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ABSTRACT 

Mangroves are tropical and subtropical coastal wetlands that provide valuable ecosystem services. 

Although mangroves have important environmental functions like climate regulation and water 

purification, they decline mainly due to anthropogenic influence. This development can be observed 

particularly well in the Mekong Delta in Vietnam, where the decline of the mangrove area is mainly 

triggered by the land use change from mangrove to shrimp farms. Addressing deforestation as well as the 

demand for more sustainable shrimp production, hybrid systems, called mixed mangrove-shrimp farms, 

aim to conserve 60% of mangrove cover and cultivate ecological shrimp in low-intensity aquacultures. 

Observation and mapping of mangrove ecosystems are necessary to provide evidence-based information 

for preserving and managing this natural resource. Satellite remote sensing offers more transparent and 

efficient mangrove monitoring than the currently applied laborious field surveys. Data on the present land 

cover in the study area was collected during a sampling campaign in March 2023. This study compared an 

object-based and a pixel-based approach to classify high-resolution imagery to assess mangroves on 

shrimp farms. A SPOT-7 image was classified using a Random Forest machine learning algorithm in 

eCognition to investigate the mangrove classification accuracy on mixed mangrove-shrimp farms in a 

Vietnamese protection and production forest. The resulting mangrove maps achieved an overall accuracy 

of 96% with a spatial resolution of 1.5 m. The McNemar test indicated that there is no statistically 

significant difference between the classification accuracy of the object-based and pixel-based approach. 

The discrepancy between the farmer’s perspective and the classification-based shrimp farm mangrove 

ratios suggested ground-based estimates to be challenging. Resulting from the spatial analysis, a higher 

mangrove ratio was revealed in the protection forest compared to the production forest. This indicates 

more successful mangrove conservation or reforestation on the shrimp farms in the protection forest 

zone, which correlates with the funding for mangrove sapling replantation in the respective forest zone. 

However, the continued replantation of Rhyzophora is likely to maintain the dominance of monocultures 

that may benefit timber production but do not preserve or reintroduce biodiverse mangrove ecosystems 

and their valuable services. Consequently, the application of a hybrid mangrove observation approach that 

uses satellite and UAV remote sensing data is proposed for the assessment of mangrove ratios on shrimp 

farms in the study area.  
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1. INTRODUCTION 

Coastal areas inhabit highly productive and carbon-dense ecosystems that play a vital role in climate 

change mitigation. Therefore, ecosystems like mangroves and saltmarshes are termed blue carbon 

ecosystems (Klemas, 2013; Pham et al., 2019b). Blue carbon ecosystems efficiently sequester carbon 

dioxide, which leads to a storage of about 10 times more carbon dioxide than in terrestrial green carbon 

ecosystems like forests (Huang et al., 2022). Mangroves are defined as tidally influenced trees, shrubs, 

palms, or ferns that grow in coastal or estuarine environments (Massó i Alemán et al., 2010). About 70 

species of 25 genera and 19 families are considered as mangroves (Ellison et al., 2020). Mangroves inherit 

a buffer function by dissipating wave energy and adapting to sea level rise (Duarte et al., 2013; Horstman 

et al., 2014). The water quality and sedimentation are enhanced by mangroves via the filtration of 

nutrients as well as organic and inorganic matter (Alongi, 2018; Hock & Su, 2020). As a result, mangroves 

prevent eutrophication by acting as a nutrient sink (Hock & Su, 2020). The mentioned functions like 

climate regulation, flood regulation, and water purification are considered regulating ecosystem services 

(Vo et al., 2012). Mangroves provide a variety of further ecosystem services that can be divided into 

provisioning, supporting, and cultural services. The provision of food, fresh water, and wood is associated 

with provisioning services (Vo et al., 2012). Also, the provision of habitat for a diversity of fauna ranging 

from birds over reptiles to shellfish is considerable. Particularly the mangrove’s root system serves as a 

shelter and nursery for juvenile fish (Hock & Su, 2020). Supporting services refer to the nutrient cycling, 

soil formation, and primary production of mangrove ecosystems. At last, the cultural services include the 

aesthetic, spiritual, educational, and recreational value that mangrove ecosystems contribute (Vo et al., 

2012).  

Despite the important services they provide, the loss of mangroves is an issue that occurs on tropical and 

subtropical coasts worldwide (Polidoro et al., 2010). Goldberg et al. (2020) modeled that 2.1% of the 

global mangrove area, which relates to 3,363 km2, was lost from 2000 to 2016. 62% of this loss was 

anthropogenically caused with the transition from mangrove to commodities being the primary driver 

accounting for 47% (about 1,586 km2) of the observed global mangrove depletion (Goldberg et al., 2020). 

Mangroves rapidly decline due to anthropocentric impact (Klemas, 2013; Pham et al., 2019b). This is 

triggered, because the density of the population in coastal areas strongly increases, which exemplifies the 

pressure on adjacent ecosystems by anthropogenic activities (Bouma et al., 2014). 82% of the human-

induced mangrove loss originates in the six Southeast Asian nations Indonesia, Myanmar, Malaysia, the 

Philippines, Thailand, and Vietnam, with the Mekong Delta representing one of the hotspots (Goldberg 

et al., 2020). Anthropogenic stress on mangrove ecosystems via the conversion of mangroves to 

aquaculture or human settlement as stated by Pham et al., (2019b) was observed in Vietnam’s Mekong 

Delta. Son et al. (2015) mapped a 74% decline in mangrove forests between 1979 and 2013 in the 

Mekong Delta’s Cà Mau province. The boom in the aquaculture industry was cited as the main reason for 

the decline (Son et al., 2015). The Vietnamese Mekong Delta accounts for more than 85% of the national 

shrimp production (Lai et al., 2022). In 2018 Vietnam was the fourth-largest shrimp exporter and third-

largest producer in the world, which makes shrimp farming an important business in the country (Lai et 

al., 2022; Xuan et al., 2021). The Vietnamese government plans to increase revenues from shrimp 

aquaculture to 10 billion US$ by 2025 (Lai et al., 2022). But the conversion of land use from mangroves 

to shrimp aquaculture leads to a loss of biodiversity and negative environmental impacts (Lai et al., 2022; 

Nguyen et al., 2018; Van et al., 2015). Additionally, the charcoal production in the Cà Mau province leads 
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to the plantation of Rhizophora and Melaleuca monocultures, which does not support the improvement of 

biodiversity (Ha et al., 2014; Nguyen et al., 2023). The depletion of mangrove ecosystems leads to the loss 

of important ecosystem services like carbon sequestration via primary production, flood regulation, and 

water purification (Estoque et al., 2018; Friess et al., 2016; Vo et al., 2012). The alarming loss of mangrove 

forests in the Mekong Delta must be tackled to preserve the valuable ecosystem services they provide. 

Therefore, the monitoring and management of mangrove forested areas is of special importance for the 

Mekong Delta. 

From 1975 to 1994 mangrove forests in Vietnam were managed by the State Forest Enterprises and state-

owned organizations. The mangrove forest area drastically decreased during that period due to the 

conversion of mangroves into aquaculture ponds and the exploitation of timber and non-timber forest 

resources. This was backed by the State Forest Enterprises since Vietnam’s mangrove forests were 

defined as state-owned national assets. In 1994 the forest management was decentralized, and a forestland 

devolution policy was adopted (Truong et al., 2021). This led to the introduction of two main forest use 

rights, the land use certificate also called the red book, and the contract-based allocation called green 

book. Production forests like barren land or plantations were listed in the red book. The land use 

certificate ensuring 50-year forestland use right for those areas was transferred by the state to households. 

Special-use forests for nature conservation, and protection forests used for watershed protection, soil 

erosion prevention, and natural hazard mitigation are allocated in the green book. Households can lease 

limited use rights with a maximum contract term of 20 years for green book areas from Forest 

Management Boards or forest companies (Truong et al., 2021). The level of mangrove coverage is the 

most important regulation. Depending on the contract, tenants are allowed to convert 20 to 40% of the 

allotted forest into land uses like agriculture, aquaculture, or housing (Truong & Do, 2018). Hogestijn 

(2023, p. 17) lists a detailed overview with respect to the development of legal instruments concerning the 

mangrove management on shrimp farms from 1961 until 2022. Moreover, the Vietnamese jurisdictional 

system that decides on the legal instruments for the mangrove forest management is presented 

(Hogestijn, 2023, p. 6). 

The conservation zones in Vietnam are divided into full protection zones where all land must be forested 

and conserved, and buffer zones, where 60% mangrove forest cover must prevail. Farmers can lease a 

land use right for the remaining 40% of the area. This land use right can only be renewed if the farmers 

respect the legislation and maintain 60% mangrove forest cover in the area (Vo et al., 2013).  

Despite the risk of losing the land use right, increasing the profit by extending the aquaculture area to 

more than 40% is tempting for farmers (Vo et al., 2013). Consequently, mangrove forests in the buffer 

zones are at risk to be harvested and converted into shrimp ponds, as this seems more profitable for the 

farmers that lease the use right. However, Truong & Do (2018) found that about 60% is the optimal 

mangrove coverage for shrimp farming in terms of productivity and profitability. The integration of 

mangroves into shrimp aquacultures reduces the risk of water pollution or shrimp diseases to affect 

productivity (Nguyen et al., 2020a). Bosma et al. (2016) found that ponds with 30-50% mangrove cover 

had the highest shrimp yields. Integrated mangrove-shrimp aquacultures need less or no feed input and 

fertilization, which reduces production costs (Nguyen et al., 2020a). Moreover, certified organic shrimps 

from mangrove-shrimp aquacultures with a minimum of 50% mangrove cover in the ponds can be sold 

for a premium shrimp price (Lai et al., 2022). The certification of regular and organic shrimp becomes a 

prerequisite for accessing most world markets (Bosma et al., 2016), which is crucial given Vietnam’s 
intention to increase shrimp exports (Lai et al., 2022). Certification organizations like the Global 

Aquaculture Alliance Best Aquaculture Practices (GAA-BAP), the Aquaculture Stewardship Council 

(ASC), and Naturland vouch for sustainable and ecological shrimp production with their labels 

(Baumgartner & Nguyen, 2017; Havice & Iles, 2015). Among other criteria, a mangrove to pond ratio 

greater than 50% is required to qualify as an organic shrimp farm (Joffre et al., 2015). Audits assessing the 
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compliance of a shrimp farm with the organic standards consider the mangrove measurements and maps 

that are recorded and reported by the local Forest Management office, a visual assessment on-site as well 

as the confirmation of the Protection Mangrove Forest Management Committee to verify that the 

mangrove plantation area within the farm’s land is greater than 50% (Gruber et al., 2020, p. 27). 

 

A variety of ministries, departments, administrations, and institutes with independent and overlapping 

responsibilities at national, provincial, and district levels are involved in the monitoring and management 

of mangroves in Vietnam (Hogestijn, 2023, p. 52). The lack of interaction between the involved parties 

leads to ineffective and insufficient monitoring, particularly on a small scale. The People’s Committees 
that are responsible on the district and commune level face challenges to afford forest surveyors and 

managers that monitor the local mangrove area (Hogestijn, 2023). The monitoring of the mangrove forest 

to aquaculture ratio is important to control if the farmers that manage the land comply with the 

regulations and incentivize sustainable land use management according to the requirements. The lack of 

human resources causes the enforcement of forestry regulations by the Forest Management Boards to be 

weak. Only about three cases of community-level violations are detected annually. But a survey found that 

50% of the investigated households cleared the mangrove forest beyond the regulated level (Truong et al., 

2021). The prevention of mangrove coverage violations by the limited number of patrolling foresters is 

unlikely to be successful, due to the size of the monitored area and the vast distribution of the numerous 

shrimp farms. The assessment of the forest assignment policy enforcement indicated that the focus must 

be on the quality of the enforcement, not the quantity (Truong et al., 2021). Currently, aquacultures are 

usually mapped with field surveys using handheld GPS devices, by visual analysis and delineation using 

remote sensing images, or via a hybrid approach that combines both methods (Virdis, 2014). This 

subjective and untransparent assessment of the mangrove coverage on shrimp farms does not enable a 

quantification of inaccuracies. This potentially leads to uncertainty in terms of achieving a mangrove 

cover threshold value, since there is no consideration of an error range. Research demonstrated the 

potential of satellite remote sensing applications for the inventorying, monitoring, and management of 

aquacultures (Virdis, 2014; Vo et al., 2013). An accuracy assessed remote sensing-based classification of 

mangroves could assist the forest administrations to efficiently detect violations as well as facilitate the 

awarding and verification of eco-labels by certification organizations.  

 

1.1. Literature review on the remote sensing of mangroves 

The following section reviews literature on the object-based and pixel-based approach for the 

classification of satellite remote sensing imagery for mangrove mapping purposes as well as the 

application of Unmanned Aerial Vehicles (UAV). 

 

The lack of monitoring data on coastal ecosystems hinders the successful implementation of management 

and preservation frameworks since continuous environmental observation is required (El Mahrad et al., 

2020; Muller-Karger et al., 2018). Accordingly, research on accurate observation methods is necessary. 

satellite-based remote sensing technologies introduced a cost-effective solution to complement data gaps 

with regular temporal and wide spatial coverage (El Mahrad et al., 2020). Still coastal habitats, including 

wetlands like mangroves, “remain among the most undersampled habitats on the Earth’s surface” 
(Muller-Karger et al., 2018, p. 750). But an integration of multisensor and multitemporal data can benefit 

blue carbon ecosystem mapping, monitoring, and risk assessment as well as the analysis of key drivers 

causing changes (Guo et al., 2017; Pham et al., 2019b; Reif & Theel, 2017; White et al., 2015). 

Additionally, the flexible application of Unmanned Aerial Vehicles (UAVs) as sensor platforms can 
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improve the database to observe the dynamic processes of coastal environments on fine temporal and 

spatial scales (Doughty & Cavanaugh, 2019; Zhu et al., 2019). The comparison of very high spatial 

resolution UAV datasets (0.03 m/pixel) to moderate spatial resolution satellite remote sensing datasets of 

10 and 25 m/pixel showed that satellite-based monitoring tends to overestimate the mangrove area (Hsu 

et al., 2020). For small areas, UAVs present a valuable alternative to satellite remote sensing, because they 

can classify mangroves with even higher accuracies than very high spatial resolution satellite imagery like 

Pleiades-1B (Ruwaimana et al., 2018). But the long processing time of UAV data compared to satellite 

images was stated by Ruwaimana et al. (2018) to be the main disadvantage.  

Tropical regions like Vietnam are particularly challenging for optical remote sensing in terms of 

atmospheric moisture content, haze, and cloud cover. Cloud and cloud shadow masking prevents the 

consideration of pixels which could lead to inaccurate classifications (Nguyen et al., 2020b).  

 

The review of Pham et al. (2019c) presents the successful mapping of mangroves with object-based and 

pixel-based classification methods using satellite remote sensing data. Taking this as a starting point the 

following paragraph first introduces the pixel-based and then the object-based classification approach in 

more detail. 

Pixel-based classifications consider the spectral signature of each individual pixel of a satellite image 

(Maurya et al., 2021). Also, the computation of indices that combine the spectral information of different 

bands, for instance, the Normalized Difference Vegetation Index (NDVI) and the Soil Adjusted 

Vegetation Index (SAVI), are applicable input data (Rhyma et al., 2020). The distinction between 

moderately and high vegetation biomass using the NDVI is challenging due to its saturation issue. The 

Enhanced Vegetation Index (EVI) was found to have a higher correlation with field measurements than 

the NDVI (Tran et al., 2022). The Enhanced Vegetation Index corrects canopy background noise from 

soil and atmospheric conditions, which makes it valuable for classifications in mangrove ecosystems 

where soil, water, and vegetation contribute to the pixel composition (Tran et al., 2022).   

Supervised classifications like the Maximum Likelihood (ML) classification use Ground Truth Points 

(GTPs) on the present land cover as training data to build a probability density function for the 

investigated land cover classes (Rhyma et al., 2020). The pixels of the image are classified according to 

their respective probability to belong to the classes represented by the training data. The ML classifier is 

the most applied pixel-based classifier (Maurya et al., 2021). It assumes that the training data is normally 

distributed, which can lead to erroneous classification in case the values do not follow a normal 

distribution (Myint et al., 2008). Pixel-based classifications were frequently applied for mangrove species 

distribution mapping that resulted in up to 82% overall accuracy when using Pleiades-1 imagery that was 

pan-sharpened to a spatial resolution of 0.5 m (Wang et al., 2018b). Wang et al. (2018b) found the salt-

and-pepper appearance of the pixel-based classifiers to represent the investigated mangrove species 

smaller and patchier than the object-based approach. 

 

Object-based classification methods account for spectral, and spatial aspects to distinguish mangrove 

areas (Ridha & Kamal, 2021). Spatial aspects are segmentation parameters like shape, scale, compactness, 

and smoothness (Dawod & Sharafuddin, 2021). Dawod & Sharafuddin (2021) found that the scale is the 

most important of the stated parameters since it determines the size of the objects. High spatial resolution 

imagery is advantageous for the segmentation process of an object-based image analysis (OBIA) 

considering the finer resolution of spatial aspects (GISGeography, 2022a).  

The application of multiple segmentation levels is commonly used in OBIA mangrove classification 

approaches. The first level of segmentation can classify water pixels according to Normalized Difference 

Water Index (NDWI) and NDVI threshold values or the Near-Infrared (NIR) band (Pham et al., 2019a; 

Pham & Brabyn, 2017; Valderrama-Landeros et al., 2018; Vo et al., 2013). Then a second-level 
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segmentation can distinguish vegetation from other land cover types. NDVI threshold values of NDVI > 

0.3 or NDVI > 0.4 are commonly applied to classify vegetation (Pham et al., 2019a; Pham & Brabyn, 

2017; Valderrama-Landeros et al., 2018; Vo et al., 2013). 

This research’s literature review revealed that the study of Vo et al. (2013) is unique in mapping 

mangroves on shrimp farms. The application of an object-based classification on a SPOT-5 image using 

the NDVI as an additional band was the subject of the study. SPOT 5 records the multispectral bands 

with a 10 m spatial resolution. It was stated that the accurate classification of mangroves in mixed shrimp 

farm mangrove systems remains challenging (Vo et al., 2013). An integrated mangrove shrimp farm is a 

diked aquaculture characterized by narrow, elongated ditches between rows of mangroves that are planted 

on soil platforms (Lai et al., 2022). A pixel size of 10 meters spans over both narrow mangrove rows as 

well as the water in between illustrated in Figure 1. Accordingly, a finer spatial resolution than 10 m is 

necessary to depict mangrove rows on integrated mangrove shrimp farms with satellite remote sensing 

imagery. 

 

 
Figure 1. Rows of mangroves on an integrated mangrove shrimp farm in the Cà Mau province, Vietnam. (Source: 
own photograph, 2023). 

 

The accuracy of classifications can be assessed with the validation data, which is the remaining part of the 

Ground Truth Points (GTPs) that is not used for the training of the machine learning algorithm. A 

confusion matrix can be used to calculate descriptive and analytic statistics (Manandhar et al., 2009). The 

user, producer, and overall accuracies as well as the Kappa coefficient, are used to report the accuracy of 

classifications (Pham & Brabyn, 2017). The producer accuracy assesses the map from the point of view of 

the map producer. It refers to the probability that a respective land cover class’s reference GTP on the 
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ground is correctly classified by the map. Whereas the user accuracy focuses on the reliability of the map 

from a user perspective. It states the probability that a pixel on the classified map really represents that 

land cover class on the ground (Liu et al., 2007). The overall accuracy is computed by dividing the 

correctly classified GTPs by the total amount of GTPs in the confusion matrix (Liu et al., 2007). A 

minimum land cover interpretation accuracy of 85% should be achieved (Manandhar et al., 2009). The 

Kappa accounts for GTP and mapped land cover agreements that may be caused by chance (Liu et al., 

2007). In terms of accuracy, object-based approaches tend to outperform pixel-based classifications 

(Kamal & Phinn, 2011; Pham & Brabyn, 2017; Pham et al., 2019c; Trang et al., 2016; Wang et al., 2018a). 

However, OBIAs involve more workload than pixel-based classifications. The segmentation process 

increases the labor input and processing time of object-based approaches. Therefore, pixel-based 

classifications are attractive in terms of time and effort, but the extra effort for object-based classifications 

can pay off in terms of higher accuracies. 

Artificial intelligence is applied for remote sensing-based earth observation. Wang et al. (2020) reviewed 

rule-based, data-driven, and reinforcement approaches as well as ensemble methods used for remote 

sensing data mining and analysis. A variety of machine learning algorithms are applied for mangrove 

classification and mapping. Previous studies conclude that Random Forest (RF) outperformed the 

Support Vector Machine (SVM), decision tree, and Maximum Likelihood (ML) approaches in mangrove 

classification problems (Jhonnerie et al., 2015; Jiang et al., 2021; Luo et al., 2016). The Random Forest, 

being a non-parametric ensemble machine learning algorithm, constructs a defined number of individual 

decision trees, which is determined during the setup by n-trees. Each decision tree has one vote for the 

classification. The random forest classification result bases on the majority vote of all its individual 

decision trees (Talukdar et al., 2020). It is a non-linear and adaptive classification model that avoids 

overfitting and performs well with noisy datasets (Luo et al., 2016). Ensemble methods like Random 

Forest obtain better results than data-driven approaches such as SVM, k-Nearest Neighbor (k-NN), and 

Bayes or rule-based approaches such as decision tree. Accordingly, the Random Forest ensemble learning 

method is most commonly applied for classification tasks (Wang et al., 2020). 

 

1.2. Problem statement 

In summary, mangroves are important for various reasons, but severe mangrove forest degradation 

caused by the establishment of, and cultivation practices on shrimp farms is observed in Vietnam. The 

land use contracts for the protection and production forest zone require the shrimp farmers to maintain 

60% mangrove cover on their property. Additionally, mangrove cover greater than 50% is necessary for 

the certification of ecological shrimps. Due to these requirements, monitoring the ratio of mangroves to 

other land use is needed. However, the Vietnamese forest management authorities as well as certification 

organizations lack accurate methods for the observation and quantification of mangroves on a shrimp 

farm scale. The currently applied field surveys are subjective, inaccurate, and time-consuming. Remote 

sensing-based mangrove monitoring has great potential to provide more accurate, transparent, and regular 

observations. Most mangrove classification studies are based on medium spatial resolution satellite data 

for large-scale mangrove distribution mapping. The spatial resolution of Landsat 9, SPOT 5, or the 

Sentinel-2 multispectral instrument is too coarse to depict individual rows or patches of mangroves on a 

shrimp farm scale. Therefore, this proposed study is going to assess the accuracy of object-based and 

pixel-based mangrove classifications on shrimp farm scale, based on a high spatial resolution image. Pixel-

based and object-based classifications have opposing trade-offs in terms of workload and accuracy. 

However, it is not yet clear to what extent these methods perform in terms of accuracy and acceptance of 
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a certain inaccuracy on the shrimp farm level. The stated trade-offs must be considered to investigate the 

applicability of the methods for Vietnamese forest managers as well as eco-labeling organizations. 

 

1.3. Research objectives and research questions 

This study’s general research objective is to investigate the applicability of remote sensing imagery for the 

observation and mapping of mangroves on mixed mangrove shrimp farm systems. The necessity of 

accurate and cost-effective mangrove classification methods for forest managers as well as eco-labeling 

organizations leads to the following research objective and question. 

 

RO1. To compare two commonly used classification methods for mapping mangroves on shrimp farms 

using high spatial-resolution imagery. 

 

RQ1. What is the difference in accuracy between an object-based and pixel-based classification 
for mangrove mapping on shrimp farms with high spatial-resolution imagery? 
 

Mangrove monitoring by the Forest Management Board and certification organizations intends to 

investigate the mangrove ratio present on the shrimp farms. Consequently, this leads to the second 

research objective and question. 

