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ABSTRACT

Abstract. Abdominal aortic aneurysms (AAAs) are focal dilatations of the abdominal aorta that,

if left untreated, can rupture with high mortality rate. In this work, we present novel deep learning

methods for modeling and prediction of local AAA growth. Using implicit neural representations

(INRs), we obtained personalized, continuous representations of AAA shapes evolving over

time, based on highly sparse and irregularly spaced longitudinal image data. We represent the

AAA’s outer wall evolving over time as the zero level set of its signed distance function (SDF),

which we embed in amultilayer perceptron (MLP) that operates on space and time. We optimize

this INR using automatically extracted AAA segmentations in longitudinal CTA data. This net-

work is conditioned on spatio-temporal coordinates and therefore represents the evolving AAA

shape at any spatial resolution and any point in time. Using regularization on spatial and tem-

poral gradients of the SDF, we observe that our model can accurately interpolate AAA shapes

evolving over time, with average surface distances (ASDs) ranging from 0.627 to 4.443 mm.

This personalized approach for modeling AAA evolution, however, does not generalize easily

to new AAA patients, limiting its adoption in clinical practice. To address this, we propose a

graph convolutional network (GCN) for prediction of local AAA growth, operating on surface

mesh representations of the AAA’s outer wall. We optimize this network using continuous rep-

resentations of evolving AAA shapes from multiple patients, that we obtained using the INRs.

By conditioning the GCN model on a time step, we can predict AAA growth over any desired

future time point. We demonstrate the GCN’s performance to predict AAA shapes with diameter

profiles along the AAA centerlines. The results indicate that our model can predict local AAA

growth in the right direction specifically in the dilated part of the aorta, leaving the healthy parts

unaffected. Our proposed pipeline, including automatic segmentation, continuous AAA surface

representation, and predicting local AAA growth on the surface, holds potential clinical value for

more personalized, pro-active AAA surveillance.

Keywords: Abdominal aortic aneurysm · Implicit neural representation · Graph convolutional

network · Deep learning · Aneurysm growth
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1 INTRODUCTION

Abdominal aortic aneurysms (AAAs) are focal dilatations of the abdominal aorta that exceed a

maximum diameter of 30 mm. They tend to grow and may rupture, which is associated with a

mortality rate of approximately 80% [1]. Treatment of AAAs includes either open surgical re-

pair or a minimally invasive alternative known as endovascular aneurysm repair (EVAR). EVAR

involves the placement of a stent graft using a catheter that is inserted through the femoral

arteries. This stent graft excludes the aneurysm wall from blood circulation, causing the in-

traluminal thrombus (ILT) to shrink in favorable cases. EVAR is marked by its improvement

in peri-operative and early (within six months) morbidity, mortality, and recovery compared to

open repair [2, 3]. However, the long term aneurysm-related mortality, re-intervention and rup-

ture rates are higher after EVAR than after open repair [3]. Therefore, whereas patients with

a shorter life expectancy are more likely to benefit from EVAR, open repair is recommended

for those with prospects of long term survival. Thus, when making recommendations, clinicians

should take into account several factors: the risk of AAA rupture, the patient’s life expectancy,

and the risks of surgical intervention and associated complications. In order to make patient-

specific, informed decisions regarding a surgical intervention, it is crucial to carefully assess

and compare these factors.

Currently, the assessment of rupture risk primarily relies on the maximum AAA diameter (Figure

1.1, gray steps). Autopsy and clinical studies suggested that the risk of rupture accelerates with

increasing AAA diameter [4, 5]. Once diagnosed with AAA, patients are monitored via periodic

imaging using various imaging modalities: computed tomography angiography (CTA), magnetic

resonance imaging (MRI) or ultrasound (US). If the maximum outer-to-outer wall diameter as

measured in these images exceeds a certain threshold (55 mm in men, 50 mm in women) or

has grown at a rate of more than 10 mm in a year, surgical treatment is recommended to pre-

vent AAA rupture [6]. These thresholds are based on the results of the United Kingdom Small

Aneurysm Trial, a randomised controlled trial of early elective open repair or surveillance for

small, symptomless AAAs (40-55 mm). They demonstrated no clear advantage for surgical in-

tervention over surveillance for AAAs that were smaller than 55 mm in diameter [7]. Despite

the strong correlation between AAA diameter and rupture risk, several studies show that the

maximum AAA diameter is insufficient to assess rupture risk. For example, AAAs with a maxi-

mum diameter below the thresholds do rupture while other AAAs with a diameter up to 80 or 90

mm remain stable [8, 9]. This implies that other patient-specific parameters play a substantial

role in AAA rupture. Furthermore, since the maximum AAA diameter is measured manually in a

certain user-selected slice from a CTA, MRI or US scan, it is associated with high inter-observer

variability. In a study by Cayne et al., average measurement variability of maximum AAA di-

ameter on the same CT scan is 4.0±5.1 mm, and can be as much as 35 mm [10]. Here, the

CT maximum diameter of 25 AAAs was measured by eight experienced observers. Thus, even

when the observers were experienced in issues relating to AAA size, a substantial variability in

the measurement of maximum AAA diameter was found. This demonstrates that manual mea-

surement of the maximum AAA diameter on CT scans may not be a true reflection of aneurysm

growth.
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Figure 1.1: In the current pipeline (gray), assessment of rupture risk primarily relies on the

maximum AAA diameter. In practice, this diameter is measured manually in a certain user-

selected slice from a CTA, MRI, or US scan. Our proposed additional steps (blue) do not only

allow for retrospectively assessing AAA growth, but also predicting AAA growth over a future

time point. Our pipeline consists of the following fully automatic steps: aorta segmentation using

an nnU-Net [11], continuous surface representation using an INR [12], and predicting local AAA

growth on the surface using a GCN.

Various studies have proposed to use biomechanical parameters, characterizing the complex

shape of an AAA, to improve rupture risk assessment [13]. Examples of such parameters are

geometrical properties like AAA volume, ILT thickness, and aortic tortuosity, and vessel wall

properties like wall shear stress (WSS). These are all based on the aneurysm shape and play a

crucial role in the evolution of AAAs. However, manually obtaining the AAA shape is highly time

and labor-intensive, requires expertise, and may result in inter and intra-observer variability.

Therefore, with an abundance of imaging data available that provide a wealth of valuable in-

formation about the aneurysm shape beyond just its maximum diameter, several segmentation

algorithms have been developed to automatically extract the AAA shape [14, 15]. In particular,

Abdolmanafi et al. even focused on segmentation of different surfaces and volumes comprising

the aneurysm, including the wall, lumen, ILT and calcification in the aorta and iliac arteries [15].

This allows for precise, standardized measurement of various biomechanical parameters that

may correlate with increased rupture risk.

Although these biomechanical parameters are more informative to assess rupture risk than the

maximum AAA diameter, these studies do not address the problem of predicting the AAA shape

at a future time point. The AAA growth is only considered retrospectively, because a prognos-

tic value for expansion has not yet been acknowledged. In the current pipeline, no prognostic

marker for AAA growth and rupture has been implemented as common practice. Prognostic

information regarding AAA evolution could have significant benefits in surgical and surveillance

management, and provides the patient with valuable information about the expected course of

their condition.
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Several machine learning techniques have been proposed to predict AAA evolution based on

its shape extracted from longitudinal image data. Do et al. utilised a spatio-temporal Gaus-

sian process observation model to construct an implicit surface field, and developed a dynamic

model to infer the evolution of this field at a future time [16]. They derive the predicted AAA

surface from this predicted field along with uncertainty quantified in future time. Zhang et al.

proposed a multistate continuous-time Markov chain model that estimates the transition of AAA

progression from one state to another state in terms of AAA growth [17]. Another machine learn-

ing model predicts local aortic aneurysm growth based on global, regional, and sub-regional

image-derived geometric characteristics, which was proposed by Stoecker et al. [18]. More

recently, deep learning methods have been proposed for predicting AAA evolution; Jiang et

al. employed a deep belief network to predict AAA expansion [19], and Kim et al. integrated

physics-based knowledge with a convolutional neural network by incorporating important mul-

tiphysical features [20].

Despite the promising results shown by these methods in predicting AAA evolution, they are

often biased by highly sparse and irregularly spaced longitudinal image data. That is, AAA

shapes are only represented at the specific time instances when the imaging scans were ac-

quired, providing only snapshots of the AAA shape and associated geometrical parameters at

those particular moments. In most studies, data is collected retrospectively, and hence dense

and regularly spaced time steps cannot be obtained. For example, in the study by Kim et al.

[20], only three longitudinal CTA scans were acquired per patient and their time intervals varied

with a minimum of 35 days to a maximum of 769 days. Fixed, regularly spaced time points (one-

year) were obtained by linearly interpolating or extrapolating the AAA shape using the second

and third CTA scan. This, however, does not take into account the patient-specific AAA growth

pattern, and therefore causes a bias in predicting AAA evolution. Furthermore, the quality of

the AAA shapes and associated geometrical parameters is often based on the resolution of

the image data due to voxel-based representations. Due to this limited availability of smooth

AAA shapes at high temporal and spatial resolutions, it is challenging to learn AAA growth rates

and predict AAA evolution. To address this challenge, it would be desirable to have a continu-

ous representations of evolving AAA shapes, i.e., at any spatial resolution and any point in time.

For a longitudinal model of an AAA shape, we have to pick a way to represent the 3D shape.

There are multiple ways to do this; we distinguish explicit and implicit methods (Figure 1.2).

While voxel masks merely discretize an underlying continuous shape and therefore have non-

smooth boundaries, mesh-based representations have locally smooth boundaries. However,

meshes are still restricted to a fixed resolution, and therefore explicit representations. A 3D

shape can also be implicitly represented by a signed distance function (SDF). The value of an

SDF, for a given spatial point, represent the point’s distance to the closest point on the surface

of the 3D shape; the sign encodes whether the point is inside (negative) or outside (positive)

of the surface (respectively blue and red in Figure 1.2). Hence, the zero level set of this SDF

represents the underlying continuous surface of the 3D shape (white in Figure 1.2). Since an

SDF represents the distance to the surface for any spatial point, it represents the surface with

watertight and smooth boundaries at any resolution. Although this way of representing an 3D

shape is conceptually appealing due to its continuity, it is difficult to find the actual function.

Classical surface reconstruction methods complete a point cloud into a surface by fitting radial

basis functions (RBFs) to approximate such an implicit surface function [21].

Recently, implicit neural representations (INRs) have emerged as powerful tools to represent

continuous signals on a spatial or spatio-temporal domain [22]. INRs are multilayer perceptrons

(MLPs) that take as input continuous coordinates and output the value of the signal or function

at that coordinate. The function that is embedded in the MLP can also be an implicit surface

7



Figure 1.2: Different representations of a 3D AAA shape. Both voxel masks (a) and meshes

(b) are restricted to a fixed resolution and therefore explicit representations. Voxel masks have

non-smooth boundaries, whereas boundaries of meshes are locally smooth. A signed distance

function (c) implicitly represents the surface with smooth and watertight boundaries, at any

resolution.

function such as an SDF. By fitting an SDF, INRs are proven capable of encoding surfaces

of 3D shapes [23, 24]. This has led to applications in representing 3D shapes evolving over

time, like cell shape synthesis [25] and statistical shape modeling [26]. Regarding AAA shapes,

Alblas et al. have demonstrated that INRs can be optimized to represent AAA surfaces at a

single point in time using a small number of points on the surface [12]. Ideally, you want to

extend this model to represent longitudinal AAA surfaces. A continuous representation of an

AAA shape evolving over time enables the interpolation of AAA shapes according to the patient-

specific growth pattern. This approach addresses the challenge of dealing with highly sparse

and irregularly spaced longitudinal image data. Although interpolation allows for retrospectively

assessing AAA growth at any moment in-between the scan instances, this approach does not

address the prediction of AAA growth over a future time point.

For many years, convolutional neural networks (CNNs) have been a popular deep learning

model due to their ability to learn from lots of training data. Hence, they are marked by their

generalization capabilities. Although CNNs have shown their many applications for the analy-

sis of medical images, they can only operate on regular Euclidean data (e.g., 2D or 3D grids).

Extending CNN models to non-Euclidean domains has been an emerging research area, which

is generally referred to as graph convolutional networks (GCNs). Graphs are a type of data

structure which consists of a set of objects (vertices) and their relationships (edges). Recent

work by Suk et al. has demonstrated the effectiveness of a mesh-based model that uses a GCN

on artery surfaces [27]. This method processes signals intrinsically on the artery wall and does

not depend on the embedding of local geometry descriptors in 3D. From a technical perspec-

tive, predicting AAA growth on the aneurysm surface can be seen as a similar problem. Like

[27], we are seeking a 3D vector for each point on the AAA surface. Whereas in the work of

[27], this vector represents the WSS, in our work, this vector should represent the growth of the
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AAA shape over a future time point. Learning on continuous mesh-based representations of

longitudinal AAA surfaces from multiple patients, this GCN can be optimized without any bias

from highly sparse and irregularly spaced longitudinal image data. With this, the AAA growth

can be predicted for new unseen patients over any desired future time point.

