
Influence of Biological Cues on Monocular Depth Estimation

Jochem Groot Roessink
University of Twente

The Netherlands
j.grootroessink@student.utwente.nl

Abstract

Monocular depth estimation (MDE) in computer vision is
the process of estimating the distance to the camera for ev-
ery pixel in a single 2D image, with that image being the
only input data. In theory, this task is problematic since
an infinite amount of 3D scenes can generate the same 2D
image. Fortunately, for most real-world images there is lit-
tle ambiguity for what its 3D scene should look like. In
fact, current MDE methods exist that estimate depth that is
close to the corresponding measured depth. Humans are
also able to estimate depth from single-eye observations us-
ing prior knowledge about how certain cues in their obser-
vation (e.g. the size of a familiar object) relate to depth.
In this work, these biological depth cues are extracted from
an image and encoded into extra image channels. This new
extended image is used as the input for an MDE method,
which allows for studying the effects of explicit biological
cues on M-DE. Observed effects in this study are substan-
tial increases in estimation performance and efficiency in
terms of training data. Furthermore, while the positive ef-
fects of cues on performance are most apparent for small
amounts of data, the effects still remain substantial for much
larger amounts of data. These results can be attributed to
the fact that cue methods provide prior knowledge to an
MDE method that it cannot learn from its training set. Since
the cue method that contributes to the greatest performance
increase uses unsupervised training, it provides a way of
improving MDE using only unlabelled images. As a further
contribution, a data set containing over 100K image-depth
pairs is created using a realistic virtual environment.

Keywords: Monocular Depth Estimation, Biological Depth
Cues, Prior Knowledge

1. Introduction
Depth estimation (DE) in computer vision is the process of
estimating the distances to observed objects from (stereo)
image or video data. Monocular depth estimation (MDE)
is generally accepted as achieving this using only a single

image, i.e. estimating the distance to the camera for every
pixel in the image. There are many areas where MDE is
used, these include autonomous driving [1], augmented re-
ality [48] and 3D reconstruction [56].

A specific case of 3D reconstruction is image/video
anonymisation, which was the topic of the thesis of
Conde Moreno [12]. Since the used MDE method was
found to be the bottleneck, the successive work from Al-
jibouri created a replacement for the MDE method that uses
a conditional Generative Adversarial Network (cGAN) [2].
This work directly follows from that of Al-jibouri, with the
goal of further improving the MDE while studying the ef-
fects of explicit biological depth cues (hereinafter also re-
ferred to as just ‘cues’). These cues refer to the different
phenomena that humans or other animals use to perceive
the depth in the environment observed by their vision. The
cues included in this work are object size, linear perspec-
tive, foreshortening, overlap, blur and texture gradient,
which are all described in Subsection 1.2.

The idea behind using cues is that they provide prior
knowledge that can positively influence an MDE method.
Such knowledge could be relevant for the depth of an image,
while the MDE method cannot learn it from the image data,
either due to limited capacity or the information simply not
being present in its training set. Auty and Mikolajczyk have
shown that the addition of explicit object size information
can improve the performance of an MDE method [3]. This
study provides methods to extract information related to one
or more of these cues from a single image a encode this into
extra image channels. Then, instead of a 3-channel (red-
green-blue or RGB) image, an N -channel (original image
with cue channels) image is used as the input for an MDE
method.

A thorough search of the relevant literature has not
yielded any work where the same approach was applied
with a different method for object size or with other cues.
With that in mind, this work provides a novel method for ex-
tracting object size information that includes foreshortening
information and uses unsupervised training. Furthermore,
methods for extracting linear perspective, overlap, blur and

texture gradient are all novelly applied using this approach.
Additionally, a more explicit study in terms of data effi-
ciency is applied, while the effects of cues on training ef-
ficiency (rate of convergence), and stability of training are
studied as well. Finally, how the influence of cues on an
MDE method changes when more training data becomes
available is studied.

The remainder of this section consists of a listing of re-
search questions and requirements, as well as a description
of the incorporated cues. Section 2 provides a review of the
literature relevant to this study. A custom virtual data set
that is used in some of the experiments in described in Sec-
tion 3. In Section 4, the model that produces a depth map
from images that contain cue channels is described, as well
as the methodology for extracting these cue channels from
a single image. It also describes the experiments that are
performed to answer the research questions, including the
data set and evaluation metrics these experiments require.
Section 5 describes the results of the experiments, while
Section 6 provides a discussion on them. The conclusion
of this study, including answers to the research questions
and a description of future work is described in Section 7.

1.1. Research Questions and Requirements

Research questions The introduction above describes the
research that is to be done in this work, which leads to the
following research questions:

• RQ1: How does the inclusion of biological cues affect
an MDE method?

• RQ2: How does an MDE method that uses biologi-
cal cues compare to the same method without cues but
with access to more training data?

• RQ3: How does an increase in the amount of training
data affect the influence of biological cues?

• RQ4: How does the inclusion of biological cues affect
state-of-the-art MDE methods?

Requirements The definition of MDE leads to the fol-
lowing requirements for the input of an MDE method or
any cue extraction method:

• Context-free: the method should function for a single
image that is not from a sequence or a binocular pair.

• Offline: the method should function for an image that
is already captured and is not able to control camera
movement or lens accommodation.

1.2. Biological Depth Cues

The MDE requirements limit which biological depth cues
can be used. The cues incorporated for this work are the

Linear
Perspective

Blur &
Foreshortening

Overlap Texture
Gradient

Figure 1. Visual examples of cues.

known cues that are in line with these requirements and op-
erate at a relevant depth scale. Figure 1 provides visual ex-
amples.

Object size When a person recognises an object of which
they know the approximate dimensions, this knowledge
provides insight into how far away it is. Additionally, when
multiple similar objects are observed, their difference in ob-
served size is directly related to their relative distance, and
consequently, their depth. Since different extraction meth-
ods are used for these two cases of object size, they are re-
ferred to as familiar size and relative size, as coined by Auty
and Mikolajczyk [3].

Linear perspective Two lines that are parallel in a 3D en-
vironment converge to a single vanishing point in 2D obser-
vations (unless the line of sight of the observer is perpendic-
ular to any third parallel line). Consider a point on a texture
that is enclosed by two of these originally parallel lines (for
example, a road enclosed by sidewalks). Then, the distances
to both lines in such an observation are related to the depth
of that point. The further away a point is from the observer,
the shorter the summed distance to both line is [8, 41].

Foreshortening This convergence present in linear per-
spective applies to objects without straight edges as well.
An example of this would be a person that stretches their
arm out along the line of sight of an observer, with the
hand being near the observer. In this case, the hand is ob-
served to be significantly larger, relative to the rest of the
body. Among artists, the technique of replicating this effect
is called foreshortening. Ivanov et al. has shown that fore-
shortening can be used to determine the degree to which an
object converges [25].

Overlap If two opaque objects overlap in an observation,
then the one that is further away from the observer is partly
obscured by the other. This feature provides a person with
insight into which of the two is positioned at a closer dis-
tance.

Blur Every convex lens has a focal point: the point at
which originally parallel light rays meet after being re-
fracted by the lens. An eye observes an object positioned at
this point as sharper than its surroundings. The further away
an object is from the focal point, the blurrier the observation
of it will be. If two distinct regions in the image border each
other, then the sharper one is closer to the focal point. This
is not yet enough information to determine which of the re-
gions is closer to the observer. If the border between the two
regions is sharp, the sharper object is expected to be closer
to the observer. If this border is blurry, the blurrier object
is likely closer. To summarize, region blur informs about
the distance of a region to the focal point, while border blur
aids in disambiguating whether a region is closer or farther
away from the focal point. This provides direct insight into
the relative distance of observed objects [37].

Texture gradient For a uniform texture (for example a
brick road or a field of grass), the parts closer to the observer
generally are perceived to be more detailed. For example,
while individual blades of grass could be identified close to
an observer, they unify into almost solid green if they are
further away. Therefore, the variation in the coarseness of
uniform textures can be used as a depth cue [41].

Other biological cues include binocular disparity, accom-
modation, motion parallax, light scattering and shading.
However, the inclusion of the former three would require
a method that is not in accordance with the requirements,
while extraction of the latter two would only provide insight
into depth at scales not relevant to this work.

2. Related Work

This section is a review of the relevant literature, structured
in the following segments: disparity, end-to-end, cGAN,
classification-regression, biologically inspired, and biology
in DE. Additionally, a short conclusion is provided.

Disparity Estimating depth using binocular image pairs
can be treated as a matching task: a pixel in one image is
matched to a pixel in the other image. Each matching can
be used to determine a disparity value for each pixel. Deter-
mining depth from disparity is a trivial process if the cam-
era configuration is known [42, 46]. Žbontar and LeCun
provided a method that uses a convolutional neural network
(CNN) to match the pixels of two images [61].

Unlike methods that explicitly match pixels, end-to-end
methods take a binocular image pair as input and produce
a disparity map directly. Mayer et al. modified the opti-
cal flow estimator FlowNet [13] into the disparity estimator
DispNet [38] to achieve this. The method from Godard et al.

is also trained on binocular pairs to learn to produce dispar-
ity. Unlike DispNet, it takes only one image as input. From
this image, it estimates disparity and reproduces the other
image, which is compared to the original other image. Be-
cause of this, it can be used to predict disparity (and depth)
from a single image after training [17].

While disparity methods allow for depth estimation, the
required training data is not in line with the requirements
from Subsection 1.1.

End-to-end Instead of estimating the disparity from an
image (pair), there are methods that directly generate depth
from a single image. While methods that do not use neural
networks for this have been released in the past [47], more
recent methods do use neural networks. These networks
take an RGB image as input and estimate a depth map of
the same resolution. This is often done using an encoder-
decoder structure, where the image is encoded into latent
space representation, which is decoded into a depth map.
This estimation is compared to the actual depth values to
determine the loss that is used during training.

Eigen et al. provided such a method, particularly one that
uses two CNNs. The first CNN generates a complete depth
map for a low-resolution version of the input image, while
the second CNN takes both this depth map and a smaller
patch of the input image as input. The details in this patch
should improve upon the original low-resolution depth map
[14]. The method from Laina et al. was introduced later
and achieves MDE using a single CNN. This method has
noticeably better performance [31].

A more recent method is BTS [32], which also uses a
CNN architecture. Unique to this method is its decoder.
At every stage of decoding the latent space representation a
map of the same size as the input image is created using so-
called local planar guidance. Together these maps are used
to generate the final depth map. This method was intro-
duced relatively recently and generates substantially better
performance than Laina et al..

cGAN A cGAN consists of two networks: a generator and
a discriminator. The generator works similarly to the pre-
vious methods, the discriminator is trained to distinguish
between real depth maps and those produced by the gener-
ator. The classifications of the discriminator function as the
supervisory signal to the generator, so that the latter learns
to fool the discriminator.

Zhang et al. [57] and Chen et al. [10] both provided such
a method, and both outperform the method from Laina et al.
in every metric used. Similarly, for their thesis, Al-jibouri
used a cGAN to estimate depth. This thesis is also the work
from which this study directly follows. While it was not
able to outperform Eigen et al. in the original work, the

method is re-implemented to be the baseline for this work,
where it is able to substantially outperform Eigen et al..

Classification-regression While the previous methods
are regression methods, depth estimation can also be treated
as a classification problem. In this case, the classes refer
to a subdivision of the total depth range, known as ‘bins’.
For each pixel of an image and for each bin, the probabil-
ities that the depth value of the pixel lies within the range
of that bin are produced. The supervisory signal is based on
what bin the ground truth depth value lies in. Classification-
regression uses this method to produce a continuous depth
map. The depth value for each pixel is computed by lin-
ear combination of the probabilities with the centre value of
their respective bin.

