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1 Abstract 

This study focuses on the segmentation of railway 
tracks, contact cables and catenary cables from LiDAR data of 
railway infrastructure. This is achieved by taking advantage of 
known railway characteristics, using linear algebraic 
techniques, and applying algorithms such as RANSAC and 
DBSCAN. The developed algorithm is applied to a few different 
railway segments from a larger dataset. The findings show that 
all objects of interest were correctly recognized, however the 
methodologies applied have their limitations. 

 

2 Introduction 

Object detection using LiDAR is a field of growing 
importance, it is being applied to fields such as robotics, 
autonomous vehicles, mapping, surveying, forensics, crime 
scene investigation, environmental monitoring, and 
infrastructure, just to name a few. This dependence on LiDAR 
technology is expected to grow dramatically in the coming years 
as the demand for automated technology continues to grow [3]. 
LiDAR technology enables the creation of extremely precise and 
thorough maps of the environment, allowing for detailed object 

extraction. These extracted objects can be used for many 
purposes, such as infrastructure monitoring, non-invasive 
archaeological mapping, elevation mapping of remote places, 
and much more. 

 LiDAR technology presents an opportunity to automate 
railway maintenance and safety analysis. By using LiDAR 
sensors mounted on inspection vehicles or trains, accurate 3D 
measurements of infrastructure can be collected. Automated 
algorithms can then analyze the data to detect defects, track 
geometry deviations, structural issues, and vegetation 
encroachment. LiDAR enables predictive maintenance, asset 
management, and data integration. Implementing LiDAR 
technology in railway infrastructure monitoring provides an 
opportunity to improve efficiency, reduce costs, and enhance 
railway safety. 

Railways in the European Union are considered safe, 
but improvements are needed to become a global leader in 
railway safety [9]. There are significant variations in safety 
performance among EU Member States, with over 2,000 
accidents occurring each year, costing EUR 1.4 billion and 
resulting in numerous fatalities and injuries [9]. While collisions 
and derailments represent a small portion of accidents, incidents 
involving rolling stock in motion and level crossings constitute 
the majority. Progress in reducing accidents has been limited, 
particularly in train collisions and derailments. More effort is 
needed to enhance infrastructure safety, investigation 
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processes, and occurrence reporting for a comprehensive 
understanding of risks and better risk management [9]. 

 In this study, our primary objective is to accurately 
segment railway tracks, contact cables, and catenary cables, as in 
Fig 1, enabling effective object detection. By achieving precise 
segmentation, one can establish a benchmark for future 
investigations, facilitating comparisons to identify any 
deviations from operational specifications and improve safety 
measures accordingly. Furthermore, we can use this type of 
object detection to detect variations in railway standards used 
and based on this information we can identify the compatibility 
of railway systems with each other. Object detection plays a vital 
role in various aspects of railway operations, including obstacle 
detection, continuous infrastructure monitoring, unauthorized 
intrusion detection, collision avoidance, and optimizing 
performance. Implementing these capabilities enhances the 
overall safety and efficiency of railway systems, ensuring 
smoother operations and reduced risks to passengers and 
personnel. 
 
This leads us to the following research question: 

 
“How can the segmentation of railway tracks, contact cables, and 

catenary cables from LiDAR point cloud data be achieved?” 
 

To address this question effectively, it is required to 
break down the research question into further sub research 
questions, provided below: 
 

• “What techniques can be utilized to differentiate 
railway tracks from other objects in LiDAR data? 

 

• “How can the LiDAR data be processed to accurately 
extract the contact cables? 

 

• “What methods can be employed to differentiate 
catenary cables from other objects in LiDAR data?” 
 
 

To answer the research questions posed above, the 
approach involves reviewing literature, collecting LiDAR data, 
developing segmentation algorithms, evaluating the 
performance of the designed algorithm, refining the developed 
algorithms, conducting testing, comparing with existing 
approaches, and providing implementation recommendations. 
These points will be discussed further in the upcoming sections, 
beginning with the literature review, dataset, methodology, 
results, discussions, and future work sections. 

 

3 Literature Review 

There have been a lot of studies done when it comes to 
object extraction from LiDAR data. However, most of these 
studies focus primarily on a few sectors, such as object detection 
in autonomous driving, road sign detection, vegetation detection 
and urban infrastructure detection (buildings, roads, etc.). Zheng 
et al. [8] implements a vegetation removal algorithm. Engels [10] 

propose a more robust method towards detecting objects at 
different distance in regards to autonomous driving. Hui et al. [5] 
implements a new method of object-based building extraction. 

