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ABSTRACT 

The reliance of the energy industry on fossil fuels makes it a prime contributor to greenhouse gas 

emissions, negatively impacting the goal of a sustainable world. The global energy industry is currently 

undergoing an upheaval as the efforts continue to materialize for its transition to renewable energy 

sources. Geothermal energy is one such sustainable source of energy that is being actively utilized for 

electricity production and as a heating source in many regions of the world, such as Iceland, Kenya, New 

Zealand, and some parts of the United States. These countries have highly active geothermal areas, which 

are usually characterized by surface manifestations such as fumaroles, hot springs, and steam emissions. 

While such expressions can help identify the active regions, the use of geothermal heat for electricity 

production requires points of a steeper subsurface geothermal gradient, often termed geothermal hotspots. 

Apart from geological and geophysical surveying and well exploration, many studies have employed 

geoinformation science and earth observation for preliminary exploration by examining the various 

surface characteristics such as lithology, mineralogy, soil characteristics, and topology. This study focused 

on studying the vegetation dynamics of the geothermally active regions and examining its use in detecting 

geothermal hotspots in the Olkaria region of Kenya. It was based on the hypothesis that after a rain event, 

the greenness of the vegetation improves in the region before returning to its original altered state; 

however, at geothermal hotspots, the wilting of the vegetation to its original state will be at a faster pace 

due to excessive ground heating. The temporal profiles of vegetation indices such as Normalized 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and other bands, such as Red 

band, Near Infrared band and Shortwave Infrared band were assessed at 56 ground control points 

(geothermal and non-geothermal hotspots) around the Olkaria region for identifying characteristic 

patterns in the vegetation dynamics. The results did not show a characteristic response to verify the 

hypothesis. Additionally, the results were more depictive of soil dynamics due to scarce vegetation in 

Olkaria region.  There were differences in responses of geothermal and non-geothermal hotspots but 

these could not be conclusively proven to be representative of the geothermal activity of the ground 

because of lack of enough cloud free ground control points around the rain events. Additionally these 

profiles were also quantitatively assessed using Dynamic Time Warping (DTW) by comparing the shapes, 

which showed that geothermal hotspots have a different profile because of their high dissimilarity with 

non-geothermal hotspots and low dissimilarity with geothermal hotspots. While these differences in the 

shapes could not be visually assessed, dynamic time warping showed potential in differentiating 

geothermal hotspots. Further, the NDVI range of geothermal hotspots over the entire time period was 

consistently lower than a certain limit or threshold. Combining the results of the NDVI value ranges and 

the dissimilarities in the shapes of the curves using DTW established the use of NDVI as one of the 

parameters for distinguishing geothermal hotspots from the background in a geothermally active region. 

This could be used as an additional condition for narrowing down the exploration areas of geothermal 

hotspots before a ground survey. 

 

Keywords: Geothermal Energy, Dynamic Time Warping, NDVI, rain events, vegetation dynamics, energy 
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ABBREVIATIONS 

 

• GIS – Geoinformation Science 

• TIR – Thermal Infrared 

• DTW – Dynamic Time Warping 

• NDVI – Normalized Difference Vegetation Index 

• NDWI – Normalized Difference Water Index 

• R – Red band 

• G – Green band 

• B – Blue band 

• EVI – Enhanced Vegetation Index 

• SWIR – Short Wave InfraRed band 

• NIR- Near InfraRed band 
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1. INTRODUCTION 

The increasing demands on natural resources that the growing world population has resulted, among 

others, in an increase in greenhouse gas emissions and carbon footprint (Koide et al., 2021). As a 

consequence, the world is facing challenges of rising global temperatures and increased uncertainty in the 

behavior of natural processes (Chen et al., 2022). This contribution to global greenhouse gas emissions is 

subject to various unsustainable ways of producing and consuming goods in different sectors, such as the 

agricultural, utilities, manufacturing, transportation, and industrial sectors. However, these sectors' 

functionality relies on energy use, consequentially making the energy sector the largest contributor to 

greenhouse gas emissions in addition to its direct share (Wang & Zhou, 2018). The energy sector mainly 

relies on non-renewable sources that are expected to grow to meet the demands of the human population, 

causing significant environmental pollution (Gustavsson et al., 2017). Hence, in order to combat climate 

change and reduce greenhouse gas emissions, transition to renewable and sustainable sources of energy, 

such as wind, solar radiation, geothermal energy, hydropower, and biomass, is necessary to move closer to 

the goal of a carbon-neutral world (Güney, 2019).    

  

Geothermal heat, the thermal energy present in the Earth's subsurface, is a reliable and sustainable energy 

source independent of seasonal variations (Soltani et al., 2021). The upwelling heat flux from the center of 

the Earth provides a continuous transfer of heat to the surface that can be utilized as an energy source in 

regions with a favorable geological setting for extraction (Song et al., 2018). It has direct applications for 

use as a heat source, such as in space heating applications using ground-sourced heat pumps for residential 

and industrial areas. Further, the surface manifestations of the incoming geothermal energy in the form of 

hot springs function as a recreational activity, often also used for bathing, swimming, and pond heating. 

Among these and other uses of geothermal energy for heating, it is also elemental in electricity generation 

(Lund & Toth, 2021). Although geothermal energy currently has a low contribution to the global energy 

demand, this is expected to grow in the future with technological advancements and cost reductions in the 

drilling process and extraction of geothermal heat (Soltani et al., 2021). It is a valuable energy source, 

sufficing as a feasible, economical, and high-potential solution for increasing the global share of renewable 

energy (van der Zwaan & Dalla Longa, 2019).  

  

Ground-sourced heat pumps to utilize geothermal heat can mostly be used anywhere in the world; 

however, using geothermal heat for electricity production and large-scale heating requires setting up 

production plants in specific regions where geothermal hotspots are present. This makes its extraction 

location-specific requiring a favorable geological setting (Gkousis et al., 2022). These hotspots are 

locations of excess internal heat emitted from the crust and are usually indicated through the presence of 

surface manifestations such as fumaroles, steam emissions, or hot springs. Fumaroles are vents in the 

Earth's crust that emit meteoric water vapor and volcanic gases such as sulphur dioxide. Similarly, hot 

springs are locations wherein a spring is created due to the surfacing of the heated groundwater due to 

geothermal energy. Such indicators suggest high tectonic activity or the presence of active plate boundaries 

and act as a primary indicator for mapping out areas of localized geothermal reservoirs (Majumdar & 

Devi, 2021). In addition to the surface temperature anomalies, geothermal hotspots can be characterized 

by distinct surface characteristics, which can be studied through the presence of alteration minerals 

(Abubakar et al., 2018), the geology of the area, including faults, fractures, distinct drainage network, 

elevation data (Fahil et al., 2020) and characteristic type or density of vegetation around the hotspots 

(Elmarsdóttir et al., 2015). Accordingly, detecting these geothermal hotspots also involves reconnaissance 
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surveys, studying well log data acquired during the drilling of exploration wells to understand subsurface 

temperature profiles, and a thorough understanding of the geological properties such as the rock-mineral 

alterations, earth surface deformations and subsurface models of potential locations for extraction of 

geothermal energy (van der Meer et al., 2014).  