Bhat et al. provided such a classification-regression
method, named AdaBins (adaptive bins). As the name sug-
gests, the method learns to optimise the subdivision of the
depth range into bins for each image, instead of using a
fixed subdivision. The reason for this is that since differ-
ent images contain different depth ranges, they benefit from
different depth subdivisions. The method uses the encoder-
decoder backbone EfficientNet-B5 [53] to produce a feature
map for each image. From this feature map, both the bin
ranges (and thus the centres) and the probabilities for each
pixel for each bin are determined. Linear combination of the
centres and probabilities produces the final depth map. This
method greatly outperforms the method from Laina et al.
for every metric used [5].

Li et al. created a similar method to AdaBins, named
BinsFormer. The method uses the Swin transformer back-
bone [35] and a decoder structure to produce pixel represen-
tations. A separate transformer decoder is used to produce a
length and an embedding for each bin. The lengths are used
to create the division of the depth range into bins, while the
embeddings are combined with the pixel representations to
produce the probability maps. Again, the bin centres and
probabilities are used to generate the final depth map. Bins-
Former outperforms AdaBins [33].

Xie et al. investigated the effects of masked image mod-
eling (MIM) on several computer vision tasks. For MDE,
they pre-trained the SwinV2-L backbone of BinsFormer us-
ing MIM. This approach had a positive effect on the per-
formance. At the time of writing, the resulting model has
achieved the greatest performance on the KITTI Eigen split
[16, 14], a widely used benchmark for MDE [55].

Biologically inspired Most previous biologically in-
spired computer vision work is focused on replicating the
behaviour of certain cells, with the goal of achieving simi-
lar functionality to the observed functionality of those cells.
This idea is similar to what led to the invention of the per-

ceptron [39], which was inspired by the behaviour of a sin-
gle neuron and formed the basis for neural networks.

Similarly, it has been suggested that simple cells in the
visual cortex can be modelled by 2D Gabor filters [15]. Fur-
thermore, convolutional kernels learned by the first convo-
lutional layer of a CNN trained on pictures seem to resem-
ble such Gabor filters [28]. This would explain the presence
of CNNs in computer vision tasks, the popularity of which
is emphasised by the fact that much of the previously de-
scribed work makes use of CNNs.

However, regular CNNs still have limitations, an ex-
ample of which is their robustness against unseen noise.
Strisciuglio et al. created a new layer for CNNs, which is
inspired by the push-pull inhibition phenomenon, which is
observed in certain neurons in the visual cortex. Replacing
the first layer of a CNN with this push-pull layer, signifi-
cantly enhanced its robustness against unseen noise [52].

Not all biologically inspired computer vision work is
about replicating phenomena observed in neurons in the
visual cortex, Chen et al. discussed the use of an event-
based neuromorphic vision sensor for autonomous driving.
In contrast to regular cameras, this sensor does not record
and process the brightness for every pixel for every frame,
but observes brightness changes and triggers asynchronous
events based on that, which is more similar to how human
eyesight works. The advantages of this over regular cam-
eras include low energy consumption, high dynamic range
and no issues related to motion blur [9].

Biology in DE In regards to depth estimation, Mansour
et al. compared the performance of two biological depth
cues, binocular disparity and motion parallax. To achieve
this, they used a moving robot fitted with binocular cam-
eras for input and a LiDAR scanner as the ground truth. For
binocular disparity, the pixel disparity between both cam-
eras is converted to depth using triangulation. For motion
parallax, the depth is determined in the same way but in-
stead of using two cameras two different frames of a single
camera are used (given that movement has occurred and that
the movement is tracked). The results show that binocular
disparity performs the best for shorter distances, while mo-
tion parallax performs better at longer distances. Addition-
ally, it was found that combining both predictions generated
the best results [36]. While binocular disparity and motion
parallax are not in line with the requirements of MDE, the
work does provide useful insight into the relative and com-
bined performance of biological depth cues.

More specific to MDE, Auty and Mikolajczyk applied
biologically inspired methods to AdaBins [5]. Instead of
using just a three-channel (RGB) image, their work explic-
itly extracts information related to the object size cue and
encodes this into extra image channels. What results is
an image with 73 channels that functions as the input for

AdaBins. Since a scaled-down version of the EfficientNet
encoder-decoder was used (B1 instead of B5), the method
was not able to outperform AdaBins-B5. However, it was
able to significantly improve the performance of the base-
line AdaBins-B1 [3]. Therefore, this work has shown that
the addition of explicit biological cue information to the in-
put space can improve the performance of an MDE system.

Conclusion This literature review describes and com-
pares different methods for MDE, each having different ad-
vantages and disadvantages. Therefore, the described stud-
ies provide useful insights for this work. BTS [32], AdaBins
[5] and BinsFormer [33] are of particular interest for study-
ing the state-of-the-art in this work. Additionally, the bio-
logically inspired work shows how taking inspiration from
biological vision systems can have a positive impact on the
development of computer vision methods. Most relevant
to this work is the work of Auty and Mikolajczyk, which
shows that the explicit addition of object size information
can improve the performance of an MDE system [3]. What
has not been addressed in the literature above, nor has been
found in any of the other relevant literature, is a study into
the effects on MDE in the same manner with a different
method for object size. Additionally, no study has been
found where a method for linear perspective, blur, texture
gradient, foreshortening or overlap is applied in the same
way. Furthermore, no study into the effects of these cues
in terms of training efficiency, stability during training and
data efficiency has been found. Finally, a study into how the
effects of cues change for increasing amounts of available
data has also not been found. Therefore, what will be ad-
dressed in this work (as mentioned in Section 1) will bring
novelty.

3. Contributed Depth Data
For this work, a custom data set is created using the video
game engine Unreal Engine 51.

Motivation To answer the data efficiency questions RQ2
and RQ3, different subsets of a data set are used, with the
smallest subset using just 10% of the data (further described
in Section 4.3). When this set is too small, the results of
an experiment using it could be overly dependent on cer-
tain samples. Therefore, the used data set should be suffi-
ciently large. The Eigen split [14] of the KITTI data set [16]
is commonly used in MDE and consists of around 24.000
training samples. Since it can be argued that this amount
is sufficient for training an MDE method, the requirement
is set that the previously mentioned 10%-subset should be
sized in the same order of magnitude. The used data set
should therefore consist of more than 100.000 RGB-depth

1https://www.unrealengine.com/en-US/unreal-engine-5

pairs. This requirement invalidates both KITTI [16] itself,
as well as Make3D [47]. While Human Pose [11] might be
sufficiently large, its lack of diversity in scenes and objects
makes its use undesirable. NYU-Depth V2 [51] also has
enough samples, but only consists of indoor scenes. Since
some cues (especially linear perspective and texture gradi-
ent) are mainly present in outdoor scenes, this is not prefer-
able for this research.

Alternatively to these recorded, real-world data sets, vir-
tual data sets exist. Such data has the following advantages:

• Accuracy/Density: The depth is generated from
ground-truth 3D data, so it does not suffer from a sen-
sor that is inaccurate or can only (accurately) record
depth up to a certain distance, leading to sparse depth
data. Additionally, there is no disparity between a
camera and a depth sensor, which could lead to more
inaccuracies/missing data points. First of all, a com-
plete depth map (no missing data points) is desirable
because there are more points that can be used for a
loss function. An additional advantage is that the depth
map can be resized in the same manner as the RGB im-
age, without zero values distorting the resulting depth
map. Figure 8 in Appendix E shows a sparse and a
dense depth map.

• Cost/Scale/Speed: Only capable computing hard-
ware is required, without needing possibly expensive
recording hardware. The latter possibly requires com-
parable computer hardware for post-processing any-
way. Furthermore, due to the freedom of movement in
a virtual environment, more diverse data can be gener-
ated in a shorter time frame. Finally, no manual labour
is required for getting permission for recording sensi-
tive data or filtering out those or otherwise undesirable
samples.

Such virtual depth data sets exist: FlyingThings3D [38],
Driving [38], Monkaa [38] and MVS-Synth [22]. FlyingTh-
ings3D and Monkaa use an unrealistic world environment
and unrealistic object respectively, while cues are based on
a real-world environment. Additionally, all four data sets
are not sufficiently large for Experiment 2. Finally, Virtual
KITTI 2 [6] is both large enough and uses a more realistic
environment, however, its textures are noticeably less real-
istic than the contributed data set from this work. Figure 9
shows images from these virtual data sets.

Description For the data collection, a virtual environment
resembling an American city2 is used. To record the data,
a virtual camera is placed at eye level and moved along a
path while periodically recording a snapshot of both image

2https://www.unrealengine.com/marketplace/en-US/product/city-
sample

data and the corresponding depth map. The path is repeated
multiple times with a different yaw of the camera each time.
Path instances are recorded using varying world settings:
either the day or night setting, as well as different amounts
of fog.

The depth values are stored as unsigned 16-bit integers
(integers from 0 to 65535). By dividing these values by 256,
their values in meters can be determined. This allows for a
maximum value of almost 256 meters to be stored, which is
why all values greater than that are replaced by this value.
In the raw data, the recorded images are of size 480x853
(9:16), but for Experiment 2, these are centre-cropped to
480x480 and resized to 256x256.

The training set consists of seven paths, each repeated
with approximately 10 yaw values, with various world set-
tings for each instance. The length of each path is differ-
ent but chosen so that the distance between each snapshot
is approximately one meter. The resulting set consists of
113.759 RGB-depth pairs. The test set consists of a single
path, recorded at a distinctly separated location, with 8 yaw
values and various world settings. The resulting set consists
of 773 RGB-depth pairs.

4. Methodology
This section describes the used MDE model that can incor-
porate cue channels, the methods for extracting and encod-
ing cues from an image, and the experiments that are per-
formed to answer the research questions.

4.1. Model

This work continues on the work of Al-jibouri [2], who
used a cGAN according to the ‘pix2pix’ configuration [24].
There are several reasons why a cGAN can be advanta-
geous over using a traditional CNN. First, instead of us-
ing a fixed loss function, a cGAN learns it during training.
This makes it applicable to diverse tasks (e.g. image-to-
image and image-to-depth) that would otherwise require di-
verse loss function [24]. Furthermore, cGANs have exhib-
ited better generalisation (performance on unseen data) than
traditional CNNs [29]. Finally, Chen et al. has shown that
adversarial training can be beneficial for MDE [10].

Al-jibouri modified ‘pix2pix’ to produce a depth map
instead of images. For this work, it was further modi-
fied to allow for cues to be extracted from an image and
added into the input space. The generator consists of an
encoder-decoder structure, where an image is progressively
downsampled into a compact representation (bottleneck)
before it is upsampled again to produce a depth map. Skip-
connections are present between mirrored layers so that
low-level information can be passed over the bottleneck.
Therefore, the bottleneck does not need to represent the en-
tire image, only information relevant for depth estimation.
A more detailed description of the model can be found in

Appendix A. First, the appendix provides a schematic that
describes how a single RGB-depth pair is passed through
the generator and discriminator. Furthermore, it describes
the ‘pix2pix’ architecture and how it is trained. On top of
that, it describes the modifications made by Al-jibouri to
use the model for depth estimation, as well as the modifica-
tions made in this work. Finally, it describes the layers of
both the generator and the discriminator.

4.2. Cue Extraction

This subsection describes for all depth cues incorporated in
this work, how information related to them is extracted from
a single image and encoded into channels that can be used in
addition to the three channels of an input image. Complete
implementations of each cue extraction method including
the used parameters are publically available3. This subsec-
tion describes a more general overview of how each method
works. A global overview including visual examples of
the encodings of each method can be found in Figure 2.
A summary of the methods can also be found in Table 2.
The goal for the cue methods is to improve the depth es-
timation, while runtime optimisation is not considered yet.
Therefore, some methods have such a long duration, that
executing them ‘live’ during training is quite unpractical.
Therefore, each cue method is applied to all images and the
output is stored on disk. During training the cue method
outputs are fetched along with their corresponding image.

Familiar size (F) To extract information about familiar
size Mask R-CNN [21] is used to detect objects in an image.
This method extends the object classification and bounding
box generation of Faster R-CNN [43] with the prediction
of a mask for every recognised object. It achieves this by
the addition of a separate branch that predicts a mask for
each object using image segmentation parallel to the exist-
ing branch of Faster R-CNN. The used configuration is built
on the ResNet-50 backbone [20] and is pre-trained on the
COCO data set [34] to predict the masks of 81 classes.

