
Kubernetes, IoT and the Automation of Penetration
Testing

Fabian van Dongen
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

f.h.j.vandongen@student.utwente.nl

Abstract— The increasing use of Internet of Things (IoT)
systems in various industries has raised concerns about their
security. One specific area of concern is the security of IoT
systems with deployed container orchestrators. Kubernetes, an
innovative container orchestrator, is one of the most efficient ways
for automating software deployment, scaling, and management.
Overall, Kubernetes is much more efficient than other container
orchestrators, but this has not been implemented in IoT due
to its computational requirements. As lightweight version of
Kubernetes K3s has been released which might be implemented
in IoT soon. Whether K3s will be a feasible option to use in IoT
and whether its security can be tested in the form of automatic
penetration testing, is explored in this paper. To do this, a simple
IoT system with K3s deployed has been set up and penetration
testing has been performed on the system. The system was able to
handle K3s, but it has some drawbacks that need attention. The
penetration testing worked manually as well as automatically
with its restrictions. To implement this in various diverse IoT
systems, a lot of variables have to be taken into account.

Index Terms—Kubernetes, K3s, Penetration Testing, IoT, Se-
curity

I. INTRODUCTION

IoT is all around you. The smart speakers in your living
room, your smartwatch, that car that opens when you are near
it, and even your wireless doorbell. There is an incredibly
big number of examples of IoT systems. These systems are
all interconnected with each other and are seen increasingly.
Kubernetes is an up-and-coming container orchestrator which
might increase the efficiency of IoT systems.

Security in IoT systems is one of the hot topics of the past
decade. Protecting these systems is a challenge as multiple
different components need to communicate with each other
through mostly wireless communication lines. These commu-
nication lines can be intercepted by others leading to theft,
damage, and subscription data attack [12].

To test security, a much-used method is penetration testing.
Penetration testing is performing an active and authorized
simulated cyberattack. The goal of penetration testing is to
discover hidden vulnerabilities as quickly as possible. This is
mostly done in a safe and protected environment [23].

The automation of penetration testing is a new field in
academia. This process is very time-consuming and very
expensive due to the need for human intervention. There are
a lot of studies in which the automation of penetration testing
is discussed, yet this still isn’t the conventional way of testing

a system’s security. There are a lot of uncertainties that need
to be accounted for and in this paper, these uncertainties will
be discussed [17].

This study aims to find out whether the combination of
the automation of penetration testing and IoT systems with a
deployed Kubernetes is feasible. This paper will explain the
possibilities of Kubernetes with IoT, its future, and whether it
can be secured using automatic penetration testing.

A. Research Questions

Can the penetration testing process for the security of an
IoT system with K3s deployed be automated?

• What are the current limitations and challenges in
automating the penetration testing process and how can
they be bypassed?

• What are the challenges of deploying a lightweight
version of Kubernetes onto IoT systems, what are its
requirements, and is it feasible?

B. Methodology

To answer our research questions, an IoT system needs to
be built. This will be done with the use of Raspberry Pi (IoT
system) and K3s (lightweight version of Kubernetes). After
this system is up and running, a vulnerability scenario needs to
be created to start a penetration testing process on the system.
This must be done manually at first and all steps need to
be clearly denoted. Afterward, a reflection must be done on
these steps before we start the automation. All steps must be
checked for the automation options, are all of them feasible,
and if not, what are their restraining factors? If the (partial)
automation is possible, a script will be made to check if the
results are correct. Lastly, these results need to be reflected
upon for future research purposes.

II. RELATED WORK

The used articles were mainly gathered through Google
Scholar, IEEE, and the official websites of the used software.
Plenty of studies have appeared around Kubernetes and as
it is a new development, most of these were relevant to my
research.

In Table I, all used sources are sorted by theme. Some
important pieces for my research included the work of S.
Böhm et al. [7] who presented the difference between all
different versions of Kubernetes. The paper of L. Yan et al.
[12] provided a lot of insight into the most relevant parts of
IoT and their security. The website of K3s themselves provided
very good data about their machines and their hardware usage.
Which was essential to answer my research questions. Lastly,
J. Liu et al. [23] did a lot of research on the automation of
penetration testing.

