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Enhancing Accuracy in Liver Tumor Ablations:
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Accurate Positioning and Orientation of a 6-DOF
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Abstract—This study introduces an innovative method-
ology that explicitly exploits chain transformations for reg-
istration in a robotic workspace for liver tumor ablation.
The research focuses on how chain transformations can be
used to accurately calculate the position and orientation
of the end-effector concerning the base of a six-degrees-
of-freedom (6-DOF) robotic manipulator. The goal is to
ensure precise needle alignment concerning tumors for
efficient ablation. The study illustrates the feasibility of
employing chain transformations and inverse elements by
characterizing multiple transformation chains of all the
involved systems within the workspace. The study also
shows how matrix multiplication and inverse properties
are used to calculate undefined variables in the workspace.
The obtained transformation matrices are then applied to
the robotic manipulator base that achieves optimal needle
alignment with the tumor. The findings from this study
emphasize the possible application of chain transforma-
tions for precision registration in robotic tumor ablation.
This method is currently experimental but could serve
as a base for robotic tumor ablation. Thus, this research
can inform future advancements in precision medicine and
robotic interventions, improving treatment outcomes.

Keywords— Registration, Robotic Manipulator, Liver Can-
cer, Transformation Chains, Electromagnetic Generator

I. INTRODUCTION

Liver cancer is a prevalent and lethal disease worldwide,
and unfortunately, it is projected to become even more preva-
lent in the coming years [1, 2]. The motion of the liver caused
by respiration adds a layer of complexity to the treatment of
this disease; variations in the amplitude of movement more
significant than 5 mm during tumor, treatment could expose
healthy liver tissues to a significant risk of radiation-induced
damage [3]. Current standard treatment options range from
surgery and chemotherapy to radiation therapy [4]. However,
the emerging field of robotic manipulators presents an innova-
tive and potentially superior alternative for liver tumor abla-
tion. Compared to traditional surgery, robotic-assisted ablation
provides enhanced precision, increased flexibility, superior

control, and a less invasive approach, all while minimizing
the potential for human error [5].

As reported by Goh et al. in [6], robotic surgery repre-
sents a progression in minimally invasive procedures across
various disciplines. The research focused on the potential of
robotics for telepresence surgery, and the US Army funded
remote robotic operation systems for wounded soldiers. It
was concluded that robotic surgery was a great alternative
as it provides visualization and ergonomics advantages, all
while being minimally invasive. It is expected that in the
future robotic surgery will be adapted globally, which will, in
return, enhance accuracy and cost-effectiveness in the future.
This paper represents a foundation for possible advancement
in medical treatment, specifically for liver tumor ablation,
through integrating robotics, transformation matrices, and real-
time data gathering. The paper proposes an approach to
registering a 6-DOF robotic manipulator using transformation
chain properties. The guiding research question for this project
is:

“How can transformation chains optimize calculating a
6-DOF robotic manipulator’s end-effector position for

precise liver tumor ablation?”

The Franka Emika Panda serves as the robotic manipulator
for this study. The system is modeled to tackle the research
question, and the necessary transformation matrices in the
workspace are identified to comprise several transformation
chains. Following this introduction in section I, section II
outlines the experimental procedure and delves into the anal-
ysis and modeling of the workspace. Section III provides
an insightful exploration of the results and discussion of
results. Section IV presents the conclusion, encapsulating and
synthesizing the critical points addressed in the paper and
possible future work.



II. METHODOLOGY

A. Experimental Setup
The experimental setup involves the Franka Emika robotic

arm, an Aurora Electromagnetic (EM) generator (Northern
Digital Inc., Waterloo, Canada), a needle, a tumor, and a
liver phantom. A 2D sketch, depicted in Fig.1, facilitates
a comprehensive understanding of the experimental setup.
This illustrates the basic structure and arrangement of the
system. Furthermore, a tangible representation is provided by
an accompanying photograph of the setup, shown in Fig.2.
These images combined offer a detailed overview of the
experimental configuration.

Fig. 1. 2D Sketch of the Experimental Setup

Fig. 2. Photograph of the Actual Experimental Setup

1) Robotic Arm (Franka Emika): The Franka Emika
robot is the main foundation of the setup. It is used for
precise manipulation and movement. It is programmed to
accurately reach the end-effector (the part of the robot that
interacts with the environment) to the designated target.

2) End-Effector: The end-effector is attached to the
robotic arm, and the arm’s movements control its position
and orientation. Its role is to carry and precisely position the

needle toward the target. The hand is an essential component
of the workspace; its primary function is to be securely
fixated to the end-effector from one side and secure a gripper
on the other. In turn, the gripper holds the needle that
performs liver tumor ablations.

3) Base: The base of the Franka Emika robotic
arm functions as the reference point for all movements.
Translating the tumor’s location from the Aurora EM
Generator’s coordinate system to the robot’s base frame is
crucial in the experimental setup. This transformation process
allows the robot to position its end-effector precisely for
optimal needle and tumor alignment. Therefore, the robot
base enables exact relative movements derived from the data
provided by the EM Generator.

