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Abstract  

Introduction: As a result of the COVID-19 pandemic, there high demand for intensive care (ICU) beds 

and a shortage of beds arose. The aim of this study is to investigate the cost-effectiveness of an ICU 

admission for treating COVID-19 versus general ward (GW) admission, together with a hypothetical 

situation where potential ICU patients did not go to the ICU (no-ICU). 

Methodology: The health economic evaluation performed was a cost-effectiveness analysis, in which 

a model was developed that consisted of a decision tree and a Markov model with a time horizon of 

one year from hospital admission. The two scenarios investigated were (1) ICU versus GW admission 

and (2) ICU versus no-ICU admission. In the analysis healthcare costs and health utility values during 

hospital admission and after discharge were included. Incremental costs and effects were then 

calculated. The Dutch cost-effectiveness threshold of € 80,000 was used to evaluate if ICU was cost-

effective compared to GW and no-ICU based on the incremental cost-effectiveness ratio (ICER). 

Subgroup analysis based on gender, age (<65 years and ≥65 years), Body Mass Index (<25 and ≥25) and 

hypertension were performed. 

Results: In scenario one, ICU versus GW, the mean total costs were € 43,332 for ICU compared to € 

3,947 for GW with total QALY’s of 0.393 for ICU compared to 0.501 for GW. It can be indicated that 

ICU is almost dominated by the GW. For scenario two, ICU versus no-ICU, the total costs of no-ICU 

were € 5,460 with a total of 0.066 QALY’s. The ICER for scenario two was € 115,850. The ICER is higher 

than the set WTP of € 80,000 therefore it can be indicated that ICU is not cost-effective compared to 

no-ICU. In the subgroup age <65 in scenario two the ICU may be considered cost-effective. 

Discussion & conclusion:  It remains unclear which ward adds the most value in terms of costs and 

health benefits, due to unmeasured factors that could influence the outcome. More research will have 

to be done on comorbidities related to COVID-19 severity (such as diabetes, lung disease, 

cardiovascular disease, cancer and smoking) and delayed care due to the COVID-19 pandemic. Reason 

for this is to gain insight in patients who benefit most from ICU admission in terms of costs and health 

effects while also better describing a real-world scenario. With these results an ICU manager could 

make most efficient use of the ICU beds in a subsequent situation such as the COVID pandemic.  

 

 

 

  



3 
 

Introduction 

In December 2019 the first cases of the SARS-Cov-2 virus, also known as COVID-19, were established 

in China (1). After a rapid spread of the virus around the world, the World Health Organization declared 

the COVID-19 outbreak on March 11 2020 as a global pandemic (2). As of May 2023, the virus caused 

more than 750 million cases and almost 7 million deaths worldwide (3). The first case in the 

Netherlands was registered in February 2020 followed by more than 8 million cases and over 22.000 

deaths until May 2023 (4). 

During the pandemic, hospitals in the Netherlands were fully occupied. COVID-19 patients were 

scattered throughout the hospital in general wards (GW), medium care units (MCU) and intensive care 

units (ICU). A medium care unit, also known as an intermediate care unit, is logistically situated 

between the ICU and the general ward and can act as a “step up” or “step down” between the general 

ward and ICU (5). Since many patients infected with COVID-19 needed mechanical ventilation, the 

demand for ICU care increased and therefore the costs of COVID-19 treatment, because ICU beds cost 

about three times more than a bed on a general ward (6). The high demand for hospital care of COVID-

19 patients caused a shortage of capacity in ICU’s and required significant upscaling of intensive care 

beds, equipment and healthcare personnel. This resulted in high pressure on hospitals and their 

employees. Due to the high demand for care that COVID-19 caused, the focus has long been on 

upscaling of care in the short term, with less scrutiny of indications for admission to the ICU (7). To 

gain insight on the health allocation decisions, a health economic evaluation is particularly useful. 

Health economic evaluations compare alternative options in terms of their costs and health benefits 

(8). For this study it would mean the costs and quality of life of patients lying on a general ward and an 

ICU bed. Until now little can be found in the literature about health economic evaluations aimed at 

hospital wards with a focus on COVID-19. One study from South Africa appears to also investigate the 

cost-effectiveness of ICU and general ward and concluded that the ICU was not cost-effective 

compared to the general ward (9). This study however was performed on a different healthcare 

system. Furthermore, most published cost-effectiveness studies concern the vaccinations and the 

vaccination strategy in different countries or policy measures during the COVID-19 waves (10–12).   

Future waves of COVID-19 can cause hospitals to make decisions on what care they can provide with 

the resources that they have at their disposal for their patients. It could therefore be helpful to 

research the cost-effectiveness because even though a scenario “black”, where patients would be 

selected whether or not to be admitted to the ICU due to an overload of patients, did not occur. With 

a potential new, more lethal and contagious variant, this could be still a scenario.  

Therefore, the aim of this study is to investigate the cost-effectiveness of an ICU admission for treating 

COVID-19 versus general ward admission. To explore a situation in which there had been no upscaling 

of ICU beds and thus patients had gone to the general ward, a second scenario is investigated.  
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Methods 

Decision problem and setting   

This study was a cost-effectiveness analysis based on a decision model, containing a decision tree and 

a Markov model (13). The analysis was performed using two scenarios. In the first scenario the cost-

effectiveness of the ICU group versus the GW group was compared, by looking at the current policy of 

hospital admission. In the second scenario the comparison was made between the ICU group and a 

hypothetical group in which potential ICU patients did not go to the ICU, but to the general ward 

instead and were therefore named as “no-ICU”. The second scenario showed an imitation of the 

hypothesis of no upscaling of ICU beds. The analysis had a time horizon of one year starting from 

hospital admission. A time horizon of one year was chosen because there was uncertainty about the 

long-term health consequences of COVID-19 and one year is sufficient to make a good estimation of 

the costs and effects. Since the time horizon was no more than one year, no discounting was applied. 

In this study a healthcare perspective was used considering the costs that are directly related to the 

hospital departments and all healthcare costs(14). To compare the strategies, primary outcome 

measures of the analysis consisted of total costs and the total quality-adjusted-life-years (QALY). The 

QALYs were obtained from multiplying time in a health condition by the utility value of that health 

condition. The setup of this study was approved by the local review committee of Rijnstate hospital. 

This study was reported conform the Consolidated Health Economic Evaluation Reporting Standards 

2022 (CHEERS 2022) statement (Appendix 1a) (15).  

Model structure  

A decision tree model linked to a Markov model was developed to evaluate the cost-effectiveness of 

the treatment strategies general ward admission and ICU admission for COVID-19 patients as shown 

in Figure 1. The simulated cohort contained 1,000 patients. The decision tree had a length of 152 days 

(5 months), because the maximum length of stay in the hospital was 123 days. The decision node 

represents the decision to which treatment ward a patient was admitted; GW or ICU. The branches 

represent the potential outcomes of the decision node, died or discharged. When a patient was 

discharged, a distinction was made between being discharged home or discharged to a rehabilitation 

centre. After rehabilitation a patient went home. When being discharged the presence of long COVID 

was considered. Based on the decision tree, short-term outcomes were calculated. The outcomes of 

the decision tree determined where a patient started in the Markov model. Following the decision 

tree, the model flows into the Markov model to estimate the survival rate, quality of life and costs of 

discharged people from one year of hospital admission. The Markov model was used to characterize 

the progression after discharge through health states and their transitions. The three health states of 

the Markov model were; home and no long COVID, home with long COVID and death. The time horizon 

of the Markov model is seven months, the remaining time after the five months of the decision tree 

up to one year after hospital admission. The model had discrete time steps with a cycle length of one 

month with the assumption that patients move at the end of a cycle.  
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Model inputs 

The inputs for the model were probabilities, utility values, costs and length of stays. Data about patient 

characteristics, length of stays in the hospital wards, duration of ventilation and the location a patient 

was discharged to, were estimated on retrospective data from Rijnstate hospital in Arnhem, The 

Netherlands. All model inputs are presented in Table 1. Patients who were hospitalized due to an 

infection with COVID-19 from March 2020 till May 2022 in Rijnstate hospital were included. These 

patients were selected based on ICD-10 codes related to COVID-19 (U07.1, U07.2 and U09.9) (16). 

