes the linear correlation between two distributions. It checks whether an in-
crease in one value tends to increase of the other value. One requirement for this is
that we have two distributions with at least a little bit of variance. But if the subkey
is equal to zero, then L(u, 0) = HW (0) = 0. Regardless of our input ciphertext u.
The output will always be zero and there is no variance in the output of our leakage
function. Under ideal circumstances (no noise), the power consumption would also
have zero variance. In practice, however, there will be some variance in the power
measurements. In this special case, the PCC is undefined. There is no correlation
to be made because there is no variation in the leakage model values. We, therefore
cannot perform CPA for the case, where ski = 0. We will refer to this case as the
zero case. There are multiple ways of tackling this problem.

If the subkey is zero, then you would expect that all other PCC values are low
because there is no correlation to be made for the other subkey guesses. Hence
one method of solving this is giving zero guesses a fixed PCC value α. This value
needs to be chosen carefully such that in all other cases, it is lower than the PCC
value of the correct key guess and the highest otherwise.

Another method could be to use the variance of the power consumption. In the
zero case, the output of fqmul is always zero. In other cases, the output varies
depending on the ciphertext. If the variance in the power consumption is very low
between traces, then most likely it belongs to the zero case. Note that this only
applies to the time window of the trace related to the output of fqmul. To do this,
one has to find a threshold for the variance which will be used to identify zero cases
from the other cases. Also, a correct time window needs to be found. Figure 4.5
proves this assumption to be true. The blue plots correspond to the standard devia-
tion of traces belonging to subkeys which are non-zero. The red plots belong to zero
subkeys. It is evident from the different plots that between t = 10 and t = 40 zero
subkeys tend to have a significantly lower standard deviation. This shows that the
standard deviation can be a useful metric for identifying zero-valued subkeys.

Both methods have their shortcomings when it comes to non-profiled SCA anal-
ysis. They require fine-tuning of certain parameters to be effective. This might be
difficult for an attacker to do when a clone device is not available. An attacker how-
ever will be able to capture traces belonging to the situation where the output of
fqmul is equal to zero regardless of the subkey. This can be done by setting all
coefficients of the ciphertext to zero. Now the attacker has access to power traces

Figure 4.5: STD of traces belonging to different subkeys

knowing that the output of fqmul equals zero. The underlying assumption is that
the power samples related to the output of fqmul will very closely resemble the
power samples of the zero case. This is because the zero case also has a fqmul

output of zero. These captures can in turn be utilized for finding appropriate values
for the different parameters. This way, an attacker can obtain a collection of traces
belonging to the distribution where the output of fqmul equals zero. This leads to a
third method, where the attacker uses a collection of obtained power traces where
fqmul’s output is zero to identify zero cases. A possible statistic that could be used
for this is the student’s t-test. Again this requires careful selection of a time window
related to the fqmul output. Applying these techniques does not alter the attack’s
nature. The attack will still fall in the category of non-profiled SCA attacks.

4.2.3 Attack Procedure

There is an offline and online component to the CPA attack. During the online com-
ponent, an adversary will capture multiple power traces of the decryption procedure.
During the offline component, an adversary will analyze the captured power traces
in order to find the most likely key value.

Preparation (offline) During this phase, an adversary will craft several chosen
ciphertexts. Appropriate selection of ciphertexts is important. Choosing appropri-
ate ciphertexts is described in section 3.2.1. Note that the ciphertexts determine
whether the leakage corresponds to the first half or second half of the ciphertext (in

the case of Kyber512). Therefore, it is a good idea to use ciphertexts which result in
both halves being equally represented.

Capturing power traces (online) An adversary has to obtain several power traces
of the decryption procedure. Every power trace has an associated ciphertext. This
phase often requires physical access to the device. Furthermore, the adversary
has to be able to initiate the decryption procedure on demand. Generally, a larger
amount of captures will result in a higher success rate.

Performing Correlation Power Analysis (offline) In the final phase the adver-
sary will perform CPA to recover the full secret-key. The adversary will have to go
through a couple of steps to find the most likely subkey guess.

Initially, a trace contains leakage corresponding to 256 fqmul calls. Every trace
needs to be windowed, such that each window corresponds to a single fqmul call.
Depending on the chosen ciphertext, every i’th window corresponds to the i’th or
(i+ 256)’th subkey.

After windowing has been performed, PCC values can be computed for different
subkey guesses. This will be done using the leakage function given by equation 4.1.
Zero explained before, subkey guesses for zero cannot be given a PCC value and
need to be handled differently.

After all the values have been computed, the most likely secret-key guesses can
be determined. Normally this is done by taking the guess that belongs to the highest
absolute PCC values.

4.2.4 Experiment Procedure

Setup:

Both the hardware and software setup from experiment 1 were used. These are
discussed in section 3.1.1 and section 3.1.2 respectively.

Capturing:

Power captures of the decryption procedure have been done for both the RISC-V
and ARM MCU. In total 200 captures were done for the RISC-V MCU. 100 for each
half of the secret-key. For the ARM MCU 400 captures were done for every half,
resulting in a total of 800. For every capture, a random ciphertext was chosen as

described in 3.2.1. The secret-key was fixed with every subkey being one of seven
possible values in the range {−3, 3}. The clock rate was fixed at 7.37MHz. Sampling
was synchronized with the clock and done at four times the clock rate. The critical
section requires approximately 4625 and 7700 clock cycles to be fully executed on
the ARM and RISC-V processor respectively. The captures were initiated by setting
a dedicated GPIO pin to high. A single power trace of the critical section on the
RISC-V MCU is shown in figure 4.6.

Correlation Power Analysis:

Windowing To window the traces a naive method was used. A real attacker would
probably like to use a more sophisticated technique. However, for the purposes of
this thesis, this method proved itself more than sufficient.

Traces were windowed by using a reference trace of a single fqmul call. The
idea is to compare the reference trace to the 256 fqmul calls. If a section of the full
trace is very comparable to the reference trace, then this most likely corresponds
to a single fqmul call. By sliding the reference trace over the full trace one can
hopefully find points at which the overlap of the traces is very comparable. This has
been done by computing the sum of absolute difference (SAD) at every point while
sliding the reference trace over the full trace. Local minima of the SAD graph will
then correspond to the start of a single fqmul call. Figure 4.7a shows a close-up
of the critical section shown in figure 4.6. This plot has been used to identify the
windows of the loop iterations. Figure 4.7b shows a closeup of the resulting SAD
plot for six fqmul calls. There are six low peaks clearly indicating the location of the
fqmul calls.

