
JERK-BASED CONTROL OF AERIAL
MANIPULATORS IN PHYSICAL INTERACTION

WITH THE ENVIRONMENT

T. (Thissa) Bastiaens

MSC ASSIGNMENT

Committee:
prof. dr. ir. A. Franchi

ir. A.N.M.G. Afifi
C. Gabellieri, Ph.D

dr. ir. W.B.J. Hakvoort

July, 2023

042RaM2023
Robotics and Mechatronics

EEMathCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Contents

1 Introduction 3
1.1 Jerk-based control . 3
1.2 Aerial manipulators . 3
1.3 Research question . 3
1.4 Tasks . 3

2 Background 4

3 Quadratic Programming 4
3.1 Introduction . 4
3.2 Acceleration level . 4

3.2.1 Unconstrained formulation . 4
3.2.2 Constrained formulation . 5
3.2.3 Required information . 5
3.2.4 Limitations . 5

3.3 Jerk level . 6
3.3.1 Unconstrained formulation . 6
3.3.2 Constrained formulation . 7
3.3.3 Required information . 7
3.3.4 Summary . 8

4 Simulation 8
4.1 Motivation . 8
4.2 Simulink . 8

5 Results 8

6 Conclusion 9
6.1 FT noise . 9
6.2 IMU noise . 9

6.2.1 Mass matrix . 10
6.2.2 Wrench map . 10

7 Discussion 10
7.1 Experiments . 10
7.2 Future work . 10

8 Appendix 11
8.1 Gravity . 11
8.2 Coriolis . 11
8.3 Actuation . 11
8.4 Contact . 11

8.4.1 Holonomic constraint . 12
8.4.2 Wrench . 12
8.4.3 Contact Stability Constraints . 12
8.4.4 Linearized contact stability conditions . 13
8.4.5 Parametrization . 13

8.5 Cost function manipulation . 14

Abstract

For complex interaction tasks, in which there exist multiple constraints that must be satisfied for successful execution
of task, it is common to formulate these control problems as quadratic programming (QP) problems. Recently in the
humanoid robotics literature, these type of problems is formulated at the jerk level where feedback from force/torque (FT)
sensors plays a pivotal roll. When jerk-based control is implemented on aerial manipulators, there is additionally feedback
from an inertial measurement unit (IMU). This paper demonstrates that including feedback from this sensor improves
performance on both motion and force tasks and that it improves robustness against noise and modelling errors.

2

1 Introduction

1.1 Jerk-based control

For complex interaction tasks, in which there exist multiple constraints that must be satisfied for successful execution of
task, it is common to formulate these control problems as Quadratic Programming (QP) problems. Where the optimization
variables are the system accelerations and forces. Recently in the humanoid robotics literature, these type of problems is
formulated at the jerk level. At the jerk level, the optimazation variables are instead the system jerks and the derivative
of the forces. Jerk-based controllers are promising strategies for humanoid robots balancing and basic locomotion[4]. The
key feature of such control strategies is to include force feedback from force/torque (FT) sensors, a fundamental piece of
information for robots performing physical interaction tasks. FT sensor feedback is integrated in the control design through a
parametrization of the contact forces, ensuring also the maintenance of contact stability conditions. There are still open
questions that need to be resolved. Firstly, it is required to investigate and possibly enforce the robustness of jerk controllers
with regard to noisy measurements and modelling errors. Secondly, the parameterization of the contact stability conditions
could be revised and extended to different contact conditions, for example, sliding along a surface while maintaining contact.
Lastly, the controller design and stability analysis may be extended such that the parameterization also include limits relating
to actuation, such as joint and torque limits.

1.2 Aerial manipulators

Jerk-based control design could find valuable and novel applications for the control of aerial manipulators: these robots
are designed to perform physical interaction tasks, such as object manipulation and polishing[7]. The tasks involve a type
of contact that may be different from the type used in the locomation task of humanoid robots. For example, a task may
be exerting a specific force on the environment with an end-effector or to make the end-effector slide over a surface while
maintaining contact. These Unmanned Aerial Vehicles (UAV’s) often come equipped, by default, with a different suite of
sensors that is absent from the previously mentioned humanoid robots. Next to FT sensors, they often contain Inertial
Measurement Units (IMU’s) and gyroscope’s, which may prove valuable in jerk-based controllers. The final difference is that
UAV’s are often kinematically less complex than humanoid robots.

1.3 Research question

The goal of this paper is to further extend the theoretical framework of jerk-based control and experimentally validate the
new extension on the aerial manipulator Fiber-THex present at the RAM laboratory. Specifically the aim is to investigate the
implications of include IMU sensor information, which leads to the following research questions:

1. What are the advantage and disadvantages performance-wise, of the jerk-level controller, compared to the acceleration-
level controller for UAV’s with IMU’s and FT sensors?

2. What are the advantages and disadvantages to robustness against noise and modelling errors, of the jerk-level controller,
compared to the acceleration-level controller for UAV’s with IMU’s and FT sensors?

