


Abstract
Introduction. The motivation for this project is a clinical phenomenon named burst-suppression
(BS), which is a typical electroencephalogram (EEG) pattern seen in patients during postanoxic
coma. It is characterised by an alternation of bursts of activity and iso-electricity. Two types
exist, BS with identical bursts (BSIB) and BS with non-identical bursts (BSNIB). The mechanisms
underlying BS and the differences between BSIB and BSNIB are poorly understood. Neuronal
network models are adequate tools for investigating mechanisms underlying observed behaviour
of neuronal populations. The recently developed next-generation neural mass models directly
relate microscopic network properties to macroscopic observables that approximate EEG. Here,
we investigate the role of sparse synaptic coupling in the emergence of BSNIB.
Methods. We implement a spiking neural network of 104 Quadratic-Integrate-and-Fire (QIF)
neurons, and derive its exact low-dimensional mean-field representation, the next-generation
neural mass model. We describe realistic chemical and electrical synaptic connections between
neurons, and spike-frequency adaptation (SFA). In addition, we extend our single excitatory
population with a population of inhibitory QIF-neurons. In these models, we identify bursting
dynamics, and analyse the similarity of bursts within simulations where we decrease the synaptic
coupling probability (pSyn) stepwise. Finally, we visually compare model simulations with EEG.
Results. In the one- and two-population model, a fold-fold burster exists. A realistic number of
gap junctions per neuron had a negligible effect on the burst pattern. Simulations of networks
with all-to-all synaptic coupling showed small burst similarity values, caused by large differ-
ences in the neuron-specific adaptation variables. Reducing the synaptic coupling probability
pSyn caused an increase in burst similarity within a simulation. In the model with two popula-
tions, the intrinsic activity level of the inhibitory population distinguishes two types of bursting
dynamics. High inhibitory activity induces rest state oscillations and lower burst similarity values
for all pSyn. Some simulations show a tentative resemblance with BSIB EEG, but none resemble
BSNIB.
Discussion. The approximation of individual SFA by population SFA is invalid. The failure of this
assumption causes the microscopic model behaviour to deviate from the neural mass equivalent,
also in the two-population model. Still, the two-population model shows remarkable bursting
dynamics, where the rest state oscillations could play an important role in finding model be-
haviour with non-identical bursts. Future research should focus on a different slow modulatory
mechanism to facilitate bursting, and on a more thorough exploration of the dynamics of the two-
population model. Tuning inhibition and adding population noise are important steps towards
finding BSNIB in a neuronal network model.
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1 Introduction
This project is a computational study of bursting behaviour in spiking neuronal networks with
sparse coupling. It is motivated by a clinical phenomenon that is observed on the electroen-
cephalogram (EEG) of comatose patients, called burst-suppression (BS). We introduce this clin-
ical phenomenon, discuss how researchers use modern computational models of the brain to
investigate neurological phenomena such as BS, and formulate the objective that underlies our
project.

1.1 Burst-suppression
Burst-suppression is a typical EEG pattern that emerges in a variety of physiological and patholog-
ical conditions [1, 2]. This EEG pattern is characterised by its spatially synchronous progression,
where the signal is an alternation of short, high amplitude bursts and longer periods of low ampli-
tude activity or even isoelectricity [3]. Two types of BS can be distinguished: BS with identical
bursts (BSIB), which is uniquely seen in patients in postanoxic coma [3], and BS with non-
identical bursts (BSNIB), which is observed in several different conditions, including postanoxic
coma, anesthesia, and therapeutic hypothermia [1, 2]. BSIB is a highly specific predictor for
poor neurological outcome after postanoxic coma [3].
In Figure 1, we show short epochs of EEG with burst-suppression from patients in a postanoxic
coma. Figure 1a shows the onset of two successive bursts that are non-identical. It is difficult to
identify the exact moment of burst onset, since multiple channels show a gradual burst initiation.
Also, the increase in activity is only partially synchronous across all channels. Figure 1b shows
two successive identical bursts. Between the two bursts, the timing and amplitude of peaks are
highly similar. Here, as opposed to the non-identical bursts, there is a clear moment of burst onset,
with an initial fast rise in amplitude. The bursts emerge with a high level of spatial synchrony.
The mechanisms underlying the distinctive BS pattern on the EEG are still poorly understood.
However, several hypotheses exist regarding the neurophysiology that induces BS. The metabolic
hypothesis, which proposes that BS originates from a neurometabolic deficit, has been extensively
documented [2, 4]. In short, energy deprivation would underlie BS through decreased activity

(a) Non-identical bursts (b) Identical bursts

Figure 1: Two examples of burst-suppression on the EEG, adapted from [3]. In (a), the onsets of two non-identical
bursts from a pattern of BSNIB are shown. In multiple channels, small oscillations occur before the burst starts. The
burst onset is not entirely synchronous across all channels, in both bursts. This opposes the identical bursts in (b),
which have a clear spatially synchronous onset. These bursts start abruptly and simultaneously across all channels.
Within a channel, the two bursts are extremely similar. All four epochs have a 5 second duration. The EEGs in (a) and
(b) where recorded from different patients.
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of ATP-dependent cellular transporters. Inhibition is expected to play a significant role in the
emergence of BS, since it is prominent in both postanoxic and anesthesia-induced coma, through
the selective suppression of excitatory synapses [5] and increased inhibitory activity, respectively.
An alternative hypothesis is built upon evidence of a hyperexcitable brain during anesthesia-
induced BS [6–8], where decreased inhibitory activity is argued to be the origin of BS. Opposing
a unifying responsible mechanism for the emergence of BS, some suggest that the mechanisms
causing BS differs per pathological condition [3].

1.2 Models of neuronal networks
The use of mathematical models to gain knowledge of physiological mechanisms that cause clin-
ical observations such as BS is strongly endorsed. In general, brain dynamics can be modelled
on two scales: a microscopic scale, where we define a model of individual neurons and connect
these by synapses to construct a network, and a global scale, where we define mean-field models
of populations of neurons that describe the mean activity of such populations. Relating these
models to in vitro or in vivo experimental observations may provide valuable insight into the
functioning of the brain in physiological and pathological conditions.

1.2.1 Microscopic models
Modelling neurons on a microscopic scale starts by describing the electrical properties of the neu-
ronal cell membrane. The central state variable of a modelled neuron is its membrane potential,
whose evolution is driven by transmembrane currents. Our intricate knowledge of molecular
neurophysiology allows describing detailed models of individual neurons, building on the work
of Hodgkin and Huxley [9]. These models, characterised by an accurate description of the ion
dynamics involved in neuronal signalling, are useful for investigating the effects of microscopic
changes in neuronal physiology.
For modelling network phenomena such as BS, we often use simpler phenomenological models
that describe the spiking behaviour of neurons. These spiking neuron models describe the neu-
ronal action potential, but do not describe the ion dynamics that underly their formation. Models
of spiking neurons can be connected by (modelled) synapses to form spiking neural networks.
We use these networks to investigate the behaviour of populations of neurons. An example of a
spiking neuron, the building block for a spiking neural network, is the Quadratic-Integrate-and-
Fire (QIF) neuron. This neuron model is, in its simplest form, described by the following ordinary
differential equation:

V̇ (t) = (V (t))2 + I(t), (1.1)
with the following reset rule: if V > Vthr, a spike is emitted and V ← Vreset, where Vthr, Vreset ∈
R ∪ {±∞}. The QIF-neuron is defined by its membrane potential V (t), and it is driven by the
square of V (t) and a term I(t) that describes the sum of incoming currents.
The behaviour of a single QIF-neuron is easy to analyse, and underpins the behaviour of a network
of QIF-neurons. The single QIF-neuron behaviour is determined by its fixed point structure, which
depends on I(t). This fixed point structure thus possibly varies in time. For the following, we
remove this time dependence, i.e. we assume I(t) = I, and in addition, we assume Vthr > |I|
and Vreset < −|I|. The value of I now determines the number of fixed points. If I < 0, two
equilibria exist, a stable one at V = −

√
−I and an unstable one at V =

√
−I. When the initial

condition V0 >
√
−I, the neuron spikes once, is reset to V = Vreset, and then converges to the

stable equilibrium at V = −
√
−I. When V0 <

√
−I, the neuron converges to V = −

√
−I without

spiking. When I is increased, at I = 0 the two equilibria merge to a neutral fixed point, with still
the same behaviour as for I < 0. For I > 0, no equilibria exist and the neuron is in a regime of
sustained spiking. The behaviour of V for different values of I is shown in Figure 2.
In the spiking regime, the firing rate is a function of I. We obtain this firing rate equation by
integrating (1.1) over one cycle, from V (t0) = Vreset to V (t0 + T ) = Vthr, where T is the period
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Figure 2: Behaviour of V for a single QIF-neuron, for different values of input current I. With I = −1, there are two
equilibria, a stable one in blue at V = −1 and an unstable one in red at V = 1. Solutions with initial conditions V0 < 1
directly converge to the stable equilibrium without spiking, when V0 > 1 one spike is emitted before convergence to
the stable equilibrium. At I = 0 the two equilibria merge, making it attracting from below, but repelling from above.
Solutions with the same initial conditions as for I = −1 are shown. All solutions eventually settle at V = 0, only after
emitting one spike if V0 > 0. A last simulation where I was increased stepwise, from I = 1 to I = 4 to I = 4 shows
the dependence of the firing rate on I. Compared to I = 1, the firing rate doubled after the increase to I = 4, and
tripled after the increase to I = 9. All simulations were performed with finite Vthr = −Vreset = 10.

of firing, and the firing rate is f = 1/T . For arbitrary Vthr and Vreset, the firing rate equation is
given by

f(I) =
√
I

(
arctan Vthr√

I
− arctan Vreset√

I

)−1

. (1.2)

Choosing Vthr = −Vreset → ∞ reduces this equation to f(I) = 1
π

√
I. This firing rate curve and

one for Vthr = −Vreset = 10 are shown in Figure 3.
One important component of I is the synaptic current. Synapses can be divided into two classes:
chemical synapses and electrical synapses. A chemical synapse is a unidirectional connection,
most often axodendritic, that processes a presynaptic spike to a postsynaptic current. Connections
might be bidirectional, but via two separate synapses. The easiest way to model a chemical
synapse is by describing it as a product of a synaptic coupling strength and a synaptic activation
variable. The electrical synapse, also called gap junction, is a bidirectional connection between
two neurons that couples their membrane potential. It is modelled as the product of a coupling
strength and the difference between the membrane potentials of both neurons.