 

RO2. To compare the effect of forest management zones regarding mangrove prevalence on shrimp 

farms. 

 

RQ2. What is the difference in the ratio of mangrove cover on shrimp farms in the protection, 
production and no forest zones? 

 

Although the farmers work and live on the shrimp farms, the estimation of the mangrove ratio is likely to 

be challenging from a ground-based perspective. Accordingly, the third research objective and question 

arise. 

 

RO3. To assess the agreement or discrepancy between ground-based and satellite-based mangrove ratio 

estimates. 

 

RQ3. How do ground-based estimates differ from satellite-based mangrove ratios? 

 

This research aims to study the stated objectives and questions by performing pixel-based, and object-

based mangrove classification methods at a study area in the Năm Căn district of the Cà Mau province, 

Vietnam. The intended results are relative mangrove area maps of the investigated shrimp farms in the 

study area. Maps of the land cover on aquacultures estimated by a SPOT-7 satellite image are going to be 

generated. Moreover, the accuracy assessment with the Producer Accuracy, User Accuracy, Overall 

Accuracy and Kappa coefficient is going to be performed with ground truthing data from the study area. 

In particular, the producer and user accuracy of the mangrove class is important to estimate the 

performance of the classification. The Overall Accuracy for the binary classification of mangrove and 

non-mangrove land cover will be computed and used to indicate the classification’s accuracy and error 
range. It is particularly important to report the error margin of the mangrove classification to reduce the 



8 

risk of shrimp farms being incorrectly indicated to comply with the mangrove ratio specified in the 

regulation. Additionally, an interview with a Vietnamese forest manager provided qualitative information 

on surveying practices as well as the consideration of error margins in meeting the mangrove cover 

threshold. Furthermore, the application of remote sensing-based monitoring will be debated in the 

discussion section. 
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2. MATERIALS AND METHODS 

This section gives an overview of the materials and methods used in this study. First, the study area will 

be introduced before the utilized datasets and applied methods are presented. 

2.1. Study area 

The coast of southern Vietnam provides good conditions for mangrove growth. It is the largest and 

richest mangrove ecosystem in the country (Veettil et al., 2019). The most common mangrove genera that 

occur in Vietnam are Rhizophora and Aviciennia (Veettil et al., 2019). Changes in the hydrology of the 

Mekong River, due to dams, canals, and levees, lead to a reduced sediment load, which impacts coastal 

mangrove ecosystems. However, mangrove losses were mainly anthropogenically driven by chemical 

warfare with herbicides during the Vietnam War as well as the conversion of mangrove areas into 

aquacultures (Van et al., 2015). Pham et al. (2022) found that of the Mekong Delta’s provinces, Cà Mau 

hosts the largest area of mangrove forests and even experienced a slight increase in mangrove area during 

the time from 2016 to 2020. Cà Mau province, the Southernmost province of Vietnam, hosts an 

abundance of mangrove forests and shrimp farms (Truong & Do, 2018). The Mekong Delta represents 

Vietnam’s largest farming and aquaculture region. Therefore, the Cà Mau province, which accommodates 

58,285 ha of the about 100,000 ha of the Mekong Delta’s total mangrove area (Truong & Do, 2018), is 

especially interesting for a remote sensing mangrove observation case study. 

The confrontation of both the largest aquaculture and mangrove forest located in the Cà Mau province 

holds the potential to escalate in the conversion of mangrove land cover to aquacultural land use as 

observed by Son et al. (2015). The government encouraged farmers with financial incentives to replant 

and protect mangroves to counteract the mangrove loss (Lai et al., 2022). Moreover, a reforestation 

project introduced by the Vietnamese government recovered about 6,800 ha of mangroves on mangrove-

shrimp farms in the Cà Mau province (Son et al., 2015). This raises a special interest in the monitoring of 

the aquaculture to mangrove forest dynamics in the Cà Mau province, particularly the ratio of mangrove 

cover present on shrimp farms. Bosma et al. (2016) point out three main types of mixed mangrove 

shrimp farm systems. Rows of mangroves are present in the ponds of integrated mangrove-shrimp farm 

systems. Associated mangrove-shrimp farm systems host continuous patches of mangrove in the pond. 

In separated systems, the mangroves do not grow in the pond but on the land surrounding it (Bosma et 

al., 2016). Integrated mangrove-shrimp farming systems are typical for the Năm Căn and Ngoc Hien 
districts of the Cà Mau province (Ha et al., 2012). Accordingly, mixed mangrove shrimp farm systems in 

the Cà Mau province’ Năm Căn district are defined as areas of interest to investigate the objective of 

mangrove coverage. The Cửa Lớn River represents the Southern border of the Năm Căn district and is 

the major river in the study area (Map 1). The study area in Năm Căn district contains a special-use, 

protection, and production forest indicated in Map 1. Additionally, a non-forested zone is located in the 

Northeast of the study area. The predominant mixed mangrove aquaculture model in the study area are 

integrated mangrove shrimp farms. 
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Map 1. Study area covering forest zones and integrated mangrove-shrimp farm systems in Năm Căn district, Cà Mau 
province, Vietnam (Google Earth, 2023; Hijmans et al., n.d.; Planet Labs PBC., 2022b). 

An equatorial tropical climate prevails in Cà Mau. Two seasons, the dry season caused by the Northeast 

monsoon from December until April, and the wet season caused by the southwest monsoon from May to 

November, influence the atmospheric conditions (Groenewold et al., 2015). The Southwest monsoon’s 
winds transport moist, water-saturated air parcels from the Gulf of Thailand to Cà Mau, which leads to 

heavy precipitation events during the wet season (Groenewold et al., 2015). An average annual 

precipitation of about 2000 mm and temperatures ranging from 20 to 35°C are recorded (Muoi et al., 

2022). The wet season’s Southwest winds and the dry season’s Northeast winds also influence Cà Mau’s 
wave environment. The highest waves occur at the coastlines facing the wind direction. Accordingly, the 

study area, which is located on the West coast, experiences the highest waves during the southwest 

monsoon caused by wind speeds up to 4.5 mm (Groenewold et al., 2015). Diurnal tides with a maximum 

tidal range of +1 m prevail in the West Sea which borders the study area (Luom et al., 2021). Cà Mau 

province is prone to flooding as it is a flat, low-lying area with an altitude ranging from -1 to 3 m above 

sea level (Tran et al., 2015). 

 

2.2. Overview of materials and methods  

This subsection gives an overview of the methods and materials. The research process is going to be 

presented with a flow chart.  

 

Figure 2 illustrates the workflow of the process from the raw satellite image to maps indicating the 

mangrove ratio per forest zone and the mangrove ratio on the shrimp farms covered in the study area. 

The main steps involve the image pre-processing in the first block of Figure 2, followed by the 

classification with both approaches and the accuracy assessment in the second block. At last, the 
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mangrove ratio is calculated and analyzed in the third processing block. The subsequent sections of this 

chapter will explain the processing steps as well as the field data collection of Ground Truth Points 

(GTPs) in detail.  

 

 

 
Figure 2. Flow chart on the processing steps of the study. The process is grouped into image processing, image 
classification & accuracy assessment, and spatial analysis. The accuracy assessment addresses research question one 
(RQ1) and the spatial analysis addresses research question two and three (RQ2 & 3). 
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2.3. Data 

The datasets that were used in this study are listed in Table 1. The blue parallelograms in Figure 2 represent 

the input data, which is listed in Table 1. The qualitative interview is not represented in the processing 

workflow since it is used as background information on the Forest Management Board’s mangrove 

monitoring practices applied in the study area. The questionnaire survey of Prof. Dr. Vo and the Geo Eye 

mangrove map of Julia Hogestijn were used to compare the mangrove ratio created in this study with the 

estimates of alternative approaches. 

 
Table 1. List of applied datasets. Where .shp represents shapefile, .tif represents tagged image file, .m4a represents 
MPEG-4 audio file, and .docx represents Microsoft Word file. 

Name Type, resolution & format Date Source of data 

shrimp farm boundaries  

Vector (polygon)  
[.shp] Vo Quoc Tuan  

forest zone boundaries  

Vector (polygon)  
[.shp] Vo Quoc Tuan  

questionnaire survey  

Vector (point)  
[.shp] 2022  Vo Quoc Tuan  

Ground Truth Points 
(GTPs) 2023 

Vector (point)  
[.shp] 2023  

Vo Quoc Tuan & Finn 
Münch 

SPOT-7 satellite image 
  

Raster  
(pan 1.5 m, multispectral 6 m) 
[.tif] 2022  

Airbus and European 
Space Agency (ESA)  

qualitative interview  

Record & notes  
(.m4a & .docx) 2023  

Vo Quoc Tuan & Finn 
Münch 

Geo Eye mangrove map 
Vector (polygon) 
[.shp] 2019 Julia Hogestijn 

 

 

2.4. Pre-processing of satellite imagery  

Several parameters can be taken into account for the comparison of candidate remote sensing images to 

perform a land cover observation task (Phinn et al., 2003). The spatial and spectral resolution was 

considered to be most important for the mangrove mapping on shrimp farms. Therefore, a high spatial 

resolution satellite remote sensing image captured during the field survey of Prof. Dr. Tuan Quoc Vo 

from the 21st to the 25th of July 2022 was obtained. The Satellite pour l’Observation de la Terre 7 (SPOT-

7) image was recorded at 09:16 AM on the 25th of July 2022. This image also represents the least cloud 

cover over the study area found in the SPOT and Pleiades archive from 2020 up to the present. A 

proposal to obtain this SPOT-7 orthophoto bundle package from ESA was submitted and accepted in 

January 2023. With the consent of Airbus and the European Space Agency (ESA), the corresponding data 

was downloaded (Airbus, 2022). SPOT-7 captures the Near Infrared (NIR), red, green, and blue band 

with a spatial resolution of 6 meters (Table 2). The SPOT-7 satellite also provides measurements with a 

panchromatic band that has a 1.5 m spatial resolution. The obtained product is geometrically and 

radiometrically processed. The image was delivered orthorectified. The pixel values represent 

radiometrically and atmospherically corrected reflectance scaled to 10,000 (Airbus, n.d.). 
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Table 2. Spectral bands and spatial resolution of the SPOT-7 satellite (European Space Agency (ESA), n.d). Where 
PAN represents the panchromatic band. NIR represents the Near-Infrared band. 

Spectral 
Band 

Wavelengths 
[nm] 

Spatial 
resolution [m] 

PAN 450-750 1.5 
Blue 450-520 6 

Green 530-600 6 

Red 620-690 6 

NIR 760-890 6 
 

 

Considering the panchromatic and multispectral bands the applicable pan-sharpening weights were 

calculated with the ‘Calculate pan sharpen weights’ tool in Arc GIS Pro. The SPOT-7 image was 

pansharpened with the Gram-Schmidt algorithm according to the calculated pan-sharpening weight for 

the respective band (Figure 2). Gram Schmidt was selected since it performs better than the Principal 

Component Analysis (PCA) and the Intensity-Hue-Saturation (HIS) pan-sharpening methods in terms of 

the spectral deviation for high spatial resolution WorldView-2 and medium-scale Landsat-8 satellite 

imagery (Mahmoudi & Karami, 2020). Gram Schmidt achieved the best spectral match with the least 

spectral deviation between the multispectral and the pan-sharpened image (Mahmoudi & Karami, 2020). 

Therefore, Gram Schmidt was applied to minimize spectral distortion during the pan-sharpening process. 

A cloud mask was created using a supervised Support Vector Machine (SVM) classifier in Arc GIS Pro to 

improve the cloud mask that was delivered with the SPOT-7 image. Training polygons representing the 

classes cloud, cloud shadow, mangrove, vegetation, water, infrastructure, and soil were created. The 

spectral signature of the SPOT-7 image’s pixels within the respective class’s polygons was used to train 
the SVM classifier. The land cover map resulting from the supervised classification was used to indicate 

areas covered by cloud or cloud shadow. A natural color composite using the red, green, and blue bands 

of the SPOT-7 image was used to visually inspect the performance of the cloud and cloud shadow areas. 

Moreover, the blue band as well as the red band was individually visualized with a grey scale to detect 

haze and thin clouds. The grey scale visualizations were stretched to represent the value range greater 

than the 85th percentile. As a result, land covers that cause low reflections in the blue and red band are 

shown as black whereas haze and clouds are visualized according to the grey scale due to the spectral 

signature’s sensitivity to red and blue wavelengths (GISGeography, 2022b). The overlay of the classified 

cloud map, the natural color composite as well as the blue and red band that underwent spectral 

stretching indicated where the SVM classifier did not detect haze or clouds. All stated layers were used to 

manually create a cloud mask that covers the haze and cloud pixels of the SPOT-7 image. According to 

the date, time, and location of the SPOT-7 image caption, the position of the sun can be estimated. 

Considering the sun’s position, the angle between the cloud and cloud shadow was estimated. Cloud 

shadows were detected using a digitized cloud mask, the estimation of the angle between the clouds and 

their shadow as well as the previously mentioned red band, green band, and natural color composite. The 

generated cloud shadow and cloud mask were merged and then rasterized according to the panchromatic 

band of the SPOT-7 image. Cloud and cloud shadow pixels are represented as NoData and all other 

pixels with a value of 1. The cloud and cloud shadow mask was applied to the pansharpened SPOT-7 

image with the ‘raster calculator’ tool (Figure 2). The mask layer was multiplied with the pansharpened 

SPOT-7 to create a cloud and shadow-masked, pansharpened SPOT-7 image. 
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2.5. Field survey 

A QGIS project was created for the Ground Truth Point (GTP) sampling campaign. The workflow for 

the QGIS project generation is described in the QGIS and QField tutorial in Appendix A. The created 

project and the applied data were packaged and then transferred to the mobile QField devices. The QGIS 

project’s layers include a vector polygon shapefile of the reference shrimp farms of interest. Twenty-five 

shrimp farms in each, the protection and production, forest zone were randomly selected using the 

random point generator with a minimum distance of 700 m. This minimum distance was chosen since it 

enabled the distribution of 25 random points in the respective forest zone of interest. The area of the 

observed forest zones was not large enough to generate 25 randomly distributed points with minimum 

distances greater than 700 m. The terrain in the protection and production forest is characterized by 

rivers, channels, sluices, and shrimp ponds, which limit accessibility via land routes. Considering the 

expenses of hiring vehicles, efficient transport between the sampling sites was aspired. To reduce the 

travel time in the difficult terrain, increase the number of GTPs, and improve the sampling efficiency one 

shrimp farm adjacent to each randomly selected shrimp farm was added as a reference shrimp farm of 

interest. Accordingly, clusters of two reference shrimp farms of interest were generated. The limited 

network of paths and bridges was displayed in the QField application using an open street map shapefile. 

The SPOT-7 satellite image with a spatial resolution of 1.5 m and Google Earth imagery with a spatial 

resolution of 0.5 m were used as background in QField to facilitate orientation and navigation during the 

field survey. A training for the QField application was developed from the 13th to the 16th of March 2023. 

A total of four training sessions were held. Prof. Dr Tuan Quoc Vo (Can Tho University), Dr. Iris van 

Duren (ITC University of Twente) as well as four students, namely Sagittarus Tinh, Thanh Loc, Thuat 

Ngon, and Huynh Nhat Hao, participated in the QField tutorial and practical. The training introduced the 

field survey and the sampling procedure. The conveyed QField skills and tools covered during the 

practical are summarized in the QField application tutorial in Appendix A. Students were instructed to 

locate the sampling points in the center of the areas representing the respective land cover. Edges or 

transition zones of one to another land cover should be avoided and not sampled. The pan-sharpened 

SPOT-7 image with a spatial resolution of 1.5 m was used to ensure that the point is located on a pixel 

that is surrounded by a buffer of as many pixels representing the same land cover as possible. At least a 

buffer of one pixel of the same land cover must surround a pixel of interest to create a sample point. This 

ensures that no mixed pixels are used as Ground Truth Points (GTPs).  

The creation of a GTP with the QField application involved three main steps. 

 

1. Defining the ‘Code’ of the GTP.  
Individual code letters, ranging from A to D, were assigned to each student. The respective 
student’s code letter was used as the first item of the GTP’s code. Then a unique number starting 
with 001 for the first GTP and then counting upwards to 002, 003, etc. was designated. 
Considering the first student’s samples this procedure resulted in the following codes A001, 
A002, A003, etc. 

2. Defining the ‘Class’ of the GTP. 
The land cover class of the surveyed sample point was selected from a drop-down menu. This 
drop-down menu was previously set up in the QField project to make the sampling quicker and 
more convenient. It presented the land cover classes of interest ‘Mangrove’, ‘Water’, ‘Vegetation’, 
‘Infrastructure’, and ‘Soil’. 

3. Taking an image of the GTP. 
The surveyed sample point was photographed with the inbuilt camera of the used device and 
directly linked to the GTP. The image provides proof of the surveyed land cover. Moreover, it 
can indicate the location of the surveyor as well as the direction and distance to the GTP. 
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These three steps were mandatory. A GTP could not be saved if one of the three features was missing. 

This condition was set up in the created QField project to avoid incomplete GTPs. Another condition 

defined that the individual ‘Code’ for the GTPs must be unique. In case a code was duplicated, a warning 
was displayed and the GTP could not be saved. The date of the GTP record was automatically generated 

according to the device’s date. The final optional step was to write a comment. The ‘Comment’ section 
was used to record land cover change during the SPOT-7 image caption and the field survey, the 

specification of the water subclasses pond water or river water, etc. The described step-wise sampling 

procedure with the QField interface is visualized in Figure 3. 

 

 
Figure 3. Interface of the 'GTPs_NamCan_A' QField project that was applied during the field survey. 

The field survey took place on the 22nd and 23rd of March 2023. The students paired up. Each duo rode 

with a motorbike to the reference shrimp farms of interest in the two strata protection forest and 

production forest. An equal number of shrimp farms was aimed in both forest zones to sample each 

forest zone with a similar number of GTPs. A forest manager guided the students to the pairs of 

reference shrimp farms of interest that were previously selected according to a random cluster sampling. 

Always two adjacent shrimp farms were sampled by one pair of students. The first student sampled one 

and the second student the other shrimp farm. The land cover classes mangrove, water, vegetation, soil, 

and infrastructure characterize the study area’s landscape. The mentioned land cover classes were sampled 

on each reference shrimp farm of interest. The mangrove land cover class was defined as trees and shrubs 

of the genera listed in the mangrove floristics of the world table presented by Ragavan et al. (2021, p. 40 - 

43). A minimum height of three meters was considered to neglect mangrove propagules and saplings, 

which contribute less to the functions and ecosystem services of a mangrove forest than grown 

mangroves. A minimum height of five meters specified by the Forest Protection Department to ensure 
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the protective function, which is reached about 5 years after planting the seedling1, was not considered 

because only a few mangroves in the study area reached this height. Whereas the vegetation land cover 

class was defined as non-mangrove vegetation for instance, grass, vegetables, fruit trees, etcetera. Since 

water and mangroves dominated in the study area, two GTPs for each, the water and mangrove, land 

cover class were created on the respectively investigated shrimp farm. One water GTP within the shrimp 

pond and one in the channel or river bordering the respectively investigated shrimp farm were sampled to 

account for the spectral properties of the water bodies caused by the different depth and total suspended 

matter (TSM) like sediment or organic components (Das et al., 2017). The mangroves in the shallow 

aquaculture ponds lead to more dissolved organic matter (DOM) in the water column. Particularly the 

chromophoric dissolved organic matter (CDOM) influences the light absorption and consequently the 

color of the water (Das et al., 2017; Juhls et al., 2019). The sediment transport in the deeper water of 

rivers and channels leads to a higher load of suspended sediment in the water column, which increases the 

backscatter of light (Juhls et al., 2019). If the intended land cover was not located on the shrimp farm it 

was compensated by the closest respective land cover in the vicinity of the shrimp farm. On the second 

fieldwork day, the students traveled by boat to the reference shrimp farms of interest that were not 

accessible via the land route. In total, the four students collected 778 GTPs, which are listed according to 

the represented land cover in Table 10 of Appendix B.  

 

2.5.1. Ground Truth Point (GTP) quality assessment 

A quality assessment of the GTPs was performed in QGIS. The location and class as well as the captured 

image of the respective land cover of each GTP, were checked. The presence of surrounding buffer pixels 

of the same land cover class as the GTP located amidst was investigated. Moreover, the minimum 

distance between GTPs of the same land cover class was examined. 

GTPs presenting nonconformity with the requirements defined in the field sampling manual (Appendix A) 

were noted. It appeared that a subsequent number of 199 GTPs would not be usable considering the 

predefined requirements. The neglection of these GTPs would have led to the loss of about 25% of the 

GTPs. Therefore, the following assumptions were made.  

1. A distance of 50 m between land cover GTPs of the same class ensures to gain of the added 
value of independent spectral reflectance observations for the respective land cover class. This 
assumption bases on the heterogeneity observed for the respective land cover classes in the study 
area. 

2. The spectral signature of the sub-land cover classes pond water and river water differ 
significantly. Therefore, a pond water and river water GTP with a distance of less than 50 m are 
relevant since they are not part of one homogeneous water body. 

3. Separate buildings of the infrastructure GTPs with a distance of less than 50 m between each 
other are also relevant since they do not represent one homogeneous surface build of the same 
material. Spatial autocorrelation may not apply for infrastructure GTPs since the used materials 
can vary regardless of the distance between the individual complex of infrastructure. Field 
observations of corrugated iron, roof tiles, palm leaves, and concrete being used as construction 
material showed that the spectral signature of adjacent infrastructure varied according to the 
utilized material. 

After the GTP quality assessment on a pixel level, it was also performed on an object level according to 

the results of the segmentation. Some GTPs of the water class were located within one object. In this case 

either one of the GTPs was neglected or moved to an adjacent object. Some objects included more pixels 

 
1 Zoom meeting with the technical manager of the West Sea Protection Forest Management Board and Prof. Dr. Vo 
Quoc Tuan (Head of the GIS and remote sensing laboratory, Can Tho University). 14.04.2023. 
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of another land cover class than the GTP’s class. In this case either the class of the GTP was adjusted or 
the GTP was moved to an adjacent object representing pixels of the correct land cover class.  

Considering the stated assumptions and the relocation of ill-positioned GTPs to locations complying with 

the requirements, the quality assessment resulted in the neglect of 63 GTPs. Reasons for neglecting GTPs 

ranged from the risk of introducing mixed pixels as reference for a particular land cover class to 

misclassifications to an insufficient distance between GTPs of the same land cover. Particularly the 

collection of explicit soil land cover sample points was problematic. Often a mixture of vegetation and 

soil prevailed in the study area, which would result in mixed pixels or objects used to identify soil areas. 

This could introduce unclear decisions in the classification algorithm. In total, 29 soil GTPs were 

neglected due to their unclear representation of the respective land cover.   

 

2.5.2. Training and Validation dataset 

A script to divide the quality assessed GTPs into a training and a validation dataset was written in 

RStudio. The division of GTPs into random 70% and 30% datasets was commonly applied in published 

research articles performing random forest land cover classifications (Behera et al., 2021; Guo et al., 2022; 

Pham et al., 2020; Wasniewski et al., 2020). Accordingly, the R script divides the available GTPs into a 

training dataset containing a random selection of 70% for each land cover class’s GTPs (mangrove, water, 

vegetation, soil, infrastructure) and a validation dataset containing the remaining 30% of each land cover 

class’s GTPs. The GTPs were split proportional to the respective strata to ensure that the resulting 

training dataset contained 70% of each land cover class’s GTPs. A for loop2 facilitated to create ten 

different pairs of training and validation datasets with randomly selected GTPs. After each iteration of the 

for loop, the seed incremented by one to generate seeds from one to ten. During each loop, one individual 

seed was used to ensure that individual training and validation datasets are created. After the performance 

of each loop, a matrix illustrating the ratio as well as an absolute number for each class of the training and 

validation dataset was printed to the console and controlled. The classification and accuracy assessment 

was performed with all dataset pairs to investigate the consistency of the calculated accuracy. 

