
Investigating the Feasibility of Time

Synchronization in Bluetooth Low Energy

Networks: Protocol Design and Experimental

Validation

Merlijn Siffels - University of Twente

July 2023

1

1 Abstract

Bluetooth Low Energy (BLE) has gained widespread adoption as the wireless
protocol for Internet of Things (IoT) devices, encompassing various domains
such as medical, personal, and technical applications. To facilitate specific ap-
plications that rely on a shared and accurate timebasis, the research and testing
of a shared timebasis protocol for BLE has been undertaken. The primary ob-
jective of this thesis is to design and research the possibility of a Bluetooth Low
Energy time synchronization protocol capable of being used at BSS in their
pain research. Having a synchronized timebasis will allow for faster analyzing
of evoked potentials in EEG measurements. To validate the effectiveness and
possibilities of a protocol, experimental testing is conducted, evaluating per-
formance of the Silabs Explorer kit in terms of synchronization accuracy, and
reliability. The results obtained will provide valuable insights into the feasibility
of time synchronization in Bluetooth Low Energy networks. The suggested pro-
tocol is divided in 3 stages. A connection phase, where the offset of the internal
timers is corrected. A start-up phase, where the expected drift is measured and
extrapolated to adjust the internal timers. And an active Resync phase, to keep
the internal timers in sync indefinitely.

2

Contents

1 Abstract 2

2 Introduction 4
2.1 What is Time Synchronization 6
2.2 Barriers to Time Synchronization 6
2.3 What is Bluetooth Low energy 7
2.4 Terminology . 7
2.5 Relevance of Time Synchronization 8
2.6 Use Cases . 8

2.6.1 BSS-group UTwente - Actuator based network 8
2.6.2 TMSi - Sensor based network 9

3 Existing BLE Synchronization protocols 9
3.1 Bluesync . 9
3.2 Synchronization in wireless biomedical-sensor networks with Blue-

tooth Low Energy . 10

4 Developed BLE-Protocol 10
4.1 Limitations . 10
4.2 Software and Hardware . 11
4.3 Connection Phase . 12
4.4 Drift estimation phase . 13
4.5 Resync Packets . 14
4.6 Adjusting Timers . 14
4.7 Timeline of the Protocol . 15

5 Experiments 18
5.1 Connection event . 18

5.1.1 2 different hardware tested for the Connection event . . . 18
5.2 Accuracy and drift of the timers 18
5.3 Drift Correction . 18
5.4 Connection interval Behaviour 19
5.5 Notification Behaviour . 19

5.5.1 Notification Transmission time 19

6 Results 20
6.1 Connected event . 20

6.1.1 Silabs Explorer kit . 20
6.1.2 Nordic Development board 20
6.1.3 Behaviour and drift with only the connected event 21

6.2 Startup Drift correction - Connection Interval 22
6.3 Drift correction - Notification . 24

7 Discussion 26
7.1 Known issues . 26

3

7.2 Doubts about BLUESYNC sync error calculations 27
7.3 Problems with IDE . 27
7.4 Connected-Event . 27
7.5 Offset-only Drift . 28
7.6 Startup-Drift . 28
7.7 Notification packets . 29
7.8 Connected Event Expansion routes 29
7.9 Next steps . 29

8 Conclusion 30

2 Introduction

This paper will be about the development and implementation of a time synchro-
nization protocol in Bluetooth low energy(BLE). At the University of Twente
the BSS department is engaged in pain research. In this research they provide
an electrical stimulus through a device called an Ambustim. After providing this
electrical stimulus they measure the brain response using an EEG. Currently
the setup is wired, and they are moving to a wireless setup to remove potential
points of failure. This setup can be seen in Fig: 2. A problem that arises by
moving to wireless setup is the fact that it will become uncertain when certain
actions have taken place relative to other devices in the wireless network. This
is due to the fact these devices all have their own internal timer, with their own
characteristics. The new setup will be controlled from a central server, a com-
puter, and will have multiple peripheral devices, the Ambustims and the EEG.
Through the measurement of multiple brain responses a signal can be derived.
It is essential for the EEG signals to know when the stimulus was provided,
as the signal should be overlaid. If there is an offset of when the response is
expected, relative to the actual stimulus, will cause the brain response to be
measured as noise, instead of as the signal. This can also be seen in Fig:1.

4

Figure 1: Example of how overlaying multiple measurements from an evoked
potential can result in deriving a signal, while from one measurement deriving
an accurate signal would be improbable. [1]

Thus to avoid this a time synchronization protocol is developed with the
goal of a maximum time synchronization drift relative to the server timer of
500 µs. This is determined by the sample rate of the EEG, the EEG makes a
sample every 500 µs.

5

Figure 2: Overview of the Setup of BSS. A computer which acts as a central
server, with client devices which connect with this computer. The timers of
these client devices follow the timer of the root server.

2.1 What is Time Synchronization

In the context of this thesis, time synchronization refers to the coordination
of actions performed on wireless devices, ensuring that these actions occur si-
multaneously when observed from an external perspective. It entails aligning
the internal clocks of different devices to a shared time basis, enabling precise
coordination and accurate timing of events. With time synchronization, if a
specific action is intended to occur at a particular moment, when it happens
synchronously across multiple devices, this means that the devices are synchro-
nized in time. In the context of pain research it will allow for the accurate
overlaying of evoked potentials to derive a brain response. This is because the
moment that a stimulus was provided is known by the EEG and the Ambustim,
which provides trigger points of evoked potentials.