In this work, I propose an additional, automatic pipeline that does not only allow for retrospec-

tively assessing AAA growth, but also predicting AAA growth over a future time point (Figure

1.1, blue steps). Using INRs, I aim to obtain highly personalized, continuous representations

of AAA surfaces evolving over time, based on sparse and irregularly spaced longitudinal CTA

data (Chapter 2). In particular, I investigate to what extent such a model can be used to inter-

and extrapolate AAA surfaces in time for different temporal regularizations. Additionally, I pro-

pose to use a GCN to predict AAA growth over a future time point, based on the longitudinal

representations from multiple patients (Chapter 3). In Chapter 4, I will discuss the strengths and

limitations of these models and their potential to aid physicians in clinical decision-making.

Thus, the objective of this study is to address the following main research question, with sub-

questions for Chapter 2 and 3:

• How can deep learning be used to predict personalized aneurysm growth based on lon-

gitudinal image data?

– Chapter 2: To what extent can implicit neural representations (INRs) be used to

inter- and extrapolate AAA surfaces in time, based on sparse and irregularly spaced

longitudinal CTA data?

– Chapter 3: To what extent can a graph convolutional network (GCN) predict local

AAA growth, based on longitudinal aneurysm representations frommultiple patients?
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2 MODELING AAA EVOLUTION USING IMPLICIT NEU-

RAL REPRESENTATIONS

In this chapter, I demonstrate how we model AAA evolution based on highly sparse and irreg-

ularly spaced longitudinal CTA data. In particular, I show how we obtain continuous represen-

tations of AAA surfaces evolving over time, at any spatial resolution and any point in time. I

investigate to what extent this model can be used to inter- and extrapolate AAA surfaces in

time.

2.1 Shape Representations

Before delving into representing an AAA shape evolving over time, we have to pick a way to

represent a 3D shape at a single point in time. We distinguish explicit methods such as voxel

masks and meshes, and implicit methods such as a signed distance function. In Figure 1.2, we

have shown these representations for a 3D AAA shape.

Voxel mask A voxel mask represents a 3D shape on a Euclidean domain, namely a 3D grid

of small volumetric elements called voxels. It is a binary discretization of an underlying

continuous shape. This explicit representation has non-smooth boundaries and a fixed

resolution. Voxel masks have been a popular representation because medical image data

are represented in the same way, namely pixels or voxels. Convolutional neural network-

based methods have shown their effectiveness in dealing with this type of representation

by semantic segmentation of various shapes from image data. Hence, the quality of voxel

masks is typically dependent on the resolution of the image data.

Mesh A mesh consists of vertices, edges and faces that represent a 3D shape. Its boundaries

are locally smooth, but they are still restricted to a fixed resolution and therefore explicit

representations.

Signed distance function A shape can be implicitly represented by a signed distance function

(SDF). In the case of a 2D surface M embedded in a 3D domain, SDFM(x) : R3 7→ R is

defined as:

SDFM(x) =


−d(x,M) x inside M
0 x on M
d(x,M) x outside M.

(2.1)

The value of d(x,M) represent the distance to the closest point on the surface M, for a

given spatial point x. The sign of the SDF encodes whether the point is inside (negative)

or outside (positive) of the surface. Hence, the zero level set of this SDF represents

the underlying shape’s surface. Since an SDF outputs the distance to the surface for

any spatial point, it represents the surface with watertight and smooth boundaries at any

resolution.
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An implicit representation of a 3D shape can be easily transformed into any explicit represen-

tation due to its continuity, while the reverse process is a more complex process that requires

techniques such as surface reconstruction. Classical surface reconstruction methods complete

a point cloud into an implicit surface by fitting RBFs. Furthermore, conversion between explicit

representations is a challenging task and also requires reconstruction techniques. An example

is marching cubes, which is an algorithm that extracts a surface mesh from a 3D voxel mask.

2.2 Time-dependent Signed Distance Function

In this work, we are interested in modeling AAA evolution. Thus, instead of representing a

single AAA shape, we want to represent an AAA shape evolving over time. While a single

shape is described by its spatial coordinates, a shape evolving over time is also described by

a time coordinate. Regarding AAA evolution, we encounter a challenge in terms of temporal

resolution. That is, available longitudinal image data is typically highly sparse and irregularly

spaced in time. Therefore, we are seeking a representation that is able to fill in the gaps in this

surveillance data, i.e., interpolate in-between the scan instances. An implicit representation of

evolving AAA shapes is well-suited for this task.

A surface evolving over time can be implicitly represented by the zero level set of its time-

dependent SDF. In this work, we consider a 2D surface M of a shape evolving over time,

embedded in a 4D domain. Its time-dependent SDFM(x, t) : R3 × R 7→ R is defined as:

SDFM(x, t) =


−d(x,M) x inside M at time t

0 x on M at time t

d(x,M) x outside M at time t.

(2.2)

The value of d(x,M) represents the minimum distance to the surface M at position x at time

point t. Hence, the zero level set of this SDF represents the surfaceM. A time-dependent SDF

should satisfy the Eikonal equation at each time point, hence ||∇xSDFM(x, t)|| = 1, ∀x,∀t.

In theory, this time-dependent SDF provides a continuous representation of a surface evolving

over time. This is conceptually appealing as it maintains continuity throughout the evolution of

the surface at any spatial and temporal resolution. However, in practice, it is difficult to find the

actual function. To this end, we use a neural network that we can optimize to represent the

time-dependent SDF of a patient-specific AAA surface evolving over time.

2.3 Implicit Neural Representations

In previous work, it has been shown that an SDF of a fixed or evolving surface can be repre-

sented by a neural network [23, 24, 25, 26, 12]. In this work, we embed the SDF of an AAA

surface evolving over time in a so-called implicit neural representation (INR). Our INR is a fully

connected multilayer perceptron (MLP), f(x, t; θ), that takes as input a 4D coordinate from the

spatio-temporal domain Ω := [−1, 1]3 × [−1, 1], and outputs SDFM(x, t). Figure 2.1 shows a

schematic overview of our INR. As the INR is trained on continuous spatio-temporal coordinates,

it allows for an AAA representation at any spatial resolution and any point in time.

2.3.1 Optimizing an INR

Our network can be optimized to represent an AAA surface evolving over time, based on longi-

tudinal image data. In particular, we train our network using a sequence of J input point clouds

{Xtj}j=1,...,J , where Xtj = {xi}i∈I ⊂ [−1, 1]3 represents points on the AAA surface of a single
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Figure 2.1: Schematic representation of our INR, taking spatio-temporal coordinates (x, t) as
input, outputting SDFM(x, t) of the AAA surface. Note that a single INR represents the com-

plete evolving AAA surface of a single patient. Copied from [28].

patient at time tj . Note that J denotes the number of scan instances for a single patient. Using

these point clouds, we optimize the parameters θ in our MLP f(x, t; θ) so that it approximates

SDFM(x, t) to a plausible AAA surface evolving over time.

The loss function we use to optimize the INR consists of three terms: a data term LXtj
, and two

regularization terms LEikonal and Ltemporal:

L(θ) =
∑

1≤tj≤J

(LXtj
(θ) + λ1LEikonal(θ)) + λ2Ltemporal(θ), (2.3)

where λ1 and λ2 are hyperparameters.

The data term LXtj
was previously introduced in [24] and ensures that points that are known to

be on the AAA surface are indeed in the zero level set of the time-dependent SDF. For each

time tj , we sample I spatial points from the input point cloud Xtj , and encourage f(x, tj ; θ) to
vanish on these points. Thus, LXtj

is defined as:

LXtj
(θ) =

1

|I|
∑
i∈I

(|f(xi, tj ; θ)|). (2.4)

The regularization term LEikonal was also previously introduced in [24] and ensures that the INR

represents a proper SDF. For each time tj , we now sample M points from the spatial domain

Ω := [−1, 1]3, and encourage that f(x, tj ; θ) is a solution to the Eikonal equation. Thus, LEikonal

is defined as:

LEikonal(θ) = Ex(||∇xf(x, tj ; θ)|| − 1)2. (2.5)

The regularization term Ltemporal was recently introduced in [28] to avoid inconsistent repre-

sentations of the AAA surface for time points where point cloud data is unavailable, i.e. in-

between the scan instances. For this we sample N points from the spatio-temporal domain

Ω := [−1, 1]3 × [−1, 1], and regularize f(x, t; θ) at times where the AAA surface is unknown. In

this work, we evaluate two temporal regularization strategies.

Restricting any temporal change We restrict any temporal change by minimizing the tempo-

ral gradient of the SDF. In this case, Ltemporal is defined as:

Ltemporal(θ) = Et(||∇tf(x, t; θ)||). (2.6)
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Allowing growth but not shrinkage During pre-operative AAA surveillance, AAAs typically

tend to grow but not shrink. We can use this to impose more plausible constraints on

the time-dependent SDF. Note that the SDF is negative on the inside and positive on the

outside of the AAA surface, and therefore the temporal gradient is negative for an AAA

surface that grows. Thus, by setting λ2 > 0 and minimizing only positive values of the tem-

poral gradient, we allow the AAA surface to grow but not to shrink. In this case, Ltemporal

is defined as:

Ltemporal(θ) = g(Et(∇tf(x, t; θ))), (2.7)

where g(x) = max(0, x) is a ReLU activation function.

2.4 Data

To evaluate the INR’s performance in representing a surface evolving over time, we use two

kinds of datasets. We create a synthetic dataset, consisting of toy surfaces with different growth

patterns. In this dataset, we have control over the number of time points and their intervals, i.e.,

how dense and regularly spaced the data is. Furthermore, we include an aneurysm dataset that

is based on longitudinal CTA data from multiple AAA patients. It is important to note that this

dataset introduces confounding factors that may affect the INR’s performance in representing

an evolving surface, which will be addressed in Section 2.4.2.

2.4.1 Synthetic Dataset

We created three longitudinal synthetic datasets, each consisting of 11 spheres, with different

growth patterns in terms of diameters: exponential growth, linear growth, and linear shrinkage.

We chose spheres as toy surfaces because their growth pattern is the same for each point on

the surface. This way, we do not have any difference across the surface regarding local growth,

and therefore the growth pattern is known for the whole surface. The diameters of the spheres

were based on real-world AAA diameters, and ranged from 32 to 85 mm. Each sphere was

created using the icosphere function of Trimesh [29], and is described by a tuple of vertices

and faces M = (V,F). For each sequence of 11 spheres {Mtj}j=0,...,10, the set of vertices

{Vtj}j=0,...,10 were jointly normalized to the [−1, 1]3 domain. The time points t0-t10 were equally

spaced and normalized to the [−1, 1] interval. The resulting synthetic dataset is shown in Figure
2.2 and can be used as input for the INR.

Figure 2.2: Longitudinal synthetic datasets, each consisting of 11 spheres, with different growth

patterns: exponential growth (top), linear growth (middle), and linear shrinkage (bottom).
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2.4.2 Aneurysm Dataset

Study Subjects

We retrospectively included longitudinal CTA scans of 25 AAA patients collected at Seoul Na-

tional University Hospital (Seoul, South Korea) from 2000 to 2016. This longitudinal image data

was kindly shared with us by the authors of [16, 17, 19, 20]. The study population consisted of

24 males and 1 female, with their age at the first scan instance ranging from 54 to 80 years.

In total, 117 CTA scans were acquired using a CT scanner. The number of CTA scans per

patient ranged from 2 to 7, with time intervals between consecutive CTA scans ranging from 11

to 1713 days, meaning that we have highly irregularly spaced, sparse data at fixed time points.

The CTA scans had an in-plane resolution ranging from 0.38 to 0.87 mm and an axial (z-axis)

resolution ranging from 0.70 to 3.00 mm, indicating some diversity in image quality. In Table

2.1, the details about the subject data are summarized.

