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Abstract

We are dealing with a company employing damage experts. The company has contracts
with several insurance companies, and a damage expert must visit the client when they
submit a damage declaration. The clients have different urgencies (SLA) and when a client
calls with a visit request, the planner of the company assigns the client to a certain day
and time slot, not earlier than tomorrow.

When to schedule a client is based on the company’s policy. In this paper an answer
to the following research question will be formulated: "Can we find a(n optimal) pol-
icy that outperforms the already existing policies and considers the SLA, the load of the
upcoming day(s), and the previous assignments of visits to days and their geographical
spread?".

In order to answer this question, first the problem is mathematically formulated as a
Markov Decision Process(MDP). Once formulated, an optimal policy is found using dy-
namical programming. This optimal policy has been compared with an already existing
policy and performs better on some aspects. This is computationally really complex, since
the number of possible states is a gigantic number. So an optimal policy is found for a
small example.

To get more realistic results, the simulation program from the company P.C.A. B.V. is
used to implement a new, self-invented policy based on a waiting list and to compare the
results with already existing policies. This self-invented policy outperforms the other poli-
cies in a lot of perspectives. However whether this is the best for a company and its clients,
is a question for them to answer.

∗Email: a.zerairia@student.utwente.nl
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1 Introduction

In the field of scheduling and routing problems, a lot of research has already been done, see
[5][4]. However, the search for optimizing strategies seems to be a never-ending process.
In this paper we will analyze and model a real-life business scheduling problem and try
to come up with strategies that improve the situation from the point of view of both the
client and the company.

We are dealing with a company employing damage experts. The company has contracts
with several insurance companies, and a damage expert must visit the client when they sub-
mit a damage declaration. The contracts have different service level agreements (SLAs),
which represent the number of days before the employee needs to visit the client. The
clients’ and employees’ houses are geographically spread out over map. When a client calls
with a request for getting a visit from a damage expert, the planner of the company assigns
the client to a certain day and time slot. When to schedule a client depends on the policy
of the company, which depends on what they value the most. Do they want to minimize
the waiting times for their clients? Or do they prefer geographical clustering of the clients
and meanwhile minimizing the travel costs?

With this research we aim to find an optimal policy that considers the SLA, the load
of the upcoming day(s), and the previous assignments of visits to days and their geograph-
ical spread.

In order to find this strategy, we will try to formulate this scheduling problem as a Markov
Decision Process (MDP) [7][8]. Once formulated, the MDP can be solved with dynamical
programming using a policy iteration algorithm [1]. We will try to adapt this algorithm in
such a way that our situation could be implemented.

Once we have found the optimal policy, we will run a simulation to retrieve a schedule
for the upcoming days and compare these results with results from already existing poli-
cies, such as scheduling a client in the first possible time slot.

We value a policy according to four different variables; the percentage of clients that
gets rejected, the percentage of clients that is visited too late, the average waiting time
per client and the average travel costs per day.

Our research problem comes from a Dutch company P.C.A. B.V. [2], where they have
made a model to simulate the scheduling problem using several policies [6]. We will try
to come up with a better policy and implement this self-invented policy in their simulation.

So our research question is: "Can we find a(n optimal) policy that outperforms the al-
ready existing policies and considers the SLA, the load of the upcoming day(s), and the
previous assignments of visits to days and their geographical spread?".
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2 A Mathematical Approach: Markov Decision Process

2.1 Model

2.1.1 Markov Decision Process

In the next section we will formulate our situation as a Markov Decision Process(MDP).
An MDP is a discrete-time stochastic control process. It is based on an environment and
its decision-maker, in our case the latter is the company’s planner. With an MPD one can
model the decision making and can solve it by using dynamical programming. [8][7]

An MDP can be represented by a 5 tuple < T, S,A(s), P (s′|s, a), R(s′|s, a) > where:

• T is the set of time instants when a decision is made. Each x minutes a new time
instant takes place. The smaller x is chosen, the more accurate the MDP.

• S is the state space, consisting of all possible states that the system can be in.

• A(s) are all possible actions which can be taken while in state s ∈ S.

• P (s′|s, a) is the probability that from state s we go to s′ after taken action a, with∑
s′∈S P (s′|s, a) = 1.

