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CHAPTER 1. INTRODUCTION

1 Introduction

The primary objective of multi-objective optimization (MOO) is to solve multi-
objective optimization problems (MOP) characterized by multiple conflicting objec-
tives. The goal is to find a set of solutions that form an optimal trade-off between
these objectives, known as the Pareto front. Popular algorithms to solve MOPs,
i.e., find the Pareto front, are evolutionary multi-objective optimization algorithms
(EMOA) (Coello Coello et al., 2007) which are inspired by concepts of variation
and selection from evolutionary theory. However, due to the complexity of MOPs,
EMOAs usually only find an approximation of the Pareto front (Grimme et al., 2021).
EMOAs typically have several configurable parameters that can influence their be-
havior, which can be beneficial depending on the given MOP to be solved. To find
the best set of parameters automated algorithm configuration (AAC) can be used
(Hoos, 2011; Rook et al., 2022).

A challenge that needs to be faced in MOO is the presence of multi-modality. Multi-
modality describes the occurrence of multiple local and global optima. Local optima
are optimal solutions within a certain neighborhood. Global optima are characterized
by being the best solution overall for a MOP. A specific case of multi-modality is the
multi-global case. The multi-global case is characterized by different points in the
decision space corresponding to the same point in the objective space (Grimme et al.,
2021) (Fig. 1).

Decision space Objective space Decision space Objective space

Figure 1 Examples of multi-modality for MOPs. On the left is the multi-global
case. On the right is the multi-modal case with local optima. (Figure taken from
Heins et al., 2022.)

Here, the focus will be on multi-global optima. When focusing on multiple global
optima, it is not necessarily sufficient to focus on the convergence of the EMOAs
towards the Pareto front but also find at best all solutions in the decision space
that map to the Pareto front. This trade-off between finding a diverse Pareto set and
converging towards the Pareto front depends on the configuration used for the chosen
EMOA. Rook et al., 2022 showed that configurations selected favoring convergence

1



CHAPTER 1. INTRODUCTION

in objective space negatively affected the diversity of the decision space and vice
versa. To solve this problem algorithm configurations that simultaneously consider
the diversity of the decision space and the convergence towards the Pareto front need
to be selected. Finding these configurations is a MOP in itself resulting in multi-
objective AAC (MO-AAC).

This thesis aims to investigate this MO-AAC problem. For that, three different
research questions will be answered:

1. How competitive are EMOAs configured for both convergence towards the
Pareto front and diversity in decision space compared to EMOAs configured
for a respective single objective?

2. How configurable are EMOAs?

(a) Which EMOA is most versatile?

(b) Which EMOA is most competitive?

3. How does the trade-off between the convergence towards the Pareto front
and diversity in decision space when configuring for both simultaneously
look like?

(a) What is the extent of this trade-off

(b) How do the configurations differ on this trade-off?

The remainder of this thesis is structured as follows: in chapters 2 and 3 the method-
ology will be outlined, followed by the experiments and their results in chapter 4, and
finally the summary and conclusion will be provided in chapter 5.
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CHAPTER 2. MULTI-OBJECTIVE OPTIMIZATION

2 Multi-Objective Optimization

This chapter introduces the fundamentals of multi-objective optimization (MOO).
This includes a description of multi-objective optimization problems (MOP), qual-
ity measures to assess how well a MOP was solved, evolutionary multi-objective
algorithms (EMOA) as tools to solve MOPs and different benchmarking sets that
represent MOPs in order to be solved by EMOAs and assessed by quality measures.

2.1 Multi-Objective Optimization Problems

A MOP is characterized by multiple usually conflicting objectives. It is commonly
denoted as a vector-valued function

f ∶ X → Rm, x↦ (f1(x), f2(x), ..., fm(x))⊺ ,

with m real-valued single-objective functions fi ∶ X → R, i ∈ [m] ∶= {1, ..., m} which are
to be optimized simultaneously; w.l.o.g. a minimization of all objectives is assumed.
The ranking of solutions in the single-objective case is straightforward. In the multi-
objective case, this poses a challenge since multiple objectives usually are conflicting.
Thus the notion of (Pareto-)dominance needs to be introduced. Given two solutions
x, y ∈ X , we say that x (Pareto-)dominates y, denoted as x ≺ y, iff

fi(x) ≤ fi(y) ∀i∈[m] , and

fj(θ) < fj(y) ∃j∈[m].

As a consequence, the solution of a MOP is not a single solution but rather a set of
solutions where every single solution is not dominated by any other solution. This
set of optimal trade-off solutions can be described as

XE = {x ∈ X ∣ ∄ x′ ∈X ∶ f(x′) ≺ f(x)}

and is called Pareto set with the corresponding image under f being the Pareto front
(Fig. 2).

A specific property of MOPs is multi-modality. Multi-modality describes the presence
of multiple local and global optima of a MOP. A local optimum describes a solution
that is optimal within a certain neighborhood. A global optimum describes a solution
that is overall optimal. A special case of multi-modality is multi-globality. Multi-
globality occurs when different points in the decision space map to the same point in
the objective space (Fig. 1). This thesis will focus on the multi-global case.
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f1  (→	min)

f 2
  (
→
	m

in
)

x1

x 2
  

Pareto front

Pareto set
solutions

Figure 2 Exemplary visualization of Pareto set and Pareto front, feasible decision
(grey) and objective space (blue)

2.2 Quality Measures

Quality measures are important in order to assess the performance of algorithms to
solve a MOP. There are different ways to measure a MOPs solution quality. An
overview of different measures was given by Zitzler et al., 2003. Here, the focus will
be on two measures, Solow-Polasky measure (SP) (Solow and Polasky, 1994) which
measures the diversity of solutions in the decision space and dominated hypervolume
(HV) (Zitzler et al., 2003) which measures the quality of solutions in the objective
space.

SP was designed to measure the diversity of species in biology. It was later adopted
by Ulrich and Thiele, 2011 in the context of Evolutionary Diversity Optimization. It
measures the pairwise distances of points in the decision space to assess its diversity.
SP is defined as

SP (P ) = ∑
1≤i,j≤µ

M−1 ∈ [1, µ],

where P = {P1, . . . , Pµ} is a population of µ individuals, and M−1 is the Moore-
Penrose generalized inverse matrix of M with Mi,j = exp(−d(Pi, Pj)) where d is the
the distance between two individuals. If the points are spread out over the decision
space, SP will be higher compared to the case when the points are clustered around
a small area (Fig. 3a). A high SP is generally favorable since it indicates diverse
solutions in the decision space. This is desirable, especially in the multi-global case
since multiple points in the decision space can map to the same points on the Pareto
front.