Patients who were in the general ward during admission were assigned to the GW group. All patients 

who were in the MCU or ICU during admission were assigned to the ICU group, these wards were 

merged due to the regular exchange of patients between these departments. The analyses were based 

on 1,296 patients of which 529 (40.8%) were female. Of these 1,296 patients 1,178 patients were in 

the GW group and 118 in the ICU group. The mean age in the GW was 68 years and 67 years in the ICU.  

Probabilities 

To calculate the probabilities within the decision tree for the first scenario, a multinomial logistic 

regression was initially performed. The regression was performed to investigate the relationship 

between patient characteristics (i.e., age, gender, hypertension and BMI) and the matter of survival 

and location of discharge (discharged home, discharged to rehabilitation centre and death). The results 

of the regression can be found in Appendix 3. After reviewing the results with an ICU internist, it was 

concluded that the face validity of the regression was limited. Therefore, it was decided not to include 

the regression in further research. As a result, the probabilities within the decision tree were based on 

the patient data. The probabilities were calculated based on the number of patients in the wards who 

went home, to rehabilitation and died during admission. Of the patients in the GW 152 (13%) died 

Figure 1: Model structure 
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during admission, 946 (80%) were discharged home and 80 (7%) were discharged to a rehabilitation 

centre. In the ICU 34 (29%) died during admission, 59 (50%) were discharged home and 25 (21%) were 

discharged to a rehabilitation centre. 

Since no follow-up information was available, information on long COVID was extracted from 

literature. In a study of previously hospitalized patients, 76% of patients reported at least one symptom 

of long COVID after a six-month follow-up (17). Therefore, a probability of 76% was used in the analysis 

at the end of the decision tree for the presence of long COVID. It was assumed that the presence of 

long COVID entails additional costs and affects quality of life (18,19). 

The transition probabilities used in the Markov model were based on literature. The probabilities of 

death for all health states were derived from annual mortality numbers of Statistics Netherlands (CBS) 

(20). A study on long COVID showed a decrease of 15.4% in symptoms within two months for patients 

who reported at least one symptom of long COVID, this input was used as the transition probability 

from long COVID to no long COVID for discharged patients (21). All transition probabilities were 

adjusted to monthly values (22). 

Resource-use  

In the analysis the estimated various resources used during hospital admission were included based 

on data of Rijnstate hospital. The length of stay in the hospital ward was included as well as the type 

of ventilation a patient received, such as Optiflow (high flow nasal oxygen), non-invasive ventilation 

and mechanical ventilation. Dialysis was also included for patients who were in the ICU. For 

rehabilitation stay after discharge a mean length of 16.7 days (SE: 1.4) was taken from literature, since 

no follow-up information was available (23). 

Costs 

To calculate the hospital costs a detailed cost analysis was performed based on the hospital pathway 

of the patients (based on data Rijnstate hospital) as seen in Appendix 2 Figure 1. Costs during hospital 

admission were calculated per patient by multiplying the length of stay in a ward and duration of 

ventilation and dialysis, with the corresponding price (Table 1). All prices were derived from literature 

and adjusted for inflation up to 2021 prices using the Dutch consumer price index (24) (CBS). Costs 

included in the Markov model were the costs per month for being at home and the cost for presence 

of long COVID.  

Utilities  

The health state utility values were obtained from the literature and all were elicited from the EQ-5D 

3L or 5L (Table 1). A health state utility value was assigned per hospital ward and disutility values were 

used for the type of ventilation, dialysis and the presence of long COVID. All health state utility values 

in the decision tree were adjusted to daily values and multiplied by the length of stay and duration of 

ventilation to calculate QALYs. Health state utility values were also assigned when a patient is at home 

and when in rehabilitation. In the Markov model the health state utility value for a patient staying at 

home and the disutility for long COVID were used, these were adjusted to monthly values and 

multiplied by the time in a health state. 

 



7 
 

Table 1: Model inputs 

 Mean 
value (%)  

Standard error Distribution Reference 

Patient characteristics  

Number of patients 1296 -  Rijnstate hospital 

Gender = female  529 (40.8) -  Rijnstate hospital 

Age (min – max), y 68  
(19 – 100) 

0  Rijnstate hospital 

Hypertension, true 412 (32.8)   Rijnstate hospital 

Body mass index  25    Rijnstate hospital 

Died, No.  189 (0.14)   Rijnstate hospital 

Health state utility values 

General ward hospital bed  0.52 0.104 Beta (α= 0.728, β=0.672) (25)   

MCU/ICU bed 0.40   0.08 Beta (α= 0.8, β= 1.2) (25) 

Rehabilitation  0.611 0.017 Beta (α= 8.074, β=5.140) (26) 

Discharge after 
hospitalisation 

0.648 
 

0.13 Beta (α=0.492, β=0.268) 
 

(27) 

Disutility values 

Optiflow/ non-invasive 
ventilation 

0.360  0.072 Beta (α= 0.792, β=1.408) 
 

(28) 

Long-covid  0.11  0.022 Beta (α= 0.380, β=3.071) (18) 

Mechanical ventilation  0.560 0.112 Beta (α= 0.672, β=0.528)      (28) 

Dialysis 0.269 0.007 Beta (α=7.111, 
β=19.325) 

(29) 
 

Tariff per day (euros) 

General ward bed  524  Fixed (6) 

MCU bed  1362  Fixed (30) 

ICU bed (including diagnostics 
and medication) 

2218  Fixed (6) 

Mechanical invasive 
ventilation   

571  Fixed (31) 

Non-invasive ventilation  341  Fixed (32) 

Optiflow  50  Fixed (33) 

Dialyse 514  Fixed (34) 

Revalidation  506  Fixed (6) 

Long COVID, per month 44.23  Fixed (19) and (6) 

Home, per month  17.52  Fixed (19) and (6) 

Transition probabilities 
Markov model 

    

Prob. Home to dead 0.0017  Fixed (20,22,35) 

Prob. Home with long COVID 
to home no long COVID 

0.08 0.016 Beta (α= 0.288 β= 3.312) (21) 

Prob. Home with long COVID 
to dead 

0.0017  Fixed (20,22,35) 

 
Resource utilization 

 
Died 

Died  
distribution 

 
Discharged 

 
Discharged distribution 

General ward 

Mean LOS ward, d 7.8 Gamma (α= 1.7, β= 4.5) 5.7 Gamma (α= 1.6, β= 3.5) 

Prob. Optiflow 
Mean LOS  optiflow, d 

0.0066 
0.88  

Beta (α= 1 , β= 151) 
Gamma (α= 4.4, β= 0.2) 

0.0010 
0.92  

Beta (α= 1 , β= 1025) 
Gamma (α= 4.6, β= 0.2) 

Prob. Rehabilitation 
Mean LOS  rehabilitation, d 

- - 0.078 
16.7 (1.4) 

Beta (α= 80, β= 946) 
Gamma (α= 192.5, β= 0.1) 

ICU 

Prob. Ward 
Mean LOS ward, d 

0.2941 
8.12 

Beta (α= 10, β= 24) 
Gamma (α= 1.3, β= 1.3) 

1 
11.85 

Fixed 
Gamma (α= 2.2, β= 0.7) 

Prob. MCU 
Mean LOS MCU, d 

0.5882 
4.84 

Beta (α= 20, β= 14) 
Gamma (α= 0.7, β= 6.5) 

0.7262 
2.09 

Beta (α= 61, β= 23) 
Gamma (α= 0.7, β= 3.1) 

