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ABSTRACT 

Cropping patterns are defined as the annual sequence and spatial arrangement of crops on a piece of 

land, for example monocropping and intercropping patterns. Information about the location, extent, 

and types of cropping patterns is crucial for accurately measuring crop production and land use 

intensity for food security assessment. However, underlying factors that influence farmers' choices 

about which cropping pattern to adopt are still unclear in most regions in the world. Technology such 

as remote sensing has enabled the mapping of cropping patterns, though this is challenging in regions 

dominated by small-holder agriculture in regions like Sub-Saharan Africa due to a variety of limitations 

such as small field size, highly fragmented landscapes, and the nature of the cropping patterns. This 

study first explores local knowledge from field farmers’ survey responses by evaluating the factors 

influencing the choice of monocropped and intercropped maize patterns in Busia, Kenya. It then 

highlights and discusses six factors, including size of the fields, household needs, availability of 

resources, farmers’ experience/preference, market demand, pest control/plant symbiosis in 

comparison to existing literature. Further, the study assesses the discrimination of maize cropping 

patterns using DESIS hyperspectral satellite data to characterize monocropped and intercropped maize 

fields. We extracted reflectance of the fields of both cropping patterns based on the field boundary 

data. Statistical tests identified the bands that showed significant spectral differences between 

monocropped and intercropped maize fields. A Random Forest (RF) classifier was used for feature 

selection to identify the best subset of features (bands) that would further be used for classification. 

The results from the statistical tests indicated a statistical difference in the spectral signatures of the 

two cropping patterns. As such, 110 significant bands were identified in the visible, red-edge and near-

infrared (NIR) spectral regions that were the most sensitive to discriminating the cropping patterns. 

From feature selection, five bands dominated in the red edge and NIR (752.2nm, 767.5nm, 775.2nm, 

783nm, 814.2nm) were further selected for classification. Those bands were used in a RF classifier, 

obtaining an overall accuracy (OA) of 74% with a producer accuracy (PA) of 71% for monocropped 

maize fields and 80% for intercropped maize fields and user accuracy (UA) of 91% for monocropped 

fields and 50% for intercropped fields. An F1 score of 80% for monocropped and 62% for 

intercropped maize fields was obtained. A kappa coefficient of 0.43 was attained, indicating the 

complexity of discriminating and classifying the maize-based cropping patterns. The results of this 

study show that there is potential discrimination of the maize cropping patterns using hyperspectral 

remote sensing, but it can be quite challenging especially in the late development stage of maize. Hence, 

remote sensing images need to be obtained during the early part of the growing season before the 

maize canopy obscures the smaller intercropped crops. The exploratory nature of this research opens 

more avenues for future research into cropping patterns discrimination in small-holder agriculture and 

further suggests that a combination of narrative perspectives from farmers and the use of remote 

sensing technologies is required for an in-depth understanding and addressing current food security 

challenges. 

 

Key words: Farmers’ interview; cropping patterns; hyperspectral data; Mann-Whitney U test; 

feature selection, random forest.  
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1. INTRODUCTION 

1.1. Food insecurity: A wicked problem 

Food security exists when people have sustainable physical and economic access to adequate, safe, 

nutritious, and socially acceptable food for a healthy and productive life (FAO, 2017). Determinants of 

food security include availability, access, stability, and utilization (FAO, 2017; Peng & Berry, 2018). This 

study focuses on the food availability dimension of food security. Food availability is associated with 

geographical and agricultural determinants, such as domestic production, import capacity, food stocks, 

water availability, agriculture land, population density and distribution (Peng & Berry, 2018). Moreover, a 

study by Kane (2014) states that this food security dimension is influenced on a local and global level by 

three important factors which include “access and availability of food in local environments, effects of the 

changing climate on agriculture and natural resources, and active participation in planning, developing and 

managing effective strategies to optimize and sustain food production with the available existing land.” 

 

Over one-third of Africa's population is considered severely food insecure (FAO, 2021). In Kenya, a 

combination of factors, including poverty, climate change, crop and livestock diseases, ineffective policies, 

and market-related bottlenecks, combine to aggravate the problem of food insecurity in many households. 

About 90% of primary food production from agriculture feeds a population of 53 million people (USAID, 

2021), yet only about 20% of Kenyan land is suitable for farming. A combination of factors such as climate 

variability, poor soils, lack of inputs and technology, and crop pests and diseases depress yields and have 

complex and compounding effects on food systems, negatively impacting the country's food security 

(USAID, 2021). Also, as the population increases, it results in increased food consumption while resources 

such as agricultural land and water required for production remain limited. To account for these challenges, 

there is a need for the expansion of agricultural land for crop production which may cause other challenges 

such as ecosystem degradation, and conversion of forests, savanna, and wetlands to increase which in the 

long run, contributes to greenhouse gas (GHG) emissions that in turn contribute to climate change. In 

addition, a combination of other factors including high and persistent levels of inequality, economic 

slowdowns that were recently exacerbated by the COVID-19 pandemic in 2020 and recent political 

instability, combine to aggravate the problem of food insecurity.  

 

One of the most important strategies for improving food security is to adopt sustainable agricultural 

management practices, which in this context means sustainable use of existing land to improve food 

production. And one of these management practices is intercropping. Intercropping is an agronomic 

practice of growing two or more crops simultaneously on a piece of land (Asseng et al., 2014, Mthembu 

et al., 2019) while utilizing existing resources such as land and water for food production (Glaze-Corcoran 

et al., 2020). Several other studies (Maitra et al., 2020; Mthembu et al., 2019; Morris, 2017; Matusso et al., 

2012; Rusinamhodzi et al., 2012) have reported the benefits of intercropping including but not limited to; 

a “backup” crop should one of the two crops fail, restoration of soil fertility, better management and 

control of pests, diseases and weeds, water conservation in soils and enhanced carbon sequestration and 

proper utilization of resources such as rainfall. In addition, in areas that are prone to extreme weather 

conditions especially with the current climate variability due to climate change, intercropping provides a 

greater “insurance” against the risk of crop failure (Schmutz, 2020). Also, since different crops are 

harvested from the same piece of land in intercropping pattern practices, for example, legumes are planted 

with cereals, families can enjoy better nutritional balance (Rusinamhodzi et al., 2012).  
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On the other hand, monocropping is a practice of planting and growing one type of crop on the same plot 

of land, year after year (Robbins, 2022). Monocropping is advantageous because it requires knowledge of 

just one crop and is relatively easy to manage. However, despite this economic advantage, the 

monocropping agricultural practice has posed several challenges for small holder farmers especially in sub–

Saharan Africa. A study by Mthembu et al. (2019) and Robbins (2022) highlight the challenges posed by 

monocropping agricultural system such as crop failure and a decline in soil fertility. This is exacerbated by 

frequent pest, diseases, and weeds, resulting in reduced crop productivity and quality over time, reducing 

viable livelihood and households’ food security (Robbins, 2022). However, despite the disadvantages of 

monocropping systems, intercropping also has its limitations, a major one being a potential yield reduction 

in the sense the different crops compete for resources as compared to a monocrop cropping pattern. This 

is discussed in depth by Mthembu et al., (2019). It can be seen as a trade-off between productivity and 

sustainability. 