• R(s′|s, a) contain all the rewards that the decision-maker obtains after taking action
a and the state goes from s to s′.

The goal of the MDP is for the decision maker to find a policy to make decisions
that maximizes the total reward. Given all P (s′|s, a) and R(s′|s, a) ∀s, s′ ∈ S, a ∈ A(s),
the optimal policy π that maximizes the expected discounted reward can be found when
solving the MDP with dynamic programming, for π(s) ∈ A(s). A common way to solve
this is by using policy iteration [3].

2.1.2 Problem Description

In order to fit into the format of an MDP, the situation has to be simplified and some
assumptions have to be made.

Say, we have a rectangular area with one employee and several clients in it. If you di-
vide the grid in D equal rectangular shaped districts, obtained by placing vertical lines in
the area, the location of the client will be expressed in district number d ∈ {1, 2, ..., D}.
The more districts we take, the more appropriate our model becomes.

Clients are calling with appointment requests and they arrive according to a Poisson(λk)
distribution, with k representing the clients’ SLA. When a client calls, the planner has to
decide when to schedule this client according to their characteristics and the schedule of
the upcoming days.

A client ck arrives with two characteristics:

1. The district number d.

2. The SLA; the number of days within the client has to be visited according to their
contract.
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We will deal in this example with K different SLAs. An example of the priority set K is
as following: K = {7, 5, 3, 1} where k ∈ K stands for the number of days that the client
should be visited within. When exceeding this deadline, the appointment gets the label
"late". Several clients could have the same contract and therefore the same SLA.

This process is a Markov Chain since the schedule at time t = t0 + 1 is only influenced by
the schedule at t = t0 and the clients that is calling with an appointment request, the past
is not important.

2.1.3 Assumptions

The following assumptions are made to simplify the model:

• There is only 1 employee in the company.

• The service times are constant.

• A time slot takes 60 minutes.

• An employee can visit at most 8 clients per day, 1 client per time slot.

• An employee arrives always in time at a client’s house.

• Travel times fit perfectly in a time slot, in such a way that the employee can always
visit 8 clients a day.

• At the end of the day, say at time t = 480 minutes, no client is calling and we shift
the schedule one day ahead.

• It is not possible that two clients call at the same time. So at most one client has
called in the time between current state s′ and the previous state s.

• A calling client can be scheduled at earliest the day after they call.

• The maximum SLA is 10 days, so we can schedule at most 10 working days ahead,
so our upcoming schedule is at most 10 days long.

2.1.4 Formulating the MDP

Time space Every x minutes the decision maker takes a decision and chooses an action
based on the current state.

State Space In an MDP, the transition probabilities for going from one state to another
should only depend on the current state. So all the information that we need that influ-
ences the transition probabilities, should be part of the state.

First, the state consists of a schedule looking like this: 8 time slots per day, 10 days
long. A time slot is either empty or it contains the location of the client who is scheduled
in that time slot. Other information about the client is not important to put in the sched-
ule. Where to schedule a calling client into a schedule might also depend on the location
of the full time slots, based on the policy. As mentioned before, we assume that the travel
times fit always perfectly inside time slots. However, we do take into account different
travel times between consecutive clients. The higher the travel times, the more expensive
it gets for the company.
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As mentioned before, we will only deal with one single employee, but in case you want
to add more employees, you have to add parallel schedules.

Second, to determine to what state you go next, it is important to know whether a client
has called since the last decision time and if so, who was calling.

Third, the current time is part of the state. To make sure that we are only looking at
the schedule of the upcoming 10 working days, we need to update the time and move on
to the next day when the current day has ended.

So the state of the MDP consists of three aspects:

1. An 8x10 matrix with its rows representing time slots and its columns representing
the days. This represents the schedule of the upcoming days. An entry is either:

• empty
or

• filled with the district number d of a client located in this district when this
client is scheduled at that time slot.

2. The client calling now at time t. If no client calls, this will be 0.

3. The time in minutes from start of the day.

Actions Which actions can be taken, depends on the current state. When a client calls
in our current state, you can take the following two actions:

• Schedule on (time slot, day) for example (6,2). Remember that day 1 is the first day
where clients can be scheduled, that is "tomorrow".

• Reject the client, id est not assigning the client to a time slot.

When no client is calling, there are no actions that can be taken.

