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Abstract

The Traveling Salesman Problem is a combinatorial optimization problem with
many applications. In the problem, the goal is to find a Hamiltonian tour of min-
imum cost in a graph. As finding the global optimum is difficult, many heuristics
have been developed. These heuristics find tours of low, but not necessarily optimal,
cost in reasonable time. The Lin-Kernighan heuristic is one of the best heuristics for
the Traveling Salesman Problem. Theoretical analysis for this heuristic seems to be
difficult, as we show in this paper. Therefore we investigate the heuristic experimen-
tally. We find that the average number of iterations with respect to the input size is
linear. The effect of four different settings of the heuristic are investigated. Two of
the settings influence the slope of the linear relationship. The other two settings do
not significantly influence the average number of iterations.

Keywords: Traveling Salesman Problem, Lin-Kernighan heuristic

1 Introduction

The traveling salesman problem (TSP) is a combinatorial optimization problem. In this
problem, a traveling salesman needs to visit a number of cities. The salesman should visit
each city exactly once, and finally return to its starting point. Of course, the salesman
would like to do this as efficiently as possible. So, the goal is to find a route of minimum
travel cost through all the cities that ends in the same place where it started. The traveling
salesman problem is not only applicable to this specific situation, but has applications in
several different areas, such as drilling holes in a circuit board, X-ray crystallography, and
scheduling [1].

There are several variants of the traveling salesman problem. We consider here the
symmetric TSP, where the cost to travel from one city to another is equal to traveling
the opposite way. The TSP instances can be divided in two sets: metric and non-metric.
Metric instances are instances where the edge weights abide by the triangle inequality. A
subset of these instances are Euclidean instances. Euclidean instances consist of points
scattered in a plane, and the travel distance between two points is the Euclidean distance
between those points. In non-metric instances, the travel distances are chosen arbitrarily.
With high probability, the triangle inequality does not hold on those instances. We consider
here Euclidean instances and non-metric instances.

The traveling salesman problem is modeled as a graph. The cities are represented by
vertices. The graph is complete, as we can travel between any two cities. The edges have
weights that represent the cost of travel between the two vertices. Since the cost to travel
one way is the same as traveling the other way, we work with simple graphs and undirected
edges. The route that we need to find, is a tour T that visits each vertex exactly once, and
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ends at the same place as it starts. In graph theory, this is known as a Hamiltonian tour.
The cost of travel over an edge e is denoted as |e|. The cost CT of a tour T is the sum of
costs of all edges in the tour, i.e. CT =

∑
e∈T |e|.

In the traveling salesman problem, the goal is to find the Hamiltonian tour with the
minimal cost. The TSP problem is an NP-hard problem [2], so it is believed that no fast
algorithm exists that finds the global optimum. Therefore we use heuristics.

A heuristic is an algorithm that tries to quickly find a good solution to a problem,
without any guarantee that the solution is optimal. Also, it does not guarantee to be fast
on every instance. Nevertheless, heuristics are widely used. In practice, many heuristics
find close to optimal solutions in little time. And even if a heuristic does not always find
a good solution, it can be run multiple times. Then it might find a better solution in one
of those runs.

A local search heuristic starts with an initial solution to the problem. Each solution has
a certain neighbourhood, that depends on the problem and the used heuristic. The local
search heuristic then searches in the neighbourhood of the current solution for a better
solution. If a better solution is found, we replace our initial solution by this improved
one. Then the heuristic tries to improve this new solution. These steps are repeated until
no improvement can be found. Then we are in a local optimum, with no guarantee of
it being a global optimum. For TSP, a local search algorithm starts with some arbitrary
Hamiltonian tour. It then removes some edges, and adds some different edges to maintain
the Hamiltonian tour property. In most heuristics, the total cost of the new tour is then
lower than the original tour. Some heuristics also allow tours with worse cost to be chosen.
The local search algorithm would use this new tour as the current tour in the next iteration.

One widely used class of heuristics for the traveling salesman problem is k-opt. The
k-opt heuristic is a local search heuristic. In each iteration, it can break and add at most k
edges. So the neighbourhood of a solution are all tours that differ by at most k edges. The
value of k is a trade-off between quality and efficiency. For lower values of k, k-opt is much
faster, but the tours are of lower quality. In most applications of k-opt, 2-opt or 3-opt are
used, as they produce very good tours in practice, especially if they are ran multiple times
with different starting tours.

The Lin-Kernighan heuristic is an extension of the k-opt heuristic. Where any k-opt
heuristic only exchanges at most k edges, the Lin-Kernighan heuristic can exchange in
principle any number of edges. It improves a tour by removing one edge, adding a new
edge, removing another edge, etc. This way it creates an alternating cycle of edges that
we remove and add. To limit the number of options, several rules are in place that restrict
and guide the search for a better tour in the Lin-Kernighan heuristic. Similar to k-opt,
Lin-Kernighan starts with an arbitrary tour and iteratively optimizes that tour.

The Lin-Kernighan heuristic has been developed for the symmetric traveling salesman
problem. However, it has been shown that the Lin-Kernighan heuristic can be extended
to apply to other variants of TSP as well [3].

The Lin-Kernighan heuristic and variants of it are considered among the best TSP
heuristics, and are used in state-of-the-art TSP solvers, such as Concorde [4]. Unfor-
tunately, theoretical analysis of the algorithm has proven to be difficult and is an open
problem [5]. Lin and Kernighan claimed that running times grow a bit worse that n2 [6],
but no theoretical results support this claim. To provide a basis for future theoretical
research on this heuristic, we investigate the behaviour of the heuristic. In particular we
see what impact several settings in the heuristic have on its efficiency.

For applications, it is important to have an algorithm with a low running time. Many
algorithms are evaluated based on their asymptotic behaviour for running times. Running
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times do however depend on the implementation and the machine. For theoretical evalu-
ation, we look at the number of iterations in local search problems required to converge
to a local optimum. The number of iterations is machine-independent and independent of
the implementation. Therefore we do not consider the wall-clock time of the algorithm in
this evaluation, but only the number of iterations, and the quality of the obtained tour.

In this paper, we first explain the Lin-Kernighan algorithm in depth. We list sev-
eral configurations in the algorithm that we could change. Then we explain an efficient
implementation for one step of the Lin-Kernighan heuristic.

After that, we do a theoretical analysis of the problem. We show here that it is
not straightforward to find a useful theoretical bound. Therefore, we then analyse the
algorithm experimentally. We consider the configurations listed before. We investigate
how these configurations influence both the number of iterations and the tour quality.

2 Lin-Kernighan heuristic

2.1 Traveling Salesman Problem

The Lin-Kernighan heuristic has been developed for solving the traveling salesman problem.
We represent an instance of the traveling salesman problem as a complete graph. All edges
have weights that represent the cost to travel across that edge. These edge weights are
determined in two different ways: in non-metric instances, we sample the edge weights
from the uniform distribution between 0 and 1. In Euclidean instances, we place vertices
randomly in the unit square, from 0 to 1. The edge weights are then the Euclidean distance
between the vertices. As mentioned in the introduction, the weight of an edge e is denoted
by |e|. The algorithm starts with an initial Hamiltonian tour, called T . It then tries to
find a new tour T ′ such that the cost of T ′ is lower than the cost of T .