For each image, the Mask R-CNN is used to predict a
mask for every object it recognises. To ensure an object
is not classified twice as two different classes, only masks
with a confidence score of greater than 50% are considered.
For each class, manual estimations have been made for the
average height, width and depth. The final resulting encod-
ing is a 3-channel (HxWxD) array of the same shape as the
input image. For each class-mask pair, each of the three di-
mensions of the class is used as the value in their respective
channel for every pixel in the mask. Pixels that have not
been classified all have value 0 for each channel.

3https://github.com/jochemroes/cues

I: RGB image
HxWx3

Blur method from
Golestaneh and Karam

B: Blur map
HxWx1

STEGO

PCA and scale
dimensions

R: Vectorisation
HxWx32

Mask R-CNN

F: Dimension map
HxWx3

O: Order map
HxWx1

Fill masks with average
dimensions of label

MADF and Mask R-CNN
to order masks

Canny and Hough to find
lines and vanishing point

L: Gradients
HxWx1

Fill pixels using distance
to closest two lines

Select cues and
concatenate

Cue image
HxWxN

Depth map
HxWx1

Modified MDE method

Figure 2. Global overview of all the cue extraction methods and how they are fed into an MDE method.

Overlap (O) The overlap method is based on the fact that
the observable area of a partially obscured object grows if
the object is not obscured anymore. For this method, the
same Mask R-CNN is used. Additionally, MADF [60] is
used for image inpainting. MADF predicts the missing pix-
els of a masked-out region of an image. An MADF config-
uration is used that is trained on the Places2 data set [59].

The overlap method determines the object masks in the
same way as familiar size. For every pair of masks with
overlapping bounding boxes, the MADF model is used to
generate two new images. These two images are the result
of inpainting either mask. Mask R-CNN is applied to both
images, and the size of the mask that has the highest overlap
with each original mask is determined. One mask growing
significantly in the image mask where the other mask is in-
painted means it is further away. For the pair, this results in
a directed edge ab, representing object a obscuring object b.

This information is encoded into an image channel using
a directed graph. Every vertex v represents an object mask
and initially has depth value dv = 1, children Cv = ∅ and
offspring Ov = ∅. The edges determined previously are
added to the graph using the procedure add:

PROCEDURE add(a, b)
IF a /∈ Ob

Ca ← Ca ∪ {b}
Oa ← Oa ∪ {b} ∪Ob

update(b, da)

PROCEDURE update(v, d)
IF d ≥ dv

dv ← d+ 1
FOR ALL u ∈ Cv

update(u, dv)

The a /∈ Ob condition prevents the algorithm from infinitely
iterating in case that some edges form a directed cycle. This
is likely an error due to the rarity of an object obscuring an

object that is placed in front of it. The final encoding is
a single sparse image channel with dv as the value for the
pixels in the mask of every vertex v.

Relative size and foreshortening (R) STEGO [19] is
used to extract information related to relative size and fore-
shortening. This is an image segmentation method that re-
quires no labelled data during training. It is based on self-
supervised feature learning, where a model learns spatially-
varying features for an image, i.e. a vector for every pixel.
These vectors are pooled into global features for a region.
During training, STEGO learns to transform regions from
the same or similar images into similar representations and
regions from two diverse images into diverse representa-
tions. After training, the global features are discarded and
only the vectors for each pixel are used. If two pixels have
similar vectors, they likely originate from the same class.
Using cosine similarity and K-Means clustering, the pixels
are clustered to generate an image segmentation [19]. For
this work, STEGO pre-trained on the COCO data set was
used [34].

Such an image segmentation of the image allows for
identifying which objects are similar to each other and how
they differ in size. However, preliminary experimentation
with these segmentations did not generate satisfactory re-
sults. Therefore, the clustering layer from STEGO is re-
moved, so that the pixel vectorisations are used as the final
encoding. These vectors already contain all the information
about how similar pixels are to each other, and therefore
how likely they belong to the same object (relative size) or
subobject (foreshortening). The resulting encoding for rel-
ative size is similar to that of Auty and Mikolajczyk. How-
ever, a pixel vector is not limited by the predicted class of
a supervised image segmentation method, so each individ-
ual vector should be more informative. To decrease stor-
age size, the pixel vectors are transformed from size 90 to
32 using principal component analysis [40], after which the

values in each dimension are scaled according to 8-bit un-
signed integers.

Blur and texture gradient (B) Encoding blur informa-
tion consists of producing a blur map. This is a single
channel of the same height and width as the input image,
but the pixel values are sharpness scores. If an image con-
tains a uniform texture that is not influenced by blur too
much, a valid blur map contains a gradient directly related
to the depth of the texture. The method from Golestaneh
and Karam produces such a blur map. For multiple scales
of the image, the method takes a small patch around each
pixel and uses the discrete cosine transform to convert the
image patch to the frequency domain. In this frequency do-
main, sharper images generate greater amplitudes for high
frequencies than less sharp images do. Therefore, the high-
frequency amplitudes are used to generate the pixel sharp-
ness score. The sharpness scores are normalised from 0 to
1 [18].

Linear perspective (L) To extract linear perspective
Canny edge detection [7] followed by Hough line detection
[23] is used to detect line pieces/lines corresponding to lin-
ear edges in an image. The point with minimal distance to
each line is deemed to be the vanishing point. After this,
The lines are filtered on them (nearly) intersecting with the
vanishing point and are redrawn with one end at the van-
ishing point and one end at the image border. Then, lines
that lay particularly close to each other are merged. Lines
that result from significantly fewer merges than the great-
est merge count seen are filtered out. Finally, the vanishing
point laying outside of the image, fewer than four lines re-
maining, or no lines being merged results in the image being
deemed to show too little linear perspective. In this case, the
vanishing point is replaced by the centre of the image, and
the lines are replaced by four lines each from the vanishing
point to one corner of the image.

To encode this extracted information into an image chan-
nel, a value is determined for every point according to the
summed distance to both lines it lies between. These are
then normalised according to the maximum value in the re-
sult. After subtracting these values from 1, the resulting
channel consists of gradients shaped like a triangle, where
the vanishing point has the greatest value (1), and the zero-
values are at the border of the image. If the edges of such a
triangular gradient correspond to the edges of a texture, then
the gradient is directly related to the depth of the texture.

For images that show linear perspective, the generated
channel could function as a low-resolution estimation of
the depth which is then improved using the image data by
the model. Eigen et al. has shown that determining a low-
resolution depth map, before refining it using the image
data, can be useful for generating depth maps [14].

4.3. Experiments

This subsection describes the experiments that are per-
formed in order to answer the research questions.

Data sets Multiple data sets and train/test splits are used
in the experiments. The first is KITTI [16] (further de-
scribed in Appendix E) in two splits. Kitti is the original
split from Geiger et al. of around 57K/23K. Eigen is the
split from Eigen et al. of around 24K/693. Additionally,
the data set from Section 3 is used in the splits Virt10 ⊂
Virt25 ⊂ Virt100. The subscripts represent the percentage of
the training data that is used, where Virt100 contains around
113K training images. The subsets are randomly sampled
to approximate the same diversity of Virt100. All three splits
use the same 773-image test set.

Metrics The following metrics are used for evaluation
(which are commonly used in the relevant literature [30, 14,
2, 5, 33]): thresholded difference, absolute relative differ-
ence, squared relative difference, root mean square error
(rms) and logarithmic root mean square error (lms). These
are further described in Table 1. There are two ways of
determining the values, both of which have been used in re-
lated work [26, 33]: either treating all pixels in a test set as
one pixel collection or determining each metric separately
for each image before determining the mean value. Since
the former prioritises images with more depth measurement
this used for all experiments that use the model from Sub-
section 4.1. However, the latter is used for the state-of-
the-art experiments, to minimise the differences with those
methods. Specific to this work, is the fluctuation index,
which is based on standard deviation and determines the
relative difference between the evaluation values of model
snapshots and a moving average (of length 5). This results
in a metric that describes the instability of a model during
training. Finally, the experiment comparison index is in-
troduced, which summarises how two results compare over
the previous metrics. These two metrics are also described
in Table 1.

0) Cue usefulness For each cue, an experiment is per-
formed with the channel(s) from the extracted cue as the
only input of the model. These are trained for a single epoch
and evaluated on Kitti. The baseline (N) is trained in the
same manner as the cues, but it only contains data where
every pixel in the input has value 100. Therefore, the input
data provides no information and the model is only able to
learn a general bias for the depth estimation. This experi-
ment determines whether each cue method provides infor-
mation to the model that is relevant for depth estimation and
merits further exploration.

ID Formula Unit
thr |{(p,p̂)∈P|δi}|

|P| ; δi =
[
max(pp̂ ,

p̂
p) < 1.25i

]
-

abs 1
|P|

∑
(p,p̂)∈P

|p−p̂|
p -

squ 1
|P|

∑
(p,p̂)∈P

(p−p̂)2

p m

rms
√

1
|P|

∑
(p,p̂)∈P (p− p̂)2 m

lms
√

1
|P|

∑
(p,p̂)∈P (ln p− ln p̂)2 lnm

flu 1
|M|

∑
m∈M

√
1

|Xm|−1

∑
x∈Xm

(x−µx)2

µx
-

exp 1
|M|

(∑
m∈M↑

ma

mb
+
∑

m∈M↓
mb

ma

)
-

Table 1. The evaluation metrics defined using a pixel collection
P consisting of ground truth depth values p paired with estimated
values p̂. For flu, M represents a collection of any combination
of the previous metrics that are used for evaluation. Xm is the
collection of scores resulting from evaluating all snapshots of a
model on metric m. µx is the mean score of the values generated
by a window of snapshots where the snapshot that generated x is in
the centre. For exp, M↑ and M↓ are the metrics for which higher
and lower scores respectively are preferred. ma is the score for a
metric m for experiment a that is compared to the metric score of
experiment b (mb).

1a) Final performance For each ‘useful’ cue, an experi-
ment is performed where the input consists of the original
image data concatenated with the channel(s) produced by
cue methods. The baseline model only takes the image data
as its input. The model from Subsection 4.1 is trained for 50
epochs on Eigen, before being evaluated on its test set. This
allows for studying the influence of each added cue method
on the final performance. Additionally, it allows for study-
ing if combining the cue methods has any additional effect
on the model. This experiment corresponds to RQ1.

1b) Training efficiency The same data set and (combi-
nations of) cues from Experiment 1a are used for this ex-
periment. Instead of only evaluating the final performance,
each model is evaluated at a fixed interval during training.
This allows for studying both the influence of cues on the
training efficiency of a model and the stability of the train-
ing process. A stability issue of the original model (further
described in Section 6 limits the ability to study training ef-
ficiency. Therefore, BinsFormer is used for this experiment.
Its standard configurations are used [33], except that the en-
coder is not pre-trained and that the random image augmen-
tations layers are removed. Every 800 iterations (i.e. 6400
images), each model is evaluated on the test set. Like Exper-
iment 1a, this experiment corresponds to RQ1, while also
being related to RQ4, since BinsFormer is a state-of-the-art
method.

2) Data efficiency While the results of Experiment 1
should already determine the effect of added cues on the
change in model performance during training, they are lim-
ited by the amount of available data. Regardless of the num-
ber of epochs and iterations, if the amount of training data is
limited, the maximum performance achieved during train-
ing will be limited as well. For this experiment, Both the
baseline model and the model that contains all successful
cues are trained for 5.000.000 iterations, with snapshots be-
ing saved at every 100.000 iterations, which are all evalu-
ated on the test set of the virtual set. For each metric, the
average of the five best scores seen is determined. These
experiments are repeated for every subset of the virtual set:
Virt10, Virt25 and Virt100.