Prob. ICU 0.7941 Beta (α= 27, β= 7) 0.8690 Beta (α= 73, β= 11) 
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Mean LOS ICU, d 13.25 Gamma (α= 0.7, β= 18.3) 15.17 Gamma (α= 2.2, β= 1.1) 

Prob. Optiflow 
Mean duration optiflow, d 

0.7059 
3.5 

Beta (α= 24, β= 10) 
Gamma (α= 1.3, β= 2.7) 

0.6548 
4.07 

Beta (α= 55, β= 29) 
Gamma (α= 1.9, β= 2.2) 

Prob. NIV 
Mean duration NIV, d 

0.0882 
1.4 

Beta (α= 3, β= 31) 
Fixed 

0.0357 
1.4 

Beta (α= 3, β= 81) 
Fixed 

Prob. MIV 
Mean duration MIV, d 

0.4118 
16.6 

Beta (α= 14, β= 10) 
Gamma (α= 0.7, β= 23.9) 

0.4643 
15.99 

Beta (α= 39, β= 45) 
Gamma (α= 1, β= 20.5) 

Prob. Dialysis 
Mean LOS dialysis, d 

0.0882 
10 

Beta (α= 3, β= 31) 
Gamma (α= 0.6, β= 16.7) 

0.0357 
13 

Beta (α= 3, β= 81) 
Gamma (α= 5.1, β= 2.6) 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- - 0.2976 
16.7  

Beta (α= 25, β= 59) 
Gamma (α= 192.2, β= 0.1) 

Mean LOS hospital, d 17.3  27.5  

No-ICU 

Mean LOS ward, d 7.81 Gamma (α=117.3, β=0.1) 27.46 Gamma (α= 258.1, β= 0.1) 

Prob. Optiflow 
Mean LOS optiflow, d 

0.7059 
0.88 

Beta (α= 83, β= 35) 
Gamma (α= 4.4, β= 0.2) 

0.6548 
4.07 

Beta (α= 77, β= 41) 
Gamma (α= 38.2, β= 0.1) 

Prob. rehabilitation  
Mean LOS rehabilitation, d 

- - 0.2976 
16.7 (1.4) 

Beta (α= 35, β= 83) 
Gamma (α= 192.5, β= 0.1) 

 
Abbreviations 
   LOS: length of stay               ICU: intensive care unit 
   Prob: probability                  NIV: non invasive ventilation 
   D: days                                    MIV: mechanical invasive ventilation 

 

Model assumptions 

In both scenarios, it was assumed that patients who had long COVID still incurred additional costs after 

being discharged from the hospital. First results of a long COVID study of the National Institute for 

Public Health and the Environment (RIVM) noted that people with long COVID reported higher 

healthcare utilization in which two out of three people went to their general practitioner and 

physiotherapist (36). Another study showed a healthcare utilization pre-COVID-19 of 0.4783 and after 

diagnosis a healthcare utilization of 1.2078 (6,19). These healthcare utilization values were used in this 

study to calculate the costs for people discharged from the hospital with and without presence of long 

COVID (6,19).  

For the second scenario (ICU versus no-ICU), the assumption was made that 90% of the patients in the 

no-ICU group would die during admission. This was based on the assumption that these patients would 

qualify for the ICU and would therefore most likely die without ICU care. The remaining 10% was 

divided over home and rehabilitation based on the distribution of ICU as it was for the first scenario. 

In the second scenario additional assumptions were made to calculate the costs and effects for the no-

ICU group. First, the tariff of a general ward bed was used, since it was assumed that the patients were 

not admitted to the ICU (6). The length of stay in the general ward for the group deceased patients, 

were derived from the ward as well. It was assumed that patients are sicker than the average ward 

patient and will therefore die sooner than they would have been in the ICU. The length of stay of the 

discharged group were derived from the ICU group, because it was assumed that patients spend more 

time in the hospital before being discharged, compared to a GW patient. For Optiflow, the duration of 

ventilation and probability were assumed equal to the ICU, because the assumption was that more 

people on the no-ICU need ventilation. 
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Analysis  

The QALY and costs per patient for each treatment strategy were used to calculate the differences in 

outcomes between the strategies and then summarized in an Incremental cost-effectiveness ratio 

(ICER). An ICER is calculated by dividing the difference of costs by the difference in outcomes between 

the strategies, shown in this equation: 𝐼𝐶𝐸𝑅 =
Costs strategy A−Costs strategy B

Effects strategy A−Effects strategy B
 

The ICER was then compared to the € 80,000 cost-effectiveness threshold, also known as willingness 

to pay (WTP), of the National Healthcare Institute (37). Due to the high disease burden of COVID-19 in 

this population, the reference value of the maximum disease burden of € 80,000 per QALY was chosen. 

To investigate the impact of parameter uncertainty on the result, a probabilistic sensitivity analysis 

(PSA) was conducted in which 1,000 simulations were done. For every parameter a distribution was 

assigned to reflect the uncertainty (Table 1), then a random sample in that distribution was drawn and 

used as model inputs (38). The simulation was then run and the outputs were analysed. In the analysis 

different distributions were used. For the probabilities and utilities ranging between zero and one, a 

Beta distribution was chosen. For the hospital lengths of stays the distribution, Gamma or Lognormal, 

and parameters were chosen. Based on visual comparison and the goodness-of-fit statistics Akaike 

Information Criterion, where the lowest value is best, the distribution that fitted the data best was 

chosen using the R package ‘fitdistrplus’ (39,40). For distributions when no standard error (SE) was 

known from literature, a 20% SE of mean was used (13). To fit the statistical distributions when only 

summary statistics were known, the method of moments was used to calculate parameters of the 

distribution (41). Prices in the analysis of the decision tree were fixed. Model verification was 

performed with the TECH-VER checklist and can be found in Appendix 1b (42). 

The incremental costs and incremental health outcomes of the PSA were then visualised in an 

incremental cost effectiveness (ICE) plane. The outcomes of the PSA were used to calculate the Net 

Monetary Benefit (NMB) for each iteration. The NMB was calculated by multiplying the QALY’s with 

the WTP of € 80,000, minus the costs (41). Using the NMB, a cost-effectiveness acceptability curve 

(CEAC) was presented with multiple WTPs ranging from € 0 to € 500,000 per QALY. The CEAC indicates 

the probability that ICU is cost-effective compared to the alternative, general ward or no-ICU. The data 

analysis was performed with the statistical program Rstudio version 4.2.0 and Excel version 2021 (43). 

All cost-effectiveness results mentioned in the result section were obtained by the PSAs. 

The potential cost-effectiveness of ICU was investigated in eight subgroup analyses. The aim was to 

investigate in which subgroups ICU admission could be most valuable in terms of costs and effects. The 

subgroups investigated were gender, age (<65 years and ≥65 years), BMI (<25 and ≥25) and the 

presence or absence of hypertension. Since BMI data for 609 patients was missing, multiple imputation 

with five imputations was executed. The pooled result of the five imputations was then used for the 

subgroup analysis. Model inputs can be found in Appendix 5 Table 1.  
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Results  

 Calculation of costs  

The results of the detailed cost analysis during hospital admission can be found in Appendix 2. For 

patients who died during admission in the GW group, the mean total hospital costs per patient were € 

4,093 and for patients who were discharged home the mean costs were € 2,836. The difference in 

costs was due to the longer hospital stay of patients who died. Patients who went to a rehabilitation 

centre after hospitalisation the total hospital costs were € 4,427. The hospital costs for the ICU group 

were higher compared to the general ward, with € 32,988 for patients who died during admission and 

€ 24,782 for patients discharged home. The higher costs for patients who died were caused by the 

longer length of stay on the ICU and the longer duration of mechanical ventilation. The mean total 

hospital costs for patients who went to rehabilitation after hospitalisation were € 87,299. The no-ICU 

group had a mean total cost of € 4,123 for patients who died and € 9,846 for patients who were 

discharged home right after hospitalisation. The mean total hospital costs for patients who went to 

rehabilitation after hospitalisation were € 25,561. In both the GW and the ICU strategies, the higher 

hospitalisation costs for patients who went to a rehabilitation centre after hospitalisation, were due 

to longer hospital stay than the patients who were discharged home. In the ICU this was also caused 

by longer duration of mechanical ventilation.  

