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ABSTRACT 

The projected increase in the global population by 2050, coupled with the impacts of climate change, 

presents a significant challenge of meeting global food demand while minimizing the risk of hunger. To 

achieve sustainable development and address the second Sustainable Development Goal of zero hunger, 

advancements in technology, policy, and governance are crucial. The European Union's Common 

Agricultural Policy (CAP) introduced the "greening" initiative in 2013 to promote sustainable agricultural 

productivity. However, the effectiveness of these measures in improving biodiversity and ecosystem 

services has been limited due to various challenges, including heterogeneous management rules, lack of 

spatial targeting, and costly field inspections. 

To overcome these challenges, the utilization of Earth Observation data, particularly from the Sentinel-1 

and Sentinel-2 satellites, has emerged as a promising solution. For example, the Sen4CAP project aims to 

develop algorithms and products based on Sentinel-1 and Sentinel-2 time series data to monitor 

agricultural activities at the parcel level, thereby supporting the greening policy. While vegetation indices 

(VIs), such as the normalized difference vegetation index (NDVI), derived from Sentinel-2 data, are 

commonly used to analyze vegetation properties, cloud cover poses a significant obstacle. Conversely, the 

use of Sentinel-1 (SAR) data provides advantages such as weather independence but requires 

interpretation due to signal complexity. Combining the strengths of both sensors has shown promising 

results in tasks such as mowing detection, crop monitoring, and crop mapping, although challenges 

persist. 

Deep learning approaches, including generative adversarial networks (GANs), have gained popularity in 

remote sensing applications by demonstrating their potential in reconstructing missing data. A Multi-

Temporal Conditional Generative Adversarial Network (MTcGAN) approach that combines SAR and 

optical data has been proposed to reconstruct VIs. This method considers two sensing times, utilizing 

SAR data from t1/t2 and optical data at t1 to simulate optical data at t2. Additionally, studies employing 

GANs for image reconstruction have shown improved performance across different crop types. 

The experiments conducted in this study involve the reconstruction of VIs using optical and SAR data in 

the Flevoland province in the Netherlands. Experiment A focuses on reconstructing optical bands at 

different times and subsequent VIs, while Experiment B aims to directly reconstruct VIs using VIs and 

SAR data. These experiments are compared with similar research conducted in the field. 

The evaluation of results is performed using metrics such as Peak Signal-to-Noise Ratio (PSNR) and 

Structural Similarity Index Measure (SSIM), along with visual evaluation metrics. In Experiment A, the 

RGB bands yielded higher evaluation metric values compared to the NIR band, subsequently affecting the 

calculation of VIs derived from them. Visual evaluation of RGB compositions demonstrated the model's 

potential to generate data under cloud cover in unseen data, albeit with certain limitations and 

mispredictions. Experiment B, conducted with a smaller training sample, exhibited unsatisfactory 

performance. 

Notably, variations in the size of the training dataset, sensing interval between t1 and t2, and pre-

processing techniques were observed among reference studies. Reducing the sensing interval has the 

potential to enhance performance while using data from different locations but within a close sensing time 

could also yield improved results. Although the study area lacked cloud-free images during the more 

developed phenology stages, using data from partially clouded images remains a viable option, with the 

extent of feasibility yet to be determined. Consequently, the VIs did not exhibit significant differences 

between crops, with NIR predictions still proving to be the least accurate. However, patches of cropland 

exhibited fewer mispredictions, indicating that contextual information about crops within predominantly 

cropland areas enhances prediction accuracy. 
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1. INTRODUCTION 

1.1. Background 

By 2050, the world’s population is expected to reach 9.7 billion people (UN, 2019). Considering climate 

change effects, global food demand and risk of hunger are expected to increase up to 62% and 30% 

respectively (van Dijk et al., 2021). Particularly, crop demand tends to increase up to 110% by then 

(Tilman et al., 2011). As global food production is an integral part of sustainable development, 

improvements in technology, policy, and governance are imperative to achieve zero hunger, the second of 

the Sustainable Development Goals goal (SDGs) (UN, 2015). 

The Netherlands is the second-largest agriculture exporter in the world, right behind the United States of 

America, which is 270 times larger (Viviano, 2017). Agriculture and horticulture represent around 10% of 

the Dutch economy and employment, approximately €65 billon are received from exports yearly by this 

industry (LNV, 2021). The surface of the Netherlands is used 54% by farmland, corresponding to 2.2 

million hectares (CBS, 2021). Dutch agriculture is reaching ecological limits as in the whole global food 

system, the nitrogen problem and climate change are concerning issues among the different stakeholders 

(Hillsdon, 2019). 

The European Union's Common Agricultural Policy (CAP) is a significant initiative that strives to enhance 

sustainable agricultural productivity while securing a decent standard of living for EU farmers. In 2013, as 

income support for farmers, the “greening” initiative was introduced (European Commission, 2013) 

aiming to give direct payments to the farmers based on adopting three measures: maintaining permanent 

grassland, crop diversification, and maintaining an ecological focus area (EFA). The Integrated 

Administration and Control System (IACS) manages the budget designated for the payments, and through 

paying agencies of each EU member state, the activity on the parcels is evaluated.  

In an assessment of the impacts of the reform of CAP-2013 from an ecological-economic perspective 

(Hristov et al., 2020), the authors indicated that the effectiveness of the “greening” initiative and EFA has 

limitations to improving biodiversity and ecosystem services. For instance, broad detail in measures 

decreases the potential, some farmers already had 5% of their land covered by nitrogen-fixing crops so any 

change was produced. The heterogeneity of management rules in different locations, like permitting 

uncropped field margins tilling and use of herbicides. The weight factor for margins does not have an 

ecological motivation and the contribution in improvements for greening is not achieved. The lack of 

spatial targeting allowed the farmers to allocate the EFA in the less productive areas and therefore there 

was not a significant change. Additionally, land property adjustment also allowed the farmers to reduce 

EFA per property. Finally, field inspections to decide on payments, which is costly, time-consuming, and 

prone to errors (European Court of Auditors, 2020). 

Since 2017, Sentinel-1 (Synthetic Aperture Radar) (SAR) and Sentinel-2 (optical sensor) have provided free 

high-resolution images, with the potential to monitor agricultural activities, the spatial and temporal 

resolution of these permit the monitoring over even heterogeneous areas characterized by small farm 

holders (Campos-Taberner et al., 2019). The legal framework of the CAP of 2013 was reformed in 2020 

allowing ‘checks by monitoring’, the reform promotes the use of Earth Observation (EO) for crop 

monitoring and evaluation of cross-compliance, particularly encouraging the use of Sentinel missions 

(European Union, 2018).  
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Sen4CAP is a project that aims to develop algorithms and products based on Sentinel- and Sentinel-2 time 

series to monitor activities of interest for compliance of the CAP at the parcel level defined geometrically 

in the Land Parcel Identification System (LPIS). The products developed to support the greening policy 

consist of crop type maps, grassland mowing detection, vegetation status indicator, and agricultural 

practices monitoring; vegetation indices and SAR-derived time series are fundamental inputs for the 

development of these products (Sen4CAP, 2020). Six pilot EU members are part of the Sen4CAP service 

adopted by different paying agencies, including the Netherlands with the Netherlands Enterprise Agency 

(RVO). Spain, Belgium, and Malta officially apply Sen4CAP for checks in some paying agencies, and 

Denmark for the whole country (European Court of Auditors, 2020). 

Vegetation indices (VIs) quantify specific properties of vegetation by analysing the reflectance of 

vegetation in different wavelengths. Sentinel-2 with its good spectral resolution, enables the calculation of 

VIs, which are sensitive to factors like growth stages, seasons, biomass, soil conditions, canopy structure, 

and further environmental variables (Huang et al., 2021). The normalized difference vegetation index 

(NDVI) has become the most popular one because of its robustness in the examination of vegetation 

properties (Huang et al., 2021). Nonetheless, one of the major challenges for the application of Sentinel-2 

for VIs is the weather conditions. Clouds can obstruct the satellite's view of the Earth's surface and create 

a gap in the time series needed for accurate crop monitoring. van der Wal et al. (2013) point out that clear 

optical imagery during the crop growing season in the Netherlands is available only 20% of the time due 

to cloud cover.  Nonetheless, Pfeifroth et al. in 2018 analysed the trends and variability of surface solar 

radiation based in satellite data in Europe, they found a positive trend in eastern and north-western 

Europe, and concluded it is due to a change in the cloud cover. 

The use of microwaves in collecting data for Sentinel-1 with C-Band enables the system to be unaffected 

by weather conditions or daylight and allows the acquisition of data measuring backscattered signal in 

amplitude and phase. The intensity of backscattering differs on wavelength, polarization, and incidence 

angle. Due to the Sentinel-1 characteristics, it makes it an appropriate sensor for agricultural purposes, it is 

sensitive to surface parameters related to surface roughness, geometry, and dielectric properties (Sener et 

al., 2021). However, the complex interaction of the signal with the surface, the variability of soil moisture, 

and the intrinsic speckle of SAR make interpretation difficult (Campos-Taberner et al., 2019). 

There are advantages and limitations when using a single-source sensor to develop the Sen4CAP products. 

In this context, an accuracy of 77 % of mowing events detection has been achieved using NDVI time 

series at regional scales (Kolecka et al., 2018). The main challenge still being cloud cover, according to the 

authors, cloud masking is critical and a sudden drop in NDVI can be confused as a mowing event and 

overestimate the detection, also during favourable weather conditions for grass growth detections can be 

skipped. The combined use of Sentinel-1 and Sentinel-2 achieved an 85% detection rate and a 73% 

precision (F1-score 79%) for mowing detection through Europe (De Vroey et al., 2022). In the case of 

crop type mapping, it has achieved a quite good overall accuracy of 94% in Spain. Nevertheless, the lack 

of cloud-free Sentinel-2 images could be of relevance in this task for different areas (Campos-Taberner et 

al., 2019). Crop monitoring using Sentinel-1 only was explored with different crops in the Netherlands to 

identify key dates for crop production (Khabbazan et al., 2019). However, harvest detection was 

particularly difficult to identify for potato and sugar beet, and therefore needed to be supported with 

NDVI data. 