These local minima were identified by using an adaptive signal thresholding al-
gorithm. The locations of these peaks correspond to the location of a single fqmul

call. Using this information it is possible to subdivide the traces, such that each sub-
division corresponds to a single fqmul call and thus a single loop iteration. Figure
4.7c shows a closeup of a trace that has been windowed. The red lines indicate the
different subdivisions.

Dealing with ski = 0 Only the first two methods described in section 4.2.2 have
been examined. Of these, the most robust method seemed to be inserting zero
subkey guesses with a fixed PCC value of α = 0.75. Figure 4.8 shows the partial
guessing entropy (PGE) of the CPA attack on the RISC-V MCU when using different
α values. There is quite a large window for α values where the attack is 100%
successful. Indicating that the choice of α does not have to be very accurate. Using
the variance was not robust as the desired threshold differed greatly depending on

Figure 4.6: Critical section (FE310-G002)

the number of traces that were analyzed. Due to time constraints, the third method
has not been experimentally verified.

Computation of Pearson correlation coefficients All offline analysis was done
through Python with the use of the scientific computing package Numpy [58]. Esti-
mates for the power consumption for a specific key guess were made using the leak-
age model in equation 4.1. The fqmul function in the leakage model was simulated
using a CFFI to the PQCLEAN library. PCC values were calculated using equation
2.4. To allow for efficient computation, intermediate sums were recomputed upon
the addition of a new trace. This way PCC values can be updated dynamically when
a new trace is obtained. This also allows for online analysis where an attacker com-
putes PCC values during the capturing process. Normally the highest absolute PCC
value is used to select the most likely subkey. In this case, this did not result in a
high success rate. The reason for this is discussed in section 4.2.5. Instead the min-
imum PCC value is used to select the most likely subkey. This is a natural choice
because a strong negative correlation was found in section 4.1 between the trace
and hamming weight.

4.2.5 Results

The CPA attack was able to do full key recovery for both the MCUs. A common
metric used to indicate the effectiveness of an attack is to use the partial guessing
entropy (PGE). For every subkey, the attack creates a subkey guessing vector. This

(a) Critical section

(b) SAD plot

(c) Critical section subdivided

Figure 4.7: Windowing Process

Figure 4.8: PGE as function of α

vector is a list of most likely, to least likely subkey values. The PGE is the distance
from the first guess to the true subkey value. If the first guess is correct we will have
a PGE of 0. To compute the PGE in the context of an attack, we take the average
PGE of all subkeys. Figure 4.9 shows the PGE w.r.t. the number of traces that have
been analyzed. The shown graph is from a single trial. The mean PGE has been
plotted on a logarithmic scale. The full secret-key is found after 96 and 48 traces for
the STM32F303 and FE310 respectively. The STM32F303 finds the true key after
96 traces but requires 254 traces before the key guess converges to the true key.
The key was recovered within 7 seconds for the STM32F303 MCU and 4 seconds
for the FE310 MCU.

Selection Function

Normally for SCA, the maximum absolute PCC value is used to identify the most
likely subkeys. This however does not work as effectively for the discussed CPA
attack. Recall that with our chosen ciphertext attack the function computes output =

fqmul(v, 1441). Where v is some intermediate variable. There is a relation be-
tween the hamming weight of output when the input to fqmul is v or −v. This
relation is shown in figure 4.10a. Given our intermediate variable v, we take the
hamming weight of hw+ = HW (fqmul(v, 1441)) and hw− = HW (fqmul(−v, 1441)).
The count that the pair (hw+, hw−) is observed is plotted in figure 4.10a. Pairs that
are observed more often are indicated with darker colours. As can be seen, the
distribution is not random. The hamming weight of v and −v seems to be sym-

(a) STM32F303

(b) FE310

Figure 4.9: Attack Result

metrically located around the mean. If we find that we have a negative correlation
between hw+ and the power consumption, then we will often also find a positive cor-
relation for hw−. It is quite common for our leakage model to have v and −v for two
guesses. In our leakage model v = sk · u · 128 · R−1. Say the correct subkey value
is sk = 3, then v = 3u · 128 · R−1. Since this value is correct, we will find a negative
correlation between the hamming weight of v and the power consumption. However,
during the CPA attack, we will also try for the subkey value −3, which results in the
intermediate variable −3u · sk · 128 · R−1 = −v. As a result of the hamming weight
distribution, we will then find a positive correlation. See figure 4.10b, which has the
true subkey as 3. We see that we get approximately horizontally symmetric PCC
plots for the true subkey value 3 and incorrect subkey −3. With 3 and −3 resulting
in a negative and positive correlation respectively. If we take the highest absolute
value, then there is a big chance that we will incorrectly select 3 as the most likely
subkey guess. Because of this reason, we take the absolute of the minimum PCC
value as our most likely subkey guess.

(a) Hamming weight relation

(b) PCC plots for different subkey guesses (true subkey = 3)

Figure 4.10: Hamming weight distribution causes symmetric PCC plots

Chapter 5

Countermeasures against the
proposed attack

Both chapter 3 and chapter 4 showed that clean Kyber implementations can be
easily compromised by SCA attacks. It is important that countermeasures are de-
veloped that aim to prevent the feasibility of these SCA attacks. In this chapter
mitigation strategies are discussed that prevent the proposed attack.

The first section discusses how malicious ciphertexts can be prevented. This
would break the attack because the attack relies on leakage that corresponds to
specific ciphertexts.

The second section discusses two low-cost ’hiding’ software-based countermea-
sures are proposed that break the proposed CPA attack described in chapter 4. A
’hiding’ countermeasure aims at hiding the leakage from an attacker. There are two
main ways that one can go about hiding the leakage. The first method tries to hide
leakage in the amplitude dimension. This is generally an attempt at decreasing the
signal-to-noise (SNR) ratio of the traces. The second method alters the leakage with
respect to the time domain. Both proposed countermeasures fall into the time cate-
gory. This makes it significantly harder to correlate leakage across different traces.

The first countermeasure adds random delays, which make it harder for an at-
tacker to align sensitive operations for CPA analysis. The second countermeasure
performs random shuffling. By shuffling the order of the loop iterations, it is a lot
more difficult to identify which fqmul invocation belongs to which subkey.

In this thesis, only software-based countermeasures are proposed. An advan-
tage of focusing on countermeasures that rely on software is that they tend to
be more flexible. Possible issues or vulnerabilities can be patched by updating

63

firmware. This would be significantly harder to realize using hardware.