Table 2.1:
Summary of Subject Data

Gender (male/female) 24/1

Age at first scan instance (years) 67 (54-80)

Total CTA scans 117

Number of CTA scans per patient 5 (2-7)

Time interval between CTA scans (days) 338 (11-1713)

In-plane resolution (mm) 0.38-0.87

Axial (z-axis) resolution (mm) 0.70-3.00

Lumen and Thrombus Segmentation

We obtained automatic segmentations of the lumen and thrombus of the abdominal aorta in

each CTA scan using an nnU-Net [11] trained on 80 pre-operative CTA scans of AAA patients

with abdominal aorta annotations. This training dataset was acquired at AmsterdamAMC (Ams-

terdam, The Netherlands) using a CT scanner. The in-plane resolution ranged from 0.63 to 0.98

mm, and the axial (z-axis) resolution ranged from 0.50 to 2.00 mm. The annotation protocol of

the training dataset included two steps: 1) lumen and thrombus point clouds were annotated in

the pre-operative CTA scans, and 2) surface reconstructions of these manually annotated point

clouds were made using an INR [12]. Quantitative evaluation of the trained nnU-Net model in

a separate test dataset consisting of 13 CTA scans showed a median Dice similarity coefficient

(DSC) of 0.90±0.09 for AAA segmentation (including both lumen and thrombus).

Using this trained nnU-Net, we successfully obtained automatic lumen and thrombus segmen-

tations in our dataset. However, six lumen segmentations of five patients required manual cor-

rection using 3D Slicer [30] as they had not been properly segmented by the trained nnU-Net.

This is most likely due to the out-of-distribution nature of our dataset, which includes factors

such as the use of a different CT scanner and acquisition protocol compared to the training

data of the nnU-Net. In addition, our dataset consists of patients from South Korea, whereas

the nnU-Net training data primarily included patients from The Netherlands. The obtained lu-

men and thrombus segmentation together form the aorta segmentation.

From the aorta segmentations we can automatically extract the maximum diameter based on

the maximum inscribed sphere (MIS) method [31, 19]. In Figure 2.3, we show the maximum

diameter for each patient over time based on age and scan instances.
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Figure 2.3: Automatically extracted, maximum inscribed sphere (MIS) diameters from the ab-

dominal aortic aneurysm (AAA) segmentations for each patient over time based on age and

scan instances in years. Each line corresponds to one patient and the dots indicate the pa-

tient’s age at which the computed tomography angiography (CTA) scan was taken.

Rigid Registration

In order to model local AAA evolution, it is crucial that all AAA shapes of the same patient are

aligned in the same coordinate system. For this, we used rigid registration within the Insight

ToolKit (ITK) image registration framework [32], based on the aorta segmentations. Note that

we do not want more degrees of freedom like scaling to register the AAA shapes. That is, we

only aim to align the AAA shapes because the INR model should learn its local evolution.

Aorta Point Clouds

The surface of each registered aorta segmentation was extracted and represented as a point

cloud. For each patient, the spatial coordinates of all registered point clouds were jointly nor-
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malized to the [−1, 1]3 domain, as for the synthetic dataset. Similarly, the time points of the scan

instances were normalized to the [−1, 1] interval. The resulting sequence of normalized point

clouds can then be used as input for the INR.

Confounding Factors

In this aneurysm dataset, several confounding factors can affect the INR’s performance in rep-

resenting an AAA surface evolving over time.

• Number of scan instances and their time intervals. We have highly irregularly spaced,

sparse data at fixed time points. It is expected that the INR can better model AAA evolution

by learning a growth pattern from dense and regularly spaced data. We, however, do not

have any control over the number of scan instances and their time intervals because the

data is collected retrospectively.

• Image quality. There are several factors that affect the image quality and thereby the

representation of the AAA shape. Examples are insufficient contrast enhancement of the

lumen, limited in-plane or axial resolution, inadequate field of view (FOV), and CT settings

like peak kilovoltage (kVp).

• Segmentation. The AAA segmentations were obtained automatically using a trained

nnU-Net. The training data for this nnU-Net, however, differs in terms of distribution com-

pared to our dataset. For example, patients from the nnU-Net training data came from

The Netherlands, whereas patients from our dataset come from South-Korea. This may

have caused some segmentations errors in our dataset.

• Registration. If the AAA shapes are not registered perfectly to each other, the INR may

be prone to learn the global translation and rotation to better align AAA shapes, instead

of learning local growth of the aneurysm.

• Local growth. AAA growth is typically assessed in terms of maximum diameter. As

shown in Figure 2.3, we can obtain a global growth trend by fitting themaximum diameters.

Global growth, however, is insufficient to describe the AAA evolution. Whereas the dilated

part of the AAA shape grows, healthy parts remain stable. Therefore, local growth across

the AAA surface varies, which may result in distinct performance of the INR for different

surface regions. But since local growth is unknown, we cannot evaluate this.

It is important to note that in our synthetic dataset, we either eliminated these confounding

factors or had control over them. In particular, we are free of diversity in image quality, and

segmentation and registration errors, and have control over the temporal resolution and local

growth of the evolving toy surface.

2.5 Experiments and Results

To represent a shape evolving over time, the INRs consisted of an MLP with three fully con-

nected layers and a single final node. For the synthetic dataset, we used 128 nodes for each

layer with Sine activation functions (ω = 2), resulting in a SIREN model [33]. For the aneurysm

dataset, we used 256 nodes for each layer with Softplus activation functions (β = 100). Like

[24, 23], we used a single skip connection from the input to the middle layer. Note that we used

a different activation function for the aneurysm dataset than for the synthetic dataset. This is

because the INR is highly sensitive to the hyperparameter ω, and requires tuning for each dif-

ferent shape. For the toy surfaces, we only have to tune this parameter ones, but for aneurysm

shapes, we should tune this parameter for each patient. We set our loss weights λ1 and λ2
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Table 2.2: Hyperparameter settings
Hyperparameters Synthetic dataset Aneurysm dataset

Number of layers 3 3

Number of nodes per layer 128 256

Activation function σ Sine (ω = 2) Softplus (β = 100)

Loss weights

λ1 = 0.1
No temporal regularization: λ2 = 0
With temporal regularization: λ2 = 0.1

λ1 = 0.1
No temporal regularization: λ2 = 0
With temporal regularization: λ2 = 0.05 or λ2 = 0.1

Optimizer Adam Adam

Learning rate 10−5 10−4

Number of epochs 10000 25000

Batch size N 300 6000

(Equation 2.3) as shown in Table 2.2. We used an Adam optimizer with a constant learning

rate to train our network on an NVIDIA Quadro RTX 6000 GPU. In Table 2.2, the learning rate

and number of epochs are shown for the synthetic and aneurysm dataset. In each epoch, we

randomly sampled the following coordinates for each time point tj :

• N points from the input point cloud Xtj ⊂ [−1, 1]3 with time point tj ⊂ [−1, 1],

• N points from spatial domain Ω := [−1, 1]3 with time point tj ⊂ [−1, 1], and

• N points from spatio-temporal domain Ω := [−1, 1]3 × [−1, 1],

where N is the batch size (Table 2.2). Note that we use different hyperparameters for the

aneurysm dataset than for the synthetic dataset. For example, the number of nodes per layer,

the number of epochs and the batch size are much larger. This is because representing real-

world evolving AAA shapes is a more challenging task for an INR compared to representing

spheres that evolve over time based on a well-defined growth pattern.

In this work, we evaluate how different temporal regularization strategies affect the INR’s per-

formance in representing an evolving shape. In particular, we compare two temporal regular-

ization strategies: restricting any temporal change by minimizing the temporal gradient of the

SDF (TempReg), and allowing growth but not shrinkage by minimizing only positive values of

the temporal gradient of the SDF (ReLUTempReg). We also evaluate the INR’s performance

without applying any temporal regularization (NoTempReg). That is, by setting λ2 = 0, we do

not impose any temporal constraints on the SDF.

2.5.1 Continuous Sphere Representation

For each of the three longitudinal synthetic datasets, we optimized a single INR based on the set

of vertices {Vtj}j=0,...,10 at all time points, which will be referred to as the reference experiment.

We use this fully sampled INR to extract the surfaces of the toy spheres at the ground-truth time

points tj=0,...,10 and their intermediate time points tj=0.5,...,9.5. Note that since the INR is trained

on continuous spatio-temporal coordinates, we can extract a sphere surface at any spatial res-

olution and any point in time. For each extracted sphere surface, we compute the diameter

by taking the mean distance of all its vertices V to the centre and multiplying this radius with

two. In the top row in Figure 2.4, we compare the diameters of the ground-truth and extracted

spheres for the reference experiments for different growth patterns and temporal regularization

strategies.

We observe that the INRs can accurately interpolate the sphere’s surface in time. That is, the

diameters of the intermediate time points precisely follow the ground-truth growth patterns. This
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Figure 2.4: Diameters of ground-truth and extracted spheres for the reference and extrapolation

experiments (top and bottom row, respectively).

indicates that the INR is able to learn a well-defined growth pattern and represent a sphere sur-

face evolving over time at any temporal resolution.

We compare how different temporal regularization strategies (NoTempReg, TempReg, and Re-

LUTempReg) affect the INR’s performance in representing the sphere’s surface evolving over

time. For both exponential and linear growth (top left and middle in Figure 2.4), the diameters

from the INR optimized with NoTempReg (blue) and ReLUTempReg (yellow) precisely follow

the ground-truth diameters. For TempReg (green), however, the diameters flatten at both ends

of the time points that were seen during training. This is the case for all growth patterns and

is most likely due to regularizing any temporal change. Interestingly, the flattening is also ob-

served for ReLUTempReg when the surface of the sphere shrinks over time (top right in Figure

2.4). This indicates that this temporal regularization performs as expected; it allows growth but

restricts shrinkage. Thus, according to these reference experiments, optimizing an INR with no

temporal regularization (NoTempReg) results in the most accurate, continuous representation

of the sphere’s surface evolving over time.

Extrapolation

In order to evaluate the INR’s performance in extrapolating the sphere’s surface over time, we

optimized an INR similarly as the reference experiment but left out the last two time points (t9
and t10) during training. Thus, for each growth pattern, we optimize a single INR based on

the set of vertices {Vtj}j=0,...,8. Using this optimized INR, we reconstruct the surfaces of the

toy spheres at the left-out time points t9 and t10 and compare it to the ground-truth spheres.

In the bottom row in Figure 2.4, we compare the diameters of the ground-truth and extracted

spheres for these extrapolation experiments. In addition to these diameter plots, we show the

corresponding extracted spheres in Figure 2.5.
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Figure 2.5: Ground-truth and extracted spheres for the extrapolation experiments. For each

growth pattern (top, middle, and bottom), we compare the results for different temporal reg-

ularization strategies: NoTempReg (blue), TempReg (green), and ReLUTempReg (yellow).

Note that the INRs were optimized based on the ground-truth spheres from time points t0 to t8.
Hence, extracted spheres at intermediate time points are interpolations, and after time point t8
are extrapolations.
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For both exponential and linear growth (bottom left and middle in Figure 2.4), optimizing the

INR with with NoTempReg (blue) and ReLUTempReg (yellow) resulted in the best extrapola-

tion performance. Whereas the INR was able to learn the linear growth pattern and accurately

extrapolate spheres, it was not able to fully learn the exponential growth pattern. As for the ref-

erence experiments, we observe that for TempReg (green) the diameters flatten at both ends

of the time points that were seen during training. Note that now the flattening occurs earlier

because the last two scans were left out during training. Interesting behavior is observed for

ReLUTempReg when the surface of the sphere shrinks over time (bottom right in Figure 2.4).

That is, the sphere’s surface starts to grow after t8, which is the last time point seen during

training. It seems that the INR tends to predict growth rather than learning from previous time

points that the sphere should shrink. Thus, according to these extrapolation experiments, op-

timizing an INR with no temporal regularization (NoTempReg) results in the best extrapolation

performance.

In conclusion, according to this toy problem, we obtained the following key observation:

• Temporal regularization is not necessary for an INR to represent plausible surfaces

for time points where data is unavailable, i.e. in-between the training time points.

• An INRmodel that is optimized with no temporal regularization is able to accurately

learn a growth pattern and even extrapolate on this growth pattern. With temporal

regularization, the growth pattern tends to flatten at both ends of the training time points,

which makes it difficult to accurately extrapolate on this growth pattern.

Now that we know how different temporal regularization strategies affect the INR’s performance

in representing and inter- and extrapolating an evolving shape, we will investigate the same for

our aneurysm dataset. Note that now the confounding factors that were mentioned earlier come

into play.

2.5.2 Continuous AAA Representation

In this section, we show the results for five patients with their number of available scan instances

ranging from 3 to 7, namely P2, P26, P9, P7, and P6 from the aneurysm dataset (Figure 2.3).

For clarity, we will refer to them as Patient 1, Patient 2, Patient 3, Patient 4, and Patient 5,

respectively.

For each patient, we optimized a single INR based on point clouds from all available scan

instances, which will be referred to as the reference experiment. As the INR is trained on con-

tinuous spatio-temporal coordinates, we can extract an AAA shape at any resolution and any

point in time. In Figure 2.6, we show 11 interpolated AAA shapes of five patients at regularly

spaced time intervals, extracted from the fully sampled INRs optimized with TempReg. In Figure

2.6b, we compare the diameter profiles along the AAA centerline of the ground-truth aorta seg-

mentations (solid lines) to the AAA surfaces extracted by the optimized INR (dashed lines). We

observe that these fully sampled INRs closely resemble the AAA shapes at the scan instances.