In a review of the reconstruction of missing information in remote sensing (Shen et al., 2015), the authors 

traditionally classified the methods into spatial, spectral, and temporal methods. These methods have 

advantages and disadvantages, in general, spatial-based methods are suitable when only few pixels are 

missing and are unable to accurately restore the underlying spatial patterns of distinct objects (Shen et al., 

2015). Spectral-based methods utilize multispectral data to reconstruct the missing components, they are 
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most effective when the data is acquired under optimal conditions, such as cloud-free observations and 

properly calibrated sensors (Gao et al., 2020). Although the multitemporal approach can yield improved 

outcomes in cases of significant missing data, it proves ineffective when sudden changes occur and relies 

heavily on the availability of cloud-free images (Gao et al., 2020).  

SAR and optical remote sensing exhibit fundamental disparities in their imaging principles, thus they are 

not directly correlated (Li et al., 2020). Remote sensing image fusion consist in using an algorithm that 

combines two or more images from different sensors to obtain a new one in a synergistic way (Kulkarni & 

Rege, 2020). SAR's inability to provide spectrally resolved measurements poses a significant challenge in 

ensuring the accuracy and reliability of the obtained spectrum by image fusion (Xiong et al., 2021). 

The use of deep learning approaches for remote sensing applications has increased in recent years, 

particularly for digitally removing clouds because of its strong nonlinear fitting ability, also the 

combination with SAR auxiliary data presents a big advantage over optical auxiliary data (Gao et al., 2020) 

such as the use of Landsat-8 data in the Sentinel-2 time series in Sen4CAP methods. There has been 

significant interest in utilizing generative adversarial networks (GANs) for reconstructing missing data in 

this field, it has shown great promise in generating images with high-frequency features (X. Zhang et al., 

2021).  

A Multi Temporal Conditional Generative Adversarial Network (MTcGAN) approach using both SAR 

and optical data at different times has been proposed by He & Yokoya,  (2018) to generate cloud-free 

optical images and track vegetation changes. It consists of using Sentinel-1 and Sentinel-2 images at t1 and 

Sentinel-1 data at t2 to predict Sentinel-2 bands at t2. Dumeur et al. (2021) utilized this method to 

explicitly address cropland changes after wildfire events where crops presented changes between both 

acquisition times. Sener et al. (2021) experimented with GAN to generate VIs for crop classification, 

simulated and real VIs were different for the different crops, which suggests the model can perform 

differently in diverse crops.  

The novelty in this research lies in the generation of Sentinel-2 bands and reconstruction of VIs from 

them, as well as the direct generation of VIs using MTcGAN method. The evaluation of the results 

encompasses both the entire model performance and its specific application to three crops for direct 

human consumption: sweet maize, potato, and sugar beet. 

1.2. Problem statement and research gap 

The agricultural sector in the Netherlands, one of the world's leading producers, is facing significant 

challenges due to climate change. Extreme weather events such as wet or dry periods account for 70% of 

yield anomalies over the past 27 years and it is expected to persist (Van Oort et al., 2023). Biodiversity in 

the is highly threated, intense agricultural production, urbanization, pollution, and use of chemical 

fertilizers have rapidly modified land use and put 40% of the species of the Netherlands on the Red List 

(Sanders et al., 2019). Moreover, the nitrogen crisis, which contributes to climate change has further 

exacerbated these challenges.  

The CAP 2013 stablished the “greening” initiative aiming to improve biodiversity and reduce the 

environmental impact of agriculture, nonetheless the expected outputs could not be reached due to the 

lack of spatial information (European Court of Auditors, 2020). Sen4CAP came out after the CAP 2020 

reform, aiming to develop products useful in agricultural monitoring and management, concretely the 

greening measures aim to promote environmentally sustainable practices and enhance ecological 

performance.  

Sen4CAP products heavily rely on optical data time series, which may be limited by factors such as cloud 

cover and atmospheric conditions, the current method to fill missing data is a temporal resampling 

method that heavily depends on cloud-free images. Also, the use of Landsat-8 images as auxiliary data still 
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must deal with the cloud cover. Van der Wal et al. (2013) concluded that clear optical imagery during the 

crop growing season in the Netherlands is available only 20% of the time due to cloud cover. Although 

cloudiness tends to decrease in the next years (Pfeifroth et al., 2018), there is a research gap regarding the 

potential benefits of predicting VIs using alternative data sources, such as synthetic aperture radar (SAR) 

imagery as auxiliary data, and how it can improve the accuracy and usefulness of Sen4CAP products.  

The effectiveness of using a deep learning approach, specifically a Generative Adversarial Network 

(GAN), with SAR data to predict optical vegetation indices and enhance Sen4CAP products has not been 

broadly explored. This research gap necessitates investigating the potential improvements and benefits of 

such an approach. Additionally, CAP requires reliable and precise monitoring methods to ensure effective 

and reliable implementation. 

1.3. Wickedness in the problem 

 

Wickedness in a problem considers two dimensions: knowledge and stakeholders.  The lack of knowledge 

and disagreement among the different stakeholders makes a wicked problem. The environmental 

problems and their consequences have been widely studied; the policies built around this can increase the 

discomfort for some stakeholders. CAP 2013 aimed to reduce the environmental impact in Europe from 

the agriculture industry. Academia proved this reform not to be producing the expected outputs due to 

the lack of the spatial component, farmers obtained benefits without any improvement in biodiversity or 

environmental conditions (Hristov et al., 2020). CAP 2020 addressed this by promoting the use of earth 

observation and geoinformation science through the Sen4CAP project. This research considers the 

wickedness of the problem from the knowledge gap in the use of generative deep learning methods for 

improving the density of optical data for the implementation of CAP. 
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2. RESEARCH OBJECTIVES  

2.1. Main objective  

The main objective of this research is to reconstruct vegetation indices using optical and SAR imagery data 

with a deep-learning model.  

2.2. Sub objectives 

1. To prepare a benchmark dataset that can be used to train, validate, and test the proposed method.  

• Which data is available in the study area given cloud cover and crop growing stages? 

2. To generate optical bands with a GAN model for SAR-optical translation.  

• How do generated bands differ from ground truth data? 

• Can the generated bands be utilized for vegetation indices calculations? 

3. To generate vegetation indices with a GAN model for SAR-optical translation directly.  

• How different are the generated vegetation indices from ground truth data?  

4. To evaluate the performance of the fusion models for different crops. 

• Does the model perform better for specific crops?  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RECONSTRUCTION OF VEGETATION INDICES USING MULTI-SOURCE IMAGES AND DEEP LEARNING - A CASE OF STUDY IN THE NETHERLANDS 

6 

3. STUDY AREA 

The study area is the Flevoland province, a reclaimed area of 2,412 km2  with an average elevation of 1m, 

which was drained in 1957 primarily for agricultural purposes. The data used to map the target crops for 

human consumption was obtained from Pdok, Basisregistratie Gewaspercelen (BRP)1, the geometry of the 

agricultural plots is based on the Agricultural Area of the Netherlands (AAN)2, the user annually updates 

the crop growing under their domain, the reference date is May 15 of 2021. Particularly, potatoes, 

sugarbeets, and maize for human direct consumption are considered as target crops for this study. Figure 

1 shows the study area, location in the Netherlands and target crops. 

 
Figure 1 Study area and target crops 

 
1 https://www.pdok.nl/introductie/-/article/basisregistratie-gewaspercelen-brp- 
2 https://www.pdok.nl/introductie/-/article/agrarisch-areaal-nederland-aan- 
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4. LITERATURE REVIEW 

4.1. SEN4CAP products 

The products developed by SEN4CAP, and the corresponding measure adopted in the greening policy are 

detailed in Table 1. From the technical documents of SEN4CAP 3 . The algorithms related to these 

products are based on time series analysis, and the inputs corresponding to the feature extraction from 

Sentinel-2 are bands B2 (blue), B3 (green), B4 (red), B5 (Vegetation red edge), B6 (Vegetation red edge), 

B7 (Vegetation red edge), B8 (NIR), B11 (SWIR), B12 (SWIR), and the vegetation indices: NDVI 

(Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), SAVI (Soil-

adjusted vegetation index), and EVI (Enhanced Vegetation Index). As well as LAI (Leaf Area Index), 

FAPAR (Fraction of Absorbed Photosynthetically Active Radiation), and FCOVER (Fractional 

Vegetation Cover) that are derived from the optical bands and in situ data. Currently, Sen4CAP products 

may rely on time resampling techniques for reconstructing optical missing data, with Sentinel-2 or Landsat 

8 as auxiliary imagery, to address limitations in optical data availability. The data extracted from Sentinel-1 

backscatter, and coherence for VV and VH polarizations, as well as VV/VH ratio. 

 

Table 1 SEN4CAP products and compliance with CAP 

  
Measure   

Crop diversification Permanent grassland Ecological focus area (EFA) 

P
ro

d
u

c
t 

Cultivated 
crop-type 

map 

Indicate at the farm 
level number of crops if 
more than 2 or 3 crops, 
percentage distribution 
adheres to the 
regulatory thresholds. 

Mapping of 
“grassland” or 
“permanent 
grassland”. 

The total area of catch crops, 
nitrogen-fixing crops, and land 
lying fallow. 

Grassland 
mowing 
product 

Number of crops at the 
farm, considering the 
exclusion of grassland 

Permanent grassland 
identification. 

Considers the exclusion of 
annual grasslands and the 
inclusion of permanent 
grasslands in the "catch crops" 
and/or "nitrogen-fixing 
crops". 