 

2.6. Classification 

A classification of satellite remote sensing imagery involves the raster file of the captured image as well as 

Ground Truth Points defining land cover classes within the satellite image. In this study, the 

pansharpened, cloud, and cloud shadow masked SPOT-7 image, after this referred to as SPOT-7 image as 

well as the quality assessed GTPs, in the following parts referred to as GTPs, serve as input for the 

classification. In this study, object-based and pixel-based classifications were performed and compared. 

The subsequent subchapters describe the respective classification in more detail. 

2.6.1. Object-based Classification 

The object-based classification was performed with eCognition Developer 10.3. It involves three main 

steps, the image segmentation into objects, the classification assigning a land cover class to each object, 

and the accuracy assessment investigating the classification’s performance (Figure 2). First, objects are 

created with the segmentation process. The ‘Estimation of Scale Parameter’ (ESP2) tool was used to 

estimate the most appropriate scale parameter for the segmentation of the SPOT-7 image (Drǎguţ et al., 

2010, 2014; Trimble Inc., 2020). The ESP2 tool was applied to five representative subsets that 

respectively cover several integrated mangrove-shrimp farms, channels as well as parts of the river and its 

 
2 A for loop is a function that enables repeatedly executing a section of code until a defined condition is met. 
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riverbank. The maximum local variance of the five subsets ranged from 92.78 to 101.63. The local 

variance peaked at a scale of 50 for each investigated subset. This indicates that a scale parameter of 50 is 

the most appropriate for the segmentation of the SPOT-7 image. The shape parameter and the 

compactness were set to 0.1 to attribute most of the weight to the spectral information. Due to the spatial 

resolution of the SPOT-7 image, less importance was attributed to the shape of the objects compared to 

the spectral signature. The segmentation based on the four pan-sharpened spectral bands of the SPOT-7 

image with a spatial resolution of 1.5 m as well as on two spectral indices that were computed using the 

relevant pan-sharpened SPOT-7 bands. The image layer weight was set to 1 to give equal weight to each 

input layer in the segmentation process. 

The ‘Index Layer Calculation’ of eCognition was used to create a respective layer for the Normalized 

Difference Vegetation Index (NDVI) and the Normalized Difference Water Index (NDWI). The NDVI 

was calculated as follows: 

 𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)(𝑁𝐼𝑅 + 𝑅𝑒𝑑)  

 

where NIR represents the Near-Infrared band, and Red represents the red band of the SPOT-7 satellite 

remote sensing image (Gupta et al., 2018). 

The NDWI was computed with the following equation: 

 𝑁𝐷𝑊𝐼 = (𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛)(𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛) 
 

where NIR represents the Near-Infrared band, and Green represents the green band of the SPOT-7 

satellite remote sensing image (Gupta et al., 2018). 

 

Jhonnerie et al. (2015) found that the more input data was used, for instance, including spectral indices 

like the NDVI and NDWI in addition to the information of the spectral bands, the better the RF 

classifier performed. The NDWI was found to be the third most important input variable for the pixel-

based mangrove classification (Jhonnerie et al., 2017). Whereas the study by Chen (2020) indicated NDVI 

to be the second most important variable for the Random Forest (RF) image classification approach. 

Also, the study by Shi et al. (2016) indicates that the use of the spectral metrics, for instance the 

Normalized Difference Mangrove Index (NDMI), outperformed the use of the raw band reflectance in 

terms of the User (UA), Producer (PA), and Overall Accuracy (OA). This result was verified by the 

McNemar test results of Shi et al., (2016), which indicated that the classification that used the spectral 

metrics performed significantly better than the classification that is based on the raw band reflectance (Shi 

et al., 2016). Therefore, the NDVI and NDWI were used as additional input layers for the segmentation 

as well as the classification. The application of the vegetation and water index supported the 

discrimination between the predominant land cover classes in the study area, namely water and mangrove 

as well as the residual land cover classes. 

 

A variety of classification test runs were executed to assess the performance of different classifiers and 

input layers. The Bayes, k-NN, SVM, decision tree, and Random Forest supervised classifiers that are 

available in eCognition were investigated. Furthermore, different input data was used in the test runs to 

examine the effect of the NDVI and NDWI as additional input layers besides the red, green, blue, and 

NIR bands on the respective classifier’s performance. The performance was investigated via accuracy 

assessments based on the independent validation GTPs and the visual inspection of classification results 

in eCognition. The classifier and input data that revealed high accuracies were chosen for this study. The 
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selection of a classifier that performs better for one of the approaches would not be valid for a fair 

comparison. Therefore, Random Forest was selected to avoid introducing a bias, since it indicated equal 

accuracies for the object-based and pixel-based classification. Moreover, the result of the Random Forest 

classifier indicated one of the highest mangrove class-specific accuracies for both the object-based and 

pixel-based approach. The applicability of the Random Forest algorithm for the classification of 

mangroves is confirmed by scientific literature stating that Random Forest outperforms other classifiers 

like SVM, decision tree, Maximum Likelihood, Bayes and k-NN (Jhonnerie et al., 2015; Jiang et al., 2021; 

Luo et al., 2016; Talukdar et al., 2020; L. Wang et al., 2020) Therefore, the selection of the Random 

Forest classifier was based on the literature review as well as the comparison of the classifiers’ test runs. 

The ‘Accuracy Assessment’ tool was used to create a confusion matrix and calculate the Overall Accuracy 

(OA), Kappa as well as the User Accuracy (UA), Producer Accuracy (PA), and Kappa per class (Trimble 

Inc., n.d.). The Overall Accuracy (OA) and Kappa were considered as statistics indicating the 

classifications’ accuracy. Since this study focuses on the classification of mangroves, particularly the 

mangrove class’s User Accuracy (UA) and Producer Accuracy (PA) as well as the Kappa for the 

mangrove class were considered to select suitable classifiers and input data.  

 

The Random Forest classifier with a maximum number of 50 decision trees and the input data were used 

to perform ten supervised classification replicates in eCognition. The standard setting of 50 decision trees 

suggested by eCognition was applied since using more decision trees than required would unnecessarily 

increase the processing time (Talukdar et al., 2020). Investigating the robustness of the result’s 
classification accuracy using different replicates of GTPs as training and validation data is of interest to 

test its applicability. Therefore, each classification used an individual pair of the ten training and validation 

GTP datasets that were previously generated in RStudio. Subsequently, an accuracy assessment was 

performed, and the confusion matrix was exported for the result of each classification. A table including 

the mangrove class’s User Accuracy (UA), Producer Accuracy (PA), and Kappa as well as the Overall 

Accuracy (OA) and Kappa of the ten classifications, was compiled. This table was used to calculate the 

descriptive statistics Minimum, Average, Median, Maximum, and Range, which facilitated the illustration 

as box plots. The ten classification replications indicate the robustness or variability of the assessed 

accuracies according to the used training and validation GTPs. Moreover, each of the ten exported 

confusion matrices containing the classes mangrove, water, vegetation, infrastructure, and soil was 

reclassified to a two-by-two confusion matrix representing the mangrove class and another class called 

non-mangrove, which represents all remaining land cover classes. Subsequently, the Overall Accuracy for 

the classification of the classes mangrove and non-mangrove was computed for each of the ten confusion 

matrices. The object-based Random Forest classification that achieved the median mangrove class-

specific accuracies was exported from eCognition to further investigate the land cover map in Arc GIS 

Pro. 

 

2.6.2. Pixel-based Classification 

The pixel-based classification was also performed with eCognition Developer 10.3 to ensure the 

comparability of the resulting object-based and pixel-based classification. The ‘chess board’ segmentation 
was used to create one object per pixel. The test runs investigating the performance of machine learning 

algorithms and input data for the classification task were also performed for the pixel-based approach. 

Subsequently, a classifier that achieved high and similar accuracies for both the object-based and pixel-

based approach was selected. The applicability of the Random Forest classifier was also confirmed by the 

literature, which stated it to be a well performing, commonly used classifier. Accordingly, a pixel-based 

land cover classification using the same settings for the Random Forest classifier with 50 decision trees 
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and the available SPOT-7, NDVI, and NDWI input data as for the object-based approach was performed 

for each of the ten individual GTP replicates (Figure 2). Subsequently, the accuracy assessment was 

replicated for each of the ten GTP replicates to assess the robustness of the pixel-based classification. 

Also, the pixel-based Random Forest classification that achieved the median mangrove class-specific 

accuracies was exported from eCognition for further processing and analysis.  

 

A land cover map of the entire study area with a spatial scale of 1:50 000 was created in Arc GIS Pro 

using the result of the object-based and pixel-based Random Forest classification. The fine differences 

between the studied approaches cannot be perceived on that scale. Therefore, a subset of the land cover 

map and the mangrove cover map covering the protection and production forest zone as well as the no 

forest zone was generated for the investigation of differences on a finer spatial scale of 1:15 000. 

Furthermore, a mangrove cover difference map was produced with the ‘Symmetrical Difference’ tool of 

Arc GIS Pro’s overlay toolset to illustrate discrepancies between the object-based and pixel-based 

approach. 

 

2.6.3. McNemar test 

The McNemar test was used to compare the overall performance of the object-based and pixel-based 

classifier. The reference validation GTPs were used to indicate misclassified objects or pixels. The count n 

of misclassified GTPs of one approach, which were correctly classified by the other approach and vice 

versa was used to perform the McNemar test with one degree of freedom. The following formula was 

considered: 𝑥2 = (|𝑛𝑜𝑝 − 𝑛𝑝𝑜| − 1)2𝑛𝑜𝑝 + 𝑛𝑝𝑜  

 

where 𝑛𝑜𝑝  represents the number of objects misclassified by the object-based classification 𝑜  but 

correctly classified by the pixel-based classification 𝑝, and 𝑛𝑝𝑜 indicates the number of pixels misclassified 

by the pixel-based classification 𝑝 but correctly classified by the object-based classification 𝑜. A 𝑥2 value 

greater than 3.84 indicates a statistically significant difference in the performance between the compared 

classifications at a confidence interval of 95% (Kavzoglu, 2017). 

 

The McNemar test was performed with the ten individual validation GTP replicates for both the object-

based and pixel-based classifications resulting from the respective GTP training dataset. Moreover, the 

McNemar test was specifically applied on mangrove misclassifications to directly assess the classifications’ 
performance for the mangrove land cover class. Therefore, the mangrove validation GTPs were used for 

the mangrove specific McNemar test to indicate misclassified mangrove objects or pixels. 

 

The following hypotheses were investigated with the McNemar test on all land cover misclassifications as 

well as the McNemar test specifically focusing on the mangrove land cover misclassifications: 

H0 There is no difference in the number of misclassified GTPs for the object-based and pixel-based 

approach. 

H1 There is a difference in the number of misclassified GTPs for the object-based and pixel-based 

approach. 
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2.7. Mangrove to shrimp farm ratio map 

The ten supervised object-based and pixel-based classification replicates were investigated. The land cover 

map of the respective classification approach that achieved the median in the mangrove-specific 

accuracies, namely the User and Producer accuracy of the mangrove class (PAm & UAm) as well as the 

mangrove-specific Kappa coefficient (Kappam), was exported from eCognition. The exported 

classification and the shrimp farm boundaries for the study area were used to create a mangrove to 

shrimp farm ratio map with the ‘Summarize within’ analysis tool in Arc GIS Pro (Figure 2). The mangrove 

specific Overall Accuracy, calculated by merging all other classes into one class called ‘non-mangrove’, 
was computed for each individual object-based and pixel-based classification replicate. The median 

Overall Accuracy of the ten replicates for the respective classification approach was considered as the 

error margin of the mangrove class. This error margin was used to indicate shrimp farms that have a 

relative mangrove area within the range of 60% plus or minus the error margin on a map. Shrimp farms 

that present a mangrove ratio greater than 60% plus the error margin are indicated to comply with the 

regulations. On the other hand, shrimp farms with mangrove ratios smaller than 60% minus the error 

margin do not have enough relative mangrove cover to comply with the regulations in the protection and 

production forest zone. Shrimp farms with mangrove ratios within the transition range from complying 

to not complying with the 50% regulation for the certification of ecological shrimps are indicated 

according to the mangrove ratio error margin. Also, the extrema of greater than 99% and smaller than 1% 

relative mangrove area on the shrimp farm are illustrated in individual classes. Only shrimp farms with an 

area greater than 1 ha were displayed on the maps. Shrimp farms smaller than 1 ha, and properties that 

mainly presented urban land use were neglected. 

The computed shrimp farm mangrove ratios for the protection and production forest zone were 

compared to investigate differences in compliance with the regulations in the zones. Moreover, the ratios 

of the forest zones were compared to the mangrove ratio on the shrimp farms that are located outside of 

the forest zones. The Shapiro-Wilk test was applied to test if the mangrove ratios of the three 

populations, protection forest, production forest, and non-forest, were normally distributed. 

Subsequently, the non-parametric Mann-Whitney U test was used to test if the mangrove ratios in the 

assessed zones are different. 

The following hypotheses were investigated: 

H0 There is no difference in the mangrove ratio. 

H1 There is a difference in the mangrove ratio. 

 

2.7.1. Validation of Mangrove to shrimp farm ratio map 

To further investigate the reliability of the mangrove ratio computed considering the pixel-based 

classification was compared to a manual digitization of mangroves on shrimp farms performed by Julia 

Hogestijn (2023). A Geo Eye image captured in 2019 with a spatial resolution of 0.4 m was used by Julia 

Hogestijn to manually delineate the mangroves (Hogestijn, 2023). The manual mangrove mapping is also 

one of the methods applied by the Protection Forest Management Board, raising interest in comparison 

to the machine learning classification. The difference in the mangrove ratio based on the manual 

mangrove mapping with the Geo Eye image and the pixel-based SPOT-7 classification was calculated for 

50 shrimp farms in the study area. For this comparison, it was assumed that the mangrove cover did not 

change significantly between 2019 and 2022. This comparison also investigated the effect of the satellite 

images’ spatial resolution on the relative mangrove cover observed on the shrimp farms. 
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2.7.2. Farmers perception of mangrove cover 

The mangrove ratios resulting from the object-based and pixel-based classification were compared to the 

estimates of the farmers that cultivate the respective shrimp farm. The statements of the shrimp farm 

owners’ mangrove cover estimate based on the field survey performed by Prof. Dr. Vo and his colleagues 

from Can Tho University in 2022. One question of the performed survey focuses on the shrimp farmer’s 
perception of the relative mangrove cover on the property in percent (Vo, 2022). This data was used to 

compare the farmers’ estimates with the object-based and pixel-based computation. The purpose of the 

comparison was to examine the ability of farmers to assess and maintain the mandatory mangrove ratio 

on their property based on observation from the ground. The mangrove ratio based on the classification 

trained with the GTP training dataset that revealed the median values for the mangrove-specific 

accuracies, namely the mangrove class’s Producer Accuracy (PAm), mangrove class’s User Accuracy 

(UAm), and mangrove class’s Kappa (Kappam), was used for the comparison. The accuracies investigated 

the reliability of the respective classification. Moreover, the accuracy assessment assured that robust 

mangrove ratios were used for the comparison that are representative for the ten classification replicates 

and not ratios resulting from a classification that achieved a maximum or minimum value in the 

investigated accuracies. 

 

2.8. Expert interview 

Prior to the expert interview, a questionnaire was prepared to gain insider knowledge on the currently 

applied mangrove monitoring practices in the study area. The questions were translated into Vietnamese 

with Google Translate and then shared with Thanh Loc who checked the Vietnamese questions for 

comprehensibility. After small adjustments, Prof. Dr. Vo Quoc Tuan forwarded the questionnaire to a 

technical manager that works for the Forest Protection Department of the Biển Tây (West Sea) 

Protection Forest Management Board. After the technical manager filled out the questionnaire, Prof. Dr. 

Vo and I held a Zoom meeting to elaborate on the questions and clarify the given responses. The digital 

meeting took place on the 14th of April 2023. Prof. Dr. Vo translated from Vietnamese to English and 

vice versa to enable the dialogue with the technical manager.  
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3. RESULTS 

This section will start by giving an overview of the object-based and pixel-based classifications’ 
performance in terms of accuracy to address the first research question (RQ1). The resulting land cover 

maps and maps indicating the relative mangrove cover on the shrimp farms in the protection forest, 

production forest and non-forest zone of the study area are going to be presented approach the second 

research question (RQ2). Moreover, the relative mangrove cover computed with both classification 

approaches will be compared to the estimates of shrimp farmers that live and work in the study area to 

answer the third research question (RQ3). To validate the results on farm level, the mangrove ratio 

estimated in this study is verified with a manual mangrove digitization. 

 

3.1. Ground Truth Points (GTPs) 

Map 2 illustrates the GTPs that were sampled during the field survey on the 22nd and 23rd of March 2023 

after checking for their quality. 

 
Map 2. Ground Truth Points (GTPs) in the study area's protection and production forest (Airbus, 2022). 

In total 407 GTPs were sampled in the protection forest and 308 GTPs in the production forest (Table 3). 

The water class represents the largest group of GTPs (210) followed by the mangrove class with 187 

GTPs. The 79 soil GTPs account for the smallest group of the sampled land cover GTPs. 
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Table 3. Count [n] of quality assessed Ground Truth Points (GTPs) in the production forest, protection forest, and 
entire study area per land cover class. 

  Production forest GTPs [n] Protection forest GTPs [n] Total [n] 

Mangrove 75 112 187 

Water 88 122 210 

Vegetation 57 74 131 

Infrastructure 49 59 108 

Soil 39 40 79 

Total 308 407 715 
 

3.2. Classifier comparison  

This section compares a number of commonly used classifiers to select the most appropriate data, 

machine learning algorithm for the object-based and pixel-based approach.  

 

The assessment of the classification test runs revealed that the Bayes, Random Forest, and Decision Tree 

classifiers resulted in highest accuracies in terms of the Kappa and Overall Accuracy (OA) as well as the 

Producer Accuracy (PA), User Accuracy (UA) and Kappa for the Mangrove class (Table 4 & Table 5). 

Figure 4 and Figure 5 illustrate the result from the Bayes classifier using the available SPOT-7 spectral 

bands and the NDVI for the pixel-based and object-based approach. In terms of the mangrove-specific 

User Accuracy (UAm), which indicates the reliability of the mangrove classification for the map user, this 

classifier and input data resulted in the highest values for both approaches (Table 4 & Table 5). However, 

the residual mangrove-specific accuracies, mangrove Producer Accuracy (PAm), and mangrove Kappa 

(Kappam) were not complemented that well by this classifier. 

 

 
Figure 4. Classification results from the object-based Bayes classifier using the Red, Green, Blue, Near-Infrared, and 
NDVI layers as input data. Where the illustrated land cover classes represent water (blue), mangrove (dark green), 
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vegetation (light green), soil (brown), and infrastructure (grey). No data values are represented by black areas, which 
mainly relate to clouds and cloud shadows. 

 

 

 
Figure 5. Classification results from the pixel-based Bayes classifier using the Red, Green, Blue, Near-Infrared, and 
NDVI layers as input data. Where the illustrated land cover classes represent water (blue), mangrove (dark green), 
vegetation (light green), soil (brown), and infrastructure (grey). No data values are represented by black areas, which 
mainly relate to clouds and cloud shadows. 

 

Considering all three accuracies that specifically focus on the performance of the mangrove classification, 

the Random Forest algorithm performed the classification task well with balanced high values for the 

mangrove Producer Accuracy (PAm), mangrove User Accuracy (UAm), and mangrove Kappa (Kappam) 

(Table 4 & Table 5). 

The accuracy assessment of the three best-performing classifiers, Bayes, Random Forest (RF), and 

Decision Tree, displayed in Table 4 and Table 5 indicate that the mangrove classification performance 

given by the mangrove specific accuracies, mangrove Producer Accuracy (PAm), mangrove User Accuracy 

(UAm) and mangrove Kappa (Kappam), can improve the more input data was used. The classifiers using 

all available spectral bands of SPOT-7 as well as the NDVI and NDWI, resulted in high accuracies when 

assessing the mangrove-specific classification. This is less clearly indicated by the Overall Accuracy and 

the Kappa coefficient, which indicate the accuracy considering all land cover classes. 
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Table 4. Accuracy assessment comparison of object-based classifiers. The respective input data is defined in 
parentheses following the classifier name. RGB NIR represents the four SPOT-7 bands Red, Green, Blue and, 
Near-Infrared. NDVI: Normalized Difference Vegetation Index. NDWI: Normalized Difference Water Index. Pam 
& UAm represent mangrove-specific Producer and User Accuracy. Kappam: Kappa coefficient for the mangrove 
class. Accuracy considering all land cover classes is given by the Kappa and Overall Accuracy (OA). 

Object-based classifier  PAm [%] UAm [%] Kappam  Kappa  OA [%]  

Bayes (RGB NIR) 89.1 96.1 0.86 0.84 87.2 

Random Forest (RGB NIR) 94.6 91.2 0.93 0.82 85.8 

Decision Tree (RGB NIR) 89.1 92.5 0.85 0.77 82.0 

Bayes (RGB NIR NDVI) 89.1 98.0 0.86 0.86 89.1 

Random Forest (RGB NIR NDVI) 94.6 92.9 0.93 0.81 84.8 

Decision Tree (RGB NIR NDVI) 89.1 94.2 0.86 0.76 81.0 

Bayes (RGB NIR NDWI NDVI) 92.7 96.2 0.90 0.85 88.1 

Random Forest (RGB NIR NDWI NDVI) 96.4 93.0 0.95 0.81 85.2 

Decision Tree (RGB NIR NDWI NDVI) 96.4 94.6 0.95 0.79 83.8 
 
Table 5. Accuracy assessment comparison of pixel-based classifiers. The respective input data is defined in 
parentheses following the classifier name. RGB NIR represents the four SPOT-7 bands Red, Green, Blue and, 
Near-Infrared. NDVI: Normalized Difference Vegetation Index. NDWI: Normalized Difference Water Index. Pam 
& UAm represent mangrove-specific Producer and User Accuracy. Kappam: Kappa coefficient for the mangrove 
class. Accuracy considering all land cover classes is given by the Kappa and Overall Accuracy (OA). 

Pixel-based classifier  PAm [%] UAm [%] Kappam  Kappa  OA [%]  

Bayes (RGB NIR) 94.6 96.3 0.93 0.88 90.6 

Random Forest (RGB NIR) 94.6 92.9 0.93 0.84 87.3 

Decision Tree (RGB NIR) 98.2 93.1 0.98 0.84 87.7 

Bayes (RGB NIR NDVI) 94.6 98.1 0.93 0.89 91.5 

Random Forest (RGB NIR NDVI) 94.6 94.6 0.93 0.85 88.2 

Decision Tree (RGB NIR NDVI) 94.6 94.6 0.93 0.84 87.3 

Bayes (RGB NIR NDWI NDVI) 96.4 96.4 0.95 0.87 90.1 

Random Forest (RGB NIR NDWI NDVI) 96.4 93.0 0.95 0.87 89.6 

Decision Tree (RGB NIR NDWI NDVI) 94.6 94.6 0.93 0.84 87.3 
 

The smallest deviation of the mangrove class-specific accuracies is indicated for the object-based and 

pixel-based Random Forest classification, which used the SPOT-7 spectral bands as well as the NDVI 

and NDWI as input data (Table 4 & Table 5). The other investigated classifiers indicated different 

mangrove Producer Accuracies, mangrove User Accuracies, and mangrove Kappas for the object-based 

and pixel-based approach. Moreover, this specific Random Forest classifier and input data represent some 

of the highest mangrove class-specific accuracies for both approaches. 