Thus, according to this reference experiment, optimizing the INR with TempReg results in ac-

curate, continuous representations of the AAA shapes evolving over time. Therefore, we use

these representations at the scan instances as a reference to evaluate the next experiment.

In Figure A.1 in Appendix A, we show diameter profiles along the AAA centerline for the ground-

truth aorta segmentations (black dashed lines) and interpolated AAA shapes extracted at time

points spaced half a year apart (colored solid lines) for all 25 included patients.
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Figure 2.6: Interpolated AAA shapes at regularly spaced time intervals for five patients. The

AAA shapes are extracted from the fully sampled INRs optimized with TempReg.
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Interpolation and Extrapolation

In order to evaluate the INR’s performance in inter- and extrapolating AAA shapes, i.e. rep-

resenting AAA shapes at time points before, between and after available scan instances, we

performed a series of leave-one-out experiments. In each experiment, we optimized an INR

similarly as the reference experiment but left out one of the available scan instances. Using this

optimized INR, we reconstruct the AAA shape at that left-out time point and compare it to the

reference AAA shape.

In Figure 2.7, we compare the inter- and extrapolation performance of the INR for different

temporal regularization strategies: NoTempReg (top rows), TempReg (middle rows), and Re-

LUTempReg (bottom rows). For five patients, we show the extracted inter- and extrapolated

AAA shapes at the scan instances that were left out during training. The color indicates the

surface distance to the corresponding reference AAA shape. The average surface distances

(ASDs) are shown below each shape. For Patient 3 (dashed boxes in Figure 2.7), we compare
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the corresponding diameter profiles along the AAA centerline of all available ground-truth aorta

segmentations (solid lines) to inter- and extrapolated AAA shapes (dashed lines) as an example

in Figure 2.8. In the left, the second scan instance t1 = 227 days was left out during optimizing

the INR. In the right, the last scan instance t4 = 1403 days was left out during optimizing the

INR. From Figures 2.7 and 2.8, we obtain the following key observations:

• Temporal regularization is crucial for the INR to represent plausible AAA shapes

over time. In Figure 2.7, it can be seen that the INR model that is optimized with no tem-

poral regularization (top rows) has more difficulties finding a plausible growth pattern and

representing consistent AAA surfaces compared to training with temporal regularization

(middle and bottom rows). Especially when the number of scan instances is small (e.g.,

Patient 1 and 2 having 3 and 4 scans, respectively), the model is not able to represent

proper AAA shapes, thereby losing the shape of an aorta or even representing no shape

at all. This is to a lesser extent for increasing number of available scan instances (e.g.,

Patient 4 and 5 having 6 and 7 scans, respectively). However, due to this inconsistency in

representing AAA shapes when optimizing the INR with NoTempReg, we will not consider

this temporal regularization strategy any further in this section.

• An INR model that is optimized with temporal regularization can accurately interpo-

late AAA shapes evolving over time. Both TempReg and ReLUTempReg show similar

results in terms of interpolated AAA shapes and their (average) surface distance (middle

and bottom rows). That is, for TempReg, the ASDs range from 0.627 to 4.443 mm, and

for ReLUTempReg, the ASDs range from 0.863 to 4.404 mm.

• Extrapolating AAA shapes over time is a challenging task for our INR model. For

TempReg, we observe that themodel tends to reconstruct the surface of the closest known

shape during training. This is shown on the top right in Figure 2.8 as an example. For

extrapolation to the last scan instance (dashed blue line), the diameter profile is similar

to the second last scan instance (yellow line). Likewise, we found that extrapolation to

the first scan instance is similar to the second scan instance. As a result, the (average)

surface distance is typically larger for extrapolated AAA shapes compared to interpolated

AAA shapes. That is, the extrapolated ASDs range from 0.791 to 3.537 mm. For Re-

LUTempReg, we observe that the whole AAA shape tends to grow for extrapolated time

points. For example, for Patient 3, the extrapolated diameter profile (dashed blue line in

bottom right in Figure 2.8) shows that not only the dilated part of the aorta but also the

healthy regions are growing over time. For Patient 1 and 2, having fewer scan instances,

we observe that the extrapolated AAA shapes even grow to the end of the spatial domain

(Figure 2.7). This results in substantially larger (average) surfaces distances for extrapo-

lated AAA shapes compared to interpolated AAA shapes. That is, the extrapolated ASDs

range from 2.249 to 49.018 mm.

In Figure A.2 in Appendix A, we show the diameter profiles along the AAA centerline for the

ground-truth aorta segmentations (solid lines) and inter- and extrapolated AAA shapes (dashed

lines) for all five patients.
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Figure 2.7: Inter- and extrapolated AAA shapes extracted at available scan instances for five

patients. For each patient, we compare the results for different temporal regularization strate-

gies: NoTempReg (top rows), TempReg (middle rows), and ReLUTempReg (bottom rows). The

colors indicate the surface distances to the corresponding reference AAA shapes. The average

surface distances (ASDs) are shown below each shape.
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Figure 2.8: Diameter profiles along axial slices for all available ground-truth aorta segmen-

tations (solid lines) and inter- and extrapolated AAA shapes (dashed lines) for Patient 3. We

compare the results for two different temporal regularization strategies: TempReg (top row) and

ReLUTempReg (bottom row). Left: Scan instance t1 = 227 days was left out during training.

Right: Scan instances t4 = 1403 days was left out during training.

Maximum AAA Diameters

In addition to the inter- and extrapolated AAA shapes shown in Figure 2.7, we compare their

maximum AAA diameters to the ground-truth maximum diameters at the available scan in-

stances in Figure 2.9. As explained in Chapter 1, in clinical practice, assessment of rupture

risk primarily relies on the maximum AAA diameter. Hence, it is important to evaluate the INR’s

ability to inter- and extrapolate this parameter.

For the maximum AAA diameters of the inter- and extrapolated AAA shapes, we observe the

same trend as for the diameter profiles. In particular, both TempReg and ReLUTempReg can

interpolate maximum diameters very well and show similar results. That is, for TempReg, the

absolute difference between ground-truth and interpolated maximum diameters ranges from

0.132 to 3.870 mm, and for ReLUTempReg, this ranges from 0.111 to 2.434 mm. Note that

these values are smaller than the average inter-observer variability when manually measuring

the maximum AAA diameter in CT scans (4.0±5.1 mm). As observed in the diameter pro-

files, extrapolation is a much harder task for our INR model. For TempReg, we observe that

the extrapolated maximum diameter is similar to the one of the closest known shape during

training. For ReLUTempReg, we observe that extrapolation to the first scan instance results

in underestimation of the maximum diameter and that extrapolation to the last scan instance

results in overestimation of the maximum diameter. As a result, for both temporal regularization

strategies, the absolute difference between ground-truth and extrapolated maximum diameters

is much larger than for interpolated maximum diameters, namely ranging from 0.621 to 10.683

mm for TempReg, and ranging from 0.687 to 24.979 mm for ReLUTempReg.
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Figure 2.9: Maximum AAA diameters for ground-truth aorta segmentations (solid lines) and

inter- and extrapolated AAA shapes (dashed lines) for five patients. We compare the results for

two different temporal regularization strategies: TempReg (left) and ReLUTempReg (right).

2.6 Discussion

In this work, we developed a personalized approach for modeling AAA evolution, based on

highly sparse and irregularly spaced longitudinal CTA data. We combine automatic methods

for AAA segmentation and registration with time-dependent shape modeling using implicit neu-

ral representations (INRs). For a single patient, we represent the AAA shape evolving over time

by the zero level set of its signed distance function (SDF), parameterised by space and time.

We embed this time-dependent SDF in a multilayer perceptron (MLP) as an INR. In experiments

with five longitudinally scanned AAA patients, we have demonstrated how this model is able to

represent an evolving AAA shape at any spatial and temporal resolution. In addition, we have

investigated how different temporal regularization strategies affect the inter- and extrapolation

performance of the INR. With a toy problem we investigated how our model performs when the

input data is free of segmentation and registration errors and where we have control over the

number of time points and their intervals.

We observed that our model can accurately interpolate AAA shapes evolving over time. We

found that temporal regularization is crucial for the INR to represent plausible AAA shapes in-

between the training time points. This, however, was not the case for our toy problem; when

no temporal regularization was used, the INR was able to accurately learn a growth pattern

and even extrapolate on this growth pattern. Since the toy problem was based on an idealized

synthetic dataset, this indicates that there are certain confounding factors present in the real

aneurysm dataset that may cause the need for temporal regularization. These factors may in-

clude sparsity and irregularly spacing of our data, poor image quality, and segmentation and

registration errors. Addressing these factors is expected to enhance the performance of the

INR in accurately representing an AAA shape evolving over time. In particular, we found that

our model is highly sensitive to errors in the initial rigid alignment of AAA shapes. That is, we

observed that most AAA shapes slightly shift over time within its continuous representation ob-

tained by the INR. In future work, we might include the renal and iliac arteries, and only register
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the AAA shapes based on their healthy regions. We may also include the lumbar vertebrae

which have a constant shape and size over time, as done by [16]. However, in my experience,

registration based on vertebrae did not result in better alignment of the AAA shapes. This is

most likely because the position of the aorta with respect to the vertebrae may vary slightly

across different scans.

While our toy problem demonstrated that the model could accurately learn a growth pattern

to extrapolate spheres to further time points, extrapolation of AAA shapes was a much more

challenging task for our model. This is most likely because representing evolving AAA shapes

requires the use of temporal regularization, while this was not the case for our toy problem.

In particular, for the temporal regularization strategy in which we restrict any temporal change

(TempReg), we observe that the extrapolated AAA surface is similar to the closest known shape

during training. We hypothesise that this is due to the temporal regularization term aiming to

minimize the temporal gradient of the SDF. For the temporal regularization strategy in which

we allow growth but not shrinkage (ReLUTempReg), the whole AAA shape tends to grow for

extrapolated time points. We hypothesise that this is due to only minimizing the positive tem-

poral gradients of the SDF for the whole AAA shape. This allows not only the dilated part but

also healthy regions of the aorta to grow for extrapolated time points, resulting in predicted AAA

shapes that are not plausible. Thus, both approaches are not able to make a personalized pre-

diction of AAA evolution over a future time period.

A major strength of our approach is the continuity of the INR. As the input coordinates in space

and time are continuous, we can extract an AAA shape at any resolution and any point in time.

Since we optimize a single INR for each patient, this results in highly personalized, continu-

ous representations of AAA shapes evolving over time. These representations have potential

clinical value for a more personalized assessment of AAA evolution. While longitudinal image

data is now primarily used to measure the maximum diameter of the aneurysm, we are able

to automatically extract the AAA shape and model its evolution over time. Furthermore, with

these continuous representations, we address the problem of sparsity and irregularly spacing

of longitudinal image data in predicting AAA evolution. In most longitudinal AAA studies, fixed,

regularly spaced time points (e.g., a year) are obtained by linearly interpolating the AAA shapes,

as done by [20]. This, however, does not take into account the patient-specific AAA growth pat-

tern, and therefore causes a bias in predicting AAA evolution. Our model allows for interpolating

AAA shapes at any moment in time according to a learned growth pattern. Moreover, since our

network relies on point cloud data as input, it is independent of the imaging modality used.

Therefore, longitudinal scans acquired with other imaging modalities such as MRI and 3D US

can also be incorporated in this pipeline, as long as we can extract the 3D AAA shape.

A limitation of this personalized approach, however, is that it does not generalize easily to new

AAA patients. That is, since a single INR is optimized for each patient, we cannot use this

trained network for a new patient with only one CTA scan. Ideally, we would extend our model

to learn regularizations from continuous representations of longitudinal AAA shapes from multi-

ple patients. With this, we might be able to predict AAA evolution for new unseen patients over

a desired future time period. As introduced in Chapter 1, convolutional neural networks (CNNs)

have been a popular deep learning model due to their ability to learn from lots of training data.

Hence, they are marked by their generalization capabilities. But since we model the evolution

of AAA shapes, we are looking for an approach that operates on non-Euclidean domains. Ex-

tending CNN models to non-Euclidean domains has been an emerging research area, which is

generally referred to as graph convolutional networks (GCNs). Recent work by Suk et al. has

demonstrated the effectiveness of a mesh-based model that uses a GCN on artery surfaces

[27]. Learning on mesh-based representations of longitudinal AAA surfaces from multiple pa-
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tients, this GCN model can be optimized to predict AAA growth for new unseen patients over a

desired future time period.