4) Electromagnetic Generator (Aurora): The
electromagnetic (EM) Generator, or the Aurora, plays a
vital role in the registration procedure. The EM Generator
(Aurora) tracks the position and orientation of the needle
and the tumor. The device generates EM waves detected
by the trackers embedded within the needle and the tumor.
The trackers respond by providing real-time data on their
respective positions and orientations. This information is
crucial in guiding accurate needle placement and verifying
the tumor’s position.

5) Needle: The needle is fixated securely to the hand,
which is fixated to the end-effector. The end-effector’s
position and orientation determine the needle’s position in
spatial space. The needle performs the precise operation (e.g.,
liver ablation) on the tumor.

6) Tumor (Target): The tumor is the target that the nee-
dle needs to reach. The aim is to calculate the transformation
matrix from base to end-effector, ensuring perfect alignment
of the tumor with the needle. The positioning of the needle
must be the same as the tumor but only requires a minimal
translation along the y-axis (0.01 m) for alignment with the
tumor; this way, the needle is ready for the tumor ablation
procedure. With this setup, the experiment can provide a
way to perform medical procedures involving precise needle
placement with high accuracy and safety.

B. Algorithm for Precise Needle Alignment
An algorithm of the experimental details is displayed in

Alg.1. A custom Python script that implements the algorithm
was created to get the needed transformation matrices, as
shown in section V-A. The notation with the general format
A T B, that is used in Alg.1, represents the transformation
matrix from frame B with respect to frame A. Section II-C,
provides a more comprehensive explanation of the notation
and its respective elements.



Algorithm 1 Needle Alignment Algorithm
1: Initialise all transformation matrices to None.
2: Model the EE T

needle.
3: Obtain the current base T

EE of the Franka.
4: Compute Base T

EM for different positions within the
workspace.

5: Compute the average for the samples obtained for
Base T

EM.
6: if EE T

needle, Base T
EM, and EM T needle are not None

then
7: Compute the value for base T

EE(opt)

8: end if

C. Mathematical Background

1) Transformation Matrices: According to Craig’s
book [7], a transformation is the change of position and orien-
tation of a frame attached to a body concerning another frame
attached to another body. This paper focuses on spatial (3D)
transformation only. A homogeneous transformation matrix
combines a translation (position) and rotation (orientation)
into one matrix, it is used to describe one coordinate system
relative to another. To represent frame B concerning frame
A, transformation matrices in spatial space have the following
4x4 general format.

AT
B =

[
AR

B t⃗
0 0 0 1

]
(1)

2) Rotation Matrix: According to Lynch et al. in their
book [8], the notation AR

B denotes a 3x3 rotation matrix
that transforms a point from frame A to frame B. It is
an orthogonal matrix, meaning its rows and columns are
unit vectors and orthogonal to each other. When a point is
multiplied by a rotation matrix, it changes its orientation
without changing its position, as rotation is with respect to
the frame’s origin.

In 3D space, rotations can be performed about the coordi-
nate frame axes. The rotation matrices for rotations about the
x̂, ŷ, and ẑ axes are given by:

a) Rotation about the x̂-axis: The rotation matrix
Rx(θ) represents a rotation about the x̂-axis by an angle θ.

Rx(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (2)

b) Rotation about the ŷ-axis: The rotation matrix
Ry(θ) represents a rotation about the ŷ-axis by an angle θ.

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (3)

c) Rotation about the ẑ-axis: The rotation matrix
Rz(θ) represents a rotation about the ẑ-axis by an angle θ.

Rz(θ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (4)

To obtain the final rotation matrix, multiply all the previous
matrices by each other. Rotation matrices play a crucial
role in the calculations used in this study to determine the
end-effector’s position and orientation relative to the base of
the 6-DOF robotic manipulator.

3) Translation Vector: The notation t⃗ denotes a
translation vector that moves a point from frame A to frame
B. A three-dimensional translation vector is a 3x1 vector,
which shifts points in the 3D space along the three axes
(X, Y, Z) [9]. The translation does not alter the orientation
of the point; it only changes its position. When adding
a translation vector to a point, it moves the point along
the X, Y, and Z axes by the amounts specified in the
vector. So, for a translation vector defined as T = [a, b, c],
the point P = [x, y, z] will be translated to P’ = [x+a, y+b, z+c].

4) Using Rotation and Translation Together: Often
in 3D transformations, both rotation and translation opera-
tions are combined. The non-commutative nature of matrix
multiplication requires careful ordering of transformations, as
different sequences yield different outcomes, like translating
before rotating versus rotating before translating. This arises
because a transformation matrix does not operate on the object
itself but rather on the coordinate system in which the object is
situated. To better illustrate the difference in an object’s final
position and orientation depending on the order of operations,
a graphical representation is provided in Fig.3.

Fig. 3. Outcome from two different orders in transformation [10]

The general form of transformation from frame A to frame
B, given a rotation matrix AR

B , and a translation vector t̃,
can be represented as [7]:

pB =A RB · pA + ˜
AtB (5)



Here, AR
B ·pA rotates the point in frame A, and then ⃗

AtB

is added to translate it to frame B. Homogeneous coordinates
are used, which allows expressing the two transformations
within a single 4x4 matrix; This is done by adding an extra
row and column to the rotation matrix and translation vector,
forming an augmented matrix as shown in Eq.1 [7].