The results of this experiment allow for studying the in-
fluence of cues on achievable performance and how this in-
fluence changes when more data is available (RQ3). Addi-
tionally, it provides information for determining the differ-
ences in the amounts of data needed to achieve comparable
performance between the baseline and models that utilise
cues (RQ2).

3) State-of-the-art Three state-of-the-art MDE methods
are used for this experiment: BTS [32], AdaBins [5] and
BinsFormer [33]. While each method works differently,
they all use an encoder. This encoder transforms images
into a different representation, which is used to create the
depth map. For this experiment, these encoders are modi-
fied to use N image channels instead of 3. Every method
also uses a pre-trained configuration of the encoder. These
pre-trained weights provide a significant performance in-
crease. For the first layer, the weights are repeated so that
more than 3 image channels can be used. Besides these
modifications, each method is used in its original configu-
ration.

The original configurations include random image aug-
mentations, like random crops and rotations. This leads
to uncertainty in terms of the exact input images. Due to
the long runtimes of some of the cue methods, the cue en-
codings for training images are calculated before training.
The random augmentations make it impossible to do this
for each exact input image. Therefore, the cue methods are
only performed on the original images, and during training
the same rotations and crops are applied. This could lead
to a slight, unfair advantage, due to the cue methods being
able to use parts of an image that the MDE method cannot.
On the contrary, for relative size, this approach is likely dis-
advantageous, since STEGO resizes its inputs to 320x320.
Cropping an image before passing it through STEGO would
lead to a more informative encoding than cropping the en-
coding of the original image.

Each method uses IRFO input, which is evaluated on
Eigen before being compared to their original results.

5. Results

Experiment 0 The results in Table 4 show that both linear
perspective (L) and blur/texture gradient (B) considerably
outperform the baseline (input consisting of only one value,
N) after training for a single epoch. The results from the
other cue methods are omitted due to their positive results in
Experiment 1, making their Experiment 0 results irrelevant.

Experiment 1 The same table shows that neither linear
perspective (IL), nor blur (IB) is able to noticeably im-
prove the performance of the baseline model (I). Both
overlapping (IO) and familiar size (IF), as well as rela-
tive size (IR), all considerably outperform the baseline for
every metric used. IF seems to slightly outperform IO,
while both are noticeably outperformed by IR. IRFO out-
performs all other models, generating the best scores seen
in Experiment 1a, for every metric.

Figure 3 shows how the squ performance of each model
performs relative to the baseline model during training.
Since squ is an error metric and since the baseline is used
as the numerator in the normalisation process for creating
the figure, greater values correspond to better performance.
Since the baseline is a growth curve, greater values at the
beginning of training correspond to greater training effi-

ID Method Encoding Chan’s
I Identity RGB image 3
N None Blank image 1
R Relative size Vectorisation 32
F Familiar size HxWxD map 3
L Linear perspective Gradient 1
O Overlap Order map 1
B Blur Sharpness map 1

Table 2. Summary of the cue extraction methods. Method refers
to a cue method that extracts information from an RGB (N pro-
duces the same blank image for every input image). Encoding
refers to what the extracted information is encoded as. Channels
refers to the number of image channels used by that encoding.

ID Name Authors Ref
Eig - Eigen et al. [14]
Jib - Al-jibouri [2]

BTS Big-to-Small Lee et al. [32]
AB AdaBins Bhat et al. [5]
BF BinsFormer Li et al. [33]
BFn BinsFormer without pre-trained encoder
UD URCDC-Depth Shao et al. [49]

MIM SwinV2-L 1K-MIM Xie et al. [55]

Table 3. List of MDE methods that are used in one of the experi-
ments, or for which the results are sourced for Experiment 3.

ciency, while greater values at the end of training corre-
spond to better final performance.

With this in mind, it is apparent how every (remaining)
individual cue method allows for a substantial increase in
training efficiency. Although IF is slightly worse than the
baseline at the very earliest stage of training, it achieved a
performance increase of more than 50% only slightly later.
Furthermore, every individual cue method allows for a de-
creased flu score, i.e. an increase in the stability of training.

When combining all cues (IRFO), there is still a siz-
able increase in training efficiency compared to the base-
line. However, it does not noticeably improve further upon
the individual cues. Finally, combining the cue methods
that originally increase the stability, does not cause a fur-
ther increase, but leads to the stability not being better than
the baseline.

Experiment 2 To interpret the results for this experiment
in Table 4 in terms of data efficiency (RQ2), three sub-
experiments are relevant: IRFO(Virt10), IRFO(Virt25)
and I(Virt100). These results together with the summary
in Table 5 show that training a cue model (a model that uses
all three successful cues) on 10% of the used training set
already leads to performance on the test that is worse than
the baseline model using 100% of the training data. How-
ever, when this amount is increased from 10% to 25% the
same baseline is outperformed for most metrics, and a sum-
marised exp score of 1.00 is generated. This means that the
cue model using 25% of the training data generates about
the same performance as the 100% training data baseline
model.

For studying the effect of increasing the amount of data
(RQ3) every pair of I and IRFO trained on the same
amount of data is to be compared. Table 5 is especially rel-
evant for this. For Virt10, Virt25 and Virt100 the exp scores
are 1.12, 1.09 and 1.08 respectively. For Virt10 the advan-
tage of using cues is the greatest, and for Virt100 it is the
smallest. However, the differences in exp scores are rather
small, and for Virt100 cues still allow the model to outper-
form its baseline for every metric.

Experiment 3 As can be seen in Table 4 and Figure 4 the
results of Experiment 3 do not mirror those of Experiment
1. Adding cues to the input causes lower performance at ev-
ery stage of training for the state-of-the-art methods (when
using pre-trained encoders). The only observed positive ef-
fect is the increase in stability for BinsFormer.

On the contrary, when no pre-training is used for Bins-
Former (BFn), the positive effects of adding cues are
present. Table 4 as well as Figure 4 show that for BFn the
addition of cues has a positive effect on the performance.

Experiment settings Thresholded difference (↑) ↓ ↓ ↓ ↓
MDE Input Split δ1/2 δ1 δ2 δ3 abs squ rms lms

Jib N Kitti .280 .365 .459 .587 .373 4.60 12.4 .683
Jib L Kitti .544 .698 .835 .910 .194 2.30 9.24 .363
Jib B Kitti .568 .737 .885 .950 .163 1.57 7.56 .292
Jib IB Eigen .700 .870 .966 .990 .110 .669 4.39 .176
Jib IL Eigen .694 .872 .967 .990 .110 .658 4.40 .176
Jib I Eigen .703 .876 .967 .990 .108 .653 4.35 .174
Jib IO Eigen .715 .882 .971 .993 .103 .583 4.20 .163
Jib IF Eigen .718 .884 .972 .993 .101 .569 4.15 .162
Jib IR Eigen .734 .892 .975 .994 .096 .526 4.05 .156
Jib IRFO Eigen .741 .894 .979 .995 .093 .494 3.90 .150
Jib I Virt10 .473 .845 .972 .988 .155 1.86 11.0 .212
Jib I Virt25 .563 .893 .978 .991 .129 1.40 9.76 .185
Jib I Virt100 .619 .893 .982 .993 .114 1.08 8.73 .171
Jib IRFO Virt10 .583 .894 .972 .982 .129 1.55 10.2 .177
Jib IRFO Virt25 .631 .912 .983 .991 .110 1.16 9.10 .165
Jib IRFO Virt100 .692 .926 .986 .993 .094 .970 8.54 .151
Eig I Eigen - .702 .898 .967 .203 1.55 6.30 .282
BFn I Eigen .720 .901 .979 .994 .101 .496 3.45 .140
BFn IRFO Eigen .732 .908 .984 .996 .096 .457 3.36 .133
BTS IRFO Eigen .824 .942 .991 .998 .068 .264 2.76 .105
AB IRFO Eigen .824 .950 .993 .999 .069 .246 2.70 .102

BTS I Eigen - .956 .993 .998 .059 .245 2.76 .096
BF IRFO Eigen .850 .956 .994 .999 .062 .213 2.42 .095
AB I Eigen - .964 .995 .999 .058 .190 2.36 .088
BF I Eigen - .974 .997 .999 .052 .151 2.10 .079
UD I Eigen - .977 .997 .999 .050 .142 2.03 .076

MIM I Eigen - .977 .998 1.00 .050 .139 1.97 .075

Table 4. Results from Experiment 0, 1a, 2 and 3. Each MDE method ID is described in Table 3.
Bold MDE IDs means the results are sourced from the literature. The input IDs refer to concatenated
methods from Table 2. Bold metric scores are the best, underlined the second.

IRFO
10 25 100

10 1.12 1.24 1.35
I 25 .991 1.09 1.18

100 .915 1.00 1.08

Table 5. Results from Experiment
2 summarised using the exp metric.
The row and column title values re-
fer to the percentage of Virt used
for each experiment. The IRFO
models act as experiment a, which
is compared to the I models (exper-
iment b), so a greater score repre-
sents an IRFO model outperform-
ing the I model it is compared to.
The underlined values are relevant
for data efficiency (RQ2), while
bold values are relevant for RQ3.

0 1 2 3 4

·104

1

1.5

2

2.5

Iterations

sq
u{

I}
/

sq
u{

cu
es
}

IR (.056)
IRFO (.067)
IF (.061)
IO (.055)
I (.067)

Figure 3. Experiment 1b (training efficiency). Greater scores cor-
respond to better performance. Scores result from the mean squ-
score of a window of three snapshots for both the baseline I and
each model that uses cues. For visualisation purposes, the former
is divided by the latter. The legend entries contain the flu scores.

0 0.2 0.4 0.6 0.8 1

·105

0.5

1

1.5

2

Iterations

sq
u{

m
de
;I
}/

sq
u{

m
de
;I
R
F
O
}

BFn (.067; .067)
Baseline

AB (.014; .021)
BF (.044; .029)

BTS (.015; .022)

Figure 4. Same set-up as Figure 3 for the models in Experiment 3.
The MDE methods are described in Table 3. The baseline is differ-
ent for each MDE method, namely that method with I input. The
legend entries contain the flu scores in comparison to the baseline
(I; IRFO).

6. Discussion

Linear perspective Linear perspective considerably out-
performs the baseline in Experiment 0, albeit with a smaller
difference than B. This indicates that the data extracted by
the linear perspective method contains relevant information
for depth estimation. Additionally, the linear perspective
constructs an image from scratch using information from
the input image, so it is not just a simple mutation of the in-
put image (e.g. conversion to grey-scale). This fact supports
the possibility that the linear perspective data is informative
on top of the input image.

However, Experiment 1 has shown that this is not the
case, since the addition of the linear perspective data does
not positively affect the depth estimation. One likely reason
is that the linear perspective cue only provides insight into a
global estimate of the relative depth. As shown by the near-
perfect δ3 metric results, this is not something that MDE
methods particularly struggle with. Therefore, the benefit
of adding linear perspective is likely minimal. Combined
with the fact that parallel edges (and linear perspective) are
not omnipresent, the linear perspective method might sim-
ply not have any value for the method. Lastly, the method
can be prone to inaccuracies, for example, because of in-
correct vanishing point detection. Incorrect cue information
leads to an incorrect representation of the estimated depth.

There are still many improvements or different meth-
ods that could be included. Examples include support for
more than one vanishing point, different ways of encod-
ing the extracted information, and inclusion of a confidence
measure. However, because linear perspective is not (suffi-
ciently) present in many images and because the results do
not show any sign of performance improvement, it is de-
cided to not explore linear perspective further.

Blur On the one hand, the method from Golestaneh and
Karam consists of a large amount of non-linear operations.
Therefore, a blur map could contain information that an
MDE method is not able to infer from the image data it-
self. On the other hand, if that is the case, the blur map still
needs to be both accurate and informative enough for the
estimation of depth. This does not seem to be the case since
no improvement is observed in Experiment 1.