 

The subsurface and geological indications of geothermal activity, especially the identification of thermal 

anomalies, have been intensively explored to detect potential geothermal hotspots with Earth Observation 

data and Geoinformation Science capabilities (Leibrand et al., 2019). For example, Shortwave Infrared 

(SWIR) and Thermal Infrared (TIR) imagery of the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) have been jointly used for geological mapping predicting the mineral 

alterations in rocks, and understanding the surface temperatures at a medium resolution (van der Meer et 

al., 2014). The previous study also explored the use of Shuttle Radar Topography Mission (SRTM) data to 

collect elevation information for mapping lineaments and fault lines that act as indicative parameters for 

high geothermal activity. In addition, the combination of other bands, such as NIR, Red, and Green bands 

with SWIR, showed potential for improving the mapping of the hydrothermal alteration zones for 

detecting geothermal hotspots while also considering the vegetation and lithology of the area (Abubakar et 

al., 2018). Light Detection and Ranging (LiDAR) data have also been applied to study hydrothermal rock 

alterations through the laser return intensity (LRI) values (Freski et al., 2021). Using LiDAR data for high-

resolution elevation data and high-resolution thermal imagery through airborne sensors also shows the 

scope of further improvement in remote sensing applications (Hecker et al., 2017). Apart from the use of 

earth observation data, some studies have also used the potential of GIS for identifying suitable locations 

for geothermal exploration, including planning the logistics for setting up power plants (Mwaura & Kada, 

2017).  

  

These studies show how the different domains of remote sensing have been explored in identifying 

geothermal activity using subsurface and geological properties of the rocks. Additionally, in conjunction 

with the subsurface and geological data used as a guide for identifying hotspots, few studies have also 

inspected specific surface characteristics, such as the presence of sparse vegetation, land discoloration, and 

surface roughness during the exploratory stages. Geothermal activity can extensively alter the behaviour of 

various surface and ecological phenomena; hence, analyzing these expressions can provide useful 

information on the subsurface activity. These locations are sometimes highlighted with low vegetation 

density and the presence of specific heat-tolerant vegetation species, often termed geothermal grass 

(Saepuloh et al., 2021). Furthermore, a typical phenomenon observed around regions with active 

geothermal activity is stressed vegetation due to high ground temperatures (Mary et al., 2017). The study 

of such surface characteristics provides a quick and economical way of delineating areas of potential 

geothermal hotspots, which, combined with further detailed field analysis, are utilized for optimizing 

locations of production wells for extracting geothermal heat for indirect use of electricity production and 

direct heat use (Abuzied et al., 2020).   

  

Most of these studies using remote sensing are restricted to static surface expressions, with limited to no 

analysis of the dynamics of such features, with the exception of detecting thermal anomalies subject to 

long-term geothermal activity. It can be argued that higher ground temperatures and the depreciation of 

groundwater as steam due to fumarolic activity can lead to variations in vegetation growth. This is further 

influenced by different weather conditions affecting the vegetation health around regions of high 

geothermal activity. Precipitation and ground temperatures particularly affect how the vegetation changes 

influencing its responses as observed through earth observation data, specifically through the vegetation 

indices such as NDVI (Zhu et al., 2015). The temporal dynamics of these biophysical features, such as 

vegetation, temperature, precipitation, and more around geothermally active regions, can further facilitate 
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the preliminary detection of potential locations of geothermal hotspots along with other exploration 

methods.  

 

This particular research targets the study of the dynamics of the surface characteristics related to 

vegetation responses in a geothermally active region for detecting potential geothermal hotspots using 

remote sensing. It is based on the theory that the vegetation's behavior at geothermal hotspots differs 

from the non-geothermal hotspots due to vegetation deterioration around geothermal hotspots caused by 

ground heating. The higher ground temperatures at geothermal hotspots alter the condition of the 

vegetation as it loses moisture faster, causing changes in the growth of the vegetation, its greenness, or 

how it is wilting. Hence, it is expected that the vegetation will show different responses near geothermal 

hotspots as opposed to the other regions. To identify these differences between geothermal hotspots and 

non-geothermal hotspots for use as a potential indicator for identifying geothermal hotspots, a hypothesis 

is proposed in relation to the differences in the behaviour of vegetation, particularly around rain events. 

The rain events here act as an external environmental factor affecting the vegetation, around which the 

responses are analysed to identify any differences between geothermal hotspots and non-geothermal 

hotspots. The hypothesis states that the short-term change in vegetation greenness soon after a rain event 

is expected to increase for both geothermal hotspots and non-geothermal hotspots; however, as the 

immediate effects of rain wear out and it returns to its original state, the response curve of decrease in 

photosynthetic activity of the vegetation will be steeper in points with geothermal activity (geothermal 

hotspots) due to the ground heating.  

 

This time series analysis of the vegetation dynamics will be done after the rain event for points of 

geothermal hotspots compared to points of no geothermal activity in the Olkaria region of Kenya. These 

points of interest are identified through ground data collected in 2022 as part of the GeoHot project of 

Faculty ITC, which studied the subsurface temperature profiles of 56 locations spread across the study 

area to indicate the presence of geothermal activity. The temporal dynamics of vegetation is analysed using 

the different indices, NDVI and EVI, which are widely used as indicators to understand the vegetation 

health capacity using remote sensing. NDVI is a vegetation index calculated using the Red and NIR band 

of the optical imagery, which represents the vegetation's greenness, with some indication about its health 

(Tomasella et al., 2018). Similar to NDVI, EVI provides another measure for measuring vegetation 

greenness, using the NIR, Red, and Blue bands, with better corrections for the background and the 

atmospheric effects (Fraga et al., 2014). In addition, the NDWI index was also used to study the temporal 

variations of the vegetation, specifically examining any differences observed in the vegetation water 

content between geothermal hotspots and non-geothermal hotspots (Xofis et al., 2022). While the indices 

provided some coherent information about vegetation dynamics, the bands used for calculating these 

indices were also studied to independently interpret the non-vegetation characteristics of the surface and 

relate to the responses observed using specific indices. 

 

Furthermore, to understand the differences in these temporal dynamics using the indices and bands, the 

amount of rain is a crucial parameter, as too little rainfall may not show any immediate substantial 

differences in the photosynthetic activity of the vegetation. On the other hand, excessive rain can create 

bias with soaked land and vegetation without showing definite responses of the vegetation itself. Hence, it 

is essential that moderate rainfall is considered to study the temporal dynamics to avoid distortions in the 

vegetation responses analysed for the 56 ground control points. Based on the amount of rainfall received 

in Olkaria using the information from a weather monitoring station, rain events greater than 10 mm were 

considered optimal for the analysis, which is further explained in the Methods section.  
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In addition to visualizing the time series graphs of the vegetation indices and the bands for significantly 

identifying the differences in the vegetation responses of the geothermal hotspots compared to non-

geothermal hotspots, a quantitative assessment of the shape of the temporal profiles is relevant for the 

study since the hypothesis draws a conclusion based on the differences in the steepness of the curve of 

geothermal hotspots after rain events. Hence, to examine the shape of the curves, Dynamic Time Warping 

is chosen as opposed to other methods for characterizing time series, such as Fourier analysis which 

studies patterns or trend analysis. Dynamic Time Warping is an algorithm that compares the dissimilarity 

between different temporal sequences creating a distance matrix (Bemdt & Clifford, 1994). Standard 

distance matrices such as the Euclidean distance matrix compares one point in the reference curve to its 

corresponding single point in the test curve ignoring time and local space shifts. However, Dynamic Time 

warping considers this when comparing two temporal sequences. It generates a distance matrix by 

matching one singular point in the reference curve to many points in the test curve and vice versa, 

focusing on the shape rather than just the absolute values of the curve. A normalized distance value is 

calculated depending on how different the responses are, indicating more the value, more dissimilarities in 

the shape of the curves. This will help get a generalized overview of how the temporal profiles of 

geothermal hotspots and non-geothermal hotspots compare in terms of their shape and deduce 

characteristic responses in dissimilarities to use as a parameter for identifying potential geothermal 

hotspots. The method will be applied to different pairs of geothermal and non-geothermal activity 

response curves of changes in vegetation profiles. According to the hypothesis considered, the calculated 

dissimilarity between different pairs will depict higher values when curves of geothermal activity and no 

geothermal activity are matched as opposed to little to no variations between the same geothermal activity 

curves.  

