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Abstract

We identify a unique system theoretic additive decomposition of any ma-
terially composite quantum system in terms of independent subsystems
with probability ports and their interconnection through a Dirac struc-
ture. Conversely, we provide a terminating algorithm to determine the
admissibility of additive compositions if the resulting quantum system is
required to consist of elementary particles.
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1 Introduction

This thesis identifies a universally applicable decomposition of the unitary dy-
namics of quantum systems in terms of additive subsystems interconnected by
a Dirac structure through probability ports.

The resulting formalism affords a system theoretic treatment of quantum me-
chanics that operationally resembles what port-Hamiltonian theory [vdSJ14;
DMSB09] achieves for classical systems. However, the entirely different con-
ceptual framework required by quantum theory in order to describe physical
reality makes it necessary to rethink the composition and recomposition of sys-
tems from first principles as laid down by the postulates of quantum mechanics.
Our careful phrasing of these postulates in Section 2 mathematically defines
quantum theory and will provide the assumptions from which all results will be
derived.

Only the final results will then resemble structures and ways of thinking known
from port-Hamiltonian theory. Most remarkably, Dirac structures [DvdS98] will
play precisely the same role in quantum mechanics. But already the ports, which
give port-Hamiltonian theory its name [vM95], do not negotiate the transfer of
energy between subsystems, but the transfer of probability instead. In this
sense, we find a port-probability theory for quantum mechanics, which indeed
requires and allows one to pose and answer qualitatively very different questions
than one would and could ask in port-Hamiltonian theory.

Despite the need to go into quite subtle detail about the structure of quantum
systems in the technical chapters to follow, it is possible to provide a rather
precise mathematical sketch of how the results of this thesis build on the basic
dynamical equation of quantum mechanics and how the latter is rewritten in
terms of the formalism we develop. We now turn to this basic exposition.

It is well known that as long as no measurement takes place, the evolution of
an observer’s maximal knowledge (see Section 3) [SN20]

ρ =
⟨ψ| · ⟩ψ
⟨ψ|ψ⟩

(1.1)

about the state of a quantum system is described by Schrödinger’s ordinary
differential equation[SN20]

ψ̇ = −iHψ , (1.2)

whereH is a self-adjoint operator with positive spectrum on a separable complex
Hilbert space (H, ⟨ · | · ⟩) and ψ is a differentiable curve in the domain of H.

In order to keep any technical complexity that is inessential to the results ob-
tained in this thesis at a minimum, we will consider quantum systems without
translational degrees of freedom only. We will show that the Hilbert space is
then finite-dimensional and all operators are bounded and thus defined every-
where.
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The original seed for the research reported in this thesis is the seemingly trivial
rewriting of equation (1.2) as

(ψ, ψ̇) ∈ D , (1.3)

where
D := {(e, f) ∈ H ×H | f = −iHe} . (1.4)

What makes this interesting is the fact that the subset D ⊂ H×H is a so-called
Dirac structure [DMSB09] with respect to a pairing provided by the real-valued
and merely R-bilinear inner product

⟨·|·⟩D : H×H → R , ⟨α|β⟩D := 2Re ⟨α|β⟩ (1.5)

that is induced by the hermitian inner product ⟨·|·⟩.

Indeed, the first of two conditions to be satisfied by a Dirac structure is that
every one of its elements (e, f) makes the pairing ⟨e|f⟩D vanish. This is easily
established for our D, since

⟨e|f⟩D = ⟨e| − iHe⟩D = 2Re(−i⟨ψ|Hψ⟩) = 0 (1.6)

due to the hermiticity of H. The second condition is that the dimension of the
Dirac structure is half the dimension of the space it is embedded in. For the case
of our D, this amounts to the condition that dimD = dimH, which however
immediately follows from the positive spectrum and the resulting invertibility
of H.

It is convenient to represent the above Dirac structure D diagrammatically as

where the double line represents the pair (e, f) with f being denoted next to
the line that carries the half-arrow tip. The pair (e, f) represents a so-called
port of the Dirac structure [vM95] and H×H is the so-called port space. This
terminology will be further refined below.

The Dirac structure is a purely algebraic object and is to be carefully distin-
guished from the differential equation (ψ, ψ̇) ∈ D it governs. The latter is
diagrammatically represented as

and involves a differentiable curve ψ in the Hilbert space H.
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Research Question 1

The first research problem posed and solved in this thesis is how any quantum
systems with Hilbert space H can be additively decomposed as

H = H1 ⊕ · · · ⊕ HN

into a finite number of well-defined subsystems with uniquely determined Hilbert
spaces such that the the equations of motion can be rewritten such as to corre-
spond to a more refined diagram

that employs a refined Dirac structure D′ ⊂ H1×H1×H2×H2×· · ·×HN×HN

with respect to a suitable pairing ⟨·|·⟩D′ . The additivity of the composition is
required in order to allow for later replacement of any individual subsystem in
favour of another, typically more sophisticatedly modelled one. This will be
explained in more detail below.

Note that the underlying Dirac structure

now posseses N ports associated with port spaces H1×H1 through to HN×HN .

The diagrammatical simplicity, in which this first problem is phrased, hides the
significant conceptual hurdles to be cleared in order to make this work in the
context of quantum theory.
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One key challenge is that the postulates of quantum mechanics [NC10; vNeu55]
decidedly assert that M quantum systems with Hilbert spaces H′

1, . . . ,H′
M cor-

respond to one total quantum system with Hilbert space

H = H′
1 ⊗ · · · ⊗ H′

M ,

and thus, generically,
H ̸= H′

1 ⊕ · · · ⊕ H′
M .

The only way out of this dilemma is the realisation that the individual subsys-
tems of the desired direct sum decomposition cannot be quantum systems in
the sense of the postulates of quantum mechanics, but must be chosen such as
to be commensurate with the tensor product construction.

The challenge thus becomes to study whether the postulates of quantum me-
chanics provide a unique additive decomposition for each system that is com-
posed according to the tensorial composition rule of quantum mechanics, such
that

H′
1 ⊗ · · · ⊗ H′

M = H1 ⊕ · · · ⊕ HN . (1.7)

This is indeed achieved in Section 4 by careful consideration of the role of the
isometry group of the physical space in which the quantum systems of interest
are embedded. The solution to this key problem requires a deep result from
representation theory that relates projective representations of a Lie group to
linear representations of the universal covering group of that Lie group [Bar54]
in order to then employ standard representation theory[Geo99] to then realise
that (1.7) is to be understood as an equality of representation spaces rather
than mere vector spaces.

Another key challenge is to identify, the Dirac structure D′ that interconnects
the by then uniquely identified set of additive subsystems for any given quantum
system. The obvious first step is a rewriting of the evolution equation (1.2) in
terms of a set of N subsystem equations, one for each of the additive subsystem
Hilbert space H1, . . . ,HN that have been identified uniquely, in input-output
form. The challenge to be overcome here is that these equations seem to require
that D′ feature N ports, each of which with port space (H×H). This does not
satisfy our diagrammatically stated aim of D′ featuring N ports with respective
port spaces H1 ×H1 through to HN ×HN , which are much smaller and do not
depend on the presence of any one of the other ports. This challenge is solved
by exploitation of the fundmantally asserted linearity of the unitary evolution
equation, which allows to shift the data contained in the energy operator H
quite freely into various Dirac substructures such as to obtain the desired de-
composition of the equations of motion for the entire system. This is achieved
in several steps in Section 5.