For blur to be of use, the image needs to contain enough
differences in sharpness. While differences in sharpness can
be very clear in a professional photograph, they might be
less clear in the images of the KITTI data set. Therefore, the
blur map might not provide enough additional information
to the MDE methods. Furthermore, if blur is not sufficiently
present in the image, the method could be more useful for
texture gradient. However, similarly to linear perspective,
this information might simply not provide any information
that cannot be extracted from an RGB image. Finally, the

sharpness values might be inaccurate due to shortcomings
of the method. For example, a uniform texture positioned
near the focal point might be falsely identified as being
blurred.

While alternative methods could be used to extract blur
and/or texture gradient information, these would likely also
suffer from the previously described issues, which is why
blur and texture gradient are not further explored.

Familiar size The increase in training efficiency can be
explained by the fact that determining depth from the ap-
proximate dimensions of an object likely requires fewer op-
erations than determining it from image data. Therefore,
learning these operations should require fewer training iter-
ations. Additionally, the MDE methods do not need to learn
the position and shape of salient objects. Besides training
efficiency, training stability is also increased. A possible
explanation for this is that the familiar size data is more
uniform than the image data. Less variety in the input data
could lead to less variety in the estimation. Furthermore, to
replicate the steps from the familiar size method, an MDE
method would need to learn object recognition. It might not
have enough training data and enough capacity to learn to
extract this information aside from the other steps needed
for depth estimation. While replication of the method is
likely not needed to match or outperform the performance,
it can explain why there is a substantial performance differ-
ence after finishing training.

A shortcoming of the familiar size method is the spar-
sity of its output. All objects present in the image that are
not recognised are not included in the final encoding. Addi-
tionally, the names of predicted classes are a bottleneck for
the method. An example of why this can be problematic is
the class name ‘truck’, which could both refer to a ‘pick-up
truck’ and a ‘semi-truck’, two objects with great differences
in dimensions. Similarly, the chosen dimensions for each
class might not be accurate for each instance of that class
(e.g. instances of the class ‘car’ can exhibit significant vari-
ation in their dimensions). Incorrect dimensions can lead
to incorrect depth predictions. All of these issues can be
minimised by incorporating an object recognition method
that includes more diverse classes and more specific classes
(e.g. one that supports both ‘pick-up truck‘ and ‘semi-truck’
as classes, instead of only ‘truck’). However, such a method
has its own drawbacks, which are further discussed in Sub-
section 7.1.

Overlap The results of overlap mostly mirror those of fa-
miliar size, albeit slightly subpar (except for the greater in-
stability). The improvement of the training efficiency and
final performance could be explained by the provided posi-
tion and shape of salient objects. For overlap, this feature
of the data is more expressive than it is for familiar size,

since neighbouring objects of the same class have differ-
ent values. By receiving this information as input, the MDE
method does not need to learn it itself, which frees up capac-
ity for further improving the depth estimation. The reason
that it performs subpar to familiar size is likely that famil-
iar size does not just contain information about position and
shape, but also the approximate dimension, which should
be more meaningful for depth estimation than the ordering
overlap provides. The stability improvement could be ex-
plained by the increased uniformity of the input data, as it
is for familiar size.

Like familiar size, the overlap method is also limited by
the number of classes the object recognition is trained on.
Unlike familiar size, overlap does not suffer from any inac-
curacies due to ambiguity or non-specificity of class names,
since only the object masks are used.

Relative size The relative size (and foreshortening)
method causes substantial increases in final performance
and training efficiency. Both can be explained by the fact
that in a human-analogous way, the MDE method utilises
prior knowledge about the similarity of (parts of) objects.
In combination with the observed object sizes, this prior
knowledge allows for estimating depth. Because an MDE
method does not need to learn to extract this from the image
data, it is able to generate better performance at an earlier
stage. The better final performance can be explained by the
fact that this knowledge cannot be learnt from the image
data. This information is so useful, that the cue method can
outperform the other ones. Although the fact that relative
size produces dense data, unlike overlap and familiar size,
might also have a significant effect. A possible explanation
for the increased stability could be that STEGO produces
data that is more uniform than the input data. While colours
within a single image may vary significantly, STEGO is
trained to produce similar values for pixels within a single
object.

The relative size method has an additional advantage
over familiar size and overlap: it uses unsupervised train-
ing. This could mean that depth estimation can be further
improved by utilising a method that does not rely on any
sort of labelled data. One of the main hurdles of monoc-
ular depth estimation is that it requires large data sets of
accurate ground truth depth maps, which can be hard to ob-
tain [17]. The relative size vectoriser only requires images,
which are widely available. New depth estimation methods
could therefore consist of a vectoriser and a depth estimator.
The vectoriser can then be trained unsupervised on a large
collection of images, including the input images from the
depth data set. After this, the depth estimator can be trained
using the ground truth depth data and the images with vec-
torised pixels.

Combining cues By combining all three successful cue
methods (IRFO), the best final performance is achieved.
Familiar size produces the same value for neighbouring ob-
jects of the same class, which could be misinterpreted as
them being a single object. Overlap uses the same masks as
familiar size, but produces separate values for neighbour-
ing objects. Adding overlap to familiar size could there-
fore mitigate that problem and improve performance. Ap-
pendix D contains results that support this. Additionally,
since these two methods work quite differently than rela-
tive size, they might contain knowledge that is not present
in the relative size encodings. Finally, although more use-
ful data is present in each image, the data also has a greater
dimensionality, complexity and variability. This could ex-
plain why the training efficiency is not noticeably improved
and why the stability is decreased.

Data efficiency The results show that the model using
cues requires considerably less data to reach the same per-
formance as the model without cues. For every training
instance, more data that is relevant for depth estimation is
present. This gives the model more insight into the depth
of each instance. A model requiring fewer data for train-
ing enhances the usability of the model, since it can reach
acceptable performance on a greater amount of data sets.

More training data The results from Experiment 2 show
that increasing the amount of available training data de-
creases the effect that the cues have on performance. How-
ever, when all of the training data is used a sizable differ-
ence remains, with no indication of this difference being
eliminated when even more training data would be present.
First of all, this can be attributed to the limited capacity of
the model. Cues provide a way of ‘out-sourcing’ capacity
from the model to the cue extraction methods. Therefore,
using cues provides an advantage that cannot be overcome
by using more training data. Repeating the same experi-
ments for a model with greater capacity would likely re-
sult in less substantial differences. But such a model is still
limited by the information present in the depth data set it
is trained on. The cues are trained on different data sets,
which contain information unseen in the used depth data
set. Given that this information is relevant for depth estima-
tion, the benefits of using cues should remain.

State-of-the-art Applying the three successful cues to
state-of-the-art methods does not improve performance in
any way. Although the stability is improved for Bins-
Former, it is worsened for AdaBins and BTS, making that
result irrelevant. On the other hand, for Experiment 1b,
BinsFormer without pre-training was positively influenced
by the cues.

This means that cues can are able to improve state-of-
the-art methods, but they are in conflict with the methods
used for pre-training the encoders of those methods. Similar
to cues, the pre-training methods improve depth estimation
by incorporating knowledge that the MDE method cannot
learn from its data set. They provide an increase in depth
estimation that cannot be matched by just using cues. But
the pre-training is heavily biased towards only image inputs,
leading to a decrease in performance when both cues and
pre-trained encoders are used.

The cues are an alternative way of improving depth esti-
mation. While currently, the encoder pre-training achieves
better performance, the cue methods have a lot of room
for optimisation (see Subsection 7.1). Furthermore, an
advantage of cues over encoder pre-training, is that dif-
ferent methods can easily be concatenated. The knowl-
edge from multiple data sets and different methods all be
combined into one input image. Finally, using cues and
a pre-trained encoder are not necessarily mutually exclu-
sive. While the current pre-trained encoders are all biased
towards 3-channel images, an encoder could also be pre-
trained specifically for N-channel images that contain cue
information. In fact, masked image modelling (MIM) [55]
is a pre-training method that is not dependent on a spe-
cific number of image channels, while also having led to
the best-known MDE performance on Eigen [55]. The re-
sulting MDE method would benefit from both the cues and
the encoder pre-training. Future work consists of creating
such a method, which is further described in Subsection 7.1.

Model instability The reason why BinsFormer is used for
Experiment 1b instead of the model described in Subsec-
tion 4.1, is that the latter suffers from instability problems
when the relative size is used. When this is the case, the
model does not produce anything meaningful for many it-
erations until at some arbitrary point its depth estimations
improve, making a comparison of training efficiency im-
possible. One likely reason for this is that due to the greater
amount of channels and possibly greater complexity of rel-
ative size, the generator takes longer to learn depth estima-
tion. The discriminator could then quickly learn to distin-
guish between real and fake depth maps causing a high loss
for the generator. After big changes to the weights at every
iteration, at some arbitrary point in training, the generator
does learn to fool the discriminator, and training can con-
tinue as usual. While not having a noticeable effect on the
final performance, the training efficiency is greatly nega-
tively affected. Due to this issue, the use of a cGAN might
not be desirable for MDE when cues are used.

7. Conclusion
This work has shown that the addition of biological depth
cues to the input space has many positive effects on monoc-

ular depth estimation. Three out of five incorporated cue
methods cause a substantial increase in the final perfor-
mance. All three also increase both the training efficiency
and stability during training. Adding all these three meth-
ods to the input space (hereinafter called cue model) results
in an additional increase in the final performance. Fur-
thermore, the cue model requires much less data. On the
used data set, the cue model with 25% of the training data
achieved about the same performance as the baseline using
100% of the training data. Finally, while the utilisation of
more training data decreases the effect of the cues, a sub-
stantial increase in performance is still present.

The reason for this is that cues still provide a way of ‘out-
sourcing’ model capacity that ensures an advantage over a
non-cue model. While an increase in capacity could de-
crease the benefit the cues provide, such a model is still
limited by what it can learn from the data by available depth
data sets. The cue methods can be trained on different data,
providing information that is not present in the depth data
set used. This is especially beneficial for relative size, since
it uses unsupervised training, leading to a method that can
improve depth estimation, while only needing images for
training.

RQ1) Effect of biological cues on MDE All cue meth-
ods showed that they produce useful information for depth
estimation by outperforming the baseline N in Experiment
0. However, Experiment 1 showed that adding blur or linear
perspective to the image input does not improve the depth
estimation. The other cue methods show that they produce
information that the model used cannot learn from the im-
age data. Including familiar size, overlap or relative size in
the input leads to a substantial increase in final performance
and training efficiency. Combining all three cue methods
further increases final performance.

RQ2) Data efficiency The prior knowledge present in
the cue methods ensures that more relevant information is
present in each training instance, and consequently that the
model needs fewer instances to achieve the same perfor-
mance. For the data set used, using only 25% of the training
data with cues leads to similar performance to using all the
training data without cues.

RQ3) Effect of an increase in data The benefits provided
by using cues are most prevalent when smaller amounts of
data are used. While increasing the amount of data does
decrease the positive effects the cues have on the final per-
formance, there is still a substantial difference between the
model using cues and the baseline, with no indication of
them reaching equal performance when even more data
would be available. Therefore, the used model does not
have the capacity to learn to diminish the advantages of

the prior knowledge provided by the cues. A model with
a greater capacity would still be limited by the information
present in the data set it is trained on. The cue methods can
be trained on other data sets, leading to prior knowledge that
cannot be learnt from the used depth data set.

RQ4) Comparison against state-of-the-art The benefits
of using cues have not been reproduced when applying them
to state-of-the-art methods. However, when the image en-
coder of a state-of-the-art method is not pre-trained, the
cues do improve performance. This is because currently,
these methods use pre-trained image encoders that are bi-
ased towards RGB images. While currently, the cues are in
conflict with this, a future method could use an encoder that
is pre-trained using images with cues. Such a method would
benefit from both the cues and the encoder pre-training.
This is part of future work.