1.2.2 Mean-field models and next generation neural masses
Mean-field models of the brain find their origin in the work of Wilson and Cowan [10]. This type
of model describes the mean membrane potential of a population of neurons, also called a neural
mass. The mean membrane potential of a population of cortical pyramidal cells approximates
the current dipole that is generated by these cells, which is, passing intermediate steps, captured
by EEG measurements. The low dimension of these models makes them highly suitable for math-
ematical analysis, providing insight into the population parameters that induce changes in the
macroscopic observables. Single neural masses are extended to coupled neural masses describ-
ing e.g. thalamocortical circuits, to neural field models incorporating the spatial propagation of
brain activity, to extensive whole brain network models [11–15].
In these classical neural mass models, the mean membrane potential defines the state of the
population, and the firing rate is assumed to be a sigmoidal function of the mean membrane
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Figure 3: The firing rate of a QIF-neuron as a function of the current I. In black, we show f(I) for Vthr = −Vreset = ∞,
with the formula f(I) = 1

π

√
I for I > 0. In grey, we show f(I) for Vthr = −Vreset = 10, given by Eq. (1.2). The grey

curve gives the firing rates of the simulations in Figure 2.

potential. Since this relation between firing rate and mean membrane potential is based on
experimental observations, the classical neural mass models have a phenomenological nature.
Recently, a new type of neural mass model was proposed, where the firing rate of a population is
derived exactly from the microscopic properties of the underlying network. This next-generation
neural mass model was first described by Montbrio et al. [16], building on the work of Ott and
Antonsen [17] on a low dimensional representation of an ensemble of θ oscillators. The insight
in [16] was that a θ oscillator can be transformed to a QIF-neuron, from which they showed
that the Ott-Antonsen (OA) ansatz for dimensionality reduction also applies to a network of QIF-
neurons connected by instantaneous synapses. For the resulting system of firing-rate equations,
they analytically identified parameter regions of bistability. They concluded with a description
of interacting excitatory and inhibitory populations, without further analysing the behaviour of
this extended system.
Toward a more realistic microscopic network description, Byrne et al. [18] incorporated the α-
synapse for connections between QIF-neurons, and showed that this preserves the applicability of
the OA ansatz. In addition to chemical synapses, also electrical synapses, or gap junctions, have
been incorporated in next-generation neural mass models [19–21]. Gap junctions are shown to
induce oscillatory behaviour for suitable parameter settings, suggesting that this type of synapse
enhances synchrony between neurons. Synchrony has also been studied in next-generation neural
mass models on a population level, with two symmetric populations [22], one excitatory and
one inhibitory population [21], up to three different populations [23]. Furthermore, neuronal
fatigue mechanisms were introduced into next-generation neural mass models. Common choices
for these mechanisms are short-term synaptic depression (STP) [23–25] and spike-frequency
adaptation (SFA) [22, 26]. This fatigue acts on a much slower timescale than membrane potential
dynamics. Addition of such slow modulatory mechanisms potentially induces bursting [26, 27].

1.3 Models of bursting and burst-suppression
BS is a clinical example of bursting. The work of Izhikevich gives a vast theoretical description of
bursting in excitable systems [28]. A neuronal burster consists of a fast subsystem that is respon-
sible for the spiking behaviour, and a slow variable that induces switches from a rest state to an
active state, and back. Two key bifurcations in the fast subsystem define the type of burster: the
bifurcation of the rest state, where the solution goes from the rest state to the active state, and
the bifurcation of the active state, where the solution returns to the rest state. This bifurcation
of the active state is often a bifurcation of a limit cycle, e.g. a homoclinic, fold of limit cycles, or
Hopf bifurcation. However, Izhikevich also describes a fold-fold burster, where the bifurcation
of the rest state and the active state are both normal fold bifurcations. Here, the active state is a
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fixed point with a weak rate of convergence, causing damped oscillations in the neighbourhood
of the fixed point. The bifurcation structure of the fast subsystem gives insight into the burst-
ing behaviour of the full system. Therefore, slow-fast analysis by separating the slow and fast
dynamics of a system is a widely applied technique for analysing bursters [25, 29].
Bursting in terms of BS has been studied in multiple computational studies, with different ap-
proaches [29–31]. The earliest [30] describes a phenomenological nonlinear model with simu-
lations considerably similar to BS EEG. However, they do not discuss physiological mechanisms
that might underlie BS because of the absence of biophysical parameters in their model. In [31],
a network of fourteen Hodgkin-Huxley type cells, both excitatory and inhibitory, was modelled.
To test the metabolic hypothesis for BS, the model included ATP dynamics. The results showed
that a reduction in cerebral metabolic rate and thus a reduced availability of ATP, e.g. due to
oxygen deprivation during an ischemic event, gave rise to BS-like patterns. By the scale of this
network, the results are not directly comparable to EEG. To bridge this gap, Liley et al. [29] de-
veloped a cortical mean-field model, of which the mean-field membrane potential is considered
an approximation of EEG. This enables a direct comparison of simulations to clinical observations.
The slow modulatory process in the Liley model is short-term synaptic depression. Although this
model describes neuronal populations and can thus be related to neuroanatomical features, it
lacks a relation to microscopic physiological parameters such as synaptic connections between
individual neurons. As described above, next-generation neural mass models incorporate these
aspects in the mean-field description.

1.4 Project objective
The next-generation neural mass model is a strong analytical and experimental tool, but the nec-
essary assumptions for this reduction are not all physiologically plausible. Especially the assump-
tions of all-to-all coupling and unimodal synchronization of neurons are unrealistic in neuronal
populations in vivo. To be able to relate model simulations to clinical data, we must investigate
the effect of realistic, sparse coupling between neurons on model behaviour. Moreover, we hy-
pothesise that these properties of the neuronal network play an important role in the emergence
of BSNIB. Breakdown of the exact correspondence of the microscopic model to the mean-field
model is crucial for finding BSNIB, since the non-identical bursts clearly do not follow a single
population mean. This is substantiated by previous studies, where simulations of microscopic
networks show that finite-size effects and variation in connectivity give rise to patterns that are
comparable to BSNIB [32–35]. The role of suppression or failure of synaptic communication
in BS motivates investigating the effect of variations in synaptic coupling. We hypothesise that
clustered activity underlies the variations in burst shape seen in BSNIB. Building towards a more
physiologically realistic model, we incorporate α-synapses, SFA, and gap junctions in our neu-
ronal network and study their effect. In addition, we extend the excitatory one-population model
with a second inhibitory population. We start by analysing our mean-field model and continue
with simulations of the microscopic model for different network architectures.
We will answer the following research question: what are the effects of variations in network
architecture and implemented model components on the behaviour of the microscopic model,
and when do variations lead to behaviour of the microscopic model that diverges from the mean-
field equivalent? In other words, when do solutions of the microscopic model no longer follow a
uniform population mean? In the end, we aim to translate the identified variations to a clinically
relevant conclusion: what conditions can be identified for the emergence of burst-suppression
with non-identical bursts in a network of Quadratic-Integrate-and-Fire neurons?
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2 Methods
The core of our project is a detailed microscopic spiking neuronal network model and its next-
generation neural mass equivalent. We describe these two models, and show how the microscopic
model reduces to the neural mass model. In numerical experiments, we will compare the bursting
behaviour of the neural mass model to that of the microscopic model with different settings for
synaptic coupling. We designed a burst detection algorithm, and implemented a known method
to measure the similarity between individual bursts [3].

2.1 Neuronal network models
Our microscopic model and neural mass model are based on [16], incorporating a combination
of additional mechanisms from [18, 26]. The description of the microscopic model includes the
network architecture, to which we introduce sparse synaptic coupling.

2.1.1 Spiking neural network
As our microscopic model, we consider a network of N Quadratic Integrate-and-Fire (QIF) neu-
rons, characterised by their membrane potentials {Vj}j=1,...,N that evolve according to a first-
order Ordinary Differential Equation (ODE) with reset:

𝜏V̇j(t) = (Vj(t))
2 + ηj + Jsj(t)𝜏 + κgj(t) + I(t),

if Vj(t) > Vthr, Vj(t)← Vreset,
(2.1)

where Vthr denotes the spiking threshold, i.e. when Vj(t) reaches Vthr neuron j emits a spike,
and Vreset denotes the reset potential after a spike. In our analysis, we consider the limit Vthr =
−Vreset → ∞. The input current consists of four components: a heterogeneous, constant input
current ηj drawn from a distribution L(η) that we define later, a synaptic input current given by
the product Jsj(t), a gap junction current κgj(t), and a common, time-varying input current I(t).
The membrane time constant is denoted by 𝜏.
The synaptic current is the product of the synaptic connection strength, J , and the mean of the
synaptic activation of the incoming synapses, sj . The latter is given by

sj(t) =
1

|Sj |
∑
n∈Sj

∑
k, tkn<t

∫ t

−∞
a(t− t′)δ(t′ − tkn) dt

′.

The set Sj denotes all neurons that have an efferent connection to the dendritic tree of neuron
j, a(t) denotes the synaptic kernel function, and δ(t) denotes the Dirac delta function. The kth

spike time of neuron n is denoted by tkn. The synaptic kernel function describes the response of a
synapse to an incoming action potential, and it is characterised by a rise rate αr, and a decay rate
αd. Often, we assume infinitely fast synapses, i.e. the rise and decay rates go to infinity, which
corresponds to a(t) = δ(t). A more realistic assumption is αr = αd = α, where the kernel function
has the form a(t) = α2te−αtΘ(t), with Θ(t) the Heaviside step function to ensure causality. Both
kernel functions are the Green’s function of a linear differential operator that we denote by Q,
by which we describe the evolution of sj(t) as an ODE:

Qsj(t) =
1

|Sj |
∑
n∈Sj

∑
k, tkn<t

δ(t− tkn). (2.2)

The case a(t) = δ(t) yields Q = 1, whereas a(t) = α2te−αtΘ(t) yields Q = (1 + 1
α

d
dt)

2.
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The gap junction current is the product of the connection strength κ, and the gap junction variable
gj , which is given by:

gj(t) =
1

N

∑
m∈Gj

(Vm(t)− Vj(t)). (2.3)

The set Gj denotes all neurons that have a gap junction connection to neuron j.
Macroscopic observables of this system are the mean membrane potential, defined by

v̄(t) =
1

N

N∑
j=1

Vj(t),

and the mean firing rate, defined by

r̄(t) =
1

N

N∑
j=1

∑
k∈Z

δ(t− tkj ).

All separate N neurons form an interconnected network through chemical synapses and gap
junctions between neurons. By defining these connections, we impose a structure on the network.
For now, we assume all-to-all coupling, i.e. each neuron is connected to all other neurons through
both chemical synapses and gap junctions. This includes self-connections. Note that, although
self-connecting gap junctions do not exist, this does not impair our definition: by Eq. 2.3, the
gap junction current between a neuron and itself always equals zero.
Under the assumption of all-to-all coupling, the evolution equations of sj(t) and gj(t) reduce to

Qsj(t) = r̄(t),

and

κgj(t) = κv̄(t)− κVj(t). (2.4)

2.1.2 Mean-field model
Under several assumptions, the network described above allows a substantial dimensionality re-
duction. In the limit N → ∞ and assuming all-to-all coupling of the neurons, we describe the
membrane potentials of neurons with the same η by a continuous probability density function
ϕ(V |η, t). Note that the time-dependency of V is now transferred to a time-dependency of its dis-
tribution given η. Conservation of the number of neurons yields the following continuity equation:

∂tϕ = −∂V ϕV̇ , (2.5)

with V̇ the V -dependent function defined in (2.1) after substitution of (2.4), and where we have
dropped the index j. By ∂t and ∂V we denote the partial derivatives with respect to variables t
and V , respectively. Without temporal forcing and without inter-neuronal connections, i.e. I = 0
and J = κ = 0, Eq. (2.5) has a trivial stationary solution ϕ0(V |η) ∝ (V 2 + η)−1. The form of
this solution corresponds to that of a Lorentzian function, which provides an intuition for the
ansatz that follows. This ansatz, known as the Ott-Antonsen ansatz [17], assumes that, in the
limit N → ∞, ϕ(V |η, t) converges to a Lorentzian-shaped function in general, i.e. also in the
presence of time-varying currents. By this assumption, we define:

ϕ(V |η, t) = 1

π

x(η, t)

(V − y(η, t))2 + x(η, t)2
, (2.6)

where y(η, t) denotes the center of the distribution, and x(η, t) the half-width-at-half-maximum
(HWHM) of this distribution. This is the general form of a Lorentzian function. A possible graph
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Figure 4: Graph of a Lorentzian distribution ϕ(V |η, t), defined by (2.6), where y(η, t) denotes the center of the
distribution, x(η, t) denotes the half-width-at-half-maximum. The Lorentzian distribution is a unimodal distribution,
whose single peak’s location and height are determined by y(η, t) and x(η, t), respectively.

of ϕ(V |η, t) and its dependence on V , x(η, t) and y(η, t) is shown in Figure 4. We thus assume
a unimodal distribution of the membrane potentials given a value of η. In terms of synchrony, a
peaked distribution (i.e. x(η, t) is small) translates to synchronous activity of neurons, whereas
a flat distribution (i.e. x(η, t) is large) corresponds to asynchrony.
The distribution parameters y(η, t) and x(η, t) are directly related to the macroscopic observables
of the system: the mean membrane potential and mean firing rate. In terms of the distribution,
the mean membrane potential equals the center of the distribution y(η, t), since (2.6) is symmetric
in y(η, t). We interpret the mean firing rate as the rate at which neurons cross Vthr →∞, which
yields:

r(η, t) = ϕ(V |η, t)V̇ (V |η, t)
∣∣∣
V→∞

,

=
1

π𝜏
x(η, t).