Cost-effectiveness analysis  

In the first scenario, ICU versus GW, the mean total costs one year after hospital admission were € 

43,332 for ICU compared to € 3,947 for GW with total QALY’s of 0.393 for ICU compared to 0.501 for 

GW. The probabilistic ICER was € -363,839. For scenario two, ICU versus no-ICU, the total costs of no-

ICU were € 5,460 with a total of 0.066 QALYs and the costs and QALYs for the ICU were equal to the 

first scenario. The probabilistic ICER for scenario two was € 115,850. This ICER is higher than the WTP 

set by the National Healthcare Institute of € 80,000, meaning ICU may not be considered cost-effective 

compared to no-ICU.  

The ICE plane of scenario one (Figure 2A) showed that most iterations are in the northwest quadrant, 

which means overall that ICU is more costly and less effective than the GW. The CEAC (Figure 2B) shows 

that for no WTP the ICU is cost-effective and therefore the ICU had a probability of zero to be cost-

effective compared to GW. In scenario two the ICE plane (Figure 3A) showed that almost all iterations 

are located in the northeast quadrant, meaning that overall ICU produces more health but also costs 

more than no-ICU. The CEAC (Figure 3B) shows that with the WTP of € 80,000 the probability of ICU 

being cost-effective compared to no-ICU is 38%.  
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Subgroup analysis 

Table 2 shows the results of the base case and the subgroup analyses one year after hospital admission. 

Compared to the base case the following ranges were found on the total costs and total QALY for the 

GW. The range had a minimum cost of € 2,736 in subgroup age <65 years and maximum costs of € 

4,795 for subgroup age ≥65 years. The range of total QALY had a minimum of 0.467 for age ≥65 years 

and a maximum of 0.553 in subgroup age <65 years. For ICU the minimum costs were € 36,793 in the 

subgroup age <65 years and the maximum costs were € 50,066 in the subgroup female. The range of 

total QALY had minimum of 0.345 in the subgroup age ≥65 years and a maximum of 0.474 in subgroup 

age <65 years. The subgroup analyses showed no difference in cost-effectiveness from the base case 

analysis for scenario one.  

For scenario two the range for the no-ICU group had a minimum cost of € 4,266 for the subgroup age 

<65 years and a maximum value of € 5,866 for subgroup hypertension. The range of total QALY had a 

minimum of 0.063 for subgroup female and a maximum of 0.067 for hypertension. In scenario two, 

the ICER of € 76,512 for the subgroup age <65 years could indicate that ICU is cost-effective compared 

to no-ICU as the ICER is below the WTP of € 80,000. The ICER for subgroup age <65 can be explained 

by the large increase in the QALY for ICU (0.474 vs. 0.381) while almost no QALY difference was found 

in the no-ICU group (0.064 vs. 0.065). The difference in costs had little impact on the ICER, since the 

costs in the ICU group decreased (€ 36,793 vs. € 42,910) compared to the base case however in the 

no-ICU group a decrease also can be found in costs (€ 4,277 vs. € 5,470). The decrease in cost in the 

subgroup age <65 years can be explained by the shorter length of hospital stay. The results of the ICE 

planes and CEAC of the subgroup analyses can be found in Appendix 5 (figure 5-20). 

 

Figure 2: Results scenario one: ICU vs. GW.  

Figure 3: Results scenario two: ICU vs. no-ICU.  
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 Base case Male Female Age <65 Age ≥65 BMI < 25 BMI ≥ 25 Hypertension No hypertension 

N: 

GW 

ICU and no-ICU 

 

 

1178 

118 

 

687 

80 

 

491 

38 

 

430 

41 

 

748 

77 

 

533 

44 

 

645 

74 

 

379 

33 

 

799 

85 

Total costs: 

GW 

ICU 

No-ICU 

 

 

€ 4,078 

€ 42,910 

€ 5,470 

 

€ 3,967 

€ 39,487 

€ 5,460 

 

€ 4,023 

€ 50,066 

€ 5,330 

 

€ 2,736 

€ 36,793 

€ 4,266 

 

€ 4,795 

€ 45,167 

€ 5,643 

 

€ 4,257 

€ 41,727 

€ 5,399 

 

€ 3,770 

€ 42,547 

€ 5,415 

 

€ 4,244 

€ 43,743 

€ 5,866 

 

 

€ 3,877 

€ 40,688 

€ 5,193 

Total QALY: 

GW 

ICU 

No-ICU 

 

 

0.491 

0.381 

0.065 

 

0.493 

0.388 

0.066 

 

0.507 

0.397 

0.063 

 

0.553 

0.474 

0.064 

 

 

0.467 

0.345 

0.066 

 

0.505 

0.406 

0.065 

 

0.480 

0.371 

0.066 

 

0.496 

0.403 

0.067 

 

0.487 

0.375 

0.065 

ICER scenario one € -363,839 € -336,091 € -422,346 € -426,942 € -328,706 € -379,654 € -356,942 € -427,852 € -328,800 

ICER scenario two € 115,850 € 105,839 € 135,290 € 76,512 € 142,025 € 106,513 € 121,756 € 112,756 € 114,361 

Table 2: Probabilistic results base case and subgroup analyses 
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Discussion  

The study performed was a cost-effectiveness analysis consisting of two scenarios. Scenario one (ICU 

versus GW) showed that the ICU is not cost-effective compared to the GW. The analysis of scenario 

two (ICU versus no-ICU) resulted in an ICER of € 115,850. Since the ICER is higher than the set WTP of 

€ 80,000 this can indicate that ICU is not cost-effective compared to no-ICU. None of the subgroup 

analyses showed ICU to be cost-effective, except for the subgroup <65 years old in scenario two. In 

this case, the ICER was € 76,512 which was caused by the increase in QALY for the ICU group.  

The results of the base case analysis could have been foreseen for scenario one, ICU versus GW, as ICU 

is more expensive than the general ward also survival and quality of life is lower for patients in the ICU. 

Scenario two investigated a controversial comparison as the assumption of no upscaling in ICU beds 

was made, therefore patients who otherwise qualified for the ICU went to the general ward. The 

analysis of the second scenario suggested that it would not be cost-effective to receive ICU care for all 

patients qualifying for ICU care. In the subgroup analysis, the biggest differences in costs and QALYs 

compared to the base case analysis were found in the subgroups age for scenario one as previously 

mentioned in the subgroup analysis section of the results. The relation of costs to both GW and ICU 

groups for age <65 years old was negative and for age ≥65 years old positive compared to the base 

case analysis. The opposite was seen in the QALYs of both subgroups of age in GW and ICU. The relation 

of QALY to GW and ICU for age <65 years old was positive and negative for age ≥65 years old compared 

to the base case analysis. This could explain why no different cost-effectiveness result was found for 

these subgroups in scenario one. In scenario two the subgroup analysis of age <65 years old showed 

an ICER of € 76,512 that could indicate ICU to be cost-effective compared to no-ICU. The reliability of 

this result can be disputed, since the ICER is just below the threshold of € 80,000 and because strong 

assumptions were made for scenario two. In order to investigate the reliability of these results in the 

subgroup analysis age <65 years old, the underlying cause, the increase in QALY for ICU, could be 

further analysed for age. The stated assumption in the no-ICU of a fixed mortality probability of 0.9 

can be refuted for subgroup age <65 years old. In reality the mortality probability could be lower 

because people younger than 65 years have a higher survival rate than people over 65 years old (44). 