The next studies reviewed are specific towards object 
detection in railway infrastructure. Damjan [4] proposes a 
methodology for extracting the railway tracks from LiDAR data 
using height classification, eigen decomposition and a region 
growing algorithm.  Lou et al. [6] proposes a different approach 
compared to the previous author for railway track detection 
using the physical shape of the railway track, geometrical 
properties, and the reflection intensity feature. Zhang et al. [7] 
proposes a method of detecting solely the power lines, using a 
self-adaptive region growing method to detect the power line 
parallel with the rials. Arastounia [2] proposes a method for both 
template matching and region growing for detecting rail and 
wire points based on known railway architecture characteristics. 
Additionally Arastounia [1] proposes a new faster method for his 
region growing implementation from his previous work by 
implementing eigen decomposition and making it more data-
driven. 
 

4 Dataset Overview 

The datasets used in this research was provided by 
Strukton Rail, and is a laser point cloud file, which is one of the 
file formatting standards used during the data collection step. 
The first dataset contains over 80 million data points. The 
dataset covers an aera of 16,474,959 m2 around the Delft central 
station located in the south of the Netherlands. In addition to the 
railway infrastructure the dataset also includes buildings, tram 
lines, roadways, water ways and bicycle paths, just to name a 
few. The data contains the X, Y, Z coordinates, the scale factor of 
each coordinate axis, the unscaled x, y, z coordinates, the offsets, 
the max and min values, and much more. On the other hand, the 
dataset is missing some crucial information specifically the EPSG 
codes. The EPSG code also known as the European Petroleum 
Survey Group codes are a standardized system used to identify 
and reference coordinate systems and geospatial parameters. 
Thus, leaving the units of the coordinate open to interpretation, 
however, most of the LiDAR in the Netherlands is recorded in the 
RD-coordinate system. Through testing it was identified that this 
is the case for the dataset being used. Fig 2 below provides an 
overview of what the data looks like when visualized from a top-
down perspective, while Fig 3 provides a cross sectional view of 
the data that is focused on the railway segment. 
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Figure 2 Top-down view of data.              Figure 3 Cross section view of data. 

 
The data in Fig 3 at looks like it is missing data values 

specifically those representing the catenary archways and 
overhanging cables, this is true as the data was collected using 
airborne laser scanning also know as ALS. On further inspection 
it is identify that the due to the top-down scan and overlapping 
nature of the cables and catenary arch way top cause the contact 
cables and catenary arch way mast to be less point dense then 
the rest of the objects of interest in the dataset. Furthermore, the 
dataset is initially classified in just two classes ground and 
unclassified. As the data is passed through the algorithm, the 
points are reclassified as rail track, contact cable and catenary 
cable. 

The second dataset used is a collection of smaller 
railway segments, each one of these segments contains 
approximately about 600,000 datapoints and have an 
approximate aera of 2500m2, in total there are 86 of these 
segments which vary in both shape and size, however, we will 
only work with a few pre-determined number of data segments. 
This dataset, like the previous one contains all the relevant 
information but once again misses out on the EPSG codes. 
 

4 Software’s used for Programming and Visualization 

4.1 CloudCompare 

 CloudCompare is used to visualize, segment, transform, 
etc. the data. In this study CloudCompare is used to segment out 
a small part of the data set, as well as visualize the results based 
on point classification. 
 

4.2 Python 

 Python was the coding language of choice to create the 
algorithm for the segmentation task, specifically Jupyter 
notebook was used to run and test the code in small blocks 
without having to iterate over all the code again during 
debugging. Libraries such as laspy, numpy, pandas, sklearn, 
scipy, and plotly were used to implement the necessary 
algorithms to complete the segmentation task. 
 

5 Methodology 

This section covers the processes involved in 
segmenting the railway tracks, contact cables and catenary 
cables from a laser point cloud file. Section 5.1 covers steps 

involved in data preprocessing. Section 5.2 covers steps involved 
with the seed point selections of each component respectively. 
Moving forward we will primarily cover the methodologies used 
for the first dataset. 