HV, also referred to as S-metric, is used to measure the quality of the Pareto front
approximation To measure the quality of the Pareto front approximation, HV is
used. HV measures the area enclosed by a set of non-dominated points X and an
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anti-optimal fixed reference point r (see Fig. 3b).
It is defined as

HV (X, r) = λm(⋃
x∈X
[x ⪯ x

′ ⪯ r]),

where λm is the m-dimensional Lebesgue measure and ⪯ refers to weak Pareto dom-
inance, i.e. no single point will improve all objectives simultaneously but possibly
for certain objectives. A higher HV indicates a better proximity towards the Pareto
front and spread of the solutions.
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(b) Example of the area calculated by HV.

Figure 3 Examples for SP and HV.

2.3 Evolutionary Multi-Objective Optimization

Evolutionary multi-objective optimization is an approach to solving MOPs with the
help of principles inspired by evolution (Coello Coello et al., 2007). The general idea
is to create a set of solutions, usually referred to as a population of individuals, of size
µ. For all individuals, the fitness is evaluated, i.e., the objective function values of the
MOP are computed. Out of the population, usually, but not necessarily, the fittest
individuals are chosen as parents to create λ offsprings via variation. Variation can
be the mutation of single individuals or the recombination of at least two individuals
followed by an optional mutation. This creates a new population of size µ + λ. To
limit the size of the population to size µ a survival selection is performed. There
are two typical approaches for this selection. The first one is to select the fittest µ

individuals out of all parents and offsprings. The second one is to select µ individuals
only from the offsprings. In the second case, it is important to have µ ≤ λ. This
cycle of creating offsprings via variation and selection is repeated until a stopping
criterion is met. Stopping criteria could be a number of iterations, a convergence
criterion being met, or reaching a wall-time. The final population is a solution for a
given MOP (Fig. 4). This solution is usually not the true Pareto front but rather an
approximation of the Pareto front since MOPs are typically hard to solve.
An important property of evolutionary multi-objective optimization is stochasticity
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introduced by parent selection, variation, and survival selection. This produces dif-
ferent results for multiple runs of the same evolutionary algorithm and MOP. Thus,
aggregating solutions over multiple runs is important to counteract this stochasticity.

Initialize
population

Termination
condition
satisfied?

Return final
population

Generate pool
of parents

Produce
offspring(s)

via variation

Survival
selection

(no)

(yes)

Figure 4 The general process of EMOAs.

Seven different evolutionary multi-objective algorithms (EMOA) are used for the sub-
sequent experiments. The first four are NSGA-II (Deb et al., 2002), Omni-Optimizer
(Deb and Tiwari, 2005), SMS-EMOA (Beume et al., 2007), and MOEA/D (Qingfu
Zhang and Hui Li, 2007) which are classical EMOAs that intrinsically focus on con-
vergence towards the Pareto front and thus may not be able to find diverse solutions
in the decision space according to SP. An exception here might be Omni-Optimizer
which was designed to favor a diverse decision space. The remaining three EMOAs
utilize the gradient information of a MOP. HIGA-MO (Wang et al., 2017) focuses
here on the gradient of the HV. MOGSA (Grimme et al., 2019) and MOLE (Schäper-
meier et al., 2022) use the gradient to utilize landscape characteristics to move along
local structures and preserve different solutions in the decision space.

NSGA-II

Non-Dominated Sorting Genetic Algorithm II (NSGA-II) (Deb et al., 2002) uses non-
dominated sorting (NDS) as a primary and crowding distance (CD) sorting as a sec-
ondary criterion to identify solutions that need to be selected for the next generation.
NDS sorts the population into different domination layers. Finding the domination
layers is an iterative process. In each iteration, the non-dominated points of the pop-
ulation are identified, put into a domination layer, and removed from consideration
for the next domination layer. This step is repeated until all individuals are assigned
a domination layer. The first domination layer contains the currently non-dominated
points. CD calculates the space around a point where no other individual is found.
A low value means at least one other individual is close.
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The overall idea of NSGA-II is the following: Perform a NDS and CD sorting on the
current population consisting of µ parents and µ offsprings from the previous itera-
tion. Next, take µ individuals as parents from the population based on a tournament
selection. The tournament selection takes all individuals from the first to the last
domination layer until adding all individuals of the current domination layer would
increase the size of the pool of parents beyond µ. In this case, take the best individu-
als from the current domination layer with the highest CD until there are µ parents.
Out of this pool of µ parents create µ individuals via variation. In the special case
that there are more than µ individuals in the first domination layer immediately use
the individuals with the highest CD. Repeat these steps until a stopping criterion is
met.

Omni-Optimizer

In our MO setting, Omni-Optimizer (Deb and Tiwari, 2005, 2008) can be viewed as
an extension of NSGA-II. The notion ’Omni’, however, refers to that it is designed
as to naturally simplify to algorithms for solving more basic optimization problems,
including single-objective uni-optimal, multi-optima, and multi-objective uni-optimal
optimization tasks. The underlying idea is to speed up convergence due to restricted,
binary, tournament selection, combined with enlarging the non-dominated fronts by
using ϵ- dominance (Deb, Mohan, et al., 2005) as ranking mechanism. Also, combin-
ing both objective and decision space crowding distance measures, so-called variable-
space niching, helps to maintain diverse solutions, both in decision as well as in
objective space. The latter property also makes this algorithm highly suitable for
solving multi-global MO problems.