3. What are the advantages and disadvantages, practically and computationally, of the jerk-level controller when applied
to UAV’s, compared to humanoid robots?

1.4 Tasks

To answer these questions a set of tasks have to be defined on which advantages and disadvantaged can be defined and
measured:

1. Unconstrained. In this task there is no contact with the environment; the UAV is in free flight and the task is motion
tracking

2. Constrained: In this task the UAV end-effector is to make stable contact with the environment and to exert a specified
force.

3. Push and slide: In this task, the UAV end-effector is to slide along the surface while maintaining stable contact. There
is thus both motion and force tracking.

3

2 Background

The translational dynamics are expressed in the inertial frame and the rotational dynamics are expressed in the body-fixed
frame. The equations of motion (EoM) of a 3D rigidbody, written using the Newton-Euler formalism are given by:[8]

Ma = wg +wc +wa +wi +wext with M =

[
m 0
0 I

]
(1)

In these equations, m = diag (m,m,m) represent the mass matrix where m ∈ R is the mass of the UAV. Furthermore
I = diag (Ixx, Iyy, Izz) ∈ R3×3 represent the inertia matrix, where Iii represents the moment of inertia of the UAV about the i
axis. Lastly, wg, wc, wa and wi represent the wrenches due to gravity, coriolis effect, actuation and interaction. Finally, wext

represents the external wrench due to unmodelled effects such as aerodynamics phenomena (e.g., wind effect, blade flapping,
cross interference between propellers, and ground/wall effect). For the applications proposed in this paper it is assumed that
these effects do not significantly affect the robot dynamics, and that they can therefore can be neglected. Because of the
choice in framing, Ṁ = 0 and thus the derivative of 1 with respect to time is simply given by:

Mj = ẇg + ẇc + ẇa + ẇi + ẇext (2)

The derivation of the wrenches and their derivatives can be found in section 8. In short, the wrench due to actuation is
proportional to the propeller speeds squared:

wa = Gvω
2
prop (3)

ẇa = Gvω̇
2
prop + Ġvω

2
prop (4)

Furthermore, the wrench due to interaction, neglecting viscous effects, is written as a product of the Jacobian and the wrench
on the end-effector:

wi = Jconwcon (5)

wi = Jcon ˙wcon + J̇conwcon (6)

3 Quadratic Programming

3.1 Introduction

Quadratic programming aims to find a minimum for a cost:

min
u

cost (u) =
1

2
uTHu+ cTu (7)

Subject to a set of 0 or more constraints:
blower ≤ Au ≤ bupper (8)

In this formulation, u is the search variable, H is the Hessian and c is the gradient. Multiple types of constraint can be given:

• if blower ̸= bupper the constraint is an inequality constraint

• if blower = bupper the constraint is an inequality constraint

• if A = I the constraint directly bounds on the search variable

3.2 Acceleration level

3.2.1 Unconstrained formulation

The search variable is defined as u =
[
a ω2

prop

]T
and the weighted cost function that full fills the tracking task is:

costaccmotion(u) = (a− a∗)
T
Wmotion (a− a∗) (9)

Where Wmotion is a diagonal positive definite matrix of weights: Wmotion = diag
(
W x
tr,W

y
tr,W

z
tr,W

ϕ
or,W

θ
or,W

ψ
or

)
. Where

W i
tr and W i

or represent the weights corresponding to the translation along the i direction and orientation task along the i
axis. This cost function corresponds to the following Hessian and gradient:

Hacc
motion =

[
I 0

]T
Wmotion

[
I 0

]
caccmotion =

(
−a∗

T

Wmotion

[
I 0

])T
(10)

Equation 1 with wi = 0 is used to write the equality constraint:[
M −Gv

] [a
ω2
prop

]
= wg +wc (11)

4

There are no bounds on the acceleration and lower- and upperbounds on ω2
prop arise from lower- and upperbounds on ωprop:[

−∞
ω2
min

]
≤

[
a

ω2
prop

]
≤

[
∞

ω2
max

]
(12)

Where 0 < ωmin < ωmax are the maximum and minimum propeller speeds respectively.

After solving the QP formulation, the propeller speeds can simply be calculated via: ωprop =
√
ω2
prop.

3.2.2 Constrained formulation

In the constrained case the search variable is defined as u =
[
a ω2

prop wcon

]T
. The cost function for the motion task

remains the same and it’s Hessian and gradient are given by:

Hacc
motion =

[
I 0 0

]T
Wmotion

[
I 0 0

]
caccmotion =

(
−a∗

T

Wmotion

[
I 0 0

])T
(13)

Equation 1 is again used to write the equality constraint:

[
M −Gv −JTcon

]  a
ω2
prop

wcon

 = wg +wc (14)

Additional to the bounds described in 12, there are the contact stability conditions wcon ∈ K. Their derivation, including
their linearization that is required for this formulation, can be found in section 8.4.3.