Transition Probabilities Starting in state s consisting of the following three aspects:

1. The schedule for the upcoming 10 days.

2. A client calling of type k and from district d, or no client at all.

3. The current time in minutes.

The following two actions could be taken:

• schedule at (time slot, day)

or

• reject.
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When the time t satisfies t mod 480 = 0, the day has ended and we shift the schedule one
day ahead so that the next day becomes our new current day.

No matter what the current state is and whatever the decision-maker has chosen to do,
the next state will contain the updated schedule, the new time and the calling client.
The former is already determined by the action that has been taken and the time is
also determined. So for the transition probabilities, we will only look at the arrivals of
clients.Therefore we can formulate the probability that it reaches state s′ using the arrival
rates of client.

Clients arrive according to a Poisson process. Clients of type k = 1, 2, ...,K have ar-
rival rate λk per x minutes. When there are only clients of type k = 5, k = 3 and k = 10
for example, every other k satisfies λk = 0.

Let us now look at the transition probabilities. After a decision is made, the next state
is reached depending on if a client has called within the last x minutes, and if yes, from
which type it was.

So, we have arrival rates λ1, λ2, ..., λK and define λ =
∑

k∈K λk.

The probability that no customer has called in the last x minutes is the probability that
the time that it takes till the next call X is larger than x, that is:

P (no one calls) = P (X > x) = e−λx.

Then the probability that a client from type k has called, is the probability that there
is a call times the probability that type k calls before the other types, that is:

P (client of type k calls) = (1− eλx) · λk

λ
,

which satisfies∑
k

(1− eλx) · λk

λ
+ e−λx = 1.

Reward Function The reward function describes the reward or penalty that belongs to
going from state s to s′ when action a is taken. We will divide the reward in two parts:
the instant reward and the travel costs.

Instant Reward If the action is to reject a client it leads to an instant penalty, id est
a negative reward. If the action is to schedule a client on a certain day and time slot, this
yields a penalty when the SLA is not satisfied, and a reward when scheduled within the
SLA. An important note here is that we do not make a difference between being one day
too late and being many days too late. Rejecting a client is punished more than scheduling
a client too late. So the penalty does not increases as the patient is waiting longer. If no
one calls, then no action taken, and this yields no reward. If it is the end of the day, the
schedule shifts one day which also yields in no reward.
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Figure 1: The geographical map, divided into districts.

Travel Costs At the end of the working day, the first day of the schedule is evaluated
before it gets removed by the shift of the schedule. The evaluation happens based on the
travel costs. In figure 1, one can find a schematic graph of the geographical map. We
distinguish three costs, which are implemented in the functions as negative rewards.

1. The costs for travelling inside a district, tinside.

2. The costs from travelling from one district to another, toutside.

3. The costs from travelling from the employees’ home to one district and vice versa,
tstart.

Say, the employee lives outside the districts, at the same distance to each district. Stay-
ing at his home does not cost anything, but travelling to and from a district costs tstart. If
there is an empty slot, the employee goes back to his house.

We charge travel costs for every ride that has been made on that day. We chose our
districts in such a way that travelling from district 1 to 2 has costs that are equal to the
costs of travelling from district 3 to 4. When travelling to consecutive districts, once toutside
is charged. If the employee has to cross through multiple districts, then we multiply toutside
with the difference in district number.

Example If for example the schedule of the day is like in table 1, then first from
the employees house to district 1 costs tstart, then back to the employee’s house is tstart,
then to 4 is tstart, then to 2 is (4 − 2) ∗ toutside, then to 0 is tstart, then to 5 is tstart, then
inside 5 is tinside, then to 1 is (5 − 1) ∗ toutside, then to 0 is tstart. That yields a total cost
of T = tstart + tstart + tstart + 2 · toutside + tstart + tstart + tinside + 4 · toutside + tstart.

With this reward function we make sure that we prefer geographical clustering. So we
prefer visiting the districts in the order 1-1-2-2 over 1-2-1-2. Since the employee goes back
to his home in between shifts when a shift is empty, the model prefers 2-2-empty over
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slot 1 district 1
slot 2 empty
slot 3 district 4
slot 4 district 2
slot 5 empty
slot 6 district 5
slot 7 district 5
slot 8 district 1

Table 1: Caption

2-empty-2.