To get rid of the η-dependence of v(η, t) and r(η, t), we must assume a distribution for η. In the
limit N →∞, the ηi’s are described by a continuous distribution that we denote by L(η). Given
this distribution, we integrate over all values of η to obtain expressions for v(t) and r(t) in terms
of the membrane potential distribution parameters:

v(t) =

∫ ∞

−∞
y(η, t)L(η) dη, (2.7)

r(t) =
1

π𝜏

∫ ∞

−∞
x(η, t)L(η) dη. (2.8)

The next step is to substitute (2.6) into the continuity equation (2.5). Without explicitly indicat-
ing the η- and time-dependence of x and y, simplifying the left-hand-side yields:

∂tϕ =
∂tx

(
(V − y)2 − x2

)
+ ∂ty (2xV − 2xy)

π ((V − y)2 + x2)2
.
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Collecting the factors in the numerator above, the right-hand-side reduces to:

−∂V ϕV̇ =
1

𝜏
2x(V − y)(V 2 + η + Js𝜏 + κv − κV + I)− (2xV − κx)

(
(V − y)2 + x2

)
π ((V − y)2 + x2)2

,

=
1

𝜏
(2xy − κx)((V − y)2 − x2) + (η + Js𝜏 + κv − κy + I − x2 + y2)(2xV − 2xy)

π ((V − y)2 + x2)2
.

By identifying the common terms (V − y)2 − x2 and 2xV − 2xy in the equations for ∂tϕ and
−∂V ϕV̇ , and equating the preceding terms, we find that the following expressions for ∂tx and
∂ty solve (2.5):

𝜏∂tx = 2xy − κx, (2.9)
𝜏∂ty = η + Js𝜏 + κv − κy + I − x2 + y2. (2.10)

Next, for the evaluation of the integrals in (2.7) and (2.8), we must make an assumption on L(η),
the distribution of η. The largest dimensionality reduction is obtained when we assume L(η) is
a Lorentzian distribution, that we define by:

L(η) =
1

π

∆

(η − η0)2 +∆2
. (2.11)

Here η0 ∈ R is the center of the distribution, and ∆ ∈ R+ is the HWHM of this distribution.
Note that L(η) has two poles, at η± = η0 ± i∆. We will exploit this useful property to solve the
integrals by contour integration.
First, we need to define the complex variable w(η, t) := x(η, t) + iy(η, t), whose time-derivative
is found using (2.9) and (2.10):

𝜏∂tw = −κw + i(η + Js𝜏 + κv − w2 + I). (2.12)

We expand this w(η, t) into complex valued η = ηr+ iηi, after which the real part of (2.12) reads
𝜏∂tx = −κx + 2xy − ηi. This guarantees that in the entire lower half complex plane, the width
of the distribution satisfies x(η, t) ≥ 0, because at x = 0 we have ∂tx = −ηi

𝜏 > 0 for ηi < 0.
We will now calculate the integral in (2.7). First, we write the integral as the limit of an integral
with finite boundaries:

v(t) = lim
c→∞

∫ c

−c
y(η, t)L(η),

with c ∈ R+. Next, consider the arc given by ceiθ for θ from 0 to −π, which traverses the lower
half complex plane. Combined with the interval of integration, i.e. the real line from −c to c, it
forms a closed contour in the lower half complex plane, that we define by C. Note that for large
enough c, this contour C encloses one pole of L(η), namely η− = η0− i∆. Using the contour, we
write ∫ c

−c
y(η, t)L(η) dη =

∫
C
y(η, t)L(η) dη −

∫
arc

y(η, t)L(η) dη. (2.13)

We further assume that y(η, t) has no poles in the lower half complex plane. Then, by the residue
theorem, the contour integral is equal to minus the residue of the integrand at the single pole of
L(η) inside the closed contour:∫

C
y(η, t)L(η) dη = −2πi Res(y(η, t)L(η), η0 − i∆)

= −2πi(η − (η0 − i∆))y(η, t)L(η)

∣∣∣∣
η=η0−i∆

= y(η0 − i∆, t).
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Now, for the arc-integral, we obtain an upper bound:∣∣∣∣∫arc
y(η, t)L(η) dη

∣∣∣∣ ≤ πc sup
arc
|y(η, t)L(η)| = c∆ sup

arc

∣∣∣∣ y(η, t)

(η − η0)2 +∆2

∣∣∣∣ .
On the arc we have |η| = c, so by the reverse triangle inequality:

(η − η0)
2 = |η − η0|2 ≥ ||η| − |η0||2 = |c− |η0||2 = c2 − 2c|η0|+ |η0|2,

which yields ∣∣∣∣∫arc
y(η, t)L(η) dη

∣∣∣∣ ≤ sup
arc
|y(η, t)| c∆

c2 − 2c|η0|+ |η0|2 +∆2
.

By this upper bound, in the limit c→∞, the arc-integral goes to zero. If we now consider (2.13)
again, take limc→∞ and substitute the results for the contour- and the arc-integral, we obtain:

v(t) = lim
c→∞

∫ c

−c
y(η, t)L(η) = y(η0 − i∆, t).

The same argument yields an expression for r(t):

r(t) =
1

π𝜏
x(η0 − i∆, t).

Now we combine these and relate them to the complex variable w

π𝜏r(t) + iv(t) = x(η0 − i∆, t) + iy(η0 − i∆, t) = w(η0 − i∆, t).

Taking the time-derivative, we obtain:

π𝜏ṙ(t) + iv̇(t) = ∂tw(η, t)|η=η0−i∆ =

1

𝜏
(
−κ(π𝜏r(t) + iv(t)) + i(η0 − i∆+ Js(t)𝜏 + κv(t)− (π𝜏r(t) + iv(t))2 + I(t))

)
.

Splitting the real and imaginary parts yields the final result of this mean-field reduction:

𝜏ṙ(t) = −κr(t) + ∆

π𝜏
+ 2r(t)v(t),

𝜏v̇(t) = (v(t))2 + η0 + Js(t)𝜏 + I(t)− (π𝜏r(t))2.
(2.14)

Choosing Qs(t) = r(t) we have a closed system.

2.1.3 Spike-frequency adaptation
Complementing the microscopic model defined by Eqs. (2.1) and (2.2), we introduce a physio-
logical mechanism called spike frequency adaptation (SFA). This is a neuronal fatigue mechanism
that depends on the firing rate of an individual neuron. In modelling terms, it is a negative cur-
rent, of which the value depends on the activity of the neuron. The SFA current of a neuron
increases immediately after a spike, before slowly and exponentially decaying again. The situ-
ation where, after firing, the SFA current of a neuron has increased, can be interpreted as the
specific neuron temporarily having a higher firing threshold. That is, it requires more input be-
fore it can fire again. When the neuron remains at rest afterwards, the threshold decreases to its
original value. When the timescale of SFA is large relative to the membrane time constant 𝜏, SFA
facilitates bursting for appropriate parameter choices [22, 26].
We model SFA as a first-order process with the following differential equation:

𝜏A
d

dt
Aj(t) = −Aj(t) + a

∑
k,tkj<t

δ(t− tkj ). (2.15)
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Here, Aj(t) is the SFA current of neuron j that evolves with a time constant 𝜏A. The adaptation
parameter a ∈ R+ defines the amount of increase of Aj(t) after a spike, and in the equation, it
is multiplied by the sum of all spikes of neuron j in time. SFA is implemented in the model by
adding −Aj(t) to the evolution equation of Vj(t), Eq. (2.1).
For the mean-field reduction to hold after the implementation of SFA, we assume that the mean
firing rate of the network approximates the firing rate of each individual neuron. Under that
assumption, we approximate the neuron-specific adaptation variable Aj(t) by a global adaptation
variable Ā(t), that no longer depends on the spike times of only neuron j, but on the mean firing
rate of the total network. The evolution of Ā(t) is given by:

𝜏A
d

dt
Ā(t) = −Ā(t) +

a

N

N∑
j=1

∑
k,tkj<t

δ(t− tkj ), (2.16)

and the value of the adaptation variable is equal for all neurons, whence the absence of index j.
The applicability of this approximation depends on the differences in incoming current between
neurons, since this current determines the firing rate of the individual neuron. These differences
are influenced by the parameter ∆, which is the width of the distribution of the heterogeneous
input currents L(η), defined in Eq. (2.11).
We investigate the effect of the value of ∆ on differences between the two SFA implementations
by comparing two microscopic models, one with N neuron-specific adaptation variables as in
(2.15), and one with a single global adaptation variable as in (2.16). Between these models, we
compare the average evolution of the neuron-specific adaptation variables of the former model
given by ⟨A⟩(t) = 1

N

∑
j Aj(t), to the evolution of the global adaptation variable Ā(t) of the

latter. We are interested in the behaviour of the adaptation variables in a bursting regime. The
mean adaptation rises fast during the burst, and when it reaches a certain threshold the burst
is terminated and the adaptation starts decaying exponentially. Eventually, the adaptation is
low enough for a new burst to be initiated. Assuming this general behaviour of adaptation, we
derive four features from the pattern of evolution: burst duration, inter-burst interval, minimal
adaptation value, and maximal adaptation value. When the relative differences in these features
between the two SFA descriptions are < 0.05, we find these descriptions acceptably similar, and
thus when we consider the mean-field description including SFA sufficiently comparable to the
microscopic model.
When describing the mean-field adaptation, we note that the effect of Ā(t) on the membrane
potential is equal to the effect of I. In the mean-field description, we denote the adaptation by
A(t). Replacing I(t) by I(t)−A(t) in the mean-field description, and adding the evolution of the
mean-field adaptation:

𝜏A
d

dt
A(t) = −A(t) + ar(t), (2.17)

incorporates adaptation.
For an overview of all equations of the full system including adaptation, microscopic and mean-
field, see Appendix A.1.

2.1.4 Inhibition
We extend the current model of only excitatory neurons to a two-population network of one
excitatory and one inhibitory population. Inhibition is relevant in conditions where patients
are sedated with propofol, which is often the case in postanoxic coma. The microscopic two-
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population model is given by the following equations for j = 1, ..., Np and for p ∈ {e, i}:

𝜏V̇ (e)
j = (V

(e)
j )2 + η

(e)
j +

∑
p∈{e,i}

Jep s
(ep)
j 𝜏e + κeg

(e)
j + I(e) −A

(e)
j ,

𝜏V̇ (i)
j = (V

(i)
j )2 + η

(i)
j +

∑
p∈{e,i}

Jip s
(ip)
j 𝜏i + κig

(i)
j + I(i) −A

(i)
j ,

if V (p)
j > Vthr, V

(p)
j ← Vreset,

(2.18)

with synaptic dynamics

Qab s
(ab)
j =

1

|S(ab)
j |

∑
n∈S(ab)

j

∑
k, tkn<t

δ(t− tkn), (2.19)

with a, b ∈ {e, i} and Qab = (1+ 1
αab

d
dt)

2. As opposed to the chemical synapses, we only consider
gap junctions within a population. The equation for g(p)j is:

g
(p)
j (t) =

1

Np

∑
m∈G(p)

j

(V (p)
m (t)− V

(p)
j (t)). (2.20)

To conclude the microscopic model, the SFA dynamics for both populations are given by:

𝜏A
d

dt
A

(p)
j = −A(p)

j + ap
∑

k,tkj<t

δ(t− tkj ). (2.21)

Assuming all-to-all coupling, the above microscopic two-population model also corresponds to a
next-generation neural mass model, first derived in [16]. This mean-field model is given by:

𝜏ṙ(e) = −κer(e) +
∆e

π𝜏
+ 2r(e)v(e),

𝜏v̇(e) = (v(e))2 + η0e + Jees
(e)𝜏 + Jeis

(i)𝜏 + I(e) −A(e) − (π𝜏r(e))2,

𝜏AȦ(e) = −A(e) + aer
(e),

𝜏ṙ(i) = −κir(i) +
∆i

π𝜏
+ 2r(i)v(i),

𝜏v̇(i) = (v(i))2 + η0i + Jies
(e)𝜏 + Jiis

(i)𝜏 + I(i) − (π𝜏r(i))2,

(2.22)

where the dynamics of s(p) with p ∈ {e, i} are given by Qps
(p) = r(p) with Qp = (1 + 1

αp

d
dt)

2.