 

5.1 Data Preprocessing 

 Given the original dataset is too large to effectively 
segment out the identified railway components, the original 
dataset is segmented into a much smaller dataset, primarily 
containing a small railway corridor with dimensions of 225 
meters in length, 10 meters in width and 9 meters in height. 
Furthermore, the ground points are filtered out, leaving only the 
unclassified points to work with. This results in the total number 
of points being 110,452 which is already a large reduction from 
80 million points and should help with computation times. 
Furthermore, the new data segment is also fitted to the X axis to 
allow for easier distance calculations in later sections. Fig 4 
presents a horizontal view of the new data segment; from this 
one can clearly see the track bed as a bright blue line while the 
catenary cables are represented as a light blue line and the 
contact cables are barely visible. The brightness of the lines is 
directly proportional to the density of the points in that space. 
The same hold true for Fig 5 which displays a cross sectional 
view of the new dataset, here the track bed and rail track points 
are clearly visible while the overhanging cables are barely 
noticeable.  
 

 
Figure 4 Horizontal view of the new data. 

 
Figure 5 Cross sectional view of the new data. 

 Now that a rather useable data segment is obtained, the 
data preprocessing can begin by applying a height based coarse 
classification on the data points. This is possible as the railway 
characteristics for the Netherlands is publicly available, and 
these facts can be used to break the dataset down into four 
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different clusters. Primarily the track bed cluster, contact cable 
cluster, catenary cable cluster, and another cluster containing 
points that are no of interest and are thus disregarded. 

 The track bed cluster includes points belonging to the 
track bed and rail track, this is obtained by calculating the 
median height of all points in the data segment. It can be argued 
that the median height of the all the points is approximately the 
track bed height since the highest cloud point density occurs on 
the track bed. Once the median height is obtained, one can create 
a window to look for points that are either 0.5 meters above or 
below the median height. This results in the minimum and 
maximum possible track bed height as in equation 1 and 2 below. 
All points that fall within this window are reclassified 
accordingly. 
 

Maximum Track Bed height = median height + 0.5                     (1) 
 

Minimum Track Bed height = median height - 0.5                     (2) 
 

 The contact cable cluster includes points that belong to 
the contact cable as well as possible points that belong to the 
catenary arch mast. Now that the value of maximum track bed 
height is available, one can use their knowledge of the height of 
the contact cable above the maximum track bed height to 
identify the contact cable points, in this case the contact cable 
lies between 6 and 6.7 meters above the maximum track bed 
height. The catenary cable cluster includes points belonging to 
the catenary cable, as well points that belong to the catenary 
arch, using the same concept as earlier it was identified that the 
catenary cables lie above 6.7 meters above the maximum track 
bed height 
 With the height characteristics of each cluster known 
we can iterate over all the points of the point cloud in the Z axis 
and classify the points according to their respective cluster. 
Found below is the associated pseudocode for the coarse 
classification: 
 

• Notation: LasFile: preprocessed data segment; coH: 
contact cable height from track bed; caH: catenary cable 
height from track bed; tbH: track bed height; mitbH: 
minimum track bed height; matbH: maximum track bed 
height; tbC: track bed cluster; uC: unwanted cluster; coC: 
contact cable cluster; caC: catenary cable cluster; micoH: 
minimum contact cable height relative to track bed; 
micaH: minimum catenary cable height relative to track 
bed 

• Input: LasFile, coH and caH 

• Calculate tbH as the median height of all the points 

• Set the mitbH and matbH 

• Set the micoH and micaH 

• For ∀Point ∈ LasFile 
o if point >= mitbH and point < matbH 
o reclassify the point as tbC 
o else if point >= matbH and point < micoH 
o reclassify the point as uC 
o else if point >= micoH and point < micaH 
o reclassify the point as coC 

o else if point >= micaH 
o reclassify the point as caC 

• end for loop on point 

 
 
 

5.2 Object detection 

5.2.1 Railway Track extraction 

 To detect the railway track points from the track bed 
segment obtained in the previous section, Eigen decomposition 
along with the RANSAC algorithm is utilized.  

For each point in the track bed segment a 3D spherical 
object is created, this object contains the neighbors of the 
selected point for which a covariance matrix is constructed, 
through eigen decomposition the eigenvalues and eigenvectors 
are obtained. For this case we are most concerned with the 3rd 
eigen value, also known as λ3, since λ3 looks at the variance 
between points in the Z direction. The value of the variance in 
the Z direction is important, since the rail track sits above the 
track bed and thus points belonging to the track are most likely 
to have a high variance when compared with its neighbors. 