2.2 Barriers to Time Synchronization

There are 2 elements that makes wireless devices not synchronized, this is the
offset and crystal drift. Each wireless device has an internal timer. The first
problem arrives from the offset between 2 different timers. When a device is
turned on their internal timer will start counting, it is unknown to this device

6

when another device was turned on. While one device might have their internal
timer at minute 5 of operation, a newly turned on device will start counting
from 0. This is the offset between devices which has to be resolved. When this
offset is resolved the second barrier to time synchronization becomes apparent,
this is the timer drift over time. Internal timers, when compared to a reference
timer, will drift away from this timer. To understand this what must first be
discussed are the crystals that are used by devices. Crystals are used for their
ability to vibrate at a certain frequency. This frequency is used as a clock for
actions to be performed on these devices. These crystal are accurate, but not
perfect. It is best explained with an example. A crystal might be assumed
to have a frequency of 1 MHz. However, in production it is not possible to
guarantee that the crystal will vibrate at this exact frequency. It might vibrate
at a frequency of 0.999995 MHz. This is a deviation of 5 parts per million from
the advertised value, and will result in timers that are based on this crystal to
drift away from a 1 MHz crystal timer at a rate of 5 µs per second. Over an
operation of one hour this results in a drift of 18 ms.

2.3 What is Bluetooth Low energy

Bluetooth low energy is a wireless protocol that is increasingly becoming more
popular in the Internet of Things. It is more flexible than Bluetooth classic in
regard to protocols. Where Bluetooth Classic has a call robin protocol where it
communicates with up to 7 nodes. BLE organizes communication through con-
nection intervals. In BLE the protocols can and often are designed by the devel-
oper for a specific application. Another difference between BLE and Bluetooth
classic is the power consumption of the wireless communication. Bluetooth low
energy consumes less power compared to Bluetooth Classic which makes BLE
the preferred choice for most portable battery applications, especially medical
devices, use BLE over Blueooth Classic. However, with the drop of power con-
sumption BLE has a lower data transfer rate compared to Bluetooth classic.
[2]

2.4 Terminology

In order to have firm grasp on BLE protocols it is important to define the terms
used in the paper. In BLE there are 2 roles. These are the slave and master roles,
which are now known as the central an peripheral role. A peripheral device,
is a device that provides data or services to other devices in the network. It
typically operates in the advertising mode, where it broadcasts its presence and
available services. Peripherals can be sensors, actuators, or any device that
generates or collects data to be used or consumed by other devices. A central
device in BLE is a device that initiates and manages connections to peripheral
devices. It scans for nearby peripherals, establishes connections with them, and
can request or receive data or services from the connected peripherals. Central
devices are usually smartphones, tablets, or other devices that interact with and
control peripherals.

7

Besides Central devices and peripherals there are other terms of BLE with
a different functionality. These are the Server and Client roles.

The server is a computing system or application that provides services, re-
sources, or data to other devices or applications. It is responsible for processing
requests from clients and responding with the requested information. The server
hosts the services or data and waits for clients to connect and make requests.

The client is a device or application that requests services or data from a
server. It initiates communication with the server, sends requests for specific
information or services, and receives the responses from the server. Clients
can be computers, smartphones, IoT devices, or any device or application that
interacts with and consumes the services provided by the server.

In most applications the central device is the client, while the peripherals
are the server.

Another commonly used term is a connection interval. A connection interval,
within the context of BLE, refers to a predefined time duration during which
two BLE devices exchange data packets within an established connection. It
represents the interval at which the central device and the peripheral communi-
cate with each other. The ranges of a connection interval are typically between
20 ms and 100 ms.

2.5 Relevance of Time Synchronization

In the next section 2.6 the specific use cases and importance of having syn-
chronized wireless devices defined in the context what this report will focus
on. Other uses for a synchronized timebasis is to reduce power consumption.
Certain medical devices sleep for prolonged times to conserve power. With an
uncertain drift of the internal timer crystals when these devices wish to re-
establish a connection it will cause for trouble. It forces the devices to be awake
for a longer period of time to give leeway in case the timers have drifted greatly.
Or the devices have to re-establish their connection periodically to ensure that
the drift never becomes unrecoverable. With a synchronized timer that has cor-
rected for this drift the system will be able to stay awake for a shorter time, or
the re-connection period can increase. In both cases the power consumption is
decreased with no drop in capabilities.

2.6 Use Cases

2.6.1 BSS-group UTwente - Actuator based network

At BSS BLE is used for the control of stimulation’s. Then EEG data is mea-
sured and saved. These stimulation’s are provided by Ambustim devices. A
measurement session can have hundreds of stimulation’s and brain responses.
The timing and intensity of electrical stimulation’s of the Ambustim is controlled
through BLE. These controls are short data-packets are send infrequently, every
second. There is a low demand of bandwidth for the application, the commands
to the Ambustims, to run.

8

As stated in , the sample rate of the EEG is one sample every 500 µs. To
get all measured response signals overlayed, the requirement of a maximum
synchronization drift of one sample is derived. This will allow for the EEG
to set trigger points of when a stimulation was provided. Using these trigger
points and the hundreds of measurements will allow for the brain response to
the stimulation to be quickly and accurately be processed. Through overlaying
the measurements.

The entire setup at BSS will be controlled from a central computer which
servers as the server and root timer. The internal timers of the Ambustim and
the EEG will follow a protocol that makes them follow the root timer of the
computer. These timers of peripheral devices will be called peripheral, or client
timers. While the root timer is also called the central timer.