TABLE I
CLASSIFIED CITATIONS BY THEME

Article Description

[1], [3], [4], [6], [7], [11], [15], [16], [19] Kubernetes
[9], [10], [18], [21], [24] IoT and Hardware

[2], [5], [8], [14] Implementation of Kubernetes in IoT
[12], [13], [20] Security in IoT
[17], [22], [23] Penetration Testing

III. KUBERNETES

A. What is Kubernetes?

Kubernetes is an open-source container orchestration sys-
tem, originally created by Google. It manages containerized
applications across multiple hosts for deploying, monitoring,
and scaling containers. As Kubernetes has been donated to the
Cloud Native Computing Foundation in 2016, the applications
are still being discovered [3]. The platform is known for its
scalability and flexibility. It is designed to run on a cluster
of machines and can efficiently utilize the available hardware
resources. The hardware requirements for running Kubernetes
include a minimum of 2 CPU cores, 2 GB of RAM, and
20 GB of disk space [19]. However, these are just the
minimum requirements, and the actual hardware requirements
will depend on the size and complexity of the workload being
managed by Kubernetes. As the workload increases, more
CPU cores, RAM, and disk space will be required to ensure
optimal performance.

Because of these demanding requirements, K3s has been
developed. K3s is a lightweight version of Kubernetes that
is specifically designed for resource-constrained environments
such as edge devices, IoT devices, and small-scale deploy-
ments. K3s requires a minimum of 1 CPU core, 512 MB of
RAM, and 200 MB of disk space. This might not seem like
a huge difference, but as a lot of IoT components want to be
as small as possible, 1

4

th the size is an enormous change. For
this research, we will also be using the lightweight version
of Kubernetes, K3s. According to [7], the main benefit of
using K3s over K8s (Kubernetes) is the reduced amount of
disk usage. The usage of other components stays lower, yet
similar.

B. Advantages and disadvantages

Kubernetes has many advantages, but also some
disadvantages that need to be considered when implementing

this container orchestration system.

1) Advantages:
a) Scalability: Kubernetes allows for easy scaling of

applications by automatically managing the deployment and
scaling containers based on resource utilization. This ensures
that applications can handle increased workloads without
downtime or performance degradation [14].

b) Fault-tolerance: Kubernetes provides fault-tolerance
by automatically monitoring the health of containers and
restarting or replacing them whenever they fail. This ensures
that applications remain available and resilient to failures [9].

c) Resource efficiency: Kubernetes optimizes resource
utilization by dynamically allocating resources to containers
based on their needs. This helps to maximize the utilization
of hardware resources and helps reduce costs [14].

d) Portability : Kubernetes provides a platform-agnostic
infrastructure for deploying and managing applications. This
allows applications to be easily moved between different
environments, such as on-premises and cloud, without
requiring significant modifications [16].

2) Disadvantages:
a) Complexity: Kubernetes has a steep learning curve

and requires a deep understanding of its concepts and com-
ponents. Setting up and managing a Kubernetes cluster can
be complex and time-consuming [16]. The networking itself
can also be very complex, especially in multi-cluster or hybrid
cloud environments. Configuring and managing network con-
nectivity between containers and services can be challenging
[8].

b) Resource-demanding: Kubernetes introduces addi-
tional resource overhead due to the need for managing con-
tainers and orchestrating their deployment. This can result in
increased resource consumption compared to running applica-
tions directly on virtual machines or direct hardware [16].

c) Unreliable communication links: In edge computing
environments, there may be unreliable communication links
between edge nodes. This can impact the load-balancing
capabilities of Kubernetes [15].

The advantages are outweighing the disadvantages. How-
ever, the resource-demanding aspect of Kubernetes could be
a big factor in the consideration of Kubernetes deployment in
IoT as those systems try to be as compact as possible.

IV. HARDWARE IN IOT
A. IoT requirements

Before the research question can be answered, we must un-
derstand the requirements and goals of an IoT system. An IoT
(Internet of Things) system is characterized by the integration
of physical devices, sensors, and actuators with the Internet
and cloud-based services, enabling them to communicate and
exchange data with each other. An IoT system contains four
main layers: [11]

• Sensing Layer: Responsible for collecting data by using
sensors and actuators.