3.2.3 Required information

The desired acceleration a∗ are computed from reference signals and measurements via a simple PD controller, with an
additional feed-forward term:

a∗ =

[
aref +Kv (vref − vmeas) +Kp (pref − pmeas)

ω̇ref +Kω (ωref − ωmeas) +KRvmap (Rref , Rmeas)

]
(15)

The reference signals must have a finite second order derivative for a∗ to be finite. The variables used for feedback when
solving this QP formulation at the acceleration level are thus:

• Position pmeas: to compute a∗

• Velocity vmeas: to compute a∗

• Orientation Rmeas: to compute a∗ and Gv

• Angular velocity: ωmeas: to compute a∗ and wc

3.2.4 Limitations

There are several limitations of this formulation:

• First of all, the solution u may be discontinuous and thus discontinuous in ωprop, for example when making or breaking
contact. Discontinuity is infeasible in practice because propellers have inertia and thus cannot instantaneously change
speeds.

• Second, the information from the IMU sensor, is not utilized

• Third, information from the FT sensor is not utilized. Two approaches for adderessing this are as follows:

– The issue can be remedied by adding an equality constraint wcon = w∗
con. The desired contact wrench w∗

con can
be computed from a measurement wmeas

con and reference wrench wref
con via for example a P controller:

w∗
con = Kcontact

(
wmeascon − wrefcon

)
(16)

While this would include FT sensor information, this equality constraint may require the contact stability constraints
wcon ∈ K to be violated.

– Another approach one may attempt, is to include a wrench task in the cost function:

costaccwrench(u) = (wcon −w∗
con)

T
Wwrench (wcon −w∗

con) (17)

Hacc
wrench =

[
0 0 I

]T
Wwrench

[
0 0I

]
(18)

caccwrench =
(
−w∗T

conWwrench

[
0 0 I

])T
(19)

5

Where Wwrench is a diagonal positive definite matrix of weights: Wwrench = diag
(
W x
f ,W

y
f ,W

z
f ,W

ϕ
τ ,W

θ
τ ,W

ψ
τ

)
.

Where W i
f and W i

τ represent the weight corresponding to the forces along the i direction and moments about the i
axis respectively. The total cost for the problem is simply the sum of the motion task and the wrench task:

costtotal = costmotion + costwrench Htotal = Hmotion +Hwrench ctotal = cmotion + cwrench (20)

In this formulation, the priorities of the motion task and wrench task become intertwined. The challenge of this
method is the tuning of the weights in Wwrench and the gains used to calculate w∗

con, with respect to the weights
in Wmotion and the gain used to calculate a∗.

• The fourth and final probem involves the holonomic constraint that models the interaction:

Jconν = 0 (21)

Jcona = −J̇conν (22)

This is because generally, the accelerations a that are part of the solution u violate the constraint. There are several
options to address this, some of which may be applied simultaneously:

– The first option is to add 22 as an equality constraint. This exacerbates the previously mentioed discontinuities.

– The second options is to 22 as an inequality constraint instead: blower = −J̇conν − δ and bhigher = −J̇conν + δ.

– The third option is to add it to the cost function: as a heavy-weighted task:

costaccconstraint(u) =
(
Jcona+ J̇conν

)T
Wconstraint

(
Jcona+ J̇conν

)
(23)

Hacc
constraint =

[
Jcon 0 0

]T
Wconstraint

[
Jcon 0 0

]
(24)

caccconstraint =
(
J̇conν

TWconstraint

[
Jcon 0 0

])T
(25)

The challenge with this approach is choosing the weights for the motion task, wrench task and constraint task.

– The fourth option is to replace a∗ by a∗
con, where a∗

con does satisfy the constraint. For example, when only the
position of the end-effector in the i-direction is constrained, one can write:

a∗x = Kv (−vxmeas)Kp (p
x
con − pxmeas) (26)

Where pxcon is the position of the UAV at which there is contact between the end-effector and the environment.

3.3 Jerk level

3.3.1 Unconstrained formulation

At the jerk level the search variable becomes u =
[
j ω̇2

prop

]
and the cost function changes into:

costjerkfree(u) = (j− j∗)
T
Wmotion (j− j∗) (27)

Similar to the acceleration level, this yields:

Hjerk
motion =

[
I 0

]T
Wmotion

[
I 0

]
cjerkmotion =

(
−a∗

T

Wmotion

[
I 0

])T
(28)

Equation 2 with ẇi = 0 is used to write the equality constraint:[
M −Ġv

] [j
ω̇2
prop

]
= ẇc + Ġvω

2
prop (29)

There are no bounds on the jerk and there are lower- and upperbounds on ω̇2
prop for 2 reasons.

• First there are practical limitations that relate to the hardware. There are bounds on ω̇prop, which may depend on
ωprop, for example, because of a limit to the current going to an electric motor.