 

3.3. Accuracy Assessments 

This section presents the replicated accuracy assessment using the ten individual training and validation 

GTP replicates for the object-based and pixel-based Random Forest classifications. Consequently, this 

section addresses the first research objective (RO1) and question (RQ1). Furthermore, the accuracy 

assessment indicates which classification is used to create a land cover map of the study area.  
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3.3.1. Object-based classification 

This section presents the results of the replicated accuracy assessment for the object-based Random 

Forest classification. Figure 6 illustrates boxplots on the replicated accuracies and Figure 7 displays 

boxplots on the replicated Kappa indices. For visualization purposes the accuracies are presented in the 

range from 75 to 100% and the Kappa indices in the range from 0.75 to 1 instead of presenting the entire 

value range from 0 to 100% and -1 to 1 respectively. 

Regarding the mangrove-specific accuracies and Kappa, Figure 6 and Figure 7 illustrate that the maximum 

of the Producer mangrove accuracy (PAm) peaked at 100% and the maximum of the mangrove Kappa at 

1. Both represent the absolute maximum value that can be achieved and result from the classification 

using the seventh GTP training and validation dataset. The second highest PAm of 98% and Kappam of 

0.97 were computed for the classification performed with the fifth GTP training and validation dataset. 

Whereas the mangrove-specific User Accuracy (UAm) performed best with 93% using the sixth training 

and validation GTP for the classification. Both the maximum Overall Accuracy (OA) of 89% and the 

maximum Kappa of 85% were calculated for the classification using the third GTP dataset. In contrast, 

the classification based on the fourth GTP training and validation data revealed the minimum for the 

mangrove-specific Producer Accuracy (84%) and Kappa (0.78). Both minima were indicated as outliers. 

The second lowest PAm and Kappam are 92% and 0.9 respectively. The difference between the PAm and 

Kappam minimum, represented by the outliers, and the maximum resulted in a considerably larger range 

for both accuracies. PAm presented a range of 16%. Kappam spanned a range of 0.22. The UAm 

performed worst with a minimum of 85% considering the second GTP replicate for the classification, 

indicating a UAm range of 7%. The minimum for both the Overall Accuracy (83%) and Kappa (0.78) 

resulted from the classification that utilized the ninth GTP training and validation dataset. Concerning the 

mangrove-specific accuracies UAm indicated the lowest median value of 89%. The median calculation of 

Kappam and PAm, considering the values of all ten individual GTP replicates, resulted in 0.93 and 95% 

respectively. Whereas the median of the generic accuracies, indicating the performance in respect of all 

land cover classes, was 0.81 for the Kappa and 85% for the Overall Accuracy. 

 

 
Figure 6. Boxplots on the accuracies of the replicated object-based classification using Random Forest. Where 
PA_m represents the mangrove-specific Producer Accuracy in percent, UA_m represents the mangrove-specific 
User Accuracy in percent, OA represents the Overall Accuracy in percent.  
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Figure 7. Boxplots on the Kappa of the replicated object-based classification using Random Forest. Where 
Kappa_m represents the mangrove-specific Kappa, Kappa represents the Kappa index.  

 

3.3.2. Pixel-based classification 

In this section, the results for the accuracy assessment of the replicated pixel-based Random Forest 

classifications are presented. Figure 8 visualizes the boxplots of the replicated accuracies and Figure 9 

illustrates the replicated Kappa. For visualization and comparability purposes the value range is displayed 

as for the object-based counterparts (Figure 6 & Figure 7). 

Concerning the pixel-based classifications, all three mangrove specific accuracies indicated mean and 

median values greater than 90%. Figure 8 illustrates that the median PAm and UAm were 95% and 91% 

respectively, whereas the Kappam was 0.93 (Figure 9). The maximum values for the mangrove-specific 

accuracies, with 98% mangrove Producer Accuracy, 93% mangrove User Accuracy, and a value of 0.98 

for the mangrove-specific Kappa, were achieved using the second GTP training and validation replicate 

for the pixel-based approach. The minimum value of 91% for the mangrove-specific Producer accuracy 

and 0.88 for the mangrove-specific Kappa resulted from the fifth GTP dataset and were marked as 

outliers. Kappam indicated the largest value range of 0.1 from the maximum of 0.98 to the minimum of 

0.88.  

Regarding the accuracies that consider all land cover classes, the maximum for the Overall Accuracy (OA) 

and Kappa of 89% and 0.86 was computed using the fourth GTP replicate (Figure 8 & Figure 9). Whereas 

the eighth GTP training and validation replicate dataset resulted in a minimum Overall Accuracy (OA) of 

86% and minimum Kappa of 0.82. The OA presented the smallest value range of 3% from maximum to 

minimum with a median of 87.5%. The Kappa indices were distributed around the median of 0.84 within 

a range of 0.4. 
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Figure 8. Boxplots on the accuracies of the replicated pixel-based classification using Random Forest. Where PA_m 
represents the mangrove-specific Producer Accuracy in percent, UA_m represents the mangrove-specific User 
Accuracy in percent, OA represents the Overall Accuracy in percent. 

 

 

 
Figure 9. Boxplots on the Kappa of the replicated pixel-based classification using Random Forest. Where Kappa_m 
represents the mangrove-specific Kappa, Kappa represents the Kappa index. 

 

 

3.3.3. Comparison of object-based and pixel-based classification 

The replicates of the object- and pixel-based classifications that map two classes, one mangrove class and 

a non-mangrove class for all other land covers, indicated a median overall accuracy (OA) of 95.5% for the 

object-based and 96.2% for the pixel-based maps (Figure 10). The object-based OA ranged from a 

minimum of 93% to a maximum of about 96.6% and the pixel-based OA from a minimum of 95% to a 

maximum of 97.6%. The value range of both approaches varied by 0.91 percent. Also, the interquartile 

range of the pixel-based OA was 0.27% smaller than for the object-based approach. 
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Figure 10. Overall accuracy comparison of the object- & pixel-based mangrove maps using the Random Forest 
classifier. 

According to the McNemar test, all investigated object-based and pixel-based classification pairs resulted 

in x2 values below the significance threshold of 3.84 (Table 6). Therefore, the null hypothesis (H0) was 

accepted, which indicates that there is no difference in the classification of GTPs by the object-based and 

pixel-based approach. The comparison of the object- and pixel-based classification for the three training 

and validation datasets GTPs4, GTPs5, and GTPs6 resulted in the minimum x2 value of 0. The maximum 

x2 value of 1.939 was computed using the GTPs10 training dataset for the classification and the GTPs10 

validation dataset for the accuracy assessment indicating correctly and erroneously classified objects or 

pixels. 

 
Table 6. Results of all land cover classes McNemar test for the ten GTP replicates. nop: number of GTPs 
misclassified by the OBIA that were correctly classified by the pixel-based classification. npo: number of GTPs 
misclassified by the pixel-based classification that were correctly classified by the OBIA. x2 represents the calculated 
result of the McNemar test that indicates a statistically significant difference if x2 is greater than 3.84 at a 95% 
confidence interval. 

  GTPs1 GTPs2 GTPs3 GTPs4 GTPs5 GTPs6 GTPs7 GTPs8 GTPs9 GTPs10 

nop 9 7 14 15 12 9 15 8 8 21 

npo 15 12 10 14 13 10 17 10 6 12 

x2 1.042 0.842 0.375 0.000 0.000 0.000 0.031 0.056 0.071 1.939 
 

The results of the McNemar test that specifically focused on the classification performance of the 

mangrove land cover class are presented in Table 7. All mangrove specific x2 values were below the 

significance threshold of 3.84. This led to the acceptance of the null hypothesis (H0). Accordingly, there 

was no statistically significant difference in terms of the mangrove misclassification for the investigated 

object-based and pixel-based classifier considering the ten utilized GTP datasets. The classifications using 

the GTPs3, GTPs5, GTPs8 and GTPs9 dataset indicated the minimum x2 values of 0. In contrast, the 

maximum x2 value of 2.25 was computed using the GTPs6 training and validation dataset. In this case, 

four mangrove GTPs were misclassified by the pixel-based classification that were correctly classified by 

the object-based classification. Whereas the object-based classification misclassified none of the 

mangrove GTPs. 
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Table 7. Results of the mangrove-specific McNemar test for the ten GTP replicates. nop: number of GTPs 
misclassified by the OBIA that were correctly classified by the pixel-based classification. npo: number of GTPs 
misclassified by the pixel-based classification that were correctly classified by the OBIA. x2 represents the calculated 
result of the mangrove-specific McNemar test that indicates a statistically significant difference if x2 is greater than 
3.84 at a 95% confidence interval. 

  GTPs1 GTPs2 GTPs3 GTPs4 GTPs5 GTPs6 GTPs7 GTPs8 GTPs9 GTPs10 

nop 0 3 4 4 2 0 5 0 2 5 

npo 2 3 3 1 1 4 2 1 1 1 

x2 0.500 0.167 0.000 0.800 0.000 2.250 0.571 0.000 0.000 1.500 
 

 

Table 9 illustrates that the water and mangrove class present the smallest differences with 0.7% for the 

average of the object-based and pixel-based Producer Accuracies. Whereas the infrastructure average 

Producer Accuracy presents the maximum difference (3.9%) from the object-based to the pixel-based 

classification but the minimum difference for the average User Accuracy (0.5%). Comparing both 

approaches the soil User Accuracy achieved the maximum difference of 2.8%. Accordingly, the 

differences between both classification approaches’ average Producer and User Accuracy for the 

respective land cover classes ranged below 4%. Both classification approaches indicated the soil class to 

have the minimum Producer and User Accuracy (Table 9). 

 
Table 8. Class specific average Producer and User Accuracy for the pixel-based and object-based approach 
according to the ten individual replicated classifications. 

  Accuracy Water Infrastructure Soil Vegetation Mangrove 

Pixel Producer Accuracy [%] 92.1 96.3 58.8 79.5 95.3 

Based User Accuracy [%] 91.9 92.5 64.0 85.2 91.0 

Object Producer Accuracy [%] 91.4 92.4 56.8 78.7 94.6 

Based User Accuracy [%] 91.0 93.0 61.2 83.4 88.7 
 

3.4. Land cover and relative mangrove area per forest zone 

This section presents the respective land cover map resulting from the object-based and pixel-based 

classification to compare both approaches via visual inspection (RO1). Additionally, the ratio of 

mangrove to non-mangrove land cover within the forest zones in the study area is indicated on the maps 

to address RO2 and RQ2. 

3.4.1. Object-based forest zone mangrove ratios 

The computation and illustration of the relative mangrove area in the study area’s forest zones in Map 3 

indicates that the special-use forest presented the maximum overall mangrove ratio with 93% of its area 

being covered by mangroves. In the protection forest 48% overall mangrove cover prevailed. The 

mangrove class was the predominant land cover in the special-use and protection forest. Whereas a 

mangrove ratio of 33% was present in the production forest. In this forest zone water, covering 40% of 

the area, was the major land cover class. An area, that is not a forest zone is located in the north-east of 

Map 3. This no forest zone hosted a mangrove cover of 20%, which was the minimum mangrove ratio 

for the investigated zones. The cluster of the shrimp farms with a higher mangrove ratio in the north of 

the no forest zone at about 104°55’ East was noteworthy since it substantially contributes to this zone’s 
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relative mangrove cover of 20%. Most of the non-forest zone was covered by water, which accounts for 

52% of the area. 

 

 
Map 3. Object-based land cover classification and the relative mangrove area per forest zone in percent. The SPOT-
7 image serves as background to illustrate the neglected cloud and cloud shadow-covered areas (Airbus, 2022). 

 

3.4.2. Pixel-based forest zone mangrove ratios 

The land cover map, resulting from the pixel-based classification, illustrated in Map 4 indicates the 

maximum mangrove ratio of 93% in the special-use forest. Mangroves were also the dominant land cover 

in the protection forest, where 48% of the area was covered by this class. In the production forest 

mangroves accounted for 33% of the area. Water covered 41% of the production forest, making it the 

main land cover class in this zone. In comparison to the other zones, the minimum mangrove ratio of 

20% was present in the non-forest zone. Water also represented the dominant land cover class in the 

non-forest zone, covering 52% of the area.  
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Map 4. Pixel-based land cover classification and the relative mangrove area per forest zone in percent. The SPOT-7 
image serves as a background to illustrate the neglected cloud and cloud shadow-covered areas (Airbus, 2022). 

 

3.4.3. Subset comparison 

In this section, subsets of the land cover map as well as the binary mangrove-non-mangrove map are 

presented to visually inspect and compare the results of the object-based and pixel-based classification 

according to the first research objective (RO1). 

 

A subset covering the intersection of the protection and production forest as well as a non-forest area, is 

illustrated in Map 5. This map facilitates the comparison of both the object-based and pixel-based 

classification with the pan-sharpened SPOT-7 image. The classifications display similar results in the 

observed subset. However, fine differences exist.  

The classification of the pixel-based approach illustrates the land cover in a more pixelated or grainier 

manner than the object-based classification. This salt and pepper effect can be observed for the pixel-

based classification. For instance, in the north of the subset, the mangrove area appeared heterogeneous 

with vegetation pixels interrupting the mangrove canopy. Whereas the object-based classification 

indicated more homogeneous rows of mangroves. The pixel-based salt and pepper effect as well as the 

more homogeneous object-based representation, was also valid for the other land cover classes. This is 

exemplified by the soil in the southeast of the production forest in Map 5. The rows of bare soil in the 

shrimp pond were displayed with fine lines of soil pixels, whereas the object-based approach depicted one 

continuous water area. 
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Map 5. Comparison of the pixel-based and object-based classification as well as the pan-sharpened SPOT-7 image 
for a subset covering the protection and production forest (Airbus, 2022). 

Map 6 illustrates the difference between the object-based and pixel-based mangrove map. Blue indicates a 
total area of 465 ha, which represents spaces that were classified as mangrove by the object-based but not 
by the pixel-based mangrove map. Conversely, the red indicated patches, that sum up to an area of 412 
ha, outline mangroves depicted by the pixel-based map that were not represented as mangrove by the 
object-based mangrove map. Accordingly, disagreement between the pixel-based and object-based 
approach in Map 6 is mainly observed at the boundary of the mangrove cover. The transition from 
mangrove to another land cover like water, vegetation, or soil is represented differently for the 
investigated approaches. Moreover, differences can be observed for small patches and narrow rows of 
mangroves. This indicates the representation as mangrove by one and the neglection by the other 
approach. Mangrove stands that are presented as one continuous patch by the object-based classification 
tend to be interrupted by vegetation pixels and clusters in the pixel-based mangrove map. This grainier 
representation of mangrove stands and canopies can be seen in the mangrove cover maps as well as the 
difference map (Map 6). 
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Map 6. Comparison of the pixel-based and object-based mangrove cover for a subset covering the protection and 
production forest. Where blue indicated areas represent spaces that were classified as mangrove by the object-based 
but not by the pixel-based mangrove map. Red demonstrates patches that were indicated as mangrove by the pixel-
based map that were not depicted as mangrove by the object-based map.  

3.5. Mangrove to shrimp farm ratio maps 

In this section, the land cover map is used to estimate the relative mangrove area on the study area’s 
shrimp farms. Consequently, the forest management’s effect on the shrimp farms’ mangrove ratio in the 
observed forest zones is investigated to account for the second research objective and question (RO2 & 

RQ2). The ratio of mangrove to non-mangrove land cover on the shrimp farms was mapped to indicate 

farmers that achieve 60% mangrove conservation on their property. Moreover, shrimp farms that have a 

relative mangrove area ranging within the mangrove classification’s error margin were illustrated to closer 

investigate if the properties’ mangrove ratio is above or below the threshold. Also, shrimp farms that 

presented less than 60% mangrove cover were displayed to locate properties that are suitable for the 

replantation of mangrove saplings. Finally, the farmer’s perception of the mangrove cover was compared 
to the classification estimates to answer the third research objective and question (RO3 & RQ3). 

 

3.5.1. Shrimp farm mangrove ratio mapping 

In total, there were 1,677 shrimp farms with an area greater than 1 ha present in the study area. Map 7 and 

Map 9 represent the object-based and pixel-based mangrove ratio maps of the investigated shrimp farms. 

The visual comparison of the maps as well as Table 12, indicate that both maps are identical. Map 7 

illustrates 33 red-indicated shrimp farms that have less than 1% mangrove cover. These shrimp farms 

were distributed in different forest zones. The majority of 20 shrimp farms with less than 1% mangrove 

cover were located in the production forest zone, which was the largest zone covering 43,757 km2 of the 

study area (Table 11). The protection forest zone covered 21,116 km2 of the study area and hosted 2 
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shrimp farms that had a mangrove ratio of less than 1%. In the non-forest zone about 11,474 km2 were 

covered by shrimp farms of which 11 presented a mangrove cover of less than 1%. Relative to its area the 

non-forest zone revealed the most frequent occurrence of 0.96 n/km2 shrimp farms per square kilometer 

with a mangrove to shrimp farm ratio of less than 1%, followed by the production forest with 0.43 n/km2 

(Table 11). In the protection forest 125 and in the production forest 118 shrimp farms had a mangrove to 

shrimp farm ratio ranging from 64 to 99% relative mangrove cover. The area of the observed protection 

forest was about half the size of the production forest. Therefore, 5.87 n/km2 shrimp farms per square 

kilometer of protection forest conserved the required relative mangrove cover on the property, whereas it 

was 2.86 n/km2 in the production forest. 

 

 
Map 7. Relative mangrove area on the shrimp farms in percent according to the pixel-based classification (Airbus, 
2022). 

 

In the special-use forest zone, seven properties with a mangrove cover exceeding 99% were indicated in 

the darkest shade of green (Map 7). It was the only zone with properties that achieved that high relative 

mangrove cover. Shrimp farms with a relative mangrove area between 46 and 56%, indicated in light 

green, potentially are eligible to apply for an eco-label certificate in terms of achieving the necessary 50% 

mangrove ratio. The class labeled with 56 to 64% represented the transition from not complying to 

complying with the regulation of 60% relative mangrove cover. The percentage range of this class is 

based on the consideration of the 4% error margin for the mangrove classification. It avoided including 

(false negatives) falsely neglected and exclude (false positives) falsely considered shrimp farms from the 

64 to 99% class, which included all properties that achieved the regulation of 60% mangrove cover. 

Table 9 displays that 25% of the shrimp farms in the protection forest achieved a relative mangrove 

coverage greater than 64%, complying with the regulation of 60% considering the 4% error margin, 

followed by 11% and 7% of the respective shrimp farms in the production forest and no forest zone. In 
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the protection forest, 14% were in the transition class of 56 to 64% relative mangrove cover, which was 

defined by the 4% error margin. 9% of the shrimp farms in the production forest and 1% of the shrimp 

farms outside of the forest zones were part of the 56 to 64% mangrove ratio class. Outside of the forest 

zones, 92% of the shrimp farms had a relative mangrove cover of less than 56%. Whereas 80% of the 

shrimp farms within the production forest and 62% within the protection forest had a mangrove ratio 

below 56%. 

 
Table 9. The percentage of shrimp farms in the respective forest zone that have a relative mangrove cover of less 
than 56%, between 56 and 64%, and greater than 64%. 

Forest Zone 
  

Area 
[km2]  

Shrimp 
farms [n]  

< 56 % 
mangrove 

cover 

56 to 64 % 
mangrove 

cover 

> 64 % 
mangrove 

cover 

Protection forest 21,116 505 62% 14% 25% 

Production forest 43,757 1036 80% 9% 11% 

Not forestry 11,477 136 92% 1% 7% 

Total 76,350 1677 75% 10% 16% 
 

 

Since the shrimp farm mangrove ratios indicated by the pixel-based Map 7 and object-based Map 9 are 

identical, the presented results on the relative mangrove cover on the shrimp farms in the different forest 

zones, that base on Table 9 and Table 11, are applicable for both the object-based and the pixel-based 

approach. 

 

The p-values derived from the Mann-Whitney U test, comparing the protection with the production 

forest zone, protection with the non-forest zone, and the production with the non-forest zone, were 

lower than the 0.05 significance level (2.45-30, 6.08-53, 3.6-29). This means that the null hypothesis (H0) was 

rejected and that there is a difference in the mangrove ratios on shrimp farms in the protection, 

production, and non-forest zone. 

 

3.5.2. Mangrove ratio validation 

Julia Hogestijn manually digitized mangroves on 50 randomly selected shrimp farms in the study area 

using a Geo Eye image that was captured with a spatial resolution of 0.4 m in 2019 (Hogestijn, 2023). The 

comparison of the relative mangrove cover % estimates based on the 2019 Geo Eye and 2022 SPOT-7 

image is displayed in Figure 11. A median and mean difference of 21% and 18% between the mangrove 

ratio estimates of the two images was found. The extrema indicate differences of -63% and 54% 

respectively (Figure 11). The difference between four out of the 50 investigated shrimp farms were 

indicated to be outliers. 
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Figure 11. The difference in estimated mangrove ratio [%] calculated by subtracting the area of the manually 
digitized mangroves of the Geo Eye 2019 image from the pixel-based SPOT-7 2022 mangrove map. 

Map 8 illustrates the difference in mangrove cover between the Geo Eye and the SPOT-7 approach with 

four subsets. Subset A displays a larger mangrove area given by SPOT-7 than by Geo Eye, representing 

the shrimp farm with the maximum difference of 54% mangrove cover. In contrast, subset B presents a 

larger mangrove area given by Geo Eye compared to SPOT-7. This subset represents the shrimp farm 

with the maximum negative difference of -63%.  

 
Map 8. Subsets of the study area comparing mangrove cover based on the Geo Eye and SPOT-7 satellite image. The 
letter in the upper left corner of each subset acts as an identifier. Where subset A displays reforestation. Subset B 
displays deforestation. Subset C shows mangrove area estimates on shrimp farms that are close to the calculated 
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median difference. Subset D presents mangrove rows for the Geo Eye and mangrove patches for the SPOT-7 
image. 

Subset C of Map 8 indicates shrimp farms that were indicated by Geo Eye and SPOT-7 to have a relative 

mangrove cover differing by 23% and 16%, which is close to the median and mean values presented in 

Figure 11. At last subset D illustrates the mangroves mapped with Geo Eye organized as rows, whereas 

they appear to be one big mangrove patch considering the SPOT-7 classification (Map 8). This led to a 

difference of 33% and 31% between the mangrove ratio estimates for the two shrimp farms observed in 

subset D. 

3.5.3. Farmers perception mangrove ratio  

The mangrove ratio computation from the object-based and pixel-based classification was compared to 

the estimation of shrimp farmers. Several questions from a survey conducted by Vo Quoc Tuan in 2022 

focused on the ratio of different land cover classes on shrimp farms in the Cà Mau province. Eleven of 

the surveyed shrimp farms were fully covered by the SPOT-7 image that was used in this study. The 

farmer’s estimate of these shrimp farms was compared to the relative mangrove cover quantification of 

the object-based and pixel-based classification. In Figure 12 the statements concerning the relative 

mangrove area on the property of the interviewed shrimp farmers are indicated with green bars. The 

mangrove ratio estimates for shrimp farm number four are similar with 60% estimated by the shrimp 

farmer, 63% by the object-based, and 60% by the pixel-based approach. This farm displayed the 

minimum difference between the investigated estimates. The maximum difference was found for shrimp 

farm three, ten, and eleven, where the owners estimated more mangrove cover than what was computed 

using the classifications. In contrast, the owner of shrimp farm seven estimated his property to have less 

mangrove cover than the SPOT-7 mangrove ratio indicates. The owners of shrimp farms one, four, and 

six stated to have a mangrove ratio of about 60% on their property. This estimate was verified by the 

classifications. The maximum mangrove cover of 68% was estimated by shrimp farmer number two. This 

did not correspond with the object-based and pixel-based estimates, which both indicated a mangrove 

cover of 49%. 