However, determining the ratio that should be used in the different probabilities of death would be 

difficult to construct, as no real probability of death for no-ICU is available and would therefore be 

based on new assumptions.  

Comparing study findings and existing literature  

Consistent with the results of this study, a previous study mentioned that 63.7% of the patients on the 

ICU were male, compared to 68% in this study (45). A difference was seen in the ICU mortality 

percentages, which was 28% in this study and 50% in the previous study. In addition, the ICU LOS in 

the current study was shorter than the aforementioned study (14.5 SE:1.7 vs. 18 SE:0.6). Another 

previous study found and that could be compared to this study was a cost-effectiveness study from 

South Africa (9). The current study resulted in higher hospital costs for ICU compared to no-ICU, this 

was similar to the found results in the South African study (€ 5,076 for ICU and € 3,701 for the GW 

group). Their GW group had similarities to the no-ICU group in this study (patients have no access to 

ICU care due to hypothetical surges of COVID-19). However, instead of a QALY the South African study 

calculated disability adjusted life years (DALY). A comparison to this study is difficult to make due to 

the differences in healthcare systems between South Africa and the Netherlands. On the other hand, 
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the comparisons that can be made are the mortality probability assumption (0.88 compared to 0.9 

used in this study) and the identical conclusion that ICU is not cost-effective compared to no-ICU. 

Strengths & limitations  

A strength of the study was the completeness of data about the patient flow in the hospital. This made 

it possible to locate where and how long a patient was in a hospital ward and whether that patient 

used a form of ventilation and duration of ventilation. As a result, almost no assumptions had to be 

made about patient flows and length of stay. A second strength is the representativeness of the 

research. The sample of patients used in this study is likely to be representative for the rest of the 

Netherlands, because the demographic composition of the Arnhem region does not differ much from 

the rest of the Netherlands (46).   

In addition to strengths, there are also some limitations to mention. In the second scenario, the 

assumption was made for the no-ICU group that 90% of patients would die during hospital admission. 

Unfortunately, there was no literature on patients who were referred to the ICU but did not go. 

Therefore, the results of the no-ICU group should be interpreted with caution. A second shortcoming 

is the limited subgroup analyses that were performed. Initially, the aim of this study was to investigate 

the effect of known comorbidities related to COVID-19 severity, such as diabetes, hypertension, 

obesity, lung disease, cardiovascular disease, kidney disease, (history of) cancer and smoking status 

(47,48), on the outcomes. Unfortunately, the available data only allowed to investigate the subgroups 

BMI and hypertension of the mentioned known comorbidities to COVID-19 severity. Would it be 

possible to collect data on the additional comorbidities, better decisions could be made about which 

patients would benefit most from admission to the ICU. In the event of a possible code black, this 

would allow informed decisions to be made regarding the use of the hospital's limited resources. 

Another limitation was the lack of long-term evidence of COVID-19 patients. As a result, a time horizon 

of one year was chosen. With more evidence about the long-term effects of COVID-19 on patients, 

fewer assumptions would have been made.  

Further research 

For further research, it is suggested that data on more comorbidities should be collected and included 

in the analysis. Possibly an indicator for COVID-19 severity could cause the ICU to be cost-effective but 

wasn’t included in this study due to lack of data. Including this data, a better analysis can be performed 

on groups of patients benefitting most from ICU admission. Furthermore, only COVID-19 patients were 

considered in this study, but in reality, there was also delayed regular care due to the COVID-19 

pandemic. A report by the RIVM showed an estimated 320.000 healthy life years lost due to delayed 

treatments during the COVID-19 pandemic (49). Including these topics in future research the trade-off 

between assigning an ICU bed to a COVID-19 patient and a qualifying non COVID-19 ICU patient can be 

investigated. The actual costs for GW and ICU would then be higher due to delayed regular care, since 

delayed care had negative effects on the health state of patients and thus costs. Furthermore, when 

determining the QALYs for a GW and ICU patient the loss of QALYs for delayed care of non-COVID-19 

patients should be considered. Using these adjustments would better fit the real-world state.   

The results of this analysis provides insights on current events based on hospital admission and the 

hypothetical situation that there was no upscaling of ICU beds. This would allow an ICU manager to 

make an allocation for the available ICU beds in a subsequent situation such as the COVID-19 

pandemic, where a decision needs to be made on which care the hospital can provide. Based on the 
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subgroup analyses, the found results would mean a preferred allocation for patients age <65 years old 

for ICU admission, because costs are lower and QALYs are higher for this subgroup.  

 

Conclusion  

This study provides insights on the cost-effectiveness of ICU admission for COVID-19 patients. This was 

investigated using two scenarios: (1) ICU versus GW and (2) ICU versus no-ICU. Admission to the ICU 

appeared not to be cost-effective compared to GW, since costs for ICU are higher with lower survival 

and QALYs compared to GW. When comparing ICU to no-ICU, ICU admission also appeared not to be 

cost-effective with an ICER of € 115,850 which is higher than the WTP of € 80,000. Results from the 

no-ICU group should be interpreted with caution, because of the strong assumptions made such as the 

mortality probability of 0.9. It remains unclear which ward adds the most value in terms of costs and 

health benefits, due to unmeasured factors that could influence the outcome. Therefore, more 

research will have to be done on comorbidities related to COVID-19 severity and delayed care due to 

the COVID-19 pandemic. Reason for this is to gain insight in patients who benefit most from ICU 

admission in terms of costs and health effects while also better describing a real-world scenario.  
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Appendix 1: Checklists 

1a: CHEERS 2022 Checklist  

Topic No. Item 
Location where 

item is 

reported 

Title    

1 Identify the study as an economic evaluation and specify the 

interventions being compared. 
Page 1  

Abstract    

2 Provide a structured summary that highlights context, key 

methods, results, and alternative analyses. 
Page 2 

Introduction    

Background and objectives 3 Give the context for the study, the study question, and its 

practical relevance for decision making in policy or practice. 
Page 3 

Methods    

Health economic analysis plan 4 Indicate whether a health economic analysis plan was 

developed and where available. 
Page 4 

Study population 5 Describe characteristics of the study population (such as age 

range, demographics, socioeconomic, or clinical 

characteristics). 

Page 5  

Setting and location 6 Provide relevant contextual information that may influence 

findings. 
Page 4 

Comparators 7 Describe the interventions or strategies being compared and 

why chosen. 
Page 4 

Perspective 8 State the perspective(s) adopted by the study and why 

chosen. 
Page 4 

Time horizon 9 State the time horizon for the study and why appropriate. Page 4 

Discount rate 10 Report the discount rate(s) and reason chosen. Page 4 

Selection of outcomes 11 Describe what outcomes were used as the measure(s) of 

benefit(s) and harm(s). 
Page 4 

Measurement of outcomes 12 Describe how outcomes used to capture benefit(s) and 

harm(s) were measured. 
Page 4 

Valuation of outcomes 13 Describe the population and methods used to measure and 

value outcomes. 
Page 6 

Measurement and valuation of 

resources and costs 
14 Describe how costs were valued. Page 6 

Currency, price date, and 

conversion 
15 Report the dates of the estimated resource quantities and 

unit costs, plus the currency and year of conversion. 
Page 6 
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Topic No. Item 
Location where 

item is 

reported 

Rationale and description of 

model 
16 If modelling is used, describe in detail and why used. Report if 

the model is publicly available and where it can be accessed. 
Page 4, 5 & 23 

Analytics and assumptions 17 Describe any methods for analysing or statistically 

transforming data, any extrapolation methods, and 

approaches for validating any model used. 

Page 9 

Characterising heterogeneity 18 Describe any methods used for estimating how the results of 

the study vary for subgroups. 
Page 9 

Characterising distributional 

effects 
19 Describe how impacts are distributed across different 

individuals or adjustments made to reflect priority 

populations. 