Vegetation 
status 

indicator 

Identification of the 
number of crops at the 
farm level. 

  Identification of crop types, 
crop calendars, and agricultural 
practices for catch crops, 
nitrogen-fixing crops, and land 
lying fallow 

Agricultural 
practices 

monitoring 
product 

Occurrence of crop 
harvest. 

Identification of 
events such as 
mowing that may 
indicate non-
compliance with the 
definition of 
permanent grassland. 

Obtention of data on the 
existence of catch crops, 
nitrogen-fixing crops, and land 
lying fallow at both the parcel 
and farm levels. 

 

Table 2 summarizes the validation of the SEN4CAP products in the Netherlands in 2018 and 2019, also 

obtained from the technical documents of SEN4CAP. For both years the overall accuracy is quite high, 

 
3 http://esa-sen4cap.org/content/technical-documents 
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the user’s accuracy has variations as being the minimum 25% and 51.8% for the producer’s accuracy. The 

grassland mowing detection has low accuracy in 2018 and improved in 2019, the accuracy is homogeneous 

across all parcel sizes. Harvest detection of the main crop is high and consistent for both years, the values 

in Table 2 indicate the detection within the first week after harvest, 5% and 10% of the parcels could not 

be detected in both years respectively. Catch crop monitoring presents high accuracy when based on 

NDVI, that is the value in Table 2, while if based on backscatter the accuracy reduces to 66.4%. 

 

Table 2 SEN4CAP products validation in the Netherlands 

Year Product Overall accuracy (%) 

2018 

Crop type map 94.95 

Grassland mowing detection product 53 

Harvest detection of the main crop 78 

Catch crop monitoring 83.3 

2019 

Crop type map 97.39 

Grassland mowing detection product 77 

Harvest detection of the main crop 82 

4.2. Vegetation indices 

Vegetation indices are essential in precision agriculture and crop monitoring because they offer a simple 

and dependable evaluation of the state and wellness of crops (Candiago et al., 2015). Typically, this 

involves identifying areas within a field that is not performing well or experiencing stress and 

concentrating resources in those zones.  

A total of 519 vegetation indices have been created and are available in the Index Database (IDB, 2023). 

Most vegetation indices that use multispectral sensors are computed by considering the reflectance 

measurements of both red and near-infrared light to determine the level of photosynthetic activity or 

greenness in vegetation (Fernandez-Figueroa et al., 2022). The VIs time series that Sen4CAP utilize are 

NDVI and EVI as input for their products, also SAVI and GNDVI are included aiming to see how 

predictions would be in other VIs, formulas are shown in Table 3. 

 

Table 3 Vegetation indices 

Vegetation Index Abbreviation Formula 

Normalized difference vegetation index NDVI 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

Enhanced vegetation index EVI 𝐸𝑉𝐼 = 2.5 ∗
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 6 ∗ 𝑅 − 7.5 + 𝐵
 

Green-normalized difference vegetation index GNDVI 𝐺𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝐺

𝑁𝐼𝑅 + 𝐺
 

Soil-adjusted vegetation index SAVI 𝑆𝐴𝑉𝐼 = 1.5 ∗
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅 + 0.5
 

 

Despite the widespread use of NDVI as a vegetation index since it was first proposed by Rouse et al., 

(1974), several other indices have been developed to address its limitations and dependence on a single 

index. The primary objective of these alternative indices is to mitigate potential shortcomings and offer a 
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more extensive evaluation of vegetation. For instance, EVI (Enhanced vegetation index) was developed to 

address the limitations of NDVI by considering the non-linear relationship between reflectance and 

vegetation coverage and minimizing the impact of soil background and atmospheric errors (Huete et al., 

2002). GNDVI (Green-normalized difference vegetation index) (Gitelson et al., 1996) is like NDVI, but 

instead of using the red band, it uses the green band and has the potential to be a more efficient method 

than NDVI for identifying alterations in vegetation caused by environmental factors such as nutrient 

deficiencies, disease, or water stress (Sankaran et al., 2015). Lastly, SAVI (Soil-adjusted vegetation index) 

(Huete, 1988) is a vegetation index developed to address soil brightness that can affect NDVI and is 

useful in areas with mixed vegetation. 

4.3. Crop phenology 

Accurate prediction of crop monitoring for different purposes requires the identification of critical dates 

such as emergence, closure, and harvest during the growing season (Khabbazan et al., 2019). Emergence 

refers to the appearance of shoots and leaves above the ground, while the closure is marked by the 

meeting of leaves from adjacent rows, these dates are crucial inputs for crop monitoring (MacKerron & 

Waister, 1985). 

Khabbazan et al. (2019) used the BBCH scale (Meier et al., 2009) to estimate visually the growth stages of 

these crops in Flevoland in research to prove only SAR data for crop monitoring purposes. However, the 

authors found that backscattering alone was sometimes inadequate in detecting harvest due to 

disturbances in soil and vegetation properties, and therefore NDVI data was needed to monitor the crops. 

For instance, harvest detection for maize, sugar beet, and potato becomes challenging during autumn 

months due to elevated soil moisture and SAR backscattering becomes spurious. Therefore, other data 

sources or techniques may be necessary to improve the accuracy of harvest detection for these crops. 

4.4. Deep learning 

Remote sensing data acquisition involves different modalities such as optical and SAR, each with unique 

geometry and content. However, deep learning techniques allow for the fusion of data from diverse 

sources to harmonize information in a synergistic manner (X. X. Zhu et al., 2017). Traditionally, missing 

information in remote sensing data has been reconstructed using spatial, spectral, and temporal linear 

models (Shen et al., 2015). These models heavily rely on data from a single source, which introduces 

complexities when dealing with complex scenarios and large geographical areas. Moreover, the 

dependence on cloud-free images further intensifies the challenges associated with their application. Deep 

learning offers an opportunity to address these challenges (Q. Zhang et al., 2018) by leveraging large 

amounts of data and learning complex patterns, resulting in more accurate and reliable cloud-free 

simulated images. 

Deep learning is a subfield of machine learning that involves training Artificial Neural Networks (ANNs) 

with several hidden layers to learn representations of data. These representations are hierarchical in nature, 

with each layer capturing increasingly abstract features of the input (Kamilaris & Prenafeta-Boldú, 2018). 

The success of deep learning can be attributed to its ability to automatically learn features from raw data 

without the need for explicitly designed features entered by humans (Schmidhuber, 2015).  

ANNs are modelled after the structure of biological neurons, and their behaviour is simplified and 

formalized mathematically (Schmidhuber, 2015). A neuron is an activation function, depending on the 

value stored, neurons in the next layers will be activated, for pattern recognition purposes; the connections 

between every pair of neurons between layers are called weights (Jain et al., 1996). The process consists of 

applying a weight to each input and passing the sum of weighted inputs plus a bias through an activation 
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function (commonly Sigmoidal, Tanh, RELU, etc.) to produce an output, this is called forward 

propagation (Janiesch et al., 2021).  

A loss function is defined to obtain the deviation between the predicted and target value after forward 

propagation, to update the parameters of the network the loss function must be minimized because the 

network is often initialized with random values, this is called backpropagation. The derivative of the loss 

function constitutes the partial derivates following the chain rule: loss function, prediction, activation 

function, weighted sum plus bias, and finally weights. This derivative is a gradient that would lead to an 

update of the parameters of the network (Janiesch et al., 2021). As the size of the training set increases, the 

duration required to perform a single gradient step becomes unreasonably lengthy. To address this issue, 

stochastic gradient descent (SGD), and ADAM are used as optimization algorithms in the training phase 

of deep neural networks (Glorot & Bengio, 2010a).  

Convolutional neural networks (CNNs) (Y. LeCun et al., 1998) are a type of neural network that excels at 

processing images and other spatial data that permit the reduction of the number of parameters 

maintaining pattern recognition. They use convolutional layers to extract local features from the input and 

pooling layers to reduce the dimensionality of the output. Like other neural networks, they are trained by 

minimizing a loss function through backpropagation (Isola et al., 2016). 

The predefined architecture of a deep CNN is crucial to capture the patterns desired according to the goal 

of the network (Simonyan & Zisserman, 2014). The operations of feature extraction typically include an 

input layer, convolutional layer, nonlinear activation, and Max-pooling as shown in Figure 2. Convolution 

considers the different channels (bands) of the input image, a bank of filters based on weights is applied to 

all the channels, each filter of this bank has the same number of layers as in the input image, and the 

number of output images corresponds to the number of filers in the filter bank; the output of this process 

is called feature maps. Additional hyperparameters to consider are zero padding which adds a border of 

zeros of the image, and stride, which indicates the spatial interval the kernel moves during convolution. 

Max pooling is a spatial aggregation process that reduces the dimension, of the image while preserving 

features.  

 
Figure 2 Typical CNN architecture (Luo et al., 2022) 

It has been understood that normalizing the input data of neural networks, specifically setting the mean to 

zero and variance to one, is advantageous for training the network effectively because a similar scale can 

help the gradient descent converge more quickly toward the local minima (Y. A. LeCun et al., 2012). This 

idea is extended to the intermediate layers of a network using Batch normalization (BN) (Ioffe & Szegedy, 

2015). It is a technique that commonly used in CNNs to deal with the internal covariate shift problem, 

which refers to the issue of the distribution of input data changing within the layers during training, and to 

normalize the activations within a mini batch, ensuring they have zero mean and unit variance. Moreover, 

BN makes it possible to do the training with larger learning rates. Additionally, Bjorck et al. (2018) indicate 
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that conventional weight initialization methods may not be suitable for networks with numerous layers 

unless BN is employed to enhance the network's resilience against poorly conditioned weights. 