 
Figure 12. Comparison of the relative mangrove area estimated by shrimp farmers (green), object-based (blue), and 
pixel-based (red) classification. 
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Considering the 4% Overall Accuracy computed for the mangrove and non-mangrove class, an error 

margin of ± 4% from the used median relative mangrove area quantification was applicable for the 

object-based and pixel-based classification. In this case, shrimp farm one and six exceeded the 60% 

mangrove threshold even if the error margin was subtracted. All estimates for shrimp farm four range 

around 60%. This means that considering the ± 4% error range shrimp farm four could have had less or 

more than 60% relative mangrove cover. All the other shrimp farms were below the critical threshold 

range of 56% to 64% relative mangrove cover. 
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4. DISCUSSION 

This chapter discusses the outcomes presented in the Results section. The discussion of the results aims 

to address this study’s objectives and answer the research questions. Moreover, potential research gaps for 

future research on mangrove monitoring and restoration as well as recommendations on the application 

and potential improvements of the presented study are going to be debated. 

 

4.1. Comparison of Object-based and Pixel-based Classification 

In this section, the performance of the object- and pixel-based classification is compared and discussed. 

The comparison answers research question one (RQ1). The focus is on the observation of mangrove 

shrubs and trees that are listed in the mangrove floristics of the world table presented by Ragavan et al. 

(2021, p. 40 - 43) that achieve a minimum height of 3 m. Mangroves within the shrimp farm boundary, 

including the entire property with the ponds as well as the surrounding dikes and land spaces, are 

considered. In a later section the definition of mangrove as well as the considered area for the mangrove 

ratio calculation is going to be discussed. 

 

The application of the ten individual replicates of training and validation GTPs resulted in high values 

with small variation for the Overall Accuracy (OA) in the binary classification of mangrove and non-

mangrove land cover. Accordingly, this low sensitivity indicates that there are sufficient training GTPs to 

produce accurate and reliable object-based and pixel-based classifications.  

The classifications into five land cover classes indicated more sensitivity to the individual GTP training 

and validation sets since the range of investigated accuracies indicated higher variation. Accordingly, the 

accuracies indicate better or worse results depending on the GTP training and validation dataset replicate 

used for the accuracy assessment. This trend was observed for the mangrove specific accuracies, namely 

the mangrove class User Accuracy (UAm), mangrove class Producer Accuracy (PAm), and mangrove class 

Kappa (Kappam), that focus on the reliability of the map for the mangrove class as well as the Overall 

Accuracy (OA) and Kappa coefficient, that assess the performance of all five land cover classes. The 

overall Accuracy (OA) for each of the ten replicated pixel-based accuracy assessments exceed 85%, which 

indicates the applicability of this approach for the land cover observation (Manandhar et al., 2009). The 

confusion of the water, vegetation, soil, and infrastructure land cover lead to lower Kappa and Overall 

Accuracy values for the classifications of all land covers than for the binary mangrove and non-mangrove 

land cover classification, since these four land cover classes are represented by one class called ‘non-

mangrove’ in the mangrove map. 

 

After the water class with 210 GTPs, the 187 mangrove GTPs represent the second biggest group of 

GTPs (Table 3). This is proportional to the actual land cover in the study area, where water and 

mangroves dominate. A visual inspection of the SPOT-7 image suggested that the spectral signature of 

river and channel water compared to aquaculture pond water as well as young sparsely distributed 

mangroves compared to older and denser mangrove canopies varied (Chen et al., 2017; Wang et al., 

2021). The spectral signature also differs depending on the mangrove species (Hati et al., 2021; Prasad et 

al., 2015). Accordingly, both strata were intensively sampled to capture the spectral variability of water 

and mangrove cover in the study area. The greater number of training GTPs may result in a more 

accurate classification of both classes compared to the remaining vegetation, infrastructure, and soil class. 

The overrepresentation of certain land cover classes with many training GTPs can lead to an 
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overestimation in the classification. Vice versa this also applies to the underrepresentation of land cover 

classes (Millard & Richardson, 2015). However, since the water and mangrove coverage dominate the 

study area, an overrepresentation is unlikely. It was challenging to generate GTPs for the soil class, due to 

a lack of suitable areas that clearly represent this land cover. Therefore, only 79 soil GTPs are available. 

The limited number of training GTPs likely leads to a confusion of soil with other land cover. The soil 

User and Producer Accuracy are lower than for the other land cover classes (Table 8). This suggests that 

the number or proportion of training GTPs influences the classification accuracy of the respective classes. 

This is verified, considering the study of Mack et al. (2017), which concluded that rarely occurring land 

cover classes, that are represented by fewer samples than the dominating land coverage, resulted in lower 

accuracies. A stratification could be used to estimate the proportion of the land cover classes of interest in 

the study area. Based on the percentage of each class in the entire study area the number of GTPs for the 

respective class can be adjusted accordingly to avoid bias introduced by over or underrepresentation. 

Shetty et al. (2021) found that a stratified proportional random sampling favored the classification of the 

major land use land cover classes. The intensively sampled dominant mangrove and water land cover 

classes also tended to achieve higher class specific accuracies than residual strata like soil and vegetation, 

which were represented with fewer GTPs this research (Table 8 & Table 10). 

Map 2 illustrates the distribution of the GTPs in the study area. It is noteworthy that the southern part of 

the production forest and the northern part of the protection forest are not covered with GTPs. 

Moreover, more GTPs are available for the protection forest, which has a smaller area than the 

production forest (Table 3). Considering the discussed over- and underrepresentation of land cover 

classes, it could be argued that the production forest is underrepresented due to the smaller number of 

GTPs. The respective area of the forest zones could be used to calculate the relative area with respect to 

the total study area to represent the forest zones with a number of GTPs proportional to its relative area 

in percent. The GTP sampling campaign did not cover the non-forested area and the special-use forest 

since the focus was on the mangrove mapping of shrimp farms in the production and protection forest. 

The area outside the forest zones and in the special-use forest are underrepresented. The accuracy for the 

classification of these areas could not be directly assessed due to the lack of validation GTPs. However, 

since both unsampled zones are adjacent to the surveyed protection and production forest, the spectral 

signature of the land cover classes is unlikely to be different over the small distance to their counterparts 

in the adjacent forest zones. Considering Tobler’s first law of geography and the spatial autocorrelation of 
the adjacent areas’ land cover suggests the applicability of the classifier to the unsampled areas (Lv et al., 

2017; Tobler, 1970). 

 

The comparison of Figure 6 and Figure 7 with Figure 8 and Figure 9 illustrates that the distribution of the 

replicated accuracy and Kappa values is within a smaller range for the pixel-based classification compared 

to the object-based classification. A trend of higher mean and median values for the assessed accuracies 

was observed for the pixel-based classification. This indicates the pixel-based classification to be slightly 

more robust and accurate resulting in a smaller classification error margin. The mangrove-specific 

accuracies (PAm, UAm, Kappam) indicated a better performance than the generic accuracies that consider 

all land cover classes. Moreover, the overall accuracy calculated for the mangrove, water, vegetation, soil, 

and infrastructure class is lower than the overall accuracy that considers the classes mangrove and non-

mangrove in Figure 10. This indicates that the classification is more accurate for the mangrove class than 

for the other land cover classes where more classification errors were observed.  

The pixel-based classification provides more robust results, as the value range of the examined accuracies 

is about half as large as in the object-based classification (Figure 6, Figure 7, Figure 8 & Figure 9). However, 

the value range of 2% and 3% Overall Accuracy (OA) focusing on the two land cover classes mangrove 

and non-mangrove in Figure 10, indicates a robust performance of the replicated pixel-based and object-



ASSESSMENT OF METHODS FOR MANGROVE COVER MAPPING ON SHRIMP FARMS USING HIGH SPATIAL RESOLUTION REMOTE SENSING 

43 

based classifications that use different GTP replicates as training and validation data. The pixel-based 

classification’s median overall accuracy of 96.2%, computed with the ten classification replicates, is 
slightly higher than the 95.5% of the object-based classification. However, the McNemar test results 

indicated no significant difference between both approaches classifications. Considering the higher 

median and smaller value range as well as the simpler and quicker implementation without an object 

segmentation process that involves testing for suitable scale, compactness and shape parameters, the 

pixel-based classification is a fair choice for the mangrove observation on shrimp farms. Timewise the 

application of the Random Forest classifier was quicker for the object-based approach since there are 

fewer objects to be processed compared to the vast number of pixels. However, considering the entire 

classification the processing time of both approaches is similar since the time-consuming segmentation 

process of the object-based approach balances the longer computation using the Random Forest 

algorithm for each pixel of the pixel-based approach. Capacity wise the object-based classification can be 

saved as vector data, which requires less storage capacity than the raster file of a pixel-based classification. 

The difference between the object- and pixel-based classification is very small. This is also indicated by 

the McNemar test. Both the McNemar test on all land cover GTPs in Table 6 as well as the McNemar test 

focusing on the mangrove GTPs in Table 7 indicate that there is no significant difference between the 

object-based and pixel-based classification since all x2 values are below the threshold of 3.84. Due to the 1 

degree of freedom, three of the validation GTPs in Table 6 and four in Table 7 resulted in a x2 value of 0, 

since there was only a difference of 1 between the number of misclassified objects or pixels for the 

respectively compared classifications.  

Concerning the first research question (RQ1) the results indicate that there is no significant difference in 

the accuracy of mangrove mapping on shrimp farms via the object-based and pixel-based classification. 

Both approaches were found to be appropriate for the observation of mangroves on a shrimp farm scale 

with an Overall Accuracy of 95.5% for the object-based and 96.2% for the pixel-based classification. 

Accordingly, the pixel-based classification performed slightly better than the object-based classification in 

classifying mangroves from non-mangrove land cover on shrimp farms in the study area. But the 

difference of a 0.7% higher overall accuracy is marginal. 

 

The visual inspection of the object-based and the pixel-based classification, using Map 3, Map 4, and Map 

5, indicates that the pixel-based land cover map is grainier. The pixel-based classification preserves the 

land cover details on the input data’s spatial resolution of 1.5 m, resulting in a pixelated illustration. This 

can result in the salt and pepper effect, which indicates disrupted land cover patches in pixel-based 

classifications (Chen et al., 2018). Land cover patches that have too few pixels to be segmented into an 

object are merged into adjacent objects. Therefore, the object-based land cover map illustrates more 

continuous land cover patches. However, the segmented objects may be larger than the area of small 

individual mangrove patches, resulting in mixed objects representing multiple land cover classes. The 

mean spectral signature of a mixed object may not exactly correspond with the spectral signature of an 

object containing pixels of one single land cover class. The smoothed spectral properties of objects may 

be less appropriate for the land cover on shrimp farms since it is more difficult to spectrally separate 

different land cover classes (Chen et al., 2018).  

The mangroves growing in a shrimp farm’s pond are mainly organized in rows or as patches (Bosma et 

al., 2016). Therefore, the object-based classification may be suitable for the monitoring of mangroves in 

the pond, where mainly continuous rows or patches of mangroves prevail. Employing spatial, textural, 

and shape properties in addition to the spectral properties of the objects are likely to be beneficial 

considering the row-like or patchy occurrence of mangroves in shrimp ponds. 

Images with a higher spatial resolution than the applied SPOT-7 data may be useful to build objects 

representing pure land cover classes and preserve the detail of the observed area. The pan-sharpened 
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SPOT-7 image has a spatial resolution of 1.5 m. Whereas the segmented SPOT-7 image generalizes the 

land cover with objects of several pixels and not on the individual pixel-size of the pan-sharpened SPOT-

7 image. Therefore, the segmented SPOT-7 image illustrates less fine land cover detail than the pan-

sharpened SPOT-7 image. Accordingly, the object-based classification may miss mapping land cover on a 

pixel scale. Since the generated objects, containing several pixels, are the smallest unit considered for an 

object-based classification, the resulting land cover map illustrates the image on the object level and not 

with the spatial resolution of the input image. Whereas a pixel-based classification preserves the 1.5 m 

spatial resolution of the input image since the pixel is the smallest considered unit. Therefore, the pixel-

based classification may be more suitable to also detect individual mangrove trees that may grow on the 

dikes of the shrimp farms or small harvested patches. This approach is more appropriate to monitor 

mangroves on the entire shrimp farm and not only in the shrimp pond. An individual mangrove tree 

covering a single pixel may be correctly classified by the pixel-based approach but would be merged into 

another adjacent object in the object-based approach. Since an object contains several pixels, a single 

mangrove covered by one pixel cannot be observed by the object-based classification. Satellite remote 

sensing observations tend to overestimate the mangrove area compared to very high spatial resolution 

UAV imagery (Hsu et al., 2020). Overestimation depends on the spatial resolution of the data. Images 

with a finer spatial resolution are likely to represent the mangrove cover more precisely and with less 

overestimation than sensors with a lower spatial resolution (Hsu et al., 2020). This means that the relative 

mangrove cover on the shrimp farms estimated via a pixel-based classification, using a SPOT-7 image 

with a spatial resolution of 1.5 m, maybe more detailed than an object-based approach but still 

overestimate the actual prevailing mangrove area. Furthermore, the pixel-based approach is more 

sensitive to observing clearings in the mangrove cover or variations in the canopy density. Accordingly, it 

is more suitable to map and differentiate the defined mangroves with a minimum height of 3 m from 

smaller propagules and saplings. This is of interest to map established and healthy mangroves that are 

more valuable in terms of the ecosystem services they provide, for instance, carbon sequestration and 

storm surge protection, compared to degraded mangroves or newly planted saplings. Although fine 

details like clearings and less dense mangrove canopies may not be detected by the object-based 

approach, it is suitable to map areas that are intended for mangrove land use.  

 

Satellite images with a finer spatial resolution, for instance, GEO Eye imagery, are likely to represent the 

mangrove cover more accurately and with less overestimation than sensors with a lower spatial resolution 

like the applied SPOT-7 image (Hsu et al., 2020). The comparison to a manual mangrove digitization 

using a Geo Eye image with a spatial resolution of 0.4 m indicates a median overestimation of about 21% 

mangrove cover on shrimp farms for the pixel-based SPOT-7 classification. It must be noted that 

Hogestijn (2023) did not perform an accuracy assessment for the manual mangrove digitization that bases 

on the Geo Eye image. When asked concerning the accuracy by the chair Dr. Thomas Groen during her 

MSc thesis defense, Ms. Hogestijn replied with an estimated accuracy of 90%3. Moreover, the Geo Eye 

and SPOT-7 satellite images were captured three years apart, in 2019 and 2022. Accordingly, the 

mangrove cover observed on the shrimp farms may have changed during that time. The most significant 

difference of -63% mangrove cover was observed on a shrimp farm in the production forest where the 

mangroves most likely were harvested after the Geo Eye image was captured in 2019 (Figure 11 & Map 

8.B). But there are also opposite examples. In contrast to deforestation, there are also reforestation 

efforts. For one shrimp farm in the protection forest, a mangrove ratio of 9% was manually digitized by 

 
3MSc research exam via Microsoft Teams meeting with the thesis assessment board members (ITC University of 
Twente, Enschede, The Netherlands) and audience. 31.05.2023. 
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Ms. Hogestijn for the year 2019. The pixel-based SPOT-7 classification estimated 63% mangrove cover 

for exactly this shrimp farm, which is illustrated in Map 8.A. 

The comparison to the Geo Eye mangrove map suggests that the classification, based on the SPOT-7 

image with a spatial resolution of 1.5 m, is not able to map the water in between the mangrove rows. 

Instead of mapping rows of mangroves, as indicated by the manual mangrove mapping, the classification 

represents mangrove rows as one continuous mangrove patch (Map 8.D). This leads to an overestimation 

of the mangrove cover by the SPOT-7 pixel-based classification. Hsu et al. (2020) found that satellite 

remote sensing overestimates mangrove cover compared to UAV images. Overestimations can lead to an 

incorrect assessment of the mangrove system’s ecosystem services and its climate change mitigating 
function (Hsu et al., 2020). The variability of mangrove area quantifications introduces uncertainty about 

the deforestation rates, which can lead to low confidence information for the estimation of ecosystem 

functions and the biodiversity assessment as well as conservation policies (Friess & Webb, 2014). The 

synchronization of satellite and UAV data is recommended to improve the temporal and spatial 

resolution of the observation as well as to integrate local stakeholders to collaboratively increase the 

capability to observe and manage natural resources (Hsu et al., 2020).  

 

In summary, no difference between the accuracy of the object-based and pixel-based classification, using 

a high spatial-resolution SPOT-7 image covering the study area, was found according to the investigated 

accuracies and the McNemar test results. Hence, both approaches are applicable to map mangrove cover 

on mixed mangrove-shrimp farms. 

4.2. Comparison of the relative mangrove area on shrimp farms in different forest zones 

This section covers the comparison of the mangrove ratio prevailing on shrimp farms in the protection 

and production forest as well as outside of the forest zones. The discussed results will help to answer the 

second research question (RQ2): What is the difference in the ratio of mangrove cover on shrimp farms 

in the protection, production and no forest zones? 

 

Map 3 and Map 4 suggest that an overall mangrove cover of 48% or 47% prevails in the protection forest 

zone. The mangrove land cover class is dominant in this forest zone. Whereas mangroves are less 

abundant in the production forest zone and the not-forested northeastern part of the study area where 

water dominates the land cover. An overall mangrove cover of 33% occurs in the production forest. This 

indicates that in the study area, more mangroves are preserved in the forest zones than in the non-forest 

zone, which presents an overall mangrove cover of 20%. Accordingly, the zonation seems to influence 

the mangrove prevalence. This trend is confirmed by the analysis of the forest zones’ relative mangrove 
cover on the shrimp farms. Map 7 and Map 9 illustrate that the relative shrimp farm mangrove cover in 

the forest zones is higher than in the not forested area. This is verified by the Mann-Whitney U test, 

which indicates that there is a statistically significant difference in the mangrove area between the forest 

zones and the non-forest zone. Table 9 states that only 25% and 11% of the shrimp farms in the 

protection and production forest have a relative mangrove cover greater than 64% respectively. Outside 

of the forest zones, only 7% of the shrimp farms achieved this percentage of mangrove cover. 92% of the 

shrimp farms outside of the forest zones were found to have less than 56% relative mangrove cover. 

Although the percentage of shrimp farms belonging to this class is lower in the forest zones, 80% of the 

production forest’s and 62% of the protection forest’s shrimp farms have mangrove ratios below the 

compulsory 60% threshold when the 4% error margin is subtracted (Table 9). Table 11 confirms that the 

shrimp farms in the protection forest tend to have higher mangrove ratios than the protection forest’s 
shrimp farms. 
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The Forest Protection Department’s database of the shrimp farms’ mangrove cover is used to replant 
mangroves at the properties that have a lack of mangroves. In the protection and production forest, a 

relative mangrove cover of 60% must be preserved on shrimp farms. However, the financing is 

challenging since the government assigns a budget of 30 million Vietnamese Dong (VND) per hectare 

(approximately 1164€) for the plantation of mangrove saplings in the protection forest zone, but only 8 

million Vietnamese Dong (VND) per hectare (approximately 310€) are funded to plant mangrove 

saplings in the production forest zone4. The unequal financial support for the mangrove reforestation in 

the protection and production forest mentioned by the interviewed Forest Management Board technician 

may partly explain the observation of more shrimp farms with less than 60% mangrove cover in the 

production forest. Another challenge that was mentioned is that the Ca Mau People’s Committee annually 

decides to fully dedicate the budget to the plantation of mangroves, but not to the protection. 

 

Other than the Forest Management Board, which focuses on a relative mangrove ratio of 60% on the 

entire shrimp farm stated in Decision 19/QD-UBND from 2010 (Hogestijn, 2023), certification 

organizations that award labels for organically and ecologically grown shrimp request a mangrove cover 

of 50% on the aquaculture pond (Joffre et al., 2015; Lai et al., 2022). It appears that the 10% mangrove 

ratio difference between the pond area and the shrimp farm area accounts for the smaller area of the 

pond. However, the mangrove ratio reported by the Forest Management Board is considered during eco-

label certification audits (Gruber et al., 2020). The reported mangrove ratio on the entire shrimp farm 

would not be directly applicable for certification organizations’ assessment in the pond area. The technical 

manager of the Forest Protection Department stated that the dikes surrounding the pond are not 

overgrown with plants since sediment that accumulates in the pond is dug out and dumped on the dikes 

every two years. This makes it difficult for plants to grow on the dikes, but when visiting mixed 

mangrove-shrimp farms in March 2023, mangrove propagules and saplings were observed on the edges 

of shrimp farm dikes. An investigated audit report did not specify the consideration of an error range for 

the mangrove ratio threshold (Gruber et al., 2020). The technical manager indicated an error margin of 10 

to 15% referring to the accuracy of the handheld GPS device. But no accuracy or error margin is 

considered for the mangrove observation method. This raises the potential for farms with mangrove 

ratios below the respective threshold to be falsely declared to comply with the regulation. The 

consideration of an error range, for instance, based on an accuracy assessment as in this study, could 

support Forest Management Boards and eco-labeling organizations to reduce the risk of erroneously 

certifying shrimp farms with mangrove ratios ranging slightly below the required threshold values. This 

would incentivize more sustainable mangrove forest management and ecological shrimp production by 

improving the certainty that shrimp farms comply with the regulations. The assurance that the shrimp 

really grew on an ecological farm is of interest to honor the trust that the consumers put into the eco-

label of the certification organizations. 

 

Regarding research question two (RQ2), the Mann-Whitney U test revealed a significant difference in the 

mangrove cover of the investigated zones. Consequently, the relative mangrove cover on the shrimp 

farms in percent tends to be higher in the protection forest zone than in the production forest. Shrimp 

farms outside of the forest zones usually achieved a lower mangrove ratio than what was observed within 

the forest zones. This is indicated by Map 7 and Map 9, which illustrate the relative mangrove area % 

prevailing on the individual shrimp farms covered by the SPOT-7 image. The results imply the protection 

forest to have the highest percentage of shrimp farms that achieve a relative mangrove area greater than 

 
4 Zoom meeting with the technical manager of the West Sea Protection Forest Management Board and Prof. Dr. Vo 
Quoc Tuan (Head of the GIS and remote sensing laboratory, Can Tho University). 14.04.2023. 
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the 60% threshold for sustainable forest management specified by Decision 19/QD-UBND. In the 

production forest, the percentage of shrimp farms complying with the set forth mangrove ratio of 60% is 

smaller than in the protection forest (Table 9). The mangrove ratio threshold of 60% does not apply to 

shrimp farms outside of the forest zones, where shrimp farms with a tendency of a lower relative 

mangrove area % were observed. However, shrimp farms in the non-forest zone that want to be certified 

as sustainable shrimp producers must still achieve a mangrove coverage of 50%. Hogestijn (2023) 

indicated that controversial policies lead to ineffective regulations, which may have resulted in the lack of 

mangroves on many shrimp farms in the investigated forest zones. On the one hand, the National Decree 

773-TTg and the Ca Mau coastal provincial aquaculture plan promoted shrimp farming by demanding the 

expansion and intensification of shrimp aquacultures. On the other hand, the Vietnamese government 

decided to implement urgent measures to protect and develop forest areas with an afforestation plan that 

intended to plant 5 million ha of mangrove forests across the country according to Decision 286/QD-

TTG and Decision 661/QD-TTG (Van et al., 2015). 