5.1 Preventing Malicious Ciphertexts

The proposed attack relies heavily on being able to provide chosen ciphertexts and
initiate decryption. Choosing appropriate ciphertexts makes it possible to get leak-
age corresponding to single subkeys. If leakage were to contain information about a
combination of subkeys, then the search space would increase exponentially. This
would effectively, render the attack infeasible.

The success of the proposed attack heavily relies on the ability to provide chosen
ciphertexts, as the selection of appropriate ciphertexts allows for obtaining leakage
corresponding to individual subkeys. However, if the leakage of a single fqmul op-
eration were to correspond to a combination of subkeys, the search space would
increase exponentially, rendering the attack effectively infeasible.

To illustrate this, consider the polynomial multiplication of a secret-key s = s0 +

s1X + · · · + s255X
255 with a ciphertext u. Note for illustration purposes we only

consider polynomials and not vectors of polynomials. If u = u0, then s · u =

s0u0 + s1u0X + · · · + s255u0X
255. In this case, every coefficient of the result con-

tains information about a single subkey. So we only have to consider 7 possible
subkey values per coefficient. However, if u = u0 + u1X, then s · u = s0u0 − s255u1 +

(s0u1+s1u0)X+ · · ·+(s255u0+s254u1)X
255. In this case, every coefficient of the result

contains information about two subkeys. Then the number of options that need to
be considered is 7 · 7 = 49. This number will increase exponentially for the number
of non-zero coefficients in u.

One effective method of rendering the attack infeasible would be to disallow an
attacker to provide chosen ciphertexts altogether. In practical settings, however, this
is difficult to realize. If an attacker has access to a physical device, then it is likely
that the attacker is also able to perform man-in-the-middle attacks and thus provide
maliciously crafted ciphertexts. Maybe it is possible to prevent the decryption of ma-
licious ciphertexts by including additional cryptography that verifies the integrity and
authenticity of ciphertexts. This however adds additional complexity to the design of
an implementation. Furthermore, it is not immediately obvious how such a mecha-
nism can be integrated into Kyber.

A more direct approach is to reduce the ciphertext space slightly by disallowing
ciphertexts that would result in leakage corresponding to single subkeys or small

combinations of subkeys. One possible method to achieve this is by limiting the
number of zero coefficients allowed in the ciphertext polynomials. Introducing this
requirement for ciphertexts introduces a trade-off between security and ciphertext
space. The practical implementation of this method is not immediately obvious.
One possible approach could involve repeating the encapsulation procedure until
a ciphertext is generated that satisfies the desired security requirement. However,
such an implementation falls outside of the scope of this thesis and will be left as
future work.

5.2 Software Countermeasures

5.2.1 Countermeasure 1: Random Delays

One of the main requirements for the attack proposed in chapter 4 is that an at-
tacker can correlate the leakage of instructions belonging to different traces. In the
critical section, the leakage at a time point corresponds to the same instruction for
all obtained traces. This makes it trivial for an attacker to correlate the power con-
sumption across different traces. By inserting random delays it is significantly harder
to correlate traces in the time dimension as the synchronization between traces is
broken. One method of adding random delays is the insertion of dummy instruc-
tions. Dummy instructions do not alter the result of the output in any way. They
will however induce leakage at random points in time. Now an attacker has the
additional challenge of aligning traces such that critical instructions are executed
at the same point in time. A requirement for implementing random delays is that
the software has access to some form of (pseudo) randomization. Embedded sys-
tems that perform cryptographic operations often offer some method of acquiring
(pseudo) random numbers. Implementation of random delays should also make
sure that the frequency and length of delays are chosen appropriately. For example,
long delays that only appear occasionally are easy to detect [59]. Improved floating
means [60] is one technique that has been proposed to generate delays with an ap-
propriate length depending on the desired amount. Naturally, the addition of delays
will increase the execution time of the algorithm. The performance overhead might
increase significantly depending on the frequency and length of these delays. The
induced performance overhead however is quite small compared to other suggested
methods such as masking.

As a proof of concept, random delays have been simulated by inserting dummy
instructions into the assembly of the critical section. Figure 5.1 shows the com-
plete decryption procedure with and without delays. In this example, there was a

Figure 5.1: Traces without and with random delays

50% chance of delays being added after every non-delay instruction. The number
of dummy instructions added was taken uniformly from {0, 4}. Figure 5.2 shows a
closeup of the decryption procedure. What is noticeable, is that the trace without
delays seems significantly more periodic. It is easier to pick out the repeating pat-
tern that is a result of the loop iterations. This pattern is also present in the trace
containing the delays, but it is significantly harder to see. The pattern is hidden by
noise in the time dimension. This example has relatively few delays. When more
delays are added the pattern becomes increasingly harder to find.

5.2.2 Countermeasure 2: Shuffling

The second proposed zero-overhead software-based countermeasure is random
shuffling. In the critical section, the coefficients in r[j] are operated on in order from
j = 0 . . . 255. When an appropriate ciphertext is chosen, leakage corresponding to
the j’th or (j + 256)’th subkey is present. These leakages will present themselves
in the same order that the loop is executed. Execution of the critical section will
always leak information about the subkeys in a predictable order. Random shuffling
of the loop order for every execution prevents this predictable behaviour. Now an
attacker has the difficult task of identifying to which subkey a loop iteration belongs.
This countermeasure also requires access to randomization but is otherwise easy
to implement. Furthermore, this countermeasure can be implemented side-by-side
with random delays without needing to make any additional adjustments. This coun-
termeasure has also been simulated by altering the assembly of the critical section.

Figure 5.2: Traces without and with random delays (close-up)

The inclusion of this countermeasure alone breaks the proposed CPA attack.

5.3 Considering SCA during Implementation Devel-
opment

The previously mentioned countermeasures are not the only possible countermea-
sures. Other powerful methods also exist, such as masking or hardware-based
techniques. Random delays and shuffling have been suggested, because of their
flexibility and low-performance overhead. Software-based countermeasures can be
more easily patched than hardware, increasing flexibility. Masking is a very powerful
countermeasure technique but comes at a high cost of performance. In the setting
of the previous attack, the presence of random delays and shuffling easily prevents
the proposed CPA attack. Both countermeasures do not remove secret informa-
tion from the traces. They only aim at creating additional challenges for a possible
adversary. After the inclusion of random delays, an adversary must find a way to
synchronize different traces. After the inclusion of shuffling, an adversary must find
a way of identifying the index of subkeys. These countermeasures are effective for
non-profiled SCA attacks. When dealing with stronger profiled single-trace SCA at-
tacks, these countermeasures might not prove sufficient anymore.