During the training of deep neural networks or dense networks as CNNs, the vanishing/exploding 

gradient problem appears, slowing down the training process and diminishing learning effectively, and 

therefore hampering convergence (K. He et al., 2015). This has been widely addressed with weight 

initialization methods, normalization techniques like batch normalization, gradient clipping, and different 

activation functions like ReLU (Glorot & Bengio, 2010b). Activation functions like sigmoidal and 

hyperbolic saturate to infinity with large values and for small values, it becomes zero, small gradients 

impede significant changes to the weights during backpropagation; non-saturating functions can deal with 

this problem like ReLU (Aggarwal, 2018). 

A deep network can overfit when the training error decreases while the testing error increases. This means 

that the gradient descent approaches an absolute minimum as it is a gradient-based learning, and the 

generalization ability of the network disappears. Regularization is a method to make the network converge, 

it is done by early stop learning, L2 weight decay adding a term to the loss function which is the square 

norm of the error as a function, and dropout, which randomly drops out (i.e., set to zero) a fraction of the 

output units or activations in a layer during each training iteration (Lemberger, 2017).  

Degradation is also a problem that occurs when training dense, deep, or CNNs, as the depth of a neural 

network increases, there comes a point where the network's accuracy saturates and then starts to degrade 

rapidly. Unexpectedly, the common assumption that adding more layers to a deep model should improve 

its capacity to learn and generalize, is not always correct. Shallow neural networks tend to have a large 

decrease in the loss within the first few epochs of training, this means the model converges too fast 

without good learning. With CNN, little decrease in the loss is expected with more epochs. The problem 

here is after going through some layers, the initial input becomes random noise because it was initialized 

with random noise, and during backpropagation the gradients are scrambled, both produce not very 

meaningful learning, and the loss is reduced very slowly (K. He & Sun, 2014).  

Employing skip connections or residual connections in architectures like Deep Residual Learning 

(ResNet) is how this problem has been addressed with the use of residual connections, also known as skip 

connections. K. He et al., (2015) introduced the ResNet architecture, which revolutionized deep learning 

by introducing residual connections, the idea is to group up layers of the network into so-called residual 

blocks, and the data flow through and around. Within a block, the data flows normally, which consists of a 

series of convolutional layers, followed by batch normalization and non-linear activation like ReLU. But, a 

new type of connection is created, and the output of the block is added to the input of the block, so two 

paths to follow are present now. Adding the input makes the block to figure out what the input contains, 

making forward propagation more efficient. Additionally, backpropagation becomes efficient, gradients 

have two paths to follow, between blocks and throughout the network, this means any layer in the 

network has a relatively shorter path by which loss gradients can arrive and update what that layer is 

computing with less scrambled gradients.  

4.5. Generative Adversarial Networks (GANs) 

To overcome the cloud removal problem from images, a deep learning method called Generative 

adversarial networks (GANs) (Goodfellow et al., 2014) has been proposed. It consists of a generator and a 

discriminator, both CNNs. The generator's role was to simulate images, while the discriminator's job was 

to distinguish between the generated and real content from a training dataset starting with random noise 

as illustrated in Figure 3. The strength of GANs relies precisely on the adversarial training process 

between the generator and the discriminator. As the generator improves its ability to produce more 

convincing samples, the discriminator is forced to become more discerning. This back-and-forth 
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competition pushes both components to improve iteratively, leading to the generation of highly realistic 

samples.  

 
Figure 3 GAN architecture (Abedi et al., 2022) 

Conditional GAN (cGAN) (Mirza & Osindero, 2014) is a variation of GAN. The generator takes 

conditional information as input to generate samples, and it operates as guidance or constraint for 

generating images. The discriminator in cGANs also receives conditional information along with the 

generated or real samples to aid in distinguishing between them. This conditional setup improves the 

stability and control of the generated samples. Cycle-Consistent Adversarial Networks (CycleGAN) (J. Y. 

Zhu et al., 2017) is an unsupervised method that uses unpaired datasets. Xiong et al. (2021) compared 

different types of supervised and unsupervised GANs for cloud removal in Sentinel-2 images, for this 

experiment, the author utilized images from different geographical areas as well as different intervals of 

sensing time, the best performance was obtained in MCcGAN and MTcGAN. 

Most of the research conducted on Sentinel-1 and Sentinel-2 data has focused on using them as a mono-

temporal pair, where only one pair of Sentinel-1 SAR and Sentinel-2 optical data is used as input 

(Grohnfeldt et al., 2018). However, a multitemporal approach can improve the results rather than using a 

mono-temporal pair (Xiong et al., 2021). When using a mono-temporal pair, the training phase involves 

learning the complex relationship between the two data sources. However, during the inference phase, 

Sentinel-1 data is used to simulate Sentinel-2 data. This approach assumes that Sentinel-1 can distinguish 

objects in the same way as Sentinel-2 does. Unfortunately, this assumption can result in low accuracy since 

backscatter values can be the same for distinct objects(L. Wang et al., 2019). 

To obtain cloud-free Sentinel-2 images using the cGAN, a supervised Generative Adversarial Network, it 

is necessary to provide a pair of Sentinel-1 and Sentinel-2 images as input (Xiong et al., 2021). In this 

context, Gao et al. (2020) attempted to include the corrupted optical images as supplementary input data 

together with the pairs of Optical-SAR images as an effective approach to enhance the accuracy of the 

simulated images saving patterns from the uncontaminated images. However, it remains uncertain how 

much information can be effectively learned when the corrupted optical images are heavily obscured by a 

significant amount of cloudiness (Xiong et al., 2021). This also implies that using corrupted data as input 

to simulate optical data from a different time, when it is not available would not be possible (Bermudez et 

al., 2018). 

MTcGAN  (W. He & Yokoya, 2018) has the potential to utilize both SAR and optical data, it involves 

information from SAR and cloud-free optical data taken at a specific time (t1), while also incorporating 

SAR data acquired when the area of interest is covered by clouds at a different time (t2). By linking SAR 

and optical data at t1, it becomes possible to generate a cloud-free optical image at t2 using the SAR data 

from the same time. The resulting image is expected to capture the details present in the SAR data 

(Dumeur et al., 2021). 

The evaluation of GANs continues to be a topic of uncertainty, despite their impressive ability to model 

intricate distributions (Grnarova et al., 2018). The authors point out that unlike the traditional likelihood-

based models, inspecting the loss curves of the generator and discriminator alone is insufficient to 

determine the performance of GAN. It is mainly because of the min-max game nature of the model, 
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which can result in convergence issues and presence of oscillations in the learning curves making it 

impossible to detect an early stop. Often, various evaluation metrics are utilized to measure the similarity 

between real and generated data, nonetheless, there is no consensus on which one is the most appropriate 

one (Grnarova et al., 2018). Evaluations like Peak signal-to-noise ratio (PSNR) and Structural similarity 

index (SSIM) are utilized to evaluate the performance of GANs using multisource remote sensing data 

(Dumeur et al., 2021; W. He & Yokoya, 2018; Xiong et al., 2021). 
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5. METHODOLOGY 

5.1. Methodology overview 

 
There are two distinct experiments conducted: Experiment A involves simulating optical bands to 

reconstruct VIs, while Experiment B directly simulates VIs themselves. Figure 4 illustrates the process to 

obtain the input data for both experiments, which is detailed in chapters 5.2 and 5.3. Figure 5 indicates 

how both experiments are conducted through MTcGAN that is explained in detail in Chapter 5.4. Finally, 

the results are assessed with evaluation metrics as well as visual evaluation in the chapters 5.5 and 5.6. 

Next to the processes in both figures it is illustrated the API, software, or programming language utilize 

for that specific task. Due to the friendly visual interface, Google Earth Engine (GEE) was utilized to 

obtain the Sentinel data and vegetation indices and ArcGIS for band visual inspection and further 

stacking. MTcGAN process was conducted in the ITC-CRIB platform using Python. 

 
Figure 4 Cloudiness assessment and further Sentinel data collection 
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Figure 5 Experiments overview flowchart 

5.2. Cloud cover assessment and crop vegetation growth stages recognition 

The Sentinel-2 collection of the year 2021 obtained from Google Earth Engine (GEE), the cloud cover 

was assessed with the code of Gärtner (2020)4, for the whole scene as shown in Figure 6, as well as for the 

specific study in Figure 7. It uses cloud mask information QA60, obtaining the percentage of clouds, 

cirrus, and cloud-free area in both cases.  

 
Figure 6 Cloudiness over the whole Sentinel-2 scene in 2021 

 
4 https://philippgaertner.github.io/2020/08/percent-cloud-cover/ 
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Figure 7 Cloudiness over the study area in 2021 

Additionally, the relatively low reliability of this cloud masking method that Sentinel-2 itself provides has 

been reported (Boogaard, 2021; Chamnan, 2021). As shown in Figure 8, the number of cloud-free images 

that can be used for the cGAN supervised method considering only the study area is low, images with less 

than 10% cloudiness were double-checked by visual inspection and then it was determined which of them 

are appropriate for MTcGAN.  

 
Figure 8 Cloud percentage in Sentinel-2 whole scene images  

Vegetation stages in the study area were collected from the study of (Khabbazan et al., 2019) for the year 

2017, each growth stage for maize, potato, and sugar beet is represented with a scale commonly used in 

agriculture and horticulture to assess the development and phenological stages of plants from leaf 

development to senescence, it was developed by BBCH "Biological Federal Research Centre for 

Agriculture and Forestry, Federal Office for Plant Varieties, and Chemical Industry" in English (see 

Appendix 1). Finally, the BBCH data is compared with the cloud-free images in a timeline, as illustrated in 

Figure 9, with the objective of choosing the fully cloud-free images. This selection process is a 

requirement for the MTcGAN technique, as explained in more detail in Chapter 5.4.  
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Figure 9 Crop growing stages and cloud-free Sentinel-2 images timeline 2021. 