SMS-EMOA

S-metric Selection-EMOA (SMS-EMOA) (Beume et al., 2007) as (µ + 1) - strategy
uses NDS as primary and HV-contribution as secondary selection mechanisms. The
HV-contribution determines how much a single individual x′ contributes to the overall
HV of a set S of points, i.e. HV (x′∣S, r) =HV (S ∪ {x′}, r) −HV (S, r).
The overall idea of SMS-EMOA is the following: First, a single offspring out of the
current population is created. Then NDS on the population including the offspring
is performed. Out of the worst domination layer, the individual with the worst HV-
contribution is removed.These steps are repeated until a stopping criterion is met.
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MOEA/D

Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D) (Qingfu
Zhang and Hui Li, 2007), specifically known for being also well-suited for many-
objective problems with m ≥ 4, uses decomposition to transform a MOP into SO
sub-problems. One way of decomposing a MOP into an SOP is to create a weighted
sum of the objective values. Other decomposition methods such as Tchebycheff or
Boundary Intersection decompositions can be used as well.
The overall idea of MOEA/D is the following: As initialization create N decompo-
sitions of the MOP where each of the resulting SO sub-problems has its own weight
vector and initial solution. Based on the weight vectors create a neighborhood for
every SO sub-problem. This neighborhood is calculated based on the Euclidean dis-
tance of the weight vectors. After the initialization, repeat the following steps until
a stopping criterion is met: First, for every sub-problem select two random solutions
out of the sub-problems neighborhood. Create a new solution with variation based on
the chosen neighboring solutions. If the new solution is better based on their fitness
than the current solutions accept the new solution as the current solution. After that,
check if the new solution is better for the neighboring sub-problem as well. If it is a
better solution accept the new solution as the current solution for the sub-problem.
As a last step add all sub-problem solutions to an external population and remove
all dominated solutions. After the last iteration, this external population builds the
solution of MOEA/D, i.e., the approximation of the Pareto front.

MOGSA

Multi-objective gradient sliding algorithm (MOGSA) (Grimme et al., 2019) uses a
different approach than the previously explained algorithms. MOGSA was specifically
designed to work with multi-modal problems and is essentially a deterministic local
search approach. It focuses on MO gradients, i.e., the sum of normalized gradients of
the individual objectives pointing to the direction of the largest possible simultaneous
improvement. Conceptually, it exploits the presence of so-called ridges in decision
space reflecting the boundary between basins of attraction for the MO gradient on
which the algorithm can slide along from dominated basins to efficient sets. MOGSA
uses efficient points and sets to explore the MOP. Efficient points and sets can either
be local or global. A local efficient point is not dominated by any points in its
neighborhood, and a global efficient point is not dominated by any point. Similarly,
a local efficient set holds all points that are not dominated by any points in its
neighborhood, and all points in a global efficient set are not dominated by any other
points.
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MOLE

Multi-objective landscape explorer (MOLE) (Schäpermeier et al., 2022) is an extension
of MOGSA. MOLE improves the search for efficient points by using adaptive step
sizes. Tracing the efficient set is improved by adaptive step sizes, direction prediction
of points, redoing an MO descent if necessary, and the ability to decide whether a new
point belongs to the current or a new efficient set which helps to identify potential
unseen efficient sets. Additionally, MOLE extends MOGSA by a post-processing
step in which areas with sparse information about the landscape are explored to find
potential efficient points.
The overall idea of MOLE is the following: Perform the improved search for efficient
points and subsequently trace the efficient sets. After an efficient set is explored, the
post-processing step is performed. When a termination criterion is met, all points
that belong to an efficient set are returned.

HIGA-MO

Hypervolume indicator gradient ascent multi-objective optimization (HIGA-MO)
(Wang et al., 2017) uses gradient information to optimize a given problem just like
MOGSA and MOLE. The difference is that HIGA-MO uses the gradients of the HV
with respect to non-dominated points of all domination layers in the objective space,
thereby directly searching for both global and local optima regarding HV.
The overall idea of HIGA-MO is the following: First, initialize the population ran-
domly over the decision space. Next, repeat the following steps until the termination
criterion is met. Perform NDS to sort all individuals into domination layers. Cal-
culate the HV gradient for every individual in every domination layer, starting from
the first domination layer, i.e., the overall non-dominated individuals, and perform a
gradient ascent step to maximize HV resulting in a large number of (local) efficient
sets that are archived along the algorithm run.

2.4 Benchmark Function Collections

Benchmark function collections are used as a standardized and commonly accepted
way of evaluating the performance of algorithms across different settings like algo-
rithm development or configuration and enable reproducible and comparable research
within the community. They are designed to reflect specific problem properties and
ideally reflect relevant real-world settings, which is, however, debatable with the
current benchmark sets available. In the context of this thesis, they are used for
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automated algorithm configuration on, specifically, multi-modal multiobjective opti-
mization problems.

Five different benchmark function collections are used. ZDT (Zitzler et al., 2003)
consists of six bi-objective functions with a different set of characteristics representa-
tive of a different class of multi-objective optimization problem. DTLZ (Deb, Thiele,
et al., 2005) is an extension of ZDT with a scalable decision and objective space
dimensionality. MMF (Yue et al., 2019) consists of 20 functions that are either uni-
modal or multi-global, but not multi-local. The bi-objective BBOB (Brockhoff et al.,
2016) consists of combinations of a subset of the single-objective BBOB benchmark
collection (Hansen et al., 2009) and consists of 55 bi-objective functions.

10
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3 Automated Algorithm Configuration

To answer the research questions in this thesis, multi-objective automated algorithm
configuration (MO-AAC) is used. Rook et al., 2022 showed the potential for MO-
AAC, especially on multi-modal MOPs as they showed that there is a trade-off be-
tween diversity in decision space and convergence in objective space. Yet, this line
of research is unexplored. Additionally, MO-AAC approaches are rare with MO-
ParamILS (Blot et al., 2016) being a model-free MO-AAC algorithm and MO-SMAC
(Rook et al., 2023) being a model-based MO-AAC algorithm, which has not been
used within the context of EMOAs yet. Thus, this thesis will provide an innovative
approach to get insights on EMOAs using MO-AAC on which further research can
be based.