2.1.5 Network architecture
The exact agreement between the microscopic network model equations and the mean-field
model breaks down when, instead of all-to-all, the neurons are sparsely coupled. All-to-all cou-
pling is an essential assumption for the mean-field reduction to hold, it enforces equal synaptic
input to all neurons. To find non-identical bursts, which is the goal of this project, we need het-
erogeneous network behaviour, for which we expect to need more neuron heterogeneity than
only induced by ηj . In our network, we introduce variations in synaptic input through sparse
synaptic coupling. Neurons are coupled via chemical synapses and gap junctions, and we study
sparse coupling of both.
Connections via chemical synapses are unidirectional: an axon of a pre-synaptic neuron connects
to the dendritic tree of a post-synaptic neuron, and there is no communication in the opposite
direction through the same synapse. A second synapse in the opposite direction, however, is
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possible. Chemical synapses can also be self-connections: a neuron’s axon connects to its own
dendritic tree. In a network of N neurons, all-to-all coupling means that a neuron has N axons,
each connected to a different post-synaptic neuron, and there is a total of N2 synapses. All-
to-all coupling, meaning that there is a synapse for every possible neuron-neuron connection, is
equivalent to a coupling probability pSyn of 1. We model sparse synaptic coupling by reducing this
coupling probability, with steps of 0.1, to a value of 0.1. Examples of random connectivity matrices
that correspond to different values of pSyn are shown in Figure 5. In our model equations, the
connectivity is embedded in the sets Sj for j = 1, ..., N (see Eq. (2.2)), where each neuron in
Sj corresponds to a point in column j in the connectivity matrix. A reduced number of incoming
synapses affects the factor 1/|Sj | in Eq. (2.2). We approximate this by adjusting J to J/pSyn.
In the two-population model, all-to-all coupling means that every neuron, excitatory and in-
hibitory, is connected to all other excitatory and inhibitory neurons. When introducing sparse
coupling, all synapses exist with a probability of pSyn, like in the one-population model.
Gap junctions provide bidirectional communication between neurons. In the human brain, gap
junctions are much sparser than chemical synapses. In modelling studies where sparse occur-
rence of these junctions was investigated, values between 1 and 4 were chosen for the mean
number of gap junctions per neuron [36, 37]. In these experiments, there was no coupling by
chemical synapses. We will investigate sparse gap junction coupling for values in the range of
these previously chosen coupling probabilities. The gap junction coupling probability is denoted
by pGap.
For the microscopic model, we draw the external background currents ηj from a distribution L(η).
A specific microscopic network is characterised by its values of ηj . When we simulate different
sparsity settings in a specific network, we use the same draw of ηj ’s for different values of pSyn.
Unless stated otherwise, we use N = 10000 in simulations of the microscopic model. For simu-
lations with inhibition, we use Ne = 8000 and Ni = 2000, according to the ratio used in [38].

2.2 Analysis of bursts in spiking networks
In simulations of bursts, we are interested in the shape of the individual bursts and the similarity
between these shapes. When we mention burst shape, we refer to the pattern of v/v̄-evolution,
the variable of interest since it is an approximation of EEG. We define an algorithm for automated
burst detection, visualised in Figure 6. For each burst, we define a suitable burst-threshold by
visual inspection, such that in all bursts, the firing rate is above this threshold. Given this burst-
threshold, we reduce the time series to a binary sequence, to which we apply a template of the

(a) (b) (c)

Figure 5: Connectivity matrices of the first 100 neurons in a network for (a) pSyn = 0.7, (b) pSyn = 0.4, and (c)
pSyn = 0.1. A point indicates that there is a synaptic connection from the source neuron to the target neuron. Note
that the matrices are non-symmetric: a synaptic connection from neuron i to j can, but is not necessarily accompanied
by a synaptic connection from neuron j to i.
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Figure 6: The burst detection algorithm detects bursts in a given time series. First, we extract where the firing
rate is above the threshold, i.e. we evaluate r > rThresh. rThresh = 10 is visualised in the top plot. The result is
the r evolution represented by 0’s and 1’s. We shift two templates over this binary representation, one template for
burst onset and one template for burst termination. The locations where the absolute differences between the binary
representation and the onset and termination template have extrema are marked as burst onset and termination,
respectively. This shows an example for a short epoch that already contains a burst, but the algorithm can be applied
to a complete time series at once, detecting multiple bursts simultaneously.

form (0, ..., 0, 1, ..., 1), where we denote the number of 0’s and 1’s by n01. The time-shift for a
good fit of the template on the binary representation of the simulation corresponds to the onset
of a burst. A flipped version of the template is used for the detection of burst termination.
After detecting the bursts, we analyse their shape by measuring the similarity of burst shapes
within one simulation. As a measure for burst similarity, we compute the cross-correlation of
the different bursts, following previous research on burst-suppression with (non-)identical bursts
[3]. We denote the ith of n bursts of a simulation by Bi, with i ∈ IB where IB = {1, ..., n}. We
denote the burst similarity within a simulation by q, defined as:

q =

∑
i∈IB

∑
j∈IB\{i} max(NCC(Bi, Bj))

n(n− 1)
, (2.23)

where, NCC(X,Y ) is the normalised cross-correlation between time series X and Y . In words:
the burst similarity within a simulation is calculated as the mean of the maxima of the normalised
cross-correlations between all individual bursts (auto-correlations excluded).
We want to distinguish between BS with identical and non-identical bursts, and define the fol-
lowing: a simulation is classified as BSNIB when the burst similarity is below 0.75, and BSIB
when it is above 0.75. These values are consistent with [3].

2.3 Comparison of simulations and EEG
A qualitative comparison of simulations and clinical EEGs is outside the scope of this project.
The EEGs, however, are the main motivation for this project, and therefore we will provide a
short, non-empirical evaluation of the similarity of visually observable features in simulations
and EEG. Since we can not study channel synchrony in our one- and two-population models, we
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only compare the burst onset and burst progression pattern of our simulations with the EEGs in
Figure 1.

2.4 Computational methods
With bifurcation analysis of the mean-field model, we find parameter regions where the model
exhibits bursting behaviour. We use the bifurcation analysis software MatCont (version 7p4) [39]
for all bifurcation diagrams.
For simulations of the mean-field model and the microscopic model, we wrote custom code in
Python using the Brian2 package [40]. The mean-field model is implemented in Brian2 as one
NeuronGroup with a single neuron, described by the mean-field equations (2.14). To imple-
ment the microscopic network, we transform it into a network of coupled θ oscillators. Each
neuron is described by its phase variable θj through the transformation Vj = tan

(
θj
2

)
. Hereby

Vj ∈ [−∞,∞] transforms to θj ∈ [−π, π], and the threshold-reset rule changes to a continuous
trajectory on the unit circle since π = −π mod 2π. For implementation in Brian2, the transfor-
mation yields a change of the threshold value to θthr = π and the reset value to θreset = −π. Using
a different approach following [18], we also performed a mean-field reduction of this network
of θ oscillators, which can be consulted in Appendix A.2. In the end, we are interested in the
evolution of the mean membrane potential of the network, since we can relate this to simulations
of the mean-field model, as well as to EEG. Therefore, at each time step, we transform each θj
back to Vj and compute v̄ = 1

N

∑N
j=1 Vj , to obtain the evolution of the mean membrane potential.

We prevent extremely large peaks in Vj by applying a corrected transformation Vj = tan
(

θj
2+ε

)
,

where ε = 0.05.
We must account for one possible singularity in the θ-evolution equation. Each time a neuron
with a gap junction spikes and is then reset to θj = −π, a denominator of the gap junction
connection term of the connected neuron equals zero, see Eq. A.5. We prevent this singularity
by adding ε2 to the denominator which then becomes 1 + cos θm + ε2, where we set ε2 = 0.01.
For noise in Brian2, we use the predefined Gaussian random variable ξ with mean 0 and standard
deviation 1. In our microscopic model description with θ-variable, we replace Ij by Ij +σξ in the
θ-evolution equation, where σ is the desired standard deviation of the noise. This is an individual
noise term, each neuron receives independent noise.
For numerical integration without noise, we use the built-in Brian2 RK4 method with fixed step-
size. With noise, we choose the Brian2 built-in stochastic Heun method, because additive noise
in the V -description translates to multiplicative noise in the θ-description.
Each simulation has a duration of 50 seconds, from which we discard the first 10 seconds of
transients. Unless stated otherwise, all state variables are initialised at 0.
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3 Results
First, we identify parameter regions where we find bursting behaviour. Then, as the main result,
we analyse simulations that show bursting behaviour.

3.1 Model behaviour exploration
We present here an example of a bursting regime in the microscopic model and the neural mass
model, and explore the dependence of burst characteristics on parameter settings for SFA and gap
junction coupling. We investigate sparse gap junction coupling, but remain at all-to-all coupling
via chemical synapses in this section. By analysing the neural mass model, we identify parameter
regimes for bursting, which we later use for simulations of the microscopic model.

3.1.1 Mean-field and microscopic burster
With parameter settings as in Table 1, the mean-field model defined by Eqs. (A.4) is a fold-
fold burster (see Section 1.3 and [28]). Note that 𝜏A ≫ 𝜏, whereby the evolution of A forms
a slow subsystem, and the dynamics of r, v and s form a fast subsystem. The rest state of the
identified fold-fold burster is given by a branch of stable nodes, and damped oscillations near
a branch of stable foci account for the active state. A bursting solution superimposed on the
underlying bifurcation structure of the fast subsystem is visualised in Figure 7, with slow variable
A as the bifurcation constant. The value of A determines the number of equilibria. There is only
one for A < 0.60 (a stable focus) and A > 2.12 (a stable node), whereas there are three for
0.60 < A < 2.12 (a stable focus, a saddle and a stable node). By the evolution of A, the fixed
point structure of the fast subsystem varies. The manifold G = {(v, r) : Ȧ = 0} divides the phase
space into a region where Ȧ < 0, which is below G, and a region where Ȧ > 0, above G. The
position of G for these parameter settings is shown in Figure 8a. Note that G is independent of
v.
Assuming that any damped oscillations around the stable focus are confined to a neighbourhood
NU above G, the full system has a periodic bursting solution, and it is reached for any initial
condition.
The reasoning behind this statement is visualised in Figure 8. First, we define additional neigh-
bourhoods NL surrounding the stable node equilibrium, NFL surrounding the lower fold bifur-
cation, and NFU surrounding the upper fold bifurcation. Here we note that NFU lies above G,
NL and NFL lie below it. For any initial A, there is at least one stable equilibrium in the fast

Table 1: Parameter values for the burster in Figure 7. We use the same parameter values for simulations of the
microscopic model. Note that only time-related parameters have a unit, all other parameters are unitless.