At this stage, the formalism now allows to convert previously closed quantum
mechanical systems into open subsystems that can be additively composed with
other such systems.
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Consider, for instance, a quantum system whose additive decomposition yields
the closed system of equations

Unplugging the second subsystem, one obtains the underdetermined (open) sys-
tem of equations (ψ1, ψ̇1, e2, f2, ψ3, ψ̇3) ∈ DA with the diagrammatic represen-
tation

where (e2, f2) denotes now a so-called free port. This is interesting, since one
may now connect another subsystem with an open port that features the same
port space to obtain a another closed system such as, for example,

The connection diagrammatically represented by a small circle here is afforded
by the algebraic equations [DMSB09]

f5 = −f2 and e5 = e2 . (1.8)
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Indeed, it is straightforward to establish that the thus defined composition of
the two Dirac structures DA and DB yields again a Dirac structure [vdSJ14].

Thus the resulting system is again a closed quantum system. The advantage
from a modelling perspective is clear: One may refine or coarsen the modelling
of any open subsystem by replacing it with another subsystem. The detailed
construction in Section 5 will further reveal the pairing ⟨e|f⟩ obtained from any
one port (e, f) to encode the probabilty flow through that port. The half-arrow
in the diagrammatic representation of a port is chosen such as to point towards
the structure to which probability flows if ⟨e|f⟩ is positive.

Research Question 2

The second research question that can be asked and answered now, on the
strength of the previously obtained results, is: Which open systems can be
composed such as to produce a quantum system that can be thought of as
being composed of elementary particles only?

The challenge posed by this question is now conceptually simple, since a quan-
tum system is said to be composed of elementary particles if and only if its total
Hilbert space is a tensor product

H1 ⊗ · · · ⊗ HM

of irreducible representation spaces of the underlying universal covering group
of the isometry group of the physical space.

For quantum systems without translational degrees of freedom in Euclidean
three-space, the second research question thus condenses to the following techni-
cal problem: For which positive integer N > 1, non-negative integers a1, . . . , aN
and non-negative half-integers j1, . . . , jN does the direct sum of (without loss of
generality: irreducible) representation spaces

a1C2j1+1 ⊕ · · · ⊕ aNC2jN+1 (1.9)

combine into a tensor product

C2k1+1 ⊗ · · · ⊗ C2kM+1

of irreducible representation spaces for a suitable integer M > 1 and suitable
non-negative half-integers k1, . . . , kM .

We provide a complete answer in form of a terminating algorithm in Section 6.

Section 7 concludes with a summary and outlook.
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2 Postulates of quantum mechanics

In order to lay the foundations for the work that follows, we carefully formulate
the postulates of quantum mechanics. From the mathematical point of view,
these postulates amount to definitions of the terms quantum system, (knowl-
edge of an observer about the) state of a quantum system and measurement
apparatus.

2.1 Embedding of a quantum system in physical space

On the coarsest level, a mathematical model of any quantum system situated
in some physical space starts with a Hilbert space.

Postulate 1. The mathematical description of a physical quantum system is
built on a triple

(H, ⟨·|·⟩, R) (2.1)

consisting of a separable complex Hilbert space (H, ⟨·|·⟩) that arises as the
representation space of a projective unitary representation R : G→ U(H)/C∗

of the isometry group G of the mathematical model of the physical space in
which the quantum system is situated.

Remark 1.1. In non-relativistic theory, the standard model for physical space is
Euclidean three-space, whose isometry group G is the special Euclidean group
SE(3) = T (3) ⋊ SO(3), i.e., the semi-direct product of the translation group
and the rotation group in three dimensions[AVW13].

Remark 1.2. Infinite-dimensional Hilbert spaces arise for quantum systems with
non-compact isometry groups only[Wey27]. Since the treatment of infinite-
dimensional Hilbert spaces introduces formidable technical subtlety without in-
troducing qualitatively new features in the related quantum theory, we restrict
attention to quantum systems described by finite-dimensional Hilbert spaces.
For non-relativistic theory, this restriction corresponds to disregarding the non-
compact normal subgroup T (3) of SE(3), leaving one with the compact isometry
group SE(3)/T (3) = SO(3).

Remark 1.3. Projective representations R are technically cumbersome to study
and use. Fortunately, a weak technical condition on the isometry group G of
the ambient physical space (namely that its second Lie algebra cohomology is
trivial) allows us to consider, in their stead, linear representations R of the
universal covering group G of the isometry group. This is Bargmann’s theorem
and applies, in particular, to the special Euclidean group SE(3) that underlies
the setting studied in this thesis[Bar54].

Remark 1.4. There is typically more than one, and often infinitely many, dif-
ferent projective unitary representations of a given isometry group (or, linear
representations of the universal covering group of the isometry group)[Geo99].
These different Hilbert spaces correspond to different quantum systems that
can exist, from a theoretical point of view, in the given physical space. Hence,

9



finding all representations of a given isometry group amounts to a classification
of all possible quantum systems in a given physical space.

We emphasize again that, from now on, we only consider the quantum systems
with finite-dimensional Hilbert spaces. This technically greatly simplifies the
statement of all further postulates.

2.2 Material composition of quantum systems

If two or more quantum systems are situated in the same physical space, they
cannot be described independently of each other. In fact, one cannot understand
the total system in terms of the constituent physical systems.

Postulate 2. Two physically distinguishable quantum systems that are
present in the same physical space with isometry group G must be treated as
one total quantum system in that physical space. If the description of the two
constituent systems is built on the triples (H1, ⟨·|·⟩1, R1) and (H2, ⟨·|·⟩2, R2)
then the total system is built on the triple (H, ⟨·|·⟩, R) where

H := H1 ⊗H2 (2.2)

is the tensor product of vector spaces equipped with the inner product ⟨·|·⟩
determined by linear continuation of

⟨α1 ⊗ α2 | β1 ⊗ β2⟩ := ⟨α1 | β1⟩1⟨α2 | β2⟩2 (2.3)

for any α1, β1 ∈ H1 and α2, β2 ∈ H2 and the representation R is determined
for any g ∈ G by linear continuation of

R(g)(α1 ⊗ α2) := R1(g)(α)⊗R2(g)(β) (2.4)

for any α1 ∈ H1 and α2 ∈ H2.

Remark 2.1. The above tensor product construction implies that the total quan-
tum system cannot be understood by considering each of its constituent quan-
tum systems separately. This explains why one must, rather than merely can,
consider any two quantum systems in the same physical space as one total sys-
tem.

Remark 2.2. The construction straightforwardly extends to any finite number
of constituent quantum systems.

Remark 2.3. A representation is called irreducible if there is no non-trivial in-
variant subspace of the representation space[Geo99]. Irreducible representations
correspond to elementary particles, since they cannot arise as tensor products
of (non-trivial) representations. Conversely, the representation underlying any
quantum systems that is ultimately composed of elementary particles must arise
as a (multiple) tensor product of irreducible representations only. In this thesis,
we assume that every quantum system is built of elementary particles. In other
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words, we only consider Hilbert spaces that arises as a (multiple) tensor product
of irreducible representations.