In conclusion, this chapter aimed to address the research sub-question: ’To what extent can

implicit neural representations (INRs) be used to inter- and extrapolate AAA surfaces in time,

based on sparse and irregularly spaced longitudinal CTA data?’. To answer this question, an

INR model can accurately interpolate AAA shapes evolving over time when optimized with tem-

poral regularization. Extrapolating AAA shapes, on the other hand, is a much more challenging

task for an INR model. We hypothesize that this is due to the temporal regularization term aim-

ing to minimize the temporal gradient of the SDF.

In order to address the current limitation of our INR model in extrapolation and generalization,

we propose to combine the strengths of the here proposed personalized INR model with a more

data-driven approach such as a GCN model. In Chapter 3, I will show how we combine these

two approaches and demonstrate its performance in predicting AAA evolution.
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3 PREDICTING AAA GROWTH USING GRAPH CONVO-

LUTIONAL NETWORKS

In this chapter, I propose a graph convolutional network (GCN) to estimate local growth on an

AAA surface mesh, based on continuous representations of evolving AAA shapes from multiple

patients. I investigate to what extent this model can be used to predict AAA growth over a future

time period for new patients.

3.1 Convolutional Neural Networks

Convolutional neural networks (CNNs) have gained immense popularity in medical image anal-

ysis tasks like classification, segmentation, reconstruction and registration. CNNs have the

ability to extract multi-scale localized spatial features from input data and compose them to

construct highly expressive representations, using convolution, pooling and connection layers.

The key benefits of convolution in CNNs are sparse interactions, parameter sharing and trans-

lational equivariance. The convolution kernel only interacts with subsets of the input data and is

the same everywhere in the input data. This drastically reduces the number of parameters and

thereby the risk of overfitting. The use of multiple pooling layers increases the network’s recep-

tive field, giving access to long-range information across the input data. Another major strength

of CNNs are that they can be optimized with lots of training data from multiple patients, thereby

increasing its generalization capabilities. This allows for using a trained network to perform a

certain task for new patients with data not seen during training.

Although CNNs have shown their many applications for the analysis of medical images, they

can only operate on regular Euclidean data (e.g., 2D or 3D grids) (left in Figure 3.1). That is, the

image domain on which the signal operates is fixed and thus the same for each data sample.

Therefore, CNNs often require pre-processing steps like resizing the input image into the spe-

cific input size with certain pixel or voxel dimensions. Furthermore, their performance is often

based on the resolution of the image data.

Another limitation of CNNs is that convolutions are not equivariant to many symmetries in the

data such as rotation, reflection and scaling. Therefore, data augmentation is often necessary

to obtain a network whose predictions are robust against these transformations. This, however,

is inefficient because adding more training samples results in longer optimization times. Fur-

thermore, data augmentation introduces extra hyperparameters, such as the type and extent of

the transforms, which need to be carefully chosen. Instead of modifying your data to symme-

tries in the neural network, you would rather have a neural network that exploits symmetries in

the input data.

To address these limitations, extending CNN models to non-Euclidean domains has been an

emerging research area. This is generally referred to as graph convolutional networks (GCNs).

In GCNs, not only the signal but also the domain on which the signal operates can be different

for each data sample. That is, they operate on graphs; a type of data structure that consists of a
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Figure 3.1: Comparison of the domains for CNNs (left) and GCNs (right). While a CNN is

applied to a graph in the Euclidean domain (e.g., a 2D or 3D grid), a GCN is applied to a graph

in non-Euclidean domain.

set of objects (vertices V) and their connections (edges E) (right in Figure 3.1). Note that image

data structures can be regarded as instances of graphs; in a 3D grid, each voxel corresponds

to a node in the graph, and the connectivity between neighboring voxels forms the edges of the

graph. The general idea behind GCNs is to generalize the key benefits of convolution in CNNs

to graphs.

3.2 Graph Convolutional Networks

In our work, we are interested in predicting AAA growth based on the aneurysm’s shape. In

Chapter 2, we obtained highly personalized, continuous representations of 3D AAA shapes

evolving over time. In particular, by sampling the SDF at a regular grid and using marching

cubes, we can reconstruct a mesh of the patient’s AAA surface at any spatial and temporal

resolution. This way of representing an AAA shape results in smooth boundaries and provides

information about surface connectivity. This is not the case for voxel-based representations that

are often obtained using automatic segmentation models. Moreover, since we can extract an

AAA surface mesh at any time point, we are no longer restricted to the fixed, highly sparse and

irregularly spaced time points at which image data was acquired. Therefore, a GCN that oper-

ates on surface meshes would be a more suitable choice for predicting AAA growth compared

to regular CNNs that are limited by a fixed Euclidean domain.

3.2.1 Learning on 3D surface meshes

While CNNs take as input voxel-based images, GCNs take as input a surface mesh with de-

scriptive input features. Let Ω ⊂ R3 be the AAA shape and ∂Ω its 2D boundary representing

the AAA’s outer wall. The surface mesh M is a discretisation of ∂Ω that can be described by a

tuple of vertices and faces M = (V,F). A face is a closed set of edges E ; they consist of trian-
gles having three edges, quads having four edges, or other simple convex n-polygons having

n edges. Both the vertices and edges of a mesh can have features xv and evw, respectively. A
GCN is informed by these mesh properties and processes signals intrinsically on the mesh.

CNNs are designed for processing signals in a Euclidean domain, such as images that are

defined on a 2D or 3D grid (left in Figure 3.1). Note that each vertex has a fixed number of

neighboring vertices arranged in a regular grid where the orientation of the vertices with respect
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Figure 3.2: Comparison between isotropic, attention-scaled, and GEM’s anisotropic convolution

kernels. While isotropic convolution filters (a) process all signals mapped to the neighboring

vertices in the same manner, anisotropic filters (b and c) process them distinctly. Attention-

scaled convolutions (b) learn to distinguish neighboring vertices through an attention mecha-

nism, whereas GEM convolution (c) is equipped with a notion of direction. Based on [27].

to each other is known. This is not the case for GCNs; it has no information about the orientation

of the vertices with respect to each other, and the number of neighboring vertices can differ for

each vertex. This poses a challenge for applying fixed-size convolutional filters. To address the

lack of orientation and the variable neighborhood size in graphs, GCNs propagate information

differently than CNNs. That is, graph convolutions involve the following two steps:

1. Message passing. Suppose h
(i)
v represents the node embeddings for vertex v at iteration

i. Note that h
(0)
v = xv. Themessagem

(i+1)
v aggregates information from the neighborhood

N(v) as follows:

m(i+1)
v =

∑
w∈N(v)

f (i)
message(h

(i)
v , h(i)w , evw), (3.1)

where N(v) is the neighborhood of vertex v.

2. Vertex update function. The vertex update function fupdate creates the signal update

from the messages.

h(i+1)
v = f

(i)
update(h

(i)
v ,m(i+1)

v ) (3.2)

The trainable weights of a GCN model are in the functions fmessage and fupdate. Specifically, the
weights used for aggregating neighboring node embeddings and the weights used to update

the corresponding vertex embedding are optimized during the training process.

There are different convolution filters that can be applied in the message passing step (Figure

3.2):

(a) Isotropic convolution filters. Isotropic convolution filters process all signals mapped to

the surrounding vertices in a neighborhood in the same manner:

m(i+1)
v =

1

|N(v)|
∑

w∈N(v)

h(i)w (3.3)
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(b) Attention-scaled convolution filters. Attention-scaled convolutional filters are anisotropic

kernels that process the signals mapped to the neighboring vertices differently. They weigh

each neighboring vertex with a trainable coefficient αvw, resulting in the following message

passing function:

m(i+1)
v =

∑
w∈N(v)

αvwh
(i)
w (3.4)

(c) Gauge-equivariant mesh (GEM) convolutional filters. GEM convolutional filters are also

anisotropic kernels. As opposed to attention-scaled convolution, GEM convolution is also

equipped with a notion of direction. In the following section, we will elaborate on this type

of convolution.

3.2.2 Gauge-Equivariant Mesh Convolution

We aim to estimate local growth on an AAA surface mesh. In particular, we aim to predict a 3D

deformation vector for each vertex in the mesh, which represents the local growth of the AAA.

Since we predict 3D vectors, we want the network to be rotation equivariant. That is, if we ro-

tate the AAA surface mesh, we want the output to be affected in the same way. This, however,

is difficult due to the lack of orientation of the neighboring vertices. To address this, we imple-

ment anisotropic kernels using gauge-equivariant mesh (GEM) convolution, as done in [34, 27].

For GEM convolution, each neighbor vertex w in a certain neighborhood N(v) is projected to

a tangent plane, and expressed in terms of polar coordinates with a radius and angle (rw, θw)
on this plane. Due to the different angles, we can distinguish between different neighboring

vertices and process their signals differently. In particular, the convolution kernel sums for each

neighborw ∈ N(v), the product of the features atw and kernelK(θw). The key benefits of these
GEM convolutions are SE(3)-equivariance. That is because the tangent planes rotate with the

geometric model of the AAA shape. The surface geometry is intrinsically described and does

not depend on how the mesh vertices are embedded in R3, i.e. on its orientation in an ambient

space.

3.2.3 Pooling in GCNs

An important operation in regular CNNs is pooling, the process of downsampling while pre-

serving relevant information. The use of multiple pooling layers exponentially increases the

network’s receptive fields, giving access to long-range information across the input data. In

GCNs, pooling layers are not widely accepted because the concept of pooling, as commonly

used in CNNs, does not directly translate to graph-structured data. Pooling operations in CNNs

are designed to downsample feature maps, reducing their spatial dimensions while preserving

the relevant features. This is achieved by aggregating local information in a fixed-size neigh-

borhood, which works well for grid-like data such as images. However, graphs lack a grid-like

structure and have irregular connectivity patterns, making it challenging to define a meaningful

neighborhood for pooling.

Instead of pooling layers, alternative strategies have been developed to access long-range

information across the graph. In this work, we apply pooling in the same way as is done by

Suk et al. [27]. We sample a hierarchy of vertex subsets V = V0 ⊂ V1 ⊂ ... ⊂ Vn, where n is

the number of pooling levels. In each pooling level, the radius of the GEM convolutional filter

increases (r0 < r1 < ... < rn), giving access to a larger neighborhood. In each neighborhood,

we only aggregate information from the corresponding subset of vertices. Thus, in the first

pooling level, we define our GEM kernel size with radius r1 and only aggregate information from
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Figure 3.3: Schematic representation of our GEM-GCN, taking an AAA mesh, vertex-wise

geodesic distance to the vessel inlet, and time step condition as input, outputting deforma-

tion vector fields fout : V → R3 mapped to the vertices. Based on [27].

vertices V1. In the second layer, the radius r2 becomes larger and we aggregate information

from a smaller subset of vertices V2, and so on. Note that sampling a hierarchy of vertex subsets

and defining the corresponding radii for the GEM kernels are hyperparameters that have to be

chosen carefully.

3.2.4 Network Architecture

We propose amesh-basedGCN that takes as input a scalar or vector field of featuresmapped to

vertices of the input graph f in : V → Rcin and outputs vector-valued predictions fout : V → R3

mapped to the same vertices. The input graph is an AAA surface mesh, and the predicted

vectors represent the magnitude and direction of AAA growth over a certain future time period.

Figure 3.3 visualises the network architecture of our GEM-GCN. Like a regular CNN, our GCN

consists of convolution, pooling and connection layers. In order to enable the flow of long-

ranged information across the aneurysm surface, we use an encoder-decoder architecture with

three pooling levels and ”copy and concatenate” connections between corresponding layers in

the contracting and expanding pathway. To prevent vanishing gradients, we use residual blocks

consisting of two convolution layers and a skip connection. This proposed network is based on

the work of [27].

3.3 Data

In this work, we use the same longitudinal aneurysm dataset and apply the same pre-processing

as described in Section 2.4. The difference is that we now include data of all 25 AAA pa-

tients. Thus, for each patient, we have a sequence of J point clouds {Xtj}j=1,...,J , where

Xtj = {xi}i∈I ⊂ [−1, 1]3 represents points on the AAA surface of a single patient at time tj .
Based on these longitudinal point clouds, we will obtain continuous representations of AAA

surfaces evolving over time using implicit neural representations (INRs). From these represen-

tations, we can extract AAA surface meshes at any spatial resolution and any point in time,

which be used as input for the GCN.

3.3.1 Surface Meshes

For each patient, we optimized a single time-dependent INR based on the point clouds at all

available scan instances, which was referred to as the reference experiment in Section 2.5.2.
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For this, we used the temporal regularization strategy that restrict any temporal change (Tem-

pReg) as this showed the best results in Section 2.5.2. Using these fully sampled INRs, we

can extract AAA surface meshes at any desired resolution and at any point in time. In Figure

A.1 in Appendix A, we show diameter profiles along the AAA centerline for the ground-truth

aorta segmentations (black dashed lines) and interpolated AAA shapes extracted at time points

spaced half a year apart (colored solid lines) for all 25 included patients. These plots demon-

strate that the fully sampled INRs can accurately represent and interpolate AAA shapes evolving

over time. These INRs are therefore suitable to extract plausible AAA meshes at any time point.