 

Sustainable Development Goal 2 (Target 2.4) states that “there is need to ensure sustainable food 

production systems and the implementation of resilient agricultural practices that increase productivity and 

production while maintaining a balanced ecosystem. These sustainable agricultural practices should 

strengthen the capacity for adaptation to climate change, extreme weather, drought, flooding, and other 

disasters.” Despite intercropping pattern practices being labour and resource intensive, given its numerous 

advantages over monocropping practices, it can be deduced that intercropping practices can be a viable 

strategy for long-term food production and sustainability in many contexts. These land-use practices can 

improve agricultural resilience to climate change while reducing environmental impacts (Glaze-Corcoran 

et al., 2020; Asseng et al., 2014; Bégué et al., 2018). Interestingly, farmers in Kenya have been practising 

intercropping for a long time. For example, in areas where maize is prominently cultivated, other crops 

like beans, peas, potatoes, millet, cassava and groundnuts are introduced. However, where farmers practice 

intercropping and the factors that influence farmers' choice of this cropping pattern are unclear. Therefore, 

exploring methods to identify intercropping patterns and understanding the influencing factors from a 

farmers’ perspective are crucial in designing targeted interventions to boost food security. This study 

explores this gap based on farmers' response from a field survey and uses DESIS hyperspectral satellite 

remote sensing data to capture the characteristics of these cropping patterns. 

1.2. Need for enhanced agricultural management monitoring  

Currently, available information about agricultural land use management practices at various spatial levels 

typically relies on conventional methods of information acquisition such as farmers interviews, land use 

surveys, and crop statistical data which are labour-intensive, time consuming and hence tedious and 

expensive to obtain (Ibrahim et al., 2021). In addition, data collected in such conventional ways may 

soon become outdated if not collected regularly. Although these data may contain rich information, there 

is a lack of detailed mapped data that provides information about specific land use management practices, 

particularly in rapidly changing environments (Khan et al., 2010). For instance, agricultural production 

in small-holder agriculture that is practised in dynamic and heterogenous landscapes has not been fully 

researched and mapped, making it a challenge to be characterized on a seasonal basis (Mthembu et al., 

2019; Rusinamhodzi et al., 2012; Yonah et al., 2018).  

 

In recent years with the current advancement in technology, robust and cost-effective strategies have 

been developed, which contribute to knowledge and understanding of food insecurity. These strategies 

include using satellite remote sensing and its related spatial analytical techniques to “examine local food 

environments, assess changes in land use and land cover, identifying areas of importance in specific 

regions to determine the relationships between biophysical and socioeconomic attributes of the food 

system and the linkages between sustainability, food security and climate change” (FAO, 2018). However, 

detailed information and understanding of cropping patterns, especially in small-holder farming systems, 
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are lacking in many countries in Africa, Asia, and Latin America (Bégué et al., 2018; Ibrahim et al., 2021; 

Mahlayeye et al., 2022).  

 

Since governments, NGOs, civil society organizations, development agencies, crop insurance agencies 

and even private sector companies focus on supporting small-holder farmers in farming more 

sustainably, understanding farming practices requires detailed descriptions of what and where crops are 

grown (Khan et al., 2010). Accurate, updated and geographically explicit information can be leveraged 

from advanced remote sensing technologies to identify which cropping patterns are practised where and 

when. In a food security context, identifying and characterizing these cropping patterns provides valuable 

information to assess changes in land management practices and provide a better estimation of food 

production. In addition, assessing the changes in land management practices plays a critical role in 

supporting and understanding current and future sustainability policies to reform the agricultural sector 

towards sustainability of food systems in the wake of climate change and increasing pest and disease 

risks to food production. In addition, the improvement of policies to support such good agricultural 

practices, might benefit the social, ecologic, and economic development of small-scale farmers, thereby 

reducing food insecurity (SDG 2) and alleviating poverty (SDG 1).  

1.3. Remote sensing approaches to characterize cropping patterns 

Over the past 50 years, numerous remote sensing-based methods and datasets have been developed and 

successfully applied in the field of agriculture. The use of multi-temporal optical imagery has been 

explored over the decades mostly for crop type mapping. However, few studies have utilized satellite 

imagery to map cropping patterns. Extensive review of remote sensing for mapping crops and periodic 

cropping practices and patterns have been carried out by Bégué et al., (2018) and Mahlayeye et al., (2022). 

The two reviews provide an overview of several scientific studies that have used multispectral broadband 

satellite data to map and classify crop varieties and cropping patterns by utilizing discrete bands and/or 

vegetation indices. Both reviews indicate the challenges of mapping or discriminating intercropping 

patterns from monocropping patterns. Bégué et al. (2018) reported that use of different remote sensing 

technologies such as the new Sentinel constellations, hyperspectral data and/or sensor data combinations 

can be explored to improve the mapping of cropping patterns in heterogenous landscapes. Mahlayeye et 

al. (2022) also acknowledged that the increased availability of different sensors provides an opportunity 

to advance the mapping of intercropping fields, especially in complex landscapes, such as those found 

in Sub-Saharan Africa.  

 

A few studies have used very high spatial resolution data to discriminate maize cropping patterns in 

Kenyan landscapes. The study by Richard et al. (2017) successfully mapped maize cropping systems 

(mono- and intercrop) in Kenya using RapidEye bi-temporal data with an overall classification accuracy 

of 93% and class accuracies for the two cropping systems above 85%. The study concluded that high 

spatial resolution and multitemporal data is required to explicitly map or discriminate different cropping 

patterns/systems especially in a highly fragmented and heterogeneous landscape. Another study explored 

the combination of time series from multispectral data from Sentinel 2 and Synthetic Aperture Radar 

(SAR) from Sentinel 1 (Rebecca et al., 2020) to classify cropping patterns in the dynamic and 

heterogenous landscape of three sub-counties in Kenya. However, despite the high spatial resolution of 

these multispectral sensors, the reports still indicate a high misclassification rate because of the high 

inter-class variability caused by the different vegetation compositions. In addition to exploiting temporal 

and spatial resolution data, there is the opportunity to look at higher spectral resolution data, 

hyperspectral data, to improve the discrimination accuracy between different cropping patterns, that is, 

intercropping and monocropping (Mahlayeye et al., 2022). This research identified and explored this 

niche.  

 



EVALUATING THE FACTORS AFFECTING FARMER’S CHOICE FOR CROPPING PATTERN AND ASSESSING THE POTENTIAL OF HYPERSPECTRAL DATA TO 

DISCRIMINATE THE CROPPING PATTERNS 

4 

Hyperspectral sensors provide high spectral resolution, and studies have shown that the narrow spectral 

bands from these sensors can be used to distinguish crop varieties for a wide range of crops as well as 

different land use patterns (Agilandeeswari et al., 2022; Goetz, 2009; 2013; Marshall & Thenkabail, 2015). 