Remark 2.4. For physically indistinguishable systems, all tensor products be-
tween spaces, vectors and representations are to be replaced by either symmetric
tensor products (for particles with bosonic statistics) or anti-symmetric tensor
products (for particles with fermionic statistics)[SN20]. In this thesis, we focus
only on the composition of physically distinguishable quantum systems, since
the adaptation to indistinguishable ones then follows.

2.3 Knowledge about the state of a quantum system

Quantum mechanics describes an observer’s knowledge about the state of a
quantum system. The remaining postulates all describe how an observer gains
knowledge about a system and how that knowledge changes in time.

Postulate 3. An observer’s knowledge about the state of a quantum system
(H, ⟨·|·⟩, R) at some given time is mathematically represented by a positive
unit trace operator on H.
The temporal evolution of an observer’s knowledge about the state of a quan-
tum system is mathematically represented by a right-continuous curve ρ in
the space of all positive operators with unit trace.

Remark 3.1. Quantum mechanics is not a theory about the state of a quantum
system, but only about an observer’s knowledge about it. This is often hid-
den by the standard terminology that criminally shortens ‘an observer’s knowl-
edge about the state of the quantum system’ to ‘the state of the quantum
system’ [SN20; Gri05].

Remark 3.2. There are two mutually exclusive mechanisms that determine the
evolution of an observer’s knowledge about the state of a quantum system:
projective evolution at precisely those points in time when a measurement is
performed and the observer takes notice of the measurement result (see postulate
6), and unitary evolution during time intervals where no measurement is made
(see Postulate 7).

2.4 Measurement apparatuses

Observer can only gain knowledge about a quantum system by performing actual
measurements on the system. One therefor first needs to provide a mathematical
description of a measurement apparatus.

Postulate 4. An apparatus that can be used to perform a measurement
on a given quantum system (H, ⟨·|·⟩, R) at an isolated point in time tobs is
mathematically represented by a hermitian operator M on H. The elements
of spec(M) are the only possible results the measurement apparatus can show.

Remark 4.1. Unless two measurements can be combined such as to constitute
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one single measurement described by one single hermitian operator, they cannot
be performed at the same time.

Remark 4.2. The hermitian operator M corresponding to the measurement
apparatus is just an efficient way to capture all the mathematical data that
characterize the apparatus. In turn, these data can be extracted fromM by the
spectral theorem, which asserts that

M =
∑

m∈spec(M)

mPm , (2.5)

where Pm is the unique orthogonal (hence hermitian) projector from H to the
eigenspace Eigm(M) and∑

m∈spec(M)

Pm = idH and PmPn =

{
Pm , m = n
0 , m ̸= n

. (2.6)

The physical meaning of the projectors is clarified by the following two axioms.

2.5 Probabilistic prediction of measurement results

An observer knows the measurement outcomes that can result if a measurement
is performed, but immediately until after the measurement, he or she can predict
only the probability of a certain measurement outcome.

Postulate 5. An observer’s knowledge about the state of a quantum system
at a given point tobs in time does not suffice to predict which measurement
result m ∈ spec(M) would be shown by a given measurement apparatus M
if the measurement is actually conducted. All an observer can predict, from
his knowledge about the state and the measurement apparatus but without
actually performing the measurement, is the probability

p(m|ρ(tobs)) := tr(P †
mρ(tobs)Pm) (2.7)

for the measurement apparatus to show the measurement result m.

Remark 5.1. Note that P †
mρ(tobs)Pm is the projection of the operator ρ(tobs) to

the subspace of H that is given by the range of Pm.

2.6 Update of knowledge after read-off measurement

An observer’s knowledge about the system is different depending on whether the
observer reads-off the measurement result after the measurement has occurred.
This can be a voluntary or involuntary decision.
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Postulate 6. When an actual physical measurement is performed at time tobs,
the measurement apparatus shows precisely one of the elements of spec(M)
as the measurement result. In case an observer reads off this measurement
result, his knowledge about the state of the system a time tobs is updated to

ρ(tobs) :=
P †
mobs

ρpriorPmobs

tr(P †
mobsρpriorPmobs

)
, (2.8)

where ρprior := limt→t−obs
ρ(t) is the observer’s knowledge about the state of

the quantum system right before the measurement.

Remark 6.1. A measurement at tobs, as described by Postulate 6, extends the
previous temporal evolution for all t < tobs to a right-continuous (but generically
left-discontinuous) curve for all t ≤ tobs.

Remark 6.2. The generic discontinuity at tobs is often referred to as ‘state col-
lapse’, but would much more aptly be termed ‘gain of knowledge about the state
of the quantum system’.

Remark 6.3. In case an observer learns than an actual measurement has been
performed, but voluntarily or involuntarily does not read off the measurement
result shown by the measurement apparatus, his gain of knowledge is reduced
by the need to invoke the probabilities for each possible measurement result
according to Postulate 5, in order to build the weighted sum of all possible
knowledge updates according to Postulate 6. His or her knowledge about the
system at time tobs is thus reset to

ρ(tobs) :=
∑

m∈spec(M)

P †
mρ(tobs)Pm . (2.9)

Note that another observer, who did read off the measurement result from the
measurement apparatus, concludes that ρ(tobs) after measurement is as in Pos-
tulate 6. This is only possible if, indeed, ρ(tobs) describes a particular observer’s
knowledge of the state, rather than the state of the quantum system itself, cf.
Remark 3.1.

2.7 Evolution of knowledge without measurement

The temporal evolution of an observer’s knowledge during the time period in
which no measurement takes place is deterministic.

Postulate 7. There is some hermitian operator H that governs the evolution
of an observer’s knowledge about the state of a quantum system over time
intervals between any two consecutive measurements at times tobs1 and tabs2 .
For any t ∈ (tobs1 , tobs2), the evolution of an observer’s knowledge is given by

ρ(t) = exp (−iH(t− tobs1)) ρ(tobs1) exp (iH(t− tobs1)) . (2.10)
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Remark 7.1. The hermitian operator H that governs the time evolution of an
observer’s knowledge between any two measurements is traditionally called the
measurement operator for the energy of the system.

Remark 7.2. The unitary temporal evolution of an observer’s knowlegde in the
interval (tobs1 , tobs2) described by Postulate 7 extends the previous temporal
evolution for all t ≤ tobs1 to a right-continuous curve for all t < tobs2 .

Remark 7.3. Together, postulates 6 and 7 generate the entire temporal evolution
of an observer’s knowledge about the state of the quantum system, with one
type of evolution alternatingly taking over from the other one.
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3 Maximal and submaximal knowledge

It is conceptually and technically convenient to classify the knowledge about the
state of a quantum system (H, ⟨·|·⟩, R) into two disjoint classes, namely maximal
knowledge and submaximal knowledge.

3.1 Maximal knowledge

Definition 3.1. An observer’s knowledge ρ about the state of a quantum system
is called maximal if ρ2 = ρ.

Maximal knowledge about a quantum state can written in terms of a single (but
not unique) element of the Hilbert space:

Lemma 3.2. Let ρ encode some maximal knowledge about the state of a quan-
tum system. Then there exists a ψ ∈ H such that

ρ =
⟨ψ | ·⟩
⟨ψ | ψ⟩

ψ . (3.1)

Proof. By definition, ρ is a projection. Indeed, it is an orthogonal projection
since

ρ†(idH − ρ) = ρ† − ρ†ρ = 0 (3.2)

because ρ is a positive operator and hence hermitian. But for orthogonal pro-
jections, rank(ρ) = tr(ρ) and the trace condition thus yields rank(ρ) = 1. But
every one-dimensional projector can be written in the claimed form for some
ψ ∈ H.