2.6.2 TMSi - Sensor based network

TMSi also implements a stimulator and EEG setup. The largest difference be-
tween the system of BSS and of TMSi systems is that TMSi is transmitting
the EEG data through BLE, which creates a continuous demand of bandwidth.
This limit of available bandwidth provides for a different challenge and environ-
ment compared to the setup of BSS. The nigh-guarantee of having a packet at
the start of a connection interval provides an opportunity for time synchroniza-
tion. To reduce the bandwidth usage of the protocol TMSi has suggested using
fluctuations in length of the connection interval to estimate the drift between
the root timer, and the peripheral timers. Using the fluctuation in length of
the connection interval requires no unique synchronization data packets to be
send, and thus this method requires no bandwidth to work. This principle will
be explored in more detail in 3.2.

3 Existing BLE Synchronization protocols

BLE is a relative new wireless communication protocol. The is no time syn-
chronization protocol that is yet common place. There are 2 major barriers to
time synchronization that a system should overcome. These are the offset and
crystal drift of timers.

3.1 Bluesync

Bluesync is an accurate time synchronization protocol built around a short
startup time to estimate the crystal drift of different timers in the network. It
experiments with different drift correction algorithms that are based on receiv-
ing a notification from the central clock periodically. The peripheral timers then
measure their error compared to this central time and use this to create a drift
correction algorithm. From Bluesync it becomes evident that having more mea-
surements for drift estimation will reduce the error of the timers. The protocols
are used are based on the average error or linear regression. With the startup

9

phase lasting as short as 800 ms and as long as 16 seconds. And it compares
the results of the different implementations. From these tests it became evident
that using a linear regression algorithm will reduce the error the greatest. As
well as having more and longer intervals between measurements improve the
estimated drift.[3]. This protocol does not have an indefinite synchronization,
meaning that the longer the devices are operational, the greater the synchro-
nization error between the devices. A major difference between Bluesync and
the application of BSS is that the devices in Bluesync do not engage in a connec-
tion with each other. There is no data transfer between devices. And the client
timers follow the timer of a wireless device that operates as a BLE beacon.

3.2 Synchronization in wireless biomedical-sensor networks
with Bluetooth Low Energy

In Synchronization in wireless biomedical-sensor networks with Bluetooth Low
Energy, also referred to as Bideaux, they attempted different methods of re-
ducing the offset of timers. From Bideaux it becomes evident that using the
connected event that is provides by the Bluetooth low energy stack can re-
duce the offset to be on average 40 µs [4]. This is the main motivation to use
the connected-event to remove the offset. Bideaux does not have drift correc-
tion/estimation, and is solely focused on the initial offset. The other methods
they researched provided worse and more unstable offset reductions.

4 Developed BLE-Protocol

In this section an indefinite time synchronization protocol is described and ex-
plained for the usage at the BSS department of Utwente. It consists of 3 parts.
The connection phase, the Startup phase, and the Resync phase. The connec-
tion phase is used to adjust the offset, the Startup phase is used to estimate
the timer drift, and reduce future required bandwidth, and the Resync phase is
used to keep the system synchronized indefinitely.

4.1 Limitations

This section will go into the most significant limitations when trying to achieve
time synchronization. This protocol was developed and tested on the Silicon
labs explorer kit. When working with the BLE stack there are only 2 ways to
interact with it. These are events and API. The BLE stack returns events, for
example if a packets has been received, or is able to perform an action through
and API. For example a read request. A visual representation is show at Fig: 4
One of the issues that becomes evident from building on the application layer is
the fact that it is unknown when a connection interval starts, and when it ends.
By not knowing this it becomes impossible to synchronize the timers by simply
sending a packet and reading it. There is an unknown error that is introduced
by the uncertainty of the connection interval. If the server timer is measured

10

and send to the buffer 50 ms into a connection interval, will need a different
correction compared to when it would be send 1 ms into a connection interval.
Furthermore, there are a few delays that are caused by the link layer. The
sending, and processing of data. However, this delay is constant and mainly
determined by the length of a data packet. Moreover, the Bluetooth module
runs on an independent radio clock. However this value cannot be read. It
is not possible to know the value of where the Bluetooth radio clock is at.
Therefore a second timer has to be used in parallel to still allow for actions to
be performed based on time passing. Due to the fact that the BLE is protected
to ensure proper operation, it is not possible to use this parallel timer to force
an interrupt and use a BLE function, for example a write request. Attempting
to send data with this parallel timer will result in failure of the send and return
an error code. However, this parallel timer is the most accurate timer available
and needed for timestamping and time enstive operations. This forces the use
of a timer that is compatible with BLE.

Figure 3: A representation of how to interact with the BLE stack. It is only
possible to communicate with BLE through events and APIs.

4.2 Software and Hardware

Used Nordic NRF52 Development kit[5] and Silabs Explorer kit. [6] Nordic has
a 32 MHz high frequency crystal. While Silabs has a 38.4 MHz high frequency
crystal. The timers of the devices are controlled by this high-frequency crystal.

11

While these crystals are accurate, there is still a typical error. This is defined
as ppm. An error of 100 ppm would result in a uncertain drift of the timer
of 100 microseconds every 1 second. The high frequency system clock used in
Silabs has a maximum drift of +- 10 ppm. And a typical drift of 5 ppm. On
average it would take 100 seconds for the clock to drift 500 microseconds. This
is too significant of a drift for prolonged operations. For all experiments only
the Silabs explorer kit is used, except for the connected event experiment, for
which both the Silabs Explorer kit, as well as the NRF52 Development kit are
used.