5) Transformation Chains: In the registration of the
robot, a methodology involving different transformation chains
within the workspace and their respective inverse operations
was applied when needed. Transformation chains involve a
series of transformations that map the state from one reference
frame to another. This approach offered an efficient way to
relate necessary frames to each other. In the project context,
transformation chains are exploited to register a robotic sys-
tem, specifically a Franka Emika robot with a needle attached
to the end-effector, guided by an Aurora Electromagnetic Gen-
erator. The first transformation chain formed in the workspace
consists of the following transformations:

1) From the robot’s base to its end-effector, (baseT ee)

2) From the end-effector to the needle, (eeTneedle)

3) From the needle to the EM Generator, (needleT
EM )

D. Transformation Matrices in Robotic Configuration
Space

This section focuses on extracting and interpreting
transformation matrices in the context of a robot’s
configuration space, leveraging data from Robot Operating
System (ROS) measurements [11], EM Generator data, and
additional independent models. Transformation matrices
are pivotal to determining and manipulating the robot’s
position and orientation within its workspace. ROS provides
a variety of measurements linked to the robot’s pose,
while the electromagnetic (EM) Generator extracts essential
tracking data of the needle and tumor. Independent models,
such as EE_TF_needle, enrich the robotic workspace’s
understanding. Collectively, these data offer a comprehensive
insight into the robot’s workspace, a crucial element for the
registration process.

1) Transformation from base to end-effector: The
project utilizes ROS along with the Franka Interface to obtain
the pose of the robot’s end-effector relative to its base frame.
The pose includes a Point and a Quaternion representing
the position and orientation of the end-effector, respectively.
The real-time pose information is obtained by subscribing to
the appropriate ROS topic and publishing these messages,
providing critical data for the system’s registration.

2) Transformation from end-effector to needle:
The needle is securely affixed to the gripper in the sys-
tem setup, which is further rigidly attached to the robot
hand as shown in Fig.1. This sequence is interpreted as

a rigid body transformation from the hand to the needle
(hand_TF_needle), implying that any rotation imparted
to the hand directly translates to the needle due to the
rigid connections. However, the transformation from the end-
effector to the hand (ee_TF_hand) does not adhere strictly
to a rigid transformation. This transformation involves degrees
of rotation, as informed by the Franka manual [12]. The total
transformation matrix from the end-effector to the needle is
the product of ee_TF_hand and hand_TF_needle. The
transformation matrix for ee_TF_hand is denoted as

EE TF hand =


0.707 0.707 0 0
−0.707 0.707 0 0

0 0 1 0.1034
0 0 0 1

 (6)

On the other hand, hand_TF_needle is unknown and
should be modeled. In order to do so, the rotation matrix is
first computed by relating the frame of the needle concerning
the frame of the hand, as shown in Fig.4

Fig. 4. Relating frame of the needle with respect to the hand

The final rotation matrix from the hand to the needle could
be computed using the rotation matrices covered in section
II-C2. The translation vector represents the relative positional
displacement from the hand’s origin to the needle’s origin
along the x, y, and z axes. Combing both the rotation matrix
and translation vector, the following transformation matrix
could be shown:

hand TF needle =


0 −1 0 −0.135
0 0 1 0.0295
−1 0 0 0
0 0 0 1

 (7)

An additional transformation matrix (ee_TF_needle)
is computed to elucidate the entire relationship from the
end-effector to the needle. This matrix is the product of the
end-effector-to-hand transformation matrix (ee_TF_hand),
obtained from the Franka manual, and the hand-to-needle
transformation matrix (hand_TF_needle), which is
modeled based on the physical parameters of the setup



under the assumption of rigid transformation. This approach
simplifies kinematics, providing a practical method for
describing the spatial relationship between the end-effector,
the hand, and the needle.

3) Transformation from needle or tumor to EM
Generator: The needle and tumor have EM Generators
attached to them, which could be identified by the Aurora
system, which helps compute their respective transformation
matrices concerning the EM Generator. These transformation
matrices are obtained using data from the Aurora system
and processed using the scipy.spatial.transform function from
the scipy library in Python. The Aurora system provides the
position and orientation of the EM Generator concerning the
needle/tumor in real time at a sampling rate of 40 Hz. The
orientation information is given in the form of a quaternion.
In Python, the scipy.spatial.transform function converts the
quaternion from the Aurora system into a rotation matrix.
Once the rotation matrix is obtained, it is combined with
the translation vector provided by the Aurora system to form
the complete transformation matrix. This matrix captures the
spatial relationship between the needle/tumor and the EM
Generator, a crucial element of this study.