The next two lemmas show that maximal knowledge remains maximal under
both unitary evolution (Postulate 7) and projective evolution (Postulate 6).

Lemma 3.3. If the knowledge ρprior of the system before a measurement, as
described in Postulate 6, is maximal, then also the updated knowledge ρ(tobs)
after measurement is maximal.

Proof. Suppose an observer’s knowledge ρprior about a system immediately be-
fore measurement is maximal. Upon reading off a specific measurement value,
the observer’s knowledge is updated to

ρ(tobs) =
P †ρpriorP

tr(P †ρpriorP )
, (3.3)

where P is the projector associated with the read off measurement value. Hence

tr(P †ρpriorP ) =
∑
i

⟨εi | P †ρpriorPεi⟩ =
⟨P †ψ | Pψ⟩
⟨ψ | ψ⟩

, (3.4)
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where ε1, . . . , εdimH is an orthonormal basis and ψ is a Hilbert space element
that represents the maximal knowledge ρprior according to Lemma 3.2. But then

ρ(tobs)(α) =
⟨P †ψ | α⟩
⟨P †ψ | Pψ⟩

Pψ for all α ∈ H (3.5)

from which one finds immediately that

ρ(tobs)
(
ρ(tobs)(α)

)
= ρ(tobs)(α) for all α ∈ H , (3.6)

which identifies the updated knowledge as maximal.

Lemma 3.4. If the knowledge ρ(tobs) determined by a measurement apparatus
at tobs is maximal, then ρ(t) remains maximal for any t > tobs before the next
measurement.

Proof. Since the evolution of an observer’s knowledge after a measurement at
tobs is governed by

ρ(t) = U(t)ρ(tobs)U
†(t) , (3.7)

where U(t) := exp(−iH(t − tobs)) is unitary because the energy operator H is
hermitian, it immediately follows that ρ(t)2 = ρ(t) for all t > tobs until another
measurement occurs.

Lemmas 3.3 and 3.4 show that neither a read-off measurement nor the unitary
temporal evolution between consecutive measurements alter the maximality of
an observer’s knowledge.

In other words, it is consistent to assume that an observer’s knowledge is always
maximal under the condition that all measurement results are read off by that
observer. This is the position tacitly taken in virtually all introductions to
quantum mechanics, where an observer’s knowledge is encoded in a Hilbert
space element ψ ∈ H rather than in a positive unit trace operator ρ on H.

3.2 Loss of maximal knowledge

An important condition for an observer’s knowledge to stay maximal is that the
observer reads off the results shown by all measurement apparatuses. However,
if an observer voluntarily or involuntarily does not read off the measurement
result, his or her update of knowledge must take into account all principally
possible updates and necessarily weigh them according to their probability. In
other words, the updated knowledge for such an observer is

ρ(tobs) =
∑

m∈spec(M)

p(m|ρprior)
P †
mρpriorPm

tr(P †
mρpriorPm)

=
∑

m∈spec(M)

P †
mρpriorPm ,

(3.8)
which is indeed a positive operator since ⟨α | P †

mρPm | α⟩ ≥ 0 for all α ∈ H and
for each m ∈ spec(M) and its trace is one as the sum of all probabilities for the
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possible measurement outcomes. For such an observer, the updated knowledge
may no longer be maximal.

3.3 Von Neumann’s equation

Postulate 7 provides a curve ρ in the space of positive unit trace operators that
encodes the evolution of an observer’s knowledge about the state of a quantum
system while no measuremet occurs. This curve can be understood as the
solution to an ordinary differential equation, which is known as von Neumann’s
equation and simply obtained by differentiation of equation (3.7),

ρ̇(t) = −iHU(t)ρ(tobs)U
†(t) + U(t)ρ(tobs)(−iHU(t))† = −i[H, ρ(t)] , (3.9)

where the commutator [A,B] between two operators A and B is defined as the
operator AB −BA.

3.4 Schrödinger’s equation

Von Neumann’s equation simplifies for the special case when the evolution ρ is
maximal. It is then usually rewritten as an ordinary differential equation for
a curve ψ in Hilbert space that represents the observer’s maximal knowledge
through

ρψ(t) :=
⟨ψ(t) | ·⟩

⟨ψ(t) | ψ(t)⟩
ψ(t) . (3.10)

Without loss of generality, one may choose a curve ψ that is normalized, for if
ψ is not normalized, the curve fψ with

f(t) := ⟨ψ(t) | ψ(t)⟩−
1
2 (3.11)

is normalized and represents the same knowledge since ρfψ = ρψ. Insertion of ρψ
for a normalized curve ψ in Hilbert space, von Neumann’s equation immediately
reduces to

⟨ψ|· ⟩(ψ̇ + iHψ) + ⟨ψ̇ + iHψ|· ⟩ψ = 0 . (3.12)

Thus von Neumann’s equation for maximal knowledge is satisfied if the curve
ψ satisfies Schrödinger’s equation

ψ̇(t) = −iHψ(t) . (3.13)
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4 Quantum systems in Euclidean three-space

In order to be able to employ linear, rather than projective representations in
the study of quantum systems in Euclidean space, we identify the universal cov-
ering group of the special Euclidean group. We then immediately specialise to
quantum systems without translational degrees of freedom, by dividing out the
normal subgroup: the group of translations. This leaves us with the group of
rotations as the isometry group of the physical space whose universal covering
group is the special unitary group SU(2). Its linear unitary representations
and representations spaces underlie the mathematical description of any pos-
sible quantum system in Euclidean three-space without translation degrees of
freedom.

4.1 Universal covering group of SE(3)

Physical space in non-relativistic theory is modelled by Euclidean three-space
whose isometry group is the special Euclidean group [AVW13]

SE(3) = T (3)⋊ SO(3) , (4.1)

i.e., the semi-direct product of the group of translations T (3), which is the
normal subgroup of SE(3) and the group of rotations SO(3). Then, according
to Postulate 1, the mathematical description of any quantum system situated
in Euclidean-three space is underpinned by projective unitary representations
and their representation spaces. Thus, one can determine all such quantum
systems by classifying the projective unitary representations of SE(3). This
can, in turn, be accomplished by classifying all the linear representations of the
universal covering group of SE(3) instead. More precisely, SE(3) satisfies the
assumptions of Bargmann’s theorem [Bar54] according to which, if the second
Lie algebra cohomology group H2(g,R) of a connected Lie group G with a Lie
algebra g is trivial, then every projective unitary representation R of the Lie
group G on a Hilbert space H lifts to a linear unitary representation R of its
universal covering group G on H such that the diagram

G U(H)

G U(H)/C∗

R

p π

R

commutes, where p is the universal covering map and π is the canonical quotient
map. The universal covering group G of a given Lie group G is defined as the
unique simply connected Lie group (meaning that the underlying manifold has
trivial fundamental group) whose Lie algebra Lie(G) coincides with the Lie
group Lie(G) [Geo99].