Now that we have formulated an MDP, we can start with trying to solve it by using
policy iteration.

2.2 Finding an Optimal Policy

We will try to find the optimal policy by performing a policy iteration algorithm on a small
example. One can imagine that it takes a large amount of time to solve this algorithm,
since the state space is extremely large.
Let us calculate first the size of the state space by using the following formula:

size of the state space = (#districts+1)(#days∗#slotsperday)∗(1+#districts∗#priorities)∗#timestepsperday.
(1)

So if we are dealing with 10 days, 8 slots per day, 8 time steps per day, 4 districts, 4
priorities, and time steps of 60 minutes, so 8 per day; then the state space is 5.96 ∗ 1057,
by formula (1).

2.2.1 Policy Iteration

Policy iteration is an algorithm which starts with an initial policy, and evaluates it by
calculating the value V π(s) of the policy π in state s, called policy evaluation, see [1][3].
The formula that describes the policy evaluation is:

V π(s) =
∑
s′∈S

(Pπ(s)(s
′|s)[r(s, a, s′)+γV π(s′)], where V π(s) = 0 for terminal states. (2)

Formula 2 describes the value of π(s), the action chosen in state s according to policy π.
The transition probability is Pπ(s)(s

′|s) instead of Pa(s
′|s), since we are only dealing with

the action that π(s) provides. The corresponding reward is r(s, a, s′) and γ is the discount
factor.

Then for each iteration it looks for a strictly improved policy, and if that does not ex-
ist, the current policy is already optimal.
In order to do that, the expected reward from state s when doing action a first and then
following policy π is defined as in formula (3).

Qπ(s, a) =
∑
s′∈S

Pa(s
′|s)[r(s, a, s′) + γV π(s′)] (3)
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If there exists an a that satisfies Qπ(s, a) > Qπ(s, π(s)), then π(s) is updated to a. If
no further improvement is possible, the optimal policy is found.

2.2.2 Policy Iteration Algorithm

The work of [1] gives us a convenient framework to perform policy iteration on our MDP.
We have implemented our MDP in this python algorithm to calculate the optimal policy.
Different parameters are used so that one can adapt it to a specific situation and get the
desired results.

Since a computer cannot solve a gigantic state space within a reasonable amount of time,
we took the following parameters to run this policy iteration:

• 3 days to schedule ahead

• 3 time slots per day

• 2 districts

• 2 different SLAs: SLA = 1 and SLA = 2

Looking at the arrivals of clients, we assume that the clients are randomly drawn from the
districts and the arrival rate per district is equal to 1.5 clients per day per district. So the
total arrival rate of clients is 3 per day, the same as the number of time slots per day. A
client has SLA = 1 with probability 0.4 and SLA = 2 with probability 0.6.

The rewards are defined as in section 2.1.4. The following fixed costs and rewards are
used:

• a cost of tinside = 10

• a cost of toutside = 60

• a cost of tstart = 15

• a reward of 40 if the client is visited in time

• a cost of 50 if the client is visited too late

• a discount factor of 0.9

The outcome of this algorithm is the optimal policy for these parameters.

2.2.3 The Optimal Policy

The optimal policy calculated with policy iteration gives us for each state the best action
to perform in order to maximize the rewards. Let us look at a few examples of states and
their corresponding optimal action, to see whether the optimal policy is intuitively and
does make sense.
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Table 2: Example of a schedule of the upcoming days, with 1 and 2 being district
numbers.

Day 1 Day 2 Day 3

Slot 1 1
Slot 2 2 1
Slot 3 2 1 1

Example 1 Let the state be as follows:

• The schedule of the upcoming days as in table 2.

• A client from district 2 and SLA = 1 is calling.

• Time = 60 minutes.

In this example, the schedule is full for the first day, so the client is not visited in time.
Since the negative reward of being too late is the same for 1 or 2 days late, we expect that
the MDP policy schedules the client at day 3. Looking at the current time, there are still
two hours left for today, so we expect on average 2 more clients to call. Maybe one of those
two clients has priority 2 and could be visited in time when scheduled on day 2.
And indeed, the best action according to the policy is to schedule the (time slot, day) =
(2, 3).

Example 2 Let the state be as follows:

• The schedule of the upcoming days as in table 3.