7.1. Future work

One goal of future work is to outperform the state-of-the-
art by using cues. To achieve this, a state-of-the-art MDE
method will be used. The encoder is to be specifically pre-
trained for these cue methods. The best-known performance
on Eigen was achieved using BinsFormer [33] where the
encoder was pre-trained in an unsupervised manner using
masked image modelling (MIM) [55]. Since MIM is not
dependent on a certain amount of image channels, a future
setup could work as follows: cue methods are trained using
their own data set; the frozen cue methods are applied to
the images used to pre-train the encoder using MIM; the
trained encoder is used for BinsFormer; finally, the frozen
cue methods are applied to the images from an MDE data
set, which are used to train BinsFormer to produce depth.

Furthermore, in terms of cues, a broad approach was
taken for this work: every known cue that is in line with
MDE requirements and operates at a relevant depth scale is
included. It has been established that further exploring lin-
ear perspective and blur is not deemed advantageous, while
familiar size & overlap and relative size show great poten-
tial. Therefore, future work includes the further improve-
ment of these cue methods, with the goal of further improv-
ing MDE, while also improving the runtime performance so
that the cue methods can be executed ‘live’ during training.

Familiar size & overlap The main limitation of the fa-
miliar size and overlap methods is the number of classes that
are used by the object recognition method. Both cue meth-
ods produce sparse data. Additionally, for familiar size, the
dimension values are prone to inaccuracies due to ambigu-
ous class names and the average chosen dimensions being
incorrect for an instance. All of these issues can be min-
imised by incorporating an object recognition method that

can predict more classes, but such a method is prone to an
increased estimation error [4].

An alternate way is using an end-to-end method that
takes in an image and directly predicts the approximate
height, width and depth, as well as the overlap ordering.
While inaccuracies in the method could still lead to inaccu-
racies in the output, it would not suffer from the previously
described issues. For training this method, virtual data can
be used, similarly to the Virt data set. Instead of getting
the depth from every pixel, the dimensions and ordering of
the object of every pixel are gathered. The dimensions are
present in the 3D model used for every object in a produced
image, ensuring that the ground truth data is actually cor-
rect. Some fine-tuning on real images might be necessary,
but by training most of the methods on virtual data, rela-
tively little manual labour is required.

Relative size & foreshortening Improving the relative
size method mostly consists of the creation of an image vec-
toriser where the focus does not lie on image segmentation
but on the usefulness of the vectors for depth estimation.
The method can be based on STEGO [19], but a more effi-
cient encoder-decoder architecture, variable input size and
a different number of output channels might be preferable.
The training still consists of unsupervised training, taking
advantage of the omnipresence of unlabelled images to gain
knowledge about pixel similarities.

Appendix A. Model Details

Figure 5 shows an overview of the MDE model. The re-
mainder of this Appendix describes the ‘pix2pix’ architec-
ture, as well as the changes made to it by Al-jibouri, and the
changes made for this work. A detailed description of the
layers for both the generator and discriminator is provided
as well.

Generator As mentioned at the beginning of Section 4,
this work continues on the work of Al-jibouri [2], which
used a cGAN according to the ‘pix2pix’ configuration [24].
In this configuration, the ‘U-Net’-based generator consists
of convolutional layers that progressively downsample an
input image into more compact representations, until a ‘bot-
tleneck’ is reached, which is progressively upsampled until
the output has the same shape as the input image [44]. Ad-
ditionally, skip-connections are present between mirrored
layers, which stack the output of those pairs of layers. This
allows for low-level information to pass over the bottle-
neck. Therefore, the bottleneck is still incentivised to con-
tain information relevant to the image conversion but does
not need to represent the entire input image, as a standard
encoder-decoder would.

Depth Mask

RGB-D image

Separate

RGB (3-channel) image

Real Depth Map

Extract mask

StackExtract cues

N-channel image

Generator

Fake Depth Map

Apply mask

Masked Depth Map

Discriminator

Stack

Fake RGB-D image

Real/Fake

Loss

Figure 5. Schematic that shows for a single RGB-D image how
it is used to train both the generator and the discriminator of the
model.

Al-jibouri changed the number of output channels from
3 to 1 since no RGB image needs to be created but only a
depth value for every pixel. For this work, the number of
input channels is changed from 3 to N , which allows for
the addition of extra cue-related channels to be added to an
input image. Since Al-jibouri normalised the ground truth
depth data into the interval [1, -1], a hyperbolic tangent [50]
was used as the final activation function. For this work,
the ground truth depth is not normalised and rectified linear
unit (ReLU) [50] is used as the final activation. This allows
for absolute values to be produced by the method, which
improves the real-world utility and allows for metrics that
have a unit to be calculated. Lastly, while Al-jibouri used
a fixed image shape of 256x256, this is not required by the
model, since it is fully convolutional. Therefore, no fixed
image size is used, which does require that at every forward
call the output of an upscaling layer is forced into the same
shape as the output of its mirror layer. The layers of the
generator are described in Table 6.

Before the output of the generator is passed onto the dis-
criminator, two extra transforms are performed. First, the
depth values are clamped to the maximum value possible in
the ground truth data set (which is almost 256m for Kitti,
see Appendix E). Afterwards, the result is masked accord-
ing to the mask of the ground truth depth map. The maxi-
mum possible value and mask are consequences of the way
depth data is stored and the limitations of measuring con-
ditions. While they are properties of the ground truth data,
they are not inherent properties of depth estimation. There-
fore, the two transformations are applied, so that the gener-
ator is not incentivised to clamp or mask the output itself.
This has two benefits: the generator does not need to suffer
from the same limitations as the ground truth and it does not

Type Features Skip Activation
1 Conv N → 64 Leaky
2 Conv 64→ 128
3 Norm 128 Leaky
4 Conv 128→ 256
5 Norm 256 Leaky
6 Conv 256→ 512
7 Norm 512 Leaky
8 Conv 512→ 512
9 Norm 512 Leaky
10 Conv 512→ 512
11 Norm 512 Leaky
12 Conv 512→ 512
13 Norm 512 Leaky
14 Conv 512→ 512 ReLU
15 Deconv 512→ 512
16 Norm 512
17 Dropout 13 ReLU
18 Deconv 1024→ 512
19 Norm 512
20 Dropout 11 ReLU
21 Deconv 1024→ 512
22 Norm 512
23 Dropout 9 ReLU
24 Deconv 1024→ 512
25 Norm 1024 7 ReLU
26 Deconv 1024→ 256
27 Norm 256 5 ReLU
28 Deconv 512→ 128
29 Norm 128 3 ReLU
30 Deconv 128→ 64
31 Norm 64 1 ReLU
32 Deconv 128→ 1 ReLU

Table 6. Layers of the generator. A description of the terms can be
found in Table 8

need to allocate capacity for producing features that are not
related to depth estimation.

Discriminator The discriminator has the same configura-
tion as ‘pix2pix’ [24] and Al-jibouri [2]. The input of the
discriminator is a 4-channel image, consisting of the three
RGB channels and a channel containing the depth. Sim-
ilar to the generator, the input is progressively downsam-
pled by the convolutional layers into representations of a
smaller shape, but greater depth. The final convolutional
layer transforms the deepest representation into a single
channel, before the sigmoid activation [50] is applied. All
values in this output patch are encouraged to approximate
1 for real RGB-D images and 0 for fake RGB-D images.
This is achieved by generating a patch with either only ones
or only zeroes during training, depending on the legitimacy

Type Features Stride Activation
Conv 4→ 64 2 Leaky
Conv 64→ 128 2
Norm 128 Leaky
Conv 128→ 256 2
Norm 256 Leaky
Conv 256→ 512 1
Norm 512 Leaky
Conv 512→ 1 1 Sigmoid

Table 7. Layers of the discriminator. A description of the terms
can be found in Table 8

of the depth map. For Al-jibouri this patch is a fixed shape
since the input image has a fixed shape as well. To allow
for multiple image dimensions, the desired patch is made
the same shape as the output patch for every iteration. This
desired patch and the output patch are used to determine the
loss, which is propagated back through the layers of the dis-
criminator. The layers of the discriminator can be found in
Table 7.

Training During training, RGB-D images are passed
through both networks as depicted in Figure 5. While
pix2pix uses a batch size of 32, Al-jibouri uses a batch size
of 1, this effectively converts the batch normalisation layers
into instance normalisation, which has been shown to in-
crease performance for image generation tasks [54]. While
this does increase training time, the same batch size is used
for this work as there is an additional drawback of using
a batch size greater than 1. Namely, images in a batch all
need to be of the same size, which is conflict with the goal
that training can be done on various image shapes. A solu-
tion for this could be to use batches made from single image
shapes, but in this process, some of the randomness of the
order of training is lost and it is unlikely that all training
data can be used every epoch.

During each training iteration, the loss for the generator
and discriminator is calculated. As mentioned before, the
loss for the discriminator is the binary cross entropy [45]
between the output patch and the desired patch. The final
loss is the sum of the losses of both the real and the fake
RGB-D pair. For the generator, the binary cross entropy
loss is calculated for the fake RGB-D pair, but the desired
patch is all ones instead of zeroes. Additionally, the L1 loss
[58] is calculated between the (masked) fake depth map and
the real depth map. The latter is multiplied by 100 before it
is added to the former, to ensure both losses are in the same
order of magnitude.

Pix2pix uses the Adam optimiser [27] for updating the
network weights. For both networks the learning rate is
2 · 10−4 and β1 and β2 are .5 and .999 respectively. Al-
jibouri replaced the optimiser for the discriminator with

Type The kind of layer that is used.
Features For convolutions the number of input features

and output features. For normalisation the
number of features.

Skip The output of which layer is concatenated to
the output of the respective layer before the ac-
tivation function is applied.

Stride The stride of a convolution or convolutional
transpose.

Activation Activation function that is applied to the out-
put of the respective layer.

Conv 2D-convolutional layer with a certain amount
of input and output features, kernel size 4x4
and padding of 1. The stride is 2 for every
convolutional layer of the generator, and 1 or
2 for the convolutional layers of the discrimi-
nator.

Norm 2D-instance normalisation layer with a certain
amount of features, momentum of .1, epsilon
of .00001 and no learnable affine parameters.

Deconv 2D-convolutional transpose layer with a cer-
tain amount of input and output features, ker-
nel size 4x4, padding of 1, output padding of 0
and stride 2. At every forward call, the output
is forced into the same shape as the output of
the next skip connection. For the final layer,
the output is forced into the same height and
width of the input.

Dropout Layer that randomly makes some of the ele-
ments from the output of the previous layer
zero with probability .5, as a regularisation
measure.

Leaky Leaky ReLU activation function with .2 as
negative slope.

ReLU ReLU activation function.
Sigmoid Sigmoid activation function.

Table 8. Descriptions for the terms used in Tables 6 and 7

stochastic gradient descent with the same learning rate, as
a measure for improving stability. The same optimiser was
experimented with for this work, and while stability in the
performance during training was improved, the achieved
performance was hindered as well. Instead, the Adam opti-
miser is used again for both networks, but the learning rate
is replaced by 10−5 and b1 by .9 for both networks. These
measures ensure that a single training instance has less im-
pact on the weights and that the change of each weight is
more dependent on previous iterations, respectively. These
measures seem to improve stability without noticeably hin-
dering performance.

0 0.2 0.4 0.6 0.8 1

·106

0.7

0.8

0.9

1

Iterations

δ3 ↑
δ1 ↑

max ↕
rms ↓
abs ↓

Figure 6. Relative change of different metrics during training
of the baseline model (I) for Experiment 1a. These results are
achieved by training the model on Eigen and evaluating a shap-
shot of the model on the test set every 10.000 iterations. Each
value is determined by calculating the average from a window of
7 snapshots and dividing it by the maximum observed value of the
metric.

Appendix B. Maximum Depth

Originally, maximum depth was used as a metric. The
recorded depth of a data set can be limited by the maxi-
mum distance that can be measured, resulting in the ground
truth depth map containing many unmeasured pixels. This
is prevalent in the Kitti data set, where depth values are
not greater than 90 meters (see Appendix E). The output
of the generator is masked according to the pixels that have
a ground truth value (see Figure 5), so that it is still incen-
tivised to produce depth values for pixels that do not have
a ground truth depth value. Consider two depth estimators:
one that produces a high-quality complete depth map and
one that produces the same quality of depth for the masked
pixels but produces arbitrary values for the other pixels. The
former would be considered to have a better understanding
of the depth, but they would have equal performance for all
other metrics. However, the former would have a higher
maximum depth.