To set the foundation for MO-AAC, we first outline the general algorithm configu-
ration problem for the single-objective (SO) case. Given an algorithm A with pa-
rameter configuration space Θ, an instance set Π and a quality metric c, the goal
of algorithm configuration is to find an optimal configuration θ∗ ∈ Θ, referred to as
incumbent, such that c(θ∗, Π) = optθ∈Θc(θ, Π), i.e., θ∗ optimizes the quality c on the
instance set Π (Fig. 5). Typically, c(θ, Π) is obtained by aggregating the quality
on all instances π ∈ Π for a fixed parameter configuration θ ∈ Θ, e.g. taking the
mean c(θ, Π) = 1

∣Π∣ ∑π∈Π c(θ, π). The search for an optimal parameter configuration is
de facto also an optimization problem and can be automatically solved, resulting in
AAC (Hoos, 2011). Expensive configuration evaluations, mixed-type configuration
spaces, and finding configurations on a set of instances are unique characteristics
that are badly handled by off-the-shelf evolutionary algorithms. Fortunately, many
single-objective AAC (SO-AAC) algorithms exist, such as irace (López-Ibáñez et al.,
2016), ParamILS (Hutter et al., 2009), and SMAC (Hutter et al., 2011). An extensive
overview of AAC algorithms can be found in Schede et al., 2022.

Algorithm A

Instances Π

Parameter
space Θ

AAC
argminθ∈Θ c(Aθ, Π) θ∗ for A on Π

Figure 5 Concept of automated algorithm configuration.
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In MO algorithm configuration the goal is to find a configuration that optimizes
multiple quality metrics simultaneously, i.e., ci ∶ Θ → R, i ∈ [m], m ≥ 2. These quality
metrics are usually conflicting which causes no single configuration to be optimal.
Thus, MOO’s notion of dominance can also be applied here. A configuration θ ∈ Θ
dominates another configuration θ

′ ∈ Θ, denoted as θ ≺ θ
′ , iff

ci(θ) ≤ ci(θ′) ∀i∈[m] , and

cj(θ) < cj(θ′) ∃j∈[m].

W.l.o.g., minimization of all objectives is assumed. Given the notion of dominance,
a configuration θ ∈ Θ is Pareto-optimal if no other configuration in Θ dominates θ.
The final incumbent in the MO case is a set of optimal trade-off configurations, i.e.,
the Pareto front, which can be described as

Θ∗ = {θ ∈ Θ ∣ ∄ θ
′ ∈ Θ ∶ θ′ ≺ θ}.

This description of the Pareto front for AAC is the same as the description of the
Pareto front of MOO in chapter 2.1. Unfortunately, the EMOAs discussed in Chap-
ter 2.3, again, cannot directly be used for MO-AAC despite the similar nature of the
optimization problem because of the expensive configuration evaluations, mixed-type
configuration spaces, and search for configurations on a set of instances. Expensive
configuration evaluations restrict the number of function evaluations that can be per-
formed within a reasonable time, whereas EMOAs usually require a large number of
function evaluations to converge. Most mutation, cross-over, and gradient methods
can handle either discrete or continuous parameters, which is not the case for algo-
rithm parameter spaces. We seek to find configurations that yield the best overall
performance on a set of instances. It is evident that non-competitive configurations
can be detected while only being evaluated on a subset of these instances. Exploiting
this characteristic can yield considerate improvements in the number of configura-
tions that can be assessed during configuration which is not done by generic EMOAs.
Nonetheless, the performance measures for MOO, i.e., HV and SP, described in Chap-
ter 2.2 can be applied.

3.1 Sequential Model-based Algorithm Configuration

For the AAC in the subsequent experiments sequential model-based algorithm config-
uration (SMAC) (Hutter et al., 2011) and multi-objective SMAC (MO-SMAC) (Rook
et al., 2023), an extension of SMAC to work in the multi-objective case, are used.
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SMAC is a model-based automated algorithm configurator. During configuration,
SMAC keeps track of the current best configuration, referred to as incumbent, and a
run history of all trails of tested configurations with their achieved quality metric on
an instance. This run history is used to train an empirical performance model (EPM)
– usually in the form of a random forest (RF) – which is used to predict the quality
metric of unseen configurations. The EPM takes the configuration and, optionally,
instance features as input. This EPM is then used to predict the aggregated cost over
all the training instances. Consecutively, an acquisition function (AF) is used to score
each configuration. By default, this AF is the expected improvement (EI) (Jones et
al., 1998), which balances the exploratory and exploitative nature of a configuration.
It, therefore, uses the prediction and variance of the EPM, respectively. E.g., a
configuration with a good prediction and low variance is considered to be exploitative,
and a configuration with a lower prediction but high variance is more exploratory.

SMAC is an iterative algorithm with its first step choosing potential new incum-
bent configurations. To obtain new configurations the EPM is fitted on the complete
run history at that moment, after which a random search and local search, using the
1-exchange neighborhood (Hoos and Stüzle, 2004) are performed until promising con-
figurations, according to the AF, are found. These potential configurations, ranked
on their AF score and interleaved with randomly sampled configurations, are tested
against the incumbent in an intensify step.

The intensify step incrementally evaluates these new configurations on the instances
where the incumbent also ran on, as long as the empirical performance of the new
configuration is not worse than that of the incumbent. When the new configuration
is evaluated on all the same instances as the incumbent and has better aggregated
performance, it becomes the new incumbent. Otherwise, it gets rejected. The first
incumbent will be evaluated on one instance and after each run with a new configura-
tion, the incumbent will be evaluated on one new instance. This way, the incumbent
will be evaluated on more instances as the search progresses.

SMAC balances the time spend between finding new configurations and the intensify
step, usually in a 1-to-1 ratio. To achieve this, the intensify step continues with
evaluating configurations until it used the same amount of wall-clock time as the
finding step did, with the one exception that at least two configurations from the list
of potential configurations need to be evaluated. This process of alternating between
finding and intensifying repeats until a termination criterion is met. A termination
criterion can be reaching a wall-time limit or reaching a number of function evalua-
tions (Figure 6).
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Figure 6 High-level overview of the iterative process of (MO-)SMAC.

3.2 From SMAC to MO-SMAC

MO-SMAC (Rook et al., 2023) is an extension of SMAC to work in the multi-objective
domain. It modifies several key components in SMAC, namely incumbent, the AF
and the intensification procedure.

The first – intuitive – change is the incumbent. Instead of being a single configuration,
it is now a set of (non-dominated) configurations. This follows the explanation of the
MO-AAC problem at the beginning of this chapter. The size of the incumbent is, by
default, bounded to 8 to ensure a progressive increment of the number of instances
the incumbent configurations have been evaluated on.