Since the group SE(3) satisfies the assumptions of Bargmann’s theorem, we
study linear unitary representations of the universal covering group of SE(3),
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which is

SE(3) = T (3)⋊ SO(3) = T (3)⋊ SO(3) = T (3)⋊ SU(2) , (4.2)

where the second equal sign holds because the universal cover distributes over
the semi-direct product, because the fundamental group of a direct product
of groups is the direct product of the respective fundamental groups and the
fundamental group does not depend on the group operation that renders the
direct product semi-direct. The universal covering group T (3) coincides with
T (3), whereas the universal covering group SO(3) is the special unitary group
SU(2).

4.2 Dividing out translational degrees of freedom

The irreducible linear unitary representations of SE(3) have as representation
spaces the Hilbert spaces L2(R3) ⊗ Cd for all d ∈ N∗[SN20]. However, since
working with infinite-dimensional representations is filled with technical details
that are irrelevant for the points we want to make, we will instead work with the
quotient group SE(3)

/
T (3) = SO(3). Physically, this means we are considering

quantum systems in Euclidean three-space which have no translational degrees
of freedom. The rotation group SO(3) satisfies the assumptions of Bargmann’s
theorem by itself, which allows us to study linear unitary representations of
SU(2) instead. Since the group SU(2) is compact, its irreducible unitary repre-
sentations are, according to Peter-Weyl’s theorem [Wey27], finite-dimensional.
Hence, from the mathematical perspective, the description of a quantum system
in Euclidean three-space without translational degrees of freedom falls in the
scope of complex finite-dimensional linear algebra.

The same principles apply when transferring our study to physical spaces with
a different isometry group, such as flat relativistic spacetime. The isometry
group of the latter is the Poincaré group and dividing out translational degrees
of freedom leads to the Lorentz group SO(1, 3), whose universal covering group
is SL(2,C)[Geo99].

Unless stated otherwise, henceforth, quantum systems refers to quantum sys-
tems in Euclidean three-space without translational degrees of freedom.

4.3 Irreducible representations of SU(2)

We classify all quantum systems without translational degrees of freedom sit-
uated in Euclidean three-space by finding all linear unitary representations of
SU(2) and their respective representation spaces. Physically, this corresponds
to determining all theoretically possible elementary particles, since they are, by
definition, not reducible into more elementary constituents.

It is convenient to understand SU(2) as a group of complex 2×2 unitary matrices
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of determinant one[Geo99]. Its Lie algebra can be generated by Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (4.3)

from which every element g ∈ SU(2) (where the bar notation reminds us that
this is an element of the universal covering group) can be obtained through

g = exp

(
i
2

3∑
n=1

αnσn

)
(4.4)

for some α1, α2, α3 ∈ R.

One finds that all unitary representations of SU(2) constitute a family whose
members Rj : SU(2) → U(C2j+1) are labelled by a non-negative half-integer j
and are explicitly given by

Rj

(
exp

(
i
2

3∑
n=1

αnσn

))
:= exp

(
i

2

3∑
n=1

αnJjn

)
, (4.5)

where Jjn on the right hand side denotes the n-th generating matrix of the Lie
algebra of the spin-j representation. The entries in the m-th row and m′-th
column of these generators are explicitly given by [Geo99]

(Jj1 )
m
m′ :=

1

2

(√
(j −m)(j +m+ 1)δmm′+1 +

√
(j +m)(j −m+ 1)δmm′−1

)
(Jj2 )

m
m′ :=

1

2i

(√
(j −m)(j +m+ 1)δmm′+1 −

√
(j +m)(j −m+ 1)δmm′−1

)
(Jj3 )

m
m′ := mδm,m′

(4.6)

with m and m′ ranging over −j,−j + 1, . . . , j − 1, j.

The representation Rj is traditionally called the spin-j representation. Note
that the associated Hilbert space is C2j+1 equipped with its standard hermi-
tian inner product. For our theoretical investigation, the identification of this
representation space is the main result of this subsection. The explicit represen-
tation maps for the various spin-j representations will, however, may be needed
for some concrete calculations and are thus given here in detail.

4.4 SU(2)-invariant decomposition of tensor products

The tensor product Rj1 ⊗Rj2 of two irreducible unitary representations Rj1 and
Rj2 of SU(2) gives rise to a reducible representation. One can show that any
such representation is completely reducible. This means it can be written as a
direct sum of finitely many irreducible unitary representations,

Rj1 ⊗Rj2 = R|j1−j2| ⊕R|j1−j2|+1 ⊕ · · · ⊕Rj2+j2 , (4.7)
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where for any two linear unitary representations R1 : G→ U(H1) and R2 : G→
U(H2) the tensor product of representations is defined as the linear continuation
of the map

R1 ⊗R2 : G→ U(H1 ⊗H2) , (R1 ⊗R2)(g)(α1 ⊗ α2) := R1(g)(α1)⊗R2(α2)
(4.8)

while the direct sum of representations is given as the map

R1 ⊕R2 : G→ U(H1 ⊕H2) , (R1 ⊕R2)(g)(α1 ⊕ α2) := R1(g)(α1)⊕R2(α2) .
(4.9)

The direct sum in 4.7, known as the Clebsch-Gordan decomposition [Geo99],
is a unique SU(2)-invariant decomposition. In particular, this means that the
representation space decomposes as

C2j1+1 ⊗ C2j2+1 = C2|j1−j2|+1 ⊕ C2(|j1−j2|+1)+1 ⊕ · · · ⊕ C2(j1+j2)+1 (4.10)

and that the action of (Rj1 ⊗ Rj2)(g) on the left hand side corresponds to the
action of (R|j1−j2|⊕· · ·⊕Rj1+j2)(g) on the right hand side, which does not mix
the various direct summand representation spaces. In other words, the above
decomposition is unique and independent of the physical observer.

The subspaces that appear in the direct sum on the right hand side of (4.9) lie
as follows in the tensor product space on the left hand side, namely such that

|M⟩J :=

j1∑
m1=−j1

j2∑
m2=−j2

CJMj1j2m1m2
|m1⟩j1 ⊗ |m2⟩j2 (4.11)

where, on the left hand side, the label M = −J,−J + 1, . . . , J denotes the
M -th basis vector of an orthonormal basis of the subspace C2J+1, while on
the right hand side, the label m1 = −j1,−j1 + 1, . . . , j1 and likewise for m2

and j2, while the CJMj1j2m1m2
are the well-known Clebsch-Gordan coefficients for

SU(2) [Geo99].

The coefficients of the associated inverse transformation is given by the com-
plex conjugates of the very same coefficients, due to the orthonormality of the
involved bases. Adoption of the Condon-Shortley phase convention, however,
renders all coefficients real [Geo99], so that, indeed,

|m1⟩j1 ⊗ |m2⟩j2 =

j1+j2∑
J=|j1−j2|

J∑
M=−J

CJMj1j2m1m2
|M⟩J . (4.12)

There exists tables as well as recursive and closed formulae for the Clebsch-
Gordan coefficients for SU(2) with the said phase convention and we refer to
those for concrete examples.

Knowledge of the existence of the above bijective correspondence between the in-
duced basis for the tensor product and the induced basis for its Clebsch-Gordan
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direct sum decomposition suffices for the general theoretical developments of
this thesis. The concrete coefficients are only needed for practical calculations.