• Network Layer: Providing information and connectivity
between devices in IoT systems.

• Service Layer: Data processing of all received data.
• Interface layer: The interaction between the user and the

system.

The network layer is the most important for our research.
The network layer in IoT refers to the communication in-
frastructure that connects the IoT devices and enables data
transmission. It plays a crucial role in the performance and
efficiency of the overall IoT system and is especially important
when trying to implement Kubernetes as Kubernetes is very
hardware-demanding. The sensing layer and network layer
are the main layers that have compactness requirements,
the service layer could in theory be bigger and have fewer
limitations.

IoT is a very broad topic and the hardware needs of IoT
systems vary depending on the specific application and the
technologies used. In general, IoT systems require efficient
and fast communication between devices, which is facilitated
by messaging protocols. The choice of messaging protocol
can significantly impact the performance of IoT systems [10].
Other than that, some IoT systems need to process more
information than others, need to be more compact, or have
more devices connected. There are a lot of factors to take into
account and these requirements are incomparable. One thing
that holds value for all systems, is the hardware performance
improvement.

B. IoT hardware developments

1) Moore’s law: Moore’s law is a techno-economic model
discovered by Gordon Moore that has stood ground for
decades. He found patterns in the improvement rate of the
performance in technology and time. According to Moore’s
law, the performance and functionality of digital electronics
doubled roughly every 2 years within a fixed cost, power,
and area. Forecasts have been made previously that the law
would find its demise over time, yet every time they have
consistently been wrong [18]. Again, there are people trying
to prove that Moore’s law might be coming to an end and that
the performance increase might start to plateau. Aside from
some current limitations, no proof is provided yet.

2) IoT hardware developments: Looking toward the future,
the development of IoT systems is closely tied to advance-
ments in communication technologies. The upcoming 5G net-
work technology is expected to bring significant improvements
in data transfer speed and bandwidth, which will have a
positive impact on IoT applications [21]. Additionally, the
integration of technologies like artificial intelligence, big data,
and blockchain will further enhance the capabilities of IoT
systems [20]. Other than 5G network technology, crypto-
graphic accelerators can greatly improve the efficiency of
cryptographic functions [13]. These technologies are already
around but have yet to be implemented in IoT.

V. KUBERNETES AND IOT

As stated earlier, K3s’ minimum requirements are 1 CPU
core, 512 MB of RAM, and 200 MB of disk space. For this
research, K3s was deployed on a Raspberry Pi 4 Model B
[1]. The Raspberry Pi could handle this without any issues.
According to the website of K3s themselves, the container
orchestrator uses the resources shown in Table II. These tests
were performed on a Raspberry Pi 4 Model B with the
components shown in Table III. [4]

TABLE II
RESOURCE USAGE K3S ON RASPBERRY PI 4 MODEL B

Components Min CPU Min RAM

K3s server with a workload 30% of a core 1588 M
K3s cluster with a single agent 25% of a core 1215 M

K3s agent 10% of a core 268 M

TABLE III
RASPBERRY PI 4 MODEL B DETAILS

Arch OS CPU RAM Disk
aarch64 Raspberry Pi OS 11 BCM2711, 4 Core 1.50 GHz 8 GB USH-III SDXC

These results show that the requirements of running K3s
are very minimal and that there is plenty of space to include
security measures. This was one of the main concerns as
an important part of Kubernetes, as well as IoT, is the
transmission of information between different containers or
devices. These communication lines will have to be encrypted
in some way if they want to be secure. There are many options
out there that provide these security measures that do not take
up a lot of hardware usage. K3s has some security mitigations
applied by default yet allows the implementation of other
options as well. [2] [5]

The K3s agents are using much fewer resources than the
servers. These server nodes regulate everything and do not
necessarily have to be as compact as the agents. One of the
IoT systems’ requirements could be the compactness of certain
components. The fact that K3s agents do not necessarily need
a lot of computational power, provides this option. One of the
additional requirements may be that the K3s server component
has to be a little bigger.