Studies by Bégué et al. (2018), Kot et al. (2017), Mariotto et al. (2013), Marshall et al. (2022) and Teke et 

al. (2013) reported that the level of spectral detail afforded by hyperspectral data enhances vegetation 

characteristics which are difficult to achieve with multispectral data. Other studies have shown that crop 

species can be discriminated at the leaf and canopy level based on their spectral reflectances, showing 

the improvement of hyperspectral imagery in crop discrimination and mapping of vegetation species and 

communities (Dian et al., 2009; Kumar et al., 2019; Schmidt & Skidmore, 2003; Shafri et al., 2011; 

Sobhan, 2007; Vaiphasa et al., 2005). Lu et al., (2020) and Teke et al., (2013) discussed a more detailed 

review of recent advances in hyperspectral remote sensing and its adoption in different agricultural 

applications. Despite these significant advances, hyperspectral remote sensing data has not been explored 

in agricultural applications to characterize or map cropping patterns.  

1.4. Hyperspectral satellite data in crop discrimination 

Previous studies that have utilized hyperspectral data show the possibility to discriminate crop and 

vegetation species but also state that the narrow spectral bands from hyperspectral data contain 

redundant information, which makes the computation difficult for discrimination and classification 

(Dian et al., 2009; Mariotto et al., 2013; Prospere et al., 2014; Shafri et al., 2011; Sobhan, 2007). Various 

univariate and multivariate algorithms have been proposed to reduce the redundancy and dimensionality 

of hyperspectral data. Studies have focused on approaches such as principal component analysis, partial 

least square regression, artificial neutral network, and statistical approaches such as the Mann-Whitney 

U test and ANOVA to understand the statistical differences in hyperspectral bands (Darvishzadeh, 2008; 

Adam & Mutanga, 2009; Schmidt & Skidmore, 2003; Shafri et al., 2011; Vaiphasa et al., 2005). 

 

When it comes to classification, the high spectral dimensionality in hyperspectral data introduces 

multicollinearity into the data and reduces the accuracy of the classification algorithms (Adam et al., 

2012). To address this, methods that employ feature selection algorithms as part of the evaluation process 

have been proposed before classification is performed (Thenkabail et al., 2004; Vaiphasa et al., 2005). 

These include wrapper feature selection algorithms that use the classification algorithm as part of the 

assessment process to look for the optimal subset of bands (Kohavi and John 1997; Kavzoglu and 

Mather 2002; Prospere et al., 2014; Sobhan, 2007) or the filter approach algorithms which analyses 

subsets of bands using the training data (Dian et al., 2009; Kumar et al., 2019; Schmidt & Skidmore, 

2003).  

 

The study by Adam et al. (2012) and Prospere et al. (2014) described different classification methods and 

indicated that Random forest (RF) tree based models are more robust compared to other classification 

methods - such as support vector machine (SVM), linear discriminant analysis (LDA), neural networks 

(ANN) and classification and regression trees (CART). RF entail building multiple classification trees 

from a selection of training samples data and identifying the best bands that contribute the most to the 

classification (Liaw & Wiener, 2002). More importantly, in hyperspectral images where the pixels in 

regions composed of a single class (e.g., vegetation species) can contain very different spectral signatures 

(Borsoi et al., 2021), RF is considered robust as the classifier minimizes error from a single decision tree 

by choosing random samples, creating several decision trees, and using a majority vote to reach a final 

decision. Several other studies have demonstrated that RF can be successfully used for feature selection 

as well as for classification (Díaz-Uriarte & Alvarez de Andrés, 2006; Granitto et al., 2006; Sabat-Tomala 

et al., 2020), though only a few remote sensing studies have utilized RF for feature selection and 

classification when hyperspectral satellite data is used (Adam et al., 2012; Prospere et al., 2014). This 

study considers these research gaps and aims to address them.  
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1.5. Problem statement  

As crop production faces increasing challenges due to climate change, ecosystem degradation, and 

population pressure, the threat of an imbalance in food supply and demand will continue to rise both 

locally, nationwide, and worldwide. Intensive agricultural practices such as intercropping practices need to 

be adopted to increase food security for the growing population while utilizing existing/available 

resources. However, there is a lack of consistent, sufficient, and geographically coherent data on cropping 

patterns at local, regional, national, and global scales. In addition, the factors that influence farmers' choices 

on different cropping patterns are often location specific and need to be understood before further 

adoption of intercropping can be encouraged. Few farmers surveys have been conducted to understand 

the factors that influence the choice of crop types and crop patterns in sub–Saharan Africa. Moreover, 

information and specific characterization and mapping of these cropping patterns are missing from local, 

regional, and even national levels.  

 

Thus, considering these research gaps, from understanding the choices of farmers in adopting different 

cropping patterns, in this case maize cropping patterns and that no research has utilized DESIS 

hyperspectral data to characterize these cropping patterns, the aim of this research is to explore these gaps 

using the data collected from field in Busia County, Kenya.  

1.6. Research objectives  

1.6.1. Main research aim  

The main aim is to evaluate the factors influencing farmer’s choice of maize-based cropping patterns 

in Busia County, Kenya and then determine the usefulness of DESIS hyperspectral satellite data to 

discriminate these cropping patterns. 

1.6.2. Specific research objectives  

To achieve the overall aim, the following specific objectives will be undertaken:  

i.To evaluate farmers’ survey data and characterize the factors influencing farmers’ choice of cropping patterns. 

ii.To analyze spectral differences between maize based cropping patterns using spectral signatures 

obtained from DESIS hyperspectral satellite data.  

iii.To identify the optimal narrow bands that best discriminate between cropping patterns and use them 

for cropping pattern classification. 

1.6.3. Research questions 

i.What are the factors that influence farmers’ choice of a cropping pattern?  

ii.Which spectral bands/regions from the spectral signature of monocropped and intercropped maize 

are statistically different? 

iii.What are the optimal bands that can discriminate cropping patterns and how robust is the resulting 

classification? 
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6 

1.6.4. Hypothesis 

i.Ho: There are no factors that influence farmers choices of cropping patterns. 

Ha: Physical and socio-economic factors influence farmers choices of cropping patterns.  

ii.Ho: There is no statistical difference in spectral bands in hyperspectral data that can be effectively used 

to discriminate maize cropping patterns. 

Ha: There is statistical difference in the spectral bands in the red edge and NIR region of hyperspectral 

data that can be effectively used to discriminate maize cropping patterns.  

iii.Ho: All wavelengths’ regions are optimal are for maize cropping pattern discrimination and 

classification and the classification accuracy is high. 

Ha: The red edge and NIR region give the optimal bands for cropping pattern discrimination and 

classification and the classification accuracy is higher.  

 

1.7. Expected research output.  

The research mainly focuses on two core knowledge areas in Spatial Engineering: spatial planning and 

governance (SPG) and spatial information science (SIS). The SPG expected research outputs are based on 

farmers' responses to a survey, investigating the factors that affect farmers' choices for maize based 

cropping patterns. The SIS knowledge focuses on the remote sensing analysis. The objectives are based 

on outlining the factors that farmers perceive to influence their decisions on cropping patterns and 

identifying a subset of optimum bands that best discriminates maize cropping patterns using hyperspectral 

image data. The subset of bands identified will be further used for classification using an RF classifier. 

Ultimately, based on the results, this research will derive recommendations for further research on 

integrating the SPG and SIS in reducing food insecurity wickedness.  
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2. STUDY AREA AND DATA 

This section provides the description of the study area, data and the software used during the research.  