The findings of the previous chapters show that it is of paramount importance
that every implementation of Kyber chooses appropriate countermeasures against

SCA. Various aspects can be considered when making design choices to strengthen
against SCA. These areas include the cryptographic algorithm design, software im-
plementations and underlying hardware components. The selection of appropriate
countermeasures relies not only on the capabilities and limitations of the hardware
and acceptable overhead but also on the security guarantees that the application
needs to provide. It is important to acknowledge that there is no perfect counter-
measure that can fully eliminate the risk of SCA and therefore it is the responsibility
of designers to carefully choose the most suitable countermeasure for their specific
scenario.

An intriguing prospect is the potential for RISC-V to enable the development of
effective countermeasures. The open collaborative nature of RISC-V might result in
the development of novel countermeasures that integrate tightly with the processor
core. Currently, PQC instruction set extensions are being discussed. It will be in-
teresting to see how SCA considerations might influence this discussion. Another
prospect of RISC-V is the design of SCA-resilient hardware accelerators that inte-
grate tightly with the ISA. Generally, hardware implementations are considered more
difficult to attack compared to software implementations [43]. Hardware accelera-
tors that can safely perform security-sensitive cryptographic operations might prove
a valuable asset for implementing PQC.

Chapter 6

Discussion

In this chapter, the previous research results are analyzed and discussed. A sum-
mary of the found results and the results are interpreted. Furthermore, the impli-
cations of the results are discussed in light of the research questions. Finally, the
limitations of the performed research are discussed.

6.1 Summary

This study performed SCA on the PQCLEAN implementation of Kyber on both an
ARM and RISC-V based MCU.

In chapter 3, SPA was performed to identify potential leaks of sensitive infor-
mation. It was found that there was indeed leakage present on the ARM MCU.
Secret-key partitions could be identified visually. It was unclear, however, whether
the observed leakage could be exploited through SPA techniques. Contrary to the
ARM case, On the RISC-V MCU this behaviour was not present.

In chapter 4, a more sophisticated SCA technique was applied, namely CPA.
CPA was performed on the critical section at the end of the inverse-NTT opera-
tion. The results demonstrated the critical section leaked side-channel information
on both MCUs. A strong correlation was found between the power consumption and
the output of a function called fqmul. Exploiting this weakness. a chosen-ciphertext
CPA attack was constructed. The developed attack was able to recover the full
secret-key in 96 and 48 traces for the ARM and RISC-V MCU respectively.

Chapter 5 discusses possible low-cost software-based countermeasures that
could be integrated in order to mitigate the attack developed in the previous chapter.
Both countermeasures proved to be effective at preventing the attack.

69

6.2 Interpretation of Results

One of the research objectives was to see how vulnerable RISC-V Kyber implemen-
tations are to SCA. This research objective has been partly addressed by focusing
on a RISC-V Kyber implementation of PQCLEAN. It is evident that without any coun-
termeasures, Kyber is highly vulnerable to SCA attacks. The discernible difference
between secret-key values in the power trace belonging to the ARM MCU by vi-
sual inspection alone indicates significant information leakage through the power
side-channel. The CPA attack demonstrated that an attacker can easily recover the
secret-key of a decryption device with very few traces. Normally in terms of SCA
attacks millions of traces are considered, but the proposed attack requires less than
a hundred traces, emphasizing the susceptibility of Kyber implementations to SCA
attacks.

The target that was considered in this attack did not contain countermeasures.
An implementation that has countermeasures integrated will be significantly harder
to attack. The main thing to take away from the results is that any implementation
of Kyber (especially for IoT or safety-critical applications) need to consider the SCA
characteristics. As possible SCA attacks can form a profound risk to the security of
the implementation.

One fundamental aspect of the Kyber algorithm, which makes it vulnerable to
SCA is the small subkey space. For every subkey, there are only seven possible
guesses available. If an adversary has access to leakage corresponding to a single
subkey, then he has a very small key space to explore. This is fundamental to the
algorithm and will always be the case. One possible method of counteracting this is
by preventing the exposure of isolated subkeys, but this might be difficult to realize
in practice.

The SCA characteristics were analyzed on MCUs based on both the ARM and
RISC-V ISAs. Contrary to the ARM case, the visual inspection did not reveal signifi-
cant leakage on the RISC-V MCU. The reason for this differing behaviour is difficult
to determine without further testing. It could be a result of different ISAs, underly-
ing hardware components, or differences in executed instructions. The STM32F303
for example has a single-cycle multiplication unit. Whereas the FE310-G002 has a
multi-cycle multiplication unit. Despite the lack of visual leakage in the RISC-V case,
leakage was still present, as demonstrated by chapter 4. The CPA attack required
about half the number of traces to recover the secret-key for the RISC-V MCU com-
pared to the ARM MCU.

The research also highlights that SCA characteristics observed in one MCU im-
plementation can be applicable to a different MCU with a completely different ar-
chitecture. The proposed attack worked for both MCUs without requiring any adap-
tations. This is not entirely surprising since instructions dealing with memory, for
example, might still be executed on similar hardware structures.

Another research objective was to see which countermeasures could be imple-
mented on a RISC-V Kyber implementation. This study demonstrated that the addi-
tion of relatively simple, low-cost software-based countermeasures can significantly
increase the difficulty of SCA attacks. The countermeasures can be considered low-
cost because they do not induce a large performance overhead. Also, an algorithmic
countermeasure was suggested aimed at preventing the occurrence of leakage that
corresponds to single subkeys. It is important to acknowledge that the presence
of countermeasures does not guarantee the complete mitigation of attacks. The
ever-evolving landscape of side-channel attack techniques suggests the existence
of sophisticated attacks that may render these countermeasures less effective.

Similar to the broader field of cyber security, SCA finds itself caught in an arms
race. As countermeasures are developed to increase the difficulty of SCA, new
attack strategies are devised. This dynamic underscores the need for ongoing re-
search, robust countermeasure development, and robust evaluation of the resilience
of cryptographic implementations against SCA attacks. Maintaining a proactive ap-
proach is essential to the future of cryptographic implementations.

6.3 Limitations

In this section, the limitations of the research are discussed.

Firstly, it is important to consider that the targeted PQCLEAN library is meant
to serve as a clean reference implementation. In real-world scenarios, a more
realistic target will most likely be optimized for a specific platform and may incorpo-
rate several countermeasures. Furthermore, the power traces obtained in this study
came from an environment optimized for SCA. When dealing with a real-world tar-
get, the power traces might contain significantly more noise. The decrease in SNR
can make SCA more difficult. However, it is worth noting that a decrease in SNR can
be counteracted by obtaining more traces, as in most cases, noise can be assumed

to follow the normal distribution.