2.2 The heuristic

As mentioned in the introduction, the Lin-Kernighan heuristic is a local search heuristic.
Globally, it improves a tour by exchanging edges sequentially. It selects an edge to break,
adds another edge, removes an edge, adds another edge etc. The algorithm ensures that
we always keep a tour if we were to re-link at an intermediate step. How the algorithm
decides when to stop, and which edges to choose, is explained below.

If we break and add exactly k edges, then this is called a k-change. In the Lin-Kernighan
heuristic, this k is variable and can change every iteration.

We constantly break one edge and add another edge. Since each new selected edge is
incident with the old selected edge, we can also see this as selecting vertices sequentially.
We denote the selected vertices by t = (t1, t2, . . .). The i-th broken edge is denoted by xi.
The i-th added edge is denoted by yi. The algorithm only changes the tour if the change
decreases the cost of the tour. The algorithm changes the tour by re-linking. Re-linking
happens only after breaking an edge, not after adding an edge. Let X = {x1, . . . , xi} and
Y = {y1, . . . , yi−1, (t2i, t1)}. Then the new tour after re-linking is T ′ = (T\X) ∪ Y . The
gain of a step is calculated by the sum of the weights of the edges we break, subtracting
the sum of the weights of the edges we add. This is calculated by

Gi =
i∑

j=1

|xj | − |yj |.
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The best gain that has been seen at some point in the current iteration is denoted
by G∗.

The Lin-Kernighan heuristic can be broken up into three parts: a main loop that keeps
updating the initial solution, an algorithm that breaks the next edge, and an algorithm
that adds the next edge.

Algorithm 1 Main loop
1: for t1 in vertices do
2: for t2 in neighbours of t1 do
3: broken ← [(t1, t2)]
4: added ← []
5: G∗ ← 0
6: k ← 0
7: if AddingEdge(broken, added, G∗, k) is "improved" then
8: restart MainLoop
9: end if

10: end for
11: end for

In Algorithm 1, the main loop of the algorithm is shown. It starts by selecting the first
edge to break, (t1, t2). Since the algorithm always breaks an edge and then adds a new
edge, the algorithm for adding a new edge (Algorithm 2) is called. If Algorithm 2 at some
point improves the tour, the main loop restarts, and tries to improve the new tour.

The algorithm is allowed to try all options for t1, and can try both options for t2.
If none of these options give an improvement, a local optimum has been found and the
algorithm terminates.

In Algorithm 2, the pseudo-code for adding a new edge is shown. If we are at the
step to add an edge, another edge in the tour has just been broken. This edge is called
xi = (t2i−1, t2i). Then vertex t2i only has one incident edge left in the tour, while it should
be incident with two edges for a valid tour. So we need to add an edge from t2i to another
vertex t2i+1. This new vertex t2i+1 has to abide by a few properties:

• t2i+1 cannot be a vertex already chosen before by the algorithm in this iteration.
Then it might happen that an edge that was just added needs to be broken, which
is not allowed in the algorithm.

• t2i+1 cannot be a vertex that is a neighbour of t2i. This would result in a double
edge in our tour. In the next step, the algorithm would break the double edge, thus
nothing would change. We do not allow this, as it can result in infinite loops. Also,
as we work with simple graphs, we do not allow double edges.

• The partial gain Gi cannot be less than the best gain (G∗) we have seen thus far.
This is called the gain criterion, and ensures that we do not search fruitless paths.

Since we want to get a high gain in each step, it is useful to consider the vertices in
ascending distance. That way we first try the possibly better gain options.

If the partial gain turns out to be less than the best gain currently seen, we do not
search for further edges. If we have found an improvement somewhere in our path, we
re-link the tour with the improvements that led to this maximum gain. Then, we return
"improved", so the other functions know the tour is updated and improved. If we have
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Algorithm 2 AddingEdge(broken, added, G∗, k)
1: i← i+ 1
2: t2i ← last vertex in t
3: for t2i+1 in vertices do
4: if t2i+1 was already chosen or t2i+1 is in neighbours of t2i then
5: continue
6: end if
7: yi ← (t2i, t2i+1)
8: added.append(yi)
9: Calculate Gi

10: if Gi < G∗ and G∗ > 0 then
11: RelinkTour
12: return "improved"
13: else if Gi < G∗ and G∗ = 0 then
14: added.remove(yi)
15: return "not improved"
16: end if
17:
18: if BreakingEdge(broken, added, G∗, k) is "improved" then
19: return "improved"
20: else if BreakingEdge(broken, added, G∗, k) is "no suitable edge" then
21: added.remove(yi)
22: continue
23: else if BreakingEdge(broken, added, G∗, k) is "not improved" then
24: added.remove(yi)
25: if backtracking is not allowed or max number of neighbours are considered then
26: return "not improved"
27: end if
28: end if
29: end for
30: return "not improved"

not found an improvement, we will do backtracking. With backtracking, we allow more
options to be considered in hopes of finding a tour with a lower total cost.

The backtracking in the Lin-Kernighan heuristic is limited. For the first vertex t1, we
are allowed to try every option. We are also allowed to try every edge to break, incident
with t1. For our first two edges we want to add, y1 and y2, we allow five neighbours. On
the deeper levels, we only consider the first vertex t2i+1 that fulfills the three properties
mentioned above. If this vertex does not give a gain, we do not consider more vertices on
that level. We go down all the levels until we are allowed to consider multiple options, so
levels 1 and 2. In the pseudo-code, this restriction on backtracking can be seen in line 25.
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Algorithm 3 BreakingEdge(broken, added, G∗, k)
1: t2i+1 ← last vertex in t
2: xi = (t2i+1, t2i+2)← suitable edge to break
3: if no suitable edge to break then
4: return "no suitable edge"
5: end if
6: broken.append(xi)
7: if Gi−1 + |xi| − |(t2i+2, t1)| > G∗ then
8: if greedy then RelinkTour
9: return "improved"

10: end if
11: G∗ ← Gi−1 + |xi| − |(t2i+2, t1)|
12: k ← i
13: end if
14:
15: if max depth is reached then
16: if G∗ > 0 then RelinkTour
17: return "improved"
18: else if G∗ = 0 then
19: broken.remove(xi)
20: return "not improved"
21: end if
22: end if
23:
24: if AddingEdge(broken, added, G∗, k) is "improved" then
25: return "improved"
26: else if AddingEdge(broken, added, G∗, k) is "not improved" then
27: broken.remove(xi)
28: return "not improved"
29: end if

The last sub-algorithm of the Lin-Kernighan algorithm is shown in Algorithm 3. We
arrive at this step if the new edge yi = (t2i, t2i+1) has just been added. Then, the endpoint
of this edge, t2i+1, is now incident with three edges, while it should be incident with two
edges for a Hamiltonian tour. So, one of its edges already in the tour T needs to be broken.
In line 2, we mention that a suitable edge needs to be broken. With suitable edge, we mean
that if we were to re-link the tour, it should not consist of multiple disjoint cycles, but it
should be a Hamiltonian tour.

Only one of the two options for the edges will have this property. In Section 2.4, we
discuss an efficient method to determine which of the two edges has to be broken.

Once it is determined which edge needs to be broken, we check what the gain would be
if we would re-link the tour now, as seen in line 7. If this is a better gain than seen before,
we update our G∗. We also record at which point we have found this best gain, by setting
k = i.

If we have a valid edge we can break, we search for a new edge to break. We do this
by calling the previously explained method AddingEdge.

6



t1

t2

(a) Breaking the first
edge

t1
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(b) Adding the first
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Figure 1: Example of the Lin-Kernighan heuristic, for the first two iterations.