VI. AUTOMATED PENETRATION TESTING

A. Security in IoT

In today’s digital age, where technology permeates almost
every aspect of our lives, the importance of security cannot
be overstated. IoT devices collect vast amounts of personal
data, often without users’ explicit knowledge or consent. This
data should be secured properly as it could otherwise be
misused, leading to serious privacy breaches. According to a
study conducted by the International Data Corporation (IDC),
by 2025, the number of connected IoT devices is expected
to reach 150 billion globally [24]. Such a massive influx of

devices necessitates proactive measures to protect user privacy
and prevent unauthorized access to sensitive information.

As IoT systems have an interconnected nature as they
consist of separate communicating components, they are an
attractive target for hackers. These different connections are
weaknesses and are tough to protect well. Unsecured IoT
devices can serve as entry points for cyberattacks, leading to
severe consequences such as data breaches, network intrusions,
and even physical harm.

B. Penetration Testing

Traditionally, systems tended to have reactive security mea-
sures. They tried to build flawless systems and fixed flaws
found by hackers. This was very inefficient and could be very
costly. Over time, penetration testing started to become more
and more popular. Penetration testing is a proactive measure to
protect a system by attacking it. Essentially, an attack will be
performed on a system to try to cause harm. If there are To
have a highly rated secure system, near-flawless penetration
testing is needed. Every fault is an entrance for intruders. [22]

As stated, penetration testing consists of active attacks. This
means that this cannot be set up passively and that it is hard
to automate. Every penetration testing attempt has to be set up
manually due to the complexity and diversity of IoT systems.
IoT systems already consist of a wide range of devices,
protocols, and communication channels. This makes it difficult
to develop a comprehensive and standardized automated pen-
etration testing approach. Additionally, the heterogeneity of
IoT systems can result in compatibility issues with automated
penetration testing tools, limiting their effectiveness.

C. Attacking K3s deployed IoT system

With the use of the work of M. Akula [6], vulnerable
scenarios could be deployed on the K3s deployed IoT system.
This git-hub user provides a ’playground’ which showcases
the common misconfigurations, real-world vulnerabilities, and
security issues in Kubernetes clusters, containers, and cloud-
native environments.

The given scenarios on Kubernetes Goat, M. Akula’s ’play-
ground’, provides a system with some specific weaknesses.
The goal is to retrieve ’secret’ information by attacking the
system on one of its weak spots. Individually, all these
scenarios could be solved with relative ease. The automation
of penetration testing to check if one part of the system is
vulnerable inquires that all these attacks should be performed
automatically. After which it can show which attacks work
and which do not.

To manually perform these attacks, a few simple lines of
code will do the trick. To start, multiple solutions to different
scenarios were added after one another in a Python script.
When ran, this script slowly tried multiple different possible
attacks and retrieved the results of all of the included attacks.
This approach worked but was fairly inefficient and retrieved
a lot of unnecessary data. To start to increase efficiency and
provide a clearer overview, different required components
were installed at the beginning of the script. Some of these

components were used in several of the attempted attacks.
This improvement decreased the run time of the script a little
but is assumed to have a bigger effect on a larger scale.
These components that needed installation could eventually
be incorporated into the final script if wished.

Even though we are looking for weaknesses only, this script
presents everything it found at the end. This includes a lot of
information that is not relevant to the attacker. The user of
the script did not have to specify what is being looked for
initially. To fix this, all results from all attacks were linked
to each other. Whenever the attacker found a result that was
looked for, the attack and its corresponding weak part of the
system were linked there.

This was much better, but could still use some
improvements. Eventually, a new option was added where the
attacker can search for some value, and the script would run
and return the attack which resulted in this value if found.
This only works if you specifically know the value you’re
looking for. But if the attacker does not know which value
is being looked for, it gets much more difficult. Normally
this would require human interaction, someone who notices
what seems to be off and insecure. This step has not been
automated in this research but is very important for its
automation.

All these attacks work automatically on this specific setup
with the Raspberry Pi 4 Model B. That does not mean that
this works on all IoT systems that have K3s deployed. A lot
of variables have to be altered in the scripts and some attacks
required an attentive eye.