 

The research aims to directly impact Sustainable Development Goal 7, Affordable and Clean Energy, 

influencing the target of increasing the share of sustainable energy sources and improving energy 

efficiency. It relies on enhancing the exploration of geothermal hotspots, reducing the dependency on 

field analysis, and maximizing the use of Geoinformation Science and Earth Observation in such 

exploration activities. 
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2. OBJECTIVES 

The research aims to study the differences in vegetation dynamics between geothermal hotspots and non-

geothermal hotspots in geothermally active regions that are detectable through remote sensing, potentially 

identifying an additional parameter for preliminary detecting geothermal hotspots. Through this study, 

temporal analysis of vegetation changes will be explored to identify characteristic response curves for 

geothermal hotspots. The changes are particularly studied around rain events to understand if there are 

any differences in the responses after an external weather influence.  

 

2.1. Objectives 

 

Analyze the presence of characteristic responses in vegetation change by comparing geothermal vs. non-

geothermal locations through time series analysis.  

 

Sub Objectives:  

 

• Identify significant rain events to study temporal profiles of vegetation change.  

 

• Generate time series profiles of different indices and bands for geothermal and non-geothermal 

hotspots as points of interest in different time periods, such as around rain events.  

 

 

• Test for differences in the temporal profiles of the time series between geothermal hotspots 

and non-geothermal hotspots using visual assessment and Dynamic Time Warping. 

 

 

• Assess the differences observed, if any, under different conditions, such as different rain events, 

and vegetation cover. 

 

2.2. Hypothesis 

 

The changes in vegetation in geothermal hotspots differ from the non-geothermal hotspots due to 

vegetation health deterioration around geothermal hotspots caused by ground heating. It is expected that 

the wilting of the vegetation is faster at geothermal hotspots, as the conditions become drier, compared to 

non-geothermal hotspot. This is analysed by studying the responses in vegetation specifically around rain 

events. These events cause changes in vegetation by modifying the environmental conditions, wherein we 

expect the vegetation to become greener after the rain event but the additional ground heat at geothermal 

hotspots cause faster browning of the vegetation as shown in Figure 1 using an illustration. Hence. The 

decline in the vegetation greenness after rain event would be steeper at geothermal hotspots and analysing 

this after-effect of a rain event may help determine any distinguishing responses between geothermal and 

non-geothermal hotspots. 
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2.3. Research Questions 

 

1. Do the vegetation dynamics show characteristic responses near geothermal hotspots specifically 

faster loss of greenness at hotspots as shown in Figure 1?  

 

2. What remote sensing based parameters (individual bands and vegetation indices) related to 

vegetation dynamics show significant changes in time series profiles between geothermal and non-

geothermal hotspots using Dynamic Time Warping? 
 

 

3. Can the vegetation dynamics be used as an additional parameter to narrow down locations of 

potential geothermal hotspots? 
 

 

 

 

 

 

 

 

 

 

Figure 1: An illustration of the expected response difference between geothermal hotspots and non-geothermal 
hotspots around rain events 
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3. STUDY AREA 

This study is carried out in the Greater Olkaria Volcanic Complex in Kenya, North-West of Nairobi 

(Figure 2). It is a high-temperature geothermal field located in the centre of the Kenya rift valley, widely 

used for electricity production in Kenya, and characterized by numerous fumaroles (Omenda, 1998). The 

study area map (Figure 2) shows the distribution of ground control points for which temperature profiles 

were studied to identify potential locations of geothermal hotspots. This study will use these points to 

explore the temporal profiles of vegetation dynamics and make comparisons between hotspots and non-

hotspots to see if there are significant differences in their dynamics around rainfall events.  

 

 

       

 

The ground control points were collected as part of the GeoHot project of Faculty ITC, with its primary 

focus on geothermal hotspot detection using Ecostress data. This data is collected as part of the 

ECOSTRESS NASA mission launched in 2018 that captures thermal data from the international space 

station at a 70 x 70m resolution (NASA/JPL-Caltech, n.d.). The thermal imagery data enables the 

identification of temperature anomalies, using which a detection map in the geothermally active region of 

Olkaria was created. The Land Surface Temperature (LST) anomalies were detected through a moving 

window technique that distinguished points with anomalous median values. This was combined with the 

Figure 2: Study Area Map 
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presence of fumarole locations to create a detection map. Terrain evidence, such as sparse vegetation and 

rough, loose soil, was also used to further locate points for testing the presence of geothermal activity.            

 

There were a total of 56 ground control points which were chosen for ground truth survey. Out of these 

points 24 locations showed positive geothermal activity, and the rest showed no significant geothermal 

activity. This was determined on the basis of the temperature gradients, where geothermal hotspots 

showed a recording of higher temperature gradient observed at 20cm depth. The result was also 

augmented with the presence of fumarole which already resulted in very high ground temperatures, that 

stayed such at 20cm depth as well in case of presence of a geothermal hotspot.  

 

In lieu of this available data, these points were particularly tested to analyse the differences in the 

vegetation behaviour at geothermal hotspots and non-geothermal hotspots. For each of the points, the 

type of vegetation, and the soil conditions were also recorded, that helped in differentiating the points on 

the basis of the vegetation cover.  

 

In this study, an additional parameter of vegetation dynamics is analysed to understand its suitability in 

identifying such locations with positive geothermal activity using Remote sensing.  
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Figure 3: Data Collection Workflow 

NDVI – Normalized Difference Vegetation Index, NDWI – Normalized Difference Water Index, R – Red 

band, G – Green band, B – Blue band, EVI – Evaporized Vegetation Index, SWIR – Short Wave InfraRed 

band, NIR- Near InfraRed band 

 

4. METHODS 

The response of the ground control points pertaining to the vegetation dynamics are analysed under three 

different time periods to test the hypothesis. The first time period covered a more extended time period of 

2 years to understand prolonged differences between points of different geothermal activity (geoactivity). 

Following that, the temporal profiles around rain events are studied. Lastly, these dynamics are analysed 

during time periods with no rain (drought season). Consequently, the findings from these response 

functions are employed to classify the entire Olkaria region into hotspots and background points, validate 

the results and examine the accuracy of the proposed methods. The methodology used for this is divided 

into three sections: Data Collection, Data Processing, and Data Analysis, which are elaborated in the 

following chapters.  

4.1. Data Collection 

 

An overview of the data used for the study is shown in Figure 3. There are three sources of data that were 

used to test the hypothesis. These include:  

1. Ground control points with information related to geothermal activity and other surface 

characteristics are available as part of the GeoHot project of Faculty ITC.  