Table 3: Example of a schedule of the upcoming days, with 1 and 2 being district
numbers.

Day 1 Day 2 Day 3

Slot 1 1
Slot 2 2 1
Slot 3 2 1 1

• A client from district 2 and SLA = 2 is calling.

• Time = 60 minutes.
In this case, the best choice is to schedule at (time slot, day) = (1, 2). This seems
quite logical, since the only difference between this example and the previous one,
is the SLA. Since SLA = 2 in this case, the client can be visited in time when
scheduled on day 2. This is more important (according to our reward constants)
than geographically clustering the clients, so it does not matter that the other visits
on day 2 are in district 1.
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Example 3 Let the state be as follows:

– The schedule of the upcoming days as in table 4.

Table 4: Example of a schedule of the upcoming days, with 1 and 2 being district
numbers.

Day 1 Day 2 Day 3

Slot 1
Slot 2 2 1
Slot 3 2 1 1

– A client from district 2 and SLA=1 is calling.

– Time = 120 minutes.

In this case the best choice is to schedule the client at (time slot, day) = (1, 1). This
makes sense since the SLA equals 1, so if scheduled on the first day, the client will
still be visited in time and the reward will be positive.

Example 4 Let the state be as follows:

– The schedule of the upcoming days as in table 5.

Table 5: Example of a schedule of the upcoming days, with 1 and 2 being district
numbers.

day 1 day 2 day 3

1.
2. 2 1
3. 2 1 1

– A client from district 2 and SLA=2 is calling.

– Time = 120 minutes.

In this case the best choice is still to schedule the client at (time slot, day) = (1, 1),
which makes sense, since it would be on time if it is scheduled in day 1 or in day
2. Then the geographical advantage of placing it before a client from district 2 is
decisive.

Example 5 Let the state be as follows:

– The schedule of the upcoming days as in table 6.

– A client from district 1 and SLA=2 is calling.

– Time = 0 minutes.

12



Table 6: Example of a schedule of the upcoming days, with 1 and 2 being district
numbers.

day 1 day 2 day 3

1.
2. 1 1
3. 2 1 1

The best choice is (time slot, day) = (1, 2), which makes sense since it has SLA=2,
and we prefer clustering, so we choose day 2. Also since we are only at the start of
the day, the probability of a client calling today with SLA=1 is still reasonable large,
so this spot will be reserved for that potential client.

Example 6 Let the state be as follows:

– The schedule of the upcoming days as in table 7.

Table 7: Example of a schedule of the upcoming days, with 1 and 2 being district
numbers.

day 1 day 2 day 3

1.
2. 1 1
3. 2 1 1

– A client from district 2 and SLA=2 is calling.

– Time = 120 minutes.

Now the best choice is (time slot, day) = (1, 1). The only difference in state in com-
parison with example 5 is the time. The current time equals 120 minutes, and since
we have a decision moment every hour, this is the last decision moment. Which
means that if we do not schedule this client on day 1, this first slot will stay empty.
So in this case we prefer filling the empty slots over geographical clustering. Addi-
tionally, there is a reasonable chance that the day after this, a client with SLA=2
calls, so we want to keep a free spot on day 2.

In conclusion, the optimal policy retrieved from the dynamical programming does
make sense. We have studied some interesting examples and the decisions of the
optimal policy are quite intuitively.

2.2.4 Simulation

Now that we have retrieved the optimal policy, we want to evaluate this policy. As
mentioned earlier, we value a policy according to four different variables:
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1. the percentage of clients that gets rejected

2. the percentage of clients that is visited too late

3. the average waiting time per client

4. the average travel costs per day

In order to conclude whether or not our retrieved optimal policy performs good,
we are going to compare it with an already existing policy; the first possible slot
policy. This policy always chooses to schedule the client in the first empty slot in the
schedule of the upcoming days.

Expectations Since for the first possible slot policy it is not a goal to minimize
the travel times and cluster clients geographically, we expect that the travel costs
for this policy are quite high. However, since it chooses for every patient the first
empty slot we expect that the waiting times for clients are quite low. According to
the first possible slot policy, a client will be rejected if and only if the schedule of the
upcoming 3 days is completely filled. The probability of this happening is really low,
since we chose the arrival rate per day the same as the number of time slots per day.