It is important to note that some attacks were not performed.
For example, the DoS (Denial of Service) attack on the mem-
ory/CPU resources as this attack would stop the Raspberry Pi
from functioning which does not combine well with the other
attacks. As only a small part of the possible security risks
was checked, the duration of the script is not relevant to our
results.

VII. DISCUSSION

It has become clear that K3s is a feasible option for IoT
systems. Especially when realizing that these technologies are
still improving quite rapidly. The encryption of these systems
is possible as of now but might require improvements as
attacks get better and better. As for now, these should be
trouble-free when used by an average IoT user. However,
bigger companies, or people concerned more about their
security, might want to wait till more information is known
about these systems and their security.

Penetration testing is easily done manually on these IoT
systems with K3s deployed. And even though the automation
of this is possible, a lot of improvements can be made. These
improvements will not be easy as these scripts will have to
find out which information is useful or wanted. If this cannot
be done automatically by an algorithm, a lot of time will be
wasted going through all the results manually. Even though

some conveniences were added to the basic script, this does
define a fully automated penetration testing attack.

VIII. CONCLUSION AND FUTURE RESEARCH

K3s is a very good option to use in IoT systems. There
might still be some issues, but overall, it already works on the
existing hardware. The main problems it could face, concern
the hardware capabilities of separate sensors that have a tight
required compactness. If the processing of data can be done
elsewhere and its performance is capable of running a K3s
agent, no issues should be faced. Especially with the still-
improving hardware performance according to Moore’s Law.

Automation in penetration testing is hard to accomplish as
systems differ a lot from each other. A checklist of attacks on
different faulty scenarios can be conducted automatically, but
this is not flawless. Kubernetes is very complex, and therefore
its security is hard to guarantee, and its weaknesses are hard
to find with a simple script.

The approach that we took works for this specific IoT
system, but this will vary with different systems. There are
a lot of variables that need to be accounted for but have
not been automated in this script. Additionally in the current
automation, we pass all different attacks one by one. This
could be optimized by combining different attacks in similar
areas.

For future research, the compactness and automation of
penetration testing could be discovered further. In our case,
the efficiency of the script did not matter. But this could be
interesting when done on a larger scale. Which parts take up
a lot of time and how can they be improved? Lastly, a lot of
attacks require that the attacker knows what he is looking for.
The current solution cannot do that well, perhaps an algorithm
could find these relations and attack more specifically. These
different approaches could potentially solidify this method of
securing IoT systems if done properly.

IX. ACKNOWLEDGMENT

I would like to express my deepest appreciation to my su-
pervisor S. Simonetto and my coordinator dr. ir. A. Chiumento
for providing me with the opportunity to conduct this research
and for their guidance throughout.

REFERENCES

[1] The certified kubernetes distribution built for iot edge computing. URL:
https://k3s.io/.

[2] Hardening guide. URL: https://docs.k3s.io/reference/resource-profiling.
[3] Production-grade container orchestration. URL: kubernetes.io.
[4] Resource profiling. URL: https://docs.k3s.io/reference/resource-

profiling.
[5] Secrets encryption config. URL: https://docs.k3s.io/reference/resource-

profiling.
[6] M. Akula. Interactive kubernetes security learning playground. URL:

https://madhuakula.com/kubernetes-goat/.
[7] S. Böhm and G. Wirtz. Profiling lightweight container platforms:

Microk8s and k3s in comparison to kubernetes. In ZEUS, pages 65–73,
2021.

[8] Costa-Requena-J. Ivanciu I. Strautiu-V. Dobrota V. Botez, R.
Sdn-based network slicing mechanism for a scalable 4g/5g
core network: A kubernetes approach. Sensors, 21:3773, 2021.
https://doi.org/10.3390/s21113773 doi:10.3390/s21113773.

[9] Razik-L.-Monti A. Dähling, S. Enabling scalable and fault-tolerant
multi-agent systems by utilizing cloud-native computing. Auton Agent
Multi-Agent Syst, 35, 2021. https://doi.org/10.1007/s10458-020-09489-0
doi:10.1007/s10458-020-09489-0.