Symbol Value Unit Parameter description
𝜏 10 ms membrane time constant
α 1/2 ms−1 synaptic rise/decay rate
k 0 - gap junction coupling strength
J 8 - synaptic coupling strength
∆ 0.01 - external heterogeneous current distribution HWHM
η0 0.5 - external heterogeneous current distribution center
I 0 - time-varying input current
𝜏A 5000 ms adaptation time constant
a 0.5 - adaptation parameter
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Figure 7: A bursting solution of the mean-field model superimposed on the bifurcation diagram with slow variable A
as parameter. The direction of the simulation is clockwise. This type of burster is called a fold-fold burster, because
the bifurcations of the rest state and the active state are both fold bifurcations. The rest state of this burster is located
at the branch of stable nodes around r = 0, and with values of v between −2 and 0. At the fold bifurcation of the rest
state at A = 0.60, the solution jumps to the branch of stable foci, initiating a burst. The active state behaviour of this
burster is given by damped oscillations around the equilibrium branch. Moving right along the branch, the solution
reaches the fold bifurcation of the active state, which terminates the burst. The rest state is reached, starting a new
cycle. Parameter values as in Table 1.

(a) (b)

Figure 8: The bifurcation diagram for the burster in Figure 7 with neighbourhoods NU , NFU , NL and NFL sur-
rounding the stable equilibrium branches and the fold bifurcation points. In (a), we show the full bifurcation curve
for 0 < A < 3, focusing on the branch of stable foci, which is the active state for this burster. On manifold G, we
have Ȧ = 0, above G we have Ȧ > 0. NU is the neighbourhood where be assume the damped oscillations around the
branch of stable foci are restricted to. NFU defines the neighbourhood of the right fold bifurcation, the bifurcation of
the active state. We zoom into the bottom of this figure to arrive at (b). The manifold G is the same as in (b). NL is
the neighbourhood around the branch of stable nodes. NFU defines the neighbourhood of the left fold bifurcation,
the bifurcation of the rest state.
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(a)
(b)

Figure 9: A burster similar to the one in Figure 7, but now in the microscopic model. In (a) we show the bursting
solution superimposed on the bifurcation structure of the mean-field model. This bursting solution also follows the
trajectories defined for the mean-field burster. In (b), we show a rasterplot of the burst, and the evolution of r, v and
A during the burst over time.

subsystem, so every initial coordinate lies in the basin of attraction of either the stable focus,
or the stable node. Considering 𝜏A ≫ 𝜏, the fixed point structure and basin(s) of attraction do
not change before the solution reaches NL or NU . We now describe two trajectories. Trajectory
1: the solution is at NL, which is below G and therefore Ȧ < 0. The solution must follow NL,
reaches NFL where still Ȧ < 0, and then escapes NFL as the lower fold bifurcation is passed.
The only attractor that now remains is the stable focus, and the solution reaches NU . We now
continue with trajectory 2: the solution is at NU , which is above G and therefore Ȧ > 0. The
solution follows NU , and reaches NFU where still Ȧ > 0. It passes the fold bifurcation, such that
the only attractor that remains is the stable node, and the solution reaches NL. This shows that
the only possible solution follows an alternating sequence of trajectories 1 and 2, which defines
a periodic bursting solution.
Returning to the bursting solution in Figure 8b, we see that it precisely follows the described
trajectories. As expected from the exact match between the mean-field model and the microscopic
model, this burster also exists in the microscopic model. A simulation of the microscopic model
that shows bursting is visualised in Figure 9, again superimposed on the bifurcation structure
to show the exact agreement with the mean-field model. Figure 10 shows how A evolves over
multiple bursts.

3.1.2 Approximation of individual SFA
We evaluated the differences between the neuron-individual SFA description (Eq. 2.15) and
the population SFA description (Eq. 2.16) incorporated in the microscopic model for ∆ ∈
{0.001, 0.002, 0.005, 0.01, 0.02, 0.05}. The relative differences of the features between the two
descriptions are plotted against ∆ in Figure 11, beside examples of the evolution of ⟨A⟩(t) and
Ā(t) in time for ∆ = 0.001, 0.1. The global pattern of evolution is similar for both depicted values
of ∆, however, especially the inter-burst interval shows considerable variation between the two
SFA descriptions, and this variation grows with ∆.
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Figure 10: A rasterplot and the evolution of Ā for a simulation of 25 s duration, showing three bursts. During a burst,
Ā rises, and in between bursts it exponentially decays.

3.1.3 Effect of gap junctions
First, we investigated the effect of the gap junction strength κ on the behaviour of the model in
terms of the bifurcation structure of the fast subsystem. Given∆ = 0.01, we computed bifurcation
diagrams in parameters η0 and J > 0, for κ ∈ {0, 0.25, 0.5, 0.75, 1, 1.2}. The computed curves
of Fold and Hopf bifurcations are visualised in Figure 12. The curves of fold bifurcations are
very similar between different κ settings, only the course of the left branch, the disappearance
of the high-activity stable equilibrium state, changes slightly. The course of the curve of Hopf
bifurcations, however, depends strongly on κ. For κ = 0, i.e. absence of gap junctions, no
Hopf bifurcations occur for J > 0. For κ > 0, a branch of Hopf bifurcations emerges from a

(a) ∆ = 0.001

(b) ∆ = 0.01 (c)

Figure 11: As ∆ is increased, the differences between the individual and the global adaptation description grow. (a)
and (b) show time traces of the individual (red) and the global (blue) adaptation description. The value ∆ = 0.01
is the largest where the relative difference of the adaptation features between both descriptions stays below 0.05.
In (c), the relative differences in the burst duration (blue), inter-burst-interval (red), minimal value of A (yellow)
and maximal value of A (purple) are shown for ∆ = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05. The relative difference in
inter-burst-interval is the largest of all features for all considered values of ∆.
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Figure 12: Bifurcation curves of the mean-field model for values of κ between 0 and 1.2. The solid curves are branches
of fold bifurcations, dashed and dotted curves are branches of super- and subcritical Hopf bifurcations, respectively.
The transitions of supercritical to subcritical Hopf bifurcation occur at Bautin bifurcations, which are visualised as
circles. For each value of κ, the two branches of fold bifurcations collide in a Cusp point. These are not highlighted
in this figure.

Bogdanov-Takens bifurcation on the left fold bifurcation branch, and this Hopf branch moves left
as κ increases. For κ ≥ 1.2, the Hopf curve does not cross the right fold bifurcation branch. With
all current parameter settings, the Hopf point occurs at the high-activity equilibrium. From the
Bogdanov-Takens bifurcation, also a small branch of homoclinic bifurcations emerges, which is
not shown.
Toward a more realistic network architecture, we analysed simulations of a network with very
sparse gap junction coupling. The coupling strength was set to κ = 1.2, expecting the occurrence
of a Hopf bifurcation of the high-activity equilibrium within the parameter range of interest.
Figure 13 shows a simulation of the microscopic model with all-to-all gap junction coupling and
one with a sparse gap junction coupling of 3 gap junctions per neuron on average, which is
approximately a 3000-fold reduction in the number of junctions. All-to-all gap junction coupling
results in large oscillations at the start of a burst, with much higher amplitudes than in the sparse
coupling case.
It is more relevant to evaluate whether these sparse gap junctions still have an observable effect as
opposed to no gap junction coupling. We investigated both cases for different synaptic coupling
probabilities. Representative bursts for both settings and for psyn = 1, 0.7, 0.4 are shown in Figure
14. For all pSyn, the burst pattern is highly similar between the two considered gap junction
settings. The single minor difference is a shift in v̄.

3.1.4 Model parameters for bursting
Considering the negligible effect of gap junctions with a realistic number of juntions, we continue
the analysis with κ = 0 and pgap = 0. In the fast subsystem, external inputs to the neurons
are now provided by synaptic input, regulated by J , and the constant external current, ηj . This
second term, ηj , is drawn from a distribution defined by parameters η0 and ∆. The effect of
the parameters J , η0, and ∆ on the bifurcation structure of the fast subsystem is visualised in
Figure 15. The bifurcation diagram for ∆ = 0.01 is visualised in magenta, whereas diagrams for
∆ = 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2 are visualised in grey. For all values of ∆, we see two branches
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Figure 13: Two simulations of the microscopic model, with pGap = 1 in blue, and pGap = 3/N in orange. The r̄ and
v̄ evolution is shown over time. The simulation with full gap junction coupling shows very large oscillations. When
pGap is reduced, these oscillations are substantially smaller.

(a) pSyn = 1 (b) pSyn = 0.7 (c) pSyn = 0.4

Figure 14: Simulations showing the effect of removing the gap junctions (orange curves), compared to sparse gap
junction coupling with pGap = 3/N (red curves), for pSyn = 1, 0.7, 0.4. The evolution of r̄ and v̄ is shown over time.
The value of v̄ differs between the two gap junction settings, but the burst pattern is highly similar. A single difference
from the parameter settings for Figure 13 is that here, J = 4.
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Figure 15: Bifurcation diagram of the mean-field model with no gap junction coupling, i.e. κ = 0. Bifurcation
parameters are J , the gap junction coupling strength, and η0, the center of the distribution of external background
currents. The diagram for ∆ = 0.01 is shown in magenta. As ∆ is increased up to 2, the bifurcation diagram moves
left and up, shown in grey. Cusp points are identified with a star.

of fold bifurcations that collide in a Cusp point. A region of bistability lies in between these
two branches, the magenta-shaded region shows the bistability region for ∆ = 0.01. A critical
condition for finding a fold-fold burster after adding SFA is J > JCusp, i.e. the parameter choice
allows a bistable regime. When ∆ is increased, the cusp point moves up, and larger synaptic
connection strengths J are needed for a bistability region. Note that effectively, variation of A
induces movement along the η0-axis.

3.2 Sparse synaptic coupling
As opposed to the above, we introduce sparse synaptic coupling here. This means that exact
agreement between the microscopic and mean-field model breaks down, and we investigate what
heterogeneous behaviour results from this intervention.
The parameters used for simulations of the microscopic model with reduced synaptic coupling
probabilities are the same as in Table 1, except for the synaptic coupling strength, which is now
J = 4. We experimented with pSyn between 1 and 0.1 with steps of 0.1 for 10 different networks,
i.e. 10 different realisations of random sparse synapses and random ηj drawn from L(η). For a
specific network, each choice of pSyn yields a simulation, and from each simulation we compute
one burst similarity value q. These values for all experiments are summarised in Figure 16. It
shows that for pSyn > 0.8, q remains below the threshold for identical bursts. The bursts within
a simulation become more identical when pSyn is decreased.
Using Eq. (2.23), each value of q is computed as the mean of N2

B −NB cross-correlation values,
where NB is the number of bursts in the simulation. All simulations with pSyn = 1 have a bimodal
distribution of these cross-correlation values, indicating two groups of bursts with a high within-
group burst similarity and a low similarity between the groups. This distribution is shown for one
simulation with pSyn = 1 in Figure 20a, with peaks at 0.6 and 0.8. The burst shapes that cause
these values are visualised in Figure 17, where we show four consecutive bursts in a representative
simulation with pSyn = 1. The first and third highlighted bursts have a cross-correlation of 0.88,
and the second and fourth highlighted bursts have a cross-correlation of 0.77, whereas the mean
of the cross-correlations between the remaining burst combinations is only 0.57. This means that
the simulation is an alternation of bursts from two groups of similar bursts. This alternating
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Figure 16: Mean values of burst similarity for ten different networks, for different synaptic coupling probabilities
pSyn. The threshold for identical bursts is considered q = 0.75, shown as a dashed grey line. Connected purple points
show the mean values of q of ten different networks for a given pSyn, the purple boxes show the median and quartiles.
Outliers are visualised as red crosses. For pSyn > 0.8, the mean values of q are below the threshold for identical
bursts. In all simulations, parameters where as in Table 1, except J = 4.

pattern exists for the complete duration of the simulation.
For insight into the individual contribution of neurons to the specific burst shapes, we show the
spiking pattern that corresponds to two highlighted bursts in Figure 18. Note that, by the spiking
behaviour of a QIF-neuron (see Section 1.2.1), a peak in v̄ likely precedes a moment of synchro-
nised spiking activity, which is then followed by a dip in v̄. Peaks in v̄ thus correspond to groups
of neurons spiking simultaneously, so the shape of the v̄-evolution, i.e. the burst shape, is largely
determined by groups of synchronised neurons. At the bottom of Figure 18, ordering the neurons
based on ηj reveals these groups. In the first highlighted burst, the groups denoted by 1 and 3
synchronise, but not the larger group 2. Conversely, in the second highlighted burst, group 2
is highly synchronised, mostly at the start of the burst. The synchronisation of this large group
is reflected in the v̄-pattern by a large peak, where the second highlighted burst in Figure 18
corresponds to the third highlighted burst in Figure 17.
Another remarkable observation from Figure 18 is that group 2 is active at burst onset in the first
burst, whereas in the second burst, group 3 shows burst onset activity. The group that is inactive
at burst onset, is responsible for the initial and largest synchronised activity. The group that quits
spiking first in the previous burst, is also the first to start spiking at the onset of the subsequent
burst.
Ordering the neurons by ηj reveals a pattern of synchronised groups. The distinction between
these groups is caused by the neuron-specific SFA variable Aj , as shown in Figure 19. The top
shows the same bursts as in Figure 18 but with groups 2 and 3 highlighted. The mean Aj of
both groups shows an alternating pattern, where the group spiking last in the first burst, is also
last to start spiking in the second burst. These neurons emit one less spike in this second burst,
gaining an advantage in Aj for the subsequent burst. The clear distinction in Ā-pattern between
subgroups of neurons shows that the individual Aj is not accurately approximated by Ā.