In this work, we propose to predict local AAA growth over a future time period. For each patient,

we have a continuous representation of the AAA shape evolving over time. From this repre-

sentation, we can extract an AAA surface mesh at an initial time point t0 and at a desired future

time point t1. Let Ω ⊂ R3 be the AAA shape and ∂Ω its 2D boundary representing the AAA’s

outer wall. A surface mesh M is a discretisation of ∂Ω that can be fully described by a tuple of

vertices and facesM = (V,F). Both extracted AAA surfaces at t0 and t1 are described asMt0

and Mt1 , respectively. Mt0 will be the input surface mesh for our proposed GCN. Mt1 will be

used to compute deformation vectors mapped to the vertices of input mesh Mt0 , representing

local AAA growth from t0 to t1. Note that we do not have any restriction in choosing the initial

time point t0 and the desired future time point t1 due to our continuous representations of AAA

shapes evolving over time. This allows us to condition our GCN on any desired time step over

which we want to predict local AAA growth.

3.3.2 Deformation Vectors

For each vertex in the input surface mesh Mt0 , we compute the nearest neighbor in the AAA

surface mesh at a desired future time point Mt1 , using the KDTree algorithm. The magnitude

and direction of the resulting deformation vectors represent the local AAA growth. These defor-

mation vectors are the labels that we aim to predict for a certain input surface mesh using our

proposed GCN.

3.3.3 Input Features

We use the input surface meshMt0 to construct input features to the GCN. These input features

with cin channels describe the local shape as well as global properties.

Matrix features Like [27], we compute a surface normal for each vertex in the input surface

mesh, and then construct three matrices that describe the local neighborhood. For each

of the three sets of (3× 3)-matrices, we take the average of the neighbrhood. In contrast

to surface normals, these resulting input features define meaningful local surface descrip-

tors that are not SO(2)-invariant. The vanilla surface normal would be constant in any

coordinate system induced by the surface normal. Since the surface normal describes

the local surface orientation in an infinitesimally small neighborhood, i.e. the precise local

curvature of the aneurysm wall ∂Ω, it is the preferred input feature for conventional mes-

sage passing formulations. This, however, is not the case for GEM-GCNs and therefore

we need the average over the neighborhood as a curvature descriptor.

Shortest geodesics distance to vessel inlet We extract the most cranial vertices from each

input surface mesh, which we refer to as the vessel inlet of the abdominal aorta. Like

[27], we append the shortest geodesic distance from each vertex to this vessel inlet as

a scalar to the input features, which we compute with the vector heat method [35]. This

input feature gives information about the orientation of each vertex on the mesh.
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Time step By conditioning the GCN on time step ∆t = t1 − t0, we can predict AAA growth

over any desired time period. We append the time step ∆t in days over which we want to

predict AAA growth as a scalar to the input features. Thus, each vertex of a single input

surface mesh has the same time step feature.

3.4 Experiments and Results

We evaluate to what extent a GCN can predict local AAA growth on an aneurysm shape us-

ing the model described in Section 3.2, which has around 106 trainable parameters. The 25

included patients were randomly split 18:5:2 into training, validation, and test sets, respectively.

The network was trained using an L1 loss and Adam optimizer with batches of 18 input surface

meshes and a constant learning rate of 10−3. We use ReLU activation functions and employ

batch normalisation before each activation. The radii for the GEM kernels in the three pooling

layers were set to r0 = 3.33, r1 = 6.66, and r2 = 9.99mm, and we sampled a hierarchy of vertex

subsets using the ratios 1, 0.4, and 0.1.

In each epoch, we sampled a single batch containing one input surfacemeshwith corresponding

input features for each of the 18 training patients. This sampling involved the following steps

(Figure 3.4):

1. We randomly sampled a time step ∆t between 182.5 and 730 days (corresponding to 0.5

and 2 years, respectively). For patients with a total follow-up time smaller than 2 years,

we randomly sampled a time step ∆t between 182.5 days and the total follow-up time.

Based on the sampled time step, we randomly sampled an initial time point t0 between 0

days and the total follow-up time of the particular patient minus the sampled time step.

2. At time point t0, the input surface mesh Mt0 is extracted from the fully sampled INR for

the particular patient. We also extracted the surface mesh Mt1 , where t1 = t0 +∆t.

3. We then obtained the deformation vectors by computing the nearest neighbor for each

vertex in the input surface mesh Mt0 to Mt1 . The resulting deformation vectors are the

labels. The input features, namely matrix features and geodesics, were computed as

described in Section 3.3.3. Together with the AAA surface mesh Mt0 and time condition

∆t, they form the input to the GCN.

This way of randomly sampling time steps ∆t and input surface meshes Mt0 during training

ensures that the network sees new data in each epoch. This enhances the network’s general-

ization and robustness, leading to improved performance on unseen validation and test data.

The network was trained for 400 epochs on NVIDIA A40 GPUs and parallelization over two

GPUs was necessary to fit the batches into memory. While training took around 1:10 [h], infer-

ence for a previously unseen AAA mesh takes less than 2 s including pre-processing.

In this section, we will show the results for the five validation patients, namely P8, P23, P25,

P22, and P17, with their number of CTA scans ranging from 4 to 7 (Figure 2.3). For clarity,

we will refer to them as Patient 1, Patient 2, Patient 3, Patient 4, and Patient 5, respectively.

We show the results for these validation patients and not the two test patient because both test

patients have only two scan instances and therefore allow quantitative evaluation for only one

scan instance per patient. Our validation patients, having more scan instances, provide a more

comprehensive evaluation of the GCN’s performance.
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Figure 3.4: Sampling of an input surface mesh with corresponding input features involves the

following steps: 1) sampling of of time step ∆t, initial time point t0 and next time point t1, 2)
extracting AAA surface meshes Mt0 and Mt1 , and 3) computing and mapping corresponding

labels (deformation vectors) and input features (geodesics, matrix features, and time condition)

to the vertices of Mt0 .

3.4.1 Time Conditioning

In Figure 3.5, we compare the deformation vectors predicted by the trained GCN model for dif-

ferent time step (ranging from 91.25 to 1095 days) for the five validation patients. We observe

that a larger time step condition results in larger deformation vector predictions; note that the

magnitude of the deformation vectors increase for increasing time steps (from left to right in Fig-

ure 3.5). Furthermore, the model demonstrates its ability in predicting AAA growth specifically

in the dilated part of the aorta, leaving the healthy parts unaffected.

We observe that the model is able to extrapolate to time step conditions outside the interval

during training (indicated in red in Figure 3.5). For example, for Patient 1, 3, and 4, it predicts

larger deformation vectors for t = 1095 days than for t = 730 days, even though the model was

trained with time steps between 182.5 and 730 days. This means that the model is able to learn

a growth pattern depending on the time condition. This, however, is not the case for Patient 2

and 5, for which the deformation vector for t = 1095 days stayed the same or even decreased

compared to t = 730 days.
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Figure 3.5: Predicted deformation vectors on AAA shapes of the five validation patients for in-

creasing time steps from left to right (91.25 to 1095 days). Red time steps indicate extrapolated

time steps that are outside the interval during training (182.5-730 days).
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3.4.2 Quantitative Evaluation

In order to quantitatively evaluate the GCN’s performance in predicting AAA growh, we need

to compare the predictions with ground-truth data. Note that the most trustworthy ground-truth

data are the CTA data at fixed scan instances. This means that we have to predict AAA growth

from one scan instance to a later scan instance, and compare the predicted AAA shape with

the ground-truth AAA shape at that later scan instance. We create the predicted AAA shapes

by adding the predicted deformation vectors to the vertices in the input surface mesh. Since the

fully sampled INRs perfectly represented AAA surfaces at the scan instances (Figure 2.6b), we

use these reference AAA shapes to evaluate the predicted AAA shapes. As in Chapter 2, we

use (average) surface distances, diameter profiles, and maximum AAA diameters to evaluate

the prediction performance of our GCN model.

Predicted AAA Shapes

In this experiment, we predicted the AAA shapes from the reference AAA shapes at the previous

scan instance. In particular, from the reference AAA shape at scan instance t0, we predict the

AAA shape at the following scan instance t1. And from the reference AAA shape at this scan

instance t1, we predict the AAA shape at the following scan instance t2, and so on. Note that

the time step conditions are the differences between the scan instances (e.g., ∆t2 = t2 − t1).
We visualize this in Figure 3.6, where we show the predicted AAA shapes at the scan instances

for the five validation patients. The color indicates the surface distance to the corresponding

reference AAA shape extracted from the fully sampled INR at the same time point. The aver-

age surface distances (ASDs) are shown above each shape. The reference AAA shapes are

overlaid transparently. The time points t and time steps ∆t in days are indicated below the

AAA shapes; red indicates extrapolated time steps that are outside the interval during training

(182.5-730 days).

We observe that, for some patients, the reference and predicted AAA shapes were not perfectly

aligned. For example, for Patient 3, the predicted AAA shape at t2 = 801 days is shifted to the

left compared to the reference AAA shape overlaid transparently. We hypothesize that this

misalignment may be caused by registration errors during pre-processing. This misalignment

may result in large ASDs; for Patient 3, the predicted AAA shape at t2 = 801 days has the

largest ASD value of 4.083mm. The ASDsmay therefore not accurately reflect the performance

of the GCN model in predicting local AAA growth. To properly evaluate the aneurysm growth,

regardless of slight translations, we compare the diameter profiles.

Diameter Profiles

For Patient 1 and 3 (dashed boxes in Figure 3.6), we compare the diameter profiles along the

AAA centerline of all available ground-truth aorta segmentations (solid lines) to the AAA sur-

faces predicted by the GCN model (dashed lines) as an example in Figure 3.7 In each plot,

we compare three diameter profiles: the ground-truth and predicted diameter profiles at tj , and
the ground-truth diameter profile at tj−1 from which the prediction was made. For Patient 3,

which had the largest ASD value for the predicted AAA shape at t2 = 801 days (Figure 3.6),

we observe that the corresponding diameter profile has increased with respect to the previous

scan instance t1 = 258 days (right column, second plot in Figure 3.7). The predicted dashed

line approximately aligns with the ground-truth solid line, thereby reflecting a good performance

of the GCN model in predicting AAA growth. The diameter profiles are therefore a better way

to evaluate the GCN’s performance in predicting local AAA growth, compared to the ASDs.
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Figure 3.6: Predicted AAA shapes at scan instances for the five validation patients. The colors

indicate the surface distances to the corresponding reference AAA shapes extracted from the

fully sampled INRs at the same time point. The average surface distances (ASDs) are shown

above each shape. The reference AAA shapes are overlaid transparently. The time points t
and time steps ∆t in days are indicated below the AAA shapes; red indicates extrapolated time

steps that are outside the interval during training (182.5-730 days). Note that at time point t = 0,
only the reference AAA shape is shown.
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From the diameter profiles, we obtain the following key observations:

• While our GCN model is able to predict AAA growth in the right direction, it often

tends to underestimate the growth. In the dilated part of the aorta, the predicted diam-

eter profiles are often larger than the previous ground-truth diameter profile. The diame-

ters, however, are often underestimated, predicting too little AAA growth compared to the

ground-truth. For example, for Patient 1 (left column), each predicted diameter profile at

tj lies above the previous ground-truth diameter profile at tj−1, but under its ground-truth

diameter profile at tj .

• Our GCN model specifically predicts AAA growth in the dilated part of the aorta,

leaving the healthy parts unaffected. In particular, whereas the predicted diameters

at the dilated part are often larger than the previous ground-truth diameter profile, the

predicted diameters at the healthy part of the aorta are approximately the same. As seen

for Patient 1 and 3, all diameter profiles at the healthy part of the aorta perfectly align, and

the GCN model only predicts growth in the dilated part. This, however, was not reflected

by the ASDs in Figure 3.6. For example, for Patient 3, the predicted AAA shapes at

t3 = 987 and t4 = 1180 days have large surface distances at the top (healthy) part of the

aneurysm, resulting in large ASDs. This also indicates that ASDs do not accurately reflect

the performance of the GCN model in predicting local AAA growth. These errors in the

surface distances are most likely caused by registration errors.

In Figure A.3 in Appendix A, we show the diameter profiles along the AAA centerline for the

ground-truth aorta segmentations (solid lines) and predicted AAA shapes (dashed lines) for all

five validation patients.

Maximum AAA Diameters

In addition to the predicted AAA shapes shown in Figure 3.6, we compare their maximum AAA

diameters to the ground-truth maximum diameters at the available scan instances in Figure 3.8.