[10] Fernández-Caramés T. M. Fraga-Lamas P. Castedo L. Froiz-Mı́guez,
I. Design, implementation and practical evaluation of an iot
home automation system for fog computing applications based
on mqtt and zigbee-wifi sensor nodes. Sensors, 18:2660, 2018.
https://doi.org/10.3390/s18082660 doi:10.3390/s18082660.

[11] Bhat O.-Bhat S. Gokhale, P. Introduction to iot. International Advanced
Research Journal in Science, Engineering and Technology, 5(1):41–44,
2018.

[12] Yan L.-Liu Y. Li Y. Gou, Q. Construction and strategies in
iot security system. In 2013 IEEE International Conference on
Green Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, pages 1129–1132,
2013. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.195
doi:10.1109/GreenCom-iThings-CPSCom.2013.195.

[13] Lettieri G.-Perazzo P. Saponara S. Leonardi, L. On the hard-
ware–software integration in cryptographic accelerators for industrial iot.
Applied Sciences, 12:9948, 2022. https://doi.org/10.3390/app12199948
doi:10.3390/app12199948.

[14] Abbas S.-Soliman A. Alyas T.-Asif S. Faiz T. Niazi, M.
Vertical pod autoscaling in kubernetes for elastic container
collaborativeramework. Computers Materials Continua,
74:591–606, 2023. https://doi.org/10.32604/cmc.2023.032474
doi:10.32604/cmc.2023.032474.

[15] Kundroo M.-Park D. Kim S.-Kim T. Phuc, L. Node-
based horizontal pod autoscaler in kubeedge-based edge
computing infrastructure. IEEE Access, 10:134417–
134426, 2022. https://doi.org/10.1109/access.2022.3232131
doi:10.1109/access.2022.3232131.

[16] Kienast P.-Vinogradov G. Ganser P.-Bergs T. Rudel, V. Cloud-
based process design in a digital twin framework with inte-
grated and coupled technology models for blisk milling. Front.
Manuf. Technol., 2, 2022. https://doi.org/10.3389/fmtec.2022.1021029
doi:10.3389/fmtec.2022.1021029.

[17] Buffet O.-Hoffmann J. Sarraute, C. Pomdps make better
hackers: Accounting for uncertainty in penetration testing.
CoRR, abs/1307.8182, 2013. URL: http://arxiv.org/abs/1307.8182,
http://arxiv.org/abs/1307.8182 arXiv:1307.8182.

[18] R.R. Schaller. Moore’s law: past, present and future. IEEE
Spectrum, 34(6):52–59, 1997. https://doi.org/10.1109/6.591665
doi:10.1109/6.591665.

[19] Li Q.-Kraft P. Kaffes K.-Hong D. C. Mathew S. . . .
Zaharia M. Skiadopoulos, A. Dbos. Proc. VLDB Endow.,
15:21–30, 2021. https://doi.org/10.14778/3485450.3485454
doi:10.14778/3485450.3485454.

[20] J. Soldatos. Security risk management for the internet of
things: Technologies and techniques for iot security, privacy and
data protection. 2020. https://doi.org/10.1561/9781680836837
doi:10.1561/9781680836837.

[21] Shathik J.-Prasad K. Vikranth, K. Future enhancements and propensities
in forthcoming communication system – 5g network technology. J.
Phys.: Conf. Ser., 1712:012006, 2020. https://doi.org/10.1088/1742-
6596/1712/1/012006 doi:10.1088/1742-6596/1712/1/012006.

[22] C. Weissman. Penetration testing. Information security: An integrated
collection of essays, 6:269–296, 1995.

[23] Liu J.-Hou D. Zhong X.-Zhang Y. Zhou, S. Au-
tonomous penetration testing based on improved deep q-
network. Applied Sciences, 11(19):8823, 2021. URL:
https://www.proquest.com/scholarly-journals/autonomous-penetration-
testing-based-on-improved/docview/2580965017/se-2.

[24] Weatherill L. Zwolenski, M. The digital universe: Rich data
and the increasing value of the internet of things. Journal
of Telecommunications and the Digital Economy, 2:9, 05 2020.
https://doi.org/10.18080/jtde.v2n3.285 doi:10.18080/jtde.v2n3.285.