25



Figure 17: At the top, we show the v̄-evolution in one simulation of 40 second duration, where pSyn = 1, J = 4,
and the other parameters as in Table 1. The fifth to eighth bursts are highlighted, and shown at the bottom. The fifth
and seventh bursts are similar, with a cross-correlation of 0.88, and also the sixth and eighth bursts are similar, with
a cross-correlation of 0.77. The mean cross-correlations between both groups is 0.57.

Reducing the synaptic coupling probability from pSyn = 1, the distribution of cross-correlations
between bursts remains bimodal until pSyn = 0.6. This distribution for pSyn = 0.6 is shown
in Figure 20b, with peaks at 0.7 and 0.9. The two separate peaks still suggest two similarity
groups, but both peaks have moved to higher values of cross-correlation, indicating both a higher
between-group similarity and a higher within-group similarity. Four representative bursts are
shown in Figure S1a.
With pSyn = 0.1, bursts become more similar, we can no longer distinguish between two groups
in the histogram in Figure 20c. The bursts are highly similar, the burst similarity value between
each pair of bursts is higher than 0.9. Sparse synaptic coupling causes more difference in synaptic
input between neurons, which reduces the effect of individual SFA. Four representative bursts for
pSyn = 0.1 are shown in Figure S1b.

3.3 Individual additive noise
Adding individual noise to each neuron causes the firing rate of each neuron to be less regular. In-
creasing the standard deviation of the noise reduces synchronisation between neurons, as shown
in Figure 21. Note that for σ = 0.01, the standard deviation of the noise equals the HWHM of
the distribution of η. For high levels of noise, the burst is only an epoch of overall higher activity,
there is no pattern with peaks and dips, which is more naturally observed in bursts. Bursts with
intermediate values of σ are visualised in Figure S2. With σ = 0.5 and higher, no bursts can be
observed, there is only sustained asynchronous activity.

3.4 Bursting with inhibition
For simulations with inhibition, we used parameter settings comparable to the simulations with
only excitation, the settings are shown in Table 2. We distinguish two modes: one with low
intrinsic inhibitory activity where η0i < 0, and one with high intrinsic inhibitory activity where
η0i > 0.
In the mode with low inhibitory activity, values of q for different pSyn are comparable to those of
the simulations with only excitation, shown in Figure S3. The inhibitory neurons are synchronised
with the excitatory neurons, following the same bursting pattern, see Figure 22a. Shapes of the
bursts and the underlying spiking structure for three consecutive bursts in a simulation with
pSyn = 1 are shown in Figure 23. The burst shapes show comparable peak timing, but are
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Figure 18: The top raster plot shows the same burst as in Figure 17. The sixth and seventh bursts are highlighted.
of the 10000 neurons in total, we selected 400 based on their value of η. Each point denotes a spike. The colour of
the points is based on the firing rate of the network at that time. Green shows a high firing rate, blue a lower firing
rate. In the bottom raster plot, we order the neurons based on η, where neurons with highest η have a low index, and
values of η decrease with increasing index. Vertical dashed lines show burst onset and termination, as determined by
the burst detection algorithm. The numbers 1, 2 and 3 in the bottom raster plot divide the neurons into groups, where
the borders are evident from the ordered raster plots.
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Figure 19: At the top: a raster plot of the same two bursts as in Figure 18, where group 2 and 3 as depicted there,
are shown here in green and blue, respectively. From each group, we selected 11 neurons and recorded their Aj

evolution. The mean for each group is graphed at the bottom in the corresponding colour. There is an alternating
pattern between which group spikes at burst onset and also at burst termination. This is also seen in the Ā-evolution
of both groups.

(a) (b) (c)

Figure 20: Distribution of the cross-correlations between bursts in simulations with (a) pSyn = 1, (b) pSyn = 0.6,
and (c) pSyn = 0.1. The red curves are matlab-fitted nonparametric kernel-smoothing distributions.

still very dissimilar. The raster plots show again distinctive SFA-induced synchronised groups of
neurons.
High intrinsic inhibitory activity causes sustained spiking of the inhibitory neurons, also during
the inter-burst-intervals, see Figure 22b. The values of q for simulations in this mode remain
below the threshold of 0.75 until pSyn = 0.2, as shown in Figure 24. Burst shapes and spiking
patterns of three consecutive bursts from a simulation with pSyn = 1 are shown in Figure 25.
The burst shapes reveal that the rest state has become an oscillatory state with small amplitude
oscillations. The peak at burst onset in the second burst is smaller than in the other two bursts,
and also than other bursts we showed in our results. As in all other bursts in simulations with
pSyn = 1, the raster plots show distinctive SFA-induced spiking groups of neurons.
The bursting behaviour in the high activity mode is qualitatively different from that in the low
activity mode, which is clear from the simulations of the neural mass model in both modes in
Figure 26. Orbits in the low activity mode all follow the same trajectory, a stable, non-oscillating
rest state, and a specific oscillating pattern as active state. Conversely, orbits in the high activity
mode alternate between a rest state of small oscillations and an active state of oscillations at a
high activity level. Consecutive bursts follow a different trajectory, where all orbits appear to
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Figure 21: Visualisation of the effect of individual noise on the burst shape. The top plots show the v̄-evolution of
one burst, the middle plots show the r̄-evolution of one burst, and at the bottom there are raster plots showing one
burst each, displaying 400 selected neurons order by η. On the left, one representative burst with a standard deviation
of the noise σ = 0.01. At the right, one representative burst from a simulation where this standard deviation was
increased to σ = 0.2. Increasing σ has flattened the burst shape.

Figure 22: Two full simulations of the two-population model with an excitatory and an inhibitory population. Spikes
of excitatory neurons are visualised as grey points, those of inhibitory neurons are shown in red. A simulation for
the first mode, with η0i = −0.5, is shown in a. Here, inhibitory neurons are intrinsically inactive. Their activity is
synchronised with that of the excitatory neurons, showing the same bursting pattern. A simulation for the second
mode with intrinsically active inhibitory neurons, with η0i = 0.5, is shown in b. There is sustained spiking of the
inhibitory neurons, the excitatory neurons still form a bursting pattern.
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Figure 23: Three consecutive bursts from a simulation of the two population model in a low activity mode (η0i =
−0.5), with pSyn = 1. The top plots show the burst shape in v̄-evolution, the bottom raster plots show the spiking
activity of 400 selected excitatory neurons, ordered by η. Green points are spikes at a moment of high firing rate.

oscillate around a common limit cycle.

3.5 Simulations and EEG
The bursts in our simulations all share a considerably similar burst onset pattern. All bursts start
abruptly with a peak, followed by oscillations with smaller amplitude. Examples of this pattern
are the bursts in Figure 17. Comparing this to the bursts in Figure 1, we see that our simulations
mostly resemble the burst pattern of BSIB. We do not find the gradual burst onset seen in BSNIB
in our simulations. The variation in oscillation amplitude seen in BSNIB, however, also occurs in
our simulations with inhibition.
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Figure 24: Mean values of burst similarity for simulations of the two-population model with excitation and inhibi-
tion, for eight different network realisations and for different synaptic coupling probabilities pSyn. The threshold for
identical bursts is considered q = 0.75, shown as a dashed grey line. Connected purple points show the mean values of
q of the different networks for a given pSyn, the purple boxes show the median and quartiles. Outliers are visualised
as red crosses. For pSyn > 0.1, the mean values of q are below the threshold for identical bursts.

Figure 25: Three consecutive bursts from a simulation of the two population model in a high activity mode (η0i = 0.5),
with pSyn = 1. The top plots show the burst shape in v̄-evolution, the bottom raster plots show the spiking activity of
400 selected excitatory neurons, ordered by η. Green points are spikes at a moment of high firing rate.
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(a) (b)

Figure 26: Simulations of the two-population neural mass model, with one excitatory and one inhibitory population.
In (a), the inhibitory population is set in a low activity mode, here η0i = −1. Only one burst is shown, because all
burst follow the same trajectory. In (b), the inhibitory population is set in a high activity mode, here η0i = 1. Three
bursts are shown in different colours, and all show a different evolution. Other parameters are as in Table 2, except
η0e = 1.

Table 2: Parameter values used for simulations of the two-population model: a coupled excitatory and inhibitory
population.

Symbol Value Unit Parameter description
𝜏 10 ms membrane time constant
αee 1/2 ms−1 e to e synaptic rise/decay rate
αei 1/5 ms−1 i to e synaptic rise/decay rate
αie 1/2 ms−1 e to i synaptic rise/decay rate
αii 1/5 ms−1 i to i synaptic rise/decay rate
ke 0 - gap junction coupling strength for population e
ki 0 - gap junction coupling strength for population i
Jee 4 - e to e synaptic coupling strength
Jei −1 - i to e synaptic coupling strength
Jie 4 - e to i synaptic coupling strength
Jii −1 - i to i synaptic coupling strength
∆e 0.01 - external heterogeneous current distribution HWHM for population e
∆i 0.01 - external heterogeneous current distribution HWHM for population i
η0e 0.5 - external heterogeneous current distribution center for population e
η0i variable - external heterogeneous current distribution center for population i

I(e) 0 - time-varying input current for population e

I(i) 0 - time-varying input current for population i
𝜏A 5000 ms adaptation time constant
ae 0.5 - adaptation parameter
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4 Discussion
We start by interpreting the results that we obtained. Then, we formulate recommendations for
the continuation of this project. We conclude by stating our most prominent findings.

4.1 Interpretation of the results
We identified bursting dynamics in our version of the next-generation neural mass model. More-
over, we evaluated the effect of different parameter settings on the behaviour of the neural mass
and microscopic model. The body of our results shows the behaviour of the microscopic model for
different synaptic coupling structures, and after implementing an additional inhibitory neuronal
population. Here, we discuss these results.

Bursting regimes exist in our next-generation neural mass models
We found a bursting mode of the next-generation neural mass model, and showed that it exists
for the same parameter values in the corresponding microscopic model. The active state of the
burster is given by a branch of stable focus equilibria. Hereby, the bursts show damped oscillations
followed by a non-oscillating high activity (firing rate) state. More naturally, the active state is
given by sustained, high-amplitude oscillations, as in most bursters described in [28]. In our
microscopic model, the burster shows small, finite-size driven oscillations around the stable focus
after initial damped oscillations during the burst. In single neuron models, examples with a
sustained oscillatory active states are the Hodgkin-Huxley model with a slow persistent sodium
current, or the Morris-Lecar model with a slow calcium current [28]. Not that these single-neuron
models can not be directly related to our models of networks of neurons. An example of bursting
behaviour with an oscillatory active state on a network scale is the mean-field model in [29].
There, the active state of a burst-suppression pattern is given by oscillations on a stable limit
cycle. The bifurcation of the rest state is a Hopf bifurcation, and the bifurcation of the active
state is a cyclic fold bifurcation. In our current one-population model, we did not find other
bifurcations than a fold bifurcation to escape the rest state.