E. Calculating Precise Needle Alignment
The relationship between the robot’s base and the EM

generator (base_TF_EM) is thoroughly established by calcu-
lating it at ten arbitrary positions when the needle is securely
attached to the robotic manipulator and within the range of
the EM generator. From these multiple measurements, the
average is computed and subsequently used as a constant for
further calculations. The static nature of the base and the EM
generator justifies using a constant transformation matrix. In
addition, the standard deviation of base_TF_EM is calculated
to measure the reliability and consistency of the measurements.
Following this, an optimal transformation from the robot’s
base to the end-effector, base_TF_EE(opt), is calculated
by employing a transformation chain that begins with the
averaged base_TF_EM (averaged). The equation for the
transformation chain is shown in Eq.8.

baseT
EE(opt) =base T

EM(Averaged) ·EM TNeedle ·Needle T
EE

(8)
The following link in the chain is EM_TF_Needle, the

transformation from the EM Generator to the needle. For this
transformation, the rotation matrix is modeled perpendicular to
the robot’s hand and pointing toward the tumor. The translation
vector is identical to that obtained from EM_TF_tumor but
with an adjustment of -0.01 in the y-axis. This adjustment
serves as a safety margin, ensuring the needle is precisely
targeted to the correct location with an appropriate margin be-
fore ablation. The final link in the chain is Needle_TF_EE,
the inverse of the transformation from the end-effector to the
needle, which has been previously modeled in section II-D2.
In summary, this method emphasizes the calculation of a more

robust base_TF_EM through averaging measurements from
multiple positions. It uses this transformation to compute an
optimal base_TF_EE via a transformation chain. This chain
incorporates safety measures and pre-modeled transformations
to ensure accurate and safe targeting of the liver tumor.

III. RESULTS AND DISCUSSION

A. Results
In the study, a series of transformation matrices were

computed for the robotic system. These matrices represent
the spatial relationships between different parts of the robotic
system, including the base, the electromagnetic (EM) gen-
erator, the end-effector (EE), and the needle. Initially, the
transformation matrix from the robot’s base to the EM gen-
erator was computed at multiple points, base_TF_EM. The
average transformation matrix and the standard deviation were
calculated for five measurements as shown in Eq.9.

baseT
EM(Avg5) =


0.2560 0.6768 0.6852 0.7895
0.2989 −0.7296 0.6117 0.0382
0.9162 0.0490 −0.3911 0.0512

0 0 0 1

 ,

baseT
EM(Std5) =


0.0650 0.0369 0.0328 0.0230
0.0367 0.0351 0.0364 0.0612
0.0112 0.0665 0.0268 0.0337

0 0 0 0


(9)

The average provides the mean spatial relationship between
the robot’s base and the EM generator, and the standard devi-
ation quantifies the variability in these measurements. Later,
this procedure was repeated with ten measurements, which
gave a slightly different average and standard deviation as
shown in Eq.10. The average and standard deviation from the
ten measurements is more reliable than for five measurements
due to the increased number of samples.

baseT
EM(Avg10) =


0.2468 0.6789 0.6872 0.7941
0.2880 −0.7252 0.6225 0.0493
0.9222 0.0642 −0.3766 0.0480

0 0 0 1

 ,

baseT
EM(Std10) =


0.0620 0.0361 0.0259 0.0208
0.0345 0.0348 0.0343 0.0587
0.0118 0.0516 0.0301 0.0347

0 0 0 0


(10)

Using the averaged base_TF_EM, an optimal transfor-
mation matrix, base_TF_EE(opt), was also calculated.
This optimal transformation matrix provides the theoretical
best positioning of the needle concerning the robot’s base. A
comparison of the manually calibrated base_TF_EE and the
computed optimal base_TF_EE(opt) reveals differences
between the current configuration of the robotic arm and its
optimal configuration as shown in Eq.11. Differences could
inform improvements to the modeling of the workspace.



baseT
EE =


0.999 0.0348 0.0264 0.6169
0.0350 −0.9993 −0.00706 −0.0247
0.0261 0.0080 −0.9996 0.2946

0 0 0 1

 ,

baseT
EE(opt) =


0.9946 0.0007 0.0713 0.6376
0.0064 −0.9982 0.0116 0.0209
0.0839 0.0045 −0.9946 0.3407

0 0 0 1


(11)

The following video , shows the Franka’s movement when
the calculated baseT

EE(opt) was published to the base of the
robotic manipulator.

B. Discussion of Results
The robotic system’s performance analysis revealed signif-

icant discrepancies in the spatial relationships between vari-
ous components. Notably, the average transformation matrix
base_TF_EM, calculated from five repeated measurements,
demonstrated a standard deviation rounded to the nearest two
decimal places in the translational vector. This discrepancy
corresponds to approximately 1 cm when translated to physical
space, considering the units of measurement used in this study.
Given the precision and delicacy required for the task, such
a level of variance is deemed inadequate. This deviation can
be primarily attributed to the method of deriving the average
transformation matrix. The straightforward approach of cal-
culating the arithmetic mean of measurements, while being
intuitive, is not robust against outliers or skewed distributions.
These can lead to an inflated standard deviation and a higher
discrepancy in the translational vector. Ideally, the number
of samples should be increased until the standard deviation
values are in the thousandths, representing millimeters in the
workspace. It should be noted that increasing the sample space
indefinitely does not guarantee a decrease in the standard
deviation. A lower standard deviation does not necessarily
imply a more accurate result but indicates greater consistency
between the results. The base_TF_EM should be validated
to ensure it does not cause disparities for the calculated
base_TF_EE(opt). A possible validation method for the
average of base_TF_EM is exploiting closed-loop properties
in the robotic workspace. The premise is straightforward, when
the following chain base_TF_EM(avg), EM_TF_needle,
needle_TF_EE, and finally EE_TF_base is. Multiplied in
their respective order, they should produce base_TF_base,
which should be an identity matrix if base_TF_EM(avg) is
computed accurately. Any deviation from the identity matrix
indicates an inconsistency in the transformations, suggesting
a need for fine-tuning. The base_TF_EM matrix can be
adjusted until the product of the transformation matrices is
as close as possible to the identity matrix, effectively closing
the loop.