To determine max, the maximum value that is predicted
(before any mask is applied) is determined for every test im-
age, after which the average value over all test images is de-
termined. While it cannot be known for certain that greater
maximum depth corresponds to a better model, Figure 6
does show that max follows a similar path to the ↑-metrics.
It has low scores and quick growth early on, and high scores
and slow growth later on. Additionally, while the other met-
rics seem to reach a horizontal asymptote, max seems to
grow linearly (albeit slowly) after about 400.000 iterations.

IB IL IO IF IR IRFO
.083 .138 .142 .478 .962 .965
.332 .552 .568 .956 1.05 1.05

Table 9. The cue dependency ration results for Experiment 1b. The
first row consists of the original values, the second row of those
values normalised by the number of channels in the cue (multiplied
by N/Nc, Nc is the number of cue channels). Bold represent the
greatest cue score, while underlined the second.

Furthermore, a qualitative visual investigation lead to the
observation that later snapshots predicted depth values for
unlabelled areas in images, for which earlier snapshots did
not.

All of these observations are supportive of the idea that a
greater max corresponds to the model having a better ‘depth
understanding’ without simply learning to produce values
for the labelled pixels. On the other hand, cue models that
significantly outperform the baseline in all the other metrics
do not get greater max scores. This makes the maximum
depth metric less relevant for this work. Additionally, the
metric is not compatible with state-of-the-art methods that
use bins (AdaBins and BinsFormer), since these use a lim-
ited depth range. Although max could still correspond to
‘depth understanding’, any decisive conclusion cannot be
drawn. Because of these reasons, the maximum depth met-
ric is removed from the core of this research but kept as an
Appendix.

Appendix C. Cue Dependency Ratio
The cue dependency ratio was also originally used as a met-
ric. It measures how the weights of the first convolutional
layer are linked to the channels of each cue:

1

|W|
∑
K∈W

[
1∑

w∈K |w|
∑
w∈Kc

|w|

]

W contains all the kernels K of the first convolutional layer
of the generator. Each kernel consists of weights w that are
not biases, Kc ⊆ K contains only the weights in kernel K
corresponding to cue channels. The normalisation of the
weights refers to the fact that every value w is the actual
weight multiplied by the average value of the image channel
it links to. This average is taken from all the non-zero values
from that image channel in the training set.

Table 9 shows the results of this metric for Experiment
1a. It immediately becomes clear how the metric is biased
towards the number of channels a cue has. A cue not im-
proving depth estimation, does not result in the model mak-
ing all weights linked to that cue’s channels (close to) zero.
Normalising the values according to the number of channels
generates scores that are somewhat in line with the scores of
other metrics. However, IO scores only slightly better than

0 0.2 0.4 0.6 0.8 1

·106

1

1.005

1.01

1.015

1.02

Iterations

IFO
IF
IO
I

Figure 7. Thresholded difference δ1 (↑) of different models from
Experiment 1a during training. These results are achieved by train-
ing the model on Eigen and evaluating a shapshot of the model on
the test set every 10.000 iterations. Each value is determined by
calculating the average from a window of 7 snapshots and dividing
it by the 7-average of the baseline model.

IL, and IRFO does not perform better than IR. Because
of these unmeaningful results and the fact that normalising
the scores does not make the metric a ratio anymore, the
cue dependency ratio has been excluded from the core of
this research.

Appendix D. IFO
Originally, IFO was included as an extra model in Exper-
iment 1. Familiar size (F) generates the same values for
neighbouring objects, which could be misinterpreted by an
MDE method as them being a single object. Since over-
lap (O) generates different values for neighbouring objects,
adding it to the input could mitigate that problem and im-
prove performance. Since the results of Experiments 1a and
1b did not support this, IFO has been excluded from the
core of this research. However, the original training ef-
ficiency results (with the model from Subsection 4.1) did
show that IFO can improve upon the performance of IF ,
see Figure 7.

Appendix E. Data sets
Figure 8 shows the differences between a sparse depth map
(KITTI) and a dense depth map (the contributed virtual data
set). Figure 9 shows images from different virtual data sets.

KITTI The KITTI data set was collected by Geiger et al.
using a car fitted with multiple sensors. These sensors in-
cluded both grey-scale and colour binocular cameras, and a

Figure 8. RGB-depth pair for both KITTI (top, sparse depth) and
the virtual data set (bottom, dense depth).

MVS-Synth [22] Monkaa [38]

FlyingThings3D [38] Driving [38]

Virtual KITTI 2 [6] Contribution

Figure 9. RGB images present in different virtual data sets.

rotating 3D laser scanner. The car was driven along German
roads. The recorded data was processed into a data set that
includes binocular images with ground-truth sparse depth
data for either image. The data is split into train and test sets
containing around 57 and 23 thousand images respectively
[16]. The depth data is stored as 16-bit unsigned integer val-
ues, which have a maximum possible value of 65535. Di-
viding these values by 256 converts them to meters, which
makes the greatest possible distance that can be stored a bit
less than 256 meters. Figure 10 shows that the greatest dis-
tance in the KITTI training set is 90 meters, which is well
within range.

References
[1] Mehrnaz Farokhnejad Afshar, Zahra Shirmohammadi,

Seyyed Amir Ali Ghafourian Ghahramani, Azadeh Noorpar-

1 10 20 30 40 50 60 70 80 90
0

2

4

6

8
·108

Figure 10. Histogram of non-zero distances (rounded to meters)
of pixels in the training set of the KITTI data set [16]. Pixels with
values higher than 90 meters do not exist in this set.

var, and Ali Mohammad Afshin Hemmatyar. An Efficient
Approach to Monocular Depth Estimation for Autonomous
Vehicle Perception Systems. Sustainability, 15(11), 2023.
ISSN 2071-1050. doi: 10.3390/su15118897. URL https:
//www.mdpi.com/2071-1050/15/11/8897.

[2] Zina Al-jibouri. Improving depth estimation in an automated
privacy-preserving video processing system. Master’s thesis,
Radboud University, Nijmegen, NL, April 2020.

[3] D. Auty and K. Mikolajczyk. Monocular Depth Es-
timation Using Cues Inspired by Biological Vision
Systems. In 2022 26th International Conference on
Pattern Recognition (ICPR), pages 4051–4057, Los
Alamitos, CA, USA, aug 2022. IEEE Computer So-
ciety. doi: 10.1109/ICPR56361.2022.9956454. URL
https://doi.ieeecomputersociety.org/10.
1109/ICPR56361.2022.9956454.

[4] Andrew R Barron. Approximation and estimation bounds for
artificial neural networks. Machine learning, 14:115–133,
1994.

[5] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka.
AdaBins: Depth Estimation Using Adaptive Bins. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4009–4018, June
2021.

[6] Yohann Cabon, Naila Murray, and M. Humenberger. Virtual
KITTI 2. ArXiv, abs/2001.10773, 2020. URL https:
//api.semanticscholar.org/CorpusID:
210942959.

[7] John Canny. A Computational Approach to Edge Detection.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, PAMI-8(6):679–698, 1986. doi: 10.1109/TPAMI.
1986.4767851.

[8] Ingrid Carlbom and Joseph Paciorek. Planar geometric pro-
jections and viewing transformations. ACM Computing Sur-
veys (CSUR), 10(4):465–502, 1978.

[9] Guang Chen, Hu Cao, Jorg Conradt, Huajin Tang, Florian
Rohrbein, and Alois Knoll. Event-Based Neuromorphic Vi-
sion for Autonomous Driving: A Paradigm Shift for Bio-
Inspired Visual Sensing and Perception. IEEE Signal Pro-
cessing Magazine, 37(4):34–49, 2020. doi: 10.1109/MSP.
2020.2985815.

[10] Richard J. Chen, Faisal Mahmood, Alan Loddon Yuille,
and N. Durr. Rethinking Monocular Depth Estima-
tion with Adversarial Training. ArXiv, abs/1808.07528,
2018. URL https://api.semanticscholar.org/
CorpusID:52076600.

[11] Christian Dornhege Wolfram Burgard Christian Zimmer-
mann, Tim Welschehold and Thomas Brox. 3D Human Pose
Estimation in RGBD Images for Robotic Task Learning. In
IEEE International Conference on Robotics and Automa-
tion, ICRA, 2018. URL https://lmb.informatik.
uni-freiburg.de/projects/rgbd-pose3d/.

[12] Lucı́a Conde Moreno. Automated Privacy-Preserving Video
Processing through Anonymized 3D Scene Reconstruction.
Master’s thesis, Utrecht University, Utrecht, NL, September
2019.

[13] Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip
Hausser, Caner Hazirbas, Vladimir Golkov, Patrick van der
Smagt, Daniel Cremers, and Thomas Brox. FlowNet: Learn-
ing Optical Flow with Convolutional Networks. 2015 IEEE
International Conference on Computer Vision (ICCV), Dec
2015. doi: 10.1109/iccv.2015.316. URL http://dx.
doi.org/10.1109/ICCV.2015.316.

[14] David Eigen, Christian Puhrsch, and Rob Fergus. Depth
Map Prediction from a Single Image using a Multi-Scale
Deep Network. In NIPS, 2014. URL https://api.
semanticscholar.org/CorpusID:2255738.

[15] Itzhak Fogel and Dov Sagi. Gabor filters as texture discrim-
inator. Biological cybernetics, 61(2):103–113, 1989.

[16] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The KITTI dataset. The
International Journal of Robotics Research, 32(11):1231–
1237, 2013.

[17] Clement Godard, Oisin Mac Aodha, and Gabriel J. Brostow.
Unsupervised Monocular Depth Estimation with Left-Right
Consistency. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jul 2017. doi: 10.1109/
cvpr.2017.699. URL http://dx.doi.org/10.1109/
CVPR.2017.699.

[18] S. Golestaneh and Lina Karam. Spatially-Varying Blur De-
tection Based on Multiscale Fused and Sorted Transform Co-
efficients of Gradient Magnitudes. 03 2017.

https://www.mdpi.com/2071-1050/15/11/8897
https://www.mdpi.com/2071-1050/15/11/8897
https://doi.ieeecomputersociety.org/10.1109/ICPR56361.2022.9956454
https://doi.ieeecomputersociety.org/10.1109/ICPR56361.2022.9956454
https://api.semanticscholar.org/CorpusID:210942959
https://api.semanticscholar.org/CorpusID:210942959
https://api.semanticscholar.org/CorpusID:210942959
https://api.semanticscholar.org/CorpusID:52076600
https://api.semanticscholar.org/CorpusID:52076600
https://lmb.informatik.uni-freiburg.de/projects/rgbd-pose3d/
https://lmb.informatik.uni-freiburg.de/projects/rgbd-pose3d/
http://dx.doi.org/10.1109/ICCV.2015.316
http://dx.doi.org/10.1109/ICCV.2015.316
https://api.semanticscholar.org/CorpusID:2255738
https://api.semanticscholar.org/CorpusID:2255738
http://dx.doi.org/10.1109/CVPR.2017.699
http://dx.doi.org/10.1109/CVPR.2017.699

[19] Mark Hamilton, Zhoutong Zhang, Bharath Hariharan, Noah
Snavely, and William T. Freeman. Unsupervised Seman-
tic Segmentation by Distilling Feature Correspondences.
ArXiv, abs/2203.08414, 2022. URL https://api.
semanticscholar.org/CorpusID:247476291.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), Jun 2016. doi: 10.1109/cvpr.2016.90. URL http:
//dx.doi.org/10.1109/cvpr.2016.90.

[21] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Gir-
shick. Mask R-CNN. 2017 IEEE International Confer-
ence on Computer Vision (ICCV), Oct 2017. doi: 10.1109/
iccv.2017.322. URL http://dx.doi.org/10.1109/
ICCV.2017.322.