While this research successfully demonstrates the leakage in MCU implemen-
tations of Kyber, it does not identify which instructions are responsible for the
sensitive side-channel leakage. A clear understanding of the root cause of the
identified leakage is lacking. One possible hypothesis is that memory instruction
contributes the most significant amount of information leakage. The argument is,
that data movement over buses results in the highest amount of power being con-
sumed. Further investigation is needed to determine the precise factors contributing
to the observed side-channel leakage.

The analysis of Kyber was not extensive. Only a small section of the Kyber
algorithm has been analyzed. The critical section described in algorithm 7 is not
the only section of the algorithm that can potentially leak critical information. Mont-
gomery reduction is also performed in other parts of the Kyber algorithm. These
could also be potentially exploited as the same leakage will be present. Then there
are also the other operations performed in Kyber which have not been analyzed.
These operations can also induce possibly exploitable side-channel leakage. Intro-
ducing avenues for future research. Furthermore, only two RISC-V Kyber implemen-
tations were investigated. An unprotected implementation and an implementation
with countermeasures. We therefore cannot make any concrete statements about
the SCA characteristics of other RISC-V implementations. To answer Rq 1 more
comprehensively, other RISC-V Kyber implementations should also be studied.

The investigation into the exact number of traces required for the attack has not
been thoroughly explored in this study. Typically, an attack’s effectiveness is mea-
sured with many trials. This process entails capturing a large volume of power traces
and performing a significant amount of analysis. This requires a significant amount
of time. In order to provide more precise quantification of the attack’s effectiveness,
further analysis is required. given this limitation, the detailed discussion regarding
the disparity in the required number of traces between the ARM and RISC-V MCUs
has not been covered. By conducting additional research and analysis, it would be
possible to delve into the underlying factors contributing to this discrepancy. It would
be valuable knowledge to know why certain architectures or implementations cause
more side-channel leakage.

In conclusion, while this research sheds light on the vulnerabilities and leakage
present implementations of Kyber, it is important to recognize the limitations of the
study. There are aspects where the study can be improved upon, such as acquir-

ing a deeper understanding of the root causes for leakage and performing a more
elaborate analysis of the full algorithm.

Chapter 7

Conclusions and recommendations

7.1 Conclusions

To ensure secure future-proof cryptography, it is important to consider the SCA char-
acteristics of its implementations. One of the most promising PQC KEM is Kyber.
However, as highlighted in chapters 3 and 4, the decryption procedure of Kyber can
be susceptible to sensitive side-channel leakage. Power side-channel leakage was
identified in the Montgomery reduction procedure on a clean reference implementa-
tion of Kyber on a RISC-V MCU.

A novel chosen-ciphertext CPA has been proposed that exploits the identified
side-channel leakage. This attack has been experimentally proven to be successful
on an ARM and RISC-V MCU. In both cases, less than 100 traces were required
for full secret-key recovery on Kyber512. These findings highlight the SCA suscep-
tibility of unprotected Kyber implementations. Leakage from a RISC-V MCU did not
significantly differ from leakage taken from an ARM MCU.

In response to these findings, chapter 5 proposes two low-cost software-based
countermeasures to prevent the previously introduced attack on Kyber. The sug-
gested countermeasures implement random delays and shuffling in order to destroy
the synchronization of traces. The countermeasures are easy to implement and
significantly increase the difficulty of performing the proposed attack. The counter-
measures have been implemented both on an ARM and RISC-V-based MCU. The
addition of these countermeasures is effective at preventing the proposed CPA at-
tack.

Overall, these results show the importance of considering SCA when designing
PQC implementations. Furthermore, it shows the necessity of including appropriate
countermeasures to counteract side-channel attacks.

75

7.2 Recommendations

In this section recommendations are given on how to improve this research. Also,
suggestions are given for future research directions.

Improving the conducted research

This study was quite limited in its scope. It focused on a small part of the Kyber al-
gorithm. One way to make the research more extensive is to perform SCA on other
parts of the algorithm. This could be done effectively by using SCA metrics that have
been designed to indicate side-channel leakage, such as NICV or TVLA. Further-
more, a clean reference implementation is not a realistic target for SCA attacks. To
make the threat scenario more realistic one could investigate the leakage of RISC-
V optimized implementations. The effectiveness of the proposed countermeasures
was only experimentally verified. Their effectiveness could be better supported with
the use of the previously mentioned metrics.

Future research suggestions

There are multiple avenues for future research on the SCA resilience of RISC-V
implementations of Kyber.

SCA resilience of RISC-V PQC accelerators Several hardware accelerators lever-
aging RISC-V have been proposed in literature (some with SCA in mind) [55], [61]–
[63]. These accelerators should also be analyzed with respect to side-channel anal-
ysis.

New mitigation strategies Another direction could be to look for new mitigation
strategies against side-channel attacks on Kyber for RISC-V. One can wonder if the
RISC-V ISA offers any advantages in regards to preventing side-channel leakage
compared to other closed ISAs. This is a relevant question that might aid in protect-
ing PQC candidates from side-channel attacks.

Other side-channel attacks In this thesis only the power side-channel was con-
sidered and exploited with a non-profiled attack. Many other possible side-channel
attacks can be performed. Different types of side-channels can be considered. Dif-
ferent attack techniques such as non-profiled to profiled, but also non-invasive to

invasive. Future research could investigate how other attacks could possibly exploit
side-channels on RISC-V Kyber implementations.

SCA of other PQC candidates The future is unpredictable. There is no guarantee
that Kyber will be the replacement for RSA in the future. Taking this into account it
also makes sense to perform SCA on RISC-V implementations for the other PQC
candidates.

7.3 Contributions

During this study, two contributions were made to SCA platforms.

Firstly, a bug fix was provided to the ChipWhisperer platform. The HAL that Chip-
Whisperer provided did not initialize the UART correctly, leading to baud rate errors.
The thread discussing this issue discussion can be found here.