It should be noted that perfectly closing the loop may be
challenging due to real-world imperfections and measurement
noise. As a result, a minor deviation from the identity matrix

is considered acceptable up to 3 decimal places, which is
translated to millimeters in the workspace. However, it is
essential to note that while this method effectively validates
the consistency among the transformation matrices, it does not
validate them against an external ground truth. An external
validation method, such as optical tracking systems, could be
a viable option to be explored for future work to validate the
results.

As for the comparison between the manually
calibrated base_TF_EE and the computed optimal
base_TF_EE(opt), it is reasonable to assume that
predicting the exact rotation with manual calibration would
be challenging. Hence the validation is primarily focused on
the translational vector. It is observed that the vectors also
display a discrepancy of around two decimal places, which
aligns with the standard deviation obtained from the earlier
transformation matrices. This could be seen as well in the
video as the “needle” is not perfectly aligned with the tumor
but significantly close to precise alignment, which emphasizes
the importance of using robust methods with more samples
to minimize these errors and increase the precision of the
robotic system.

IV. CONCLUSION

In the face of a global health challenge such as liver cancer,
an increasingly prevalent and lethal disease, this project intro-
duced the possible registration of a robotic workspace in an
innovative and potentially superior alternative for liver tumor
ablation by utilizing robotic manipulators. The study provides
critical insights into how transformation chains can optimize
the calculation of a 6-DOF robotic manipulator’s (Franka
Emika Panda) end-effector position for precise tumor ablation.
This is utilized as a platform for this study. The research
demonstrated how transformation chains can be exploited for
registration in a robotic workspace to ensure precision in
needle placement. This was done by extensively analyzing
transformation matrices representing spatial (3D) relationships
between different parts in the robotic workspace. Utiliz-
ing the transformation chain, the first transformation matrix
base_TF_EM is computed at ten different positions within
the workspace. The average of these matrices aimed to repre-
sent a more accurate spatial relationship in the workspace; this
method faced certain limitations despite its intuitiveness. One
of the main challenges was the variation between the computed
average and the actual set of transformations at different
points. This variation, quantified as the standard deviation in
the translational vector, reached up to roughly 1 cm. Given
the high precision expected in medical procedures like tumor
ablation, this level of deviation raised concerns. This is an area
where future research should yield substantial improvements
by maybe having another method to compute a better and more
accurate average for base_TF_EM. Furthermore, by compar-
ing base_TF_EE after manual calibration with calculated
base_TF_EE(opt), which seemed to have a very similar
standard deviation as well for the translation vector. While the

https://drive.google.com/drive/folders/1PIpdnbzAhZLz21juhB3f3JjQJaLd5ixm?usp=share_link
https://drive.google.com/drive/folders/1PIpdnbzAhZLz21juhB3f3JjQJaLd5ixm?usp=share_link


research revealed some challenges, it ultimately demonstrated
the tremendous potential of robotic manipulators for liver
tumor ablation. Integrating robotics, real-time data gathering
and transformation chain systems could herald a new era of
precision and consistency in tumor ablation procedures. The
insights derived from this research could prove invaluable in
further improving robotic manipulators’ precision, flexibility,
and control, thereby enhancing the efficacy and safety of
tumor ablation procedures. Further studies are required to
continue refining the methods used to compute transformation
matrices and their associated averages to improve the accuracy
and precision of robotic manipulator positioning in clinical
applications.
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V. SUPPORTING MATERIAL

A. Python Script

1 # ! / u s r / b i n / py thon3
2 # −− c od in g : u t f −8 −−
3

4 i m p o r t r o s p y
5 i m p o r t numpy as np
6 i m p o r t s c i p y . s p a t i a l . t r a n s f o r m
7 from geometry msgs . msg i m p o r t Pose , PoseStamped
8 from r o s i g t l b r i d g e . msg i m p o r t i g t l t r a n s f o r m
9 from f ranka msgs . msg i m p o r t F r a n k a S t a t e

10

11

12 c l a s s T r a n s f o r m a t i o n O p t i m i z e r :
13

14 d e f i n i t ( s e l f ) :
15 r o s p y . i n i t n o d e ( ’ t r a n s f o r m a t i o n o p t i m i z e r ’ )
16