4.3 Connection Phase

A method to remove the offset of the peripheral timers relative to the root
timer has been developed. The focus of this method was for it to be scalable,
and reliable. A quick summary of the problem is that internal timers will start
counting at the moment they are turned on. However, to the wireless devices it
is unknown when other devices in the network have been turned on. To remove
this offset the connected event that is provided by the BLE-stack will be used.
In Bideaux the initial offset is reduced to 32 µs or 64 µs. [4]. It is either of
these 2 values due to the frequency of the clock that is used for timestamping.
The clock has a frequency of 32 kHz. This means that for the 32 µs, one
period has passed, and for the 64 µs 2 periods have passed. The devices used
to explore this have timers with a frequency of 32 MHz, or 38.4 MHz. With a
connection between one root node and one peripheral node it becomes possible
to set both timers at 0 at the connected event. This would synchronize both
timers to eachother. One issue that arises with this approach is that the system
is no longer scalable, when a new peripheral node joins the network, the first
peripheral node timer will be out of sync with root timer, as the root timer will
reset to 0, while the first peripheral timer will keep counting. In the minimum
setup for the BSS pain research there are 3 devices. The computer with the
root timer. The EEG measurement device, and the Ambustim. To make the
system scalable more logic is used. At a connected event the root timer and the
peripheral timer will take a timestamp. The root timer will send the timestamp
it took to the peripheral timer. This peripheral timer will use this timestamp,
in combination with the elapsed time between when the connected event took
place, until the packet was received, to correct the offset of its internal timer.
This should set the peripheral timer to the root timer. This method is scalable,
for every new connection will synchronize their peripheral timer with the root
timer.

12

Figure 4: A diagram that displays the structure and behaviour that occurs to
receive the connected event. [7]

4.4 Drift estimation phase

The second step to achieve time synchronization is accounting for timer drift,
and creating a drift estimation protocol. Timer drift is caused by imperfections
of the internal crystal. Furthermore, with changes in voltage/temperature the
frequency of a crystal also changes. This means that manually calibrating for
the imperfections of the crystals has to take these changes of environments into
account. To create an automatic drift estimation 2 methods are researched and
implemented. The first method is of interested to TMSi, it uses the principle of
fluctuations in the connection interval to create a drift estimation. The length of
a connection interval is known, for example 100 ms, if a peripheral node would
measure that the start of a connection interval is every 101 ms, would mean
that the timer of the peripheral node is running too fast. By observing these
fluctuations over time a drift estimation is made. The second method is used in
Bluesync [3], which is based on sending the root timer value to peripheral timers
periodically. Through the expected period of time between sends, and the server
timer value compared to the internal timer value, a drift estimation is made.
What should be accounted for is the transmission time between sending this
server timer value, and when it is received. Most significant of this transmission
time is the time a data packet spends in the buffer of the BLE stack, before it is
send. In BLE the data transfer method with the shortest transmission time is a
notification. Which will be the packet type used in this implementation. Using
the data from these notifications a drift estimation is made. Using multiple

13

datapoints improves the accuracy, as well as having a longer period between
each datapoint improves the accuracy of the drift estimation. This is proven by
Bluesync [3]. In this implementation an average error algorithm will be used to
derive drift estimation.

4.5 Resync Packets

To keep the timers in sync indefinitely a resync phase is part of the protocol.
The drift correction from the startup phase is based on a relatively small amount
of data, a couple of seconds, which is then extrapolated. While research shows[3]
that this can be accurate, over time the timer drift will keep growing. To achieve
consistent time synchronization over long periods of time a re-synchronization
protocol is implemented that runs parallel to the operation of the an application.
This resynchronization will be based of notifications which send the root timer
value. This will run throughout the entire operation of the application. The
reason to have a separate start-up phase from the resynchronization phase is
to reduce the bandwidth usage that is required during the application. The
heavy lifting of the drift estimation is done during the start-up of devices, while
corrections are performed during the resync phase. In the intended application
of BSS and TMSi which consists of a computer which acts as a server and root
timer, with multiple peripheral devices connected, the Ambustim and EEG,
all devices will be turned on and during the operation no new devices will
join. For applications where during the run of the application new devices join
the network, are able to synchronize with the root timer and develop a drift
estimation, but this will take longer, or will require for the resynchronization
packets to be sent more frequently. The period of when the resync packets
will be send change with different requirements. For the intended application
of BSS, with crystals having a maximum ppm of 10, and a typical ppm of 5.
A period 25 seconds for a resync packet is the maximum period recommended.
This is to avoid the case where the timer drift will be greater than 500 µs during
the operation. If the root timer has a crystal that runs too fast by 10 ppm, and
the peripheral timer has a crystal that runs too slow by 10 ppm, this will cause
a time drift error of 20 microseconds per second. In 25 seconds the timers will
thus have drifted apart. This is an unlikely case, but to avoid a time drift of
more than 500 µs the periodic correction of the timers should be at least every
25 seconds.