In Figure 1, we show the first two steps of the Lin-Kernighan heuristic. In Figure 1a,
we break our first edge by selecting t1 and t2. We then add an edge from t2 to another
vertex t3, as seen in Figure 1b. We would then break the edge such that re-linking would
lead to a better tour. And then we again add another edge. These two steps are seen in
Figure 1c. This would continue until we would re-link the tour.

2.3 Modifications of the algorithm

The Lin-Kernighan heuristic has some settings that restrict the search space. Lin and
Kernighan mentioned that their choice for these settings relied on experimental analysis [6].
We are interested in seeing the effects of these settings on the heuristic. Also, we consider
some more restrictions. There are four settings we are interested in.

• The level of backtracking is the level on which multiple options for neighbours, for
adding an edge, are considered. In the Lin-Kernighan heuristic, this is only allowed
on levels 1 and 2.

• The number of neighbours that are considered on levels where backtracking is allowed.
Lower amounts of neighbours lead to a smaller neighbourhood of a solution. In the
Lin-Kernighan heuristic, the number of neighbours is set to five neighbours. However,
Lin and Kernighan said that often one of the first two options is chosen [6].

• The maximum depth, where we set a maximum of K, and we only allow a k-change
if k ≤ K. Restricting the maximum depth also decreases the size of the neighbour-
hood of a solution. A restricted depth might make the algorithm easier to analyse
theoretically.

• A greedy version, where instead of searching deeper if there is potential for a higher
gain change, we immediately re-link the tour once a gain has been found.

We look at the effects of these settings on the heuristic. We consider both the effect on
the quality of the obtained tour, as well as the effect on the number of iterations.

2.4 Breaking a suitable edge

Algorithm 3, the breaking of an edge, mentions that a suitable edge needs to be broken.
A suitable edge means that re-linking will result in a valid tour. If the incorrect edge is
chosen, we end up with disjoint cycles instead of a Hamiltonian tour. A naive approach
would be to try one of the edges, and check if that results in a Hamiltonian tour. However,
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this subroutine has quadratic running time. Since the step of breaking an edge occurs often
in the heuristic, an efficient implementation has significant impact on the efficiency of the
algorithm. We present a linear-time algorithm here. This algorithm works by walking
along the new tour, starting from t2i+1. Depending on where we end with our walk (either
at t1 or t2i+1), we know which edge we need to break to make a Hamiltonian tour. Since
walking along the tour can be time consuming, we store extra information. With this
information, we can walk along the tour in large steps and we do not need to traverse
every vertex. To illustrate what information we need to store, we explain it using Figure 2.

t1

t2

t5

t4

t3

Figure 2: Intermediate step in Lin-Kernighan heuristic

We need to store information for each vertex ti ∈ t. We store two pieces of information
for each vertex: we store the vertex it is adjacent to by a newly added edge, and we store
the vertex in t it is connected to if we would go along the tour. Taking vertex t3 in Figure
2 as the example: t3 is adjacent to t2, by an added edge. And t3 is connected to t1, since
we could walk along the tour and encounter t1 as the first vertex in t.

The adjacent vertex of ti is denoted by f(ti). So f(t3) = t2. The other stored vertex
is denoted by g(ti). So g(t3) = t1. The function f(ti) is updated once an edge is added.
The function g(ti) is updated after an edge is broken. So in the situation of Figure 2,
f(t5) = t4, but g(t5) is not defined. Also, g(t2) = t4 and not t5, as g(ti) is not yet updated.
But f(ti) has been updated, so f(t4) = t5.

Algorithm 4 Determining which edge to break
1: v ← t2i+1 = last vertex in t
2: repeat
3: v ← vertex clockwise from v
4: until v not in t
5: while True do
6: if v = t1 then
7: return vertex counterclockwise from t2i+1

8: end if
9: v ← f(v)

10: if v = t2i+1 then
11: return vertex clockwise from t2i+1

12: end if
13: v ← g(v)
14: end while
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In Algorithm 4, clockwise and counterclockwise vertices are mentioned. The initial tour
is a list of vertices. We can write these vertices in a circle, and connect the edges between
them. That represents the initial tour. Using this representation, we can then talk about
the vertex clockwise from another vertex. It can also be seen as the next vertex in the list.
A counterclockwise vertex is then the previous vertex in the list.

We prove that the algorithm provides the correct output in linear time.

Lemma 2.1 (Correctness of Algorithm 4). Given the index i, functions f and g, list t
and Hamiltonian tour T as defined previously, Algorithm 4 provides a vertex t2i+2 in time
linear in the number of vertices. This vertex t2i+2 ensures that re-linking after breaking
edge (t2i+1, t2i+2) results in a Hamiltonian tour.

Proof. We order the vertices of the Hamiltonian tour T and place them in a circle. Algo-
rithm 4 is only called if we already have broken at least one edge. So, starting at t2i+1 and
going over the tour clockwise means that we hit a broken edge at some point. Since both
endpoints of a broken edge are in the list t, we are ensured to hit some vertex v ∈ t if we
go clockwise along the old tour T . From v, we can walk along the new tour. The new tour
alternates between paths of the old tour, and edges that are in added. By alternatingly
moving to f(v) and g(v), we walk along this new tour. When we get to one of the stopping
criteria (lines 7 and 11 in Algorithm 4), we are in one of two situations: if v = t2i+1 (line
11), we have traversed a cycle. We do not allow cycles, so we need to break this cycle.
Therefore we need to break the first edge traversed, so the edge clockwise from t2i+1. Thus,
we return the vertex clockwise from t2i+1. The other situation is when v = t1 (line 7). In
this case we did not walk along the cycle, so we know the edge counterclockwise from t2i+1

must be in this cycle. So this edge needs to be broken. Thus, the vertex counter-clockwise
form t2i+1 is returned. The algorithm finishes in linear time, as all necessary information
is stored and no vertex is encountered twice.

In line 3, we traverse the tour from vertex t2i+1 clockwise. This is a decision that has
no influence on the outcome. The tour can also be traversed counter-clockwise. In that
case, we would end up at the opposite stopping condition: if clockwise traversal would end
in t1, counter-clockwise traversal would end in t2i+1, and vice versa. Thus, the decision to
break which edge would also be reversed. Both versions of the algorithm would give the
same result.

To illustrate Algorithm 4, we use the example in Figure 2. Here, a new edge has just
been added between t4 and t5. Thus, we need to break one of the edges incident with
t5. If we want to determine which of the two edges we need to break, we will start at t5.
Continuing over our new tour in the clockwise direction, we encounter t2. Then iteratively
applying function f and then function g, we encounter vertices t3 and t1. Now that we
are at t1, we stop, since that was one of the criteria to stop the algorithm. Since we
encountered t1, we know we need to break the edge counter-clockwise from t5.

To show that clockwise traversal is a decision that has no effect, we also show what
would happen if we would go counter-clockwise. Then, we would first encounter t4. We
would then go to t5 and stop, since that is the other stopping criteria. As the decisions are
reversed if we go counter-clockwise, we need to break the edge counter-clockwise from t5.
In both cases, we would end up with the same result. And if we would re-link the vertex
counter-clockwise from t5 to t1, we would see that the resulting configuration is a tour.