Noting that a tensor product distributes over a direct sum,

Rja ⊗ (Rjb ⊕Rjc) = (Rja ⊗Rjb)⊕ (Rja ⊗Rjc) , (4.13)

the decomposition (4.7) is straightforwardly applied also to the tensor product
of finitely many representations of SU(2).
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5 Additive decomposition of closed systems

We are now in a position to show how the dynamics for an observer’s maximal
knowledge about any quantum system without translational degrees of freedom
can be decomposed in terms of a Dirac structure and probability ports.

5.1 Schrödinger equation of a reducible quantum system

We consider the unitary dynamics of a quantum system (H, ⟨·|·⟩, R) whose un-
derlying Hilbert space additively decomposes into the SU(2) invariant decom-
position of representation spaces of irreducible representations of SU(2) as

H = H1 ⊕H2 ⊕ · · · ⊕ HN (5.1)

and derive a set of N equations, each with an input term that couples to all the
other equations, as a first step in the overall construction of this section.

To each summand in the direct sum above we associate an orthogonal projection
operator Pn : H → Hn ⊂ H and

N∑
n=1

Pn = idH and PmPn =

{
Pn , m = n
0 , m ̸= n

. (5.2)

The Schrödinger equation
ψ̇(t) = −iHψ(t) (5.3)

of a curve ψ decomposes into N coupled equations

ψ̇n(t) = −iPnHPnψn(t)− iPnH

N∑
k=1
k ̸=n

Pkψk(t) . (5.4)

Each differential equation describes the unitary evolution of a subsystem which
depends on the knowledge about its state ψn(t) := Pnψ(t), but also on the
knowledge about the states of all other subsystems. Thus, we introduce notation

Hnn := PnHPn , Bn := −iPnH(idH − Pn) , un(t) := ψ(t)− ψn(t) , (5.5)

in which the equations are of the form

ψ̇n(t) = −iHnnψn(t) +Bnun(t) for n = 1, . . . , N . (5.6)

We call Bn input matrix, and un is called input, alluding to the input-output
form in the systems theory.

5.2 Input-output formulation without ports

As a second step we now identify the N output equations associated with the N
equations with input term found in the previous subsection. The most important
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conceptual result of this subsection, however, will be the emergence of an R-
bilinear pairing, which we will then refine in the following subsection.

The following construction uses the measurement postulates of quantum theory.
In particular, we use that the probability for a measurement apparatus defined
by an orthogonal projector Pn (for any n = 1, . . . , N) to yield the result 1 at
time t is

p(1|ρ(t)) = tr(Pnρ(t)Pn) =
⟨ψn(t) | ψn(t)⟩
⟨ψ(t) | ψ(t)⟩

. (5.7)

This is the probability to find an affirmative answer, from measurement, whether
the system is described a state in Hn. The probability flow ṗ(1|ρ(t)) as the
system evolves is thus given by

ṗ(1|ρ(t)) = ⟨ψ̇n(t) | ψn(t)⟩+ ⟨ψn(t) | ψ̇n(t)⟩
⟨ψ(t) | ψ(t)⟩

=
2Re⟨ψn(t) | ψ̇n(t)⟩

⟨ψ(t) | ψ(t)⟩
, (5.8)

where the first equality holds since the unitary time evolution for ψ renders the
derivative of its norm zero. We can now insert the input equation derived in
the previous section into the right-hand side, and obtain

2Re⟨ψn(t) | ψ̇n(t)⟩
⟨ψ(t) | ψ(t)⟩

=
2Re

(
⟨ψn(t) | Bnun(t)⟩

)
⟨ψ(t) | ψ(t)⟩

. (5.9)

Note that he term −i⟨ψn(t) | Hnnψn(t)⟩ is imaginary. Defining the output

yn(t) := −B†
nψn(t) , (5.10)

we thus obtain from the above calculation the balance equation

2Re
(
⟨ψn(t) | ψ̇n(t)⟩

)
+ 2Re

(
⟨yn(t) | un(t)⟩

)
= 0 . (5.11)

Note that this balance equation requires use of the R-bilinear real-valued pairing
2Re⟨·|·⟩ defined on all of H×H, whence the port space of a Dirac structure

D′
n := {(en, fn, yn, un) ∈ Hn×Hn×Hn×Hn | fn = −iHnnen+Bnun , yn = −B†

nen} ,
(5.12)

which one could in principle devise to describe the n-th subsystem equation as

(ψn, ψ̇n, yn, un) ∈ D′
n , (5.13)

would use a port space Hn × Hn for its input and output to the environment
that depends on the precisely which other subsystems are present. That is not
desirable and will be repaired in the following subsection.

5.3 Input-output formulation with ports

The port of a subsystem must be independent of the presence of other subsys-
tems that interconnect via a Dirac structure in order to allow for the simple star-
shaped decompositions we are aiming for. Thus, despite superficial appearances,
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the input-output formulation arrived at above does not feature suitable ports,
since the input and output of subsystem Hn are elements of Hn =

⊕
m ̸=nHm

and thus completely dependent on which other subsystems are present.

As the third and last step to obtain a description of an additively decomposed
quantum system in terms of ports and a Dirac structure, we now repair this
shortcoming. This is done by describing the probability flow through a port of
subsystem Hn exclusively through the pairing

⟨·, ·⟩Dn : Hn ×Hn → R , ⟨αn|βn⟩Dn := 2Re⟨αn|βn⟩ (5.14)

which renders the subset

Dn := {(en, fn, yn, un) ∈ Hn×Hn×Hn×Hn | fn = −iHnnen+un , yn = −en}
(5.15)

a Dirac structure.

While this now ensures that the ports of the n-th subsystem only depend on
the Hilbert space for that subsystem, the equations of motion

(ψn(t), ψ̇n(t), un, yn) ∈ Dn

diagrammatically represented by

Hn Dn

ψn(t)

ψ̇n(t)

yn(t)

un(t)

are no longer those of the input-output equations of the previous subsection,
since they do not encode the information contained in the terms Bn. In the
following subsection, we will show how one further Dirac structure will capture
all that missing information.

5.4 Identification of interconnecting Dirac structure

We now interconnect the subsystems defined in the previous subsection such that
the resulting equations of motion recover the unitary evolution of the maximal
knowledge about the total quantum system.

To this end we define a Dirac structure

Dint ⊂ (H1 ×H1)× (H2 ×H2)× · · · × (HN ×HN ) , (5.16)

by the condition that (z1, v1, . . . , zN , vN ) ∈ Dint if and only if
v1
v2
v3
...
vN

 = −i



0 H12 H13 · · · H1N

H21 0 H23 · · · H2N

...
. . .

...
...

. . .
...

HN1 · · · . . . HN−1N 0




z1
z2
z3
...
zN

 , (5.17)
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which we write more compactly as v = −iBz in terms of the thus defined
hermitian operator B on H. It is easily seen that Dint is indeed a Dirac structure
since there are N linear relations for 2N variables, so that dim(Dint) = dimH,
and that the balance equation

N∑
n=1

⟨zn|vn⟩Dn = 2Re(⟨z | −iBz⟩) = 0 , (5.18)

holds since B† = B because H†
ij = Hji.