4.6 Adjusting Timers

The peripheral timers will follow the root timer, this is achieved by adjusting
the peripheral timer values periodically. It is not possible to speed up or slow
down the high-frequency crystal that these devices rely on. Another method has
to be implemented. The method implemented in this protocol is adjusting the
timer counter value periodically. To understand what this means it is important
to know how the timers operate on the device. On the Silicon Explorer kit the
timer is based on the 38.4 MHz high-frequency crystal. The code that runs on

14

this kit is able to access the timer through a counter block. This counter block
value increments over time based on the ticks of the crystal and a prescaler
value. This prescaler value determines how many ticks of the crystal is needed
to increment the value in the counter block. For a prescaler of 32, this is 32
ticks. This effectively reduces the frequency of the crystal by 32. The value
in the counter block can be read, or overwritten. By reading the value in
the counter block it is possible to create time based applications, for example
through using timer interrupts certain functions can be called, or values can be
changed. For the drift correction application there will be a periodic interrupt
which overwrites the value in the counter block. If the drift correction algorithm
dictates that a timer runs too fast, then through overwriting the value in the
counter block the timer can be made to run slower. For example, every second
the value inside the counterblock can be reduced by 5 µs. The actual correction
is based on the drift correction estimation.

Clock overflow Both the Silabs explorer kits as well as the Nordic develop-
ment kit have 32 bits and 16 bits timers. When the value of the timer exceeds
this bit value it will overflow. Depending on the frequency of the clock these
timers will overflow at different rates. For example the Silabs Explorer kit has
a timer based on a high-frequency crystal which has a frequency of 38.4 MHz.
If it uses a 16 bit timer it will overflow every 1.7 ms. While if a 32-bit-timer
is used it will overflow in around 111 seconds. Such a high frequency clock is
not needed for the intended application of BSS. Using a prescaler would make
overflows less frequent. For example a prescaler of 32 in combination with a 32-
bit-timer will result in a frequency of 1.2 MHz and will overflow around every
hour. The tick speed is 0.833µs. With the goal of achieving a synchronization
with an accuracy of at least 500 µs the period of the timer ticks should be at
least less than 500 µs.

4.7 Timeline of the Protocol

In BLE there is a scanner and an advertiser. The advertiser send advertising
packets using BLE. In the currrent setup the scanner is the client, and the
advertiser is the server. The scanner sorts through advertising packets and
initializes a connection with the correct wireless device. Which generates the
connected event on both devices. At this connected event the value of both
timers in the devices is noted. After the client has allowed indications the
server sends the timer value it had at the connection interval. After receiving
this value the client adjusts its own internal timer value, by using the elapsed
time until the packet has been received and processed, as well as the timer value
of the server. This removes the initial offset. After this indication has been
received the client enables notifications. After notifications have been enables
the startup phase begins where the server sends multiple notification packets
to the client. Which the client uses to estimate its timer drift compared to the
timer of the server. It should be noted that while the timer of the server also
has a drift compared to the 38.4 MHz. The internal crystal does not oscillate

15

at exactly this frequency.This should not matter for the drift estimation, as the
client timer is not corrected to be as close as possible to the 38.4 MHz frequency,
but it is corrected to be as close as possible to the server timer. After the start-
up phase the client will periodically adjust its internal timer, either skipping
ticks, or recounting certain ticks. A known issue with this is that it is possible
for a planned interrupt to thus be less accurate. If an interrupt has been set at
counter value 1001, and the drift correction adjusts the internal timer on tick
1000 and increases the counter value by 10. It will mean that the interrupt is
called 9 ticks later than intended. Since the interrupt is called when the counter
value is either equal to or larger than compare value, the interrupt is still called
and no logic is needed to adjust the interrupts. The best way to minimize this
issue is by having the timer adjust period be short. For example in one second
the expected drift is 10 µs. Thus if the timer is adjusted every second the
maximum expected delay of an interrupt being handled is close to 10 µs. Using
similar logic to what is used in the start-up phase, the drift correction and offset
of the timer are adjusted periodically using notification packets, or the size of a
connection interval. This should keep the timer in sync indefinitely.

16

Figure 5: Overview of the entire timeline of the protocol. Starting with the
connected event. To the Connection Phase. To the Drift Correction Estimation.
To the Resync phase.

17

5 Experiments

5.1 Connection event

In the BLE-stack there is a connection event called on both the peripheral
and the central device. Literature[4] suggests that this event can be used to
synchronize the timers. When the connection event is called a pin on the board
is set high. The moment that the pin was set high on the server, relative to
when the pin was set high on the client, is measured. This provides the delay
for both devices as to when this event is called. The timing of when a pin is set
high is measured by an oscilloscope.

5.1.1 2 different hardware tested for the Connection event

The Experiment is done on both a SILABS explorer kit as well as a NORDIC
development kit.

5.2 Accuracy and drift of the timers

Overtime the internal timers will drift away from each other. This experiment
will describe and characterize this drift. For this experiment a 1 on 1 connection
is setup between a server and client device. Every second a pin is set HIGH on
both boards. These pins are measured by an oscilloscope and the delay between
when the pins were set high are measured. Due to the connected event offset
correction, for the first seconds of operation the devices will have no significant
timing error. Over the duration of the experiment, due to the drift of the high-
frequency crystal the moments that the pin is set high will drift. Through an
oscilloscope this drift is measured. With typical ppm of +-5 the expected drift
per second per device is in the range of 3-10 µs per second. To measure the
drift over time a measurement of 1 hour is made.

5.3 Drift Correction

A startup protocol is implemented with the goal to reduce the drift of the timers
over time. This is attempted through 2 estimation methods. Using fluctuations
of the connection interval. And sending the server timer value using a notifica-
tion. The first 10 seconds after the devices are connected were used to gather
data for the drift estimation. This estimation is then used to adjust the inter-
nal timers every second, skipping or recounting skips. The client performs this
estimation method using an average error algorithm, with the goal to follow the
timer of the server. The error is defined as the difference between the expected
length of the connection interval, compared to the measured connection interval
on the client device. A pin is set high every second which is measured by an
oscilloscope. An 1 hour measurement is performed which will measure the drift
of the timers over time.