We then also update our stored connections: now t2 is connected to t3 and t5, t5 is
connected to t2 and t4. Vertex t6, the vertex counter-clockwise from t5, is so far connected
only to t4. Now the algorithm can continue to its next iteration, by adding a new edge to
t6.
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3 Theoretical analysis

For many algorithms, the worst-case behaviour is analysed. This gives a guarantee on the
complexity of the algorithm. It is nice if the worst-case performance is low, as then we
are sure the algorithm will perform well on all possible inputs. However, many algorithms
have been shown to have a bad worst-case performance, while they perform really well
in practice. An alternative analysis is therefore used: average-case analysis. This type of
analysis is less dominated by worst-case instances. It does however give no guarantee on a
single problem, but only on average. Its relevance does depend heavily on the probability
distribution of the instances. If worst-case instances occur often, average-case analysis
might not give a better bound.

In this analysis, we find an upper bound on the expected number of iterations. The
Lin-Kernighan heuristic improves the tour in each iteration. We can find a lower bound
on this improvement. We call this lower bound ∆min. If we then have an upper bound on
the length of the starting tour, we can find an upper bound on the expected number of
iterations. We consider the non-metric instances, where we sample edge weights from the
uniform distribution between 0 and 1. The tour can then at most have length n, and at
least has length 0. In every iteration, we decrease the tour cost by at least our lower bound
∆min. So we have at most n

∆min
iterations. The upper bound on the tour length is not a

random variable, so the only random variable is the lower bound on the gain. We analyse
the probability that the minimal gain is small. We want to show that this probability is
low, as that results in a low upper bound on the number of iterations.

An iteration in the Lin-Kernighan heuristic is the exchange of k edges in the current
tour with k different edges, not in the tour. If the depth of the heuristic is not limited, at
most n edges can be exchanged, as a tour consists of n edges. We analyse the situation if
we would allow an exchange of at most k edges. If we then let k = n, we obtain an upper
bound on the number of iterations for the Lin-Kernighan heuristic.

In a k-change, we have a list of k edges, Xk = (x1, x2, . . . , xk), in our tour T that we
will break. Also, we add a list of k edges, Yk = (y1, y2, . . . , yk), that are not in T .

We define the cost of an edge e by we. All edge weights are drawn from the uniform
distribution, so we ∼ U(0, 1). We define ∆ as the gain from a k-change. Thus,

∆(Xk, Yk) = wx1 + wx2 + . . .+ wxk
− wy1 − wy2 − . . .− wyk

All edge weights are random variables. By the principle of deferred decisions, we can
analyse this situation as if all edge weights are fixed, except wx1 . We take

w∗ =

k∑
i=2

wxi −
k∑

j=1

wyj ,

and we can rewrite ∆ as

∆(Xk, Yk) = wx1 + w∗.

Since all edge weights are fixed except wx1 , w∗ is a fixed number. We bound the probability
that the gain of a step is small, i.e smaller than some ϵ,

IP(∆(Xk, Yk) ∈ (0, ϵ]) = IP(wx1 ∈ (−w∗,−w∗ + ϵ]) ≤ ϵ,

as the distribution of wx1 is the uniform distribution on (0, 1), so its probability is bounded
by 1.
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In any step of the Lin-Kernighan heuristic, we have a positive gain. Thus for each
choice of lists Xk, Yk, it it is ensured that ∆(Xk, Yk) > 0. The minimal gain from any
k-change is defined as follows:

∆min = min
Xk,Yk

∆(Xk,Yk)>0

∆(Xk, Yk)

So ∆min is a lower bound on the minimal gain that happens in every iteration of the
heuristic. In order to bound the number of iterations, we want to show that the probability
that ∆min is small is low. So we analyse the probability of this minimal gain to be small:

IP(∆min ≤ ϵ) = IP(∃(Xk, Yk) : ∆(Xk, Yk) ∈ (0, ϵ]) = IP

 ⋃
Xk,Yk

∆(Xk, Yk) ∈ (0, ϵ]

 .

We apply a union bound over all possible choices of Xk and Yk to obtain the following
sum:

IP

 ⋃
Xk,Yk

∆(Xk, Yk) ∈ (0, ϵ]

 ≤ ∑
Xk,Yk

IP(∆(Xk, Yk) ∈ (0, ϵ]) ≤
∑
Xk,Yk

ϵ = Nϵ,

where N is the number of ways we can create sets Xk and Yk that result in a positive gain.
We can select the k edges in Xk in

(
m
k

)
, where m is the number of edges in the graph. We

can then re-link these k vertices in (2k − 1)!! = (2k − 1)(2k − 3) · . . . · (3) ways. Thus,

IP(∆min ≤ ϵ) ≤ Nϵ ≤
(
m

k

)
· (2k − 1)!! · ϵ = O

(
mk

kk
· kk · ϵ

)
= O(mkϵ) ≤ O(n2kϵ),

where the last inequality comes from the fact that we are working in complete graphs
where m ≤ n2.

Now that we have an upper bound on the probability of the gain being small, we use
this to find an upper bound on the probability of a high number of iterations.

IP(T ≥ t) ≤ IP
(
∆min ≤

n

t

)
≤ O

(
n2k · n

t

)
= O

(
n2k+1

t

)
,

where T is the number of iterations. Then an upper bound of the expected number of
iterations is

IE(T ) =
∞∑
t=1

IP(T ≥ t) =

n!∑
t=1

IP(T ≥ t) ≤
∫ n!

1
O
(
n2k+1

t

)
dt

= O

(
n2k+1 log(t)

∣∣∣∣t=n!

t=1

)
≤ O

(
n2k+2 log(n)

)
,

where the last equality comes from the approximation of the factorial: n! ≤ nn.
Letting k = n, we obtain an upper bound on the expected number of iterations for the

Lin-Kernighan heuristic. This upper bound is IE(T ) ≤ O
(
n2n+2 log(n)

)
. This is worse

than trying all possible tours, as that has a complexity of n! ≤ nn.
This straightforward probabilistic analysis of the average-case complexity does not

give a useful bound. Many researchers have tried to get rid of the wasteful union bound,
but no significant improvements have been found. Therefore, we analyse its behaviour
experimentally. This might give ideas to tackle further theoretical analysis.
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4 Implementation

We have implemented the Lin-Kernighan heuristic in Python 3.8. To store the graph, a
NumPy [7] array is used. The entries in the array are the weights of the edges. Since we
want to consider possible edges in order of distance, we also store a sorted version of the
graph.

The tour is stored as a list of vertices, as well as a dictionary. In the dictionary, we
store which vertex is connected to which other vertex. We use this to easily access the
previous and next vertex in a tour.

5 Experimental results

We analyse the effect of the settings in the Lin-Kernighan heuristic, on the average number
of iterations and the average tour length. To analyse the effect of the settings in the Lin-
Kernighan heuristic, we see the average behaviour of the algorithm on randomly generated
graphs. We consider two types of graphs:

• Graphs with edge weights drawn from the uniform distribution between 0 and 1. We
call these graphs ’non-metric graphs’.

• Graphs with vertices placed randomly with both coordinates between 0 and 1, where
the Euclidean distance represents the weight of an edge. We call these graphs ’Eu-
clidean graphs’.

For these types of graphs, the growth of the optimal tour length is known. For non-metric
graphs, the optimal tour length is at most 6 [8]. For Euclidean graphs, the optimal tour
length tends to c

√
n as n tends to∞ [9]. This c is an unknown constant. The approximation

ratio is the ratio between the obtained tour length and the optimal tour length. We want
to see what the effect of the configurations is on the approximation ratio. Therefore we
normalize the tour lengths.