5.3. Data pre-processing 

The images were downloaded from GEE; the datasets offered by this platform include pre-processing. 

The data of Sentinel-1 was acquired in Interferometric Wide swath mode (IW), the Ground Range 

Detected (GRD) product, obtaining the bands VV (vertical transmit and vertical receive polarization) and 

VH (vertical transmit and horizontal receive polarization) in ascending orbits, with a spatial resolution of 

10m and transformed into backscatter coefficient (σ°) in decibels (dB), it is pre-processed with orbit 

correction, GRD border noise removal, thermal noise removal, application of radiometric calibration 

values and terrain correction, additionally speckle filter was applied (Qiu et al., 2004). On the other hand, 

for Sentinel-2 data, Level-2A orthorectified atmospherically corrected surface reflectance dataset is 

chosen. This dataset has been already atmospherically corrected. The bands Red (R), Green (G), Blue (B), 

and Near-infrared (NIR) with the spatial resolution of 10m were selected for this study. The same spatial 

resolution is used to avoid errors by resampling. The projection in this dataset corresponds to WGS84 

UTM 31N. Table 4 indicates the sensing date for both sensors in t1 and t2, with no more than two days 

difference for each time. 

 

Table 4 Sensing time of Sentinel-1 and Sentinel-2 pairs. 

Input data Sensing date 

Sentinel-1 t1 25/04/2021 

Sentinel-2 t1 27/04/2021 

Sentinel-1 t2 31/05/2021 

Sentinel-2 t2 30/05/2021 

 

Figure 10 presents the collected optical and SAR data, and Figure 11 ilustrates the VIs at different times 

obtained from the optical data that are used for the direct VIs simulation. As the specific goal is to see the 

results for different crops, it would be more beneficial to focus mainly on cropland rather than including 

information about other land covers like built-up areas or water as is the case for this study area. By 

narrowing down the scope to specific crops, the GAN can generate data specifically tailored for crop 

related tasks. This involves carefully selecting training data representative of the target crop class, which 

can improve the results of modelling  (L. Zhang et al., 2016). A 3km buffer over the province area was 

applied to clip the image, aiming not to lose information from the borders and reduce the number of 

patches needed for training the model. Additionally, data is rescaled to the range of [-1,1] because the last 

layer of the generator is Tanh in MTcGAN and this activation function ensures the generated data is 

bounded the same as real optical data  (Radford et al., 2015) . 
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Figure 10 Data collected: a) RGB Sentinel-2 in t1, b) VV Sentinel-1 in t1, c) VH Sentinel-1 in t1, d) RGB Sentinel-2in 

t2, e) VV Sentinel-1 in t2, f) VH Sentinel-1 in t2. 

 
Figure 11 Grounf truth begetation indices. a) NDVI t1, b) GNDVI t1, c) EVI t1, d) SAVI t2, e) NDVI t2, f) 
GNDVI t2, g) EVI t2, h) SAVI t2 

After obtaining the paired images and stacking the bands into two arrangements, they were split into 

patches (see Appendix 2) with the library GeoPatch5 in Python, with a patch size of 256, and a stride of 

256 (without overlapping). The distribution of the data for training, testing, and validation is 70%, 15%, 

and 15% respectively as conventionally in deep learning. 

 
5 https://github.com/Hejarshahabi/GeoPatch 
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The data used to map the target crops for human consumption was obtained from Pdok, Basisregistratie 

Gewaspercelen (BRP). The geometry of the agricultural plots is derived from the Agricultural Area of the 

Netherlands (AAN). Users have capability to annually update the crop type under their domain. The 

reference date for the dataset is May 15 of 2021. 

5.4. Multi-Temporal Conditional Generative Adversarial Network MTcGAN 

The approach used in this research corresponds to the MTcGAN by He & Yokoya (2018) with the aim of 

simulating an optical image at 𝑡2 . It uses as input Sentinel-1 at 𝑡2 and 𝑡1, as well as Sentinel-2 at data at 

time 𝑡1 at the same geographic location. The code developed by Dumeur et al. (2021) for this approach 

can be found publicly6. 

The cGAN technique is broadened from the traditional GANs (Goodfellow et al., 2014) and deep 

convolutional GAN (DCGAN) (Radford et al., 2015). The key idea of a GAN is to train a generative 

network (𝐺) that captures the input data features, while a discriminative network (𝐷) that calculates the 

probability that comes from input data rather than 𝐺. Basically, the generator is trying to fool with the data 

simulated and the discriminator tries not to be fooled. The training goal of 𝐺  is to maximize the 

probability of the discriminator in making a mistake, whereas the training goal of 𝐷 is to maximize the 

probability of correctly classifying of real and fake images. A cGAN, does not initialize the generator with 

random noise but with additional information (SAR at t1/t2 and optical at t1) that successfully proved to 

solve image-to-image translation challenges (Isola et al., 2016).  

As shown in Figure 12, the input corresponds to the concatenated optical bands in t1 with the VV and 

VH polarization SAR images in t1 and t2. The output of the generator together with the Sentinel-2 

patches at t1 are called input-fake pairs and the optical data at t1 and t2 are called real-input pairs. 

Typically, 50 percent of each goes through the discriminator to train this sub-network to classify correctly 

fake or real data. Loss is calculated for each sub-network due to the goal of each one is different, it uses 

the same objective function, but the gradients differ. Additionally, to the generator loss, L1 (Mean 

Absolute Error loss) is added (Isola et al., 2016). 

 
Figure 12 MTcGAN flowchart 

The images used are denoted, as in (Dumeur et al., 2021), by: 

𝑥𝑡1
𝑆1 is a Sentinel-1 image at 𝑡1 

𝑥𝑡2
𝑆1 is a Sentinel-1 image at 𝑡2 

𝑥𝑡1
𝑆2 is a Sentinel-2 image at 𝑡1 

𝑥𝑡2
𝑆2 is a Sentinel-2 image at 𝑡2 

 
6 URL: https://github.com/irisdum/cGAN_sent2_sim 
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The loss function in this cGAN comes from a binary cross entropy loss function, and for MTcGAN is 

defined:  

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸 log (𝐷(𝑥𝑡1

𝑆2, 𝑥𝑡2

𝑆2)) + 𝐸 log (1 − 𝐷 (𝑥𝑡1

𝑆2, 𝐺(𝑥𝑡1

𝑆1, 𝑥𝑡2

𝑆1, 𝑥𝑡1

𝑆2))) 

The first term represents the discriminator’s predictions on real data, real because both are Sentinel-2 

images, 𝐷(𝑥𝑡1

𝑆2, 𝑥𝑡2

𝑆2), it indicates the probability of images are indeed real Sentinel-2 images. The output 

of the generator is denoted by 𝐺(𝑥𝑡1

𝑆1, 𝑥𝑡2

𝑆1, 𝑥𝑡1

𝑆2) , which represents a fake Sentinel-2 image and 

𝐷 (𝑥𝑡1

𝑆2, 𝐺(𝑥𝑡1

𝑆1, 𝑥𝑡2

𝑆1, 𝑥𝑡1

𝑆2)) is the probability that real image and fake image are Sentinel-2 images.  𝐸 is the 

expectation from the many patches. 

 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) is a minimax function, which means that 𝐺 wants to minimize this expression, and a 𝐷 that 

wants to maximize it. The samples go through the discriminator to make predictions by ascending the 

gradient to maximize the cost function: 

∇ 𝐸 log (𝐷(𝑥𝑡1

𝑆2, 𝑥𝑡2

𝑆2)) + 𝐸 log (1 − 𝐷 (𝑥𝑡1

𝑆2, 𝐺(𝑥𝑡1

𝑆1, 𝑥𝑡2

𝑆1, 𝑥𝑡1

𝑆2))) 

Since 𝐷(𝑥𝑡1

𝑆2, 𝑥𝑡2

𝑆2) only depends on the discriminator and the real data, the derivatives with respect to the 

generator are all zero. The generator parameters are updated by descending the gradient: 

∇ 𝐸 log (1 − 𝐷 (𝑥𝑡1

𝑆2, 𝐺(𝑥𝑡1

𝑆1, 𝑥𝑡2

𝑆1, 𝑥𝑡1

𝑆2))) 

Additionally, earlier methods have discovered advantages in combining the objective of a GAN with a 

conventional loss function, such as the L2 (Euclidean) distance (Pathak et al., 2016), but it produced blurry 

results. Therefore, using L1 to avoids reconstruction artifacts and sharper images from the generator 

(Dumeur et al., 2021). 

𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐸∥∥𝑥𝑡2

𝑆2 − 𝐺(𝑥𝑡1

𝑆1, 𝑥𝑡2

𝑆1, 𝑥𝑡1

𝑆2)∥∥
1
 

where∥∥𝑥𝑡2

𝑆2 − 𝐺(𝑥𝑡1

𝑆1, 𝑥𝑡2

𝑆1, 𝑥𝑡1

𝑆2)∥∥
1
 is the L1 norm, and λ > 0 is a hyperparameter. Ghamisi & Yokoya 

(2018) recommend setting λ to 100 for image reconstruction desirable accuracy. 

The generator CNN architecture (W. He & Yokoya, 2018) is defined by nine ResNets blocks and six non-

ResNets blocks as presented in Figure 13, where n are the number of filters and k is the kernel size. 

Except for the last layer, non-ResNets convolutional layers are composed of a convolutional layer (Conv), 

followed by Batch Normalization (BN), and ReLU as activation function. The training images were not 

subjected to any pre-processing steps other than scaling to fit within the range of the tanh activation 

function, which is between -1 and 1. To ensure that the output image maintains the desired scale range, 

the final layer of the model utilizes a Conv and tanh activation function configuration. Each Resnet block 

Conv-BN-ReLu-Drop (dropout)-Conv-ReLu.  