18

5.4 Connection interval Behaviour

The precision of a connection interval. This is checked by sending a notifica-
tion, the shortest packet, each connection interval and checking internally and
externally when the packet is send. There should be one connection interval
delay between each notification packet that is send. Furthermore, the length
and precision of a connection interval is tested. This is done in 2 ways, a pin is
set high at the start of each connection interval, which is determined by when a
notification is received. As well as having the internal timer of the client mea-
sure each time a notification is received internally, and comparing that to at
what time it was expected that the time was received. This is a measurement
that ran for 10 seconds and

5.5 Notification Behaviour

After performing the drift estimation using notifications it become evident that
there was a behaviour not accounted for. The devices were becoming out of sync
faster than if not drift estimation protocol was implemented. To investigate the
cause of this the behaviour of notifications are analyzed. In this measurement
every 100 ms a notification is containing the root timer value is send to the client
device. This notification is send to the BLE stack based on a 100 ms period
determined by the apptimer of Simplicity studios. This is due to the afore-
mentioned fact that the high accurate timers are incompatible with the BLE
stack. A less accurate timer is used. These measurements are performed with
internal software timestamps. Due to the short timescale of the measurement,
the major characteristics are still accurately measured. The measurement ran
over a period of 10 seconds.

Bluetooth Timers Due to the before mentioned issue of not knowing when
the notification interval starts, in combination with not being able to use the
accurate timer interrupt to send a notification, results in an error. This is
because the apptimer which is used to have a callback event to send a notification
every 100 ms actually has a callback event every 99.988 ms. Due to the fact
that the connection interval and the callback event have a different period, this
will result in the server time that is send to the client to be each connection
interval phase shifted by 11.6 µs. When comparing the internal timer of the
client to the send timer value of the server this must be taken account, or it will
over correct and thus get out of sync faster.

5.5.1 Notification Transmission time

The time it takes to send one notification with 32 bits of information. This is
tested by setting the a pin high on the server when a notification is send, and
setting a pin high on the client when the notification is received. And measuring
the delay.

19

6 Results

6.1 Connected event

6.1.1 Silabs Explorer kit

From the experiment it became evident that the connection event called on both
boards has a consistent time delay. On the server device the event is called
on average 89 µs before the event is called on the peripheral device. With a
standard deviation of 12 µs around this point.

Figure 6: The perceived time delay of the connected event between central and
peripheral Silabs explorer kit devices. Where the central device has the event
before the peripheral device.

6.1.2 Nordic Development board

For the Nordic Development board the connection event is also called first on
the server device before the peripheral device. This delay is either 450 µs or
520 µs. With very minor spread around these points.

20

Figure 7: The perceived time delay of the connected event between central and
peripheral Nordic Developer kit devices. Where the central device has the event
before the peripheral device.

6.1.3 Behaviour and drift with only the connected event

For the next experiments only the Silabs explorer kit is used. What becomes
evident from this measurement is that while the timers all have the same offset.
Over the duration of the experiment these timers experience drift. This drift
is in the region of 3-10 microseconds per second. This is in the typical range
of high-frequency crystal. Below the graph which describes the timing error
over time is displayed, with the X-axis being the central device. To reduce the
starting offset the results from the previous experiment were used, which lead
to adding a static delay of 90 µs to the timer of the client.

21

Figure 8: The sync error observed between the client and server device through
a 1 hour measurement where the offset of both timers was adjusted.

6.2 Startup Drift correction - Connection Interval

Using both the connect event to correct the offset, as well as the startup drift
estimation algorithm based on the connection interval fluctuation drift estima-
tion. The following result is derived. What should be noted is that the total
drift in Fig: 9 is less than the drift observed in Fig: 8.

22

Figure 9: The sync error observed between the client and server device through
a 1 hour measurement where the offset of both timers was adjusted and a startup
protocol was implemented.

For the algorithm to work a large sample of measurements has to be taken.
The Fig: 10 shows the behaviour over time. The connection interval measured
has many instances of the interval stretching or shrinking, with the total net
deviation over time being +5 µs at the end of the operation. This is less than the
measurement of a single connection interval fluctuation, which is in the range
of +10 µs and -20 µs.

23

Figure 10: The microsecond stretching and shrinking of a connection interval
as seen from the perspective of the client.

6.3 Drift correction - Notification

Sending the notification of the server time to the client and reading that value
in order to sync the clock resulting in a major time drift. The timedrift was 100
µs per second. This is due to the apptimer that was used. The next experiment
goes into more detail.

Notifications phase shift over time The apptimer callback has an accuracy
up to one millisecond. The apptimer is what determines when a notification
request is send to the buffer. Due to the low accuracy the moment that the
notification is send to the buffer is shifting over time. In this graph it is possible
to see the phase shift of when the notification was send to the buffer of the
BLE-stack inside of a connection interval. The notification is send to the buffer
in a different period than that the buffer is released. With an average of phase
shift of 95 µs per second. The whole behaviour can be seen in Fig: 11. It is
the time between the notification being send to the buffer and the notification
being processed on the client side. The longest delay is around 100 milliseconds
and 969 µs. And the shortest delay is 986 µs. To make the behaviour more
clear 2 additional graphs have been provided which describe the jump to the
beginning of the connection interval in Fig: 12. And the phase shift behaviour
in Fig: 13 makes the walking of the notification through the connection interval
more easily observable.

24

Figure 11: The delay of when the notification is send to the buffer of the Gatt
server compared to when it is processed on the Gatt client.