Secondly, a SCA environment was developed for the CAES research group. This
environment provides a sandbox that aids in performing power SCA on the FE310-
G002 MCU. Furthermore, the environment comes with a tutorial that hopefully will
quickly familiarize future researchers with SCA on the FE310-G002 using the sand-
box environment.

https://forum.newae.com/t/fe310-firmware-uart-initialized-incorrectly/3732/3

Bibliography

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, pp. 120–126, 2 1978. [Online]. Available: https://dl-acm-org.ezproxy2.
utwente.nl/doi/10.1145/359340.359342

[2] P. W. Shor, “Polynomial-time algorithms for prime factor-
ization and discrete logarithms on a quantum computer,”
https://doi.org/10.1137/S0097539795293172, vol. 26, pp. 1484–1509, 7 2006.
[Online]. Available: https://epubs.siam.org/doi/10.1137/S0097539795293172

[3] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler,
and D. Stehlé, “Crystals-dilithium: A lattice-based digital signature scheme,”
IACR Transactions on Cryptographic Hardware and Embedded Systems, vol.
2018, pp. 238–268, 2 2018. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/839

[4] D. J. Bernstein, R. Niederhagen, A. Hülsing, J. Rijneveld, S. Kölbl, and
P. Schwabe, “The sphincs+ signature framework,” Proceedings of the ACM
Conference on Computer and Communications Security, pp. 2129–2146, 11
2019. [Online]. Available: https://dl.acm.org/doi/10.1145/3319535.3363229

[5] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon.” [Online]. Available:
https://falcon-sign.info/

[6] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber algorithm specifications
and supporting documentation (version 3.01),” 2021.

[7] M. Randolph and W. Diehl, “Power side-channel attack analysis: A review of
20 years of study for the layman,” pp. 1–33, 6 2020, a good survey about SCA
using power analysis.

79

https://dl-acm-org.ezproxy2.utwente.nl/doi/10.1145/359340.359342
https://dl-acm-org.ezproxy2.utwente.nl/doi/10.1145/359340.359342
https://epubs.siam.org/doi/10.1137/S0097539795293172
https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://dl.acm.org/doi/10.1145/3319535.3363229
https://falcon-sign.info/

[8] “Iot connected devices by vertical 2030 — statista,” statistic on number of IoT
devices¡br/¿. [Online]. Available: https://www.statista.com/statistics/1194682/
iot-connected-devices-vertically/

[9] A. Ukil, J. Sen, and S. Koilakonda, “Embedded security for internet of things,”
Proceedings - 2011 2nd National Conference on Emerging Trends and Appli-
cations in Computer Science, NCETACS-2011, pp. 50–55, 2011.

[10] F. Regazzoni, “Physical attacks and beyond,” Lecture Notes in Computer Sci-
ence (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 10532 LNCS, pp. 3–13, 2017.

[11] A. Karlov and N. L. de Guertechin, “Power analysis attack on kyber,” Cryptology
ePrint Archive, 2021.

[12] Z. Xu, O. Pemberton, S. S. Roy, D. Oswald, W. Yao, and Z. Zheng, “Magnifying
side-channel leakage of lattice-based cryptosystems with chosen ciphertexts:
The case study of kyber,” IEEE Transactions on Computers, vol. 71, pp. 2163–
2176, 9 2022.

[13] Y. Yang, Z. Wang, J. Ye, J. Fan, S. Chen, H. Li, X. Li, and Y. Cao,
“Chosen ciphertext correlation power analysis on kyber,” Integration, vol. 91,
pp. 10–22, 7 2023. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S0167926023000378

[14] R. C. Rodriguez, F. Bruguier, E. Valea, and P. Benoit, “Correlation electromag-
netic analysis on an fpga implementation of crystals-kyber,” Cryptology ePrint
Archive, 2022.

[15] S. Bhasin, J. L. Danger, S. Guilley, and Z. Najm, “Nicv: Normalized inter-class
variance for detection of side-channel leakage,” IEEE International Symposium
on Electromagnetic Compatibility, vol. 2014-December, pp. 310–313, 12 2014.

[16] T. Schneider and A. Moradi, “Leakage assessment methodology a clear
roadmap for side-channel evaluations,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 9293, pp. 495–513, 2015. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-662-48324-4 25

[17] PapagiannopoulosKostas, GlamočaninOgnjen, AzouaouiMelissa, RosDorian,
RegazzoniFrancesco, and StojilovićMirjana, “The side-channel metrics cheat
sheet,” ACM Computing Surveys, vol. 1, 2 2023. [Online]. Available:
https://dl-acm-org.ezproxy2.utwente.nl/doi/10.1145/3565571

https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/
https://www.statista.com/statistics/1194682/iot-connected-devices-vertically/
https://linkinghub.elsevier.com/retrieve/pii/S0167926023000378
https://linkinghub.elsevier.com/retrieve/pii/S0167926023000378
https://link.springer.com/chapter/10.1007/978-3-662-48324-4_25
https://dl-acm-org.ezproxy2.utwente.nl/doi/10.1145/3565571

[18] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “Crystals - kyber: A cca-secure
module-lattice-based kem,” Proceedings - 3rd IEEE European Symposium on
Security and Privacy, EURO S and P 2018, pp. 353–367, 7 2018.

[19] O. Regev, “The learning with errors problem,” Proceedings of the Annual IEEE
Conference on Computational Complexity, pp. 191–204, 2010.

[20] ——, “On lattices, learning with errors, random linear codes, and
cryptography,” Journal of the ACM (JACM), vol. 56, 9 2009. [Online]. Available:
https://dl-acm-org.ezproxy2.utwente.nl/doi/10.1145/1568318.1568324

[21] P. L. Montgomery, “Modular multiplication without trial division,” Mathematics
of Computation, vol. 44, pp. 519–521, 1985. [Online]. Available: https:
//www.ams.org/mcom/1985-44-170/S0025-5718-1985-0777282-X/

[22] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer
and System Sciences, vol. 28, pp. 270–299, 4 1984.

[23] C. Rackoff and D. R. Simon, “Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 576 LNCS, pp. 433–444, 1992. [Online]. Available:
https://link.springer.com/chapter/10.1007/3-540-46766-1 35

[24] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and symmetric
encryption schemes,” Journal of Cryptology 2011 26:1, vol. 26, pp. 80–
101, 12 2011. [Online]. Available: https://link.springer.com/article/10.1007/
s00145-011-9114-1

[25] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the fujisaki-
okamoto transformation,” Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), vol. 10677 LNCS, pp. 341–371, 2017.