2. Daily Rainfall data from a weather monitoring station in Olkaria. 

3. Sentinel-2 Optical Images accessed through Google Earth Engine for time series profiles.   
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4.1.1. Ground Control Points 

 

A field survey was carried out in early 2022 on the selected ground control points to study the geothermal 

activity and other surface characteristics of the Olkaria region by the members of the GeoHot project of 

Faculty ITC.  

The geothermal activity of these points was determined by calculating the temperature profiles of the 

Earth’s subsurface, up to 20 cm in depth. Of the 56 points tested, 24 points showed either a steeper 

increase in temperature, or exceedingly high ground temperatures with proximity to fumaroles and hence 

were marked as points of positive geothermal activity. The below map (Figure 4) shows the distribution of 

geothermal hotspots in the Olkaria region as determined after the ground survey.  

 

Further, the surface characteristics, including soil type, vegetation, and proximity to fumaroles, were 

logged for each point. This compromised of information related to presence of grass, bushes, trees and/or 

bare ground also indicating how the area around was covered in vegetation. Further, there was 

information related to the soil characteristics such as presence of loose soil, boulders and color of the soil. 

The points were grouped into three different categories (Figure 5) based on the qualitative assessment of 

this information related to vegetation cover as points with sparse vegetation, moderate vegetation, and 

more specifically, geothermal grass (species: Fimbristylis exilis). There were 26 control points marked as 

sparse vegetation and 12 were grouped as moderate vegetation.  

 

The vegetation dynamics in response to rainfall events were examined for areas with high and low 

vegetation. This information of geoactivity, in conjunction with vegetation cover differences was used as 

‘ground truth data’ to test the hypothesis proposed in the study and understand the differences in the 

behaviour of vegetation in geothermally active zones between geothermal hotspots and non-geothermal 

hotspots.  

Figure 4: Geoactivity of Ground Control Points 
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Figure 6: Monthly Rainfall in Olkaria 

 

4.1.2. Daily Rainfall data 

 

In addition to studying the change in vegetation for the entire chosen two-year period, the response curves 

after significant rain events were studied to understand the difference in the behaviour of the vegetation 

before and after rainfall. 

A weather monitoring station is available in the Olkaria region, and the data from July 2019 to May 2022 

was retrieved. Kenya has two rainfall seasons, termed short rains (Oct-Dec) and long rains with abundant 

rainfall (Mar-May) (Camberlin & Wairoto, 1997). The monthly average of rain received in Olkaria is 

shown in Figure 6.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Vegetation groups associated with Ground Control Points 
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This figure shows that in the year 2019 until early 2020, Olkaria received heavier rainfall as compared to 

2021 and 2022. Since the study focuses on vegetation dynamics, abnormally heavy rain is not considered 

suitable as the vegetation could be completely soaked, showing little to no variations. Heavy rainfall could 

lead to biased results, and hence, this study was conducted between June 2020 and May 2022. 

  

Figure 7 shows an overview of rainfall distribution every five days representing the average rainfall for the 

entire area. 5 day period is chosen to account for the availability of optical images, in this case, Sentinel 2, 

which has a five-day temporal resolution.  

 

It can be seen that the majority of rainfall in 5 day time period was less than 10mm. Hence, rain events 

with rainfall above 10mm in 5 days were selected as this study focused on significant rain events that cause 

notable changes in the region to discern differences in vegetation. Amongst these rain events, the 

temporal profiles of different parameters were generated for which cloud-free data for at least 2 data 

points before the rain event (10-day period) and 4 data points after the rain event (20-day period) were 

available at the ground control point locations. The response curves around smaller to no rain periods 

were also analysed for comparison to ensure the observed results are specific to rain events, and not a 

general response, strengthening the result of the hypothesis.  

 

4.1.3. Sentinel Optical Images for time series profiles 

 

There were around 150 scenes available from the 5-day temporal resolution Sentinel 2 archive during the 

period of June 2020 – May 2022. The time series data from these images was downloaded using the 

capabilities of Google Earth Engine for each of the 56 ground control points for Dynamic Time Warping 

(DTW). In GEE, available Sentinel 2 images for the 56 Ground control points were cloud masked using 

the available QA60 band. This band is a quality control band which flags the clouds in the Sentinel-2 

imagery using altitude thresholding with the B10 band (European Space Agency, n.d.). Although, this 

helps in clearing out some effect of the clouds, the band does not filter out all clouds from the image, 

hence to further remove cloud effect the data points which had NDVI values below 0.1 were also filtered 

out from all the time series to remove the effect of brightly reflective clouds before making the temporal 

profiles around rain events (Coluzzi et al., 2018). The temporal profiles were created using this data, 

though an additional check was done by manually checking the scenes visually in case any abrupt 

Figure 7: 5-day Rainfall Distribution in Olkaria 
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𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

responses in the temporal profiles was observed to ensure the clouds were not affecting the results or 

otherwise they were removed from interpretation.  

 

The data was downloaded for the following parameters with their corresponding band in Sentinel-2 

(Henrich, V., Krauss, G., Götze, C., Sandow, n.d.): 

 

1. Red band (B4) 

2. Green band (B3) 

3. Blue band (B2) 

4. Near Infrared (NIR) band (B8 – 10m) 

5. Short wave infrared (SWIR) band (B11 – 20m) 

6. Normalized difference vegetation index (NDVI) (Kriegler et al., 1969) 

7. Normalized difference water index (NDWI) (McFeeters, 2007) 

8. Enhanced vegetation index (EVI)  (Huete et al., 1997) 

 

 

Additionally, to employ the results obtained by reviewing the time series profiles of the individual ground 

control points in detecting potential locations of geothermal hotspots, the NDVI time series data for the 

entire region of Olkaria is downloaded. Using this data, a full scene classification could be done to 

compare the accuracy of the proposed solutions using vegetation responses for identifying geothermal 

hotspots with land surface temperature study using Ecostress data (GeoHot project). The script was 

modified to download time series data for multiple polygons in a single run. For each run, a 10m x 10 m 

resolution mesh grid was provided as an input to match the resolution of Sentinel images in the format of 

a shapefile covering a part of the Olkaria region. This script automatically generated a CSV file of the 

NDVI time series for each polygon in the grid, available for download in the google drive of the account.  

 

4.2. Data Processing 

 

The data collected in the previous step was modified and refined to extract relevant information for 

further analysis. A summary of the procedure followed is shown in Figure 8.  

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

2.5 ∗  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 6 ∗   𝑅𝐸𝐷 − 7.5 ∗ 𝐵𝐿𝑈𝐸 + 1
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Figure 8: Data Processing Workflow 

 

4.2.1. Ground Control Points 

 

The temporal profiles for geothermal hotspots and non-geothermal hotspots were averaged for the entire 

time period of 2 years to study the differences in the vegetation responses. Further, rain events with 

greater than 10mm rainfall in 5 days were identified, for which enough cloud-free data was available to 

cover ten days before the significant rain event and 20 days after the rain event. The idea was to discern 

how the vegetation is affected around these events, taking into consideration two-time points before the 

rain event and four after it, covering a time span of about a month. The averaged-out temporal profiles of 

geothermal and non-geothermal hotspots were created for each event from the available time series data 

of the eight parameters. In addition to the rain events, to identify significant differences in response 

functions around rain events, these temporal profiles were also compared with those during a prolonged 

period of no rainfall, also termed drought temporal profile in this context. This helped in understanding if 

the differences between geothermal hotspots and non-geothermal hotspots were characteristic around rain 

events or are also seen during dry periods. The criteria for selection of dry periods was less than 5mm of 

precipitation every five days for at least a month (30-day time period).  