As explained in Chapter 1, in clinical practice, assessment of rupture risk primarily relies on the

maximum AAA diameter. Hence, it is important to evaluate the GCN’s ability to predict this

parameter.

For Patient 3 and 5, the predicted maximum diameters are very close to the ground-truth max-

imum diameters, except for the last scan instance for Patient 3. This is most likely due to a

large time step between the second-last and last scan instance. For Patient 1, the predicted

maximum diameters are larger than the previous ground-truth maximum diameters, but always

smaller than its ground-truth maximum diameter at the same scan instance. This indicates

underestimation of the GCN model in predicting local AAA growth. The same is observed for

Patient 2, but here the underestimation is even larger. Interesting behavior is observed for

predicting the AAA shape at t1 from the first scan instance t0. That is, for four of the five valida-

tion patients (Patient 1, 2, 3, and 5), the predicted maximum diameter at t1 is smaller than the

ground-truth maximum diameter at t0, indicating shrinkage of the AAA shape. For almost all

other scan instances, an increase in maximum diameter is observed. Overall, the absolute dif-

ference between ground-truth and predicted maximum diameters at the same time point ranges

from 0.012 to 8.473 mm.
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Figure 3.7: Diameter profiles along the axial slices for all available ground aorta segmentations

(solid lines) and predicted AAA shapes (dashed lines) for Patient 1 and 3 (left and right, re-

spectively). In each plot, we compare three diameter profiles: the ground-truth and predicted

diameter profiles at tj , and the ground-truth diameter profile at tj−1 from which the prediction

was made.
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Figure 3.8: Maximum AAA diameters for ground-truth aorta segmentations (solid lines) and

predicted AAA shapes (squares) for the five validation patients. The dashed lines indicate the

difference between ground-truth and predicted maximum diameters at the same time point.

3.5 Discussion

In this work, we have presented an SE(3)-equivariant graph convolutional network (GCN) for

the prediction of local AAA growth, operating on surface mesh representations of the AAA’s

outer wall. We use continuous representations of evolving AAA shapes from multiple patients,

that we obtained using implicit neural representations (INRs) (Chapter 2), to train our GCN

model to predict local growth on an AAA surface mesh. Since we condition our GCN model

on a time step, we can predict local AAA growth over any desired future time period. For five

validation patients, we have demonstrated how this model is able to predict AAA growth from

one scan instance to a later scan instance.

We observed that our GCN model predicts AAA growth in the right direction specifically in the

dilated part of the aorta, leaving the healthy parts unaffected. However, the model tends to

underestimate AAA growth. There may be several factors that attribute to this underestimation.

We hypothesize that the GCN model is underfitted by the limitid amount of longitudinal image

data from multiple patients. We trained our model for 400 epochs on two NVIDIA A40 GPUs,

which took around 1:10 [h]. This training time is much smaller compared to the work of Suk et

al. [27] on which our model is based. They had a training time until convergence of 22:24 [h]

for parallelized training on the same two GPUs. But if we train for much more epochs (∼2000
epochs), we observed that the GCN’s performance in predicting local AAA growth decreased

for the validation patients, indicating overfitting. Since our aneurysm dataset consists of only

25 AAA patients, of which 18 patients are used for GCN model training, the diversity of AAA

shapes is limited. AAA shapes are unique, and therefore a large training dataset is required for
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the GCN model to learn regularizations from these shapes, thereby capturing the wide range

of variations in AAA shapes and their trends in evolution over time. Ideally, we would optimize

the network until convergence based on continuous representations of evolving AAA shapes

from hundreds or even thousands of patients. Another explanation for underestimation of AAA

growth might be that we did not finetune the network architecture, hyperparameters, or training

process enough. Examples are number of pooling layers, different kernel radii and ratios for

sampling a hierarchy of vertex subsets, and the use of different losses and activation functions.

In future work, we may perform an ablation study in which we analyze the effect of these indi-

vidual factors on the GCN’s performance in predicting local AAA growth.

A major strength of our approach is the conditioning of our GCNmodel on a time step. Whereas

most state-of-the-art prediction models predict AAA growth over a certain fixed time period (e.g.,

a year), we are able to predict AAA growth over any desired future time period. With this, we

are able to predict an AAA shape from one scan instance to a later scan instance, which allows

for adequate quantitative evaluation by comparing to ground-truth data. Note that ground truth

data for models that predict over a fixed time period are often obtained by linearly interpolating

or extrapolating the AAA shape, and are therefore biased from highly sparse and irregularly

spaced longitudinal image data.

Although time conditioning allows any time step as input, we did not yet evaluate how different

time step intervals during training affect AAA growth predictions over certain time periods. In this

work, we trained our GCN model with time steps between 182.5 and 730 days (corresponding

to 0.5 and 2 years, respectively). We observed that our model is able to extrapolate to time step

conditions outside the interval during training; the model predicts larger deformation vectors for

time steps of 1095 days (3 years) than for smaller time steps (Section 3.4.1). This, however,

was not the case for all validation patients, indicating that the model is not able to fully learn

from the time conditions and extrapolate on it. In future work, we may investigate how dividing

large time steps into multiple smaller steps affects the GCN’s performance in predicting local

AAA growth. For example, instead of predicting AAA growth over a time period of 3 years at

once, we can predict two times over a time period of 1.5 years, or three times over a time pe-

riod of 1 year. This also allows us to investigate to what extent errors propagate through our

pipeline. Since our pipeline consists of many steps, multiple errors can accumulate throughout

the pipeline and affect the GCN’s performance in predicting local AAA growth. If we predict

multiple times over smaller time steps, we can investigate to what extent errors accumulate in

our pipeline.

In conclusion, this chapter aimed to address the research sub-question: ’To what extent can a

graph convolutional network (GCN) predict local AAA growth, based on longitudinal aneurysm

representations from multiple patients?’. To answer this question, a GCN model can predict

AAA growth specifically in the dilated part of the aorta, leaving the healthy parts unaffected.

While our GCN model is able to predict AAA growth in the right direction, it often tends to

underestimate the growth. We hypothesize that this is due to the limited amount of longitudinal

image data and therefore the limited diversity of AAA shapes in our dataset.
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4 DISCUSSION AND CONCLUSION

In this work, I have presented novel deep learning methods for modeling and prediction of lo-

cal AAA growth. Our proposed pipeline consists of automatic aorta segmentation using an

nnU-Net, continuous surface representation using an implicit neural representation (INR), and

predicting local AAA growth on the surface using a graph convolutional network (GCN) (Fig-

ure 1.1 in Chapter 1). We have optimized this pipeline based on highly sparse and irregularly

spaced longitudinal CTA data of AAA patients. The pipeline holds significant clinical value for

a more personalized assessment of AAA growth for new AAA patients. Once a new patient is

diagnosed with AAA based on 3D medical image data, we can automatically segment the AAA

shape based on a trained nnU-Net. From this AAA shape, we can automatically extract the

maximum AAA diameter that is currently used in clinical practice to assess rupture risk. This

standardized method obviates the need for manual measurements of the maximum AAA diam-

eter in medical image data, and hence inter-observer variability associated with this parameter

is no longer a point of concern. Furthermore, since we segment the whole AAA shape, we can

also automatically extract other relevant geometrical parameters like AAA volume, ILT thick-

ness and aortic tortuosity that have been associated with AAA growth [13]. If longitudinal image

data is available, we can even obtain a continuous representation of the AAA shape evolving

over time using an INR that is conditioned on a time coordinate. This enhances retrospectively

assessing AAA evolution by accurate interpolation of the AAA shape at any moment in time.

Moreover, our proposed pipeline exceeds retrospective assessment; that is, we are able to pre-

dict local AAA growth. In particular, operating on a surface mesh representation of the AAA

shape, our GCN model can predict local AAA growth over any desired future time period. In

this chapter, I will discuss the strengths and limitations of our proposed automatic pipeline and

their potential to aid physicians in clinical decision-making. I will also elaborate on future work

and the next steps that should be taken to adopt our pipeline in clinical practice.

4.1 Strengths and Limitations

A major strength of our automatic pipeline is the conditioning of the both the INR and GCN

model on a time coordinate. In most studies, data is collected retrospectively and hence dense

and regularly spaced time steps cannot be obtained. Fixed, regularly spaced time points (e.g.,

a year) are often obtained by linearly interpolating the AAA shapes. This, however, does not

take into account the patient-specific, local AAA growth pattern, and therefore causes a bias

in predicting AAA evolution. Due to the conditioning of our INR model on a time coordinate,

we are able to obtain a personalized, continuous model of a 3D AAA shape evolving over time.

This allows for interpolation at any moment in time according to a learned growth pattern. Fur-

thermore, whereas most state-of-the-art prediction models predict AAA growth over a certain

fixed time period (e.g., a year), we are able to predict local AAA growth over any desired future

time period. With this, we can predict the AAA shape from one scan instance to a later scan

instance, which allows for adequate quantitative evaluation by comparing to ground-truth data.

With our time conditioning, we are also able to compare our results to other studies that predict

AAA growth over different fixed time steps.
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Furthermore, our pipeline makes optimal use of the strengths of two deep learning models.

Due to the continuity of INRs, we can obtain highly personalized, continuous models of 3D

AAA shapes evolving over time. But since a single INR is optimized for a single patient, this

personalized approach does not generalize easily to new AAA patients. To address this, we

use a GCN model that is marked for its generalization performance. This network is able to

learn local AAA growth patterns from continuous representations of evolving AAA shapes from

multiple patients. Hence, an optimized GCN model can be used to predict local AAA growth

for new unseen patients. Thus, we combine highly personalized models of evolving 3D AAA

shapes with a GCN model that can learn regularizations from these representations.

However, since our pipeline consists of many steps (Figure 1.1 in Chapter 1), multiple errors

can accumulate throughout the pipeline. Examples are poor image quality and segmentation

errors, resulting in inadequate representations of the AAA shape, registration errors, and errors

made by the INR and GCN models. We found that our INR model is highly sensitive to errors

in the initial rigid alignment of AAA shapes. In particular, we observed that most AAA shapes

slightly shift over time within its continuous representation obtained by the INR. As a result,

not only growth of the dilated part of the aorta, but also displacement of healthy regions due

to registration errors are passed on as labels to the GCN model. The GCN model does not

distinguish between these displacement vectors due to AAA growth and registration errors, and

will learn to predict both. Fortunately, we found that our GCN model specifically predicts AAA

growth in the dilated part of the aorta, leaving the healthy regions unaffected. We hypothesize

that small registration errors are cancelled out during training of the GCN model because their

direction is arbitrary over the entire dataset, in contrast to growth of the dilated part of the aorta.

In spite of that, perfectly aligning AAA shapes using rigid registration remains a challenging task

and should be considered carefully. In future work, we may include additional anatomical land-

marks to enhance registration of AAA shapes, e.g., the renal and iliac arteries, and the lumbar

vertebrae that have a constant shape and size over time.

Another limitation of our study is the fairly limited amount of longitudinal image data. Note

that while our INR model is limited in terms of the number of available scan instances per

patient, our GCN model is limited regarding the number of patients in our aneurysm dataset.

This is because a single INR network is optimized based on longitudinal image data from a

single patient, whereas a GCN model is optimized based on continuous representations of

evolving AAA shapes from multiple patients. Since our aneurysm dataset consists of only 25

AAA patients, of which 18 patients are used for GCNmodel training, the diversity of AAA shapes

is limited. AAA shapes are unique, and therefore a large training dataset is required for the

GCN model to learn reqularizations from these shapes, thereby capturing the wide range of

variations in AAA shapes and their trends in evolution over time. Ideally, we would optimize the

network based on longitudinal image data from hundreds or even thousands of AAA patients.

We hypothesize that this would significantly enhance the robustness, generalization capabilities,

and prediction performance of our GCN model.

4.2 Clinical Impact

Accurately predicting AAA growth may aid in clinical decision-making regarding the need for

surveillance and surgical intervention. Currently, AAA growth is only assessed retrospectively

at fixed time points by manual measurement of maximum AAA diameter in medical image data.

A model that accurately predicts AAA growth provides valuable insights into the future, allowing

for more pro-active AAA surveillance such as adapting its interval. If, according to our predic-

tion model, an aneurysm is expected to grow rapidly, surveillance intervals could be shortened
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to keep a closer eye on the patient, or even surgical repair can be recommended. In case of

a predicted stable aneurysm, the surveillance interval could be increased. Consequently, we

can minimize unnecessary radiation exposure for the patient and reduce the burden on health-

care by less surveillance. A prospective view on patient follow-up is also beneficial for patient

well-being. Instead of only looking at the current situation, a glimpse into the future may put the

patient more at ease. It is important to note that our proposed automatic pipeline is meant to

complement the current pipeline, rather than replace it. Our pipeline has the potential to assist

clinicians by providing standardized assessment and prediction of AAA growth. Clinicians have

extensive medical knowledge, experience and expertise in AAA management, and should con-

sider the broader context of the patient when making clinical decisions.