The hyperparameters of the model are the same as in (W. He & Yokoya, 2018), being learning rate 0.0002, 

dropout rate 0.5, 200 epochs, batch size 1, batch normalization with momentum 0.99, and mini-batch 

stochastic gradient decent with Adam solver to train the model. 

 

 
Figure 13 Generator CNN architecture (W. He & Yokoya, 2018) 
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The discriminator architecture (W. He & Yokoya, 2018), shown in figure 14, corresponds to a PatchGAN 

discriminator developed by Isola et al. (2016). By examining local patches instead of the entire image, 

PatchGAN can capture fine-grained details and local structure, providing more detailed feedback to the 

generator. It consists in five layers that classifies if each patch on real or fake where each cell contains a 

value between 0 and 1, the stride of the first three layers is 2 and for the other two layers 1. The outputs of 

the discriminator for each patch are usually combined to generate an overall score or prediction. This 

requires fewer parameters, runs faster, and can be applied to large images (Isola et al., 2016).  

 

 
Figure 14 Discriminator CNN architecture (W. He & Yokoya, 2018) 

5.5. Evaluation metrics 

A process that involves images may introduce a loss of information and quality, the quality of a processed 

image can be assessed by subjective methods such as human visualization, and by objective methods using 

quantitative criteria (Horé & Ziou, 2010).  

GAN evaluation and comparison, specifically regarding the images produced by GANs, is a difficult task 

(Grnarova et al., 2018). One of the reasons for this difficulty is the absence of a direct measure of 

likelihood, which is commonly used in similar probabilistic models, state-of-the-art GANs demonstrate 

limitations of subjective evaluation in accurately assessing their quality (Shmelkov et al., 2018). 

Consequently, previous studies have relied mainly on subjective visual assessment when evaluating images 

generated by GANs.  

He & Yokoya (2018) and Xiong et al. (2021) applied Peak Signal Noise Ratio (PSNR) and Structural 

Similarity Index (SSIM) for each band between the real and simulated images at t2 as quantitative measure. 

The average of each evaluation metric per band is obtained to assess quality of the image (W. He et al., 

2016). Additionally, Xiong et al. (2021) used Root-mean-square-error (RMSE) and Coefficient of 

determination (R2) per band in addition to the previous metrics, as summarized in Table 5.  

Table 5 Evaluation metrics 

Metric Measure Formula 

Root-mean-

square-error 

(RMSE) 

Difference between the 

Sentinel-2 simulated and real 

images. 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑁
𝑖=1

𝑁
 

Peak signal-to-

noise ratio 

(PSNR) 

Quality of the image 

considering pixel values. 
𝑃𝑆𝑁𝑅 = 20 log (

MAX

𝑅𝑀𝑆𝐸
) 

Structural 

similarity index 

(SSIM) 

Measure the structural 

similarity between the real 

and simulated images by 

comparing luminance, 

contrast, and structure. 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑦𝜇�̂� + 𝐶1)(2𝜎𝑦�̂� + 𝐶2)

(𝜇𝑦
2 + 𝜇�̂�

2 + 𝐶1)(𝜎𝑦
2 + 𝜎�̂�

2 + 𝐶2)
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Where: 

𝑦𝑖 is the real value of the pixel in Sentinel-2, 

𝑦�̂� is the predicted pixel value, 

𝑁 is the total number of pixels from all the patches, 

MAX is the max pixel value, as the pixel values range is between -1 and 1 MAX is 2, 

𝜇𝑦 and 𝜇�̂� are the mean of real and predicted values respectively, 

𝜎𝑦
2 and 𝜎�̂�

2 are the variance of real and predicted values respectively, 

𝜎𝑦�̂� is the cross-correlation of real and predicted values, 

𝐶1, 𝐶2 and 𝐶3 are constants. 

MSE measures the magnitude of the prediction errors, lower values of MSE indicate better model 

performance, as they represent smaller prediction errors. As MSE decreases towards zero, PSNR tends to 

increase towards infinity, therefore a higher PSNR value corresponds to a better image quality in a 

greyscale image, and a low PSNR value suggests significant numerical differences between the real and 

simulated images (Horé & Ziou, 2010). SSIM measures the similarity between real and simulated images 

considering the loss of correlation, brightness distortion, and contrast distortion, it ranges between -1 and 

1, and a value closer to 1 indicates a better-simulated image  (Z. Wang et al., 2004). If the simulated and 

ground truth images are similar, it is expected to have high values for PSNR and SSIM (Dumeur et al., 

2021). 
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6. RESULTS AND DISCUSSION 

Results are analyzed and compared with the research of Dumeur et al. (2021) that from now on is called 

Reference A, W. He & Yokoya (2018) research which from now on is called Reference B, and Xiong et al. 

(2021) called Reference C. The references explored optical data generation using SAR, they differ in the 

datasets; locations or differences between sensing times are different.  

References and experiments in this research are matching with a number depending on the type of 

experiment that was conducted as shown in Table 6, types are: 

I: training with patches of same location sensed between t1 and t2. 

II: training with patches from multiple locations sensed between t1 and t2. 

III: training with patches same from location and different intervals of sensing times. 

IV: training with patches from multiple locations with different sensing times. 

 

Table 6 Experiments type in comparable research 

 
I II III IV 

Experiment A  
   

Experiment B     

Reference A  
   

Reference B  
   

Reference C  
   

 

The three references utilize MTcGAN with the same location sensed between t1 and t2, so A-1, B-1, C-1, 

and D-1 are going to be compared, also Reference C utilizes MCcGAN as well as additional unsupervised 

methods and compare them. Reference A-I, B-I, B-II, and C-IV utilize bands R, G, B, and NIR. 

Reference C-I and C-III only R, G, and B. Metrics on NDVI calculated from predicted images are 

indicated in C-IV. 

The findings in Reference B-II indicate better results in visual and quantitative evaluation compared to B-

I. It provides evidence that using more complex data, to use different locations allows the model to 

generate better images. Nevertheless, the same sensing time interval is utilized so time transfer is not 

widely explored. On the other hand, findings in Reference C-II indicate that keeping the sensing time 

interval narrow produces better results, the wider one was three weeks, and images can still be successfully 

reconstructed. Reference C-IV proved spatial and temporal transference, the longer time interval used was 

one month using 14 locations for training and 5 locations for testing which were able to recover more 

details than C-IV. Here, best performances of MTcGAN or MCcGAN were not conclusive, for the rest 

of experiments of C MCcGAN showed better in evaluation metrics.  

An aspect that differentiates experiments from references is the image pre-processing. The references 

downloaded images from Copernicus Open Access Hub and pre-processed in SNAP, also used Sentinel-2 

Level-1C orthorectified top-of-atmosphere reflectance images. Thus, it is challenging to compare results 

across references because data is different and pre-processing is not always clearly described (Dumeur et 

al., 2021). Also, the data in the experiments was normalized between -1 and 1, references do not provide 

information about standardizing or rescaling.  

6.1. Benchmark dataset 

The input data collected distribution is presented in Figure 15 for Sentinel-1 and Sentinel-2 in t1 and t2, as 

well as the distribution of VIs. 
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Figure 15 Histograms of input data 

The size of the image is 7452 x 6534 pixels, and the total number of patches generated is 672, nonetheless, 

some of them contain full or partially NaN values, and these are discarded to avoid errors in the model. 

The final number of patches is 303, some patches are shown in Figure 16, each patch is a NumPy file 

named as #_img.npy after the corresponding number during patch generation. In Figure 13 random 

patches of the Sentinel-2 at t2 are posed, and in Figure 14, RGB compositions of optical data at t1 and t2 

where the changes in the surface can be appreciated. From visual inspection, a greener scene for crops is 

perceived in t2, which coincides with the observable first growing stages of crops in the study area.  
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Figure 16 Pairs of RGB compositions for t1 and t2 

 

Experiments A and B sensing dates t1 and t2 have a difference of 35 days. Reference A has a difference of 

around two months, both using MTcGAN in the same geographic location. Reference B similarly did the 

same in different locations with a sensing date difference of one month, the experiment with better results 

is going to be used for the comparisons. Reference C conducted several experiments with unsupervised 

GANs, as well as MCcGAN, which they developed, and MCcGAN using different sensing dates to prove 

its temporal transferability, as well as training the model with patches from images around the globe and 

testing in different locations as well to prove spatial transferability. The best metrics obtained in Reference 

C were with the closest date, but comparisons are going to be made with a sensing time difference of 

around one month. Sensing dates ±2 days in the same location are indicated in Table 7. 

 
Table 7 Sensing dates of comparable research. 

 Sensing t1 Sensing t2 

Experiment A and B 26/04/2021 31/05/2021 

Reference A-I 06/11/2019 29/01/2020 

Reference B-I 11/11/2017 08/12/2017 

Reference C-I 01/09/2018 05/10/2018 
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6.2. Training 

The training was performed using the Geospatial Computing Platform CRIB of the University of Twente 

with the computer unit 72 vCPU Intel x86-64, 768 GB RAM, single NVIDIA RTX A4000 GPU. The 

number of parameters, trainable and not trainable is summarized in Table 8, which indicates the overall 

complexity and size of the model, and the hyperparameters are kept as indicated in Chapter 5.  

Experiment A and Experiment B were trained both with 200 epochs. At first, both models were trained 

with a reduced tile of training samples of 70 before running the model with the full set of training samples 

to understand if the model was working. Nevertheless, the limitation of memory allocation in the remote 

machine was a problem that was constantly coming across. Experiment A was completed with the whole 

dataset, and Experiment B was kept with 70 trining samples. The training time was 7 hours for 

Experiment A and 1 hour for Experiment B. 