 Through visual testing it was found that a variance 
threshold of 0.07 was the best fit as it resulted in the least 
information loss. The λ3 is then compared against the variance 
constraint, and points that meet this criterion are then compared 
with the 90th height percentile within each point neighborhood, 
if the point neighborhood is larger than the 90th height percentile 
the point is then labelled as being part of the railway track. These 
calculations resulted in a point reduction from over 100,00 
points to 46,000 points for the railway segment under 
consideration. 
Passing the points labelled as being part of the railway track of 
into the RANSAC algorithm allow us to find all the points that lie 
in a line with the highest Z space point density. RANSAC is used 
to fit lines to the extracted points from the previous step. The 
algorithm iteratively identifies inliers (points on the detected 
line) and removes them based on an inlier threshold value. 
Additionally, we calculate the average y value of each line and 
find lines that lie 1.435 meters apart from each other as this is 
the track gauge, with some level of tolerance to account for 
misclassified points. The railway track points are then 
reclassified accordingly, thus allowing for multiple rail track 
detection. Found below is the associated pseudocode for the 
railway track detection, the first pseudocode is for the eigen 
decomposition step used to identify candidate railway track 
points and the second pseudocode is used to detect the railway 
track lines using RANSAC: 
 

• Notation: tbC: track bed cluster; np: neighboring points; 
r: radius around which to construct the 3D sphere; ec: the 
eigen constant threshold; cp: candidate rail track points; 
cM: covariance matrix; λ3: eigenvalue; hp: 90th height 
percentile 

• Input: tbC, r, ec 

• Set cp = [ ] 

• For ∀Point ∈ tbC 
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o Construct np as the 3D spherical point 
neighborhood using the given r 

o Calculate cM as the covariance matrix of np 
o Calculate the λ3 eigenvalue of pN using PCA on 

cM 
o If λ3 >= ec 

▪ Calculate hp of np 
▪ For ∀point ∈ np 

• If point > hp 

• Add point to cp 
▪ End for on point 

o End if on λ3 

• End for on Point 

 
 

• Notation: cp: candidate rail track points; mlp: 
minimum points in line; dt: detected lines from 
RANSAC; rt: railway track points; iT: inlier threshold 
value; ay: average y value; li, lj: lines detected from 
RANSAC; tg: track gauge in meters; tol; tolerance value 

• Input: cp, mlp, iT and tol 

• Set dt = [ ] 

• Set rt = [ ] 

• Calculate dt as all possible lines using RANSAC with the 
iT and mlp values 

• For ∀ li ∈ dt 
o For ∀ lj∈ dt 

▪ Calculate ay of li 
▪ Calculate ay of lj 
▪ If absolute value of (li -lj) < tg – tol 

and > tg + tol 

• Add li and lj to rt 
▪ End if 

o End for on lj 

• End for on li 

 
 
5.2.1 Contact cable extraction 
 To detect the contact cables, the DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) is used. 
DBSCAN is a density-based clustering algorithm that groups 
together data points that are close to each other in terms of a 
specified distance metric. In this case, the Euclidean distance 
metric is used. The algorithm takes two parameters: epsilon, 
which defines the maximum distance between two points for 
them to be considered neighbors, and minimum number of 
samples, which specifies the minimum number of points 
required to form a dense region or cluster. The algorithm assigns 
labels to each point based on their cluster membership. Points 
that are not assigned to any cluster are considered noise points. 
For each unique cluster, the equation of the curve is calculated 
are cross checked against the parabolic curve equation and if the 
cluster closely resembles the equation, then it is considered as a 
contact cable. Found below is the associated pseudocode for the 
contact cable detection: 

 

• Notation: coC: contact cable cluster; ep: epsilon value; 
mpC: minimum points to be considered a possible 
contact cable; cocDb: contact cables clusters identified 
by DBSCAN; ce: equation of the curve for comparison; 
dce: detected curve equation 

• Input: coC, ep, mpC 

• Set co = [ ] 

• Calculate the cocDb using the ep and mpC values 

• For ∀cluster ∈ cocDb 
o Calculate the dce of cluster 
o If dce = ce 

▪ Add cluster to co 
o End if 

• End for on cluster 
 
 

6 Results 

Using the methodology described in section 5, it was 
possible to detect both the railway tracks and contact cables. 
However, there are some limitations that should be noted, which 
will be addressed in the section 8. 
 