2.1. Study area 

The study area is within Busia County, situated in the western region of Kenya (Figure 1). The study area’s 

central coordinates are 0° 27' 38.77'' N and 34° 06' 41.26'' E, bordering Uganda to the west. It covers Teso 

North, Teso South, Nambale and part of Matayos sub-counties in Busia County. According to the County 

Government (CGOK) integrated Plan (2018-2022) (Busia, 2018), the county spans about 1700-kilometre 

square making it one of the smallest counties in Kenya. The county is bordered by Bungoma County to the 

north, Kakamega County to the east, Siaya to the southeast and Lake Victoria to the southwestern part 

(Busia, 2018).  

 

 

Figure 1: Study area and location of field boundaries used for the study. 

Lake Victoria greatly affects and influences the county's climatic conditions. The annual rainfall is between 

760 mm and 2000mm. There are two rainy seasons, long rains from March to May and short rains from 

September to December (Busia, 2018). The annual mean temperature ranges between 26 ºC and 30ºC, and 

the humidity of the air is relatively high due to the proximity to the lake. Figure 2 shows the average monthly 

rainfall in Busia in 2021 and 2022 (climateSERV). According to the County Government (CGOK) integrated 

Plan (Busia, 2018), the main economic activity is agriculture, which is practised extensively throughout the 

two rainy seasons. The dominant food grown is maize, followed by cassava, sorghum and millet, cotton, 

tobacco, and sugarcane (Busia, 2018). Maize farms, however, are predominantly planted with other crops like 
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beans, soya and groundnuts, indicating intercropping is widely practised, making it a region of interest to 

study. The average farm size in the county is approximately 0.7ha, with the small average farms ranging from 

0.2 - 0.3ha (Hickey et al., 2012).  

 

Figure 2: Average monthly rainfall in Busia County in 2021 and 2022  
(source: climateserv.servirglobal.net). 

2.2. Data 

The research utilized hyperspectral satellite data and field data based on farmers' survey and field boundary 

data collection. The following subsections describe the datasets.  

2.2.1. DESIS Hyperspectral data  

DESIS which stands for DLR Earth Sensing Imaging Spectrometer, is a hyperspectral instrument from the 

German Aerospace Center (DLR, 2019). DESIS hyperspectral data covers the visible and near Infrared 

regions of the electromagnetic spectrum ranging from 400 – 1000nm with 235 narrowband channels each 

of 2.5nm width. The data is obtained with a pixel resolution (ground sample distance) of 30m from a 400km 

orbit altitude (Alonso et al., 2019; (DLR, 2019). Table 1 shows the characteristics of the DESIS sensor as 

reviewed by Eckardt et al. (2015). We obtained one DESIS image captured on 7th of June 2021 at level 2A 

(L2A) surface reflectance in GeoTIFF format, stored in integer radiance values. This image was one year 

prior to the fieldwork, and thus our field surveys relied on farmer recall for cropping practices and crop 

calendar information in the previous year. In addition, we later obtained PRISMA hyperspectral data which 

was acquired on 9th July 2022 during the field collection. However, this 2022 hyperspectral image could not 

be used for this research because it was tasked late in the season when most fields(farms) were already 

harvested. 
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Table 1: Characteristics of the DESIS instrument (sensor) (source:Eckardt et al. (2015)). 

 

2.2.2. Field data  

This study utilized a rich set of data collected from the field in July-August 2022 in Busia, Kenya. Four sub-

counties were visited on different dates and farmers from the different sub-counties were interviewed. 

Farmers interviews were based on crop calendar information, challenges, and the factors influencing their 

choices for cropping pattern were recorded in a questionnaire form (Appendix A) in the different 

agroclimatic zones in Busia. The crop calendar information was based on the crops grown during the first 

and second seasons of 2021 and the first season of 2022. In addition, field boundaries were collected as 

polygons. The sampling scheme and fieldwork are described in detail in Chapter 3, and the descriptive 

analysis of the farmer's interviews is further explained in Chapter 4.  

 
Figure 3: Farmers' interviews during the fieldwork in Busia. 
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2.3. Ethical consideration and data management  

The ethical aspects of this research were assessed by the ITC GEO Ethics Committee before the field data 

collection was conducted. This was done through filling an online questionnaire on what research data was 

required and data management aspects to be considered during and after the research. This procedure 

enabled the research to consider ethical aspects when collecting the data, such as ensuring farmers consent 

to the survey. In addition, how to handle the data after collection, the analysis codes and presentation of the 

findings with consideration given to any possibilities of the research posing detrimental impact on farmers 

livelihoods were considered in this research. On data management, a thorough process of collecting and 

examining the research data was done to ensure its quality, verifiability, and repeatability. This included the 

creation and submission of a data management plan. 

2.4. Software  

The following software was used in this research.  

▪ ENVI Classic 5.3 with additional spectral extraction tool developed by ITC Department of 

Natural Resources for spectral image pre-processing, spectral extraction by polygons (field 

boundaries). 

▪ MATLAB R2022a for spectra analysis i.e., filtering and plotting graphs.  

▪ ArcGIS 10.4.1for field boundaries data management, maps.  

▪ SPSS for running statistical tests. 

▪ Python (Jupyter Notebook) for building the RF model for feature selection and classification.  
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3. METHODOLOGY 

This chapter describes the steps used in the research to achieve the study objectives. The methodology 

includes analysis of farmers' interviews and field boundaries data, extraction of spectral signatures from 

DESIS hyperspectral satellite image, statistical analyses, and classification. The overview of the methodology 

is shown in Figure 4.  

 

 

Figure 4: Flowchart of the research methodology. 

3.1. Farmer surveys and field boundaries data 

The farmer surveys and field boundary data collection were carried out from the 11th of July 2022 to the 5th 

of August 2022. A stratified random sampling based on the location of the fields to be visited in the four 

sub-counties was followed. Farmers were interviewed and responses noted by the interviewer (researcher) 

(see Appendix A for the questionnaire form). To align the research with ethical considerations, the 

respondents (farmers) were first asked about their consent for the data collection. The purpose of the survey 

was to derive the crop calendar information of the year of data collection (2022) and the previous year 

(2021) and to note the factors influencing the choices of the crop types and cropping patterns observed. 

The influencing factors information was considered during the farmers’ survey to better understand farmers’ 

choices and perspectives of cropping practices and to compare the findings with previous literature. In 

addition, field boundaries were delineated as polygons using a handheld Global Positioning System (GPS) 

device with a horizontal error of ±3m. The field polygons were acquired to be later linked to the DESIS 

hyperspectral image for spectral analysis. Every field boundary measurement was linked to the 
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corresponding farmer's interview IDs. Geotagged pictures and dates were taken and indicated in the survey 

form for further inspections later in the research. 

3.1.1. Field data analysis  

314 field boundaries were taken during the field data collection from different locations within the study 

area. Out of these 314 fields boundaries collected, 226 farmers provided survey responses across the four 

sub counties. From the 226 farmers survey responses, 175 responses pertained the monocropped and 

intercropped fields responses that were further used for evaluating the factors that influence choices of 

cropping patterns. For the field boundaries, the polygons were overlayed over the DESIS hyperspectral 

image using ArcGIS software. Unfortunately, 100 field boundaries were not covered by the satellite image 

boundaries as shown in Figure 6. This means a total of 214 fields remained within the image coverage. Since 

the image used was from 2021, the crop calendar information based on farmers’ response for 2021 were 

evaluated. In addition, the size of the fields that were above 900 square meters (0.1ha) were considered for 

further analysis because of the relation to the size of the pixels of the image used.  