The second change is to use the predicted Hypervolume improvement (PHVI) as the
acquisition function. This AF has an EPM for each objective and scores configura-
tions based on how much they increase the Hypervolume over the existing configu-
rations in the incumbent. The search and ranking procedures remain the same as in
SMAC. PHVI is a purely exploitative AF, i.e., it does not make use of the variance
of the prediction. However, exploration is still performed due to the interleaving of
random configurations.

The third and last change is the intensify step. Here, three major changes are pro-
posed; 1) the moment to intermediately compare the new challenger, 2) how to do
this intermediate comparison, and 3) how to update the incumbent. A new configu-
ration is only intermediately evaluated when the new aggregated cost dominates its
cost of the previous comparison. This reduces the probability of falsely rejecting a
configuration to become part of the incumbent, which is an inherent risk due to the
noisy characteristics of partial evaluations. For the same reason, a new configuration
is only compared against the incumbent, which is closest to it and is based on the
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Euclidean distance in the objective space. As long as the selected incumbent config-
uration does not dominate the new configuration, the evaluation continues. Finally,
when the new configuration is still non-dominated by the other configurations in the
incumbent, it is added to the incumbent. Also, when existing incumbent configura-
tions are now dominated, they are removed from the incumbent. In the case that the
incumbent is larger than a pre-defined maximum, the configuration with the lowest
crowding distance (Deb et al., 2002) is removed with the aim to keep a (in objective
space) diverse set of configurations.
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4 Experiments

In the subsequent experiments, various EMOAs will be configured to simultaneously
have a diverse decision space and convergence towards the Pareto front using a set of
multi-modal MOPs and MO-AAC. The results of the experiments will be analyzed
to specifically answer the research questions provided in chapter 1.

4.1 Experimental Setup

The experimental setup is kept as close as possible to the experiments done by Rook
et al., 2022 to build on top of their work. This enables the current experiments to be
comparable and extend their research. The set of test instances includes all problems
from ZDT, DTLZ, and MMF except ZDT5 and MMF13, and instances f46, f47, and
f50 from bi-objective BBOB. This results in a total of 33 instances. All instances are
bi-objective and have a 2-dimensional decision space. If the reference point for cal-
culating the HV was unknown, it was obtained by taking the maximum values of the
non-dominated set of solutions over the union of all EMOAs on the given instance.
To ensure the comparability of HV values across different instances and enable aggre-
gation, the HV was normalized against the maximum obtainable HV for each instance
during the configuration process. These maximum obtainable HVs are empirically ap-
proximated by combining all evaluations while running all considered algorithms 10
times with an evaluation budget of 100 000. For SP the absolute values were used
since SP is not dependent on the instance but on the number of points that are con-
sidered. The population size µ was fixed to 100 to prevent the configurators from
finding configurations where the population equals the number of function evalua-
tions, which yields a high diversity in decision space but does not actually run the
respective EMOA beyond the initialization of the population. MOLE and MOGSA
can return a larger solution set than 100, as they do not have a population. In case
they return more than 2 000 points, 2 000 points were randomly sampled without
replacement to keep the SP computation – which relies on the matrix inversion of
dense matrices – possible. A careful reader might wonder why we did not sample 100
points instead. This is motivated by the fact that by performing a subset selection
that yields the highest SP is computationally infeasible. For AAC, SMAC is used for
the SO configuration, while MO-SMAC is used for the MO configuration. The gen-
eral process is the same for both cases, with the difference that SMAC will configure
for SP and HV separately whereas MO-SMAC will configure the algorithms for SP
and HV simultaneously. The previous experiments with SMAC are repeated because
MO-SMAC is built on top of a different SMAC version (Lindauer et al., 2022) as was
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used in the experiments of Rook et al., 2022 and the comparability between SMAC
and MO-SMAC is otherwise not given. Considering the 7 different EMOAs a total
of 21 different configuration scenarios were performed. Each scenario had a termina-
tion criterion of 250 algorithm calls. All other (MO-)SMAC parameters were set to
default. Each of the seven algorithms had a function call budget of 20 000. A pre-
liminary study showed that most algorithms converged at this point. Since SP and
HV need to be maximized, but (MO-)SMAC is designed to minimize, the negative
values of HV and SP were set as objectives.
Due to the small size of test instances, 10-fold cross-validation (CV) was used, as this
was computationally feasible for the 21 configuration scenarios compared to leave-
on-out CV. This was the only change compared to the experiments of Rook et al.,
2022. In each fold, 10 separate configuration runs were performed to account for the
stochastic behavior of (MO-)SMAC. Out of these 10 configuration runs, the incum-
bent solution for SMAC is selected based on the one that yielded the best performance
on the training instances. For MO-SMAC all configurations from the incumbents are
combined, and only the non-dominated configurations are selected as final incumbent.
Again, this is based on their performance on the instances in the training partition
of the fold. In addition to the cross-validation folds, the configuration scenarios also
were configured on all instances. The final evaluation measurements for the configu-
rations of the CV-folds are based on the test instances of every fold and for the no CV
scenarios on all instances. During evaluation, all instances were evaluated 25 times
with different random seeds on all EMOAs with their respective found non-dominated
configurations. An overview of the experimental setup can be found in Figure 7.

7 EMOAs 3 configurators

MO-SMAC

SMAC-SP

SMAC-HV

Omni-Optimizer

NSGA-II

SMS-EMOA

MOEA/D

MOGSA

MOLE

HIGA-MO

X

21 scenarios

10 folds 10 runs 25 validations

train test
33 instances

one scenario

Figure 7 Overview of the relationship between configuration scenarios, folds, con-
figuration runs, and validation.
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4.2 Results

The experimental results are evaluated to answer the research questions asked in
Chapter 1. For that, the following paragraphs are divided to represent a single
research question. The first two research questions and the first half of the third
research question use the results of the CV. Here only the validation instances are
considered. The second half of the third research question uses the results for train-
ing and validating on all instances. Depending on the research question the results
are aggregated in a different way. The specifics will be explained for each research
question separately. Figure 8 gives an overview of what aspect of the results are
investigated regarding every research question as it can be difficult to follow which
parameter space or which configurations are being investigated.

HV

2b

2a

1

1

3a

3b

EMOA (MO-)SMAC

1

1

Figure 8 Overview of the different aspects that will be analyzed. The figures on
the left side represent the function-space and the figure on the right represents the
indicator-space. Displayed in orange are the respective research questions and it is
shown which space is used to answer them.