A 3D model of an AAA shape may also aid in treatment planning. While EVAR has become

a commonly used surgical intervention for AAAs, it may not be the ideal option for patients

with challenging anatomical features. Anatomical characteristics that are used to determine

suitability of EVAR include aortic neck length, neck diameter, suprarenal and infrarenal neck

angulation, distal fixation site length, and distal fixation site diameter [36]. In clinical practice,

these anatomical characteristics are measured manually in a pre-operative CT scan, and can

therefore be associated with inter-observer variability. Using the segmentation model from our

pipeline, we can automatically segment the 3D AAA shape from pre-operative CT scans. From

this aorta segmentation, we can automatically extract anatomical characteristics that can assist

in choosing the suitable type and size of different components of the stent graft, including an

aortic bifurcated main body and one or two iliac limbs. Note that we should incorporate addi-

tional anatomical regions, such as renal and iliac arteries, in our pipeline to adequately assess

anatomical suitability of EVAR. In addition to aiding in treatment planning, a 3D model of the

AAA shape may also assist surgeons during EVAR. In particular, during X-ray guided EVAR,

the aorta segmentation along with the planned stent graft components can be projected onto

the X-ray images. This projection may facilitate surgeons in accurate placement of the stent

graft, especially during complicated EVAR procedures like fenestrated and branced EVAR (fE-

VAR and bEVAR, respectively), which involve the placement of additional branches into the

renal arteries, celiac trunk, or superior mesenteric artery. With this personalized treatment

planning and assistance during EVAR, we may decrease long term aneurysm-related mortality,

re-intervention and rupture rates after EVAR.

From a technical perspective, our pipeline has the potential to make a significant impact in

various other clinical settings. There are other applications in which modeling or predicting

growth is important in clinical decision-making. For example, our pipeline can be adapted to

model and predict the evolution of tumor shapes over time. AAA and tumor management share

similarities as both involve surveillance of patients, acquiring medical image data during follow-

ups to assess size. Thus, in both cases we have sparse and irregularly spaced longitudinal

image data. As long as we can extract the shape’s surface at multiple moments in time, we

can obtain a continuous representation of its evolution using our time-dependent INR. Using

continuous representations of evolving tumor shapes from multiple patients, we can learn their

growth patterns and predict future progression for new tumor shapes using our GCN model.

Note that we can easily condition our GCN model to tumor-specific factors that play a crucial

role its evolution by appending these factors to the input features. With a tumor predictionmodel,

clinicians can optimize surveillance and treatment planning, assess the response to treatments,

and estimate prognosis.

47



4.3 Future Work

4.3.1 ILT Thickness

In future work, we could improve the GCN’s performance in predicting local AAA growth by

including more relevant input features such as intraluminal thrombus (ILT) thickness. ILT thick-

ness has been associated with AAA growth and rupture [13]. Like [12], we can incorporate this

parameter using an INR with two output nodes, one for the AAA’s lumen and one for its ILT.

With this, we can obtain continuous representations of not only the evolving AAA’s outer wall,

but also the evolving lumen and ILT. This allows us to use ILT thickness as additional input

feature for our GCN model. Other relevant parameters like age, smoking and cardiovascular

diseases related to AAA growth can also be easily incorporated in the pipeline.

4.3.2 Additional Constraints

To ensure that an INR represents a proper SDF, recent studies impose additional constraints on

the spatial gradients with respect to the input coordinates. The Eikonal regularization term has

been widely used to learn SDFs, which constrains the norm of spatial gradients to be one at any

location in the input domain. Ma et al. has introduced two additional constraints that enhance

gradient consistency in the predicted SDFs. First, they introduced Neural-Pull, a method that

constrains the directions of spatial gradients to pull surrounding 3D space onto the surface

[37]. Specifically, they train a neural network to pull 3D locations to their closest points on the

surface using the predicted SDF values and the gradient at the locations, both of which are

computed by the network itself. More recently, Ma et al. also introduce a level set alignment

loss to evaluate the parallelism of the SDF’s level sets, which can be minimized to achieve

better gradient consistency [38]. These loss terms can be applied as additional regularization

terms in our loss function (Equation 2.3) to improve spatial gradient consistency in the predicted

SDFs. Other recent work by Yang et al. shed light on the popular Eikonal loss [39]. In particular,

they use partial differential equations (PDEs) to analyze the Eikonal loss, and show it can be

unstable. They use geometric PDEs to propose a new loss regularization, i.e., second order

derivative in the normal direction, that avoids over-regularization while stabilizing the Eikonal

loss. This novel method called StEik allows for considering new network structures that are able

to represent finer shape detail. In future work, we may consider these recent developments in

our current implementation of the INRs.

4.3.3 Latent Space

To represent a single AAA shape, we optimize a single INR for a single patient. If we addition-

ally condition the MLP on a low-dimensional, shape-specific latent vector, we are able to repre-

sent multiple AAA shapes using a single INR. This latent vector can be learned using an auto-

encoder, which contains an encoder that compresses the input shape in a lower-dimensional

latent vector. Alternatively, Park et al. proposed an encoder-less learning approach called

DeepSDF, where a randomly initialized latent vector is mapped to a shape in the beginning of

training, and the latent vectors are jointly optimized with the MLP weights during training [23].

During inference, the network weights are fixed, and an optimal latent vector is estimated.

Despite the lack of longitudinal image data, there is a wealth of image data available of indi-

vidual AAA shapes. If we condition an MLP on a latent vector and jointly optimize them for

a wealth of individual AAA shapes, we may obtain a smooth latent space of AAA shapes. A

structured latent space may enable us to cluster AAA shapes based on geometrical parame-

ters like AAA size and ILT thickness. Note that structuring the latent space requires additional

regularization terms during optimization to ensure that related AAA shapes are close to each
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Figure 4.1: Schematic representation of proposed coded shape INR that is conditioned on a

latent vector. During training, the latent vectors are jointly optimized with the MLP weights,

resulting in a smooth AAA shape embedding space from which we can sample new synthetic

shapes. Sampling a trajectory in this latent space generates a longitudinal synthetic dataset of

an evolving AAA shape.

other in latent space. If we estimate the latent vectors of longitudinal AAA shapes of a single

patient, we obtain a trajectory through latent space that corresponds to how the AAA shape

evolves over time. These trajectories provide us with valuable information about how single

AAA shapes move in latent space over time, which may allow us to distinguish between stable

and fast-growing aneurysms. Another advantage of an optimized latent code is that we are able

to generate realistic synthetic AAA shapes by sampling from this latent space. Since the latent

space is smooth, we can sample an infinite amount of new AAA shapes. By sampling realis-

tic trajectories in latent space, we may even generate longitudinal synthetic datasets of AAA

shapes evolving over time. These synthetic datasets can be used as training data for our GCN

to enhance robustness, generalization capabilities, and prediction performance. This proposed

coded shape INR is similar to the work of Wiesner at al. where they jointly optimize an MLP

and its latent space using a large set of 3D cell shapes evolving over time [25]. In Figure 4.1,

we show a schematic representation of this proposed coded shape INR that is conditioned on a

latent vector. Note that we also incorporated the two output nodes for the lumen and thrombus

SDF, which together form the AAA’s outer wall.

4.3.4 Uncertainty Quantification

A major barrier for adoption of a deep learning model in clinical practice can be mistrust of clin-

icians and patients in the model predictions. An important step in building their trust in deep

learning is to provide a level of uncertainty associated with the model predictions. If we can

quantify the uncertainty in the local AAA growth predictions made by the GCN model, clinicians

and patients are equipped with valuable information regarding the utility of the model predic-

tions; for example, in case of high predicted uncertainty, clinicians can ignore model predictions

and rely more on their knowledge medical knowledge, experience and expertise.
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In convolutional neural networks (CNNs), Monte-Carlo (MC) dropout has been a popular method

for uncertainty quantification. Dropout is commonly used as a regularization technique during

training to prevent overfitting. Dropout works by randomly dropping out nodes in the neural

network during training. If used for uncertainty quantification, we only apply dropout during

inference. In particular, multiple forward passes are performed with random dropout, and the

variance in the predictions are a measure of uncertainty. Although CNNs and GCNs share

similar network architecture, both with convolution, pooling and connection layers, the input

data structures and convolution operations differ. Therefore, current dropout approaches for

CNNs cannot directly be applied to GCNs. Instead of dropping out nodes in the neural network,

random vertices are removed (’dropped out’) from the input graph. If applied during inference,

the variance of multiple predictions for a single input is a measure of uncertainty in the model’s

predictions. In future work, we may apply this approach to our GCN model to equip clinicians

with a level of uncertainty associated with the model predictions. It is important to note that a

low level of uncertainty is not always associated with a high accuracy of the model predictions.

4.3.5 Clinical Trial

Before our pipeline can be adopted in clinical practice, we should validate its performance in a

clinical trial. In this trial, we could prospectively include AAA patients that will be monitored for

the upcoming years. The objective is to do an up-scaled version of the experiments presented

in Chapter 3, comparing the AAA shape predicted by our GCNmodel with the ground-truth AAA

shape. For each scan instance, we can compare the maximum AAA diameter that is measured

manually in the CTA image with the one extracted automatically from the AAA shape obtained

using the segmentation model from our pipeline. Furthermore, using our optimized GCN net-

work, we can predict local AAA growth on the surface over any future time period. If we predict

the AAA shape from one scan instance to the next, we can quantitatively evaluate the GCN’s

performance in predicting local AAA growth by comparison to the ground truth AAA shapes.

Metrics that can be used for this are (average) surface distance, difference in diameter along

the AAA centerline, difference in maximum AAA diameter, Hausdorff distance and Dice similar-

ity coefficient. In this clinical trial, we may also include other prediction models to compare the

results for the same aneurysm dataset.

Prior to the clinical trial, we should carefully consider which metrics and corresponding threshold

values are appropriate to determinewhen the predictionmodel is accurate enough to be adopted

in clinical practice. In a study by Cayne et al., averagemeasurement variability of maximumAAA

diameter on the same CT scan is 4.0±5.1 mm [10]. If we are able to predict the maximum AAA

diameter with a difference to ground-truth maximum AAA diameter below this inter-observer

variability threshold, we can consider our prediction model as accurate enough to predict this

parameter. Whereas this parameter is primarily used in clinical practice to assess rupture risk,

we are also interested in determining whether the GCN model is accurate enough in predicting

local AAA growth. In our GCN experiments, we observed that the average surface distances

(ASDs) did not accurately reflect the performance of the GCN model in predicting local AAA

growth. Instead, we should compare the diameter profiles; if the difference in the ground-truth

and predicted diameter profile along the AAA centerline is less than the inter-observer variability,

we can consider our prediction model as accurate enough to predict local AAA growth on the

surface.
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4.4 Conclusion

This study aimed to address the main research question: ’How can deep learning be used

to predict personalized aneurysm growth based on longitudinal image data?’. To answer this

question, we combine the continuity of INRs to obtain highly personalized, continuous models

of 3D AAA shapes evolving over time with a GCN model that can learn regularizations from

these representations to predict local AAA growth on the surface. With this, we are not only

able to retrospectively assess but also predict AAA evolution over time. Ultimately, this pipeline

has the potential to make clinical decisions regarding AAA surveillance more pro-active. Once

the growth prediction model is accurate enough, it enables the clinicians to act on future events

rather than react to the current situation, and may put the patient more at ease in case of a

predicted stable aneurysm.
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A DIAMETER PROFILES

Figure A.1: Diameter profiles along axial slices for ground truth aorta segmentations (black

dashed lines) and interpolated AAA surfaces extracted at time points spaced half a year apart

(colored solid lines) for all 25 included patients. Each plot corresponds to a single patient, for

which a single INR was optimized with TempReg based on point clouds from all available scan

instances. The number of scan instances available during training is indicated in the left.
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Figure A.2: Diameter profiles along axial slices for ground-truth aorta segmentations (solid lines)

and inter- and extrapolated AAA shapes extracted at available scan instances (dashed lines)

for five patients. For each patient, we compare the results for different temporal regulariza-

tion strategies: NoTempReg (top rows), TempReg (middle rows), and ReLUTempReg (bottom

rows).
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Figure A.3: Diameter profiles along the axial slices for all available ground aorta segmentations

(solid lines) and predicted AAA shapes (dashed lines) for the five validation patients. In each

plot, we compare three diameter profiles: the ground-truth and predicted diameter profiles at tj ,
and the ground-truth diameter profile at tj−1 from which the prediction was made.
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