4.2.2. Olkaria region 

 

The NDVI time series data for the entire region was downloaded by dividing the area into a mesh grid of 

10mx 10m resolution (Figure 9). The resolution was similar to the used Sentinel 2 optical imagery in the 

study and the generated shapefile was used for analysing the average vegetation response values of the 

selected two years for the entire region of Olkaria.  
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4.3. Data Analysis 

 

The temporal profiles generated in the previous steps are used for initial hypothesis testing. A qualitative 

assessment of the profiles identifying any typical response or patterns was done to understand the 

behaviour of the vegetation in such geothermally active regions. Initially two kinds of observations were 

made (Figure 10), one related to the range of values for different spectral bands and indices for the entire 

time period and how it relates with the vegetation dynamics. The second was to visually analysed the 

differences in the shapes of the temporal profiles around rain events between geothermal hotspots and 

non-geothermal hotspots. Through this assessment, the surface characteristics of the Olkaria region could 

be interpreted. This helped identify specific parameters (among Red, Blue, Green. NIR, SWIR, NDVI, 

NDWI and EVI) that showed varied surface characteristics between geothermal and non-geothermal 

hotspots for further quantitatively evaluating the proposed hypothesis. The most distinct parameters could 

be used as an additional specification to distinguish geothermal hotspots. However, prior to exhibiting any 

conclusions, the results from the visual assessment were quantitatively verified using Dynamic Time 

Warping (DTW). DTW compares the shapes of the temporal profiles for geothermal hotspots and non-

geothermal hotspots to check the dissimilarities and therefore assess its applications in identifying 

potential geothermal hotspots. Additionally, the distinct parameters for differentiating geothermal 

hotspots are also examined for their range of values and if any considerable differences are observed to be 

applied in the entire region of Olkaria.  

Figure 9: Mesh grid setup for downloading the NDVI time series data for Olkaria 

10m 

10m 
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Figure 10: Data Analysis Workflow 

 

 

 

 

 

4.3.1. Dynamic Time Warping (DTW) 

 

The generated temporal profiles of NDVI were analysed using Dynamic Time Warping (DTW). This 

method assesses the shape of the variable dynamics rather than only the absolute values it represents. This 

step will test the hypothesis wherein a steeper slope is expected for declining vegetation presence at active 

geothermal points relative to vegetation on non-hotspots after an external environmental factor such as 

rain event.. DTW is an algorithm that can be used to compare different temporal sequences keeping in 

consideration the local space and time shifts. It was developed more than five decades ago for better 

speech recognition (Sakoe & Chiba, 1978)  and eventually found application in time series matching in the 

1990s (Bemdt & Clifford, 1994). DTW is now widely utilized for time series analysis in various remote 

sensing applications (Petitjean et al., 2012), such as for studying vegetation and agricultural changes, and is 

often considered a better dissimilarity measure for comparing time series data (Virnodkar et al., 2020). 

Fundamentally, they compare the shapes of the curves to assess the dissimilarities in the shapes of the 

curve rather than how the values change at each point. This helps in considering the relationship between 

one point in space of a sequence with one or more points in the other sequence to be comparable in the 

shapes of the graph. Standard matching techniques use distance matrix to understand similarity, with 

Euclidean distance the most commonly applied. Higher average distance shows higher dissimilarity in the 

compared curves. DTW is based on a similar concept; however, it does not match the curves point by 

point in space and time but considers its shape by comparing different points (Figure 11). It tries to 

superimpose the two temporal sequences by matching the different points, and find the minimum 

alignment cost required for this which is represented by the normalized distance parameter. It further 
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generates a distance matrix, along which the path of minimum alignment cost shows how dissimilar the 

curves are in shape (Bisht et al., 2016). 

 

The Dynamic Time Warping assessment results were tested for significance using the Analysis of Variance 

(ANOVA) significance test (Ohana-Levi et al., 2020). This test checks for statistical significance between 

different categories by analysing the variances in the means of the classes. The DTW analysis checked for 

curve shapes under three categories, comparing geothermal hotspots with themselves, non-geothermal 

hotspots with themselves, and finally, comparing shapes of curves between geothermal hotspots and non-

geothermal hotspots. The ANOVA test checks if the dissimilarity distances are significantly different 

among each of these three categories to be implemented as a parameter for identifying geothermal 

hotspots. 

 

4.3.2. Full scene classification of Olkaria region 

 

In addition to examining the ground control points, the purpose is to find potential geothermal hotspots 

in a geothermally active region of Olkaria. If the temporal profiles show significant differences between 

geothermal hotspots and non-geothermal hotspots, the results will be used to classify the entire region 

into potential zones of geothermal hotspots, based on the vegetation responses around rain events.  

 

Combined with the qualitative and quantitative assessment related to studying the temporal profiles of 

various parameters, the hypothesis is tested to examine vegetation dynamics as an additional parameter for 

distinguishing points of geothermal hotspots after exploring the region for thermal anomalies. The 

following chapter presents the results of the various steps and discusses the expected outcomes to validate 

the hypothesis.  

 

 

 

Figure 11: Illustration on how Dynamic Time Warping works  (Lu et al., 2016) 
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5. RESULTS 

5.1. Temporal profiles of geothermal and non-geothermal hotspots 

 

The initial study was done to seek any typical responses as stated in the hypothesis (Figure 1) related to the 

temporal profiles of any spectral band or generated vegetation indices from the satellite images and 

establish those parameters (Red, Blue, Green. NIR, SWIR, NDVI, NDWI and EVI) for the subsequent 

investigation to understand the vegetation dynamics associated with geothermal hotspots. There were 

some trends in vegetation dynamics that visually appeared to be different between geothermal hotspots 

and non-geothermal hotspots, however, not all the indicators had similar responses (Figure 12). The 

temporal profiles for the two years, though cloud masked had some sudden dips which affected some 

individual data points, hence the focus here was to look at the general response of the profiles and their 

pattern over two years.  

 

Figure 12: Temporal profiles of some bands and indices at geothermal and non-geothermal hotspots  between 
June 2020 – May 2022 

 

There are two graphs shown for EVI (third row on the right) as it had a lot of noise in the dataset, 

but still had differences in the values of geothermal and non-geothermal hotspots. 
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It was observed that among the bands, Red and SWIR bands had some differences in the value range as 

opposed to blue and green bands, which show similar values throughout the two years for geothermal 

hotspots and non-geothermal hotspots. Hence, the blue and green bands were not used for further 

analysis. Across the entire time range considered, NDVI and NDWI stand out, as consistent differences in 

values for hotspots and non-hotspots appear. These observations were logical as they are in line with the 

systematic differences we see in Red and SWIR bands which make up these indices. EVI had a lot of 

variations in value with extreme outlier data points as seen in the inset graph and even though removing 

these outliers showed quite some difference, there were not enough data points to consider for the study. 

Looking at the range of these indices, the geothermal hotspots consistently have a lower vegetation cover 

which needs to be further analysed to relate to the presence of geothermal hotspots. 

 

While the time series data did show differences in response values for geothermal and non-geothermal 

hotspots for some parameters, to ascertain the presence of a distinctive temporal profile at geothermal 

hotspots, in other words, recognizable differences in the shape of the time series curves, further analysis 

had to be performed.  