1. How competitive are EMOAs configured for both convergence towards the
Pareto front and diversity in decision space compared to EMOAs configured for
a respective single objective?

Rook et al., 2022 showed the potential of AAC for multi-modal MOPs. In order to
show that, they configured the EMOAs using SO-AAC for SP and HV separately. It
is important that the MO-AAC for configuring SP and HV simultaneously does not
substantially decrease the achieved performance on either SP or HV. Therefore, the
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SO configurations’ performance is compared to those of the MO configurations that
achieve the highest SP and HV respectively.
This comparison shows that only MOEA/D and MOGSA have a decrease in SP
regarding the best configuration of the MO-AAC, while MOGSA has the highest
decrease in SP. All other EMOAs configured by MO-AAC are at least as good if not
slightly better than the SO-AAC configured versions. When considering HV, there is
a moderate improvement visible. MOGSA is an exception with as much improvement
in HV as it has decreased in SP (Fig. 9).
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Figure 9 Relative improvement of the best MO configuration for SP and HV com-
pared to the SO configuration respectively.

The comparison of the best configurations regarding SP and HV from the MO-AAC
compared to the SO-AAC displays that the MO-AAC is capable of finding config-
urations with comparable performance to SO-AAC configurations. This shows that
all other configurations found by MO-AAC will form a trade-off between SP and HV
that lies in between the best configurations for SP and HV. The trade-off between the
MO-AAC configurations as well as the performance of the SO-AAC configurations
can be seen in Figure 13.

2. How configurable are EMOAs?

The second research question deals with the configurability of EMOAs. To answer this
question two dimensions of configurability are looked at. The first one is versatility
and the second one is competitiveness.
When talking about the versatility of an algorithm the capability to be usable in
different settings is referred to. In the current setting of using MO-AAC to optimize
EMOAs towards SP and HV, this capability includes finding configurations that
optimize SP and HV simultaneously and either SP or HV specifically. This allows
an EMOA to be usable specifically for a user’s goals of having diverse points in
the decision space, focusing on convergence towards the Pareto front or a trade-off
between both.
The competitiveness of an EMOA describes how well an EMOA performs compared
to other EMOAs on the same MOPs. EMOAs with high competitiveness are more
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likely to be chosen for a given optimization problem. Even if an EMOA is versatile but
can not compete with other EMOAs, it will not be chosen. Thus it is an important
trait of an EMOA to have.

(a) Which EMOA is most versatile?

The performance of every non-dominated configuration is measured using SP and
HV. Thus the configurations can be represented as points in the 2D space spanned
by HV and SP. On these points, a HV can be calculated. This HV is calculated in
the space of the performance measures of the non-dominated configurations. It is
different from the HV previously calculated on the non-dominated solutions of an
EMOA. As explained in Chapter 2.2 the HV measures the quality and the spread of
solutions. Thus this method of evaluation is well suited to answer how versatile an
EMOA is.
For every EMOA in total 2500 HVs are calculated. This is based on 10 folds, 10
configuration runs of (MO)-SMAC per fold, and 25 validation evaluations of the
EMOA per configuration run. The final SP and HV for one validation evaluation is the
mean over the validation instances of that fold. For each EMOA, every combination
of fold, configuration run, and validation evaluation a ranking of the achieved HV is
performed. The average over all 2500 rankings is used for the final ranking for every
EMOA. The rankings are displayed in so-called Critical Distance plots where lower
rankings mean better performance. Additionally, they display a critical distance,
shown as thick vertical bars, to indicate that two entities in the plot do not have a
statistically significant different ranking. The critical distance is calculated using a
Nemenyi test (Nemenyi, 1963) with α = 0.1, resulting in a critical distance of 0.16.
The rankings show that Omni-Optimizer has the highest HV overall followed by
MOLE. The worst HV achieved MOGSA and SMS-EMOA while MOGSA is the
worst EMOA overall. HIGA-MO, NSGA-II, and MOEA/D all achieved an average
ranking where all three EMOAs do not have a significantly different HV than the
others (Fig. 10).
The constant highest rank for Omni-Optimizer and second highest for MOLE show
that for both EMOAs, high performing and diverse configurations can always be
found. In contrast, the other EMOAs do not achieve a high HV and have considerably
lower ranks.

(b) Which EMOA is most competitive?

In order to measure the competitiveness of the EMOAs, they are ranked based on
their performance separately, considering their achieved HV and SP on their final
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1 2 3 4 5 6 7

Omni-Optimizer (2.0)
MOLE (2.8)

HIGA-MO (4.0)
NSGA-II (4.1)

MOEA/D (4.2)
SMS-EMOA (4.9)
MOGSA (6.0)

CD

Figure 10 Rankings based on the HV of the configurations.

Pareto front approximations. These rankings are similarly calculated as the ranks in
the previous research question with a critical distance of 0.28. Here the mean of the
actual SP and HV values over all non-dominated configurations are considered. Thus
it gives an overall performance value for all found non-dominated configurations. The
final rank is the average of over 2500 ranks based on performance for every combina-
tion of fold, configuration run, and validation evaluation.
The general order of the ranking for SP and HV looks very similar. For SP Omni-
Optimizer outperforms NSGA-II, but for HV NSGA-II is marginally, but not signif-
icantly, better than Omni-Optimizer. SMS-EMOA and MOEA/D achieve average
ranks. Unlike the rankings from the first research questions, MOLE achieves a lower
end ranking for SP and HV. HIGA-MO and MOGSA have the worst rankings (Fig.
11).

1 2 3 4 5 6 7

Omni-Optimizer (1.7)
NSGA-II (2.1)

SMS-EMOA (3.4)
MOEA/D (3.6)

MOLE (4.8)
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SMS-EMOA (3.1)
MOEA/D (3.6)

MOLE (5.1)
HIGA-MO (6.3)
MOGSA (6.3)

CD

Ranking for HV

Figure 11 Performance rankings for SP and HV.