17 s e l f . base TF em = None
18 s e l f . e m t f n e e d l e o p t = None
19 s e l f . tumor t f em = None
20 s e l f . base TF em std = None
21 s e l f . em t f tumor = None
22 s e l f . e m t f n e e d l e = None
23 s e l f . base TF tumor = None
24 s e l f . e e t f h a n d = np . a r r a y ( [ [ 0 . 7 0 7 , 0 . 7 0 7 , 0 , 0 ] , [ − 0 . 7 0 7 ,
25 0 . 7 0 7 , 0 , 0 ] , [ 0 , 0 , 1 , 0 . 1 0 3 4 ] , [ 0 ,
26 0 , 0 , 1 ] ] )
27 s e l f . h a n d t f n e e d l e = np . a r r a y ( [ [ 0 , −1 , 0 , − 0 . 1 3 5 ] , [ 0 , 0 , 1 ,
28 0 . 0 2 9 5 ] , [ −1 , 0 , 0 , 0 ] , [ 0 , 0 , 0 , 1 ] ] )
29 s e l f . base TF ee = None
30 s e l f . base TF em measurements = [
31 np . a r r a y ( [ [ 0 . 3 7 3 0 1 4 1 1 , 0 .65801928 , 0 .65387306 , 0 . 7 7 9 1 6 5 8 ] ,
32 [ 0 . 2 3 4 8 2 2 9 5 , −0.7487801 , 0 .61956877 , 0 . 0 7 9 8 1 2 2 7 ] ,
33 [ 0 . 8 9 7 5 8 4 1 5 , −0.07757888 , −0.43396305 ,
34 0 . 0 0 5 1 8 4 5 9 ] , [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
35 np . a r r a y ( [ [ 0 . 2 6 0 6 3 6 1 2 , 0 .62639499 , 0 .7344234 , 0 . 7 6 2 5 3 4 1 7 ] ,
36 [ 0 . 3 1 8 1 0 4 1 3 , −0.77396784 , 0 .54723167 ,
37 −0 .06884315] , [ 0 . 9 1 1 4 9 3 3 9 , 0 .09100739 ,
38 −0.40111895 , 0 . 0 8 3 1 6 5 2 2 ] , [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
39 np . a r r a y ( [ [ 0 . 2 5 2 2 9 1 3 9 , 0 .66675102 , 0 .70105017 , 0 . 8 2 4 5 3 9 6 3 ] ,
40 [ 0 . 2 8 2 9 1 2 0 4 , −0.74366927 , 0 .60547139 , 0 . 1 0 7 5 6 1 0 4 ] ,
41 [ 0 . 9 2 5 3 4 3 0 3 , 0 .04558383 , −0.37637998 , 0 . 0 7 2 2 6 2 5 ] ,
42 [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
43 np . a r r a y ( [ [ 0 . 2 1 1 4 4 6 8 1 , 0 .73475253 , 0 .64428948 , 0 . 7 7 3 5 5 0 4 2 ] ,
44 [ 0 . 3 3 8 1 5 7 1 3 , −0.67348805 , 0 .65707132 , 0 . 0 1 7 5 1 5 3 9 ] ,
45 [ 0 . 9 1 6 9 9 8 6 8 , 0 .07893902 , −0.39099934 , 0 . 0 7 9 8 8 6 9 7 ] ,
46 [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
47 np . a r r a y ( [ [ 0 . 1 8 2 4 5 9 4 5 , 0 .69785847 , 0 .6923748 , 0 . 8 0 7 5 6 6 9 5 ] ,
48 [ 0 . 3 2 0 7 1 3 1 1 , −0.70792696 , 0 .62901629 , 0 . 0 5 5 0 8 9 0 4 ] ,
49 [ 0 . 9 2 9 4 0 9 6 8 , 0 .10729438 , −0.35310528 , 0 . 0 1 5 7 4 8 3 3 ] ,
50 [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
51 np . a r r a y ( [ [ 0 . 1 4 9 8 5 6 2 6 , 0 .7356549 , 0 .66032958 , 0 . 8 2 5 2 1 9 5 8 ] ,
52 [ 0 . 2 9 4 9 3 8 3 7 , −0.6707282 , 0 .68030459 , 0 . 1 5 1 3 5 3 6 8 ] ,
53 [ 0 . 9 4 3 6 7 3 0 4 , 0 .09281368 , −0.31759226 ,
54 −0 .02009197] , [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
55 np . a r r a y ( [ [ 0 . 2 0 6 4 3 9 9 4 , 0 .69897683 , 0 .68478427 , 0 . 7 9 8 1 5 0 1 7 ] ,
56 [ 0 . 3 1 7 4 1 1 6 6 , −0.69941398 , 0 .63991378 , 0 . 0 7 3 8 7 6 6 8 ] ,
57 [ 0 . 9 2 6 1 6 9 5 1 , 0 .11429072 , −0.35978099 , 0 . 0 3 8 1 0 5 6 7 ] ,
58 [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
59 np . a r r a y ( [ [ 0 . 2 3 8 3 4 9 2 4 , 0 .67996228 , 0 .69376147 , 0 . 8 0 7 1 2 5 2 9 ] ,
60 [ 0 . 2 7 3 4 4 8 1 2 , −0.72151397 , 0 .63648194 , 0 . 0 4 0 0 1 3 3 7 ] ,