 

 
Figure 5: The position and coverage of the satellite imagery and the fields that were excluded for 

further analysis. 

From the 214 polygons previously mentioned, only 74 fields of monocrop and intercropped fields 

information were retrieved based on the above criteria and could be further used for spectral analysis. 

Out of the 74 fields, 50 were monocrop maize fields (maize) and 24 were intercrop maize fields (imaize), 

where beans and/or soyabeans were interplanted. When further evaluating the farmer's responses per 

county, 6 fields of maize and 4 fields of imaize were not clearly reported by the farmers as either 

monocrop or intercrop fields. These field plots were then excluded from further analysis because they 

could not be assumed to belong in either cropping pattern class. Therefore, the final monocropped 

maize fields considered in relation to the image spectral analysis were 42 fields while intercropped maize 
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fields were 20. In total, 62 fields were then used in the subsequent spectral analysis. Table 2 provides a 

summary of the number of fields in each sub-county, and Figure 6 shows the location of the fields that 

spectral signatures were drawn. Few fields had regular shapes and most of them were irregularly shaped. 

 

 
Table 2: Distribution of fields per subcounty level. 

Sub 

county  

No. of Farmers  No. of maize 

monocrop fields 

No. of maize 

intercrop fields 

Teso 

North 

14 11 3 

Teso 

South 

32 20 12 

Nambale 13 9 4 

Matayos 3 2 1 

Total (n)  42 20 

 

 
Figure 6: Final maize monocrop and maize intercrop field locations used in this study. 

3.2. Image pre-processing  

One hyperspectral remote sensing image (DESIS-HSI-L2A-DT0595647612_002-20210607T064016-

V0215) was used for the study. Since the DESIS image was already atmospherically corrected, few pre-
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processing steps were performed as described in the following subsections. ENVI software was used to 

perform these pre-processing steps, and then MATLAB was used for further spectra analysis.  

3.2.1. Polygon spectra reflectance extraction  

The spectrum extraction tool was used to extract a spatially aggregated spectral profiles delimited by field 

boundaries. It uses polygon features, to extract spectral profiles from the spectral image and applies a 

spatial aggregation function to the profiles (Figure 7). The 62 field polygons as mentioned previously were 

overlayed on the image, and their respective reflectance spectra were extracted using the spectrum 

extraction tool in ENVI software. Only pixels completely within the boundaries were extracted and used 

for spectral analysis. The output of this process was written to an Excel file with each spectrum per field 

as columns and polygon field IDs chosen as rows. 

 

 

 
Figure 7: User interface for spectrum extraction using NRS Spectral tools. 

3.2.2. Removal of bad bands  

When analysing the spectral profile of the fields with all the 235 spectral bands, bands 1 to 7 were removed 

due to noise with reflectance below zero. 228 useful bands remained for the study with wavelengths 

ranging from 419.4nm to 999.5nm as shown in Figure 8.  
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Figure 8: Spectral signatures of  maize (red, n =42) and imaize (blue, n = 20) fields after removal 

of noisy bands (400 – 418nm). 

3.2.3. Spectra smoothing: Savitzky-Golay filter 

Smoothing of the spectra is a crucial step in hyperspectral remote sensing. Smoothing is required to 

minimize random noise, which is done by reducing the difference between the individual pixel intensities 

from the neighbouring pixels (Lowe et al., 2017; Zhao et al., 2020). Savitzky-Golay smoothing was 

performed using a window frame size of 5 and second degree of polynomial as these parameters were 

identified ideal for smoothing the spectras as seen in Figure 8. Savitzky-Golay filter was used as it removes 

the noisy data by fitting polynomials to a subset of data (a spectrum), then evaluates the polynomial at a 

specific single point to smoothen the signal (Lowe et al., 2017). In addition, Savitsky-Golay filter was 

considered because it preserves high-frequency signal components without losing information (Jardim & 

Morgado-Dias, 2020), that is, ideally removing noise without altering the spectral features.  

3.3. Statistical tests 

To test whether there is a significant difference in the narrowbands of hyperspectral data between two 

independent samples (in this case, 42 samples of maize monocrop fields and 20 samples of imaize fields), 

either a two-sample t-test or a non-parametric test such as the Mann-Whitney U test can be used (Kumar 

et al., 2019; Manevski et al., 2012). In this case, the purpose of the test was to identify the most significant 

bands by comparing the distribution of reflectance values in each of the 228 bands between maize and 

imaize fields (Manevski et al., 2012; Sobhan, 2007). A t-test requires that the distribution of reflectance 

values are normal.  While this may be the case for some bands, it is unlikely to be the case for all bands. 

On the other hand, the Mann-Whitney U test does not assume any particular distribution for the data 

(Kumar et al., 2019; Schmidt & Skidmore, 2003). In this study, given the small and unequal sample sizes, 

and the number of bands (228) to be tested, the Mann-Whitney U test was chosen to determine the 

significant differences for each of the 228 bands with a p-value <0.05 as the cut off for determining 

significant differences (Shafri et al., 2011). SPSS software was used for this part of the methodology.  

3.4. Feature selection and classification using RF 

RF is an ensemble classifier that is suitable for the classification of hyperspectral data as it is known to 

handle the high dimensionality of data ( Belgiu & Drăgu, 2016; Prospere et al., 2014). It uses randomly 
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selected subset of training samples and does not consider any underlying probability distribution for input 

data (Kale et al., 2017). The advantage of using RF classification is that it produces good classification 

results in terms of accuracy values, and it is insensitive when it comes to training labels (Kale et al., 2017; 

Liaw & Wiener, 2002). RF requires optimization of user-based parameters in the model to guarantee the 

high accuracy of classification as well as reproducibility of the results when different or several runs are 

performed on the model (Richard et al., 2017; Vaiphasa et al., 2005). In this study, the optimal number of 

trees (ntree), maximum variables used at each tree (mtry), and random_state of RF were optimized. For the 
ntree and mtry, this was done by inputting the data to the model, split into training and testing set and 

finding the best combination of ntree and mtry that gives the highest accuracy on the testing set. The final 

RF model used ntree of 100 and mtry of 10. A random_state of 0 was used as this parameter is crucial for 

reproducibility. Python was used for this section of the methodology. 

3.4.1. Feature selection  

One common approach to selecting a subset of bands for discrimination is to use feature selection or 

feature reduction methods. Feature reduction analysis is crucial to obtain uncorrelated wavelengths from 

the significant wavelengths selected after the statistical test (Kumar et al., 2019). After statistically 

significant wavelengths were identified, feature selection was performed to reduce the number of 

significant bands by identifying a subset of relevant features that can improve the performance of a 

classification model, while discarding redundant that can lead to overfitting or decrease the model's 

interpretability (Belgiu & Drăgu, 2016). In this study, the RF out of bag method (OOB) was adopted. This 

method was used to calculate the importance of specific predictor variables (wavelengths) that will aid in 

discriminating the cropping patterns (Adam et al., 2012; Prospere et al., 2014). The first step was to use 

about two thirds of the samples in the training set for training and the remaining samples for error 

assessment. In the next step, the importance of each variable (each significant wavelength) was randomly 

permuted and was passed down in every tree to get new predictions while analysing the mean error for 

each decision tree. In the end, mean difference before and after the premutation was calculated, and a 

ranking index was used to identify the variables(spectral bands) with the largest importance in the 

classification process (Liaw & Wiener, 2002; Prospere et al., 2014).  