It is now a simple exercise to show that the total system is reconstructed by
composing the just identified Dirac structure

H1 Dint

z1

v1

z2
v2 zN

vNH2

HN

to the N open subsystems defined in the previous subsection by virtue of N -fold
application the previously encountered composition rule for Dirac structures,

un := vn and yn := −zn for n = 1, . . . , N , (5.19)

which are diagrammatically represented by small circles that connect two ports
with the same port space. The resulting equations of motion

(ψ1, ψ̇1, . . . , ψN , ψ̇N ) ∈ DN ◦ (· · · ◦ (D2 ◦ (D1 ◦ Dint))) · · · )

amount precisely to equation (5.3) and have the the diagrammatic representa-
tion
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6 Additive composition of open systems

A question that can now be meaningfully formulated and answered is whether
a quantum system given by an additive composition of subsystems as described
in the previous section is, in fact, physically possible in the sense that it can be
considered to be materially composed of only elementary particles? We provide
a terminating algorithm to decide this question.

6.1 Admissible decompositions

We wish to understand for which positive integer N > 1, non-negative inte-
gers a1, . . . , aN and non-negative half-integers j1, . . . , jN does the direct sum of
(without loss of generality: irreducible) representation spaces

a1C2j1+1 ⊕ · · · ⊕ aNC2jN+1 (6.1)

combine into a tensor product

C2k1+1 ⊗ · · · ⊗ C2kM+1 (6.2)

of irreducible representation spaces for a suitable integer M > 1 and suitable
non-negative half-integers k1, . . . , kM .

We call an additive decomposition admissible, if it corresponds to such a tensor
product of irreducible representation spaces,

6.2 Unit multiplicities

We start by studying the additive decompositions that arise from a tensor prod-
uct of two irreducible representations through a the Clebsch-Gordan decompo-
sition (4.10), which we rewrite as

Cn1 ⊗ Cn2 =

n1+n2
2 −1⊕

i=
|n1−n2|

2

C2i+1 . (6.3)

We expressed ji in terms of ni = 2ji + 1 for i = 1, 2. We also assume, with-
out loss of generality, that n1 ≥ n2, in order to remove the absolute value in
the subtraction. Since vector spaces in the decomposition differ only in their
dimensions, we will write just the dimensions. By direct calculation, one obtains

n1 ⊗ n2 = (n1 − n2 + 1)⊕ (n1 − n2 + 3)⊕ · · · ⊕ (n1 + n2 − 1) . (6.4)

Observation 6.1. The multiplicity of each summand is one.

Observation 6.2. Since n1 and n2 are natural numbers, n1 ± n2 can be either
even or odd. More precisely,
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(i) if both n1 and n2 have the same parity, then n1 ± n2 is even, and the
summands will be odd naturals in the range [n1 − n2 + 1, n1 + n2 − 1],

(ii) if n1 and n2 are of opposite parities, then n1±n2 is odd, and the summands
are all even naturals in the range [n1 − n2 + 1, n1 + n2 − 1].

Observation 6.3. The number of terms in the sum does not depend on n1. The
number of iterations of the sum is(

n1 + n2
2

− 1

)
− n1 − n2

2
= n2 − 1 , (6.5)

so there are n2 terms in the sum.

Conclusion 6.1. If and only if all the summands in an additive decomposition
are of unit multiplicity and their dimensions are either all the consecutive even
or all the consecutive odd naturals within some finite range, then the additive
decomposition represents a material composition of two particles whose Hilbert
spaces have dimensions

n1 =
1

k

∑
i

mi and n2 = k , (6.6)

which are the average of the sum of all dimensions and the number of terms in
the additive decomposition.

Observation 6.4. The numbers n1 and n2 are unique, so a conceptual decom-
position can correspond to only one material decomposition.

Example 6.1. Consider an additive decomposition given as

C4 ⊕ C6 ⊕ C8 ⊕ C10

Dimensions consist of all even naturals in the range [4, 10]. Since there are four
terms, n2 = 4. The average is seven, so n1 = 7. One can check that indeed,

C7 ⊗ C4 = C4 ⊕ C6 ⊕ C8 ⊕ C10 .

6.3 Multiplicities larger than one

With Observation 6.1 in mind, we know that if there is an an > 1 for some
n = 1, . . . , N , we have to consider a material composition of more than two
systems, i.e.,

Cn1 ⊗ Cn2 ⊗ · · · ⊗ CnN , N > 2 (6.7)

There is no closed-form expression for a Clebsch-Gordan decomposition of a
multiple tensor product. Thus one must study such situations case-by-case.
However, there are some properties one can check in order to determine whether
a certain additive decomposition corresponds to a tensor product of irreducible
representations.
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Observation 6.5. The sum of dimensions m =
∑k
i=1 aimi of the additive com-

position must be a composite number with at least three non-trivial divisors.
In general, there might be more ways one can factorize m, and the number of
factors might vary.

Observation 6.6. As a consequence of Observation 6.2 and the distributivity
of addition over a tensor product, the additive decomposition must consist of
vector spaces whose dimensions are all the consecutive naturals of the same
parity within some finite range, with a possible multiplicity that is larger than
one. Consider the three-fold tensor product

(Cn1 ⊗ Cn2)⊗ Cn3 =

n1+n2
2 −1⊕

i=
n1−n2

2

C2i+1 ⊗ Cn3 . (6.8)

Since the dimensions 2i + 1 on the right-hand side all have the same parity,
the summands resulting from the Clebsch-Gordan decomposition of each tensor
product C2i+1⊗Cn3 again have the same parity that depends only on the parity
of n3.

Observation 6.7. It follows from Observation 6.2 that

(i) an odd number of factors ni with even parity and even number of fac-
tors with odd parity (or no factors with odd parity), produces additive
decomposition whose summands have even parity,

(ii) otherwise, the parity of the dimensions of the summands is odd.

These observations are necessary, but not sufficient conditions to determine if a
given additive decomposition corresponds to a material composition.

Example 6.2. Consider the additive decomposition

4C4 ⊕ 2C6 ⊕ C8 .

The total dimension is 36, which can be factorized in four ways, namely

36 = 6 · 3 · 2 = 4 · 3 · 3 = 9 · 2 · 2 = 3 · 3 · 2 · 2 .

There is one way to decompose 36 into four factors, and three ways to decom-
pose it into three factors. By inspecting the parity of the dimensions according
to Observation 6.7 we conclude that 4 · 3 · 3 is the only candidate for a tensor
composition. Only this combination of factors produces even summands. How-
ever, it turns out that 4C4 ⊕ 2C6 ⊕C8 does not correspond to a tensor product
of irreducible representations, since

C4 ⊗ C3 ⊗ C3 = (C2 ⊕ C4 ⊕ C6)⊗ C3 = 2C2 ⊕ 3C4 ⊕ 2C6 ⊕ C8 .

That is, there is no system in Euclidean three-space that one can conceptually
think of as consisting of four spin-3/2 subsystems, in addition to two spin-5/2
and a spin-7/2 subsystems. If, on the other hand, one replaces one of the
four spin-3/2 subsystems with two spin-1/2 subsystems, then the corresponding
material composition consists of one spin-3/2 and two spin-1 systems.
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6.4 General check for admissibility

The terminating algorithm one can follow to determine if some additive decom-
position corresponds to a tensor product of irreducible representations is the
following.

If any of the steps fail, the additive composition does not correspond to a tensor
product of irreducible representations.

1. Check that property 6.5 holds.

2. Check that property (6.6) holds.

3. Rearrange the additive decomposition into

• subsums of consecutive naturals which either all have the same num-
ber of summands or the same average of the dimensions,

• a constant subsum, i.e., a subsum whose terms are all equal. The
constant subsum might consist of a single term, and it need not exist.