We expect the MDP optimal policy to result in lower travel times than the first
possible slot policy, since it tries to minimize the travel times. However, this will
probably be at the expense of the waiting times, which we expect to be higher than
for the first possible slot policy.

2.2.5 Results

A simulation has been run to see what the schedule looks like and to compare the
two above mentioned policies with each other. Per day there are 3 decision times.
This coincides with the time slots, of which there are also 3 per day. In order to
make sure the system has stabilized, the simulation runs over 3000 days. The results
for the first possible slot policy as well as the MDP optimal policy, can be found in
table 8.

Table 8: The performance of the first possible slot policy and the MDP optimal
policy

Clients re-
jected [%]

Clients too late
[%]

Average wait-
ing time per
client [days]

Average travel
costs per day
[units]

First possible slot policy 0.0000 0.0000 1.0000 152.4633
MDP optimal policy 0.0000 6.5504 1.6029 116.6433

As expected, the waiting time is higher for the MDP optimal policy, and the travel
costs are higher for the first possible slot policy. The question is, to what extend is
the MDP optimal policy really optimal? This is basically up to the company. What
do they value the most?
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In conclusion, we have found an optimal policy for our specific situation and pa-
rameters. If wanted, a company can adjust the parameters based on their wished
and needs. In that way, a new optimal policy can be retrieved.
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3 A Practical Approach

Since with the use of our computationally complex MDP, we could not simulate
a realistic case, this chapter will cover a realistic simulation of the problem. Two
already existing policies are being observed and evaluated. Finally, our main goal is
to come up with our own policy which outperforms the two already existing policies.

3.1 Simulation

The company P.C.A B.V. [2] made a simulation program with the following assump-
tions and parameters:

– The clients’ locations and SLAs are randomly generated, their location as coor-
dinates in a grid, and their SLA is randomly drawn from a triangular distribution
between 5 and 10 days.

– There are 25 employees who can visit clients.

– There are 8 time slots per day, so each employee can visit 8 clients per day.

– There is a total arrival rate of 200 clients per day.

The simulation runs 200 working days. When a client calls, they get either rejected
or scheduled immediately. The appointment takes place no earlier than the day after
the call. It aims to schedule every client according to their SLA, but allows a 50%
extension.

3.2 Existing Policies

This simulation schedules clients based on a policy. There are already some policies
implemented by the company and in this paper we will take a look at two of them.

3.2.1 First Possible Day Policy

When a client calls, the first day in the schedule with a free time slot is chosen. If
there is more than one free time slot on that day, the slot which yields the least extra
travel time will be chosen.

3.2.2 Minimum Travel Time Policy

Within the client’s SLA, all the possible time slots are considered. Thereafter, the
time slot with the least extra travel time will be chosen.

3.3 Self-Invented: Waiting List Policy

In this section our self-invented policy will be explained. In the former two strate-
gies, the clients get rejected or scheduled immediately when they call. The possible
appointment options are starting from tomorrow onward.

Instead of immediately assigning the client to a certain time slot, in this policy
the client will be put on a waiting list, sorted on priority, their SLA. Only the next
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day will be scheduled, with clients with the highest priority who add the least extra
travel time. So we loop over the time slots on that day, and consider all the clients
with the highest priority. Thereafter we schedule the client that adds the least extra
travel time. When every slot on that day is filled, we move on to the next day. Using
a waiting list, information of ‘future’ clients is provided which makes the geographical
clustering easier and better. The clients will get their appointment information one
day in advance, since we only schedule the next day. We call this policy the Waiting
List Policy.

3.4 Results

3.4.1 First Possible Day Policy

The results and performance evaluation of the First Possible Day Policy can be found
in table 9 and 10.

Table 9: The performance of the First Possible Day Policy from the company’s
perspective.

Idle duration 2.86%
Travel duration 33.52 %
Task duration 63.62%

Table 10: The performance of the First Possible Day Policy from the clients’
perspective.

Clients rejected 14.95%
Clients too late 69.97 %
Clients in time 15.08 %

3.4.2 Minimum Travel Time Policy

The results and performance evaluation of the Minimum Travel Time Policy can be
found in table 11 and 12.

Table 11: The performance of the Minimum Travel Time Policy from the com-
pany’s perspective.