The algorithm has been run on a Dell PowerEdge R740, with 48 cores, 96 threads,
max. 2.20 GHz and 256 GB of RAM. It has 2 Nvidia Tesla T4 GPU’s [10].

For each setting, 1000 samples have been drawn using randomly generated graphss.
The results were averaged in blocks of 25. With this size of blocks, the averages seem
normally distributed. The standard error is calculated and plotted as error-bars. However,
in most plots this error-bar is invisible as it is very small.

12



5.1 Number of neighbours
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Figure 3: The average number of iterations for different values for neighbours in
Euclidean graphs.
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Figure 4: The average number of iterations for different values for neighbours in
non-metric.

In Figure 3, we can see the average number of iterations for several numbers of neighbours.
This figure is for Euclidean graphs. We can see that the average number of iterations
is smaller for smaller number of neighbours. The number of iterations seems linear with
respect to the size of the graph.

In Figure 4, we can see the same results for non-metric graphs. Here we see a similar
trend, where lower values of neighbours result in slightly fewer iterations, although the
differences are smaller. Also, the number of iterations seems not linear.
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Figure 5: The normalized tour length for different values for neighbours in Eu-
clidean graphs.
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Figure 6: The average tour length for different values for neighbours in non-
metric.

The normalized tour length for different numbers of neighbours for Euclidean graphs
can be found in Figure 5. It is not constant, as we would expect after normalization.
However, our graphs are quite small, and the asymptotic behaviour is valid when n is
large. We see that the tour is worse when the number of considered neighbours is 2 or 3.
For higher values, there is no significant difference.

In Figure 6, the actual tour lengths for non-metric graphs can be found. We can see
the average tour length does not exceed 6. Similar to Euclidean graphs, the tour length
is worse for two or three neighbours. For higher values, again no significant trends can be
seen.
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5.2 Backtracking depth
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Figure 7: The average number of iterations for different levels of backtracking for
Euclidean graphs.
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Figure 8: The average number of iterations for different levels of backtracking for
non-metric.

In both types of graphs, we can see that a higher level of backtracking leads to a slightly
higher number of iterations. For Euclidean graphs, the number of iterations looks linear.
For non-metric graphs, the number of iterations does not look linear.
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Figure 9: The normalized tour length for different levels of backtracking in Eu-
clidean graphs.
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Figure 10: The average tour length for different levels of backtracking in non-
metric.

For both types of graphs, we see that the tour length is worse for lower levels of back-
tracking. There is not a clear difference for settings 5 and 6. Only allowing backtracking
on level 2 clearly gives worse results on average.

5.3 Maximum depth

We have analysed two types of depth restriction. In the first one, we restrict the depth to
an absolute number of edges. In the second one, we restrict the depth to a percentage of
the size of the graph. In case the depth calculated using the percentage is not an integer,
we round it down.
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Figure 11: The average number of iterations for different values of depth for
Euclidean graphs.

50 100 150 200 250 300
Size of graph

25

50

75

100

125

150

175

Av
er

ag
e 

nu
m

be
r o

f i
te

ra
tio

ns

Number of iterations for different maximum depths
Maximum depth: 10%
Maximum depth: 20%
Maximum depth: 30%
Maximum depth: 50%
Maximum depth: 70%
Maximum depth: 90%
Maximum depth: 100%

Figure 12: The average number of iterations for different percentages of maximum
depth for Euclidean graphs.

In Figure 11, the depth restricted by a number can be found for Euclidean graphs. The
hyphen indicates no depth restriction. This is the normal setting for the Lin-Kernighan
heuristic. A high number of maximum depth means that the algorithm can exchange more
edges. We can see that the average number of iterations is linear for each setting of the
depth. A lower maximum depth gives a higher inclination of the line.

In Figure 12, the average number of iterations with the depth restricted by a percentage
can be found, for Euclidean graphs. Again, a higher percentage means more exchanges.
The depth of 100% indicates no depth restriction. Similar to Figure 15, the average
number of iterations is linear with respect to the size of the graph. However, the lines for
the different settings have the same inclination. Only the line for a depth of 10% has a
significant difference. This line is shifted upwards compared to the other lines.
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Figure 13: The average number of iterations for different values of depth for non-
metric.
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Figure 14: The average number of iterations for different percentages of maximum
depth for non-metric.

Figure 13 shows the average number of iterations, for several depths. Similar behaviour
is seen as for Euclidean graphs, in Figure 11. The number of iterations looks linear for
each setting. A higher maximum depth results in fewer iterations.

In Figure 12, we again see similar behaviour as for Euclidean graphs. For non-metric
however, we can clearly see that not only 10%, but also 20% depth restrictions are signif-
icantly different than the other lines. Again, the lines do not have a different inclination,
but are shifted.
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Figure 15: The normalized tour length for different values of maximum depth in
Euclidean graphs.
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Figure 16: The average tour length for different percentages of maximum depth
in Euclidean graphs.

In Figure 11, we see a similar behaviour of the normalization as for the number of
neighbours. It is not linear, but asymptotically it might be. Only a maximum depth of
three edges is significantly different from the other settings. With three edges as maximum
depth, the tour length is a lot higher than the other settings.

In Figure 16, no significant difference can be found for any of the settings.
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Figure 17: The average tour length for different values of maximum depth in
non-metric.
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Figure 18: The average tour length for different percentages of maximum depth
in non-metric.

In Figure 17, we can see that the tour length is much higher for a maximum depth of 3
edges. For the other settings, a lower depth does result in a higher tour length, but there
is not a big difference.

Figure 18 shows that there is no significant trend in tour length. All percentages of
maximum depth result in similar tour lengths. Most of the results are within each others
error-bar.

5.4 Greedy variant

In Section 2, we proposed a greedy variant of the Lin-Kernighan algorithm. In this variant,
we immediately re-link the tour if an improvement has been found.
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Figure 19: The average number of iterations for a greedy and non-greedy Lin-
Kernighan in Euclidean graphs.
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Figure 20: The average number of iterations for a greedy and non-greedy Lin-
Kernighan in non-metric.

For non-metric and Euclidean graphs, the number of iterations is larger for the greedy
variant than for the non-greedy variant (as seen in Figures 19 and 20). For both variants,
the average number of iterations is linear with respect to the size of the graph.
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Figure 21: The normalized tour length for a greedy and non-greedy Lin-Kernighan
in Euclidean graphs.
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Figure 22: The average tour length for a greedy and non-greedy Lin-Kernighan
in non-metric.

For Euclidean graphs, there is no significant difference in the normalized tour lengths,
for the greedy and non-greedy variant. This can be seen in Figure 21.

For non-metric graphs, the tour lengths do differ for the greedy and non-greedy variant.
However, neither of the variants is always higher or always lower. Also, the error-bars are
large. So there is no trend for the tour length between the greedy and non-greedy variant.

A possible explanation for this might be that the greedy and non-greedy variant both
converge to local optima. The greedy variant does this in small steps, as it immediately re-
links when it found an improvement. The non-greedy variant converges in fewer iterations,
as it exchanges more edges each iteration.
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6 Discussion and Conclusion

In this paper, we have done a theoretical and experimental analysis for the Lin-Kernighan
heuristic.

From the theoretical analysis, we can see that a straightforward technique is not enough
to obtain a useful upper bound. Our upper bound on the average number of iterations
is exponential on the size of the input. This is worse than trying all possible options of
Hamiltonian tours in a problem.