The rankings for versatility and competitiveness show similar overall results. Omni-
Optimizer has in both cases the highest rank. Regarding competitiveness, it is closely
followed by NSGA-II which is not surprising since Omni-Optimizer is an extension
of NSGA-II. Overall, the worst rankings have HIGA-MO and MOGSA, which aligns
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with the versatility rankings. The order of the rankings regarding MOLE, SMS-
EMOA, and MOEA/D changes depending on considering versatility or competitive-
ness but in both cases they have average rankings.

3. How does the trade-off between the convergence towards the Pareto front
and diversity in decision space when configuring for both simultaneously look
like?

MO-AAC aims to find multiple configurations that form a trade-off between the
objectives. Investigating this trade-off and gauging how it affects the different con-
figurations is of interest. First, the extent of the trade-off between SP and HV for
different configurations will be investigated to get insights into this trade-off. Second,
the configurations themselves will be looked at.

(a) What is the extent of the trade-off?

In order to assess the extent of the trade-off between SP and HV the loss of SP
and HV for the best configurations regarding SP and HV will be compared, i.e., the
two extreme solutions in HV and SP space. More specifically, the MO configuration
with the best performance regarding SP will be compared to the MO configuration
with the best performance regarding HV. The average over the median of the 25
validation runs for the validation instances is calculated in order in order to pick
these configurations. The trade-off is calculated by dividing the worst performing
configuration by the best performing configuration over the configuration runs. The
loss is calculated by subtracting 1 from the trade-off. This way the actual loss can
be seen instead of a ratio between SP and HV.
SP shows in general a higher loss than HV. MOEA/D and Omni-Optimizer both
have the highest loss for SP and HV. This loss is up to a little over 10 % for SP and
up to 7 % for HV. MOGSA and SMS-EMOA have the second highest loss for SP,
up to about 5 %. All other EMOAs have a roughly 2.5 % loss on SP. MOGSA and
MOLE have the second highest loss on HV with losses ranging up to 3 %. All other
EMOAs have a loss lower than 2 % on HV.

The trade-off investigation shows that MO-AAC is able to find different configurations
with a trade-off that underlines the results of the previous research question. The
higher the trade-off is, the more versatile an EMOA is since there are configurations
that specifically perform well on SP or HV. It further shows how sensitive an EMOA
is regarding the chosen configuration parameter since they impact the functionality
and thus the performance.
Most interesting is Omni-Optimizer, with a high loss on SP and HV. This reflects
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Figure 12 Relative loss for HV and SP on MO configurations.

the results of the second research question. It shows that the configurations of Omni-
Optimizer have the highest HV which in combination with these results shows that
these configurations have a good spread. Additionally, the ranking of the performance
for Omni-Optimizer is very good, which underlines the quality of the configurations.

(b) How do the configurations differ on this trade-off?

For the previous research questions, the 10-fold CV was used. However, to get insights
into specific configurations CV is unsuitable since it will produce a lot of configura-
tions. Thus for the subsequent evaluations, the configuration and validation is done
on the whole data set.
Since there are 10 configuration runs per EMOA, not all found configurations are non-
dominated. Thus there will be a distinction between the amount of found, unique,
and non-dominated configurations. For all EMOAs except Omni-Optimizer, all con-
figurations are unique. Omni-Optimizer has with 42 configurations, 40 unique and
5 non-dominated by far the most configurations. NSGA-II is the only EMOA with
the same amount of non-dominated configurations while having 27 unique configu-
rations. MOEA/D and SMS-EMOA have 3 non-dominated configurations and 29
and 23 unique configurations respectively. MOLE and HIGA-MO each have 2 non-
dominated and 19 and 17 unique configurations respectively. MOGSA is the only
EMOA with only one non-dominated configuration while having 17 unique configu-
rations (Tab. 1).

Algorithm # configs unique configs non-dominated
MOLE 19 19 2
MOGSA 17 17 1
NSGA-II 27 27 5
HIGA-MO 17 17 2
MOEA/D 29 29 3
Omni-Optimizer 42 40 5
SMS-EMOA 23 23 3

Table 1 Number of configurations found.
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Figure 13 shows the performance of all configurations. This includes the default,
dominated, non-dominated, and SO configurations for SP and HV. Most of the non-
dominated configurations dominate the default configuration for every EMOA. Every
SO configuration is dominated by at least one configuration found by MO-AAC. This
underlines the potential of MO-AAC and the results of the second research question.
From the non-dominated configurations, a potential optimal trade-off configuration
can be picked. Only for NSGA-II, this is not as clear as there is one configuration
that is further off regarding SP.
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Figure 13 Configurations for every EMOA separately, trained and validated on all
instances.

Figure 14 combines all non-dominated configurations from the sub-figures of Figure
13. It represents the results of the first research question in a visual way. Omni-
Optimizer is the overall most performant EMOA in terms of HV of the non-dominated
configurations and overall performance followed by NSGA-II. SMS-EMOA is compa-
rable to MOEA/D in terms of SP and HV performance, as seen in the second part
of the first research question. HIGA-MO and MOGSA are the worst performing
EMOAs.
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Figure 14 Non-dominated configurations for every EMOA combined, trained and
validated on all instances.

Discussion

The results of the research questions show interesting insights into MO-AAC. The
first one is that MO-AAC is capable of finding configurations that have comparable
competitive performance to configurations found by SO-AAC (Fig. 9). This is under-
lined by Figure 13. Here it is visible that the MO-AAC configurations substantially
outperform the SO-AAC configurations. This is counter-intuitive as SO-AAC should
be able to find the best performing configuration for the respective measure. An
explanation for this could be that MO-AAC is more robust regarding local optima
due to the combined optimization of both measures where configurations that are
accepted by SO-AAC would be dominated in MO-AAC. Thus MO-AAC might not
get trapped in local optima like it could be the case in SO-AAC.
The second insight is the dominant performance of Omni-Optimizer. This perfor-
mance is demonstrated in different aspects. First, the HV of the non-dominated con-
figurations was calculated where Omni-Optimizer achieved the highest rank. A con-
tributing factor here is the ability of Omni-Optimizer to find a lot of (non-dominated)
configurations (Tab. 1) and more specifically well performing configurations which
was demonstrated in the second aspect. The second aspect addressed the perfor-
mance of the EMOAs regarding SP and HV. Here Omni-Optimizer shows dominant
performance together with NSGA-II. For SP Omni-Optimizer shows better perfor-
mance whereas on HV Omni-Optimizer and NSGA-II do not have a significantly
different performance. This is unsurprising since Omni-Optimizer is an extension to
NSGA-II to preserve diversity in decision space. Both aspects are also reflected in
Figure 13 and Figure 14.
The third insight is that there are configurations that dominate the default configura-
tion for every EMOA when considering SP and HV. Thus these configurations could
be used as new default configurations. As a new default, the best trade-off configu-
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ration is proposed. This configuration is chosen visually on the basis of Figure 13.
An overview of the actual parameters for the default, non-dominated, and proposed
new default configurations can be seen in Figures 15 and 16 of the appendix.
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5 Summary, Conclusion & Future Work