4. Write each non-constant subsum as a tensor product of two vector spaces.
If the terms in the constant sum coincide with the common factor of the
tensor product, take out the common factor out of every subsum.

5. Repeat the steps 2-4 until there is only one subsum left. If it consists of
all consecutive naturals within some finite range with the same parity and
unit multiplicity, write it as a tensor product.

The common divisors from the step 4 and the factors which follow from the
factorization in the last step are the dimensions of the corresponding material
composition. The first point of step 3 utilizes the expression (6.6) obtained for
tensor product of two vector spaces. Moreover, the dimensions of the mate-
rial decomposition are unique, as a consequence of uniqueness of the factors of
material decomposition of two systems.

Example 6.3. Consider an additive decomposition

3C1 ⊕ 6C3 ⊕ 4C5 ⊕ C7 .

The additive decomposition consists of all odd naturals in the range [1, 7]. The
total dimension n = 48 is a composite number that can be factorized in six
different ways,

48 = 4 · 4 · 3 = 8 · 3 · 2 = 6 · 4 · 2 = 6 · 2 · 2 · 2 = 3 · 4 · 2 · 2 = 3 · 2 · 2 · 2 · 2

In this case we can eliminate only 6 · 4 · 2 as a candidate, as it is the only one
that produces even summands. Instead of working out the direct sum of each
of the other factorizations it is quicker to follow the procedure given above. We
will write only the dimensions. Conditions in step 1 and 2 hold, so we divide
the sum according to step 3 as

48 = (3⊕ 3)⊕ (1⊕ 3⊕ 5)⊕ (1⊕ 3⊕ 5)⊕ (1⊕ 3⊕ 5)⊕ (3⊕ 5⊕ 7)

= (3⊕ 3)⊕ (3⊗ 3)⊕ (3 · 3)⊕ (3⊗ 3)⊕ (5⊗ 3) .
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There is one constant subsum with two terms. All subsums consisting of con-
secutive terms have the same number of terms, three, which coincides with the
terms in the constant subsum. Hence, 3 is the first common factor. After taking
it out, we again rearrange the terms,

48 = 3⊗ ((1⊕ 1)⊕ 3⊕ 3⊕ 3⊕ 5)

= 3⊗ ((1⊕ 3)⊕ (1⊕ 3)⊕ (3⊕ 5))

= 3⊗ ((2⊗ 2)⊕ (2⊗ 2)⊕ (4⊗ 2)) .

The next common factor is 2, which leaves us with

48 = 3⊗ 2⊗ (2⊕ 2⊕ 4)

= 3⊗ 2⊗ ((2)⊕ (2⊕ 4))

= 3⊗ 2⊗ ((2)⊕ (3⊗ 2)) .

Again, the common factor is 2. Finally, there is only one subsum left,

48 = 3⊗ 2⊗ 2⊗ (1⊕ 3) .

The terms are consecutive and of the same parity, so

48 = 3⊗ 2⊗ 2⊗ (2⊗ 2) .

Hence, the given additive decomposition corresponds to a tensor product of
irreducible representations: The system consists of five elementry particles.
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7 Conclusions

In this thesis, we identified a unique system theoretic additive decomposition
of any materially composite quantum system in terms of independent quantum
subsystems with probability ports and their interconnection through a Dirac
structure.

To this end we first decomposed any given quantum system into subsystems
and studied the probability flow between them. The subsystems had to be in-
dependent of each other in the sense that knowledge about the state of each
separate subsystem amounts to knowledge about the state of the total system.
This immediately means that the subsystems cannot be given by the individual
tensor factors that describe the Hilbert space of a materially composed quan-
tum system. This is because the tensor product of Hilbert spaces contains
elements, so-called entangled vectors, that cannot be described in terms of one
element from each Hilbert space in the tensor factor. The identification of the
Hilbert spaces underlying suitable independent subsystems required a careful
understanding of the role of the physical space in which the quantum system
is situated, which furnishes each Hilbert space with additional structure in the
form of a representation of the isometry group of the underlying space. It is this
additional structure that allowed us to decompose any tensor product of Hilbert
spaces into a unique direct sum, whose summands constitute the Hilbert spaces
underlying the otherwise elusive independent subsystems. It was then straight-
forward to rewrite Schrödinger’s equation for a composed quantum system as
a system of coupled equations, one for each subsystem. In turn, writing these
equations in input-output form allowed the identification of a probability flow
between the independent subsystems as a real-valued inner product between
input and output. Despite superficial appearances, this input-output form did
not immediately lend itself to a description of the total system in terms of the
identified independent subsystems and their interconnection via a Dirac struc-
ture through ports. This is because the port, by which each subsystem connects
to the Dirac structure, must be independent of the number and nature of the
ports of other subsystems that connect to the same Dirac structure. The so-
lution consists in shifting the input matrices of all subsystems into one single
Dirac structure that has as many ports as there are independent subsystems.
Each of these ports is then defined exclusively in terms of the Hilbert space of
the respective independent subsystem. Interconnection of this Dirac structure
to each subsystem then constitutes the sought-for formulation in terms of prob-
ability ports and a Dirac structure. The value of this decomposition consists
in its modularity: Removing one subsystem from the originally closed system
results in a system with a free port. Connecting this free port to one other
subsystem or, via a further intermediate Dirac structure, to several other sub-
systems, an entirely new quantum system may be obtained. If one insists, as
one physically may well do, that the resulting quantum system, can be thought
of as consisting of elementary particles only, there are combinatorial constraints
on the subsystems that can be added in this way. We presented a terminating

32



algorithm to determine the admissibility of such modular extensions.

The insights gained and results presented in this thesis immediately prompt
several interesting questions for further research. We mention three of those, in
descending order of difficult.

First, how could one incorporate the second dynamical mechanism present in
quantum mechanics, namely the projective dynamics at any time of measure-
ment, into the formalism? The dual nature of a measurement apparatus, which
connects an observer’s knowledge about the state of a quantum system with the
same observer’s classical knowledge of the measurement result, makes this a con-
ceptually highly interesting and relevant question. The development of a hybrid
formulation that negotiates the switch between the unitary dynamics discussed
in this thesis on the one hand and the projective dynamics of a measurement
apparatus on the other hand appears to be a first obvious step, but is likely
to be informed in detail again by the postulates of quantum mechanics rather
than any formal analogy to the hybrid port-Hamiltonian theory. An exciting
prospect would be the possibility to shed some new light on the formulation of
the measurement problem of quantum mechanics.

Second, how can the the formalism be extended such as to deal with submaximal
knowledge? This is required if one wishes to incorporate observers who volun-
tarily or involuntary fail to read off the result shown by some measurement ap-
paratuses. The technical treatment of submaximal knowledge will likely further
refine the formalism and may well play a role in the solution to the incorporation
of measurements mentioned before.

Third, how do our results generalise to systems with translational degrees of free-
dom? This will necessarily require to employ the full apparatus of functional
analysis in order to deal with an infinite-dimensional Hilbert space and un-
bounded operators. Another interesting technical extension would be to trans-
late the results of this thesis to the universal covering group SL(2,C) that
governs relativistic particles without translational degrees of freedom and to
study which insights, if any, will be afforded in that area by use of the additive
decomposition formalism.
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