 

Further, a simple step forward feature selection technique was used to find the best optimal subset of 

wavelengths for classification (Adam et al., 2012). Step forward feature selection uses a sequential feature 

selection that starts by evaluating each feature and selects the best performing selected variable determined 

by the evaluation criteria, e.g., accuracy or misclassification error. The step continues for all possible 

combinations and subsequent features are evaluated and a feature added and so on until the required 

number of features are selected. In this model, 5-fold cross validation was performed to select the best 

features (spectral bands) for classification.  

3.4.2. Classification and model validation  

The 62 samples were used as training and testing datasets for the RF classifier. 70% of the data was used 

to train the model while 30% was used as a test set as shown in Table 3, representing each class pattern. 

A confusion matrix was constructed to assess the accuracy of the classification performance. From the 

confusion matrix, the overall accuracy (OA), producer accuracy (PA), user accuracy (UA), and Kappa 

index (score) were calculated for the algorithm used to classify the patterns. The F1 score was calculated 

to assess the class accuracy and give equal importance to precision and recall by combining the PA and 

UA into a fused measure (Richard et al., 2017).  
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Table 3: Number of samples used for training and testing sets 

Class Number of 

samples 

Training set 70% Testing set 30% 

maize 42 29 13 

imaize 20 14 6 
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4. RESULTS 

This section covers the findings from the study including the data obtained during the field visit, spectral 

signatures analysis of the cropping patterns, results of statistical tests, and classification results.  

4.1. Field data: Descriptive analysis of farmers’ survey 

Farmers from four sub-counties in Busia (Figure 6): Teso North, Teso South, Nambale and Matayos were 

visited and interviewed on crop calendar information as well as factors affecting their choice of cropping 

pattern. Regarding the crop calendar information for 2021 and 2022, most farmers planted in 

February/March and harvested in June/July. These planting and harvesting months in the region for the 

two cropping systems align with the seasonal rainfall data shown in Figure 2 and the county information 

about the region cropping calendar (Busia, 2018). Based on field data collected, the planting and harvesting 

times are summarized in Tables 4 and 5 and Figures 9 and 10 for monocropped and intercropped fields. 

Based on the combined survey responses of 2021 and 2022, the total number of farmers’ responses on 

factors influencing choice of cropping patterns, that is, monocropped fields were 88 while intercropped 

farmers' responses were 87, summing up to 175 farmers’ responses.  

 

Table 4: Number of monocrop farmers and the planting and harvesting months. 

 Planting Harvesting 

 Jan Feb Mar Apr May Jun Jul Aug 

Maize 

monocrop 

3 22 35 28 2 20 40 26 

 

 

 
Figure 9: Planting and harvesting months of monocropped fields. 
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Table 5: Number of intercrop farmers and the planting and harvesting months. 

 Planting Harvesting 

 Jan Feb Mar Apr May Jun Jul Aug 

Maize 2 13 43 29 2 14 45 26 

Beans/soyabeans - 15 42 30 14 43 23 7 

 
 

 
Figure 10: Planting and harvesting months of intercropped fields. 

Further, from the farmers’ survey during the field data collection, the farmers were asked about the factors 

influencing their cropping pattern choice. Table 6 summarizes the factors that most farmers highlighted 

and shows the number of farmers’ responses to each factor. More explanation is provided in the discussion 

section in Chapter 5.  

 

Table 6: Factors influencing the choice of cropping pattern based on farmers’ survey data. 

 
Factors No. of farmers No. of farmers 

Intercropping Monocropping 

1 Size of the farm (field) 

 

21 - 

2 Personal experience (practice over the 

years) 

 

14 37 

3 Subsistence use (Family consumption)  16 16 

4 Availability of resources  

(machinery/farm inputs/labour) 

12 9 

5 Market demand (Financial support/boost) 11 26 
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6  Pest prevention /symbiosis  

 

13 - 

4.2. Spectra smoothing  

Figures 11 and 12 show the resulting smoothened signatures after Savitsky-Golay filter was used and 

the average spectra of 42 maize fields and 20 imaize fields, respectively.  

 
Figure 11: Spectral signatures of maize (red, n=42) and imaize (blue, n=20) fields after 

smoothing using Savitsky-Golay filter with a window size of 5. 

After filtering all the fields, the average of 42 reflectance spectra from maize and 20 reflectance spectra from 

imaize fields was calculated ,and Figure 12 shows the result of the averaged spectra. 
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Figure 12: Average reflectance spectra for maize and imaize fields  

(maize = 42 fields, imaize = 20 fields). 

It can be observed from Figure 12 that monocropped fields (maize) have a higher reflectance than 

intercropped fields (maize) and that from the red edge towards the NIR region of the electromagnetic 

spectrum, the maize and imaize reflectance shows a relatively wide spectral difference as compared to the 

visible part of the spectrum.  

4.3. Results of Mann-Whitney U test 

To check the distribution of the data at different locations in the wavelength, a box plot was visualized as 

shown in Figure  13. The box plot showed a relative similar spectral curvature to the average spectra shown 

in Figure 12 above.  
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Figure 13: Box plot showing the variations of maize and imaize reflectance data in different 

wavelength regions 

Using the 42 samples of maize monocropped and 20 samples of maize intercropped fields with the Mann-

Whitney U test, the comparison of the median reflectance between the two groups showed a statistical 

difference from one another. One hundred and ten (110) optimal narrow bands from the visible region to 

the NIR region of the spectrum showed significant differences (with p-values < 0.05) as depicted in Table 

7. Results of individual bands statistical p-values are provided in Appendix B. The interpretation of the 

results is further discussed in Chapter 5.  

 

Table 7: Results of the Mann-Whitney U test showing the number of significant bands in each 
wavelength region. 

Wavelengths region (nm) Region No. of Significant 

bands 

419 - 600 Visible  35 

700 - 800 Red Edge  25 

801 - 1000 Near Infrared 50 

 

4.4. RF classification and accuracy assessment  

When the RF was adopted with the optimized parameters together with the feature selection method, 5 

optimal bands were selected from the 110 bands from the statistical results, to be used for further 

classification purpose. The selected bands from the feature selection were dominated in the red edge and 

part of NIR region (752.2nm, 767.5nm, 775.2nm, 783nm, 814.2nm). This can be reflected from the 

average spectra graph (Figure 12) and the box plot (Figure 13) that shows a wide difference of the maize 

and imaize spectra. Using the 5 bands, the RF classifier was able to classify the cropping patterns with 

74% overall accuracy as shown in Table 8. Evaluating the producer and user accuracy of the two cropping 

patterns, maize class attained a producer accuracy of 71% and 80% for the imaize class. The user accuracy 
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was 91% for maize and 50% for the imaize, indicating a 50% chance of imaize class being misclassified as 

maize. The F1 score for maize class was 80% and 62% for imaize class. The kappa coefficient of agreement 

for the two cropping patterns was low at 0.43 indicating the complexity of classifying these cropping 

patterns. The classification results are summarized in Table 8 and also given in Appendix C from the code 

result. The interpretation of these results is further discussed in Chapter 5.  