Figure 12: The delay of when the notification is send to the buffer of the Gatt
server compared when it is processed on the Gatt client, zoomed in to accentuate
the jump of the notification being at the end of the connection interval to being
at the beginning of the connection interval.

25

Figure 13: The delay of when the notification is send to the buffer of the Gatt
server compared to when it is processed on the Gatt client. With the first second
which contained the jump removed to make the shift over time more clear.

7 Discussion

7.1 Known issues

Due to the fact that the apptimer is not highly accurate, having a shorter
period that what is set, it will result in the shifting of the notification is send
to the buffer in comparison to the period of the connection interval. Due to the
period of the apptimer callback being shorter than the period of the connection
interval. Or an integer of connection intervals. It will eventually result in the
timer value being send either twice in the same connection interval, in the case
of the apptimer callback period being less than one connection interval, or the
connection interval in which the notification is send will change throughout the
operation. If every 10 connection intervals a notification is expected, this will
result in the notification being received [0,10,20,30,40,50]. This consistency is
needed for an accurate drift correction. However, as the period of the apptimer
is slightly shorter than the period of the connection interval there are moment
where this takes place: [0,10,19,29,39,49]. The occurrence of this issue is rare,
but should be accounted for with additional logic.

The resync phase was not tested, this is due to the fact that the startup
phase results were unsatisfactory. The resync phase is an extension of the drift
estimation that is implemented during the startup phase.

26

7.2 Doubts about BLUESYNC sync error calculations

The BLUESYNC protocol described in [3] states a much lesser sync error over
time than what would be expected and what was measured in this report.
BLUESYNC in fig. 6 describes the sync error of the NRF51 and NRF52 boards,
over a time period of 10 minutes. The SYNC error measured after 10 minutes
was around 450 µs for the NRF51 and around 250 µs for the NRF52 if only the
offset was removed. The most accurate crystal in the NRF51 has a ppm of 30.
[8]. And for the most accurate crystal of the NRF52 has a typical ppm of 8. [5].
By only removing the offset the expected sync error after 10 minutes would be
0.6 millisecond per 1 ppm. With 8 ppm the expected typical sync error would
be 4.8 ms after 10 minutes. The claimed value is 250 µs. This is almost a factor
20 difference between the documentation and the claimed values. Compared to
the results of experiments in this paper, where the typical ppm of the crystal in
the Silabs Explorer kit was 5 ppm. After 10 minutes of operation the error in
drift is around 5 ms.

7.3 Problems with IDE

There were major setbacks due to problems experienced when using the IDEs
Visual Studios, and Simplicity Studios. A problem observed in Simplicity stu-
dios is that it was for me impossible to get the central device to the be the server.
The peripheral device had to be the server for the functions to work as intended.
The first intended structure was to have a central server surrounded by clients,
and that these clients would listen to notification packets from the server to
synchronize their timers. This structure had to change, and each peripheral
node would become their own server. Notifications can only be send from the
server to the client in Simplicity studio. And due to the speed of notifications
packets, they are most commonly used to synchronize timers, for example in [3].
The documentation on this matter for Simplicity studio is limited, and there is
no indication that the server role can only be fulfilled by an advertiser device.
These problems lead to the tests being performed one to one.

7.4 Connected-Event

The connected event can be used to remove the offset between timers effectively
and consistently. The variation of delays can be explained by random processes
or error in the system. For the Silabs explorer kit the system the connected
event sync error between the client and server was on average 89 µs. But
more important than the average delay, the spread was very small which made
using the connected event to remove the offset an effective method. With a
standard deviation of 12.4 µs around this point, ensured that the original offset
is eliminated as much as possible. On the Nordic boards the behaviour was
centered around 2 points. That being 450 µs and 520 µs. Where the 450 µs
delay occurred more often than the 520 µs.s When adding the offset value to
the central device to ensure that the offset are minimized at the start of the

27

operation it would be better to pick the value in the middle of these 2 values.
This would give an offset of 485 µs. While this is not the best method to
reduce the offset the most on average. It does provide more consistency. If the
average error was the most important point then there would be cases where
the actual sync error would be as great as 70 µs. And at other times the sync
error would be 0 µs. This is a large spread, and to create a protocol that is
able to have a synchronized timebase between devices and is scalable, it would
be better to reduce the spread. Therefore for the Nordic Development kits the
recommendation is to have account for a delay of 485 µs.

7.5 Offset-only Drift

The drift that was expected by only correcting the offset was about the 5 ppm
per device. In one hour a drift of about 29 ms was measured. This is too great
for time synchronization and this is proof that another different method should
also be implemented, namely the drift estimation. If this result is calculated to
an ppm error between the different timers it is is an error of

PPM =
TimeError

Measurementtime
(1)

PPM =
29ms

3600s
(2)

Results in an ppm of 8 ppm. Considering both timers have a typical ppm error
of +- 5 ppm, this result is within expected bounds.

7.6 Startup-Drift

A startup-drift correction based on the fluctuations of connection intervals was
used to estimate the drift of the client device compared to the server. After the
implementation it resulted in a smaller synchronization error after the one hour
measurement when compared to no drift correction method. While this result is
promising, When looking at the behaviour of the connection interval fluctuations
it becomes evident that the connection interval method does not provide the
relevant information needed for an accurate drift estimation. In order to observe
whether the connection interval had a tendency to be shorter, or longer on
average, the length of 100 connection intervals was measured. What became
evident from this measurement is that the average fluctuation approached 0.
With the oscilloscope a synchronization error was measured over time. If it was
possible to measure the synchronization error with the connection interval, then
instead of the average approaching zero, it would approach a constant. This is
not the case, therefore using the connection interval fluctuations for to estimate
the drift is not possible, and it was a coincidence that the synchronization
error over time improved, this could be due to the fact that different boards,
or a different environment was used. Another method that should be tested
if the for instead the scanner device, in this setup the client device, that the

28

advertising device, in this setup the server, measures the fluctuations of the
connection interval. It is a possibility in that with this setup the fluctuations
could be used to estimate the drift.