Therefore, we tried an experimental approach. We considered four different types of
settings, on the average number of iterations, and on the (normalized) tour length. We
analysed its effect on two types of graphs: Euclidean graphs and non-metric graphs. For
non-metric graphs, the edge weights were chosen from the uniform distribution between 0
and 1. The results for the two graphs did not differ a lot.

• The number of neighbours is the amount of options we can try, when backtracking is
allowed. This setting had almost no effect on the average number of iterations. The
tour length was lower for higher numbers of neighbours.

• The level of backtracking also had little influence on the average number of iterations.
We could see that the number of iterations increased as the backtracking increased.
The tour length did decrease for higher levels of backtracking.

• For the maximum depth, we had two types of limiters. Fixing the maximum depth
at a value gave a linear relation, where lower depths corresponded with a higher
inclination. The tour length was much worse for a depth of 3, but did not differ a
lot for higher values of the depth. Taking the maximum depth as a percentage of
the size also gave linear relations, but each setting had the same slope. Lower values
for the depth shifted the lines upwards, to more iterations. There is no difference in
tour length between the settings, when taking a percentage as maximum depth.

• The last setting considered was a greedy variant for the heuristic. We saw that the
number of iterations was much higher for the greedy variant. There was no clear
difference in tour length.

The goal of this paper was to provide an experimental basis for theoretical analysis on
the heuristic. The Lin-Kernighan heuristic restricts the search space from naively trying all
options. We investigated the settings to see if one of the settings had a high impact on the
number of iterations. In all results, we have seen that the average number of iterations is
linear or sub-linear. We have seen that the number of neighbours and level of backtracking
had almost no effect on the average number of iterations. The maximum depth and greedy
variant both had an effect, but they did not change the linear behaviour. Therefore, this
experimental analysis does not provide a concrete setting that causes the linear behaviour.

As the Lin-Kernighan heuristic is quite complicated, we would like to simplify the
heuristic if possible. This simplified heuristic might be easier to analyse. We can see that
the numbers of neighbours and the level of backtracking both have no significant influence
on the number of iterations. Therefore, these two settings could be changed to simplify
theoretical analysis. Also, it seems that the number of iterations is linear. This can be a
bound that could be proven theoretically, although we do not know whether that is feasible.

For further experimental analysis, one could take into account the effect of multiple
settings. Due to time constraints, this analysis could not be done in this paper. But it
could show that the interplay between settings explains the efficiency of Lin-Kernighan.
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A The Python code

A.1 Tour class

"""
Class f o r a tour in a ( complete ) graph

Creates a random tour at i n i t i a l i s a t i o n from a g iven graph .
Assumes the graph i s complete .

From a tour you can acces s a l l v e r t i c e s , a l l edges , the two
ne ighbours o f a ver t ex ,

the next ver tex , the next edge , and the co s t o f the tour g iven a
co s t matrix .

Can crea t e a new tour g iven a curren t tour , edges t h a t need to be
broken and edges t h a t need to be added .

A tour i s implemented as a l i s t o f v e r t i c e s
"""

import numpy as np

class Tour :
def __init__( s e l f , graph , v e r t i c e s=None ) :

i f v e r t i c e s i s None :
v e r t i c e s = l i s t (np . random . default_rng ( ) . permutation (

len ( graph ) ) )
s e l f . _ver t i c e s = v e r t i c e s
s e l f . _next_vertex = { s e l f . _ver t i c e s [ i ] : s e l f . _ver t i c e s [ ( i

+ 1) % len ( s e l f . _ver t i c e s ) ] for i in
range ( len ( s e l f . _ver t i c e s ) ) }

s e l f . _previous_vertex = { s e l f . _ver t i c e s [ i ] : s e l f .
_ver t i c e s [ i − 1 ] for i in

range ( len ( s e l f . _ver t i c e s ) ) }

def __len__( s e l f ) :
return len ( s e l f . v e r t i c e s )

def __getitem__( s e l f , item ) :
return s e l f . v e r t i c e s [ item ]

@property
def v e r t i c e s ( s e l f ) :

return s e l f . _ve r t i c e s

@property
def edges ( s e l f ) :

return [ ( s e l f . v e r t i c e s [ i ] , s e l f . v e r t i c e s [ ( i + 1) % len (
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s e l f ) ] ) for i in range ( len ( s e l f ) ) ]

def prev ious ( s e l f , ve r tex ) :
return s e l f . _previous_vertex [ ver tex ]

def next ( s e l f , ve r tex ) :
return s e l f . _next_vertex [ ver tex ]

def neighbours ( s e l f , ve r tex ) :
return s e l f . p rev ious ( ver tex ) , s e l f . next ( ver tex )

def update_tour ( s e l f , edges ) :
i f not edges :

return False

v i s i t e d = [ 0 ]
while len ( v i s i t e d ) < len ( s e l f ) :

i f edges [ v i s i t e d [ −1 ] ] not in v i s i t e d :
v i s i t e d . append ( edges [ v i s i t e d [ −1 ] ] )

else :
return False # I f correc t , you can never g e t

here s ince one o f the two op t i ons w i l l be f i n e

s e l f . _ver t i c e s = v i s i t e d
s e l f . _next_vertex = { s e l f . _ver t i c e s [ i ] : s e l f . _ver t i c e s [ ( i

+ 1) % len ( s e l f . _ver t i c e s ) ] for i in
range ( len ( s e l f . _ver t i c e s ) ) }

s e l f . _previous_vertex = { s e l f . _ver t i c e s [ i ] : s e l f .
_ver t i c e s [ i − 1 ] for i in

range ( len ( s e l f . _ver t i c e s ) ) }
return True

def make_tour_dictionary ( s e l f , broken_edges , added_edges ) :
i f len ( broken_edges ) != len ( added_edges ) :

return False

new_tour = ( set ( s e l f . edges ) − set ( broken_edges ) − {( e [ 1 ] ,
e [ 0 ] ) for e in broken_edges }) | set ( added_edges )

i f len ( new_tour ) != len ( s e l f ) :
# pr in t ("Wrong tour ")
return False

edges = {}
cur rent = 0
while len ( new_tour ) > 0 :

for i , j in new_tour :
i f i == cur rent :

edges [ i ] = j
cur rent = j
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break
e l i f j == cur rent :

edges [ j ] = i
cur rent = i
break

new_tour . remove ( ( i , j ) )
return edges

def co s t ( s e l f , graph ) :
to ta l_cos t = 0
for edge in s e l f . edges :

t o ta l_cos t += graph [ edge [ 0 ] ] [ edge [ 1 ] ]
return to ta l_cos t

def __str__( s e l f ) :
return str ( s e l f . v e r t i c e s )

A.2 Lin-Kernighan heuristic

import numpy as np
import c on f i g
from Tour import Tour

broken_edges = [ ]
added_edges = [ ]
t = [ ]

# Format w i l l be { key : [ va lue1 , va lue2 ]} , where key i s a v e r t e x in
t , va lue 1 i s the endpoint o f the added edge key