• Completely separate from this are bounds that ensure that propeller speeds themselves don’t break their bounds. So
the bounds of ω̇2

prop depend on ω2
prop. In order to express these bounds, consider that at the jerk level, time integration

of the solution is required to obtain an expression for ωprop:

ω2
prop (t) = ω2

prop (0) +

∫ T

0

ω̇2
propdt (30)

6

When the forward Euler method is used in the controller as an approximation one may write:

ω2
prop (t) ≈ ω2

prop (t− 1) + ω̇2
prop (t)∆T (31)

Where ∆T is the time-step of the controller. By rewriting, one obtains:

ω̇2
prop (t) ≈

ω2
prop (t)− ω2

prop (t− 1)

∆T
(32)

This expression can then be use to express to lower and upperbounds as:

ω̇2
min (t) =

ω2
min − ω2

prop (t− 1)

∆T
(33)

ω̇2
max (t) =

ω2
max − ω2

prop (t− 1)

∆T
(34)

These 2 effects each produce a set of lower and upperbounds. The lowerbound to be applied is the highest of the 2 lowerbounds
and the upperbound to be applied is the lowest of the 2 upperbounds.

3.3.2 Constrained formulation

In the constrained case the search variable is defined as u =
[
j ω̇2

prop ẇcon

]T
. The cost function for the motion task

remains the same and the Hessian and gradient are given by:

Hjerk
motion =

[
I 0 0

]T
Wmotion

[
I 0 0

]
cjerkmotion =

(
−j∗

T

Wmotion

[
I 0 0

])T
(35)

Equation 2 is again used to write the equality constraint:

[
M −Gv −JTcon

]  j
ω̇2
prop

ẇcon

 = ẇc + Ġvwprop + J̇conwcon (36)

Because wcon is no longer a search variable, it is not straightforward to fullfill the contact stability conditions. One may
attempt the same strategy involving ∆T as is applied in equation 33 to describe the bounds on ẇcon in terms of wcon.
Alternatively, it is proposed to use to parametrization of the contact wrench, introduced in section 8.4.5. In order to accomplish

this, the search variable is changed into:
[
j ω̇2

prop ξ̇
]T

and the equality constraint is instead written as:

[
M −Gv −JTconΦ (ξ)

]  j
ω̇2
prop

ξ̇

 = ẇc + Ġvω
2
prop + J̇conwcon (37)

The invertability of Φ (ξ) plays a role in solving this QP formulation. To compute it, the variable ξ is required, which may be
obtained via integration of ξ̇ or via inversion of the parametrization: ξmeas = γ−1 (wmeas

con). The latter option is preferred, as
it allows further information from the FT sensor to be included.
Similar to the constrained formulation at the acceleration level, even more feedback from the FT sensor can be included if a
task relating to the wrench is added:

costjerkwrench(u) =
(
ξ̇ − ξ̇∗

)T
Wwrench

(
ξ̇ − ξ̇∗

)
(38)

Hjerk
wrench =

[
0 0 I

]T
Wwrench

[
0 0I

]
(39)

cjerkwrench =
(
−ξ̇∗

T

Wwrench

[
0 0 I

])T
(40)

The desired parameter relating to the parametrization, ξ̇∗ is computed by using the inverse of the parametrization:

ξ̇∗ = Kcontact

(
ξmeas − ξref

)
with ξmeas = γ−1 (wmeas

con) and ξref = γ−1
(
wref
con

)
(41)

3.3.3 Required information

The desired jerk j∗ may be computed via a simple PD+ controller with an additional feed-forward term:

j∗ =

[...
p ref +Ka (aref − ameas)Kv (vref − vmeas) +Kp (pref − pmeas)

ω̈ref +Kω̇ (ω̇ref − ω̇meas)Kω (ωref − ωmeas) +KRvmap (Rref , Rmeas)

]
(42)

The reference signal must have a finite third order derivative for j∗ to be finite. Similar to the acceleration level, j∗ may have
to be adapted for the holonomic constraint to not be violated. When only the position of the end-effector along the x-axis is
constrained:

j∗x = Ka (−axmeas)Kv (−vxmeas)Kp (p
x
con − pxmeas) (43)

The variables used for feedback when solving this QP formulation at the jerk level are thus:

7

• Propeller speeds: ωprop: to compute ω2
prop = ω2

prop

• Contact wrench: wmeas
con to compute ξ and ξ̇∗

• Position pmeas: to compute j∗

• Velocity vmeas: to compute j∗

• Acceleration ameas to compute j∗

• Orientation Rmeas: to compute j∗, Gv and Ġv

• Angular velocity: ωmeas: to compute j∗ and ẇc and Ġv

• Angular acceleration: ω̇meas: to compute j∗ and ẇc

When no measurement of ω̇ is available, it may be obtained by inverting equation 1, which would require ω, ω2
prop and wmeas

con

3.3.4 Summary

At the acceleration level, the solution is discontinuous in ω2
prop. At the jerk level the solutions are continuous in ω2

prop, even
if they may be discontinuous in ω̇2

prop. IMU information is not included at the acceleration level and it is included in the
computation of j∗ at the jerk level. FT sensor information is included at the acceleration level when computing w∗

con. At the
jerk level, it is used to compute ξ, ξ̇∗ and may be used to compute ω̇. The latter of these is used to compute j∗ and thus,
both the motions and wrench task would benefit from the FT sensor.