 

Table 8: Classification results of maize and imaize fields using RF classifier. 

 

Class 

Producer 

accuracy  

User 

accuracy 

 

F1 score 

Overall 

accuracy 

Kappa score 

maize  

(monocropped fields) 

71% 91% 80%  

74% 

 

0.43 

imaize  

(intercropped fields) 

80% 50% 62% 
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5. DISCUSSION 

This study evaluated farmers choices on maize cropping patterns practices, i.e., maize monocropping and 

intercropping patterns as a common practice for most small-scale holder farmers in Busia County, Kenya. 

A total of 175 farmers’ responses from field data collection were evaluated to determine the common 

factors that farmers perceive to influence their choices for cropping patterns. It further examined the 

potential of using DESIS hyperspectral satellite data to discriminate between these cropping patterns. 

Based on the image area coverage, responses on farmers survey in 2021 and size of the fields, 42 

monocropped fields and 20 intercropped fields boundaries were further used to extract reflectance spectra 

from DESIS hyperspectral image for analysis. Section 5.1 and 5.2 provide a detailed discussion of the 

results. Section 5.3 provides recommendation based on the findings of the research.  

5.1. Evaluation of factors influencing farmers’ choice of cropping pattern 

The reasoning underlying farmers’ responses on factors influencing the choices of cropping pattern is 

discussed in this section with comparison and contrast to other literature. Relative to the hypothesis, this 

section supports the alternative hypothesis highlighting the physical and social-economic factors being the 

most influencing factors on farmers' decisions on cropping patterns and land management practises as 

observed from other literature as well.  

 

Size of the farm (fields) 

Table 6 reveals that the size of the farm is one of the major factors that influence farmers to practise a 

particular cropping pattern. According to the farmers exercising intercropping, utilizing the small piece of 

land is beneficial to them because they get to harvest more than one crop from the piece of land. Thus, 

according to them, the small piece of land is utilized fully to give them maximum production for 

subsistence and partly commercial use. A study in China by Hong et al. (2020) highlights that farm size 

has an impact on the choice of cropping patterns. The study indicates that the size of a farm has a 

significant impact on yield and profit gains for the farmers. For example, farmers practising intercropping 

tend to have higher yields and profit per unit of land than farmers practising monocropping. In a study by 

Mogaka et al. (2021), farmers embrace crop diversification in intercropping to manage climatic risks. 

Interestingly, in several studies (Beyene et al., 2019; Hong et al., 2020), this factor has been closely related 

to household needs i.e., family requirements, as is the case with this study. Farmers indicated that practising 

intercropping helps to improve household food security, their explanation being that, as they wait for the 

main crop to mature, the other crop can sustain the family.  

 

Availability of resources  

Availability of resources, in this case, includes the financial capability when it comes to purchasing farm 

inputs and hiring machinery and labour that would increase farm efficiency. In terms of fertilizers for 

example, most of the farmers in Busia complained about the prices of fertilizers being way above their 

means hindering them to apply to their crops and that led to low production levels. When it comes to 

machinery, few of the farmers indicated to have used machinery for example, tractors to plough their land. 

This is true mostly for farmers with relatively large farms. Few used oxen to prepare their farms while 

most of them used their own manual labour with forks. Most farmers who practise intercropping indicated 

to use manual labour more because of the cropping pattern dynamics. A study by Hong et al. (2020) 

indicates that agricultural machinery is an important element that affects the choice of monocropping and 

intercropping. This compares to a study in Tanzania by Greig (2009) who discusses the responses of 

farmers on the availability of machinery and fertilizers, stating that these availabilities of resources are a 

fundamental factor that influences farmers' choices. When it comes to labour, it is expected to influence 
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both cropping practices positively. With intercropping, more labour is required as more work in planting 

and managing the crops is required compared to monocropped farms. This compares to the study by 

Hong et al. (2020) in China, who indicates that household size also significantly contributes to the labour 

requirements.  

 

Personal experience (practice over the years)  

Another key finding was the farmer's experience in the years they have practiced a particular cropping 

pattern. Based on years of experience in farming, most farmers practice what they term as “norm” or 

“tradition.” One subsistence farmer stated, “it is our tradition to do intercropping, even our parents did 

it.” In this case, the preference was evidently influenced by what has been practised over the years and 

handed over from generation to generation. This is compared to a study by Briggs (1985) in Sudan who 

indicated this as one of the top three decision factors as it shows a satisfactory sense of knowledge of what 

has been done before. However, from the field visit, it was noted that most farmers still have poor 

management practises in their lands and therefore, an emphasis on the significance of agricultural 

extension services is required (Briggs, 1985; Mogaka et al., 2021). Extension services educate farmers on 

best practices, especially new methods and techniques that can help them maximize their farm output.  

 

Market demand  

Farmers practising both cropping patterns i.e., mono- and intercropping stated that apart from growing 

the crops for subsistence use, they considered financial advantages when they sell their produce. Most of 

the farmers responded in depth that market demand for their surplus products helped them offset some 

financial burdens that pressed them, including the loans taken to purchase farm inputs and other financial 

needs such as paying school fees for their children. A study by Briggs (1985) reveals that farmers indicated 

that the reliance of market for the crops produced, as well as the income generated from selling the crops, 

helped farmers’ financial needs. This factor shows that practising both cropping patterns have potential 

benefit to the farmers in terms of attaining financial security and improving their living standards when 

they have surplus farm production that meets the market demand.  

 

Pest prevention/plants symbiosis 

The other important factor from farmers' responses is that intercropping reduces the risk of total crop 

failure when there is an outbreak of pests and diseases compared to monocropping (Hong et al., 2020; 

Matusso et al., 2012; Mthembu et al., 2019; Robbins, 2022). Although literature and research indicate that 

growing more than one crop in the fields helps in pest infestation, not all farmers shared the same 

perspective in this research’s survey. From the survey, most of the farmers who practice intercropping 

indicated that they mainly plant beans with maize because beans act as manure to the maize once it is 

harvested. This agrees with previous studies on intercropping (Hong et al., 2020; Mthembu et al., 2019; 

Rusinamhodzi et al., 2012; Stomph et al., 2020). According to Stomph et al. (2020), there is an indication 

that when growing two or more crops, there is a reduction of farm input, however there was a contrast 

with the farmer's response. Most intercropping farmers indicated that they use more fertilizer when they 

plant more than one crop, which is why some farmers stick to planting only maize (monocropping) in 

their farms. In addition, from the field data collection, we noted that several farmers used different types 

of seeds for maize crops, claiming that some seeds have fast maturity levels and respond differently to 

weather extremes and to pests and diseases. This is also highlighted by a study in China by Hong et al. 

(2020), who indicated that farmers stated that different crop species respond differently to weather 

extremes and diseases and pest outbreaks. However, this aspect requires further research as it was not 

examined in depth during the data collection and in the literature.  