 
Figure 6 Horizontal view of the applied coarse classification on the dataset 

 
Figure 7 Cross sectional view of the applied coarse classification on the 
dataset 

 Figure 6 and Figure 7 visualize the output of the coarse 
classification step that was used in section 5.1.  The bright yellow 
points belong to the catenary cable cluster, the light-yellow 
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points which are a bit difficult to see belong to the contact cable 
cluster and the green points belong to the tack bed cluster. The 
intermediary points between the track bed and the contact 
cables have been removed as we are not interested in them. 

 

 
Figure 8 Line detection using RANSAC 

 
Figure 9 The rail track points overlayed on the existing points 

 Figure 8 and Figure 9 visualize the output of the 
Railway Track extraction as described in section 5.2.1. We can 
see that the RANSAC algorithm was able to successfully detect 
the railway track points, which are highlighted in red. These 
points have been overlayed over the point classification 
obtained from the heigh based coarse classification. 
 

 
Figure 10 Contact cable detection using DBSCAN highlighted as 
purple points 

 Figure 10 visualize the contact cables that have been 
detected using the DBSCAN algorithm described in section 5.2.2. 
The purple points indicate the points belonging to the contact 
cable. 
 

Dataset segments IOU on track IOU on contact cable 

1 (straight railway corridor) 0.45 0.81 

2 (straight railway corridor) 0.52 0.63 

Table 1 Results of IOU on each tested segment 

  Table 1 provides the results of the algorithms 
object detection compared with a manually segmented version 
of the same data using the IOU (intersection over union) metric. 

 

7 Discussions 

The obtained results are rather difficult to evaluate at 
an object and point cloud level, due to the lack of a true ground 
truth value. However, we decide to use IOU (intersection over 
union), by comparing the results obtained from the algorithm 
with a manually classified version of the same dataset as seen in 
Table 1 above.  

For the first data segment we see in IOU value of 0.45 
for the track and 0.81 for the contact cable. Regarding the track 
detection we can attribute the low IOU value to the manual 
classification as well as to the fact that the lines detected mainly 
detected the center of the railway track itself and not its edges. 
Regarding the catenary cable we can attribute the much higher 
result to the fact that the point cloud density in the dataset for 
the contact cables were low and thus most of the points detected 
were done successfully. 

For the second data segment which had much higher 
contact cable point density we can start to see a drop in the IOU 
value to 0.63 which can be attribute to the fact that the cables 
had a much smaller curve to them and thus there was some 
misclassification occurring in the detection step, as well as there 
being a slight curve on y axis for the contact cables . 

Based on a visual analysis of the above figures we can 
see that the results were rather successful in answering two of 
the three sub research questions that were posed. Referring to 
Figure 6 and Figure 7 we can see that almost all the points were 
correctly classified according to their respective clusters. There 
is a presence of outliers when it comes to separation of the 
contact cable cluster and catenary cable cluster, since the lowest 
point on the catenary cable lies at height that is just slightly 
higher than some of the points that belong to the contact cable 
cluster and thus, we can say that these points have been 
misclassified in the coarse classification step. 

Additionally in Figure 8 and Figure 9 we can see that 
some of the points that belong to the railway track were 
misclassified as being part of the track bed. This could be a result 
of the elevation in the dataset and scan angle of the LiDAR 
scanner. Points belonging to the left rail pair, that sat at the 
lowest elevation points in the dataset were not classified 
properly. 

Regarding the contact cable detection, we already 
highlighted a few issues in the coarse classification, where some 
points were classified as being part of the catenary cable 
segment and thus were not considered when running the curve 
detection algorithm using DBSCAN and thus only partial curves 
were detected. Mainly losing information about where the 
contact cables connect to on the catenary arch ways. 
Furthermore, we can see the low point density in the contact 
cable segmentation, that was a result of the ALS equipment that 
was used to collect the data. 
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8 Future work 

 For future research we must considered a few 
limitations of the dataset regarding the contact cables, and 
methodologies used for rail track detection. As well as propose a 
method for the segmentation of the catenary cables based on 
some of the literature review done earlier. Since this was not 
successfully implemented in this study and thus was left out of 
the methodology section. 
 