- 

Characterising uncertainty 20 Describe methods to characterise any sources of uncertainty 

in the analysis. 
Page 8 

Approach to engagement with 

patients and others affected by 

the study 

21 Describe any approaches to engage patients or service 

recipients, the general public, communities, or stakeholders 

(such as clinicians or payers) in the design of the study. 

- 

Results    

Study parameters 22 Report all analytic inputs (such as values, ranges, references) 

including uncertainty or distributional assumptions. 
Page 7 & 8 

Summary of main results 23 Report the mean values for the main categories of costs and 

outcomes of interest and summarise them in the most 

appropriate overall measure. 

Page 10, 11, 12 

Effect of uncertainty 24 Describe how uncertainty about analytic judgments, inputs, 

or projections affect findings. Report the effect of choice of 

discount rate and time horizon, if applicable. 

Page 10 & 11 

Effect of engagement with 

patients and others affected by 

the study 

25 Report on any difference patient/service recipient, general 

public, community, or stakeholder involvement made to the 

approach or findings of the study 

- 

Discussion    

Study findings, limitations, 

generalisability, and current 

knowledge 

26 Report key findings, limitations, ethical or equity 

considerations not captured, and how these could affect 

patients, policy, or practice. 

Page 13 & 14 

Other relevant information    

Source of funding 27 Describe how the study was funded and any role of the 

funder in the identification, design, conduct, and reporting of 

the analysis 

- 

Conflicts of interest 28 Report authors conflicts of interest according to journal or 

International Committee of Medical Journal Editors 

requirements. 

- 
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1b: TECHVER checklist 

Test description  
 

Result of the test 

Pre-analysis calculations 
Does the technology (drug/device, etc.) acquisition costs increase with higher 
prices? 

Yes. Check performed by increasing 
prices on parameter sheet. 

Event-state calculations 

Calculate the sum of the number of patients at each health state Should add up to the cohort size    
Yes, cohort size is 1000 

Check if all probabilities and number of patients in a state are greater than or 
equal to zero 

Yes, checked in PSA results sheet 
for every iteration 

Check if all probabilities are smaller than or equal to one Yes, checked in PSA results sheet 
for every iteration 

Compare the number of dead (or any absorbing state) patients in a period with 
the number of dead (or any absorbing state) patients in the previous periods? 

With every cycle in model, the 
number of dead patients is higher 
than previous period.  

Discrete event simulation specific: sample one of the “time to event” types used in 
the simulation from the specified distribution. Plot the samples and compare the 
mean and the variance from the sample 

Sample mean and variance & the 
simulation outputs should reflect 
the distribution it is sampled from. 

Set all utilities to one 
 
Set all utilities to zero 

The QALYs accumulated at a given 
time would be the same as the life 
years accumulated at that time. 
Correct 
 
No utilities will be accumulated in 
the model. Correct 

Decrease all state utilities simultaneously (but keep event based utility 
decrements constant) 

Lower utilities will be accumulated 
each time 

Set all costs to zero No costs will be accumulated in the 
model at any time  

Put mortality rates to 0 Patients never die 
Put mortality rate extremely high Patients die in the first few cycles 

Set the effectiveness, utility and safety related model inputs for all treatment 
options equal 

Same life years and QALYs should 
be accumulated for all treatment at 
any time. Correct  

In addition to the inputs above, set cost related model inputs for all treatment 
options equal 

Same costs, life years and QALYs 
should be accumulated for all 
treatment at any time. Correct 

Change around the effectiveness, utility and safety related model inputs between 
two treatment options 

Accumulated life years and QALYs 
in the model at any time should be 
also reversed. Correct 

Check if the number of alive patients estimate at any cycle is in line with general 
population life table statistics 

At any given age, the % alive should 
be lower or equal in comparison to 
the general population estimate. 
Correct  

Check if the QALY estimate at any cycle is in line with general population utility 
estimates 

At any given age, the utility 
assigned in the model should be 
lower or equal in comparison to 
the general population estimate 

Calculate the sum of all ingoing and outgoing transition probabilities Both should be one 

Check if the time conversions for probabilities were conducted correctly. Yes, performed with literature 
based calculations.  

Decision tree specific: calculate the sum of the expected probabilities of the 
terminal nodes 

Should sum up to one 

Patient-level model specific: check if common random numbers are maintained 
for sampling for the treatment arms? 

Yes 

Patient-level model specific: check if correlation in patient characteristics is taken 
into account when determining starting population? 

Yes 

Increase the treatment acquisition cost Costs accumulated at a given time 
will increase during the period 
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when the treatment is 
administered 

Population model specific: set the mortality and incidence rates to zero Prevalence is constant in time 
Result calculations 

Check the incremental life years and QALYs gained results. Are they in line with 
the comparative clinical effectiveness evidence of the treatments involved? 

If a treatment is more effective, it 
generally results in positive 
incremental LYs and QALYs in 
comparison with the less effective 
treatments. Correct, negative 
incremental qaly’s in scenario 1, 
because GW is more effective. In 
scenario 2 positive incremental 
QALY’s, icu is more effective.  

Check the incremental cost results. Are they in line with the treatment costs? 

If a treatment is more expensive, 
and if it does not have much effect 
on other costs, it generally results 
in positive incremental costs. 
Correct for both scenarios.  

Total life years > total quality adjusted life years Yes 
Could you generate all the results in the report from the model (including the 
uncertainty analysis results)? 

Yes 

Does the total life years, QALYs and costs decrease if a shorter time horizon is 
selected? 

Yes, checked by removing cycles 
from analysis. 

Is the reporting and contextualization of the incremental results correct? 

The use of the terms such as: 
“dominant”/ “dominated”/ 
“extendedly dominated”/ “cost-
effective” etc. should be in line with 
the results. 
In the incremental analysis table 
involving multiple treatments, 
ICERs should be calculated against 
the next non-dominated 
treatment. Correct 

Are the reported ICERs in the fully incremental analysis non-decreasing? Yes 
If disentangled results are presented, do they sum up to the total results? (e.g. 
different cost types sum up to the total costs estimate) 

Yes 

Set mortality rate to zero No patients die  

Put the consequence of adverse event/discontinuation to zero. (zero costs and 
zero mortality/utility decrements) 

The results would be the same as 
the results when AE rate is set to 
zero. 

Divide total undiscounted treatment acquisition costs by the average duration on 
treatment. 

Not applicable 

Set discount rates to a higher value Not applicable 
Set discount rates of costs/effects to an extremely high value Not applicable 
Put adverse event/discontinuation rates to zero and then to extremely high level. Not applicable 

Double the difference in efficacy and safety between new intervention and 
comparator and report the incremental results. 

Approximately twice of the 
incremental effect results of the 
base case. If this is not the case : 
report and explain the underlying 
reason/ mechanism 

Do the same for a scenario in which the difference in efficacy and safety is halved. 

 

Approximately halve of the 
incremental effect results of the 
base case. If this is not the case : 
report and explain the underlying 
reason/ mechanism 

Uncertainty analysis calculations 

Check that all parameters used in the sensitivity analysis have an appropriate 
associated distributions 
- upper and lower bounds should surround the deterministic value (i.e. Upper 
bound ≥ mean ≥ Lower bound) 
- standard error and not standard deviation used in sampling 
- Lognormal / gamma distribution for hazard ratios and costs/ resource use 

Yes 
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- Beta for utilities and proportions/probabilities 
- Dirichlet for multinomial 
- Multivariate normal for correlated inputs (e.g. survival curve or regression 
parameters) 
- Normal for other variables as long as samples don’t violate requirement to 
remain positive when appropriate 

Check PSA output mean costs, QALYs and ICER compared to the deterministic 
results. Is there a large discrepancy? 

No. A small discrepancy is in ICU, 
but can be explained by the many 
parameters and their uncertainty.  

If you take new PSA runs from the excel model do you get similar results? 
Yes. When running new PSA the 
deterministic and probabilistic 
results are similar.  

Is(are) the CEAC line(s) in line with the CE scatter plots and the efficient frontier? Yes.  