4 Simulation

4.1 Motivation

The acceleration- and jerk level controllers were developed and employed in a simulation environment. There are several
advantages to doing things in simulation, rather than in real life. First of all, in a simulator there is more control over the
measurement noise. In contrast with real life, simulation environment may contain little to no noise and additional noise of
various types may be added to measurements with ease. Second, in a simulator there is more control over modelling errors,
while in real life experiments, calibration procedures are required. Lastly, simulations may be cheaper, faster and safer.

4.2 Simulink

The controllers are implemented in Matlab Simulink by using qpOASES[3] in an S-function. The plant is also implemented in
Matlab Simulink and it consist of the equations of motion and a contact model. In this model, the environment is modelled as
a spring with high stiffness, is connected based on the end-effector position. There is also viscous friction when the end-effector
moves parallel to the environment. Static, coulomb and any form of torsional friction are not implemented. The mission is
defined by a set of position, orientation and force waypoints. The reference signal is computed by interpolating between the
waypoints with a quintic polynomial.

5 Results

Several experiments where performed. 3 tasks were tested:

• Unconstrained. In this task there is no contact with the environment; the UAV is in free flight and the task is motion
tracking

• Constrained: In this task the UAV end-effector is to make stable contact with the environment and to exert a specified
force.

• Push-and-slide: In this task, the UAV end-effector is to slide along the surface while maintaining stable contact. There
is thus both motion and force tracking.

3 types of noise were tested:

• No additional noise

• FT: white noise on the FT sensor with power = 0.01

• IMU: white noise on the IMU sensor with power = 0.001

3 types of modelling errors were tested:

• No modelling errors

8

• M: The mass matrix used in the controller has a maximum deviation of 7% from the actual mass matrix used in the
plant

• G: The wrench map used in the controller has a maximum deviation of 7% from the actual wrench map used in the plant

The results of the acceleration-level experiments can be found in 1 and those of the jerk-level experiments in 2. First results
were gather for each task, without noise and without modelling errors. This provides a baselines with which other results
can be compared. Then, for each combination of task, noise and modelling error, 25 simulations were ran and the results
from each simulation were combined into a single result. This was done using the root mean square (RMS) of the error. The
investigated error signals are the error in position, error in orientation and the error relating to the wrench task.

Task Noise Model RMSx RMSy RMSz RMSϕ RMSθ RMSψ RMSwrench

Unconstrained 7.6160e-05 7.7074e-05 7.9361e-05 1.4281e-06 1.4281e-06 1.4281e-06
Unconstrained M 3.4465e-04 3.5089e-04 0.0390 3.5083e-06 2.9975e-06 2.4185e-06
Unconstrained G 0.0021 0.0023 0.0092 0.0220 0.0278 0.0058

Constrained 0.0721 1.2981e-04 6.9846e-05 6.1939e-09 1.1782e-07 2.2882e-07 0.4820
Constrained FT 0.0721 0.0721 0.0721 1.0186e-07 4.8758e-06 3.4030e-06 0.9773
Constrained M 0.0721 9.0662e-05 0.0383 2.5929e-08 3.6809e-05 2.0635e-07 0.5086
Constrained G 0.0721 0.0048 0.0089 0.0234 0.0301 0.0058 0.5153

Push-and-slide 0.0822 0.0015 5.4404e-04 1.4074e-07 1.4100e-06 3.7469e-04 0.6484
Push-and-slide FT 0.0822 0.0019 0.0025 3.1741e-07 7.7199e-06 3.8939e-04 1.2351
Push-and-slide M 0.0822 0.0014 0.0378 3.9899e-07 4.6644e-05 3.7784e-04 0.7129
Push-and-slide G 0.0822 0.0077 0.0090 0.0241 0.0315 0.0058 0.7978

Table 1: Results for acceleration-level

Task Noise Model RMSx RMSy RMSz RMSϕ RMSθ RMSψ RMSwrench

Unconstrained 0.0097 0.0097 0.0097 3.5943e-04 3.5943e-04 3.5943e-04
Unconstrained IMU 0.0102 0.0115 0.0117 0.0017 0.0016 0.0016
Unconstrained M 0.0097 0.0097 0.0103 3.5943e-04 3.5943e-04 3.5943e-04
Unconstrained G 0.0098 0.0098 0.0100 0.0081 0.0082 0.0021

Constrained 0.0721 2.3970e-15 0.0027 1.8334e-15 3.5860e-10 6.9624e-16 0.4244
Constrained FT 0.0721 6.2053e-04 0.0027 6.9051e-10 2.0350e-06 3.4139e-06 0.5346
Constrained IMU 0.0721 0.0048 0.0059 0.0016 0.0013 0.0016 0.4974
Constrained M 0.0721 2.5201e-15 0.0035 1.6267e-15 4.8870e-10 7.1695e-16 0.4315
Constrained G 0.0721 5.9002e-04 0.0028 0.0103 0.0104 0.0026 0.4267