# i s i n c i d en t wi th ( so a l s o in t ) and va lue 2 i s the next v e r t e x
in t you would ob ta in when

# going over the curren t tour wi thou t the broken edges
connected_to = {}
sorted_graph = None

def gain ( graph , broken , added ) :
l o s t = sum( [ graph [ e [ 0 ] ] [ e [ 1 ] ] for e in broken ] )
gained = sum( [ graph [ e [ 0 ] ] [ e [ 1 ] ] for e in added ] )
return l o s t − gained

def determine_neighbours ( ver tex ) :
return sorted_graph [ vertex , : ]

def r e l ink_tour ( tour , best_gain , best_gain_index ) :
i f best_gain > 0 :

f i r s t = t [ 0 ]
l a s t = broken_edges [ best_gain_index − 1 ] [ 1 ]
edges = tour . make_tour_dictionary ( broken_edges [ :

best_gain_index ] , added_edges [ : best_gain_index − 1 ] +
[ ( f i r s t , l a s t ) ] )
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i f i s_tour ( tour , edges=edges ) :
i f tour . update_tour ( edges ) :

return ’ improved ’
raise Exception ( "Could␣not␣ r e l i n k ␣ to ␣ va l i d ␣ tour " )

return ’ z e ro ␣ gain ’

def break_next_edge ( graph , tour , best_gain , best_gain_index ) :
global broken_edges , t , connected_to
f i r s t_v e r t e x = t [ 0 ]
l a s t_ver tex = t [ −1]
t2 i_connect ion , t2 i , last_vertex_connect ion =

determine_edge_to_break ( tour , l a s t_ver tex )
i f t 2 i in t :

return ’ does ␣not␣ a l low ␣ breaking ’

broken_edges . append ( ( last_vertex , t 2 i ) )
t . append ( t 2 i )

connected_to [ l a s t_ver tex ] [ 1 ] = last_vertex_connect ion
connected_to [ last_vertex_connect ion ] [ 1 ] = las t_ver tex
connected_to [ t 2 i ] = [−1 , t2 i_connect ion ]
connected_to [ t2 i_connect ion ] [ 1 ] = t 2 i

new_gain = gain ( graph , broken_edges , added_edges + [ ( t2 i ,
f i r s t_v e r t e x ) ] )

i f new_gain > best_gain :
i f c on f i g . greedy :

return r e l ink_tour ( tour , new_gain , len ( broken_edges ) )
best_gain = new_gain
best_gain_index = len ( broken_edges )

reached_max_depth = False
# Maximum depth t r a c k e r
i f c on f i g . max_depth != 0 and len ( broken_edges ) >= con f i g .

max_depth :
i f r e l ink_tour ( tour , best_gain , best_gain_index ) == ’

improved ’ :
return ’ improved ’

reached_max_depth = True

i f not reached_max_depth :
r e s u l t = add_next_edge ( graph , tour , best_gain ,

best_gain_index )
i f r e s u l t == ’ improved ’ :

return ’ improved ’

broken_edges . pop(−1) # Remove the l a s t edge to back t rack
t . pop(−1) # Sim i l a r l y f o r t
connected_to [ last_vertex_connect ion ] [ 1 ] = t2 i_connect ion
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connected_to [ t2 i_connect ion ] [ 1 ] = last_vertex_connect ion
connected_to . pop ( t 2 i )
connected_to [ l a s t_ver tex ] [ 1 ] = −1
return ’ not ␣ improved ’

def add_next_edge ( graph , tour , best_gain , best_gain_index ) :
global t , added_edges , connected_to
la s t_ver tex = t [ −1]
cons ide r ed = 0

for ver tex in determine_neighbours ( l a s t_ver tex ) :
i f ver tex in t : # We are not a l l owed to choose t h i s

v e r t e x again
continue

i f ver tex in tour . ne ighbours ( l a s t_ver tex ) :
continue

new_gain = gain ( graph , broken_edges , added_edges + [ (
last_vertex , ve r tex ) ] )

i f new_gain <= best_gain : # We can terminate the
con s t ruc t i on
return r e l ink_tour ( tour , best_gain , best_gain_index )

added_edges . append ( ( last_vertex , ve r tex ) )
t . append ( ver tex )
connected_to [ l a s t_ver tex ] [ 0 ] = ver tex
connected_to [ ver tex ] = [ last_vertex , −1]
r e s u l t = break_next_edge ( graph , tour , best_gain ,

best_gain_index )

i f r e s u l t == ’ improved ’ :
return ’ improved ’

added_edges . pop(−1)
t . pop(−1)
connected_to . pop ( ver tex )
connected_to [ l a s t_ver tex ] [ 0 ] = −1

i f r e s u l t == ’ not␣ improved ’ :
i f c on f i g . max_backtracking < len ( added_edges ) :

break
else :

c ons ide r ed += 1
i f cons ide r ed >= con f i g . max_neighbours :

break
# Our chosen edge to add did not permit a break ing o f a

next edge , so we w i l l cons ider the next op t ion

i f best_gain > 0 :
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return r e l ink_tour ( tour , best_gain , best_gain_index )
return ’ z e ro ␣ gain ’

def determine_edge_to_break ( tour , cur r ) :
c l o s e s t_t = tour . next ( cur r )
while c l o s e s t_t not in t :

c l o s e s t_t = tour . next ( c l o s e s t_t )

endpoint = c l o s e s t_t
while True :

i f endpoint == t [ 0 ] :
return connected_to [ c l o s e s t_t ] [ 1 ] , tour . p rev ious ( cur r

) , c l o s e s t_t
endpoint = connected_to [ endpoint ] [ 0 ]

i f endpoint == curr :
return c lo se s t_t , tour . next ( cur r ) , connected_to [

c l o s e s t_t ] [ 1 ]
endpoint = connected_to [ endpoint ] [ 1 ]

def i s_tour ( tour , edges=None , broken=None , add=None ) :
i f edges i s None :

edges = tour . make_tour_dictionary ( broken , add )
i f not edges :

return False
i f len ( edges ) < len ( tour ) :

return False

return True

def improve ( graph : np . array , tour : Tour ) :
global broken_edges , added_edges , t , connected_to
for t1 in tour . v e r t i c e s :

for t2 in tour . ne ighbours ( t1 ) :
broken_edges , added_edges , t = [ ( t1 , t2 ) ] , [ ] , [ t1 ,

t2 ]
connected_to = { t1 : [−1 , t2 ] , t2 : [−1 , t1 ] }
i f add_next_edge ( graph , tour , 0 , 0) == ’ improved ’ :

return True
return False

def sort_graph ( graph ) :
global sorted_graph
sorted_graph = np . z e r o s ( ( 1 , len ( graph ) − 1) , dtype=int )
for ver tex in range ( len ( graph ) ) :

i n d i c e s = np . a r g s o r t ( graph [ vertex , : ] )
i n d i c e s = i nd i c e s [ i n d i c e s != ver tex ]

30



sorted_graph = np . vstack ( ( sorted_graph , i n d i c e s ) )
sorted_graph = sorted_graph [ 1 : , : ]

pass

def main ( graph : np . array , tour=None ) :
sort_graph ( graph )
i f tour i s None :

tour = Tour ( graph )
else :

tour = Tour ( graph , tour )
improved = True
i t e r a t i o n s = 0
while improved :

i t e r a t i o n s += 1
improved = improve ( graph , tour )

return tour . co s t ( graph ) , tour , i t e r a t i o n s

A.3 Graph creation

import numpy as np
import t s p l i b 9 5

def load_graph ( fi le_name ) :
"""
Loads a . t s p f i l e us ing the t s p l i b 9 5 , and some func t i on s to

c r ea t e a symmetric numpy array con ta in ing the we i gh t s .
I f the edge we i gh t s are g iven e x p l i c i t l y in the graph f i l e ,

the get_weight f unc t i on o f t s p l i b 9 5 does not work , so
we use our own index ing to g e t those we i gh t s .