The mean SFA description quickly deviates from the individual description
For incorporating the slow dynamics of SFA in the mean-field reduction, we needed to assume
that the evolution of the neuron-specific adaptation variables Aj can accurately be approximated
by the evolution of their population mean Ā. We tested this assumption by evaluating the depen-
dence of differences between both descriptions on ∆, which defines the width of the distribution
of the neuron-specific background currents ηj . The value of ηj can be interpreted as the intrinsic
excitability of neuron j, and we hypothesized that if these are similar enough between neurons,
i.e. ∆ is sufficiently small, firing patterns of individual neurons are similar enough to justify this
assumption on adaptation. Our results show that for∆ ≤ 0.01, the differences between individual
adaptation and the approximation are acceptable (the relative difference is < 0.05). Therefore we
expected that there is a good agreement between the microscopic model and mean-field model
when these values of ∆ are used. We also found that for larger values of ∆, differences between
both descriptions grow fast. Other studies used much larger values of ∆, e.g. ∆ = 1 in [16, 27]
and ∆ = 2 in [26].

Sparse gap junction coupling has negligible effect
We evaluated the effect of gap junction coupling between neurons on the model behaviour by two
approaches. First, we varied the gap junction coupling strength κ in the mean-field model, as was
also done in previous studies of next generation neural masses [19–21]. Consistent with their
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results, we found that the incorporation of gap junction coupling in the model is crucial for the
occurrence of Hopf bifurcations in a purely excitatory regime (J > 0). Varying κ induces shifting
of the Hopf bifurcation branch. When κ was chosen high enough, the branch moved between
the two fold bifurcation branches, which is the bistability region where we find our bursting
behaviour. Strong coupling with gap junctions induced much higher amplitude oscillations in
the active state in the microscopic model, but still dampened towards the end of the burst as we
found without gap junctions.
Second, we varied the number of gap junctions per neuron in the microscopic network. This
caused a substantial reduction in the amplitude of oscillations, and we showed that the bursting
pattern for this sparse coupling resembles the bursting pattern with no gap junctions. Only the
equilibrium value of v̄ differs between the two scenarios, due to the additional membrane po-
tential coupling provided by the still present gap junctions. This single minor difference justified
our decision to remove gap junctions from the model for all remaining simulations.
We expected gap junctions to play an important role in the formation of BS patterns, because of
their central role in the emergence of oscillatory states in previous next-generation neural mass
models [19–21]. We also identified this role in our neural mass model in Figure 12, but found
that the effect was not retained in networks with a realistic number of gap junctions. From a
clinical point of view, Hofmeijer et al. [3] proposed a role for gap junctions in BS, since gap
junctions are preserved where chemical synapses fail during ischemia. This suggests that gap
junctions should not yet be discarded completely.

SFA causes burst shape variation in all-to-all coupled networks
In all-to-all coupled networks, i.e. pSyn = 1, we found values of q below the burst similarity
threshold. Simulations of these networks show two groups of bursts that are dissimilar. The cause
for these distinctive patterns was shown to be the individual SFA, the evolution of Aj deviates
considerably from the population mean Ā. For implementing SFA into the microscopic and mean-
field model, we assumed that the individual Aj can be approximated by Ā. Our result shows that
this assumption does not hold in our model.
These findings show that a reduction of individual SFA to population SFA is not obviously valid.
For larger values of ∆, we expect the individual and population SFA to deviate even more. The
statements in [22, 26] that the two descriptions are sufficiently similar do not hold when the
behaviour is studied in detail. Our results emphasise the need for checking the assumptions for
model reductions, especially when we use approximations of neuron-individual effects.
The individual SFA also affects assumptions at the core of our mean-field reduction. The central
assumption of a unimodal distribution of V for similar η fails, because of the individual SFA. The
disruption of synchrony of neurons with very similar ηj due to different evolution of Aj causes
this distribution to have two modes, at least. For very small values of ∆ we might find that the
assumptions hold, but only because bringing ∆ → 0 removes the heterogeneity of the neurons.
The result would be a network of identical neurons.
We propose an important role for a, the adaptation parameter, in the formation of specific burst
shapes. Especially the division into two groups of similar bursts for pSyn shown in Figure 17 is
caused by the choice of a. With large a, there is a fast reduction in neuronal firing rate after few
spikes, and bursts will be short. Conversely, bursts will be longer with small a. In other words, a
determines the burst duration. In turn, the duration of the burst determines what neuron spikes
last during that burst, and, as argued before, starts spiking later in the consecutive burst. The
disruption of the spiking pattern, as visualised in Figure 18, occurs at this specific neuron. In
the simulation in Figure 17, our choice of a resulted in this being a neuron in the middle of the
spiking pattern. The duration of the consecutive bursts then caused this to become an alternating
pattern. A different choice of a would result in very different burst shapes, and the distribution
of cross-correlations between bursts in the simulation would no longer be bimodal.
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The described effect of individual SFA remains for smaller values of pSyn, but in reduced form.
Variations in synaptic input due to random sparse synaptic coupling reduce the distinctive effect
of SFA.

Sparse synaptic coupling induces more similar bursts
When we reduced the synaptic coupling probability, bursts became more similar in all considered
model realisations. This opposes our hypothesis: we expected to find more irregular behaviour
after reducing the number of synaptic connections. Firstly, all neurons remain synchronised in
the formation of bursts: during bursts, all neurons spike in the sparsely coupled networks. Also,
moments of high within-burst synchrony remain, reflected by peaks in the burst shape. At large
pSyn, smaller groups of neurons synchronise during a burst, causing more small and irregular
peaks in the burst shape. Reducing pSyn results in larger synchronised groups, but with more
dispersed activity. In the burst shape, this is reflected by a smoother signal with lower amplitude
peaks.
Our hypothesis of more clustered activity at smaller pSyn was disproved for these models by our
results. The hypothesis might hold in a model with different settings. A different slow mechanism
than SFA could make a large difference, also allowing the choice for a larger value of ∆, which
would bring more intrinsic heterogeneity into the model. Alternatively, a further reduction of pSyn
might result in the hypothesised behaviour, but caution is needed to not arrive at physiologically
unrealistic values.

Individual noise flattens the burst shape
Adding an independent noise term to each neuron causes the burst shape to flatten, large ampli-
tude peaks reflecting a high level of synchrony disappear. Before, we found that without taking
the effect of Aj into account, there is synchronisation of neurons with similar ηj , which are neu-
rons with similar intrinsic excitability and thus a similar firing rate when they receive sufficient
input. Noise induces random shifts in the phase of individual neurons, possibly desynchronising
the phase-evolution of neurons although their ηj is similar. The strength of the desynchronising
effect depends on the neuron’s phase when it receives a large noisy input, through the bell-shaped
phase-response-curve of a QIF-neuron.

Two modes of inhibition show different burst patterns
When extending our model with an inhibitory population, we chose to consider two modes:
one where the inhibitory population has a high level of intrinsic activity, reflected by η0i > 0,
and one where this population has a low level of intrinsic activity, η0i < 0. Simulations of the
two-population model in low activity mode show more variation in oscillation amplitude than
observed in our purely excitatory model. A clear influence of SFA on the burst shape remains
clear from the raster plots in Figure 23.
In high activity mode, sustained inhibitory activity causes the rest state of the bursting behaviour
to become oscillatory. Figure 25 also shows a little variation in burst onset pattern for the second
burst. Arguably, the rest state oscillations can be the cause of more different burst onset patterns.
At the start of a burst, the network state could be at any position on the rest state oscillation,
causing the network to be in a different state at burst onset during different bursts. This opposes
the bursts initiating from the stable fixed point as in e.g. the low activity mode discussed in the
preceding paragraph, where the network state at burst onset is approximately equal for every
burst.
The dynamics of the two-population neural mass model in the high activity mode, shown in
Figure 26b, are remarkable. There is not a clear, single attractor as for the low activity mode in
Figure 26a. Orbits from different bursts show different patterns, but seem to oscillate around a
common unstable limit cycle. This kind of behaviour could be indicative of an attracting limit
cycle as in the low activity state having undergone a Neimark-Sacker bifurcation. Liley et al.
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[29] found such a torus bifurcation in the fast subsystem of their mean-field model. In our case,
this bifurcation would have occurred in the complete system.

Simulations show a tentative resemblance with only BSIB EEG
We related our results to the clinical motivation for this project: different patterns of burst-
suppression on the EEG. We compared the model simulations to the EEGs with BSNIB and BSIB
from Figure 1.
In BSNIB we see a gradual increase in activity, whereas in BSIB the burst starts with a high-
amplitude peak. We found that the onset in our simulations is most similar to the bursts seen in
BSIB. The pattern of burst onset is determined by the type of bifurcation of the rest state. In our
burster, this is a fold bifurcation: the solution jumps from the stable rest state to the stable active
state. This jump causes the large peak at burst onset. Izhikevich [28] also describes bursters
where the bifurcation of the rest state is a bifurcation of a limit cycle, where a more gradual
burst onset is possible. To find BSNIB, we might need a different bifurcation of the rest state in
a burster.
Our simulated bursts show oscillations that dampen towards burst termination. This is similar to
the burst progression seen in Figure 1 for BSIB. In BSNIB, oscillations vary in amplitude during
the burst. We found such behaviour in our two-population model, but these simulations are far
from similar to BSNIB patterns on the EEG.
Spatial properties are not reflected in our models, because we only considered local neural masses
representing local cortical populations of neurons. To gain insight into the spatial synchrony in-
volved in BS, more elaborate models of coupled neural masses are needed, possibly incorporating
also subcortical populations. Neural field models are an alternative option, which have previously
been studied in the context of next-generation neural mass models [21, 41].

4.2 Recommendations
Building on our results, we have suggestions for further research on the emergence of non-
identical bursts. First, and most important, we found that the assumptions needed for the imple-
mentation of SFA in the next-generation neural mass model do not hold in the parameter regimes
that we investigated. We expect the assumptions to fail also in other parameter regimes, since
the effect we observed seems independent of parameter settings. A possible replacement for SFA
as a slow modulatory mechanism is short-term synaptic depression (SD). The validity of a reduc-
tion to a next-generation neural mass model in the presence of SD has been thoroughly studied
[23–25], although none discuss the behaviour of the microscopic model to the same level of de-
tail as we do here. An advantage of SD is that through this mechanism, a spike of one neuron
affects the SD-variable of all neurons it has an efferent synaptic connection with. This contrasts
the mechanism of SFA, where a spike of one neuron affects its own SFA-variable. Hereby, SD is
not a neuron-specific effect, and assumptions for a mean-field reduction are more easily satisfied.
Gast et al. [26] show that bursting is possible in a next-generation neural mass model with SD.
Taher et al [25] also show bursting in a next-generation neural mass model with SD, only they do
not consider SD as the slow modulatory mechanism but rather a slowly varying applied current.
Our restrictions on the choice of ∆ are caused by a growing difference between individual and
population SFA for increasing ∆. When replacing SFA by a different slow mechanism, we are less
restricted in our choice of ∆. Values between 0.5 and 2 are used in other studies [16, 26, 27], and
this increased heterogeneity of neurons will induce different model dynamics. We already showed
how the bifurcation structure of the one-population neural mass model in J and η0 depends on
∆ in Figure 15, but did not yet investigate how the behaviour of the microscopic model depends
on the choice of ∆.
A second recommendation concerns the effect of inhibition. In Section 1.1, we shortly discuss

36



the critical role of inhibition in burst-suppression. Our results on the effect of complementing the
excitatory neural mass with an inhibitory population allow several natural extensions. Firstly,
a thorough bifurcation analysis of the two-population model will give insight into the bursting
behaviour we observed in our simulations. Exploration of the parameter space spanned by the
synaptic coupling strengths J(· ·) and neuron-heterogeneity parameters η0(·) and ∆(·) would be
a first step, possibly revealing new bursting regimes. Secondly, adjusting the inhibitory post-
synaptic response will allow modelling the effect of propofol, which is known to heavily increase
the decay time constant of the inhibitory post-synaptic potential [29]. Describing the inhibitory
synaptic response as a dual exponential with two separate time constants allows incorporating
this effect, as opposed to the α-synapse we implemented in our model, with an equal rise and
decay time constant. In a different model setup and applying this anesthetic effect, inhibition
could act as the slow mechanism in a bursting regime.
Furthermore, the effect of noise needs further studying. In our models, we only implemented
individual noise, i.e. we applied an independent Gaussian noise term to each neuron. This noise
with mean 0 has no effect on the neural mass model. However, in a realistic setting, neuronal
cortical populations also receive common noisy input, e.g. interpreted as random subcortical
input. This type of noise would also affect the neural mass model, and could be an important
factor in finding more unpredictable behaviour of the model. In the microscopic model, this noise
term would not be independent between neurons, but a common noise term that is random in
time.
Finally, when more qualitatively comparing simulations to EEG, the models need finetuning of
specific burst features such as the inter-burst-interval and burst duration. Given specific parame-
ter settings of the fast subsystem, these two timescale features are determined by the parameters
that define the slow mechanism. In our models, with SFA, these parameters are the adaptation
time constant 𝜏A and the adaptation strength a. When implementing a different slow mecha-
nism, also the strength of the modulatory effect and its decay time constant would contribute
most to these burst features.