 

Table 8 Number of parameters in the model 

Sub-model Total params Trainable params Non-trainable params 

Generator 11,407,748 11,397,252 10,496 

Discriminator 3,433,541 3,431,491 2,050 

 

Figure 17 shows the generator loss curves in both experiments, learning a generative model is a difficult 

task due to the minimax nature of the objective function, and the involvement of neural networks as 

players in the process makes them not intuitive, loss curves usually present oscillations and deciding when 

to stop the training is difficult to tell (Grnarova et al., 2018). Nonetheless, there is a decreasing behavior, 

which indicates the generator is producing better samples, but the oscillating behavior indicates also that 

the updating between the generator and discriminator is not improving anymore and reached a limit. 

Experiment A seems to be a pattern in the behaviour of both sub-models and for Experiment B it is 

finding difficult to find consistent patterns. 

 

Figure 17 Training loss 

In Table 9, the train, validation, and testing number of patches for each reference is indicated. For 

experiments A and B, the percentage of data was distributed to data 70% for train, 15 % for test, and 15% 

validation as conventional in deep learning. Reference A distributed the data 80%, 15%, and 5% which 

can be considered unusual, also they conclude the model has a generalization ability because of the 

similarity of metrics on the three datasets. Reference B only separates data in training and testing patches. 
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Reference C mentions a validation dataset for spatial transfer, which corresponds to Reference C-IV, but 

not for tuning hyperparameters purposes.  

 

Table 9 Train, test, and validation datasets number of patches in comparable research 

 Experiment A and B Reference A Reference B Reference C 

Train 303 496 1188 6018 

Test 45 95 165 669 

Validation 45 32 - - 

6.3. Evaluation metrics 

The comparisons were done considering the same metrics reported in the three references and at different 

levels (datasets, bands, or overall). In Reference A, Dumeur et al. (2021) report the metrics as overall for 

all the bands, also they conclude that as metrics for training, testing, and validation are similar which they 

claim the generalization ability was achieved.  

For Experiment A, Figure 18 and Figure 19 show PSNR along training for training and validation datasets 

respectively, the curve does not seem to converge and presents oscillations around 30dB all along the 

training, it performs similarly in the validation dataset. For Experiment B, PSNR has similar oscillating 

behaviour, but it seems to deteriorate on the validation dataset. Figure 20 and Figure 21 SSIM 

approximates 1 in Experiment A, which indicates a high similarity between generated and real data. 

Experiment B presents strong oscillations on the training dataset. 

PSNR mainly indicates similarity in pixel values, on the other hand SSIM is a metric more correlated with 

human vision because its calculation depends on whole patch values. The high values suggest that the 

model might be overfitting, this will be discussed using the test dataset in Sections 6.3.1 and 6.3.2. and 

discussed in Chapter 7. 

 
Figure 18 PSNR training dataset 

 
Figure 19  PSNR validation dataset 

 
Figure 20  SSIM training dataset 

 
Figure 21 SSIM validation dataset 

Grnarova et al. (2018) indicate the need for a convergence metric to validate a GAN, given loss curves 

present oscillations, deciding when to stop the training and understanding its performance of it is not 

plausible. Another validation alternative is suitable, SSMI has a convergence behaviour with smaller 

oscillations in Experiment A, but not in PSNR. The smaller amount of data in Experiment B is a major 

cause of the low performance of the model. Predictions on unseen data can be tricky, even if PSNR seems 
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not to converge for both experiments and for SSIM in Experiment B, the values it oscillates around are 

comparable with other studies. 

6.3.1. Experiment A 

The evaluation metrics per band on the testing dataset are presented in Table 10. The values are in the 

range of values of the amplitude in the PSNR and SSIM curves. The predictions of the NIR band have 

less similarity with the ground truth one, this suggests that the model could predict better for RGB bands, 

and using predictions to calculate VIs would not have much similarity with ground truth VIs. NIR had a 

different distribution compared to the RGB bands, the model learns better from them because there are 

three of them. 

 
Table 10 Experiment A: evaluation metrics testing dataset per band.  

 Blue Green Red NIR 

PSNR 25.061 27.758 29.382 17.89 

SSIM 0.780 0.857 0.881 0.483 

 

Table 11 indicates the metrics for each dataset, Reference A has similar values among datasets, and 

Experiment A has an expected value according to the metric curves. Numerically, Reference A has higher 

values which indicates a better similarity for real and generated data. The architecture of the GAN is the 

same, they differ in pre-processing, dataset amount, and distribution on training and validation/testing.  

 
Table 11 Experiment A: comparison of evaluation metrics with Reference A-I 

 Experiment A Reference A-I 
 Test Train Test Val 

PSNR 25.023 41.8 41.8 40.4 

SSIM 0.750 0.983 0.982 0.975 

 

Reference B reports their results on an overall value for the image, in Table 12 they are compared with the 

average of the metrics of all the bands in the testing dataset. Numerically, Experiment A is lower than 

Reference B, also both are lower than the metrics in Reference A. Equally, the same differences exist 

among Experiment A and References B and C. 

 
Table 12 Experiment A: Comparison of evaluation metrics with Reference B-I 

 Experiment A Reference B-I 

PSNR 25.023 32.32 

SSIM 0.75 0.911 

 

Comparison in Table 13 excludes NIR, RGB seems to have consistent values, for visual evaluation it 

should give good results, but references experiments obtained higher values. 

 
Table 13 Experiment A: Comparison of evaluation metrics with Reference C-I 

 Experiment A Reference C-I 
 Blue Green Red Blue Green Red 

PSNR 25.061 27.758 29.382 30.779 32.984 33.74 

SSIM 0.780 0.857 0.881 0.8916 0.909 0.887 
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As expected, metrics indicate low similarity between ground truth VIs calculated from reconstructed 

bands because of the low performance on the NIR band as shown in Table 14. Additionally, it is 

compared with Reference C-IV which is the only research that utilized reconstructed bands to calculate 

VIs, it is evident that the VIs were not reconstructed well. Anyhow, from all the VIs, SAVI seems to have 

higher values, but not significantly better to accurately reconstruct that VI. 

 
Table 14 Evaluating metrics on reconstructed VIs calculated from predicted data 

 
NDVI GNDVI EVI SAVI NDVI Reference C-IV 

PSNR 12.543 12.943 12.879 15.903 24.741 

SSIM 0.174 0.199 0.178 0.196 0.757 

RMSE 0.483 0.461 0.490 0.353 0.116 

 

References do not report metrics per band except by C, which even when they report NDVI metrics, NIR 

metrics are missing. The availability of simulated images for the following applications is unknown if each 

band is not evaluated also separately, specially NIR. 

6.3.2. Specific crops 

The quantitative metrics for the three target crops potatoes (P), sugar beets (S), and maize (M) per band 

calculated on unseen data are shown in Table 15, values for PSNR and SSIM are higher than the values of 

the overall image. This suggests that the contribution to the error is less by patches that contain these 

crops. Also, the NIR still performs worse than the other bands as shown in the metric histograms in 

Figures 22, 23, and 24. Notwithstanding, the phenology illustrated in Figure 9, it is expected that these 

metrics correspond to the early stages of crop growth, as is visualized in Section 6.4.3. 

 
Table 15 Evaluation metrics in different crops 

 Potatoes Sugar beets Maize 

 Blue Green Red NIR Blue Green Red NIR Blue Green Red NIR 

PSNR 30.328 29.087 25.266 19.433 30.218 28.964 25.153 19.099 30.587 29.343 25.652 18.790 

SSIM 0.890 0.870 0.778 0.513 0.889 0.869 0.776 0.518 0.894 0.875 0.788 0.500 

RMSE 0.062 0.071 0.110 0.220 0.063 0.073 0.112 0.230 0.060 0.070 0.106 0.239 

 

 
Figure 22 PSNR column chart per band in specific crops 
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Figure 23  SSIM column chart per band in specific crops 

 

 
Figure 24  RMSE column chart per band in specific crops 

6.3.3. Experiment B 

Table 16 shows VIs reconstructed directly; the performance of the model is not good enough because of 

the reduced training dataset. PSNR values are lower than experiment A and SSIM has negative values 

which indicates negative correlation. Still, it is interesting to see how data was reconstructed under these 

conditions in visual inspection. 

 

Table 16 Experiment B evaluation metrics 

 
NDVI GNDVI EVI SAVI 

PSNR 10.213 10.138 9.258 12.667 

SSIM -0.114 -0.147 -0.095 0.255 

RMSE 0.657 0.639 0.746 0.446 
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6.4. Visual evaluation 

6.4.1. Experiment A 

In Figure 25, ground truth and simulated bands are presented, among ground truth data, they present 

certain differences in brightness and contrast, and different patches within a Sentinel-2 image correspond 

to diverse land cover types or terrain characteristics. Vegetation, water bodies, urban areas, and bare soil 

can exhibit different reflectance properties, leading to variations in the observed brightness and contrast 

across patches. Generated patches seem to be brighter than real ones, this difference could arise due to 

variations in the modelling as the rescaling during pre-processing, also the quantitative evaluation it was 

established has room for improvement.   
 

 
Figure 25 Ground truth and simulated patches per band 

Table 17 includes Ground truth and reconstructed RGB images which are compared in different scenarios 

of heterogeneous or homogeneous parcels in a patch as well as the presence of other land cover. 
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Table 17 Ground truth and reconstructed RGB compositions comparison for homogeneous and heterogenous areas 

Ground truth RGB composition Reconstructed RGB composition Description 

  

These patches 

contain 

heterogeneous 

vegetation and built-

up area, edges of 

similar vegetation are 

not defined in the 

simulated data, and 

the greenness seems 

to be attenuated or 

non-existent as 

shown in the red 

circles. Built-up on 

the other hand 

shows consistency 

with ground truth.  

  

These patches 

contain more 

homogeneous 

parcels and some 

infrastructure. The 

model predicts with 

difficulty on 

homogeneous 

parcels, edges are 

blurry, and greenness 

is attenuated or 

wrongly predicted in 

some parcels. 