[26] A. Sprenkels, “The kyber/dilithium ntt.” [Online]. Available: https://electricdusk.
com/ntt.html

[27] “Number-theoretic transform (integer dft).” [Online]. Available: https://www.
nayuki.io/page/number-theoretic-transform-integer-dft

[28] M. J. Kannwischer, P. Schwabe, D. Stebila, and T. Wiggers, “Improving
software quality in cryptography standardization projects,” in IEEE European
Symposium on Security and Privacy, EuroS&P 2022 - Workshops,

https://dl-acm-org.ezproxy2.utwente.nl/doi/10.1145/1568318.1568324
https://www.ams.org/mcom/1985-44-170/S0025-5718-1985-0777282-X/
https://www.ams.org/mcom/1985-44-170/S0025-5718-1985-0777282-X/
https://link.springer.com/chapter/10.1007/3-540-46766-1_35
https://link.springer.com/article/10.1007/s00145-011-9114-1
https://link.springer.com/article/10.1007/s00145-011-9114-1
https://electricdusk.com/ntt.html
https://electricdusk.com/ntt.html
https://www.nayuki.io/page/number-theoretic-transform-integer-dft
https://www.nayuki.io/page/number-theoretic-transform-integer-dft

Genoa, Italy, June 6-10, 2022. Los Alamitos, CA, USA: IEEE Computer
Society, 2022, pp. 19–30. [Online]. Available: https://eprint.iacr.org/2022/337

[29] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4: Testing
and benchmarking nist pqc on arm cortex-m4,” Cryptology ePrint Archive,
2019. [Online]. Available: https://libopencm3.org/

[30] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
1109, pp. 104–113, 1996.

[31] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 1666, pp. 388–397, 1999.

[32] E. Brier, C. Clavier, and F. Olivier, “Correlation power analysis with a leakage
model,” Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3156, pp. 16–
29, 2004.

[33] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound approaches
to counteract power-analysis attacks,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), vol. 1666, pp. 398–412, 1999. [Online]. Available:
https://link.springer.com/chapter/10.1007/3-540-48405-1 26

[34] J. S. Coron and L. Goubin, “On boolean and arithmetic masking against
differential power analysis,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 1965 LNCS, pp. 231–237, 2000. [Online]. Available:
https://link.springer.com/chapter/10.1007/3-540-44499-8 18

[35] “Risc-v international.” [Online]. Available: https://riscv.org/

[36] B. Y. Sim, J. Kwon, J. Lee, I. J. Kim, T. H. Lee, J. Han, H. Yoon, J. Cho, and
D. G. Han, “Single-trace attacks on message encoding in lattice-based kems,”
IEEE Access, vol. 8, pp. 183 175–183 191, 2020.

[37] J. Hermelink, P. Pessl, and T. Pöppelmann, “Fault-enabled chosen-ciphertext
attacks on kyber,” Cryptology ePrint Archive, 2021.

[38] J. Delvaux, “Roulette: A diverse family of feasible fault attacks on masked
kyber,” IACR Transactions on Cryptographic Hardware and Embedded

https://eprint.iacr.org/2022/337
https://libopencm3.org/
https://link.springer.com/chapter/10.1007/3-540-48405-1_26
https://link.springer.com/chapter/10.1007/3-540-44499-8_18
https://riscv.org/

Systems, vol. 2022, pp. 637–660, 8 2022. [Online]. Available: https:
//tches.iacr.org/index.php/TCHES/article/view/9835

[39] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel at-
tacks on masked lattice-based encryption,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 10529 LNCS, pp. 513–533, 2017.
[Online]. Available: https://link-springer-com.ezproxy2.utwente.nl/chapter/10.
1007/978-3-319-66787-4 25

[40] P. Pessl and R. Primas, “More practical single-trace attacks on the number
theoretic transform,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
11774 LNCS, pp. 130–149, 2019.

[41] M. Hamburg, J. Hermelink, R. Primas, S. Samardjiska, T. Schamberger,
S. Streit, E. Strieder, and C. van Vredendaal, “Chosen ciphertext k-trace
attacks on masked cca2 secure kyber,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, vol. 2021, pp. 88–113, 8 2021. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/9061

[42] J. Mu, Y. Zhao, Z. Wang, J. Ye, J. Fan, S. Chen, H. Li, X. Li, and Y. Cao, “A volt-
age template attack on the modular polynomial subtraction in kyber,” Proceed-
ings of the Asia and South Pacific Design Automation Conference, ASP-DAC,
vol. 2022-January, pp. 672–677, 2022.

[43] R. Wang, K. Ngo, and E. Dubrova, “Making biased dl models work: Message
and key recovery attacks on saber using amplitude-modulated em emanations,”
Cryptology ePrint Archive, 2022.

[44] C. Mujdei, A. Beckers, J. M. B. Mera, A. Karmakar, L. Wouters, and I. Ver-
bauwhede, “Side-channel analysis of lattice-based post-quantum cryptogra-
phy: Exploiting polynomial multiplication,” Cryptology ePrint Archive, 2022.

[45] H. Ma, S. Pan, Y. Gao, J. He, Y. Zhao, and Y. Jin, “Vulnerable pqc against side
channel analysis - a case study on kyber,” pp. 1–6, 1 2023.

[46] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin, “Generic side-channel at-
tacks on cca-secure lattice-based pke and kems,” IACR Transactions on Cryp-
tographic Hardware and Embedded Systems, vol. 2020, pp. 307–335, 2020.

[47] P. Ravi, S. Bhasin, S. S. Roy, and A. Chattopadhyay, “Drop by drop you break
the rock - exploiting generic vulnerabilities in lattice-based pke/kems using em-
based physical attacks,” Cryptology ePrint Archive, 2020.

https://tches.iacr.org/index.php/TCHES/article/view/9835
https://tches.iacr.org/index.php/TCHES/article/view/9835
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-3-319-66787-4_25
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-3-319-66787-4_25
https://tches.iacr.org/index.php/TCHES/article/view/9061

[48] Y. Tanaka, R. Ueno, K. Xagawa, A. Ito, J. Takahashi, and N. Homma, “Multiple-
valued plaintext-checking side-channel attacks on post-quantum kems,” Cryp-
tology ePrint Archive, 2022.

[49] R. Ueno, K. Xagawa, Y. Tanaka, A. Ito, J. Takahashi, and N. Homma,
“Curse of re-encryption: A generic power/em analysis on post-quantum
kems,” IACR Transactions on Cryptographic Hardware and Embedded
Systems, vol. 2022, pp. 296–322, 11 2022. [Online]. Available: https:
//tches.iacr.org/index.php/TCHES/article/view/9298

[50] G. Rajendran, P. Ravi, J.-P. D’Anvers, S. Bhasin, and A. Chattopadhyay,
“Pushing the limits of generic side-channel attacks on lwe-based kems -
parallel pc oracle attacks on kyber kem and beyond,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2023, pp. 418–446, 3
2023. [Online]. Available: https://tches.iacr.org/index.php/TCHES/article/view/
10289

[51] M. J. Kannwischer, P. Schwabe, D. Stebila, and T. Wiggers, “Improving software
quality in cryptography standardization projects,” Cryptology ePrint Archive,
2022.