 

Satellite-based mangrove assessments, such as the one presented in this study, can cover large areas with 

high accuracy and reduce the frequency of costly mangrove-shrimp farm field surveys. According to the 

error margin of ± 4%, the shrimp farms with a mangrove ratio ranging from 56 to 64% could either 

comply with the regulation or be slightly below 60% relative mangrove cover. 14% of the protection 

forest shrimp farms and 9% of the production forest shrimp farms are within this transition group (Table 

9). The relative mangrove cover of the shrimp farms that are part of this transition class can be targeted 

to be closer investigated with the classification of aerial imagery captured by an Unmanned Aerial Vehicle 

(UAV). Alternatively, a field survey using handheld GPS devices as currently performed by the Forest 

Management Board could be carried out to investigate the mangrove cover on shrimp farms within the 

56% to 64% transition class. According to the technical manager of the West Sea Protection Forest 

Management Board, a field survey takes about two hours per shrimp farm5. A maximum of four shrimp 

ponds can be surveyed per day. This would result in a manually mapped mangrove cover estimate. The 

error range of the handheld GPS device could be considered, but there is no estimation of the survey 

method’s accuracy. 
 

In terms of the third research objective and question (RO3 & RQ3), the shrimp farm’s mangrove ratio, 

estimated by the respective operating shrimp farmer, tended to divert from the ratio computed with the 

classifications (Figure 12). The farmer’s perception equally overestimated (5 shrimp farms) and 

underestimated (5 shrimp farms) the mangrove cover. Only the mangrove ratio estimation of one out of 

eleven shrimp farmers matched with the object-based and pixel-based classification. It suggests that the 

ground-based assessment of the mangrove cover’s proportion relative to the shrimp farm area is 

challenging. This makes it difficult for shrimp farmers who want to comply with the regulations to 

determine and achieve the threshold of 60% mangrove cover. 

 

4.3. Definition of mangroves on shrimp farms 

First, this section discusses the definition of the area where mangrove cover is monitored on the 

investigated shrimp farm. Then the definition of what is considered as mangrove in the observation is 

discussed. 

 

 
5 Zoom meeting with the technical manager of the West Sea Protection Forest Management Board and Prof. Dr. Vo 
Quoc Tuan (Head of the GIS and remote sensing laboratory, Can Tho University). 14.04.2023. 
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4.3.1. Monitoring area 

Hogestijn (2023) pointed out that organizations and administrative bodies use different scopes to monitor 

mangroves on shrimp farms. Either the mangrove ratio in the shrimp pond or the mangrove ratio on the 

shrimp farm is considered. Since certification labels focus on ecological shrimp production the mangrove 

ratio on the aquaculture pond is considered (Joffre et al., 2015; Lai et al., 2022). The Forest Management 

Board on the other hand assesses the mangrove ratio on the entire shrimp farm (Hogestijn, 2023). The 

consideration of the mangrove ratio in the shrimp pond would likely result in a higher mangrove ratio for 

the monitored shrimp farm since the aquaculture pond is dominated by mangroves and water. Whereas 

besides the pond, shrimp farms have areas covered by infrastructure, soil, and non-mangrove vegetation. 

Accordingly, considering the mangrove ratio in the shrimp ponds could give a wrong impression of the 

mangrove cover in the forest zones. 

The observation of a mangrove ecosystem and its functions on a landscape scale may make more sense in 

terms of sustainable mangrove forest management than downscaling the scope to the extent of 

aquaculture ponds. Therefore, the consideration of the mangrove ratio on the entire shrimp farm area 

may be more appropriate since the land use change from mangrove to aquaculture pond as well as the 

conversion of mangrove to infrastructure or agriculture is monitored. The observation of mangrove ratios 

in shrimp ponds would narrow down the scope of the mangrove monitoring and ignore the conversion 

from mangrove to non-mangrove land use in the forest zone. Since the forest zones include the entire 

landscape and not solely the aquaculture ponds, the relative mangrove cover % should be investigated on 

the shrimp farm’s total area. Hence, the Forest Management Board’s approach of assessing mangroves on 

the entire shrimp farm area is reasonable for mangrove preservation purposes. This approach gives a 

stronger incentive to conserve mangroves than the mangrove monitoring limited to the pond area.  

Vietnamese experts proposed to consider an even larger monitoring scale on landscape level instead of 

farm level to improve the connectivity between the tidal estuarine system and the mangroves as well as 

enabling small shrimp farms to comply (Joffre et al., 2015). This approach would shift the mangrove 

conservation responsibility from individual farmers to the shrimp farming community, which could 

motivate collective mangrove management but potentially also lead to disputes between the shrimp 

farmers. The intended interaction of mangroves with fluvial and tidal processes, envisioned by the 

Vietnamese experts, would be beneficial, but the shrimp farms are embanked with dikes and only allow 

limited water exchange with the sluices (Lai et al., 2022). Accordingly, space for mangroves on riverbanks 

or de-embanked shrimp farms, that allow a natural fluvial and tidal water flow, would be necessary. The 

feasibility of a mangrove buffer zone along the rivers, like the coastal mangrove belt of the Mekong Delta, 

could be considered to facilitate mangrove rehabilitation (Wölcke et al., 2016). However, space is limited, 

and it is unlikely that individual farmers in the community voluntarily abandon their shrimp farm for the 

landscape scale mangrove conservation. The definition of reasonable landscape areas to monitor the 

mangroves would also be challenging and necessary for the proposed approach of the Vietnamese experts 

(Joffre et al., 2015). Therefore, the implementation of a landscape scale mangrove monitoring is currently 

not applicable. 

 

4.3.2. Mangrove definition 

The definition of mangrove, mangrove forest, and mangrove ecosystem is crucial for the observation and 

mapping of mangroves with remote sensing. Ellison et al. (2020) state that “Mangroves are a 
taxonomically diverse group of ±70 tree, shrub and fern species (in at least 25 genera and 19 families)” 
(Ellison et al., 2020, p. 2). Whereas according to Mukherjee et al. (2014), a mangrove can be an individual 

woody plant of the three main genera Acrostichum, Avicennia, and Rhyzophora growing on tropical and 

subtropical coasts. The stated mangrove plants and their associated organisms can form a mangrove 
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forest community or mangal. A mangrove ecosystem consists of the mangal, and the abiotic factors 

associated with it (Mukherjee et al., 2014). Regarding the preservation of the valuable services and 

functions of mangrove ecosystems, it would be most appropriate to conserve entire mangrove forest 

communities that contain mangrove species as well as associated organisms. Mangrove monocultures are 

less productive and resilient than a healthy biodiverse mangrove ecosystem (Quarto, 2012). The mortality 

rate of mangrove propagules on monocultures tends to be higher than on sites that allow the natural 

colonization of mangrove seedlings of pioneer species like Avicennia alba and Sonneratia alba (Ellison et al., 

2020). Moreover, Ellison et al. (2020) found that naturally recolonized mangrove areas achieved higher 

biodiversity of mangrove species as well as fauna than adjacent constructed shorelines. For a sustainable 

and successful mangrove ecosystem rehabilitation the recreation of the natural hydrology may be more 

beneficial than manually planting mangrove saplings (Quarto, 2012). Natural recruitment of propagules 

from nearby mangrove systems that are connected via waterways is necessary for the recolonization 

(Ellison et al., 2020).  

Natural regeneration of Rhyzophora and Bruguiera was observed within 200 m of the study area’s waterways 
like the Cửa Lớn River and its tributaries (Van et al., 2015). Wilson (2010) observed a natural 

regeneration of mangroves on shrimp farms with suitable conditions where pond dikes were breached to 

reintroduce tidal flow. Within 39 months the mangrove cover grew sufficiently to be detectable with 

remote sensing (Wilson, 2010). The dikes and sluices of the shrimp farms limit the natural tidal and 

alluvial recolonization of mangroves due to the restriction of the water flow. Therefore, natural mangrove 

rehabilitation in the studied mixed mangrove-shrimp farm systems seems to be challenging.  

Although experts also consider a mono-specific mangrove stand as a mangrove ecosystem, it is desirable 

to aim for biodiverse mangrove ecosystems that host a variety of species (Mukherjee et al., 2014). The 

restoration of the faunal composition, structure, and natural processes via colonization by non-planted 

species on artificial mangrove plantations may take years (Van et al., 2015). The timber harvest of 

Rhyzophora apiculata on mixed mangrove shrimp farm systems leads to a 10 to 12 years rotation of grown 

trees being replaced with newly planted mangrove saplings (Van et al., 2015). This suggests that the 

recovery of permanent, biodiverse mangrove forests as well as the provided ecosystem services and 

functions on shrimp farms, is not likely. The current approach of replanting mangrove propagules on 

shrimp farms supports the creation of integrated mangrove monocultures but may not result in the 

rehabilitation of a biodiverse mangrove ecosystem. Quarto (2012) states that mainly Rhyzophora spp. 

propagules are planted without considering the environmental conditions at the restoration site. The 

plantation of Rhyzophora monocultures is tempting for the local community due to the economically 

added value of the timber products (Ha et al., 2014). Firewood and charcoal from harvested Rhyzophora 

can be sold on local markets or exported to Japan and Korea (Ha et al., 2014; Quarto, 2012). Although 

the plantation of Avicennia may benefit the pond’s fertility and pH regulation the plantation of Rhyzophora 

is preferred because it is tolerant to inundation and easy to plant (Bosma et al., 2016). Cà Mau has a long 

mangrove plantation history. Already the French colonialists replanted Rhyzophora apiculata for charcoal 

and tannin production since it is the most economic species (Van et al., 2015). Also, the following large-

scale reforestation programs after the Vietnam War and the introduction of integrated mangrove shrimp 

farm systems rather aimed to increase timber production, to meet the demand of the growing population, 

than to restore the functions and services of healthy mangrove ecosystems. Rhyzophora apiculata was used 

due to its ease and timber utility, which lead to the development of mangrove-shrimp farming systems 

with R. apiculata becoming the typical land use (Van et al., 2015). 
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4.3.3. Mangrove management 

The engagement of the local community and progress monitoring is important for the long-term success 

of restoration projects (Ellison et al., 2020). Therefore, approaches like the Community-based Ecological 

Mangrove Restoration (CBEMR) aim to restore more naturally functional and biodiverse mangrove 

ecosystems than the often applied capital and labor-intensive manual plantation of monocultures (Quarto, 

2012). The lack of funding for the protection and preservation of mangroves was expressed by the 

interviewed expert of the West Sea Protection Forest Management Board. Funding is available for the 

replantation of Rhyzophora saplings but not for the conservation of the existing and newly planted 

mangroves. Since Vietnamese policies prioritize mangrove restoration for the mitigation of climate 

change and the achievement of sustainable coastal development, targets for mangrove restoration are 

determined on national and provincial levels (Pham et al., 2022). This indicates that mangrove 

replantation or afforestation is favored, and the preservation of existing mangrove ecosystems in zones 

where the harvest is allowed may be neglected. This is problematic since there is low or medium 

restoration potential in most provinces because coastal erosion and coastal squeeze cause unfavorable 

conditions for mangrove restoration (Pham et al., 2022). Considering the currently applied restoration 

policies and practices the continued dominance of Rhyzophora monocultures in the study area is likely. 

According to the interviewed forest manager, there must be 6,000 mangroves per hectare to be 

considered as a mangrove forest that provides important ecosystem services. Trees of the Rhyzophora and 

Avicennia genus are counted on a sampling plot of 100 m2 to upscale and estimate if the investigated patch 

of land achieves the mangrove forest status. However, a variety of species and plants may be considered 

as mangroves or part of a mangrove forest. For instance, the Nypa fructicans palm tree is listed as 

mangrove plant species (Mukherjee et al., 2014). The fern mangrove Acrostichum is mentioned as 

mangrove genera but not stated in the consensus list of mangrove plant species (Mukherjee et al., 2014). 

The definition of mangrove can lead to alternating results of surveys and inventory maps, depending on if 

a holistic view of the plants in a mangrove ecosystem or merely mangrove trees of certain species are 

considered. The variety of functions and services of a mangrove ecosystem bases on the interaction of 

diverse flora and fauna as well as the interacting spheres, namely the biosphere, hydrosphere, lithosphere, 

and atmosphere (Aprilia et al., 2022). The interconnection of the spheres via the flux of energy and 

matter, in the form of the carbon, water, nitrogen, phosphorous, and sulfur cycle, is fundamental to the 

function of mangrove ecosystems (Aprilia et al., 2022; Maulana et al., 2017). This suggests that a variety of 

plants as listed by Mukherjee et al. (2014) and Ragavan et al. (2021) could be considered for the mangrove 

monitoring since the interaction of mangrove forest communities’ diverse fauna and flora enhance the 
valuable ecosystem services. 

 

4.4. Potential improvements and recommendations 

This section first discusses limitations and possibilities for improvements of the presented research. 

Subsequently, recommendations for the mangrove monitoring on shrimp farms are given. 

4.4.1. Limitations and potential improvements 

The pre-processing of the applied satellite remote sensing SPOT-7 image was kept to a minimum due to 

time limitations as well as to make it quickly replicable for local stakeholders with limited GIS and remote 

sensing background, for instance, the staff of the Forest Management Board. The satellite image pre-

processing involved cloud and cloud shadow screening and masking instead of the application of an 

additional atmospheric correction because the SPOT-7 image was delivered radiometrically and 

atmospherically corrected by the provider. Previous studies applied additional atmosphere corrections, for 

instance the ATCOR-2 software was used by Vo et al. (2013) to perform an atmospheric correction of a 
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SPOT-5 image in the Cà Mau province, Vietnam. Another study on Vietnamese mangroves applied the 

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) for the atmospheric 

correction procedure (Pham et al., 2019a). The results of the studies by Bektas Balcik & Karakacan 

Kuzucu (2016) and Siregar et al. (2018) suggest the applicability of FLAASH as atmospheric correction of 

SPOT-7 imagery prior to supervised land cover and land use classifications. The application of an 

additional atmospheric correction and its effect on the performance of the supervised classification of 

mangroves on a shrimp farm scale could be the subject of future studies. 

After the GTP quality assessment the requirements and assumptions for the GTPs were adjusted to avoid 

neglecting 199 GTPs. Mainly soil GTPs would have been neglected. However, the loss of mangrove 

GTPs presumably would affect the binary classification into mangrove and non-mangrove the most. 

Accordingly, it would be interesting to compare the accuracy and robustness of the binary classification 

applied in this study, which used the adjusted GTP dataset, with a binary classification using the GTP 

dataset that neglects the 199 GTPs, which did not comply with the initially considered requirements.  

The GTPs were divided into 70% training and 30% validation data, which is commonly used in modelling 

and classification tasks. The Overall Accuracy for the classifications of mangrove and non-mangrove land 

cover in Figure 10 indicated little variability for the ten individual GTP replicates. Accordingly, the 

classification was robust and accurate using 70% of the GTPs to train the classifier. This raises the 

interest in how the proportion of training to validation GTPs affects the robustness and accuracy of the 

classification. This can be studied using less GTPs to train the data, for instance, with an equal split into 

50% training and 50% validation GTPs, to test if there is a difference in the robustness and accuracy 

using different proportions for the GTP training and validation dataset. In case that classifications that 

use less GTPs are similarly robust and accurate, a smaller number of GTPs could be sampled to reduce 

the time and cost of field surveys. 

Talukdar et al. (2020) performed a Random Forest classification using 200 decision trees. Applying a vast 

number of decision trees results in a better accuracy for image processing but increases the computation 

time (Talukdar et al., 2020). Considering the time-consuming process of calculating 200 decision trees, 

this study used the pre-setting of 50 decision trees suggested by eCognition. Future research could 

investigate and compare the effect of the number of decision trees, for instance, 50, 100, 150, and 200 

trees, on the accuracy of the image classification. 

Considering the long computation time to generate classification replicates for both the object-based and 

pixel-based approaches, this study performed the classification and accuracy assessment with ten 

individual training and validation GTP datasets for both approaches. In future research a larger sample 

population of 30 replicates of the GTP training and validation datasets could be generated to enable the 

performance of statistical tests for the assessment of the robustness as well as the difference between the 

performance of the object-based and pixel-based classifier. 

This study’s segmentation process applied a single segmentation level. Multiple segmentation levels can 
improve the segmentation and benefit the OBIA that bases on the segmented objects. The laborious set-

up of multiple segmentation levels could result in higher segmentation accuracy. This potentially could 

improve the object-based classification accuracy. Considering this, the application of multiple 

segmentation levels could have made a difference for the comparison between the object-based and pixel-

based approach. 

In future research, the importance of the various inputs to the Random Forest classifier can be assessed 

with the ggplot ‘variable importance’ tool in R or Python (Sharma, 2022). This can simplify the model and 

ensure that only the bands that add important information are considered in the classification process. 

The GTPs sampled during the 22nd and 23rd of March 2023 were applied to train and validate the SPOT-7 

image captured on the 25th July 2022. In the optimal case the GTPs are sampled during the same date that 

the remote sensing image is captured. However, the GTPs sampled by the colleagues from Can Tho 
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University during the field campaign from the 21st to the 25th July 2022 were not applicable, due to the 

insufficient number of GTPs. Moreover, the GPS location noted for the GTPs stated the position of the 

surveyor, but not the surveyed land cover. Therefore, the field sampling campaign was organized and 

conducted to generate an applicable GTP dataset. It was assumed that the mangrove cover does not 

change significantly during the time span between the GTP field sampling and image caption. The quality 

assessment only found few mismatches of the 2023 GTPs to the 2022 SPOT-7 image. The mismatches 

were annotated with a note stating the land use change from 2022 to 2023 and neglected from the quality 

assessed GTP dataset. 

Since the GTPs were sampled in 2023, they were not applicable as training and validation data for the 

classification and accuracy assessment of the Geo Eye satellite image from 2019 used by Hogestijn (2023). 

Future research could perform pixel-based and object-based classification with a higher spatial resolution 

image like the Geo Eye captured in the year of the GTP sampling campaign to investigate the differences 

in the relative mangrove cover estimation using the same machine learning classifiers and data of the 

same year. This could study the effect of the spatial resolution on a potential over-estimation of the 

mangrove area, without the disturbing effect of land cover change over time, as observed for the Geo 

Eye 2019 to SPOT-7 2022 comparison. 

Shrimp farms that are not fully covered because they are located at the SPOT-7 image’s border or have 

parts that were neglected as no data value because they were covered by the cloud and cloud shadow 

mask could be excluded from the map and analysis. Since only shrimp farms with a minimum size of 1 ha 

were observed in this study many farms that are not fully covered by the SPOT-7 input data for the 

classifications are already ignored. However, to guarantee the integrity of the mangrove observation a 

screening of incompletely covered shrimp farms could be performed to avoid considering such farms in 

the analysis. Moreover, shrimp farms with an area smaller than 1 ha could be surveyed with UAV data to 

provide detailed and precise information on the mangrove proportion. 

The trees in mixed mangrove-shrimp farm systems are mainly mangroves. However, there is the chance 

that another type of plant, for instance, banana palms or mango trees for food supply, could be planted 

by the farmers on their property. This could lead to confusion of non-mangrove plants with mangroves, 

which would result in a mangrove overestimation on shrimp farms with fruit trees in the study area. 

During an excursion to mixed mangrove shrimp farms, only dragon fruit cactus was observed, which is 

unlikely to resemble the spectral signature of lush mangrove canopy. 

 

4.4.2. Recommendations  

This study’s satellite-based mangrove observation covers shrimp farms in an area of about 76,350 km2. 

This study’s GTP field sampling campaign was performed within 2 days. After the processing of the data, 
the resulting classification enables the observation of the mangrove cover on 1,677 shrimp farms in the 

study area. The mapping of mangrove cover with a high spatial resolution builds the base for following 

calculations of biomass and carbon storage estimations. Quantifying the carbon stored in the mangroves, 

enhances communicating the importance of the mangroves’ carbon sequestration and function. The 
classified mangrove maps may be used as input data for a model to report the carbon stock within the 

study area. Biophysical characteristics of the mangroves, for instance, the Leaf Area Index (LAI), the 

above-ground biomass, and carbon stock could be computed with allometric models (Andalibi et al., 

2021; Kamal et al., 2022). Since most of the carbon is stored in the soil of mangrove systems, it is 

important to consider a model that accounts for the mangrove soil carbon sequestration (Campbell et al., 

2022). Prof. Dr. Nguyen Van Cong expressed an interest in the LAI, above-ground biomass, and carbon 
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stock of the observed mangrove-shrimp farm systems during a meeting at Can Tho University 6 . 

However, considering the risk of satellite-based mangrove area overestimation the SPOT-7 estimates with 

a spatial resolution of 1.5 m are likely to not represent the mangroves’ biomass and carbon stock as 

realistically as the dense point clouds captured by a UAV or very high spatial resolution (30 cm) MAXAR 

WorldView data (Hsu et al., 2020; Lassalle & de Souza Filho, 2022). 

Considering the expenditure of time, capturing UAV data for about 1,677 shrimp farms in this area is not 

reasonable. A hybrid monitoring approach could make use of the large coverage of satellite remote 

sensing data and the accuracy of very high spatial resolution UAV data. First, the classification of 

mangroves with high spatial resolution satellite imagery covering a large area could be performed. Based 

on the mangrove classification and the error margin indicated by the accuracy assessment, shrimp farms 

with a mangrove ratio of 60% ± the error range could be indicated to minimize the number of shrimp 

farms that are closer investigated with UAV field surveys. The accurate observation of the mangrove 

cover with a UAV can clarify the status of the mangrove ratio on shrimp farms. The QField application 

could be used for the collection of GTPs for the mangrove classification and accuracy assessment of the 

satellite remote sensing as well as the UAV data. A QField manual that was developed for the GTP 

sampling in the study area is attached in Appendix A. The proposed hybrid approach could provide a 

transparent and accurate mangrove observation while reducing the surveying and particularly the 

processing time of the UAV data. In April 2023, the head of Can Tho University’s GIS and remote 
sensing laboratory, Prof. Dr. Vo Quoc Tuan, held a UAV training session for the Biển Tây Protection 

Forest Management Board. Collaborations like that may help to adopt more transparent and accurate 

mangrove monitoring and management. The application of the proposed hybrid monitoring approach 

could be considered for the annual mangrove inventory monitoring of the Protection Forest Management 

Board. Further research as well as training and tutorials on the GIS and remote sensing methods of the 

envisaged hybrid monitoring approach, may be necessary to facilitate its application. The dry period 

during the Northeast monsoon from December to April is recommended for annual GTP field surveys 

and UAV flights since less intense wind and precipitation are more suitable sampling and flight conditions 

(Groenewold et al., 2015). 

The study area is subject to strict legal constraints since it borders the West Sea, which leads into 

international waters in the Gulf of Thailand. Accordingly, the strict flight regulations in the study area 

complicate the provision of UAV flight permits by the authorities. Loosening the flight regulations would 

allow researchers and forest managers to test the applicability and accuracy of UAV-based mangrove 

observations and allow a comparison to the results of this study. The studies of Yang et al. (2022) and 

Tong et al. (2023) demonstrate the application of unmanned aerial vehicle (UAV) with a high spatial 

resolution of less than 10 cm to map mangrove biophysical parameters like height as well as the canopy 

area and volume using a canopy height model. Canopy and species characteristics are valuable 

information for the monitoring and quantification of mangroves above ground carbon using a UAV (Li et 

al., 2019). UAV data offers to observe mangroves on shrimp farms more precisely and detailed than 

satellite remote sensing data as the SPOT-7 image applied in this study. However, Yang et al. (2022) state 

that a maximum mangrove area of 0.5 ha was investigated within one day. Considering that only shrimp 

farms of a minimum area of 1 ha were mapped in this study, capturing UAV data with that high spatial 

detail would take at least 2 days for the smallest of the 1,677 shrimp farms within the study area. An area 

of up to 200 ha can be covered with a rotary-wing UAV during one sampling day. In terms of spatial 

coverage, the application of a fixed-wing UAV could be of interest since it can cover a larger area and 

offers a longer flight time than a rotary-wing UAV (Amarasingam et al., 2022). However, the horizontal 

 
6 Meeting with Prof. Dr. Nguyen Van Cong (Dean of the College of Environment and Natural Resources) and Prof. 
Dr. Vo Quoc Tuan (Head of the GIS and remote sensing laboratory), Can Tho University, Vietnam. 06.03.2023. 
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takeoff and landing of a fixed-wing UAV is challenging in the study area’s mixed mangrove-shrimp farm 

environment and less user-friendly than a rotary-wing UAV, which can vertically take off and land on 

small open spaces (Amarasingam et al., 2022). Vertical Take-off and Landing (VTOL) UAVs combine the 

deployment benefit of rotary-wing UAVs’ vertical take-off and landing with the spatial coverage of fixed-

wing UAVs (Zhao & Li, 2022). Within a flight time of 110 minutes a VTOL UAV may cover an area of 

1200 ha in one flight (DeltaQuad, 2023). Besides all the benefits of a VTOL mapping UAV, like the 

DeltaQuad Pro #MAP, such remote sensing platforms may not be affordable or applicable without 

appropriate training for the Vietnamese Forest Management Boards (DeltaQuad, 2023). 