Idle duration 2.94%
Travel duration 31.78 %
Task duration 65.28%
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Table 12: The performance of the Minimum Travel Time Policy from the clients’
perspective.

Clients rejected 12.78%
Clients too late 69.28 %
Clients in time 17.94 %

3.4.3 Self-Invented: Waiting List Policy

The results and performance evaluation of the self-invented Waiting List Policy can
be found in table 13 and 14.

Table 13: The performance of the Waiting List Policy from the company’s per-
spective.

Idle duration 3.30%
Travel duration 25.10 %
Task duration 71.60%

Table 14: The performance of the Waiting List Policy from the clients’ perspective.

Clients rejected 1.55%
Clients too late 63.78 %
Clients in time 34.67 %

3.4.4 Comparison

The Waiting List Policy outperforms the other two policies in many aspects. The
travel duration is decreased significantly and the system is way more efficient. The
percentage of rejected clients is improved drastically and way more clients are vis-
ited in time. However, there is a downside for the clients, they do not know their
appointment immediately after they called the company with a request. The clients
get their appointment details only one day prior to the appointment itself.
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4 Conclusion

Now that the research has been done, we can answer the question: "Can we find a(n
optimal) scheduling policy that outperforms the already existing policies and con-
siders the SLA, the load of the upcoming day(s), the schedule and the geographical
location of the clients?". The answer is yes, we have found an optimal policy by for-
mulating the problem as a Markov Decision Process and solving a dynamical program
using policy iteration. Whether it outperforms other policies is up to the company
and what they value the most. It performs good in the sense that it prioritizes geo-
graphical scheduling. However, the waiting times for clients are not as low as possible.

Since we could not test and simulate this MDP-based optimal policy for a decent
realistic situation, we used the algorithm of the company P.C.A. B.V. to compare
their policies with a self-invented one. The results of this self-invented Waiting List
Policy are outstanding. It definitely outperforms the other policies in many aspects.
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5 Discussion

Markov Decision Process One could conclude from the results that the first
possible day policy is better for the client than the MDP based policy, since less
clients are visited too late and the waiting times are lower. However, for the optimal
policy we see something particular, the travel costs are way less than for the first
possible slot policy. Whether the clients find it disturbing to be visited a little later,
is a question which we cannot answer, that information could be gathered via a client
survey. For now, we value geographical clustering really high, so our optimal policy
does what we want it to do.

In my opinion it is not a bad thing to let the client wait half a day longer so that
the travel times and travel costs significantly decline. However, this is really depend-
ing on the severeness of the damage. There are definitely situations where we want
to visit the client as soon as possible, independent of the extra travel time they cause.

A reason for the average waiting time being higher for the MDP Policy than for
the First Possible Slot Policy, could be the fact that the reward for being too late
does not distinguish being one day too late versus being ten days too late. It would
be better to have a reward function where it is way worse to be visited ten days too
late then one day too late.

Self-invented Waiting List Policy The waiting list policy outperforms the al-
ready existing policy in many ways. The main downside of this policy is that the
client does not immediately knows their appointment date and time when calling,
but they know it only one day in advance. This could be no problem for some kind of
companies, it does really depend on what kind of service the company provides. For
medical services this could be really worse, however for package delivering it would
be fine to get a text or an email the evening before the visit. Actually, this is already
used in a lot of services.

I would say that this policy could be implemented in specific real-life companies,
and our research provides a clear overview of the advantages and downsides of this
policy.
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6 Recommendations

Since this research was spread over only one quartile of an academic year, there are
still a lot of interesting issues left to research. In this section a few of these topics
will be listed for future research purposes.

1. A new MDP could be formulated with the waiting list policy implemented.

2. In the MDP, the reward function could be adapted such that the costs get higher
as the client is visited more days too late.

3. It could be interesting to make it worse to visit a client with SLA=1 too late
than a client with SLA=5. In that way the severeness of the damage is taken
into account.

4. To solve the problem that some clients with severe damage should be scheduled
immediately instead of being put on a waiting list, a new policy could be for-
mulated where in most cases the client will be put on a waiting list, but some
clients with high priority will be scheduled immediately when they call. For ex-
ample the rule to schedule clients with SLA=1 immediately, but put the rest on
the waiting list, could be implemented. These results would be very interesting.
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