This thesis successfully investigated interesting aspects of MO-AAC for multi-modal
MOPs and gained interesting insights into a so far rather unexplored field at the
forefront of current research. In this context, various EMOAs were configured to
simultaneously generate diverse solutions in the decision space and foster convergence
towards the Pareto front. These configurations were performed using the model-
based AAC algorithms (MO-)SMAC which demonstrated its high performance and
potential for multi-objective configuration tasks. As test instances, a set of, also
multi-modal, multi-objective optimization instances of different benchmark function
collections were utilized.

The first research question investigated how competitive MO-AAC is compared to
SO-AAC. The results show that MO-AAC is able to find configurations that have
competitive, or even better, performance than configurations found by SO-AAC.
The second research question investigated the configurability of EMOAs. For that,
the versatility and competitiveness of the considered EMOAs were compared. In both
cases, Omni-Optimizer as a flexible, general-purpose optimizer interestingly achieved
the best performance. Regarding the competitiveness of HV, NSGA-II has the same
performance as Omni-Optimizer.
The third research question addressed the trade-off between different configurations
for EMOAs individually. Here, Omni-Optimizer showed the highest trade-off re-
garding HV and the second highest trade-off regarding SP. The highest trade-off for
SP showed MOEA/D. As an evaluation method to further analyze the trade-off be-
haviour, the non-dominated configurations were visualized in the space spanned by
the chosen performance indicators SP and HV. Thereby, the performance of config-
urations found by MO-AAC could be nicely compared to the default and respective
SO-AAC configurations. It was clearly visible that the MO-AAC configurations out-
performed the other configurations and Omni-Optimizer achieved the overall best
performance. The best trade-off configuration for every EMOA can potentially be
picked out of these visualizations and proposed as a new default configuration. How-
ever, the best suited configuration in practice of course depends on the specific un-
derlying optimization problem and the preferences of the decision makers involved.
Without this knowledge, a best-compromise configuration in the knee region of the
resulting Pareto front approximation would be a good candidate.

The experimental results promise that there is a lot to gain by further pursuing this
line of research fostering algorithm design, understanding of algorithm behaviour, and
automated configuration. A straightforward extension will be investigating scalability
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and generalizability of results, both in terms of enlarging decision space and possibly
also objective space dimensionality. Also, other benchmark sets as e.g. recently
provided in Schäpermeier et al., 2023 will be included. Experimental results then
will be further detailed and more specifically analyzed focusing on specific benchmark
sets and problem characteristics separately.

Moreover, MO configuration studies internally solve specific MOO problems them-
selves, and it is crucial to analyze the characteristics of the resulting optimization
landscapes in order to get a detailed understanding of problem hardness and struc-
tural properties such as multimodality. This will further help in understanding the
performance differences of different configurators applied to the underlying scenario.
Respective experiments will thus include a comparison to MO-ParamILS and poten-
tially specific racing approaches as well. The robustness of resulting EMOA configu-
rations is also an issue and could even be integrated as a third performance criterion
into the MO configuration scenario. However, different notions of robustness exist
which could be explored in this regard.

Additionally, automated configurators do have parameters themselves which should
be analyzed further regarding parameter importance and sensitivity of results regard-
ing the chosen settings within SO- and MO-SMAC. However, one has to be careful
not to end up in a ’vicious circle’ of meta-configuring configurators.
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A Configurations Overview

mutator
recombinator

mutGauss_p
mutGauss_sdev

recSBX_eta recSBX_p
mutPolynomial_eta

mutPolynomial_p
mutGauss

mutPolynomial

mutUniform

recCrossover

recIntermediate

recSBX

0.0

0.5

1.0

0.0

0.5

1.0

0.0

5.0

10.0

0.0

0.5

1.0

0.0

50.0

100.0

0.0

0.5

1.0
NSGA-II

non-dominated
default
new default
SO-SP
SO-HV

decomp neighbor T deltap aggfunction theta update archive nr Tr
SLD

Uniform

lambda

x

0

20

40

0.0

0.5

1.0

wt

awr

pbi

0

10

20

standard

best

restricted

0

1

0

5

10

0

10

20
MOEA/D

non-dominated
default
new default
SO-SP
SO-HV

step_size sampling dominated_steer
10

500

1000

0.0

0.5

1.0

M1

M2

M3

M4

M5

M6

NDS
HIGA-MO

non-dominated
default
new default
SO-SP
SO-HV

max_local_sets
epsilon_gradient

descent_direction_min

descent_step_min

descent_step_max

descent_scale_factor

descent_armijo_factor

descent_history_size

descent_max_iter

explore_step_min

explore_step_max

explore_angle_max

explore_scale_factor

refine_after_nstarts
refine_hv_target

0

755,161,607

1,510,323,215

0.0

0.5

1.0

0.0

0.5

1.0

0

0.0001

0.01

0

50

100

1

3

5

0

0.0001

0.01

0

377,861,105

755,722,210

0

775,708,058

1,551,416,116

1e-06

50

100

0.01

50

100

10

50

90

1.1

3

5

1

50

100

1e-06

0.0005

0.1
MOLE

non-dominated
default
new default
SO-SP
SO-HV

Figure 15 Summary of all non-dominated, default, SO, and proposed new default
configuration parameters for NSGA-II, MOEA/D, HIGA-MO, and MOLE. The con-
figurations correspond to the configurations of Figure 13. All configurations were
found training and testing on all instances.
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Figure 16 Summary of all non-dominated, default, SO, and proposed new default
configuration parameters for Omni-Optimizer, SMS-EMOA, and MOGSA. The con-
figurations correspond to the configurations of Figure 13. All configurations were
found training and testing on all instances.
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