Does the PSA cloud demonstrate an unexpected behavior or has an unusual 
shape? 

There are some data points outside 
the cloud, but this can be explained 
by the fact that a number of 
parameters have a large range. 

Is the sum of all CEAC lines equal to 1 for all WTP values? 
Not applicable, only using one WTP 
for CEAC. 

Are the explored scenario analyses provide a balanced view on the structural 
uncertainty? (i.e. not always looking at more optimistic scenarios) Yes 

Are the scenario analysis results plausible and in line with a priori expectations? Yes 

Check the correlation between 2 PSA results (i.e. costs/QALYs under the SoC and 
costs/QALYs under the comparator) 

Should be very low (very high) if 
different (same) random streams 
are used for different arms 

Compare the mean of the parameter samples generated by the model against the 
point estimate for that parameter, use graphical methods to examine 
distributions, functions 

The sample means and the point 
estimates will overlap, the graphs 
will be similar to the corresponding 
distribution functions (e.g. Normal, 
Gamma, etc.) 

Check if sensitivity analyses include any parameters associated with 
methodological/ structural uncertainty (e.g. annual discount rates, time horizon). 

No 

Did the electronic model pass the black-box tests of the previous verification 
stages in all PSA iterations and in all scenario analysis settings? (additional macro 
can be embedded to PSA code, which stops the PSA when an error such as 
negative transition probability, is detected) Yes 

Check the correlation between 2 PSA results (i.e. costs/QALYs under the SoC and 
costs/QALYs under the comparator) Are comparable  

OWSA=one-way sensitivity analysis; ICER = incremental cost-effectiveness ratio; PSA = probabilistic sensitivity analysis; 
WTP = willingness to pay; CE = cost-effectiveness; CEAC = cost-effectiveness acceptability curve; LY = life years; QALYs = 
Quality adjusted life years; OR = odds ratio; RR= relative risk; HR = hazard ratio 
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Appendix 2: Additional figures and tables  

Figure 1: Hospital pathway cost utilization scenario 1 
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Figure 2: Hospital pathway cost utilization scenario 2 
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Appendix 3: Multinomial logistic regression 

To calculate the probabilities within the decision tree for the first scenario (ICU versus GW), a 

multinomial logistic regression was originally performed. The aim was to correct for patient 

characteristics so that the probability of the different events is corrected for differences between the 

groups. With these outcomes, the aim was to make less biased comparisons between the groups, in 

addition to perform a subgroup analysis based on patient characteristics. 

The dependent variable was survival and destination of discharge when survived (discharged home, 

discharged to a rehabilitation centre or died). The independent variables were chosen based on 

literature, expert opinion and data available (i.e., gender, age, BMI and hypertension). 

To check for separation of the data, plots were made of the patient characteristics on the end states 

(discharged home, discharged to a rehabilitation centre or died). The plots can be found in figure 3 

below. Separation would occur if one or more of the patient characteristics would predict the 

outcomes perfectly. It can be seen in the plots that for each end state all properties of the patient 

characteristic are represented. Therefore, it can be concluded that there is no separation in any of the 

patient characteristics.  

 

 

 

Figure 4. Plots of patient characteristics 

For BMI 609 of the 1,296 patients had missing values, therefore multiple imputation was used to 

handle these missing values in the regression. Multiple imputation was performed using the R package 

“mice” and 5 imputation sets (50). With the results of the 5 imputations of the regression, predictions 

were made based on the average ICU patient to equalize the groups. The average ICU patient was 67 

years old, male, with a BMI of 27 and no presence of hypertension.  The average of these predictions 

was calculated as the probabilities of the decision tree. Table 3 below shows the values of the pooled 

predictions and the values calculated with the patient data for comparison.   
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Patient data observed 

End status Prob. General ward Prob. ICU 
Died 0.129 0.288 
Home 0.8031 0.5 
Rehabilitation  0.0679 0.212 

Predictions based on regression 

End status Prob. General ward  Prob. ICU 
Died 0.086 (Sd: 0.0065) 0.3195 (Sd: 0.0047) 
Home 0.8737 (Sd: 0.0004) 0.5010 (Sd: 0.0140) 
Rehabilitation  0.0396 (Sd: 0.0069) 0.1699 (Sd: 0.0153) 

Table 2. Probabilities decision tree 

It can be seen in the table that despite correcting for patient characteristics in the regression, there is 

little difference between the probabilities. After consulting with an internist from Rijnstate hospital it 

was decided not to use this regression. It was expected that by correcting for these variables more 

patients would die in the GW group. It can be concluded, based on low face validity, that the correct 

predictors were not included in the study that would influence the outcome. 

 

Appendix 4: Cost-effectiveness analysis  

Deterministic results 

Based on the deterministic results the total costs after one year are € 41,573 for ICU compared to            

€ 4,041 for general ward. The total QALYs for ICU are 0.393 and 0.500 for the general ward. With 

incremental costs of € 37,532 and incremental effects of -0.11.  

In the second scenario, the mean costs after one year of no-ICU admission are € 5,450 with total QALYs 

of 0.066. The incremental costs are € 36,123 and incremental effects are 0.33, this resulted in an ICER 

of € 110,382 ICU compared to no-ICU.  
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Appendix 5: Subgroup analysis  

Table 1: Model inputs 

Gender  Male Female 

General ward  Died = 0.142 Discharged = 0.871 Died = 0.112 Discharged = 0.880 

Prob. Ward 
Mean LOS  ward, d 

1 

8.32 

1 

5.78 

1 

6.91 

1 

5.47 

Prob. Optiflow 
Mean duration optiflow, d 

0.010 

0.88 

0.002 

0.92 

- 

- 

- 

- 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 0.058 

16.7 

- 

- 

0.094 

16.7 

ICU Died = 0.300 Discharged = 0.700 Died = 0.263  Discharged = 0.737 

Prob. Ward 
Mean LOS  ward, d 

0.250 

12.92 

1 

10.58 

0.4 

0.93 

1 

14.39 

Prob. MCU 
Mean LOS MCU, d 

0.583 

4.55 

0.679 

1.74 

0.6 

5.55 

0.821 

2.69 

Prob. ICU 
Mean LOS ICU, d 

0.833 

12.95 

0.893 

13.37 

0.7 

14.11 

0.821 

19.37 

Prob. Optiflow 
Mean duration optiflow, d 

0.750 

3.61 

0.679 

4.26 

0.6 

3.15 

0.607 

3.78 

Prob. NIV 
Mean duration NIV, d 

0.125 

1.4 

0.054 

1.4 

- 

- 

- 

- 

Prob. MIV 
Mean duration MIV, d 

0.375 

19.1 

0.393 

20.3 

0.5 

12.16 

0.607 

20.47 

Prob. Dialysis 
Mean LOS dialysis, d 

0.125 

10.3 

- 

- 

- 

- 

0.107 

13 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.268 

16.7 

- 

- 

0.357 

16.7 

No-ICU Died = 0.9 Discharged = 0.1 Died = 0.9 Discharged = 0.1 

Prob. Ward 
Mean LOS  ward, d 

1 

8.32 

1 

23.7 

1 

6.91 

1 

32.51 

Prob. Optiflow 
Mean duration optiflow, d 

0.750 

0.361 

0.679 

4.26 

0.6 

3.15 

0.607 

3.78 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.268 

16.7 

- 

- 

0.357 

16.7 

 