[22] Po-Han Huang, Kevin Matzen, Johannes Kopf, Narendra
Ahuja, and Jia-Bin Huang. DeepMVS: Learning Multi-View
Stereopsis. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2018.

[23] J. Illingworth and J. Kittler. A survey of the
hough transform. Computer Vision, Graphics, and
Image Processing, 44(1):87–116, 1988. ISSN 0734-
189X. doi: https://doi.org/10.1016/S0734-189X(88)
80033-1. URL https://www.sciencedirect.com/
science/article/pii/S0734189X88800331.

[24] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A.
Efros. Image-to-Image Translation with Conditional Adver-
sarial Networks. 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jul 2017. doi: 10.1109/
cvpr.2017.632. URL http://dx.doi.org/10.1109/
CVPR.2017.632.

[25] Iliya V. Ivanov, Daniel J. Kramer, and Kathy T. Mullen.
The role of the foreshortening cue in the perception of
3D object slant. Vision Research, 94:41–50, 2014. ISSN
0042-6989. doi: https://doi.org/10.1016/j.visres.2013.10.
019. URL https://www.sciencedirect.com/
science/article/pii/S0042698913002617.

[26] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth Trans-
fer: Depth Extraction from Video Using Non-Parametric
Sampling. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(11):2144–2158, nov 2014. doi:
10.1109/tpami.2014.2316835. URL https://doi.org/
10.1109%2Ftpami.2014.2316835.

[27] Diederik P. Kingma and Jimmy Ba. Adam: A Method
for Stochastic Optimization. CoRR, abs/1412.6980,
2014. URL https://api.semanticscholar.org/
CorpusID:6628106.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. ImageNet Classification with Deep Convolu-
tional Neural Networks. In F. Pereira, C.J. Burges,
L. Bottou, and K.Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 25.

Curran Associates, Inc., 2012. URL https://
proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.
pdf.

[29] Aditya Kulkarni, Tharun Mohandoss, Daniel Northrup,
Ernest Mwebaze, and Hamed Alemohammad. Se-
mantic Segmentation of Medium-Resolution Satellite Im-
agery using Conditional Generative Adversarial Networks.
ArXiv, abs/2012.03093, 2020. URL https://api.
semanticscholar.org/CorpusID:227335388.

[30] Lubor Ladický, Jianbo Shi, and Marc Pollefeys. Pulling
Things out of Perspective. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pages 89–96,
2014. doi: 10.1109/CVPR.2014.19.

[31] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper Depth Prediction
with Fully Convolutional Residual Networks. 2016 Fourth
International Conference on 3D Vision (3DV), Oct 2016. doi:
10.1109/3dv.2016.32. URL http://dx.doi.org/10.
1109/3DV.2016.32.

[32] Jin Han Lee, Myung-Kyu Han, Dong Wook Ko, and Il Hong
Suh. From Big to Small: Multi-Scale Local Planar Guidance
for Monocular Depth Estimation. ArXiv, abs/1907.10326,
2019. URL https://api.semanticscholar.org/
CorpusID:198229801.

[33] Zhenyu Li, Xuyang Wang, Xianming Liu, and Jun-
jun Jiang. BinsFormer: Revisiting Adaptive Bins for
Monocular Depth Estimation. ArXiv, abs/2204.00987,
2022. URL https://api.semanticscholar.org/
CorpusID:247939833.

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: Common Ob-
jects in Context. Lecture Notes in Computer Science,
page 740–755, 2014. ISSN 1611-3349. doi: 10.1007/
978-3-319-10602-1 48. URL http://dx.doi.org/
10.1007/978-3-319-10602-1_48.

[35] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin Transformer:
Hierarchical Vision Transformer using Shifted Windows.
In 2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 9992–10002, 2021. doi: 10.1109/
ICCV48922.2021.00986.

[36] Mostafa Mansour, Pavel Davidson, Oleg Stepanov, and
Robert Piché. Relative Importance of Binocular Disparity
and Motion Parallax for Depth Estimation: A Computer Vi-
sion Approach. Remote Sensing, 11(17), 2019. ISSN 2072-
4292. doi: 10.3390/rs11171990. URL https://www.
mdpi.com/2072-4292/11/17/1990.

[37] George Mather and David R R Smith. Blur Discrimina-
tion and its Relation to Blur-Mediated Depth Perception.
Perception, 31(10):1211–1219, 2002. doi: 10.1068/p3254.

https://api.semanticscholar.org/CorpusID:247476291
https://api.semanticscholar.org/CorpusID:247476291
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/cvpr.2016.90
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/ICCV.2017.322
https://www.sciencedirect.com/science/article/pii/S0734189X88800331
https://www.sciencedirect.com/science/article/pii/S0734189X88800331
http://dx.doi.org/10.1109/CVPR.2017.632
http://dx.doi.org/10.1109/CVPR.2017.632
https://www.sciencedirect.com/science/article/pii/S0042698913002617
https://www.sciencedirect.com/science/article/pii/S0042698913002617
https://doi.org/10.1109%2Ftpami.2014.2316835
https://doi.org/10.1109%2Ftpami.2014.2316835
https://api.semanticscholar.org/CorpusID:6628106
https://api.semanticscholar.org/CorpusID:6628106
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://api.semanticscholar.org/CorpusID:227335388
https://api.semanticscholar.org/CorpusID:227335388
http://dx.doi.org/10.1109/3DV.2016.32
http://dx.doi.org/10.1109/3DV.2016.32
https://api.semanticscholar.org/CorpusID:198229801
https://api.semanticscholar.org/CorpusID:198229801
https://api.semanticscholar.org/CorpusID:247939833
https://api.semanticscholar.org/CorpusID:247939833
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1007/978-3-319-10602-1_48
https://www.mdpi.com/2072-4292/11/17/1990
https://www.mdpi.com/2072-4292/11/17/1990

URL https://doi.org/10.1068/p3254. PMID:
12430948.

[38] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016.

[39] Warren S. McCulloch and Walter Pitts. A logical calculus of
the ideas immanent in nervous activity. Bulletin of Mathe-
matical Biology, 52:99–115, 1990.

[40] Sidharth Mishra, Uttam Sarkar, Subhash Taraphder, Sanjoy
Datta, Devi Swain, Reshma Saikhom, Sasmita Panda, and
Menalsh Laishram. Principal Component Analysis. Interna-
tional Journal of Livestock Research, page 1, 01 2017. doi:
10.5455/ijlr.20170415115235.

[41] Takanori Okoshi. Three-dimensional imaging techniques.
Elsevier, 2012.

[42] Gian F Poggio and Tomaso Poggio. The analysis of stereop-
sis. Annual review of neuroscience, 7(1):379–412, 1984.

[43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015. URL https://proceedings.
neurips.cc/paper_files/paper/2015/file/
14bfa6bb14875e45bba028a21ed38046-Paper.
pdf.

[44] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-Net: Convolutional Networks for Biomedical Im-
age Segmentation. Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, page
234–241, 2015. ISSN 1611-3349. doi: 10.1007/
978-3-319-24574-4 28. URL http://dx.doi.org/
10.1007/978-3-319-24574-4_28.

[45] Usha Ruby and Vamsidhar Yendapalli. Binary cross entropy
with deep learning technique for Image classification. Inter-
national Journal of Advanced Trends in Computer Science
and Engineering, 9, 10 2020. doi: 10.30534/ijatcse/2020/
175942020.

[46] Pablo Revuelta Sanz, Belén Ruiz Mezcua, and José
M Sánchez Pena. Depth estimation-an introduction. In Cur-
rent Advancements in Stereo Vision. IntechOpen, 2012.

[47] Ashutosh Saxena, Min Sun, and Andrew Y Ng. Make3d:
Learning 3D scene structure from a single still image. IEEE
transactions on pattern analysis and machine intelligence,
31(5):824–840, 2008.

[48] Andre M. Schreiber, Minsik Hong, and Jerzy W. Rozen-
blit. Monocular Depth Estimation using Synthetic Data

for an Augmented Reality Training System in Laparoscopic
Surgery. In 2021 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 2121–2126, 2021. doi:
10.1109/SMC52423.2021.9658708.

[49] Shuwei Shao, Zhongcai Pei, Weihai Chen, Ran Li,
Zhong Liu, and Zhengguo Li. URCDC-Depth: Un-
certainty Rectified Cross-Distillation with CutFlip for
Monocular Depth Estimation. ArXiv, abs/2302.08149,
2023. URL https://api.semanticscholar.org/
CorpusID:256900951.

[50] Sagar Sharma, Simone Sharma, and Anidhya Athaiya. Ac-
tivation functions in neural networks. Towards Data Sci, 6
(12):310–316, 2017.

[51] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
RGBD images. In European conference on computer vision,
pages 746–760. Springer, 2012.

[52] Nicola Strisciuglio, Manuel Lopez-Antequera, and Nicolai
Petkov. Enhanced robustness of convolutional networks with
a push–pull inhibition layer. Neural Computing and Appli-
cations, 32(24):17957–17971, 2020.

[53] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019.

[54] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lem-
pitsky. Instance Normalization: The Missing Ingre-
dient for Fast Stylization. ArXiv, abs/1607.08022,
2016. URL https://api.semanticscholar.org/
CorpusID:16516553.

[55] Zhenda Xie, Zigang Geng, Jingcheng Hu, Zheng Zhang,
Han Hu, and Yue Cao. Revealing the Dark Secrets
of Masked Image Modeling. ArXiv, abs/2205.13543,
2022. URL https://api.semanticscholar.org/
CorpusID:249097401.

[56] Wei Yin, Jianming Zhang, Oliver Wang, Simon Niklaus, Si-
mon Chen, Yifan Liu, and Chunhua Shen. Towards Ac-
curate Reconstruction of 3D Scene Shape from A Single
Monocular Image. IEEE Transactions on Pattern Analysis
and Machine Intelligence, page 1–21, 2022. ISSN 1939-
3539. doi: 10.1109/tpami.2022.3209968. URL http:
//dx.doi.org/10.1109/TPAMI.2022.3209968.

[57] Wei Zhang, Guoying Zhang, and Qiran Zou. Depth Predic-
tion from Monocular Images with CGAN. In International
Conference on Smart Computing and Communication, pages
427–436. Springer, 2018.

[58] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss
Functions for Image Restoration With Neural Networks.
IEEE Transactions on Computational Imaging, 3(1):47–57,
2017. doi: 10.1109/TCI.2016.2644865.

https://doi.org/10.1068/p3254
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
https://api.semanticscholar.org/CorpusID:256900951
https://api.semanticscholar.org/CorpusID:256900951
https://api.semanticscholar.org/CorpusID:16516553
https://api.semanticscholar.org/CorpusID:16516553
https://api.semanticscholar.org/CorpusID:249097401
https://api.semanticscholar.org/CorpusID:249097401
http://dx.doi.org/10.1109/TPAMI.2022.3209968
http://dx.doi.org/10.1109/TPAMI.2022.3209968

[59] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 Million Image Database
for Scene Recognition. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 40(6):1452–1464, 2018. doi:
10.1109/TPAMI.2017.2723009.

[60] Manyu Zhu, Dongliang He, Xin Li, Chao Li, Fu Li, Xiao
Liu, Errui Ding, and Zhaoxiang Zhang. Image Inpaint-
ing by End-to-End Cascaded Refinement With Mask Aware-
ness. IEEE Transactions on Image Processing, 30:4855–
4866, 2021. doi: 10.1109/tip.2021.3076310. URL https:
//doi.org/10.1109%2Ftip.2021.3076310.

[61] Jure Žbontar and Yann LeCun. Stereo Matching by Training
a Convolutional Neural Network to Compare Image Patches.
2015. doi: 10.48550/ARXIV.1510.05970. URL https:
//arxiv.org/abs/1510.05970.

https://doi.org/10.1109%2Ftip.2021.3076310
https://doi.org/10.1109%2Ftip.2021.3076310
https://arxiv.org/abs/1510.05970
https://arxiv.org/abs/1510.05970