8.1 Dataset Limitations and Segmentation Challenges 

The dataset used for the segmentation of LiDAR data 
for railway infrastructure had several limitations that posed 
challenges for accurate segmentation. Firstly, the dataset lacked 
thorough documentation, which made it difficult to gather 
comprehensive information about the data. In particular, the 
absence of metadata, such as EPSG codes, made it challenging to 
properly interpret and analyze the spatial coordinates of the 
LiDAR points. 

Furthermore, the dataset presented challenges in 
segmenting the contact cables due to the scan angle. The scan 
angle of the LiDAR sensors resulted in a lack of sufficient points 
for effectively identifying and segmenting the contact cables. 
This limitation impacted the accuracy and completeness of the 
segmentation results, as the insufficient data hindered the ability 
to precisely delineate the contact cables in the LiDAR point 
cloud. 

These dataset limitations highlight the importance of 
thorough documentation and comprehensive metadata for 
LiDAR datasets, especially in the context of railway 
infrastructure segmentation. Access to accurate and complete 
metadata, including EPSG codes, is crucial for correctly 
interpreting the spatial information and ensuring the accurate 
segmentation of railway infrastructure components, such as 
contact cables. Additionally, careful consideration of the scan 
angle during data collection is essential to capture sufficient 
points for effective segmentation and ensure accurate results for 
railway infrastructure analysis and monitoring. 
 

8.2 Railway Track Detection Limitations and the Need for Robust 

Methods 

 

The detection of railway tracks in the data also faced 
certain limitations that necessitate the development of more 
robust methods to enhance accuracy and reliability. One 
significant limitation pertains to the challenges posed by 
elevation changes and curves along the railway track. These 
elevation changes can introduce complexities in accurately 
detecting and segmenting railway tracks. 

To address this limitation, it is essential to develop a 
more advanced data driven algorithm and technique that can 
effectively handle elevation changes as well as curved data 
segments. These methods should account for variations in the 
height of the railway track and adjust the detection process 
accordingly. By incorporating elevation information and 
considering the unique characteristics of railway infrastructure, 

such as track slopes and inclines, more accurate and reliable 
detection results can be obtained. 

To address the limitation brought about by segmenting 
curved railway track segments we need to develop the algorithm 
further to get more conclusive results. The main challenge faced 
in this limitation is correctly identify the railway track points 
from the RANSAC algorithm, we would need to first identify 
some metric or constraint value that can help narrow down the 
number of possible railway track lines output by RANSAC. 

 

8.3 Proposed methodology for the segmentation of the Catenary 

Cables 

 Based on the literature review done at the start of this 
study, one possible method of detecting the catenary cable 
would be to use a region growing algorithm based on the 
detected railway tracks and using certain criteria such as point 
density, vertical height variation, or geometric properties of the 
points within the growing region. Implementing this based on 
the methodologies proposed by Arastounia [1], should allow for 
accurate segmentation of the catenary cables. 

 
 

9 Conclusion 

 
This study can detect the railway tacks and contact 

cables with a certain level of confidence. Using eigen 
decomposition and the RANSAC algorithm the railway track was 
successfully segmented. Using the DBSCAN algorithm and curve 
fitting the contact cable were also successfully extracted. 
However, this study failed in the extraction of the catenary 
cables, but propose a methodology in section 8, that provides a 
small bit of insight on how the methods implemented in this 
study can be grown to incorporate this feature as well. 
  
“How can the segmentation of railway tracks, contact cables, and 

catenary cables from LiDAR point cloud data be achieved?” 
 

• “What techniques can be utilized to differentiate 
railway tracks from other objects in LiDAR data? 

 

• “How can the LiDAR data be processed to accurately 
extract the contact cables? 

 

• “What methods can be employed to differentiate 
catenary cables from other objects in LiDAR data?” 

 
With regards to the research questions above we can 

conclude that we were able to successfully achieve two of the 
three research questions that have been posed, with a high level 
of confidence. The third sub research question was not able to be 
answered due to the approach used for the other two research 
questions and a proposed methodology can be found in section 
8.3 Through visual analysis we were able to get a good amount 
of data segmented correctly. 
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APPENDIX 

 

 
 

The above image is the result of the algorithm on the second data segment from a cross sectional view. 

 
 
 
 
 

 
The above image is the result of the algorithm on the second data segment from a horizontal view. 