 

5.1.1. Temporal profiles around rain events 

Over the period of two years, 10 rain events were identified to understand patterns in the temporal 

profiles of the selected parameters. These events had more than 10mm of rainfall over five days in the 

entire region of Olkaria. For each of these rain events, first cloud masking was done, followed by a filter 

based on NDVI values before the temporal profiles were made. The number of data points for each of 

the acquisition date out of the 33 non-geothermal points and 23 geothermal points around the rain events 

after these two steps is shown in Figure 13.  It can be seen that after the rain event of January 28, 2022 

(highlighted), there is not even one data point available at two time points (February 2, 2022 and February 

7, 2022). Hence this rain event was not included for further analysis.   
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The temporal profiles for the other rain events for each of the chosen parameter NDVI, Red, Nir, NDWI 

and SWIR is shown in the following sections.  

5.1.1.1. NDVI 

 

The NDVI profiles (Figure 14) show some minor changes in the way the graphs dip around rain events, in 

this scenario, a larger dip at non-geothermal hotspots. Based on qualitative assessment, most of the 

changes were not as considerable for smaller rain events showing a small decline in the values, especially at 

geothermal hotspots and could not be significantly proven only by visual analysis.  

Figure 14: Temporal profiles around few rain events for NDVI 

Figure 13: Number of Cloud free data points per rain event after cloud masking and NDVI value filter (NDVI < 0.1) 
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Though at some of the rain events, especially the larger ones there was a significant dip observed with 

NDVI values very close to 0.1 (Figure 15).  

 

 

These three temporal profiles were further verified for clouds by visually checking the scenes and it could 

be observed that even after cloud filter, the remaining points were also highly contaminated by clouds 

(Figure 16). Hence, these rain events were removed from the analysis. 

 

 

 

 

 

Looking at the cloud contamination in Figure 16, to verify the accuracy of the other temporal profiles 

(Figure 15 ), additional visual checks were done. The points used for making the profiles were manually 

checked to be cloud free points. Some examples are shown in figure 17.  

 

Figure 15: Temporal profiles of NDVI around rain events which showed abrupt changes 

Figure 16: Contaminated images with very high cloud cover  

a) April 28 2022 b) February 22, 2022 c) November 29, 2021 

 

a) b) c) 
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We previously observed that NDVI also showed a consistently significant difference in the NDVI range 

over the two years between geothermal and non-geothermal hotspots. This was observed around rain 

events as well. In order to understand the observed subtle differences in temporal profiles in combination 

with these value differences between geothermal and non-geothermal hotspots a quantitative assessment 

by comparing the shapes of these graphs was done using Dynamic Time Warping (DTW). This was 

carried out to identify any differences, however small in the temporal profiles of geothermal and non-

geothermal hotspots and check its viability for identifying potential locations of geothermal hotspots 

(Section 5.2). 

5.1.1.2. Red  

 
Figure 18: Temporal profiles around few rain events for Red band 

Figure 17: Examples of visual checks for extracting cloud free points 

a) September 15 2021 b) September 25, 2021 c) May 3, 2022 
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A quick visual assessment of the temporal profiles of Red band (Figure 18) does not verify the presence of 

any specific behavioral response in the temporal profiles of geothermal hotspots and non-geothermal 

hotspots in the red band. The only noticeable point is the dip in the curves of the non-geothermal 

hotspots after rain is more rapid than for geothermal hotspots; however, it is quite negligible.  

 

5.1.1.3. NIR band 

 

  

 

Temporal profiles of the NIR band (Figure 19) show a similar response for both geothermal and non-

geothermal hotspots with no major inferable differences. 

 

 

5.1.1.4.  SWIR band and NDWI 

 

Figure 20 shows a few examples of the temporal profiles around rain events for the SWIR band. It did not 

show any pattern that can be used to differentiate between the profiles of geothermal and non-geothermal 

hotspots, except at the times of very heavy rainfall. This band was used for calculating the NDWI, and as 

seen in Figure 21, the NDWI values did not show any changes in the temporal profiles around rain events, 

even though the values were different over the two years for geothermal and non-geothermal hotspots.  

 

Figure 19: Temporal profiles around few rain events for NIR band 
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 Figure 21: Temporal profiles around few rain events for NDWI  

Figure 20: Temporal profiles around rain events for SWIR band 
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The lack of any pattern or value differences in the temporal profiles in the two suggests in this study that 

the moisture content in geothermally active zones cannot be easily deciphered and requires further analysis 

related to soil moisture content, which was out of scope for this study 

 

 

In this section, the temporal profiles of some of the parameters around rain events were analysed, which 

indicated a visual pattern in the Red and NIR bands and hence in the NDVI profile. This was based on 

the concept of the effect of rainfall on vegetation and how this can change in the presence of a geothermal 

hotspot. In addition, to isolate this qualitative assessment during rain events, the temporal profiles of 

NDVI were also assessed during a monthly period when there was not any significant rainfall (Figure 22). 

It can be seen that the shapes here tend to remain the same over the month.  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

5.2. Temporal profile analysis using Dynamic Time Warping 

 

The study of the temporal profiles over the time period of two years as well as around rain events show 

that the NDVI has a slightly different response for geothermal hotspots. This is, in effect, determined 

using the Dynamic Time Warping technique, which compares the shapes of the curves, aligning them 

together and yielding the alignment cost given by the normalized distance parameter. This way, the 

similarity of the curves can be assessed. In this study, the similarity of the temporal profiles or the shapes 

of the time series curves is determined in three categories: 

i. Two geothermal hotspots (1 – 1) 

ii. Two non-geothermal hotspots or the background points (0 – 0) 

iii. A geothermal hotspot and non-geothermal hotspot (1 – 0) 

 

 

 

Figure 22: Temporal profiles during periods of no rain for NDVI 
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5.2.1. DTW analysis over the time period of two years 

 

The following figure (Figure 23) shows the distribution of the normalized distance in these three 

comparisons, calculated by randomly choosing points from the available 56 ground control points, tested 

with 2000 different combinations. Here 0 indicates no geothermal activity, and 1 indicates the presence of 

geothermal activity (geothermal hotspot). This chart shows how the temporal profiles compare; the higher 

the normalized distance, the more the curve shapes differ. 

It illustrates that the temporal profiles of two geothermal hotspots (1-1) are more similar to each other in 

contrast to when the temporal profile of a geothermal hotspot is compared with a non-geothermal 

hotspot (1-0). In addition, comparing two non-geothermal hotspots (0-0) shows higher differences even 

though they are the same category. This suggests geothermal hotspots have distinctive responses that can 

be used to isolate these points in a geothermally active zone by comparing their similarities. These 

variations were established through an ANOVA significance test, indicating notable differences in the 

mean of these groups. The p-values was considerably less than 0.001, concluding that these box plots have 

different means and have significantly different values.  

 

While this shows variances in the temporal profiles, this might also be a result of the fact that geothermal 

hotspots often have lower vegetation cover; hence, such could be attributed to merely the differences in 

the vegetation. Therefore to further verify these, the data points with similar vegetation cover were 

compared to find the differences between geothermal and non-geothermal hotspots. Figure 24 shows the 

distribution in the DTW normalized distances when comparing points with sparse and moderate 

vegetation cover. The results are similar to those previously observed, indicating differences in the 

temporal profiles of geothermal and non-geothermal hotspots.  