: param file_name : f i l ename o f the graph , s t o r ed in the
Examples map

: re turn : symmetric numpy array wi th ze ros on the diagona l ,
r e p r e s en t i n g the we i gh t s as numbers in the array

"""
graph = t sp l i b 9 5 . load ( f "Examples \\{ fi le_name}" )
n = graph . dimension
matrix = np . z e r o s ( ( n , n) , dtype=int )
i f ’ edge_weights ’ in graph . as_dict ( ) :

weights = graph . as_dict ( ) [ ’ edge_weights ’ ]
for i in range (n) :

for j in range (n − i − 1) :
matrix [ i ] [ j + i + 1 ] = weights [ i ] [ j ]

else :
for i in range (n) :

for j in range ( i +1, n) :
matrix [ i ] [ j ] = graph . get_weight ( i +1, j +1)

return matrix + matrix .T
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def generate_random_graph ( s i z e , seed ) :
"""
Method f o r genera t ing a random symmetric matrix r ep r e s en t i n g

a complete graph wi th we i gh t s .
: param seed : seed f o r the random number genera tor
: param s i z e : s i z e o f the graph
: re turn : symmetric numpy array wi th numbers between 0 and 1 ,

drawn uni formly
"""
np . random . seed ( seed )
matrix = np . t r i u (np . random . random ( ( s i z e , s i z e ) ) , 1)
return matrix + matrix .T

def generate_eucl idean_graph ( s i z e , seed ) :
"""
Method f o r genera t ing a we igh t matrix o f a graph , where the

v e r t i c e s are p laced randomly in the [ 0 , 1 ] x [ 0 , 1 ] p lane .
The we i gh t s are c a l c u l a t e d us ing the two−norm .
: param seed : seed f o r the random number genera tor
: param s i z e : s i z e o f the graph
: re turn : symmetric numpy array wi th numbers r ep r e s en t i n g the

l e n g t h between two v e r t i c e s
"""
np . random . seed ( seed )
po in t s = np . random . random ( ( s i z e , 2) )
matrix = np . z e r o s ( ( s i z e , s i z e ) )
for i in range ( s i z e ) :

for j in range ( i +1, s i z e ) :
matrix [ i , j ] = np . l i n a l g . norm( po in t s [ i ] − po in t s [ j ] )

return points , matrix + matrix .T

i f __name__ == "__main__" :
r e s u l t = load_graph ( "own5 . tsp " )
print ( r e s u l t )

A.4 Configurations file

"""
Here you can con f i gu r e the TSP s o l v e r .
There are s e v e r a l s e t t i n g s t h a t can be changed :
− The graph to run the a l gor i thm on
− The a l gor i thm
− The s t a r t i n g seed f o r random number genera t ing
− The number o f neare s t ne ighbours to cons ider
− The maximum depth ( percentage or number )
− The maximum l e v e l o f b a c k t r a c k ing
− Greedy va r i an t or normal va r i an t
− The f i l e to s t o r e the r e s u l t s in
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"""
type_of_graph = "random" # f i l e , random , euc l i d ean
size_of_graph = [30 , 50 , 75 , 100 , 150 , 200 ] # , 250 , 300] #

Number o f v e r t i c e s o f a genera ted graph
f i l ename = "own5 . tsp " # name of f i l e i f graph i s a f i l e type

a lgor i thm = "LK" # Options : LK (Lin−Kernighan ) , two_opt
i t e r a t i o n s = 10 # Amount o f t imes a new graph i s genera ted ( w i l l

be e x a c t l y the same i f f i l e graph )

s tart_seed = 0
seed_increments = 10

# Se t t i n g s f o r the Lin−Kernighan Heur i s t i c
max_neighbours = 5 # Number o f neare s t ne ighbours to cons ider in

LK

depth_type = "number" # Options : " percentage " , "number " . With
percentage , percentage o f s i z e i s taken as max depth

depth_percentage = 0 .4
max_depth = 0 # Maximum search depth o f LK ( zero means i n f i n i t e

search depth )

max_backtracking = 2 # Limiter f o r f u l l b a c k t r a c k ing l e v e l
greedy = False # Greedy f l a g ( immediate ly r e l i n k when found a

b e t t e r tour , or search deeper f i r s t )

r e s u l t s_ f i l e = " r e s u l t s . csv "

A.5 Main file

import graph_creat ion
import two_opt
import l in_kernighan
import c on f i g
from tqdm import tqdm
import csv

seed = 0
def generate_graph ( s i z e ) :

i f c on f i g . type_of_graph == " f i l e " :
graph = graph_creat ion . load_graph ( c on f i g . f i l ename )

e l i f c on f i g . type_of_graph == "random" :
graph = graph_creat ion . generate_random_graph ( s i z e , seed )

e l i f c on f i g . type_of_graph == " euc l i d ean " :
_, graph = graph_creat ion . generate_eucl idean_graph ( s i z e ,

seed )
else :

raise Exception ( "Not␣a␣ va l i d ␣ type␣ o f ␣graph␣ to ␣ ana lyse " )
return graph
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def execute_algor ithm ( vals , num_iters , graph , tour , s i z e ) :
i f c on f i g . a lgor i thm == "two_opt" :

val , optimal_tour , i t e r s = two_opt . main ( graph , tour )

e l i f c on f i g . a lgor i thm == "LK" :
val , optimal_tour , i t e r s = l in_kernighan . main ( graph , tour

)
else :

raise Exception ( "Not␣an␣ implemented␣ a lgor i thm␣ type" )
va l s [ s i z e ] . append ( va l )
num_iters [ s i z e ] . append ( i t e r s )
pass

def main_func ( ) :
global seed
seed = con f i g . s tar t_seed
va lue s = {x : [ ] for x in c on f i g . s ize_of_graph}
number_of_iterations = {x : [ ] for x in c on f i g . s ize_of_graph}
seeds = {x : 0 for x in c on f i g . s ize_of_graph}

for i , s i z e in enumerate( tqdm( con f i g . s ize_of_graph ) ) :
i f c on f i g . depth_type == "percentage " :

c on f i g . max_depth = int ( s i z e ∗ c on f i g . depth_percentage
)

seeds [ s i z e ] = seed
for j in range ( c on f i g . i t e r a t i o n s ) :

seed += con f i g . seed_increments
graph = generate_graph ( s i z e )
tour = l i s t ( range ( len ( graph ) ) )
execute_algor ithm ( values , number_of_iterations , graph

, tour , s i z e )

c on f i g . s tar t_seed = seed + con f i g . seed_increments # So a
next run can cont inue wi th the seeds

for key in va lue s . keys ( ) :
row = [ c on f i g . a lgor ithm , c on f i g . type_of_graph , key ,

c on f i g . i t e r a t i o n s , va lue s [ key ] , number_of_iterations [
key ] ,

c on f i g . max_neighbours ]
i f c on f i g . depth_type == "percentage " :

row . append ( c on f i g . depth_percentage )
else :

row . append ( c on f i g . max_depth)
row += [ con f i g . max_backtracking , c on f i g . greedy , s eeds [ key

] , c on f i g . seed_increments ]
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with open( c on f i g . r e s u l t s_ f i l e , ’ a ’ , newl ine=’ ’ ) as f :
w r i t e r = csv . w r i t e r ( f )
w r i t e r . writerow ( row )

i f __name__ == ’__main__ ’ :
main_func ( )
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