Push-and-slide 0.0822 0.0048 0.0033 3.3051e-07 1.1002e-05 5.4574e-04 0.7320
Push-and-slide FT 0.0822 0.0050 0.0033 5.1955e-07 1.3260e-05 6.5297e-04 0.7872
Push-and-slide IMU 0.0823 0.0053 0.0066 0.0013 0.0012 0.0017 0.8086
Push-and-slide M 0.0822 0.0046 0.0043 1.1999e-07 1.0256e-05 5.5056e-04 0.7715
Push-and-slide G 0.0822 0.0051 0.0035 0.0119 0.0120 0.0031 0.7315

Table 2: Results for jerk-level

6 Conclusion

6.1 FT noise

Consider the rightmost column of 1 for the constrained and push-and-slide tasks. By comparing the baseline value with the
value where FT noise is included, one finds that the RMS value is almost double. When doing the same comparison for the
jerk level and the rightmost column of 2, one finds that while the RMS value is higher for the experiments with FT noise, the
decrease in performance is not as bad as in at the acceleration level.

6.2 IMU noise

The introduction of IMU noise decreases the tracking of the orientation task and negatively effects the tracking along the z
axis. Furtermore, it has a negative effect on the wrench task.

9

6.2.1 Mass matrix

At the acceleration level, it can be seen that for each of the tasks, performance is worse when there are modelling errors in M .
Both the RMS values relating to relating to translational along z and the RMS values relating to the wrench are bigger when
there are modelling error in M . At the jerk level, the performance of motion tracking along the z axis is hardly affected. The
performance of the wrench task at the jerk level is affected by the modelling errors in M , just as much as at the acceleration
level.

6.2.2 Wrench map

At the acceleration level, modelling errors in the wrench map lead to tracking error in all of the relevant variables. At the jerk
level, only the orientation tracking is effected.

7 Discussion

7.1 Experiments

When this project was set up, the initial plan was to use Gazebo as a simulator. This was because it has a more realistic
contact model compared to what was implemented in Simulink and because Gazebo comes with a visualization. Furthermore,
it was planned perform experiments in real life and not just in simulation. As time went on, the realization dawned that
experiments in Gazebo and in real life would take too much time and would fall outside of the scope of this thesis.

7.2 Future work

Future work could include such experiments. Furthermore, the tasks were defined such that only the position along the
x-axis was constrained. Future work could include different and more types of interaction, such as having constraints on the
orientation. Furthermore, in these experiments, the end-effector was a rigid stick, which meant moments could not be exerted
on the environment. If the end-effector were different, one could investigate moment tracking. Lastly, one may investigate
having a non-rigid or multi-link manipulator. Having either of these options would mean that Ṁ ≠ 0 and İ ̸= 0, which would
have negative computational and practical connotations.

10

8 Appendix

8.1 Gravity

The wrench due to gravitational effects and it’s derivative are given by:

wg =

[
−mg
0

]
and ẇg =

[
0
0

]
(44)

The inertial frame is oriented in such a way that the gravitational acceleration is g =
[
0 0 9.81

]T
.

8.2 Coriolis

The wrench due to Coriolis effects is given by:

wc =

[
0

−ω × Iω

]
(45)

Because İ = 0, the derivative of this wrench with respect to time is simply given by:

ẇc =

[
0

−ω̇ × Iω − ω × Iω̇

]
(46)

8.3 Actuation

It is assumed that the wrench due to actuation, expressed in the body-fixed frame, is proportional to the propeller speed
squared:

wbf
a = Gω2

prop (47)

In this expression, the wrench map G ∈ R6×6 is full rank and Ġ = 0. The wrench due to actuation, where the translational
dynamics are expressed in the inertial frame via:

wa = Gvω
2
prop with Gv =

[
R 0
0 I

]
G (48)

Where R ∈ R3×3 is the orientation of the body-fixed frame with respect to the inertial frame. The derivative of this actuation
wrench with respect to time is given by:

ẇa = Gvω̇
2
prop + Ġvω

2
prop with Ġv

[
Ṙ 0
0 0

]
and Ṙ = Rω̃ (49)

The tilde-operator is defined as:

p̃ =

 0 −pz py
pz 0 −px
−py px 0

 with p =

pxpy
pz

 (50)

8.4 Contact

It is assumed that the robot interacts with a rigid and planar environment, which imposes constraints on the position and
orientation of the end-effector. The vector s =

[
cx cy cz cϕ cθ cψ

]
, is introduced where ci = 0 if i is not constrained

and ci = 1 if i is constrained. Examples of these different types of interaction include

• Fully constrained: s =
[
1 1 1 1 1 1

]
: the end-effector position and orientation remain constant w.r.t the inertial

frame

• Position constrained s =
[
1 1 1 0 0 0

]
: the end-effector position is constant w.r.t the inertial frame and it can

freely rotate. This case applies to a point contact

• Normal translation constrained: s =
[
1 0 0 0 0 0

]
: in this case the end-effector position is constrained in the

direction of motion normal to the plane spanning the environment. The end-effector may still move parallel to the plane
and it may rotate

• Orientations and normal translation constrained s =
[
1 0 0 0 1 1

]
: the end-effector position is constrained the

same as the previous case. The end-effector can rotate about the axis normal to the plane spanning the environment.