 

The proposed hybrid monitoring system could support the production of the annual national forest cover 

statistic by the Forest Protection Department mentioned by Hogestijn (2023). An annual observation of 

the relative mangrove area on the shrimp farms may be applicable to monitor the development of 

replanted mangrove saplings as well as the harvest of grown mangroves for timber, firewood, or charcoal 

production. A time span of five years from planted mangrove saplings to grown trees was stated in the 

expert interview. The human-induced depletion or harvest of mangroves is a more rapid process than the 

growth of trees. Therefore, an annual time scale is more important to detect the loss of mangroves than 

the gain achieved via reforestation. A mosaic of optical remote sensing imagery can gap-fill cloud-covered 

pixels and enable an annual mangrove classification and mapping of the respective Forest Management 

Board’s survey area. Norway’s International Climate and Forests Initiative (NICFI) satellite data program 
offers analyze-ready mosaics with a spatial resolution of 4.77 m for non-commercial and non-profit use 

(Planet Labs PBC., 2022a, 2023). Bunting et al. (2023) applied NICFI monthly mosaics to monitor 

mangrove loss across Africa with an estimated overall accuracy of 92%. Monthly NICFI mosaics are 

available for tropical countries including Vietnam (Planet Labs PBC., 2022a). The application of monthly 

NICFI mosaics captured during the dry period from December to April could be interesting for the 

mangrove monitoring of the Biển Tây Protection Forest Management Board (Groenewold et al., 2015). 

Further research on the applicability on shrimp farm level is necessary, due to the lower spatial resolution 

(4.77 m) compared to the 1.5 m of the SPOT-7 image used in this study. The GTPs that were generated 

for this study could be used to classify and perform an accuracy assessment of a Planet Super Dove image 

that captured the study area on the 22nd of July 2022, three days before the analyzed SPOT-7 image 

(Airbus, 2022; Planet Labs PBC., 2022b). The comparison of both satellite images’ accuracy could 
investigate the applicability of different spatial resolutions for the observation of mangrove cover on 

shrimp farms. 

In the case that the cloud-covered pixels cannot be compensated for with a monthly or annual mosaic, 

that involves satellite remote sensing images captured during the observation month or year of interest, 

active radar remote sensing could be considered to substitute the missing data to enable the annual 

monitoring. Active Synthetic Aperture Radar (SAR) data could be of interest to account for cloud cover-

induced data gaps in optical remote sensing data since radar remote sensing can penetrate through clouds. 

This is especially of interest during the months of the cloudier wet season from May to November 

(Groenewold et al., 2015). Pham et al. (2019) reviewed several studies that exemplified the application of 

radar remote sensing for the monitoring of mangroves. However, high spatial resolution and active radar 

remote sensing data come at a cost (Pham et al., 2019). Obtaining data is expensive and therefore may not 

be accessible to local stakeholders like the Forest Management Boards. 

Alternatively, observation gaps of shrimp farms where cloud cover or cloud shadow hinder the mangrove 

mapping optical remote sensing imagery, like the applied SPOT-7 image, could be compensated via UAV 

field surveys. The flexible application of UAVs may offer a more cost-efficient alternative to map 

mangroves on a small spatial scale. 
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The future publication of annual mangrove maps and shrimp farm mangrove ratios could support the 

shrimp farmers who seem to be challenged by estimating the relative mangrove cover on their properties. 

The availability of information on the mangrove status could help shrimp farmers manage and preserve 

the mangrove cover on their farms accordingly to achieve the required mangrove ratio thresholds. 

Additionally, an awareness-raising campaign that conveys the importance of the valuable mangrove 

ecosystem services could be organized. Particularly shrimp farmers with a lack of mangrove cover on 

their property could be aimed for with the information and awareness raising sessions. The involvement 

of the district and commune-level People’s Committee and Forest Management Boards in the awareness-

raising campaign is important to reach local stakeholders. The cooperation and engagement of local 

communities and stakeholders is fundamental for the successful implementation of conservation and 

restoration measures. Many restoration projects do not address the reason causing mangrove loss 

(Quarto, 2012). Besides shrimp farming and forestry there are only limited sources of income for the 

population in the study area. However, the benefits of integrating healthy and productive mangroves on 

the shrimp farm for the local community must be clarified to raise the individual responsibility for 

mangrove conservation. The example of Mui Ca Mau National Park shows that eco-tourism could 

represent another means of income and support the mangrove conservation in the study area (Kien et al., 

2017). But the study area is declared as a zone where tourists are not allowed to travel, which prevents 

this alternative source of income. 

 

The technical manager of the West Sea Protection Forest Management Board expressed the necessity of 

training in GIS and remote sensing to support the Forest Management Board’s staff improve their skills7. 

He proposed that teaching institutes could organize training sessions on remote sensing methods for the 

Forest Management Board since there is a demand in many units. The development of a manual that 

instructs the execution of a pixel-based classification and a subsequent accuracy assessment, as presented 

by this study, could serve as teaching material for the Forest Management Board. Acting by developing 

educational materials and organizing training sessions with interested technical managers and surveyors 

would support the monitoring and management of natural resources in the study area. The tutorial in 

Appendix A aims to convey a field sampling method using open-source software. Developing and sharing 

more educational material as well as organizing training sessions to gain practical experience with GIS and 

remote sensing software is desirable to support the mangrove conservation and reforestation efforts of 

the local stakeholders. 

 

Mangroves of the genera Avicennia and Rhyzophora dominate in Vietnam (Veettil et al., 2019). The harvest 

of grown mangroves combined with the plantation of Rhyzophora on the study area’s shrimp farms by the 
Forest Management Board may gradually lead to a further loss of mangrove species diversity. The 

compound effect of the anthropogenically driven decline of mangrove biodiversity as well as large-scale 

human interventions into the hydrology that alter the sediment flux via dams and channels impact the 

Mekong Delta. Additionally, erosion and climate change-induced sea level rise pose a threat to the region. 

This could lead from the equilibrium state during the Holocene through a tipping point to a less desirable 

species configuration of the mangrove forests and ultimately to a collapse of the Mekong Delta in the 

Anthropocene (Renaud et al., 2013). The monitoring of mangrove species dynamics in the study area via a 

remote sensing time series could indicate long-term changes in the prevailing species composition. The 

studies of Cao et al. (2018) and Wang et al. (2018a) used machine learning algorithms on remote sensing 

data for the classification of mangrove species. The application of a remote sensing-based mangrove 

 
7 Zoom meeting with the technical manager of the West Sea Protection Forest Management Board and Prof. Dr. Vo 
Quoc Tuan (Head of the GIS and remote sensing laboratory, Can Tho University). 14.04.2023. 
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species classification in a future study could provide insights into the spatial and temporal development of 

the study area’s mangrove species composition. The application of the SPOT-7 image used in this study 

and the resulting mangrove map could be further processed to classify mangrove species in the study 

area. This could reveal valuable information on the mangrove species composition in the study area and 

test the potential influence of the manual plantation of Rhyzophora on the diversity and dominance of 

mangrove species. Especially a comparison of the special use forest’s species composition with the 

mangrove species occurring on the integrated mangrove-shrimp farm systems in the protection and 

production forest could evaluate the effect of the currently applied mangrove management practices on 

the biodiversity and productivity of the mangrove communities. 
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5. CONCLUSION 

This study presented the land cover classification of a pan-sharpened SPOT-7 satellite image and its 
application for the observation of mangrove ratios on shrimp farms in the study area. The first research 
aim was to compare the accuracy of the object-based and pixel-based classification. The study’s results 
indicate that there is no statistically significant difference between the accuracy of both applied 
classification approaches. The accuracy assessment using the validation GTPs shows that the two 
approaches map mangroves with an overall accuracy of 96%. The second research aim was to analyze the 
mangrove cover on shrimp farms in the observed forest management zones. In the protection forest, a 
higher percentage of shrimp farms was found to have sufficient mangrove cover (>60%) than in the 
production forest. However, considering the error margin of 4% the number of shrimp farms complying 
with this sustainability criterion is still low in both forest zones with only 25% and 11% of the shrimp 
farms respectively. This is even less in the non-forest zone (7%) where the regulation is not in force. The 
third research aim focused on the assessment of discrepancies between ground-based and satellite-based 
mangrove ratio estimates. Considering the mangrove ratios calculated from the object-based and pixel-
based classification as reference values, the farmers’ ground-based perception tended to over or 
underestimate the relative mangrove cover on the shrimp farms.  
Very high spatial resolution satellite remote sensing or UAV imagery may provide more detailed and 
accurate mangrove observations on a finer spatial scale to avoid the overestimation of the mangrove 
cover. A hybrid monitoring approach involving the classification of mangroves with high spatial 
resolution satellite data, covering a large area, combined with the application of a UAV, to accurately 
capture and investigate the mangrove cover on shrimp farms that are indicated with mangrove ratios ± 
the error range of the satellite remote sensing mangrove classification, is recommended. Additionally, the 
classification of mangrove species could give insights into the mangrove species composition prevailing in 
the study area’s forest zones. The current mangrove harvest and replantation of Rhyzophora benefits the 
timber production on mixed mangrove monoculture shrimp farm systems but does not establish or 
protect the valuable services and functions of productive, biodiverse mangrove ecosystems. 
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6. ETHICAL CONSIDERATION 

This section focuses on the ethical processing and implication of the qualitative information obtained 
during the interview as well as the geodata that was sampled and used for this research. Furthermore, the 
potential consequences of the research results on the shrimp farmers in the study area are considered. 
 
The qualitative information obtained from the questionnaire and interview was kept confidential. The 
interviewee, who voluntarily participated, was anonymized in this thesis. The notes and record of the 
interview are securely stored and protected from disclosure to third parties. 
A forest manager accompanied the students during the GTP field survey and explained the purpose of 
the research to the owners of the examined shrimp farms. To avoid threatening liberties or private 
information of the individuals encountered on the shrimp farms, it was taken care of that no person was 
captured on the images that represent the respectively sampled land cover class. Moreover, the sensitive 
land cover data is securely stored and protected from disclosure to third parties. 
Since the resulting maps of this research indicate the mangrove cover on shrimp farms in the study area, 
the land use habits and practices of individual shrimp farmers in the local community could be influenced. 
For example, shrimp farmers that do not comply with the mangrove cover regulations in the protection 
and production forest, risk losing their land use rights. Many shrimp farms are family businesses that 
depend on the land use rights in terms of revenue as well as accommodation. Except for the forestry and 
aquaculture sector there are not many alternative sources of income in the study area. Accordingly, non-
compliance with the regulations could result in the loss of housing and financial stability for individuals 
and families in the study area. This could have ripple effects on the entire local community. However, 
shrimp farmers that establish their aquaculture on land in the protection and production forest sign a 
contract that states the regulations and requirements for the land use rights. Therefore, the shrimp 
farmers agreed to respect the regulations and preserve 60% mangrove cover on their shrimp farm. To test 
the compliance with this regulation, the Forest Management Board puts a lot of effort into the mangrove 
monitoring. Nonetheless, the laborious monitoring of the Forest Management Board only detects about 
three cases of community-level violations annually, although a survey by Truong et al. (2021) indicates 
that about 50% of the investigated households cleared the mangrove cover to an extent that exceeds the 
regulated level. Consequently, the approaches studied in this research offer a more transparent and 
efficient mangrove observation that could improve the current monitoring performed by the Forest 
Management Board. A more transparent mangrove assessment using remote sensing imagery could 
incentivize a more efficient ecosystem restoration and contribute to more sustainable aquacultures. As a 
result, the ecosystem services of a healthy mangrove forest would support and benefit the human, faunal 
and floral community in the study area. 
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APPENDICES   

8. APPENDICES 

Appendix A 

In this section of the appendices the tutorial developed for training the Ground Truth Point (GTP) 

sampling is given. The presented workflow using QGIS and the QField application was applied during 

the GTP field survey in the study area. 

 

 

Tutorial on setting up a QGIS Project, using QField for field data collection and transfer data to 

and from QField 

 

Author: Finn Münch, March 2023 

 

The main objective of this tutorial is to expose you to an innovative data collection method for spatially 

explicit field data (with coordinates!). This tutorial is designed for QGIS users. After having finished this 

tutorial, you will be able to: 

• Set up the Qfield application on your mobile phone and connect it to your laptop where QGIS is 

installed.  

• Start a new QGIS project 

• Transfer data from the computer to the mobile phone to allow map display for orientation and 

navigation. 

• Manually digitize and enter data (Ground Truth Points) in the field. 

• Downloading the field data from the mobile phone to the computer 

The context of this tutorial is a study on land cover assessment in an integrated shrimp farm-mangrove 

system in Năm Căn district, Cà Mau Province, Vietnam.  

Some background: 

Although mangroves provide valuable ecosystem services, a severe mangrove forest degradation 

caused by the establishment of, and cultivation practices on shrimp farms is observed in Vietnam. The 

land use contracts require the shrimp farmers to maintain 60% mangrove cover on their property. 

However, the Vietnamese forest management authorities as well as certification organisations lack 

accurate methods for the observation and quantification of mangroves on shrimp farm scale. A 

remote sensing-based mangrove monitoring has great potential to provide more accurate, transparent, 

and regular observations.  

To map and classify land cover on farm level, rather high-resolution satellite imagery is required. This 

study uses a sub-set of a pan-sharpened SPOT-7 image (1.5 m) and a base map downloaded from 

Google Earth (0.5 m).  

The Ground Truth Points (GTPs) to be generated during the sampling campaign (done by you) are 

going to be used to classify a subset of a SPOT-7 satellite image. The resulting land cover map will 

allow extracting the mangrove area and assessing the ratio of mangrove area to the total shrimp farm 

area. The accuracy assessment that accompanies the map provides quality information that is 

important for policy makers and sustainability certification.  

Random sampling is not possible in the highly fragmented mangrove area. Also travelling in the area 

is challenging and time consuming. Therefore, a clustered sampling approach will be used. To make 

sure that all the GTPs are well distributed over the study area, randomly 50 farm areas were selected 

where the clusters of GTP will be taken.  
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WARNING: Set up an organized directory structure to store the data for your field survey project! 

To develop this tutorial, a variety of projects was used to create the examples given in this tutorial. 

Therefore, the directory paths and file names vary and are not applicable to your individual projects. 

To allow multiple individuals collecting data in the field, each student or student group gets an 

identification letter (e.g. group A). That name should then come back in the folder name to avoid 

overwriting data later on. 

Therefore, create in your computer a folder called “NamCan_GTPs_A” if you are group A, or 
“NamCan_GTPs_B” if you are group B and so on. This would result for instance, in this simple path 

directory ‘C:\Users\finnm\Desktop\NamCan_GTPs_A’ on my PC.  
Next, create the following subfolders within the ‘NamCan_GTPs_A’ folder: 
• a subfolder called ”Data” to store the relevant data that you use in your QGIS project. 

• a subfolder called “QField_Import_NC” 

• a subfolder called “QField_Export_NC” 

 

Then create a new QGIS project in the ‘NamCan_GTPs_A’ folder and name it ”NamCan_GTPs_” and 
again add the your respective group identifier for instance, “A”. In this case it would result in the QGIS 
project name “NamCan_GTPs_A”. 
Start QGIS, start a new project and set the coordinate system to ‘VN-2000 / UTM zone 48N – 

EPSG:3405’ if your study area is in Vietnam. 
Now that your computer has a logic folder structure, and you have started QGIS, it is time to take the 

first steps. 

 

 

1. Add a basemap to the ‘XYZ Tiles’ of your QGIS project 
 

Often, it is convenient to use google satellite imagery. You can set it as your basemap as follows: 

1.1. Right click on ‘XYZ Tiles’ and select ‘New Connection…’. 

 
1.2. Define the name of the basemap, for instance, ‘Google Satellite’, in the ‘Name’ section. 
1.3. Copy and print the following URL link 

https://www.google.cn/maps/vt?lyrs=s@189&gl=cn&x={x}&y={y}&z={z} into the ‘URL’ section. 
1.4. Click ‘OK’ to add the ‘Google Satellite’ basemap to the ‘XYZ Tiles’. 
A description on how to add a variety of basemaps can be found on the following website 

https://opensourceoptions.com/blog/how-to-add-google-satellite-imagery-and-google-maps-to-qgis/ . 

1.5. Add the ‘Google Satellite’ XYZ Tile as Layer to your Project by right clicking on it and selecting 

‘Add Layer to Project’. 

 
 

 

https://www.google.cn/maps/vt?lyrs=s@189&gl=cn&x=%7bx%7d&y=%7by%7d&z=%7bz%7d
https://opensourceoptions.com/blog/how-to-add-google-satellite-imagery-and-google-maps-to-qgis/
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2. Export the google satellite imagery to a GeoTIFF (.tif) file  

 

2.1. Right click on the added ‘Google Satellite’ layer and click ‘Export’ ‘Save As…’.  

 
2.2. Uncheck the ‘Create VRT’ box. 

 
2.3. Click the box with the 3 dots next to the ‘File name’ box to define the output location and file name 
of the GeoTIFF.  

 
2.4. Select the output Coordinate Reference System (CRS). 

 
2.5. Select the Extent either from a layer in your project ‘Calculate from Layer’ or from the ‘Map Canvas 

Extent’. 
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2.6. Define the Resolution. Depending on the ‘CRS’ that you chose, the spatial dimensions of the map 
can be in different units. Since the selected ‘CRS’ bases on a UTM projection the unit is given in meters 
m. In the ‘Resolution (current: layer)’ section you can define the spatial resolution of the output GeoTIFF. In 

this tutorial a pixel size of 0.5 m is defined. 

 
2.7. At last, click okay to start the export of the GeoTIFF (.tif) file. You can see the progress of the export 

on the ground bar of QGIS. 

 
2.8. Once the Layer is successfully exported, a green notification will pop up on the top of the map 

canvas. The raster layer, in this case called ‘TEST.tif’, will be added as new layer to the project. 

 
2.9. Now you can remove the ‘Google Satellite’ XYZ Tile by right clicking on the layer and selecting 

‘Remove Layer…’. Click ‘OK’ in the pop up window to confirm to remove the layer. 

     
 

 

3. Install the Qfield plugin. 

 

3.1. Click on ‘Plugins’ and then select ‘Manage and Install Plugins…’. 
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3.2. Type ‘Qfield’ into the search bar and press enter to search for the plugin. 

 
3.3. Select ‘Qfield’ and install the plugin. If this plugin is already installed you can reinstall it. If there is an 
update available, as it is the case in the illustration below, you can upgrade the plugin to the current 

version.  

 
3.4. After successfully installing the ‘QField’ plugin, three new buttons called ‘Package for QField’, 
‘Synchronize from QField’, and ‘Configure Current Project’ are displayed on the top bar of QGIS. 

     

 

4. Create a point shapefile ‘.shp’ for the landcover sampling survey 

 

4.1. Click on ‘Layer’, ‘Create Layer’, ‘New Shapefile Layer…’ to create a new point shapefile. 
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4.2. Browse to the destination folder and define the ‘File name’ of the new shapefile layer, for instance, 

“TEST_GPTs” by clicking on the box with the 3 dots. Finally click the ‘Save’ button. 

 
4.3. Select ‘Point’ as ‘Geometry type’. 

 
4.4. Select the Coordinate Reference System for instance, “EPSG:3405 - VN-2000 / UTM Zone 48N”. 

 
4.5. Now you can add new fields to the attribute table of the layer. For example, add a field called ‘Class’. 
Since we know already in advance the land cover classes that we will observe in the field, we can create a 
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drop-down list with the options for these classes. We will do this later. 

 
Add a field of the type ‘Date’ to represent the date of the observation.  
Add a field of the type ‘Text Data’ that will represent the link to the photo of the observed point. Make 
sure to define a sufficient length, for example 255, to prevent issues with the length of the image name. 

Add a field of the type ‘Text Data’ that will represent the code of the observation. 
You can also add the fields after you created the new shapefile layer. Right click on the new layer and 

select ‘Properties’.  Then browse to the ‘Fields’ section. Click on ‘Toggle editing mode’ and then ‘New Field’. 
Define the name of the field for instance, “Date” and set up the Type to be ‘Date’. Press ‘OK’ to create 
the new field. 

 
  

 

Click on ‘Toggle editing mode’ again to stop editing and save the changes by pressing ‘OK’ in the “Stop 

Editing” pop-up window. 

 
4.6. After you created the new fields, you can create a drop down menu for a particular field if you like. In 

this tutorial, we will do this for the field ‘class’ which will contain the land cover classes that we are going 
to observe in the field and which you need to see in your QField application.    
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Browse to the ‘Attribute Form’ section to set up the fields.  
Click on the field called ‘Class’ and select “Value Map” as ‘Widget type’. 

 
Then define the land cover classes you intend to observe, for instance,: ”Mangrove” and “Water”. This will 
generate the options in the drop down menu to select the respective land cover type later in QField. You 

can also use “Text Edit” as ‘Widget type’ if you intend to manually type the land cover type for each 
observation in the field. 

Then check the ‘Not Null’ and ‘Enforce not null constraints’ checkboxes to force that this field must be filled 

out during the field observations. 

Next click on the field called ‘Date’. Scroll down to the ‘Default’ section and type “now()” into the ‘Default 

value’ field. This will automatically generate the observation date when a new record is created.  

 
Then click on the field called ‘Code’ to check the ‘Not Null’ and ‘Enforce not null constraints’ checkboxes to 
force that this field must be filled out during the field observations. 

 
Then click on the field called ‘Photo’ and set the ‘Widged type’ to “Attachment”. In the ‘Constraints’ section 
check the “Not null” and “Enforce not null constraint” checkboxes to enforce that a photo of the observation 
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must be taken. After setting up all fields click the ‘Apply’ button and then on ‘OK’. 

 
 

 

5. Export the QGIS project and its files 

 

After adding all layers that support your field survey, for instance, a road network shapefile or shrimp 

farm boundaries, to your QGIS project make sure to save (CTRL + S) it. Now that all edits are saved 

you can package the project and its files to a QField import folder. 

5.1. Click on the ‘Package for QField’ button.  

  
5.2. A window stating ‘WARNINGs’ with error messages may pop up. These errors need to be fixed first. 
Often it has to do with unsaved changes when you were setting up all the fields or with inconsistencies in 
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the coordinate system. If there is no ‘ERROR’ displayed you can proceed by clicking ‘Next’. 

  
5.3. Create a new directory to store the import data for QField.  

5.4. Deselect all ‘Directories’ in the ‘Advanced’ section and then browse to your newly created import 

directory where you intend to store the project and its data. Click ‘Select Folder’. 
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5.5. Click ‘Create’. This may take a bit of time. You can observe the progress of the project creation. 

 
5.6. Click ‘OK’ to confirm the coordinate system conversion from ‘EPSG:32648 – WGS 84 / UTM zone 

48N’ to ‘EPSG:3405 – VN-2000 / UTM zone 48N’. 

 
5.7. At last, a green notification will appear under the top tool bar indicating the successful creation of the 

QGIS project. Moreover, the next step, copying this folder to your QField device, is indicated. 