Age  < 65 years ≥ 65 years 

General ward Died = 0.016 Discharged = 0.984 Died = 0.194 Discharged = 0.806 

Prob. Ward 
Mean LOS  ward, d 

1 

6.05 

1 

4.07 

1 

7.89 

1 

6.76 

Prob. Optiflow 
Mean duration optiflow, d 

- 

- 

- 

- 

0.007 

0.88 

0.001 

0.92 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.016 

16.7 

- 

- 

0.121 

16.7 

ICU Died = 0.122 Discharged = 0.878 Died = 0.367 Discharged = 0.623 

Prob. Ward 
Mean LOS  ward, d 

0.4 

0.95 

1 

9.92 

0.276 

9.90 

1 

13.29 

Prob. MCU 
Mean LOS MCU, d 

0.6 

4.4 

0.611 

1.73 

0.586 

4.92 

0.813 

2.30 

Prob. ICU 
Mean LOS ICU, d 

0.8 

11.4 

0.917 

12.48 

0.793 

13.50 

0.833 

17.60 

Prob. Optiflow 
Mean duration optiflow, d 

0.6 

4.14 

0.694 

4.31 

0.724 

3.40 

0.625 

3.94 

Prob. NIV 
Mean duration NIV, d 

- 

- 

0.028 

1.4 

0.103 

1.4 

0.042 

1.4 

Prob. MIV 
Mean duration MIV, d 

0.6 

12.8 

0.333 

21 

0.379 

17.70 

0.563 

20.00 

Prob. Dialysis 
Mean LOS dialysis, d 

0.4 

14.5 

0.028 

11 

0.035 

2.00 

0.042 

14.00 

Prob. Rehabilitation - 0.222 - 0.354 
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Mean LOS rehabilitation - 16.7 - 16.7 

No-ICU Died = 0.9 Discharged = 0.1 Died = 0.9 Discharged =  0.1 

Prob. Ward 
Mean LOS  ward, d 

1 

6.05 

1 

22.42 

1 

7.89 

1 

29.83 

Prob. Optiflow 
Mean duration optiflow, d 

0.6 

4.14 

0.6944 

4.14 

0.724 

3.40 

0.625 

3.94 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.222 

16.7 

- 

- 

0.354 

16.7 

     

BMI BMI <25 BMI ≥ 25 

General ward  Died = 0.105 Discharged = 0.895 Died = 0.149 Discharged = 0.851 

Prob. Ward 
Mean LOS  ward, d 

1 

7.99 

1 

5.8 

1 

7.7 

1 

5.51 

Prob. Optiflow 
Mean duration optiflow, d 

0.018 

0.88 

- 

- 

- 

- 

0.002 

0.92 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.096 

16.7 

- 

- 

0.062 

16.7 

ICU Died = 0.250 Discharged = 0.750 Died = 0.311 Discharged = 0.689 

Prob. Ward 
Mean LOS  ward, d 

0.182 

8.34 

1 

12.03 

0.348 

8.07 

1 

11.73 

Prob. MCU 
Mean LOS MCU, d 

0.636 

4.22 

0.697 

2.19 

0.565 

5.18 

0.745 

2.04 

Prob. ICU 
Mean LOS ICU, d 

0.727 

18.69 

0.939 

13.14 

0.826 

10.96 

0.824 

16.83 

Prob. Optiflow 
Mean duration optiflow, d 

1 

3.44 

0.758 

4.08 

0.565 

3.54 

0.588 

4.13 

Prob. NIV 
Mean duration NIV, d 

0.091 

1.4 

0.067 

1.4 

0.087 

1.4 

- 

- 

Prob. MIV 
Mean duration MIV, d 

0.364 

15.45 

0.485 

18.02 

0.435 

17.10 

0.451 

22 

Prob. Dialysis 
Mean LOS dialysis, d 

- 

- 

- 

- 

0.130 

10.33 

0.039 

9 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.212 

16.7 

- 

- 

0.353 

16.7 

No-ICU Died = 0.9 Discharged = 0.1 Died = 0.9 Discharged = 0.1 

Prob. Ward 
Mean LOS  ward, d 

1 

7.99 

1 

25.90 

1 

7.70 

1 

27.11 

Prob. Optiflow 
Mean duration optiflow, d 

1 

3.44 

0.7576 

4.08 

0.565 

3.54 

0.588 

0.353 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.212 

16.7 

- 

- 

0.353 

16.7 

 

Hypertension Absence of hypertension Presence of hypertension 

General ward  Died = 0.134 Discharged = 0.866 Died = 0.119 Discharged = 0.881 

Prob. Ward 
Mean LOS  ward, d 

1 

7.51 

1 

5.49 

1 

8.53 

1 

5.97 

Prob. Optiflow 
Mean duration optiflow, d 

0.009 

0.88 

0.001 

0.92 

- 

- 

- 

- 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.074 

16.7 

- 

- 

0.077 

16.7 

ICU Died = 0.306 Discharged = 0.694 Died = 0.242 Discharged = 0.712 

Prob. Ward 
Mean LOS  ward, d 

0.346 

7.89 

1 

11.31 

0.125 

10.26 

1 

13.11 

Prob. MCU 
Mean LOS MCU, d 

0.577 

5.64 

0.712 

2.33 

0.625 

2.45 

0.760 

1.58 

Prob. ICU 
Mean LOS ICU, d 

0.846 

13.27 

0.881 

14.41 

0.625 

13.17 

0.840 

17.4 

Prob. Optiflow 
Mean duration optiflow, d 

0.692 

3.97 

0.644 

4.1 

0.750 

2.06 

0.680 

4.13 

Prob. NIV 
Mean duration NIV, d 

0.077 

1.4 

0.017 

1.4 

0.125 

1.4 

0.080 

1.4 
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Prob. MIV 
Mean duration MIV, d 

0.385 

16.55 

0.441 

20.02 

0.500 

16.80 

0.520 

21 

Prob. Dialysis 
Mean LOS dialysis, d 

0.077 

15 

0.051 

13 

0.125 

1 

- 

- 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.288 

16.7 

- 

- 

0.320 

16.7 

No-ICU Died = 0.9 Discharged = 0.1 Died = 0.9 Discharged = 0.1 

Prob. Ward 
Mean LOS  ward, d 

1 

7.51 

1 

25.67 

1 

8.53 

1 

28.93 

Prob. Optiflow 
Mean duration optiflow, d 

0.692 

3.97 

0.644 

4.10 

0.750 

2.06 

0.680 

4.13 

Prob. Rehabilitation 
Mean LOS rehabilitation 

- 

- 

0.288 

16.7 

- 

- 

0.320 

16.7 

 

Appendix 5A: results subgroup analysis 

Results subgroup male  

 

Figure 5: Subgroup male. ICE plane and CEAC scenario 1 

 

Figure 6: Subgroup male. ICE plane and CEAC scenario 2. 

 

Results subgroup female  

 

Figure 7: Subgroup female. ICE plane and CEAC scenario 1 
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Figure 8: Subgroup female. ICE plane and CEAC scenario 2 

 

Results subgroup age <65 years 

 

Figure 9: Subgroup age <65 years. ICE plane and CEAC scenario 1 

 

Figure 10: Subgroup age <65 years. ICE plane and CEAC 

 

Results subgroup age ≥65 years  

 

Figure 11: Subgroup age >65 years. ICE plane and CEAC 
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Figure 12: Subgroup age >65 years. ICE plane and CEAC 

 

Results subgroup BMI <25  

 

Figure 13: Subgroup BMI <25. ICE plane and CEAC scenario 1 

 

Figure 14: Subgroup BMI <25. ICE plane and CEAC scenario 2 

 

Results subgroup BMI >25 

 

Figure 15: Subgroup BMI >25. ICE plane and CEAC scenario 1 
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Figure 16: Subgroup BMI >25. ICE plane and CEAC scenario 2 

 

 

Results subgroup absence of hypertension  

 

Figure 17: Subgroup absence of hypertension. ICE plane and CEAC scenario 1 

 

Figure 18: Subgroup absence of hypertension. ICE plane and CEAC scenario 2. 

 

Results subgroup presence of hypertension 

 

Figure 19: Subgroup presence of hypertension. ICE plane and CEAC scenario 1 
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Figure 20: Subgroup presence of hypertension. ICE plane and CEAC scenario 2. 

 

 

 