11

8.4.1 Holonomic constraint

To model the interaction in terms of s a diagonal selector matrix is introduced: Scon = diag (s). The constraints on the
end-effector velocities are then described with the selector matrices via:

Sconν
in
ee = 0 (51)

In this expression νinee are the end-effector velocities expressed in the inertial frame. The Jacobian J maps the robot velocities
to the end-effector velocities such that:

νinee = Jνinbf (52)

With:

J =

[
I Rp̃bfee
0 I

]
and J̇ =

[
0 Ṙp̃bfee
0 0

]
(53)

(54)

In this expression νinbf are the UAV velocities expressed in the inertial frame and pbfee is the position of the end-effector

expressed in the body-fixed frame with ṗbfee = 0. Because the rotational dynamics are expressed in the body-fixed frame an
extra term is needed to write the end-effector velocities in terms of the system state:

νinbf =

[
I 0
0 R

]
ν (55)

Combining these expression yields the expression for the holonomic constraint:

Jconν = 0 with Jcon = SconJ

[
I 0
0 R

]
(56)

Taking the derivative yields:
Jcona+ J̇conν = 0 (57)

8.4.2 Wrench

The holonomic constraints are enforced by a contact wrench wcon. This wrench acts on the end-effector and has translational
and rotational dynamics expressed in the inertial frame. The Jacobian transposed is used to express the wrench on the UAV,
with translational and rotational dynamics expressed in the inertial frame:

wCoM
contact = (SconJ)

T
wcon (58)

Where wCoM
contact is the wrench on the CoM with both translational and rotational dynamics expressed in the inertial frame.

Similar to the previous section an extra term is required to obtain the wrench on the CoM with rotational dynamics expressed
in the body-fixed frame:

wcontact = JTconwcon with JTcon =

[
I 0
0 RT

]
(SconJ)

T
(59)

There may also be a wrench relating to the unconstrained directions of motion, for example viscous friction. To describe this,
the complimentary selector matrix Sfree = diag (¬s) is introduced, where ¬is the logical NOT operation:

wfree = JTfreewvisc with JTfree =

[
I 0
0 RT

]
(SfreeJ)

T
(60)

The total wrench due to interaction is simply the sum of these components:

wi = JTconwcon + JTfreewvisc (61)

The derivative of this wrench is given by:

wi = J̇Tconwcon + JTconẇcon + J̇Tfreewvisc + JTfreeẇvisc (62)

8.4.3 Contact Stability Constraints

In case of stable contact, additional constraints apply. The contact wrench is defined aswcon =
[
fx fy fz Mx My Mz

]T
where fi, Mi are the corresponding forces and moments in the i direction and along the i axis respectively. Maintaining stable

12

planar unilateral contact is tantamount to enforcing the following constraints:

fx > fminx ≥ 0 (63)√
f2
y + f2

z < µsfx (64)

zminc <
My

fx
< zmaxc (65)

yminc < −Mz

fx
< ymaxc (66)

|Mx

fx
| < µx (67)

In which yminc , ymaxc , zminc , zmaxc are the dimensions of the herein assumed rectangular contact surface and µs, µx are the
static and torsional friction coefficients respectively. The different types of interaction relate to different subsets of these
equations:

• Fully constrained: eqs. (63) to (67)

• Position constrained: eqs. (63) and (64)

• Normal translation constrained: eq. (63)

• Orientations and normal translation constrained: eqs. (63), (65) and (66)

The constraints define a set K and thus a wrench obeying to the constraints can be written as wee
con ∈ K.

8.4.4 Linearized contact stability conditions

Equation 64 is not linear in fy and fz. For reasons that will become clear later, it is desirable to approximate this nonlinear
constraint with a set of linear constraints. One can imagine this equation to describe a circle in the fy, fz plane with radius
µsfx and the approximation to be a regular polygon, such that the circle circumscribes the polygon.

8.4.5 Parametrization

Again, for reason that will become clear later, it is desirable to find a parametrization R6 7→ K̂ that approximates the contact
stability conditions.

wcon = γ(ξ) (68)

With properties:

• K̂ ⊂ K, or equivalently γ(ξ) ∈ K∀ξ ∈ R6

• The function is a bijection, namely a one-to-one correspondence from R6 to K̂.

was proposed ensuring the satisfaction of eqs. (63) to (67), where

γ(ξ) =



eξ1 + fminx

µs
tanh ξ2(e

ξ1+fmin
x)√

1+tanh2 ξ

µs
tanh ξ(eξ1+fmin

x)√
1+tanh2 ξ2

(δy tanh ξ4 + δy0)(e
ξ1 + fminx)

(δx tanh ξ5 + δx0
)(eξ1 + fminx)

µx tanh ξ6(e
ξ1 + fminx)


(69)

Differentiating 68 yields:
ẇcon = Φ(ξ)ξ̇ (70)

With:
Φ(ξ) =

[
δγ
δξ1

, . . . , δγδξ6

]
(71)

This gradient is invertible ∀ξ ∈ R6.