Figure 23: Normalized distance differences using DTW for two years 
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Thee difference in distances between pairs of geothermal hotspots, pairs of non-geothermal hotspots, and 

the combination of geothermal hotspots with non-geothermal hotspots is much more pronounced in the 

sparse vegetation plots compared to the moderate vegetation plots. The results (Figure 24) seem to 

suggest that the difference between a geothermal hotspot and a non-geothermal hotspot is actually more 

considerable under sparse vegetation. The ANOVA significance results show that when comparing the 

three plots, the results were significant (p<0.001), however in moderate vegetation, the differences when 

comparing the variances of distances for two non-geothermal hotspots and a non-geothermal hotspots 

with a geothermal hotspot were not as significant. This suggests that possibly that the difference would 

have been even less if there was abundant vegetation further inferring that hotspots can be better 

differentiated on areas with sparse vegetation.  

 

5.2.2. DTW analysis during rain events 

 

The DTW analysis that explores the similarity in the shapes of the curves indicated in the previous section  

that the temporal profiles around geothermal hotspots are very similar (shown by smaller distances to 

align them together) as compared to when any other non-geothermal hotspot is compared with itself or 

with a geothermal hotspot.  

 

 

The differences in the temporal profiles around rain events visually showed some pattern, but to 

substantiate if these shapes are actually different around these rain events, DTW was performed. This 

showed similar responses to as observed earlier for all the rain events, few of which are shown in Figure 

25. Even if some events were biased because of less number of cloud free (or noise free) samples, the 

results were consistent across all the rain events independent of the rainfall received, indicating some 

differences in the temporal profiles of geothermal hotspots compared to non-geothermal hotspots. These 

results were also tested using the ANOVA significance test, and for all three categories the p value was 

less than 0.001.  

 

 

 

Figure 24: Normalized Differences using DTW in different vegetation cover 
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The distribution of the distance for aligning the curves together mostly shows similar response values for 

the period of two years and around rain events when comparing different categories. This further verifies 

that the curve similarity is more around geothermal hotspots, implying distinctive response features at 

these points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Normalized distance distribution using DTW around few rain events 

 

Rain  - 20.8 mm 
Rain  - 54.4 mm 
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6. DISCUSSIONS 

The Olkaria region in Kenya is characterized by high-temperature hydrothermal activity, altering the 

physical properties of the region. These surface characteristics are indicators of the subsurface properties 

and could be utilized to identify geothermal hotspots in the region which have a steeper temperature 

gradient. This study focused on analyzing the vegetation dynamics in these active regions and potentially 

assessing this as a parameter for separating out zones for locating the geothermal hotspots.  

 

The vegetation in the Olkaria region is characterized by low to moderate vegetation cover consistent over 

a year, except for the year 2020 (Figure 26), during which the region also received heavier rainfall than 

usual (Figure 6). This data was available from the GeoHot project of Faculty ITC which combined the use 

of remote sensing and ground truth data to study the variations in the vegetation cover in Olkaria between 

2019 and 2022. While the overall percentage of vegetation cover in the entire region is necessarily stagnant 

(about 30-40% vegetation cover), the effect of ground heating and fumaroles in the region is expected to 

alter the dynamics of the vegetation. The hypothesis stated in this study expected that the vegetation on 

geothermal hotspots would respond differently to increased soil moisture as a result of rain compared to 

vegetation on non-geothermal hotspots, because the soil moisture would evaporate faster on geothermal 

hotspots due to the raised ground temperatures. However, the scarce vegetation cover of Olkaria, limits 

how the vegetation response is captured by the Sentinel-2 sensor, objecting the results to be considered as 

vegetation dynamics or as conclusively evident of soil dynamics. Such limitations had to be considered in 

the results and in understanding of the vegetation dynamics of geothermal hotspots, specifically in Olkaria 

region.  

 

The NDVI and EVI indices, along with the Red band, showed certain absolute differences in their values 

for geothermal hotspots and non-geothermal hotspots, all indicative of the differences in the presence of 

green vegetation between the two categories. The range of values for NDVI was usually below 0.25 for 

geothermal hotspots and greater than 0.35 for non-geothermal hotspots. Considering the low NDVI 

values at geothermal hotspots, and the indications of sparse vegetation, the observed responses are not 

Figure 26: Vegetation cover in Olkaria between 2019-2022 (GeoHot Project, Faculty ITC) 
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entirely vegetation responses but are also affected by the bare soil. For instance, the Red band has a higher 

reflectance for the geothermal hotspots which could be directly linked to the presence of alteration 

minerals, such as iron oxides in the soil in geothermal zones (Kamau et al., 2020), which reflect more in 

the red band wavelength (Frutuoso et al., 2021).  

 

The SWIR band and NDWI index did show some differences in their values, but these were not 

prominent around rain events. Also, the blue band showed no such differences, hence limiting the 

understanding of the variations in the water content in the vegetation of geothermal and non-geothermal 

hotspots. The analysis of vegetation indices showed that the geothermal hotspots mostly have sparse 

vegetation and could be at bare patches of soil, indicating that the rain event affects the soil moisture and 

not the vegetation moisture content for such control points. Since these bands are not sensitive to the 

differences in soil moisture content (Hegazi et al., 2023), their use was of little importance for 

differentiating geothermal hotspots. This was further realized when the individual temporal profiles 

around rain events were studied, and negligible differences were seen in the time series of these 

parameters (Figures 20 and 21).  

 

The vegetation in Olkaria region is highly altered because of the geothermal heating, affecting how the 

values in the NIR, SWIR and Red band show up for the geothermal hotspots and non-geothermal 

hotspots. The value range is indicative of bare soil rather than vegetation responses. Although based on 

photo evidence of presence of vegetation at geothermal hotspots made available by the GeoHot project of 

Faculty ITC, the lower values is mainly depicting unhealthy vegetation or bare soil at some points.  

 

Analyzing the general dynamics {or pattern} of the reflectance data and the calculated indices over two 

years helped recognize the parameters that could be used for studying the temporal profiles or shapes of 

the curves for vegetation dynamics at geothermal hotspots. These temporal profiles were analysed around 

rain events to understand if there is a specific pattern in the behaviour of vegetation on geothermal 

hotspots. Based on the hypothesis, it was expected that greenness in the vegetation would increase in the 

area after a rain event; however, it will decline rapidly due to the loss of moisture caused by ground 

heating at geothermal hotspots compared to the non-geothermal hotspots. The observed results around 

rain events, however did not show any sizeable response in the temporal profiles of vegetation dynamics 

to be considered characteristic of geothermal hotspots. There were some differences in the time series 

profiles of NDVI, with non-geothermal hotspots showing a dip after the rain event, but the values at 

geothermal hotspots usually remained more or less the same around the rain events with only a slight 

drop.  