61 [ 0 . 9 3 1 9 8 4 7 3 , 0 .06361045 , −0.35702709 , 0 . 0 6 5 8 6 2 8 4 ] ,
62 [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
63 np . a r r a y ( [ [ 0 . 2 7 8 1 7 3 8 9 , 0 .65801882 , 0 .69976813 , 0 . 7 8 8 2 1 9 4 3 ] ,
64 [ 0 . 2 6 5 6 1 2 1 2 , −0.74471013 , 0 .61287531 , 0 . 0 5 1 0 7 6 4 6 ] ,
65 [ 0 . 9 2 0 4 8 4 7 9 , 0 .06686362 , −0.38548031 , 0 . 0 5 8 7 3 6 9 5 ] ,
66 [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
67 np . a r r a y ( [ [ 0 . 3 1 5 8 0 4 2 8 , 0 .63224551 , 0 .70720099 , 0 . 7 7 4 4 2 9 9 8 ] ,
68 [ 0 . 2 3 3 7 1 5 1 6 , −0.76769813 , 0 .59724927 ,
69 −0 .01437382] , [ 0 . 9 1 8 8 5 1 0 5 , 0 .05960038 ,
70 −0.39024623 , 0 . 0 8 1 5 2 5 3 7 ] , [ 0 . , 0 . , 0 . , 1 . ] ] ) ,
71 ]
72

73 s e l f . base TF em = np . mean ( s e l f . base TF em measurements , a x i s =0)
74 p r i n t ( ’Base TF EM Average : ’ , s e l f . base TF em )
75 s e l f . base TF em std = np . s t d ( s e l f . base TF em measurements ,
76 a x i s =0)
77 p r i n t ( ’Base TF EM S t a n d a r d D e v i a t i o n : ’ , s e l f . base TF em std )
78

79 r o s p y . S u b s c r i b e r ( ’ / IGTL TRANSFORM IN ’ , i g t l t r a n s f o r m ,
80 s e l f . a u r o r a c a l l b a c k )
81 r o s p y . S u b s c r i b e r ( ’ / f r a n k a s t a t e c o n t r o l l e r / f r a n k a s t a t e s ’ ,
82 F r a n k a S t a t e , s e l f . ge t base TF ee )
83

84 s e l f . o u t p u t p o s e p u b = r o s p y . P u b l i s h e r ( ’ / e q u i l i b r i u m p o s e ’ ,
85 PoseStamped , q u e u e s i z e =1)
86

87 d e f ge t base TF ee ( s e l f , d a t a ) :
88 A = np . a r r a y ( d a t a . O T EE ) . r e s h a p e ( ( 4 , 4 ) )
89 s e l f . base TF ee = np . t r a n s p o s e (A)
90

91 r o t a t i o n m a t r i x = s e l f . base TF ee [ : 3 , : 3 ]
92 q u a t e r n i o n = \
93 s c i p y . s p a t i a l . t r a n s f o r m . R o t a t i o n . f r o m m a t r i x ( r o t a t i o n m a t r i x ) . a s q u a t ( )
94 s e l f . b a s e T F e e q u a t e r n i o n = q u a t e r n i o n
95

96 p r i n t ( ’ Base TF EE ’ , s e l f . base TF ee )
97

98 d e f a u r o r a c a l l b a c k ( s e l f , d a t a ) :
99 q u a t e r n i o n = [ d a t a . t r a n s f o r m . r o t a t i o n . x ,

100 d a t a . t r a n s f o r m . r o t a t i o n . y ,
101 d a t a . t r a n s f o r m . r o t a t i o n . z ,
102 d a t a . t r a n s f o r m . r o t a t i o n .w]
103 r o t a t i o n = \
104 s c i p y . s p a t i a l . t r a n s f o r m . R o t a t i o n . f rom qua t ( q u a t e r n i o n )
105 r o t a t i o n m a t r i x = r o t a t i o n . a s m a t r i x ( )
106 t r a n s l a t i o n v e c t o r = np . a r r a y ( [ d a t a . t r a n s f o r m . t r a n s l a t i o n . x
107 / 1000 , d a t a . t r a n s f o r m . t r a n s l a t i o n . y / 1000 ,
108 d a t a . t r a n s f o r m . t r a n s l a t i o n . z / 1 0 0 0 ] )
109

110 i f d a t a . name == ’ Need leToTracke r ’ :
111 s e l f . e m t f n e e d l e = np . eye ( 4 )
112 s e l f . e m t f n e e d l e [ : 3 , : 3 ] = r o t a t i o n m a t r i x
113 s e l f . e m t f n e e d l e [ : 3 , 3 ] = t r a n s l a t i o n v e c t o r
114

115 # p r i n t ( ’ n e e d l e ’ , s e l f . e m t f n e e d l e )
116

117 s e l f . compute base TF EE opt ( )
118 e l i f d a t a . name == ’ TumorToTracker ’ :
119 s e l f . em t f tumor = np . eye ( 4 )
120 s e l f . em t f tumor [ : 3 , : 3 ] = r o t a t i o n m a t r i x
121 s e l f . em t f tumor [ : 3 , 3 ] = t r a n s l a t i o n v e c t o r
122

123 # p r i n t ( ’ tumor ’ , s e l f . em tumor )