13

8.5 Cost function manipulation

Imagine a cost function with a symmetric weight matrix W :

cost(u) = (s− s∗)
T
W (s− s∗) (72)

Which has to be rewritten in the form:

cost(u) =
1

2
uTHu+ cTu (73)

Expanding the cost function yields:

cost(u) = sTW s− sTW s∗ − s∗TW s+ s∗TW s∗ (74)

Imagine s can be written as s = α+ βu. Inserting this into the cost function yields:

cost(u) = (α+ βu)
T
W (α+ βu)− (α+ βu)

T
Ws∗ − s∗

T

W (α+ βu) + s∗
T

Ws∗ (75)

Expanding this yields:

cost(u) = αTWα+ αTWβu+ (βu)
T
Wα+ (βu)

T
Wβu− αTWs∗ − (βu)

T
Ws∗ − s∗

T

Wα− s∗
T

Wβu+ s∗
T

Ws∗ (76)

The terms without u in them can be removed without changing the solution to the minimization problem:

cost(u) = αTWβu+ (βu)
T
Wα+ (βu)

T
Wβu− (βu)

T
Ws∗ − s∗

T

Wβu (77)

Factoring terms together yields:

cost(u) = (βu)
T
Wβu+ (α− s∗)

T
Wβu+ (βu)

T
W (α− s∗) (78)

Factoring further, using the property that W is symmetric and dividing by 2 yields:

cost(u) =
1

2
(βu)

T
Wβu+ (α− s∗)

T
Wβu (79)

Thus, the Hessian and gradient are given by:

H = βTWβ (80)

c =
(
(α− s∗)

T
Wβ

)T
(81)

References
[1] Davide Bicego, Jacopo Mazzetto, Ruggero Carli, Marcello Farina, and Antonio Franchi. Nonlinear model predictive

control with enhanced actuator model for multi-rotor aerial vehicles with generic designs. J. Intell. Robot. Syst., 100(3-4):
1213–1247, December 2020.

[2] Marie Charbonneau, Francesco Nori, and Daniele Pucci. On-line joint limit avoidance for torque controlled robots by
joint space parametrization. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). IEEE,
November 2016.

[3] H.J. Ferreau, C. Kirches, A. Potschka, H.G. Bock, and M. Diehl. qpOASES: A parametric active-set algorithm for
quadratic programming. Mathematical Programming Computation, 6(4):327–363, 2014.

[4] Ahmad Gazar, Gabriele Nava, Francisco Javier Andrade Chavez, and Daniele Pucci. Jerk control of floating base systems
with contact-stable parameterized force feedback. IEEE Trans. Robot., 37(1):1–15, February 2021.

[5] Mahmoud Hamandi, Federico Usai, Quentin Sablé, Nicolas Staub, Marco Tognon, and Antonio Franchi. Design of
multirotor aerial vehicles: A taxonomy based on input allocation. Int. J. Rob. Res., 40(8-9):1015–1044, August 2021.

[6] Gabriele Nava, Quentin Sable, Marco Tognon, Daniele Pucci, and Antonio Franchi. Direct force feedback control and
online multi-task optimization for aerial manipulators. IEEE Robot. Autom. Lett., 5(2):331–338, April 2020.

[7] Anibal Ollero, Juan Cortes, Angel Santamaria-Navarro, Miguel Angel Trujillo Soto, Ribin Balachandran, Juan Andrade-
Cetto, Angel Rodriguez, Guillermo Heredia, Antonio Franchi, Gianluca Antonelli, Konstantin Kondak, Alberto Sanfeliu,
Antidio Viguria, J Ramiro Martinez-de Dios, and Francesco Pierri. The AEROARMS project: Aerial robots with advanced
manipulation capabilities for inspection and maintenance. IEEE Robot. Autom. Mag., 25(4):12–23, December 2018.

[8] Markus Ryll, Giuseppe Muscio, Francesco Pierri, Elisabetta Cataldi, Gianluca Antonelli, Fabrizio Caccavale, Davide
Bicego, and Antonio Franchi. 6D interaction control with aerial robots: The flying end-effector paradigm. Int. J. Rob.
Res., 38(9):1045–1062, August 2019.

14

	Introduction
	Jerk-based control
	Aerial manipulators
	Research question
	Tasks

	Background
	Quadratic Programming
	Introduction
	Acceleration level
	Unconstrained formulation
	Constrained formulation
	Required information
	Limitations

	Jerk level
	Unconstrained formulation
	Constrained formulation
	Required information
	Summary

	Simulation
	Motivation
	Simulink

	Results
	Conclusion
	FT noise
	IMU noise
	Mass matrix
	Wrench map

	Discussion
	Experiments
	Future work

	Appendix
	Gravity
	Coriolis
	Actuation
	Contact
	Holonomic constraint
	Wrench
	Contact Stability Constraints
	Linearized contact stability conditions
	Parametrization

	Cost function manipulation