[52] P. Ravi, R. Poussier, S. Bhasin, and A. Chattopadhyay, “On configurable
sca countermeasures against single trace attacks for the ntt: A performance
evaluation study over kyber and dilithium on the arm cortex-m4,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 12586 LNCS, pp.
123–146, 2020. [Online]. Available: https://link.springer.com/chapter/10.1007/
978-3-030-66626-2 7

[53] A. Jati, N. Gupta, A. Chattopadhyay, and S. K. Sanadhya, “A configurable
crystals-kyber hardware implementation with side-channel protection,” Cryp-
tology ePrint Archive, 2021.

[54] T. Kamucheka, A. Nelson, D. Andrews, and M. Huang, “A masked pure-
hardware implementation of kyber cryptographic algorithm,” FPT 2022 - 21st
International Conference on Field-Programmable Technology, Proceedings,
2022.

[55] T. Fritzmann, M. V. Beirendonck, D. B. Roy, P. Karl, T. Schamberger,
I. Verbauwhede, and G. Sigl, “Masked accelerators and instruction
set extensions for post-quantum cryptography,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2022, pp. 414–460,

https://tches.iacr.org/index.php/TCHES/article/view/9298
https://tches.iacr.org/index.php/TCHES/article/view/9298
https://tches.iacr.org/index.php/TCHES/article/view/10289
https://tches.iacr.org/index.php/TCHES/article/view/10289
https://link.springer.com/chapter/10.1007/978-3-030-66626-2_7
https://link.springer.com/chapter/10.1007/978-3-030-66626-2_7

2022. [Online]. Available: https://tches.iacr.org/index.php/TCHES/article/view/
9303

[56] D. Heinz, M. J. Kannwischer, G. Land, T. Pöppelmann, P. Schwabe, and
D. Sprenkels, “First-order masked kyber on arm cortex-m4,” Cryptology ePrint
Archive, 2022. [Online]. Available: https://github.com/

[57] J. S. Coron, F. Gérard, S. Montoya, and R. Zeitoun, “High-order table-
based conversion algorithms and masking lattice-based encryption,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol. 2022,
pp. 1–40, 2 2022. [Online]. Available: https://tches.iacr.org/index.php/TCHES/
article/view/9479

[58] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Rı́o, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,”
Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. [Online]. Available:
https://doi.org/10.1038/s41586-020-2649-2

[59] J. S. Coron and I. Kizhvatov, “An efficient method for random delay
generation in embedded software,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), vol. 5747 LNCS, pp. 156–170, 2009. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-642-04138-9 12

[60] ——, “Analysis and improvement of the random delay countermeasure of
ches 2009,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 6225
LNCS, pp. 95–109, 2010. [Online]. Available: https://link.springer.com/chapter/
10.1007/978-3-642-15031-9 7

[61] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Risq-v: Tightly coupled
risc-v accelerators for post-quantum cryptography,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2020, pp. 239–280, 8
2020. [Online]. Available: https://tches.iacr.org/index.php/TCHES/article/view/
8683

[62] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng, “Vpqc: A
domain-specific vector processor for post-quantum cryptography based on risc-
v architecture,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 67, pp. 2672–2684, 8 2020.

https://tches.iacr.org/index.php/TCHES/article/view/9303
https://tches.iacr.org/index.php/TCHES/article/view/9303
https://github.com/
https://tches.iacr.org/index.php/TCHES/article/view/9479
https://tches.iacr.org/index.php/TCHES/article/view/9479
https://doi.org/10.1038/s41586-020-2649-2
https://link.springer.com/chapter/10.1007/978-3-642-04138-9_12
https://link.springer.com/chapter/10.1007/978-3-642-15031-9_7
https://link.springer.com/chapter/10.1007/978-3-642-15031-9_7
https://tches.iacr.org/index.php/TCHES/article/view/8683
https://tches.iacr.org/index.php/TCHES/article/view/8683

[63] J. Lee, W. Kim, S. Kim, and J. H. Kim, “Post-quantum cryptography coprocessor
for risc-v cpu core,” 2022 International Conference on Electronics, Information,
and Communication, ICEIC 2022, 2022.

Appendix A

Computing ’compression resistant’
ciphertext coefficient values.

1 impor t kyber512 as kyber
2
3 f f i = kyber . f f i
4 polyvec = f f i . new(’ polyvec * ’)
5 r = f f i . new(’ u i n t 8 t [KYBER POLYVECCOMPRESSEDBYTES] ’)
6
7 b i j e c t i o n s = l i s t ()
8
9 f o r a i n range (−3328 ,3329) :

10 polyvec . vec [0] . coe f f s [0] = a
11 kyber . PQCLEAN polyvec compress (r , polyvec)
12 kyber . PQCLEAN polyvec decompress (polyvec , r)
13 i f polyvec . vec [0] . coe f f s [0] == a :
14 b i j e c t i o n s . append (a)
15
16 p r i n t (b i j e c t i o n s)

87

	List of acronyms
	Introduction
	Context
	Research objective
	Outline

	Background
	CRYSTALS - Kyber
	Learning With Errors
	Kyber's Building Blocks
	The Fujisaki-Okamoto transform
	Parameter Sets
	The IND-CPA Kyber PKE algorithm
	Overview of Kyber Decryption and Encryption
	The IND-CCA Kyber KEM algorithm
	Fast Polynomial Multiplication using the Number Theoretic Transform
	Implementations

	Side-Channel Analysis
	Side-Channel Analysis History
	Power Side-Channel Analysis Techniques
	Countermeasures

	RISC-V
	Related Work

	Simple Power Analysis on Kyber
	Experimental Setup
	Hardware
	Software

	Leakage of ordered key coefficients
	Chosen Ciphertexts
	Hypothesis
	Experimental Procedure
	Results
	Implication of results

	Correlation Power Analysis
	Identifying Leakage
	Experimental Procedure
	Results

	Correlation Power Analysis Attack
	The Leakage Model
	Dealing with the case: ski=0
	Attack Procedure
	Experiment Procedure
	Results

	Countermeasures against the proposed attack
	Preventing Malicious Ciphertexts
	Software Countermeasures
	Countermeasure 1: Random Delays
	Countermeasure 2: Shuffling

	Considering SCA during Implementation Development

	Discussion
	Summary
	Interpretation of Results
	Limitations

	Conclusions and recommendations
	Conclusions
	Recommendations
	Contributions

	References
	Computing 'compression resistant' ciphertext coefficient values.