7.7 Notification packets

When using notification packets to read the server time it is important to know
all the delays that are involved. Some of these delays are due to transmission
and processing. From the experiments it became evident that for the smallest
packet necessary to send the whole 32 bits of the timer value, this transmission
and processing time was less than 1 ms. As becomes evident from the shortest
delay in Fig: 11. The second delay that should be accounted for is when the
notification is send to the buffer from the server side. There is an issue where
it is unknown when the connection interval of a device starts, and when this
connection interval ends. This not knowing when a packet will be send in the
application layer means the processing of when it is send will be handled by the
BLE stack. Using the connected event and the typical drift, it is know that for
the first second of operation the devices will be in sync. In this brief period
notifications from the server should be send to the client, and the client should
take account of what the server time is written in the packet, and what the time
it was when the packet was received. Using the assumption that at the start
of the operation the timers are in sync, and that notification transmission and
processing takes the same time for every packet, it will be possible to write logic
to observe the phase shift of the server time through the connection interval.
And then when reading the server time from the packet, this estimated phase
shift is taken into account to correct the drift. This was not developed in this
project and could be a part of a next research project. Without this being
developed it was not possible to test an indefinite synchronization protocol.

7.8 Connected Event Expansion routes

There is a possibility of using the connected event for the drift estimation, or by
reconnected the devices periodically that time synchronization is achieved. The
connected phase provides a very small synchronization error between 2 devices.
When devices lose connection, they do not lose data. Therefore it is possible to
use multiple connected events to estimate the drift of the device. This would
need the devices to disconnected and reconnect again. It is also possible to
have the devices disconnect during the operation of a application, and have
them reconnect during the operation. This can then be used to synchronize the
timers, achieving time synchronization.

7.9 Next steps

For potential next steps in the build of an indefinite synchronization protocol
would be to continue work on the notification logic. The phase shift in the
connection interval should be calculable. This gives a phase shift estimation.

29

This phase shift estimation can be used to then create a drift estimation, based
on the value of the server timer that is send. A possible solution for this is
discovering a method to use a highly accurate timer to provide the interrupt
that send the notification to the BLE stack. Another potential route is to change
the setup, where instead of the client timer being matched to the server timer,
that the server timer is matched to the client timer. For this there is a possibility
that the drift estimation based on connection intervals can be used, and should
be investigated. Or by keeping the setup, but instead of having a single central
server, that there are multiple peripheral servers which are connected to a central
client. And that these peripheral server devices will sync their timer with the
time of the central client. This could potentially be done with the write without
response function in BLE.

8 Conclusion

The objective of this project was to investigate the feasibility of developing a
Bluetooth Low Energy (BLE) synchronization protocol for the BSS application.
Through experiments and a literature review, an effective approach for eliminat-
ing the initial timer offset was devised and validated. Additionally, a theoretical
framework for achieving indefinite device synchronization was proposed.

An in-depth exploration was conducted on utilizing the fluctuation of connec-
tion intervals to estimate the drift between two timers. However, the obtained
results were discouraging, indicating that this approach may not be viable for
achieving accurate synchronization. As an alternative, the utilization of notifi-
cations to transmit timer values and leveraging this method for synchronization
emerged as a promising path, offering potential for future applications.

References

[1] A. Akay, Evoked Potentials. InTech, 2012.

[2] T. Zhang, J. Lu, F. Hu, and Q. Hao, “Bluetooth low energy for wearable
sensor-based healthcare systems,” in 2014 IEEE Healthcare Innovation Con-
ference (HIC), 2014, pp. 251–254.

[3] F. Asgarian and K. Najafi, “Bluesync: Time synchronization in bluetooth
low energy with energy-efficient calculations,” IEEE Internet of Things
Journal, vol. 9, no. 11, pp. 8633–8645, 2022.

[4] A. Bideaux, B. Zimmermann, S. Hey, and W. Stork, “Synchronization in
wireless biomedical-sensor networks with bluetooth low energy,” Current
Directions in Biomedical Engineering, vol. 1, no. 1, pp. 73–76, 2015.
[Online]. Available: https://doi.org/10.1515/cdbme-2015-0019

[5] Nordic Semiconductor ASA, nRF52832 Product Specification, 2019. [Online].
Available: https://infocenter.nordicsemi.com/pdf/nRF52832PSv1.1.pdf

30

[6] S. Labs, BGM220P Wireless Gecko Bluetooth Module Data Sheet, 2020. [Online].
Available: https://www.silabs.com/documents/public/data-sheets/bgm220p-
datasheet.pdf

[7] Silicon Labs, “Bluetooth connection flowcharts,” On-
line, 2023, accessed: July 10, 2023. [Online]. Avail-
able: https://docs.silabs.com/bluetooth/3.2/general/connections/bluetooth-
connection-flowcharts

[8] Nordic Semiconductor ASA, nRF51 Series Reference Manual, 2014. [Online].
Available: https://infocenter.nordicsemi.com/pdf/nRF51RMv3.0.pdf

31