Infrastructure seems 

to be better 

predicted. Brown 

parcels with a darker 

brown in some of 

them might suggest 

irrigation, which is 

not captured in the 

simulated data. 
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These patches 

contain 

heterogeneous 

parcels, 

infrastructure, and a 

water body. 

Vegetation presents 

the same problems 

as previous patches, 

although the 

greenness seems to 

be conserved. 

  

These patches 

contain 

homogeneous 

vegetation and water 

bodies, the greenness 

seems to be 

attenuated. 

 

When the optical dataset has some small clouds, as it can be seen in Figure 26, an optical simulation with 

some cloudiness, may feasibly reconstruct the image under clouds. Nonetheless, the patches with the 

presence of clouds are minimal, concluding to what extent clouds can be removed still need test.   

 
Figure 26 Sentinel-2 real (left) and simulated (right) cloud penetration 

As expected, VIs are not well reconstructed for reasons mentioned in the quantitative evaluation and 

illustrated in Figure 27. SAVI seems to be better simulated, and this coincides with the results of the 

evaluation metrics, the soil brightness correction factor L might be crucial, PSNR values were higher, and 

it was the only one with a positive SSIM. But this is not conclusive due to the performance of the model. 
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Figure 27 Vegetation indices calculated with ground truth data and simulated bands 

6.4.2. Experiment B 

Simulated VIs are illustrated in Figure 28 in greyscale to highlight distortion and deterioration. Due to the 

reduced dataset, VIs were not successfully reconstructed. As mentioned in evaluation metrics and in visual 

evaluation on Experiment A, SAVI seems to reassemble better, but not enough to consider it 

reconstructed. 

 

 
Figure 28 Vegetation indices calculated with ground truth data and directly simulated vegetation indices 

6.4.3. Specific crops 

Table 18 contains real and simulated RGB compositions where the target cops are predominant, as seen in 

Figure 9, during t2 the first phenological stages of maize are there leaf development in the middle of t1 

and t2 considered for the model. Potatoes and sugar beets’ first observations correspond to flowering at 

the beginning of July. Therefore, green vegetation is not clearly observable. 
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An important observation is that in these patches, most of the land cover is cropland, and it seems to 

present fewer wrong predictions, like green fields shown brown and vice versa. Considering that most of 

the study area is cropland, the model learns better from the representativeness of the crops, wrong 

predictions might correspond to crops produced in lower quantities, thus the model cannot learn better 

from them. 

 

Table 18 Ground truth and reconstructed RGB compositions comparison 

Crop Ground truth RGB composition Reconstructed RGB composition 
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6.5. Limitations 

The comparison of the experiments of this project with the reference research would be more suitable if 

data collection and pre-processing were the same.  In the case of Sentinel-2 data, images downloaded from 

GEE at Level-2A with a predefined atmospheric correction might introduce different noise than if 

downloaded from Copernicus Open Hub and processed with SNAP. For Sentinel-1, most of the pre-

processing steps are the same, although the choice of speckle filter is not detailed; neither do we know 

whether the image was acquired in ascending or descending orbit. Additionally, normalization, rescaling 

and standardization were not deeply described in the references, so this also could be different between 

the two data situations. 

The lack of GPU in the personal laptop and the sometimes-saturated CRIB due to an overwhelming 

number of users were important limitations. The compilation sometimes was suddenly stopped or could 
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not be initialized, which led to several failed attempts. Also, utilizing a larger number of patches would 

have improved the results, especially for Experiment B. 
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7. CONCLUSIONS 

To conclude this research, the research questions are answered: 

 

Which data is available in the study area given cloud cover and crop growing stages? 

MTcGAN, a supervised method requires pairs of patches, which means cloud-free Sentinel-2 images in t1 

and t2 are needed. The data utilized in this research was obtained at the beginning of May for t1 and the 

end of May for t2, this sensing interval encompasses only maize during leaf development, which is an early 

phenology stage, and for potatoes and sugar beets, observable growth above the surface is not detected 

during this period. Images around the beginning of July may be ideal to capture crop data, eight images 

were found in the whole year, but any around that desirable time.  

It is possible, of course, to use data from other locations, spatial transfer for MTcGAN was proved in 

reference research, which means that cloud-free data from the whole image and from different locations 

can be included in the training dataset. Nonetheless, the challenge remains in time transfer, which proved 

that the longer the difference between t1 and t2 the lower the model’s performance, and how good cloud 

masking can admit patches with reliable cloud-free data, especially because these masking algorithms 

might admit mistakes. Consequently, the main challenge would be to find cloud-free Sentinel-2 images 

around the world at t1 and t2 to reduce that error. Finally, using partially clouded patches is possible, but it 

is unknown to what extent this can influence the model performance. 

 

How generated bands differ from ground truth data? 

Red, green, and red bands obtained superior similarity rather than NIR. The distribution from the three 

bands is similar, thus the model has better chances to learn how to generate data with this distribution. 

The model showed similar values for training and unseen data which indicated the model has a moderate 

generalization ability, on the other hand, PSNR and SSIM values obtained were smaller than values 

reported in the reference research, which indicates that the model is capable of reconstructing images, 

there is still room for improvement. Given that the same architecture was used for the experiments and 

reference research, what is left is the difference in size between datasets. Likewise, when trained in 

different locations performance also changes, different images offer different contextual information, 

giving more representativeness of the training data. 

 

Can the generated bands be utilized for vegetation indices calculations? 

Based on the literature review, it is possible with moderate accuracy, the similarity with actual vegetation 

indices is not as high as bands separated also utilizing several pair of images around the world for training 

providing of very extensive real data representativeness. In this research, the reconstruction of NIR was 

not outstanding thus calculations were not accurate. Nevertheless, SAVI was the one with smaller errors, 

but not good enough to tell the vegetation index was reconstructed.  

 

How different are the generated vegetation indices from ground truth data?  

There is no research found related to the use of a GAN to generate vegetation indices directly. These 

results were inconclusive in this research due to the reduction in the training dataset carried out for 

memory allocation issues with the remote machine. Even though SAVI presented better results even with 

this scenario, but equally the result is not good enough to tell the vegetation index was reconstructed. 

 

Does the model perform better in different crops?  
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In experiment A, based on the quantitative evaluation, it seems there is not a significant difference in 

reconstructed bands. Although, these results are based on very early phonological stages, which makes it 

not conclusive to tell if there is a difference in performance especially for potatoes and sugar beets. In the 

case of maize, there certain green areas are detected by visual evaluation. A desirable vegetation indices 

reconstruction accuracy was not achieved in any of both experiments. 
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8.  RECOMMENDATIONS 

One of the most important restraints for GAN is the lack of a convergence metric, as well as the non-

consensus evaluation metric that could give a stopping criterion and hyperparameter tuning robust 

decision. Evaluation metrics is a broad study, and certainly in the field of remote sensing have not been 

deeply studied. The use of Frechet Inception Distance (FID) that models features from hidden layers for 

the simulated and ground truth data would be suitable for supervised GANs. Also, mean spectral angle is 

a common metric that can be implemented. 

The performance of the model highly depends on diverse training data in a narrow sensing time between 

t1 and t2, using data from different locations also increases the performance of the method. Using partially 

clouded images is acceptable, but it must be acknowledged that this can create uncertainty in the model. 

Using cloud-free images would reduce the uncertainty on this, and as images from different locations 

improve results then this is complementary. Although this can be time-consuming and computationally 

costly. 

Due to the expected decrease of cloud cover in north-western Europe, the temporal methods to complete 

vegetation indices time series for Sen4CAP would be more robust. Nonetheless, as data is retrieved every 

5 days in Sen4CAP products, a GAN method can provide a near-to-real-time warning of non-compliance 

with CAP during long periods of cloudiness. 
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APPENDIX  

APPENDIX 1: BBCH 

Source: (Meier, 2001) 

Crop Growth stage 
BBCH 

identification 
keys 

Description 

` 

Leaf 
development 

12 Two leaves unfolded 

13 Three leaves unfolded 

1... Stages continuous till 

Stem elongation 

31 First node detectable 

33  Three nodes detectable 

3.. Stages continuous till 

39 Nine or more nodes detectable 

Inflorescence 
emergence, 

heading 
51 

Beginning of tassel emergence: tassel detectable at top of 
stem 

Flowering, 
anthesis 

64 
Male: beginning of pollen shedding Female: tips of 
stigmata visible 

Development 
of fruit 

71 
Beginning of grain development: kernels at blister stage, 
about 16% dry matter 

73 Early milk 

75 
Kernels in middle of cob yellowish white (variety-
dependent), content milky, about 40% dry matter 

79 All kernels have reached final size 

Ripening 

85 
Dough stage: kernels yellowish to yellow (variety 
dependent), about 55% dry matter 

87 
Physiological maturity: black dot/layer visible at base of 
kernels, about 60% dry matter 

89 Fully ripe: kernels hard and shiny, about 65% dry matter 

Potatoes 

Flowering 

61 
Beginning of flowering: 10% of flowers in the first 
inflorescence open (main stem) 

63 Thirty percent of flowers in the first inflorescence open 

65 
Full flowering: 50% of flowers in the first inflorescence 
open 

66 Sixty percent of flowers in the first inflorescence open 

67 Seventy percent of flowers in the first inflorescence open 

Senescence 

91 Beginning of leaf yellowing 

93 Most of the leaves yellowish 

95 Fifty percent of the leaves brownish 

Sugar 
beets 

Rosette growth 

36 Leaves cover 60% of ground 

37 Leaves cover 70% of ground 

39 Crop cover complete: leaves cover 90% of ground 

 



RECONSTRUCTION OF VEGETATION INDICES USING MULTI-SOURCE IMAGES AND DEEP LEARNING - A CASE OF STUDY IN THE NETHERLANDS 

42 

APPENDIX 2: INPUT DATA 

Training patches
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Ground truth patches 
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