4.3 Conclusion
In our one- and two-population neural mass models, we identified bursting dynamics where the
active state is given by damped oscillations. In our microscopic models, we found that spike-
frequency adaptation, the slow mechanism that accounts for the alternation between rest and
active state, plays a crucial role in the formation of burst patterns, and that its neuron-individual
behaviour causes a central assumption in the exact mean-field reduction to fail. This greatly
influences the burst shapes in simulations and restricts analysis of other model adjustments af-
fecting burst shape. Beside the need for an alternative slow modulatory mechanism, the bursting
dynamics in our microscopic two-population model indicate that further exploration of the two-
population mean-field model and the implementation of population noise are promising future
directions for research on the emergence of BSNIB in neuronal network models.
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A Appendix
A.1 Model equations
The microscopic model is given by:

𝜏V̇j = V 2
j + ηj + Jsj𝜏 + κgj + I −Aj , (A.1)

Qsj(t) =
1

|Sj |
∑
n∈Sj

∑
k, tkn<t

δ(t− tkn), (A.2)

𝜏AȦj = −Aj + a
∑

k,tkj<t

δ(t− tkj ), (A.3)

with reset rule for Vj: if Vj > Vthr, Vj ← Vreset, synaptic dynamics given by Q = (1 + 1
α

d
dt)

2 for
the α-synapse, and the gap junction current gj:

gj(t) =
1

N

∑
m∈Gj

(Vm(t)− Vj(t)).

The corresponding mean-field model is given by:

𝜏ṙ = −κr + ∆

π𝜏
+ 2rv,

𝜏v̇ = v2 + η0 + Js𝜏 + I −A− (π𝜏r)2,
Qs = r,

𝜏AȦ = −A+ ar,

(A.4)

A.2 Transformation to θ-oscillators
The V -system allows a transformation to an ensemble of coupled oscillators. In the QIF-network
described by (2.1), we transform the V -variable to a phase variable θ using the transformation
Vj = tan

(
θj
2

)
. Hereby the reset conditions are no longer infinite. The transformation yields a

new first-order ODE:

𝜏θ̇j = 1− cos θj − κ sin θj + (1 + cos θj)

ηj + Jsj𝜏 + I +
κ

N

∑
m∈Gj

sin θm
1 + cos θm

 ,

if θj > θthr, θj ← θreset,

(A.5)

where, as Vthr = −Vreset →∞, we have θthr = −θreset = π. From now we again assume all-to-all
coupling, through both the synapses and the gap junctions. The final term of the θ-evolution then
reduces to the product of connection strength κ, the mean membrane potential v, and 1+ cos θj .
Next, we rewrite the evolution equation in terms of e±iθ to obtain:

𝜏θ̇ = feiθ + f̃ e−iθ + h, (A.6)
where f = 1

2(η+Js𝜏+I+κv−1+iκ), f̃ = 1
2(η+Js𝜏+I+κv−1−iκ) and h = η+Js𝜏+I+κv+1.

In the limit N →∞ and assuming all-to-all coupling, we describe the phases of all neurons by a
continuous probability density function ρ(θ|η, t). The continuity equation described above holds
still:

∂tρ = −∂θρθ̇. (A.7)
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Now, following the approach of Ott and Antonsen [17], we define∫ 2π

0
ρ(θ|η, t) dθ = g(η),

where g(η) denotes the continuous distribution of ηj ’s. The expansion of ρ in a Fourier series in
θ is given by:

ρ(θ|η, t) = g(η)

2π

(
1 +

[ ∞∑
n=1

fn(η, t)e
inθ + c.c.

])
, (A.8)

where c.c. denotes the complex conjugate of the term that precedes it. Given this expansion, we
consider a restricted class of ρ’s where we assume fn(η, t) = α(η, t)n with |α(η, t)| ≤ 1 to avoid
divergence.
It is now convenient to define the Kuramoto order parameter for our phase variable θj:

Z(t) =
1

N

N∑
j=1

eiθj ,

which, for N →∞, is equal to

Z(t) =

∫ 2π

0
dθ

∫ ∞

−∞
dηρ(θ|η, t)eiθ.

By use of the following orthogonality property:∫ 2π

0
eimθeinθ dθ =

{
2π, if m+ n = 0

0, otherwise

and given our restricted class of ρ’s, we write Z(t) as

Z(t) =

∫ ∞

−∞
α(η, t)g(η) dη,

and conjugated:
Z̄(t) =

∫ ∞

−∞
α(η, t)g(η) dη.

By using contour integration and applying the residue theorem, we obtain the following result:

Z̄(t) = α(η0 − i∆, t). (A.9)

To find an expression for α(η, t), we substitute Eqs. (A.6) and (A.8) into continuity equation
(A.7). Expanding the left-hand-side yields

∂

∂t
ρ =

g(η)

2π

( ∞∑
n=1

einθnα(η, t)n−1 ∂

∂t
α(η, t) +

∞∑
n=1

e−inθnα(η, t)
n−1 ∂

∂t
α(η, t)

)
,

and the right-hand-side:

− ∂

∂θ
ρθ̇ = −g(η)

2π𝜏

(
ifeiθ − if̃e−iθ

)(
1 +

∞∑
n=1

α(η, t)neinθ + α(η, t)
n
e−inθ

)

− g(η)

2π𝜏

(
feiθ + f̃ e−iθ + h

)( ∞∑
n=1

inα(η, t)neinθ − inα(η, t)
n
e−inθ

)
.
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Equating these partial derivatives and balancing terms in eiθ yields

𝜏
∂

∂t
α = −if − if̃α2 − ihα. (A.10)

By (A.9), substituting η = η0 − i∆ into (A.10) yields an evolution equation for Z̄:

𝜏
d

dt
Z̄ = − i

2
(η0 − i∆+ Js𝜏 + I + κv − 1 + iκ)− i

2
(η0 − i∆+Js𝜏 + I + κv − 1− iκ)Z̄2

− i(η0 − i∆+ Js𝜏 + I + κv + 1)Z̄.

Taking the conjugate of both sides now yields:

𝜏
d

dt
Z =

i

2
(η0 + i∆+ Js𝜏 + I + κv − 1− iκ) +

i

2
(η0 + i∆+Js𝜏 + I + κv − 1 + iκ)Z2

+ i(η0 + i∆+ Js𝜏 + I + κv + 1)Z,

which we rewrite to:

𝜏
d

dt
Z =

i

2
(Z + 1)2(η0 + Js𝜏 + I + κv)− 1

2
(Z + 1)2∆− i

2
(Z − 1)2 − 1

2
(Z2 − 1)κ. (A.11)

To arrive at a closed system, we need an expression for s. Under the assumption of all-to-all
coupling, s is a global variable, and linear operator Q and firing rate r together describe its
evolution:

Qs(t) = r(t) =
1

N

N∑
j=1

∑
k∈Z

δ(t− tkj ). (A.12)

Noting that tkj for all k are the roots of θj(t)− π, and using the exponential representation of the
Dirac delta function, we have:∑

k∈Z
δ(t− tkj ) =

2

𝜏
δ(θj − π) =

1

π𝜏

∑
m∈Z

eim(θj−π). (A.13)

Also, the following limit holds:

lim
N→∞

1

N

N∑
j=1

δ(t− tkj ) =

∫ 2π

0
dθ

∫ ∞

−∞
dη ρ(θ|η, t) δ(t− tkj ). (A.14)

Combining (A.13) and (A.14), and substituting (A.8), we rewrite (A.12) to:

Qs =
1

π

∑
m∈Z

∫ 2π

0
dθ

∫ ∞

−∞
dη

g(η)eim(θ−π)

2π𝜏

(
1 +

[ ∞∑
n=1

α(η, t)neinθ + c.c.

])
. (A.15)

For this case we have the following orthogonality property:

∫ 2π

0
eim(θ−π)einθ dθ =


2π, if m+ n = 0,m is even,
−2π, if m+ n = 0,m is odd,

0, otherwise,

which, applied to (A.15), yields:

Qs =
1

π𝜏

∫ ∞

−∞
dη g(η)

(
1 +

[ ∞∑
m=1

(−1)mα(η, t)m + c.c.

])
.
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Expanding the brackets and taking the sum out of the integral, we are left with

Qs =
1

π𝜏

∫ ∞

−∞
g(η) dη +

1

π𝜏

∞∑
m=1

∫ ∞

−∞
(−1)mg(η)α(η, t)m + (−1)mg(η)α(η, t)

m
dη.

Because g(η) is a normalised probability density function, the first integral equals 1. The second
integral is evaluated by using contour integration and applying the residue theorem. We combine
this to:

Qs =
1

π𝜏

(
1 +

∞∑
m=1

(−1)mZm + (−1)mZ̄m

)
.

Finally, we rewrite these geometric series using∑∞
m=1(−Z)m = 1

1+Z − 1 for Z and its conjugate,
after which we obtain an evolution equation for s in terms of the order parameter Z:

Qs =
1

π𝜏
1− |Z|2

1 + Z + Z̄ + |Z|2
. (A.16)

This expression for s-evolution and (A.11) form a closed mean-field model.
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A.3 Supplementary figures

(a)

(b)

Figure 1: Four bursts from a simulation with (a) pSyn = 0.6 and (b) pSyn = 0.1. Each column shows one burst,
with an additional 0.2s before burst onset, and an additional 0.1s after burst termination. The top plots show the
evolution of v̄, the mean membrane potential of the network, and the middle plots show the evolution of r̄, the mean
firing rate of the network. The bottom figures show raster plots of the spikes of 400 selected neurons, ordered by η.
Neurons with higher η have lower index. Colouring in the raster plots is based on the mean population firing rate at
that moment in time. Green points are spikes at a moment of high firing rate.
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Figure 2: The effect of different values of the standard deviation of individual additive noise σ on burst shape. At
the top, middle and bottom, five plots of v̄-evolution, r̄-evolution and neuron spikes, respectively. From left to right,
σ increases. A larger value of σ causes more flattening of the burst shape, and reduces synchrony.
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Figure 3: Mean values of burst similarity for simulations of the two-population model with excitation and inhibition,
for four different network realisations and for different synaptic coupling probabilities pSyn. The threshold for identical
bursts is considered q = 0.75, shown as a dashed grey line. Connected purple points show the mean values of q of
the different networks for a given pSyn, the purple boxes show the median and quartiles. For pSyn > 0.6, the mean
values of q are below the threshold for identical bursts.
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