 

The DTW analysis was able to quantitatively analyze the dissimilarities in the temporal profiles of 

geothermal hotspots and non-geothermal hotspots, checking through with around 2000 combinations of 

different points. When comparing two geothermal hotspots, the differences in the DTW distances 

(normalized distance) were low, indicating that it is easier to align two temporal sequences of geothermal 

hotspots, and the time series curves were quite similar. These values were relatively lower when two non-

geothermal hotspots were compared, which in one way shows that comparing other points in an active 

region can show different temporal responses, but comparing geothermal hotspots show similar temporal 

responses. Additionally, the normalized distance value when comparing a geothermal hotspot and a non-

geothermal hotspot was even higher, particularly on points with sparse vegetation. These results were 

consistent around all the rain events as well although no direct inference could be interpreted relating to 

the size of the rainfall event.  
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The temporal dynamics around rain events were difficult to be considered  for identifying a distinctive 

pattern for geothermal hotspots or non-geothermal hotspots due to the effect of cloud cover around rain 

events. The images were cloud masked and all data was filtered based on the NDVI values (NDVI < 0.1)  

for clouds to work around this limitation, though this reduced the number of samples around some rain 

events which were quite low to be regarded as characteristic of the geo-activity it represents. Therefore, 

less number of sample points could just be outliers in the data showing abrupt responses: e.g. patches of 

very sparse vegetation. Further through visual analysis of the scenes, it was observed that some time 

points were still contaminated by clouds, and hence were removed from the observations. Nonetheless, 

the DTW responses were still different providing an opportunity to explore this criteria further for 

differentiating geothermal hotspots. The DTW distances showed significant differences between the 

temporal profiles of non-geothermal hotspots and geothermal hotspots at sparse vegetation. Such results 

could be utilized for differentiating geothermal hotspots, though requires more detailed analysis with a 

large dataset to be considered a reliable solution.  

 

These observations were mainly indicative that the vegetation cover tend to be lower at geothermal 

hotspots, however there are certainly bare soil patches in these regions which are not geothermal hotspots. 

In other words, not all low NDVI value locations could indicate a geothermal hotspot. However, the 

differences in the temporal profiles observed around rain events between geothermal hotspots and non-

geothermal hotspots when quantitatively analysed using DTW gives more insight on whether geothermal 

hotspots and non-geothermal hotspots can be differentiated in sparsely vegetated areas. The significant 

differences in the DTW distances of pairs of geothermal hotspots as compared to pairs of non-geothermal 

hotspots and geothermal hotspot with a non-geothermal hotspot in sparsely vegetated areas could be used 

to further isolate the geothermal hotspots. This requires further analysis with higher number of samples, 

and tests in different regions with geothermal active regions.  
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6.1. Applications of the results for potentially identifying geothermal hotspots 

 

For the Olkaria region, the thermal analysis was carried out as part of the GeoHot project. The thermal 

study was performed using two different methods, and the maps prepared (Figure 27) were used to 

identify the ground control points for which the ground data exploration was done. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Thermal Infrared study to find locations for ground data exploration of geothermal hotspots (GeoHot 
Project of Faculty ITC) 
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These points were fairly accurate in determining the geothermal hotspots, with overall accuracy of about 

80% (Figure 28) 

 

 

 

 

 

 

In this study, we aimed to analyse the use of vegetation dynamics for identifying these geothermal 

hotspots. While that didn’t show any considerable differences, one of the evident observations, though 

elementary, was that the geothermal hotspots consistently had NDVI values below a certain threshold of 

0.25. Applying this threshold in a geothermally active region can narrow down the exploration zones. 

Figure 29 shows the NDVI threshold zones, where the brown locations indicate zones where the hotspots 

could be present.  

Figure 28: Confusion Matrix assessment of the ground control points 

TP – True Positive, FP – False Positive, FN – False Negative, TN – True Negative 
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Figure 29: NDVI threshold map for defining exploration zones for geothermal hotspots in a 
geothermally active region 

Figure 30: Classification accuracy of the ground control points using NDVI threshold 

TP – True Positive, FP – False Positive, FN – False Negative, TN – True Negative 
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The points were classified with the accuracy of 86% using the NDVI threshold (Figure 30). Comparing 

the results from the two classifications, Out of the 23 hotspots, 21 (True positives) were accurately in the 

low NDVI zone as compared to 20 accurately identified with the land surface temperature study. Similarly, 

out of the 33 non-geothermal hotspots, only five were incorrectly in the low NDVI zone as compared to 

6 false positives using the land surface temperature study.  

 

In view of these observations, there are a few points to consider when utilizing vegetation as a parameter 

for identifying potential geothermal hotspots. In a geothermally active region, the temperature study is 

efficient for isolating zones where geothermal hotspots could be spotted. However, other surface 

characteristics, including vegetation dynamics, could be studied to further improve the results before 

ground exploration. While vegetation cannot be exclusively used to find geothermal hotspots, it can 

certainly be used as an additional parameter along with the thermal study before the ground truth surveys 

are carried out. Furthermore, using DTW to classify these points in low vegetation zones further 

employing machine learning methods like K-NN could provide more specific points and improve the 

accuracy, potentially saving the effort in ground truth survey.  
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7. CONCLUSIONS 

The use of remote sensing for identifying potential locations of geothermal hotspots through the study of 

the surface characteristics of a geothermally active zone holds a lot of promise. Its applications in studying 

the soil properties, minerals, earth surface deformations, etc., and how it can be linked to the subsurface 

have been explored and utilized for surveying these areas (van der Meer et al., 2014). This study focused 

on understanding the effect of geothermal heat on vegetation dynamics, possibly assessing its use in 

identifying potential locations of geothermal hotspots in a geothermally active region.  

 

The time series analysis of these points using the Sentinel-2 optical imagery, initially over the time period 

of 2 years, showed the differences in the reflectance values of various bands and the values of the 

vegetation indices. For example, higher differences in the reflectance range of the red band in geothermal 

hotspots and non-geothermal hotspots showed the presence of alteration minerals in the soil at 

geothermal hotspots. NDVI showed differences in the range for the entire two years, using which a 

threshold in the NDVI values was identified for geothermal hotspots.  

 

The research question also focused on examining the presence of a characteristic response at geothermal 

hotspots, by observing the shapes of the time series curves around rain events. In general, a small dip in 

the NDVI was observed, for non-geothermal hotspots after a rain event, which eventually recovered to its 

original state. There were some limitations related to this observation due to the lack of completely cloud 

free images and hence all sample points could not be used to determine how the clause change over time. 

There was not much change observed at geothermal hotspots, and hence a characteristic response related 

to the hypothesis of the study could not be observed. Furthermore, with overall vegetation being scarce, 

the results could not be directly linked to be vegetation dynamics and was affected by soil dynamics.  

 

These differences could not be indeed verified using only visual analysis, hence DTW was used. DTW is a 

dissimilarity test that helps identify how dissimilar two time series curves are by checking the shape of the 

curves combined with the differences in absolute values. This assessment showed that comparing two 

geothermal hotspots showed least dissimilarity as compared to when compared with non-geothermal 

hotspots.  

 

These results suggest that timeseries of vegetation dynamics especially in areas with sparse vegetation, 

could provide information on the presence of a geothermal hotspot. This have a higher relation with the 

threshold of the NDVI values rather than the vegetation dynamics. This could be further assessed by 

testing the theory in a different region or for a longer time period to identify rain events around which 

higher percentage of cloud free data is available. The results from the DTW analysis requires more 

assessment by employing its use for automatic classification of geothermally active zones using machine 

learning algorithms such as K-NN, which was out of scope for this study. Additionally, these results are 

based on an independent dataset, and requires further verification with larger datasets in different 

environments. 

 

The use of vegetation dynamics for identifying potential locations of geothermal hotspots shows limited 

use when utilized as an individual parameter. After assessing the thermal responses through remote 

sensing, NDVI values can be used to survey the region, while the vegetation dynamics only show weak 

indications of such differences for identifying potential geothermal hotspots.  

Hence, it has limited use as a parameter to narrow down the zones for identifying geothermal hotspots in 

geothermally active regions and require further assessment with larger datasets.     
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