 
 

 

6. Transfer the QField import folder to your mobile device 

 

6.1. Connect your mobile QField device via cable to your PC. 

6.2. Create a folder called “QField” on your mobile device. 
6.3. Copy the “QField_Import” folder from your PC to the ‘QField’ directory on your mobile QField 

device. 
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Setting up and using the QField Application on your mobile phone 

 

1. Set up the QField Project 

 

1.1. Download the ‘QField’ application from the App Store https://apps.apple.com/us/app/qfield-for-

qgis/id1531726814 for IOS and from the Google Play Store 

https://play.google.com/store/apps/details?id=ch.opengis.qfield&gl=US&pli=1 for Android to the 

device. 

1.2. Connect your mobile phone with a cable to your PC. If you use an Android device, click on the 

pop-up window of your phone’s top bar or search for “USB Preferences” in your phone’s settings. 

 
Then select ‘File Transfer’ in the ‘USE USB FOR’ section.  

 
Create a new folder (CTRL + SHIFT + N) called ‘QField’ on your phone.  
Copy the Import folder with your individual identification letter to your phone. For instance, if your 

identification is “A” you copy (CTRL + C) the folder called ‘Qfield_Import_NC_A’ and paste (CTRL + 

V) it into the new folder on your phone.  

 

https://apps.apple.com/us/app/qfield-for-qgis/id1531726814
https://apps.apple.com/us/app/qfield-for-qgis/id1531726814
https://play.google.com/store/apps/details?id=ch.opengis.qfield&gl=US&pli=1
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1.3. Start the ‘QField’ application and click on ‘Open local file’. 

 
1.4. Press the green and white plus button on the lower right corner of the screen and select ‘Import project 

from folder’. 

 
1.5. Browse to the ‘QField’ folder where the import folder is stored on the device, click ‘USE THIS 

FOLDER’ and then press ‘ALLOW’ to grant QField the access. Depending on the size of the project 
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loading the data into QField can take some time. 

 
1.6. Open the ‘QField’ project by clicking on the Project file name in this case ‘Qfield_NamCan_VN-

2000_qfield’. 
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In case that you already opened the Project of interest before, you can directly start it from the QField 

home screen by clicking on the respective Project name, for instance, ‘Qfield_NamCan_VN-2000_qfield’, 
which is indicated as ‘Last session’ 
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2. QField functions 

 

Press the  button on the top left corner  to see the available layers of the QField Project. 

 

2.1. Click on one layer and hold for about 2 seconds to see the 

edit function for the selected layer. You can display or not 

display it on the map by checking or unchecking the box called 

‘Show on map’. 
 

 

 

 

 

 

 

 

 

 

 

 

Moreover, you can 

adjust the opacity of 

the layers to adjust its 

transparency with the 

green slidebar, or 

‘Zoom to layer’ by 
clicking the respective green button. Once you are in the study 

area, don’t use the ‘Zoom to layer’ function as this will zoom out 

to the full extent of the layer and cost time too zoom in to the 

right level of detail again. 

When zoomed out sufficiently you will notice some irregular 

black areas. These are areas that were cloud-covered and these 

have been masked out. We should avoid positioning the GTP 

in these masked out area and make sure that a GTP is located 

in a pixel that clearly represents a particular type of land cover. 

Changing between different map layers as background goes easiest by switching the ’Show on map’ function 
on and off. If you switch off the layer called ‘NamCan_AOI_GTP_25ShrmpFrms_Merge’ you can more 
clearly see the raster satellite images without the transparent red or blue color of this layer. This is useful 

to select the land cover. Alternatively the ‘Opacity‘ can be set to 50% with the green slide bar to have more 

transparent polygons showing close to normal colors while still indicating the shrimp farms of interest. 
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2.2. Now, let’s start adding field data. Click on the layer called 

‘GTPs_NamCan’ and then press the button with the pencil  in 

the top right corner to change this layer from ‘browse mode’ to 
‘digitize mode’. 
 

 

 

 

 

 

 

 

 

 

 

2.3. You can navigate, zoom in and out on the map with your 

fingers. You can also control the zoom with the plus and 

minus button. 

    
2.4. You can automatically zoom and lock to your cursor to the device’s current location by clicking on 
the upper most button of the lower right corner . The button will switch to blue and have a box around 

it. To unlock the cursor from your device’s position press the button  again. The central button 

switches on or off that the canvas follows the device’s location. The central button will appear blue when 
it is switched on. Press the button again to switch the follow canvas mode off.  
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The lowest button  in the bottom right corner adds a new point at the location of the cursor, for 

instance, on pixels covering mangroves. We will use that later. 

   
The layer ‘AOI_GoogleSatellite_0.5m’ is ideal for recognizing and identification of land cover on an image. 
However, we want to avoid selecting GTPs on mixed pixels in the SPOT-7 image. Therefore, use the 

layer called ‘SPOT-7’ as background image when entering a GTP.  
Press the layer ‘GoogleSatellite_0.5m’ for two seconds and uncheck the ‘Show on map’ box. Now you can 
check while using the ‘SPOT-7’ as background image if the GTP is located well within the respective land 
cover type with a buffer of at least one pixel of the same land cover around it.  

In general, at farm level the land cover types may occupy a rather narrow or small area, like strips of 

mangroves, the water in between or the dykes on the farm. So, within a small distance you can probably 

take a number of GTPs in different land cover types. However, it should be avoided that points of the 

same land cover class are positioned too close to each other in the same land cover unit. Therefore, make 

sure they are at least at a distance of 100 m apart from each other. 

 

Zoom to device location                   -> 

Canvas follows device location       -> 

Add a new point at cursor location-> 

Reticle or cursor 

indicating the 

location of the 

new point 

location      -> 

<-   Menu 
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2.5. Click the green button  in the bottom right corner to create a new point. The ‘Add Feature on 

GTPs_NamCan’ window will appear. Select the land cover that you are currently observing from the 

dropdown menu of the ‘Class’ section, in this case ‘Mangrove’. Press on the camera  in the ‘Photo’ 
section to take an image to the observed land cover class.  

Scroll down to the ‘Comment’ section to add a comment if you observe something noteworthy describing 
the point (optional). For instance, you could write a remark on the density and age of the observed 

mangroves.  

   
Note (in the comment box) if it is pond or river water when creating a ‘Water’ GTP as the water quality 
and colour of the water may influence the classification. Note what kind of vegetation it is if you generate 

‘Vegetation’ land cover points that is not mangrove. Note what type of infrastructure you are observing, 

Google Satellite Layer SPOT-7 Satellite Layer SPOT-7 Satellite Layer 
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for example a shed, bridge, or path, when you create an ‘Infrastructure’ GTP.  
Finally click on the checkmark  in the upper left corner of the ‘Add feature on GTPs_NamCan’ box to 
save the point. The new point and a label with its ID will appear on the map. 

 

2.6. In case you want to edit an existing point, you can click on the point and select the respective point, 

in this case ‘Mangrove’ from the active ‘GTP_NamCan’ layer. Then edit whatever is necessary.  

 
2.7. You can adjust the attributes of the point or have a look at the menu to edit the selected point. The 

buttons for these functions are displayed on the green top bar of the attribute table. In the worst case you 

can delete the point by clicking on the menu button  on the outmost right side of the green bar. 

  
 

Important note:  The ID of a ground control point is automatically set. It was noted that using the ‘Move 

Feature’ function or the ‘vertice tool’ creates errors in the automated numbering. Therefore, If you are not 
satisfied with the location or attribute of the created point, click on  and delete it with the  ‘Delete 

Feature’ option on the menu’s ground. Then create a new point. This avoids errors in the automated id, 

since relocating the point with the vertex tool results in an increment of the point’s id. Therefore, do not 
use the ‘Move Feature’ function or the ‘vertice tool’! 
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2.7. In a farm area, generate one point for each land cover class (Mangrove, Water, Vegetation, 

Infrastructure, and Soil) on each red or blue indicate shrimp farm of interest. The aimed number of 

points for each shrimp farm is indicated in the table below. In case not every land cover class is 

represented on the investigated shrimp farm try to compensate the missing land cover class on an 

adjacent shrimp farm or along the way. Additionally create one ‘Water’ land cover points in the river or 
channel close to the investigated shrimp farm, since the spectral signature is likely to differ from the water 

in the shallower shrimp ponds. 

The ideal sampling point scenario for each shrimp farms is given in the following table: 

Class Points 

Mangrove 2 

Water (shrimp pond) 1 

Water (river or channel) 1 

Vegetation 1 

Infrastructure 1 

Soil 1 

 

Take care that the points are located at least 4 pixel sizes (6 m) apart from each other to avoid mixed 

pixels. You can either count the pixels or measure the distance with the ‘Measure Tool’. Click on the Menu 

button in the top left corner and then click the settings button to select the ‘Measure Tool’. 
2.8. After creating the 7 points switch back into ‘browse mode’ by clicking on .  

Now you can close the QField app and go to the next area of interest. 

Two shrimp farms of interests are always located next to each other to 

reduce the travel time in the study area. After you sampled one shrimp 

farm cluster, which includes two shrimp farms, ride with your 

motorbike to the next shrimp farm cluster. 

 

 

 

 

 

 

 

 

 

 

 

 

3. Transfer the QField data to your PC 

 

3.1. In case you do not have it yet, create a directory called 

“QField_Export” with your respective identifier on your PC. For instance, the name of the folder for the 

person with the identifier “A” would be “QField_Export_A”. Otherwise use the one that you made at the 
start. 

3.2. Connect your mobile QField device to your PC. If you use an Android device, click on the pop-up 

window of your phone’s top bar or search for “USB Preferences” in your phone’s settings.  
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Then select ‘File Transfer’ in the ‘USE USB FOR’ section.  

 
3.3. In the QField app you can have a look at the directory path where your project is stored. Click on  

and then on ‘Open Project Folder’. Now you can see the directory where the Project Folder is stored as well 
as the folder’s content (‘Folders’, ‘Projects’, and ‘Datasets’).  

   
3.4. Browse with your PC to the indicated QField Project directory of the connected QField device, in 

this case “This PC\BV9900Pro\Internal shared storage\Android\data\ch.opengis.qfield\files\Imported 

Projects\QField_Import_CTU”.  
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Select (CTRL + A) the entire content of the Project Folder and copy (CTRL + C) the content.  

 
3.5. Browse to the newly created ‘QField_Export’ directory on your PC and paste (CTRL + V) the 

copied files into this folder.  

 
 

 

 

4. Synchronise the QField project from your mobile device with your QGIS project on your PC 

4.1. Open the ” Qfield_NamCan_A.qgz” QGIS project with your respective identifier, in this case “A”. 
Click on the ‘Synchronise from QField’ button in your PC’s QGIS project. 
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4.2. Deselect or uncheck all directories in the ‘Advanced’ section and then click  to browse to the 

folder where your QField_Export folder that contains your GTPs and click ‘Select Folder’.  

 

 
At last click ‘Synchronize’. You can observe the Progress of the synchronization.  
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4.3. Ones the data is synchronized the GTPs taken during the field survey are displayed in your QGIS 

project. 

 
4.4. To display the images you took during the field survey right click on your point shapefile layer and 

select properties. Click on the ‘Attributes Forms’ section and select the field ‘Photo’. Select ‘image’ from the 
‘Type’ drop down menu in the subsection ‘Integrated Document Viewer’ of the ‘Widget Type’ section. Then 
adjust the width to 400 and the height to 300 px. Verify the changes by clicking the ‘Apply’ button on 
the ground of the window and close the Properties window. 

 
4.5. Use ‘Identify Features’ to select a feature of interest. 
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4.5. Right click on the feature ‘Photo’ and select ‘View Feature Form…’. 

 
The attributes including the image taken at the selected point are displayed. 
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Appendix B 

The entity of collected Ground Truth Points (GTPs) sampled by the Vietnamese students with the 

QField application is illustrated in Table 10. 

 
Table 10. Ground Truth Points (GTPs) collected by the students for each land cover class. 

Land cover Class GTPs 

Mangrove 216 

Water 217 

Vegetation 129 

Infrastructure 111 

Soil 106 

Total 778 
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Appendix C 

 
 

 
Map 9. Relative mangrove area on the shrimp farms in percent according to the object-based classification (Airbus, 2022). 
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Table 11. Count [n] of shrimp farms for the relative mangrove cover class in the four forest zones for the object-based and pixel-based approach. Relative count of shrimp farms in 
the forest zones per square kilometer [n/km^2]. 

Forest Zone 
  

Area 
[km^2] 

  

< 1% 
[n] 

  

< 1% 
[n/km^2] 

  

1 to 
46 % 

  

1 to 46 % 
[n/km^2] 

46 to 
56 % 

  

46 to 56 
% 

[n/km^2] 

56 to 
64 % 

  

56 to 64 
% 

[n/km^2] 

64 to 
99 % 

  

64 to 99 
% 

[n/km^2] 

99 to 
100% 

  

99 to 
100% 

[n/km^2] 
Special-use 
forest 10,088 0 0 0 0 0 0 0 0 11 0.40 7 0.69 
Protection 
forest 21,116 2 0.09 207 9.61 102 4.59 69 2.18 125 5.87 0 0 
Production 
forest 43,757 20 0.43 680 15.53 128 2.99 90 1.55 118 2.86 0 0 

Not forestry 11,477 11 0.96 108 8.71 6 0.52 2 0 9 0.78 0 0 

Total 86,439 33 0.38 995 11.51 236 2.73 161 1.86 263 3.04 7 0.08 
 

 
Table 12. Count [n] of shrimp farms with less than 56%, between 56 to 64%, and more than 64% mangrove cover for the Protection, Production, and No Forest zones. 

    Object-based   

    
< 56% mangrove 
cover 

56 to 64% mangrove 
cover 

>64% mangrove 
cover 

Pixel- < 56% mangrove cover 1264 0 0 

based 56 to 64% mangrove cover 0 161 0 

  >64% mangrove cover 0 0 252 
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Appendix D 

This Appendix section contains the notes on the expert interview with Mr. Ly Minh Thang of the West 

Sea Protection Forest Management Board. The interview took place on the 14th April 2023. 

 

Questions for the technical manager of the Forest Protection Department 
A) Introduction 

1. Would you like to introduce yourself and the Forest Management Board? 

My name is Ly Minh Thang. I am a Technical Manager of the Forest Protection Department, West Sea Protection Forest 

Management Board. We have two departments with a total staff number of 56 people including the stations. Our Forest 

Management Board manages an area of 11,000 hectares. 

The Biển Tây (westside of Cà Mau) Forest protection department focuses on Lam Hai (Năm Căn) and Nguyen Viet Khai 

(Phu Tan). The Biển Tây Forest protection department employs twelve people, including three forest managers and nine field 

surveyors. 

 

2. How many shrimp farms are currently monitored by your Forest Management Board? 

There are 3087 production households on the managed forest stand. 

 

3. What do you consider as main challenges to monitor the mangroves? 

Challenges from climate change and increasing sea level rise, natural erosion, changes in alluvial deposits, agricultural 

production, aquaculture, financial resources to protect mangroves currently very limited. 

We would like to plant more mangroves since now the mangrove cover is just about 40%. But there is no money to invest for 

planting mangroves. 

The budget to protect mangroves is too small. We don’t have enough money to support the farmers who protect mangroves. 

In recent years, the government invested 30 million Vietnamese Dong to plant 1 ha of mangrove in the protection forest. But 

just for planting, not for protecting the mangroves later. This is decided every year according to Cà Mau people committee. 

Whereas in the production forest the government only funds 8 million Vietnamese Dong per hectare. 

 

4. What could improve the mangrove monitoring? (The number of surveyors, monitoring 

techniques, skills, or tools?) 

 

Need to arrange enough human resources about ten people, equipped with knowledge, techniques and tools to carry out the 

field survey. 

Need more people. Improve knowledge (technical & tools) to monitor mangroves. 

Software, GIS, MapInfo, mapping techniques. 

Don’t have enough knowledge about GIS and remote sensing methods at the Forest Management Board. 

We have four people who can work with GIS but we need to upgrade them to the next level. 

 

5. Are there policies and permissions regulating the harvest and planting of mangroves? 

Circular No. 26/TT-BNNPTNT dated December 30, 2022 of the Ministry of Agriculture and Rural Development 

Regulations on management and traceability of forest products replacing Circular No. 27/2018 of the Ministry of 

Agriculture. 
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6. How are these policies enforced? 

 

There are forms to follow. Everything is guided in that circular. 

 

B) Monitoring method 

7. How do you currently assess the ratio of mangrove cover on shrimp farms? 

Actual measurements and satellite images are applied to determine the ratio of mangrove cover on shrimp farms.  

We use satellite images of google maps or google earth to manually digitize mangroves on shrimp farms. Then we do a field 

survey, using handheld GPS devices, to validate the digitized mangrove map.  

 

8. How many working hours or days do you spend on the investigation of the mangrove 

cover on one shrimp farm? 

 

The GPS field survey takes about two hours per shrimp farm. The field survey investigates the mangrove cover with GPS 

measurements. A maximum of four shrimp ponds can be surveyed during one day. 

 

9. How do you select the shrimp farms you control? 

We have the list, more than 3000 households, we can see where a lack of mangrove is and we go to that location to plant 

more mangrove. Then we draw or update the base map. 

Sometimes, we don’t have an updated google earth image. So that is why we need to go to the field to update the current status 

of mangrove cover.  

The government will pay for the planting of the mangroves. The farmers do not pay anything for the planted mangroves. The 

mangrove cover should be 60% in both the protection and production zone. 

 

10. How often do you visit or revisit the shrimp farms? 

 

Visit very often. 

 

11. What exact area do you consider for the mangrove-shrimp farm ratio calculation? Only 

the pond area or the entire shrimp farm area? 

The entire management area. 

We don’t have mangroves outside of the shrimp ponds because every two years, the shrimp farmers dig out the mud of the pond 
and put the soil up to the boundaries. Therefore, there is barely plants on the dikes marking the shrimp farm’s boundary. 
The Forest Management Board only plants mangroves inside the water of the shrimp ponds. Therefore, they do not consider 

the area outside of the shrimp pond for the mangrove cover. 

 

12. What error range or accuracy of your mangrove to shrimp farm ratio estimations do you 

consider? 

 

About 10 to 15% error is considered based on the 90 to 85% accuracy stated by the used handheld GPS device.  

 

13. What mangrove cover threshold do you consider to assess if shrimp farms are in 

compliance? (Different thresholds for the Production and the Protection Forest?) 
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A threshold of 60% mangrove cover on farm is applicable within the forest zones. Since 2010 there is no difference between 

the threshold for the protection and production forest. Accordingly, the threshold of 60% is set forth for both forest zones. 

Before 2010 the following regulations were active in Cà Mau province: 

For shrimp farms with an area greater than 5 ha: 70% relative mangrove cover for both forest zones 

For shrimp farms with an area between 3 to 5 ha: 60% relative mangrove cover for both forest zones 

For shrimp farms with an area smaller than 3 ha: 50% relative mangrove cover for both forest zones 

Previously there was a regulation of 40% relative mangrove area in the Production zone but it was updated to 60% in 2010. 

 

14. What is the minimum height a mangrove needs to have to be considered as Mangrove in 

the assessment? 

 

A minimum tree height of 5 m is necessary for the mangroves to have a protection function. This height is achieved about 5 

years after the planting date and care period. The planted saplings are approximately 30 cm long and have a diameter of 3 

cm. 

Every year we plant additional trees where dead mangroves are present. After 3 years, we need to have 6,000 trees/ha in the 

area to be considered as “forest”. We use 100 square meters as a representative sampling area to count how many trees are 

present. 

 

#############################################################

##################### 

The following Questions are only considered if the restricted time allows. 

C) Remote sensing and Geo-information 

15. Do you use satellite remote sensing or unmanned aerial vehicles (UAVs) for mangrove 

mapping purposes? 

We only use the satellite images available via Google Earth. 

 

16. (What kind of remote sensing data do you use in terms of Spatial, Temporal, and Spectral 

resolution?) 

 

Not used yet 

 

17. (How do you analyse the imagery?) [Visual analysis, or Classification (manual , pixel-based 

or object based)?] 

Handmade (manual) 

 

18. (What potential do you see in remote sensing approaches for the mapping of mangroves on 

shrimp farms?) 

 

Teaching institutions need to organize training for technicians on remote sensing, since many units are in need of training and 

implementation of this method. 

 

19. What prerequisites must be fulfilled for the application of remote sensing methods? 

The staff only uses basic GIS but has not studied it in depth. 
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We need more training on how to use software for remote sensing. Currently we just use MapInfo to make maps, but not 

remote sensing application. Therefore, we need training on this.  

We do have enough PCs, but we lack the software and skills. 

 

 

 

Câu hỏi dành cho người quản lý rừng (Tổng cục Lâm nghiệp Việt Nam 

(VNFOREST)) 

A) Giới thiệu 

1. Bạn có muốn giới thiệu bản thân và Ban quản lý hoặc Bộ phận của mình không? 

2. Có bao nhiêu trang trại nuôi tôm hiện đang được giám sát bởi bộ phận quản lý rừng của bạn? 

3. Theo bạn, những thách thức chính đối với việc giám sát rừng ngập mặn là gì? 

4. Điều gì có thể cải thiện việc giám sát rừng ngập mặn? (Số lượng người khảo sát, kỹ thuật giám 

sát, kỹ năng hoặc công cụ?) 

5. Có chính sách và giấy phép nào điều chỉnh việc khai thác và trồng rừng ngập mặn không? 

6. Các chính sách này được thực thi như thế nào? 

 

B) Phương pháp giám sát 

7. Làm thế nào để bạn đánh giá hiện tại tỷ lệ che phủ rừng ngập mặn trên các trang trại nuôi tôm? 

8. Bạn dành bao nhiêu giờ hoặc ngày làm việc để điều tra độ che phủ của rừng ngập mặn trên 

một trang trại nuôi tôm? 

9. Làm thế nào để bạn lựa chọn các trang trại nuôi tôm mà bạn kiểm soát? 

10. Bạn có thường xuyên đi thăm hoặc thăm lại trang trại nuôi tôm không? 

11. Bạn xem xét khu vực chính xác nào để tính tỷ lệ trang trại tôm rừng ngập mặn? Chỉ diện tích 

ao nuôi hay toàn bộ diện tích đầm nuôi tôm? 

12. Phạm vi sai số hoặc độ chính xác của ước tính tỷ lệ rừng ngập mặn trên trang trại nuôi tôm mà 

bạn xem xét? 

13. Bạn xem xét ngưỡng che phủ rừng ngập mặn nào để đánh giá xem các trang trại nuôi tôm có 

tuân thủ hay không? (Ngưỡng khác nhau đối với rừng sản xuất và rừng phòng hộ?) 

14. Chiều cao tối thiểu mà một cây rừng ngập mặn cần có để được xem xét là rừng ngập mặn 

trong quá trình đánh giá là bao nhiêu? 

#############################################################

################### 

Các câu hỏi sau đây chỉ được xem xét nếu thời gian hạn chế cho phép. 

C) Viễn thám và thông tin địa lý 

15. Bạn có sử dụng viễn thám vệ tinh hoặc máy bay không người lái (UAV) cho mục đích lập bản 

đồ rừng ngập mặn không? 

16. (Bạn sử dụng loại dữ liệu viễn thám nào về độ phân giải Không gian, Thời gian và Quang 

phổ?) 

17. (Bạn phân tích hình ảnh như thế nào?) [Phân tích hình ảnh hoặc Phân loại (thủ công , dựa trên 

pixel hoặc dựa trên đối tượng)?] 

18. (Bạn thấy tiềm năng gì trong các phương pháp viễn thám để lập bản đồ rừng ngập mặn ở các 

trang trại nuôi tôm?) 

19. Để áp dụng phương pháp viễn thám cần đáp ứng những điều kiện gì? 

20. Bạn có bộ phận hoặc chuyên gia về GIS hoặc Geodata không?  