124

125 s e l f . compute base TF EE opt ( )
126

127 d e f compute base TF EE opt ( s e l f ) :
128 i f s e l f . base TF em i s n o t None and s e l f . em t f tumor i s n o t None :
129 s e l f . tumor TF em = np . l i n a l g . i n v ( s e l f . em t f tumor )
130 s e l f . e e t f n e e d l e = np . matmul ( s e l f . e e t f h a n d ,
131 s e l f . h a n d t f n e e d l e )
132 s e l f . n e e d l e t f e e = np . l i n a l g . i n v ( s e l f . e e t f n e e d l e )
133 s e l f . base TF EE opt = np . matmul ( np . matmul ( s e l f . base TF em ,
134 s e l f . ge t EM TF needle opt ( ) ) , s e l f . n e e d l e t f e e )
135 p r i n t ( ’ Base TF EE opt ’ , s e l f . base TF EE opt )
136 pose = Pose ( )
137 pose . p o s i t i o n . x = s e l f . base TF EE opt [ 0 , 3 ] − 0 . 1 2
138 pose . p o s i t i o n . y = s e l f . base TF EE opt [ 1 , 3 ] − 0 . 0 3
139 pose . p o s i t i o n . z = s e l f . base TF EE opt [ 2 , 3 ] − 0 . 0 1
140 pose . o r i e n t a t i o n . x = s e l f . b a s e T F e e q u a t e r n i o n [ 0 ]
141 pose . o r i e n t a t i o n . y = s e l f . b a s e T F e e q u a t e r n i o n [ 1 ]
142 pose . o r i e n t a t i o n . z = s e l f . b a s e T F e e q u a t e r n i o n [ 2 ]
143 pose . o r i e n t a t i o n .w = s e l f . b a s e T F e e q u a t e r n i o n [ 3 ]
144 pose s tamped = PoseStamped ( )
145 pose s tamped . h e a d e r . f r a m e i d = ’ / p a n d a l i n k 0 ’
146 pose s tamped . pose = pose
147 s e l f . o u t p u t p o s e p u b . p u b l i s h ( pose s tamped )
148

149 d e f get EM TF needle opt ( s e l f ) :
150 r o t a t i o n m a t r i x = np . a r r a y ( [ [ 0 . 9 4 7 6 5 4 6 , −0.1842600 , −0 .2607661] ,
151 [ 0 . 2 4 6 3 2 0 2 , −0.0977731 , 0 . 9 6 4 2 4 4 1 ] ,
152 [ −0 .2031676 , −0.9780024 , − 0 . 0 4 7 2 6 8 1 ] ] )
153 t r a n s l a t i o n v e c t o r = np . a r r a y ( [ s e l f . em t f tumor [ 0 , 3 ] ,
154 s e l f . em t f tumor [ 1 , 3 ] , s e l f . em t f tumor [ 2 , 3 ] ] )
155 e m t f n e e d l e o p t = np . eye ( 4 )
156 e m t f n e e d l e o p t [ : 3 , : 3 ] = r o t a t i o n m a t r i x
157 e m t f n e e d l e o p t [ : 3 , 3 ] = t r a n s l a t i o n v e c t o r
158 r e t u r n e m t f n e e d l e o p t
159

160 i f name == ’ main ’ :
161 T r a n s f o r m a t i o n O p t i m i z e r ( )
162 r o s p y . s p i n ( )

Listing 1. Python Script called to the launch file

B. Code Development

1) Base-TF-EE: The get_base_TF_ee function processes data from a ROS topic to compute the transformation from
the robot’s base frame to its end-effector frame. It first reshapes the received 1D array representing the transformation matrix
into a 4x4 matrix and transposes it to match Python’s column-major format. Once the transformation matrix is computed, the
function calls compute_base_TF_em to calculate the transformation matrix from the base frame to the Electromagnetic
generator frame. This sequence ensures that the computations remain updated with the latest transformations.

2) EM-TF-Needle / Tumor: The aurora_callback function processes incoming transformation data from the
Aurora tracking system. The function first extracts the rotation part of the transformation as a quaternion and converts
it into a rotation matrix using Scipy’s spatial transformations utilities. The translation part of the transformation is then
extracted and scaled down by a factor of 1000 to convert it from millimeters to meters. Depending on the type of incoming
data - ’NeedleToTracker’ or ’TumorToTracker,’ the function sets either the needle’s or the tumor’s transformation from
the electromagnetic (EM) generator frame. If the base-to-EM generator frame transformation is already calculated (for the
’TumorToTracker’ case), the base-to-tumor transformation is computed. This data processing and classification allow for
targeted adjustments based on whether the incoming data pertains to a needle or a tumor.

3) Base-TF-Tumor: The compute_base_TF_tumor function calculates the transformation from the robot base
frame to the tumor (base_TF_tumor). It checks whether transformations base_TF_ee (from the robot base frame to
the end-effector frame) and em_TF_needle (from the EM generator frame to the needle frame) exist. If so, it computes



base_TF_tumor by chaining these transformations together.

4) Needle-TF-Tumor: The code snippet computes the product of two matrices, self.em_tf_needle and
self.em_tf_tumor. It first calculates the inverse of self.em_tf_needle using the NumPy function np.linalg.inv(),
and then performs matrix multiplication using np.matmul(). The resulting matrix, self.needle_tf_tumor, relates the
tumor concerning the needle frame, which is a critical aspect for precise alignment of the needle and tumor.

5) Base-TF-EE(optimal): The function compute_base_TF_EE_opt is crucial in achieving precise needle and tumor
alignment. When the needle and tumor are aligned, the chain of transformations calculates the desired base_TF_EE. The
matrix is then deconstructed into various elements using the PoseStamped() function, which encapsulates the desired coordinates.
These coordinates are then published to the Franka as a command for the robot, enabling it to move to the measured coordinates
that ensure precise alignment.
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