 
From the evaluation of the factors influencing farmers’ choice of cropping patterns, the findings point out 

to the physical and socio-economic factors as supported by the alternative hypothesis of the research. The 
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findings indicate that the small size of the farms (fields), large household dependency, farmers’ experience 

and pest prevention measures are the major factors that influence farmers to practice intercropping 

patterns. When it comes to monocropping practices, farmers considered mostly household needs, 

availability of resources such as machinery and farm inputs and the availability of market demand to sell 

their surplus farm products. Most of these physical and socio-economic factors compare to what previous 

literatures have discussed when evaluating farmers’ choices of crop type establishment or cropping 

patterns in different regions that focus especially on small-holder farmers. However, some of the farmers’ 

narrative differed with what was in the literature, for example, the use of fertilizers where farmers who 

practise intercropping strongly narrated that more fertilizer is required when planting two crops in the 

fields while literature indicates that intercropping practises enabling crops to benefit from fertilizer input 

of one crop. It is therefore important to take these insights into consideration for future studies and when 

designing interventions for food security.  

5.2. Assessing the potential of DESIS hyperspectral imagery for cropping pattern discrimination. 

Maize cropping patterns were characterized by examining whether there were significant differences in the 

spectral signatures of the fields using individual bands comparison using a Mann-Whitney U test and then 

bands with optimal characteristics were further used for evaluating the classification. The results from 

average spectra (Figure 12) and boxplot visualization (Figure 13) indicated that monocropped (maize) 

fields have a higher reflectance than intercropped (imaize) fields, and that a major difference in the spectral 

signatures could be observed from the red edge and NIR regions of the electromagnetic spectrum. When 

the Mann-Whitney U test was performed, the results from Table 7 related with was observed in Figures 

12 and 13, where a smaller number of bands were from visible (blue and green) region compared to the 

red edge and the NIR region with a greater number of bands. This indicates that the maize monocropped 

fields can be statistically distinguished from maize intercropped fields majorly using the bands from red 

edge and the NIR regions of DESIS hyperspectral satellite data. From statistical analysis, the results of the 

Mann-Whitney U statistical test hereby reject the null hypothesis and support the alternative hypothesis 

there is a statistical difference in the spectral bands and that the red edge and NIR region give the optimal 

bands for crop pattern discrimination, indicating the potential discrimination of the maize based cropping 

patterns. The results agree with previous studies (Darvishzadeh, 2008; Prospere et al., 2014; Schmidt & 

Skidmore, 2003; Thenkabail et al., 2004; Vaiphasa et al., 2005) that have demonstrated the red edge and 

NIR bands being suitable for species and plant communities discrimination.  

 

When it comes to classification, the results indicated moderately good classification accuracies, where 

overall accuracy of 74% was attained despite the low number of samples used for testing. Monocropped 

fields (maize class) showed a producer accuracy of 71% and a user accuracy of 91%. Intercropped fields 

(imaize class) gave a producer accuracy of 80% and user accuracy of 50%. The user accuracy of imaize 

indicated the complexity of performing classification for intercropping as the reflectance is more likely to 

be identified as maize fields. Further, the Kappa coefficient was relatively low (0.43) compared to most 

studies that reported Kappa values close to 1 (Adam et al., 2012; Richard et al., 2017; Vaiphasa et al., 2005). 

The low Kappa coefficient from the results indicates the complexity of classifying maize based cropping 

patterns. Several limitations in the research could aid in the interpretation of the classification results 

obtained, particularly the kappa coefficient and the user accuracy of imaize class. They include; 

 

i. The farm(field) management practices of the farmers and the complexity of the nature of the cropping 

patterns i.e., monocropped (maize) and intercropped (imaize) fields, as observed during the field data 

collection. It was noted that some farmers had poor land management practices and that some 

individual fields, especially monocropped maize fields, contained a lot of weeds. In this case, the 

spectra reflectance of such fields could give similar characteristics to an intercropped field and 
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moreover, intercropped field spectral signature could be easily misclassified for a monocropped field 

because of similar spectral reflectance. Farm level challenges, therefore, could have a possible 

influence on the discrimination and classification power of the spectral bands that can lead to 

misclassification and low accuracy levels.  

 

ii. The number of samples. During the field data collection, a number of challenges were encountered 

during the implementation. To begin with, to engage the local farmers in the regions, the team was 

required to inform the all the local authorities in the sub-counties level and hence get clearance to 

collect the data. This took several days to achieve, reducing the number of data collection days. The 

major challenge was the sizes of the fields in the study area (most fields were below 0.1ha) which 

could not be used in the research. This factor reduced the number of data samples especially for 

intercropped fields. Moreover, given the literacy level and the age of most farmers, crop calendar 

information for the 2021 deemed a challenge in terms of memory, thereby resulting in less 

information, which resulted to less sample size, especially for imaize class used for spectral analysis. 

In addition, the DESIS image used did not cover all the field data points collected hence reducing the 

number of samples used in the study. 

 

iii. The satellite image used in this study. There were quite some challenges with the image used for 

analysis. The time of acquisition of the images (DESIS hyperspectral acquired in June 2021 and 

PRISMA image acquired in July 2022) were towards the harvesting stage of the crops based on the 

study area crop calendar, which was not optimal. From the literature, the optimal acquisition dates of 

imagery are during stem elongation and flowering crop development stage. A study by Arvor et al., 

(2011) and Richard et al., (2017) points out that, at stem elongation and flowering development crop 

stage, monocrop and intercropping field patterns can be more distinguishable than at later growing 

stages. After flowering for example, the two maize cropping patterns seem to have same 

morphological and spectral properties. Moreover, the spatial resolution of the DESIS hyperspectral 

image, which is 30m resolution was used, whereas a very high spatial resolution of less than 5m would 

be preferable (Richard et al., 2017) for such complex cropping pattern analysis. Previous studies by 

Rebecca (2020) and Richard et al. (2017) explain in depth the complexity of discriminating and 

classifying cropping patterns using multispectral data.  

From the hypothesis, these classification results were relatively lower than expected, considering the 

utilization of red edge and NIR regions of the electromagnetic spectrum. Previous studies have utilized 

the same regions and the classification results are high (OA > 80% with Kappa values close to 1). 

However, the limitations stated above could have negatively influenced the expected outputs. Despite 

these challenges, hyperspectral remote sensing shows potential for discriminating and mapping cropping 

patterns as a contribution to food security-related research questions and thus requires further exploration 

with appropriate image acquisition dates, appropriate spatial and temporal resolution, and sufficient 

ground data.   
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5.3. Recommendations  

Based on farmers responses to the factors stated above, it is apparent that physical and more so, socio-

economic factors influence farmers’ decisions on the choice of cropping patterns. It is, therefore important 

to note that understanding these factors and the decision dynamics of farmers is crucial in designing site-

specific sustainable farming interventions and policies. This study contributes to that understanding. From 

the use of remote sensing data, the result of this study show that DESIS hyperspectral remote sensing can 

be used to identify different maize cropping patterns for mapping and monitoring of intercropping 

patterns, but with recommendations on the appropriate timing of the imagery to coincide with field 

conditions where the main crop and intercropped crop are both visible.  

 

This work can further be used as a decision support framework. For example, when the cropping patterns 

are accurately classified and then mapped, the information can be used to inform agriculture stakeholders 

and even the governments where cropping patterns occur and can thus enable extension support to 

farmers on how to maximize their production through the provision of agronomic support, including 

fertilizers. In terms of food security assessment, the potential contribution of intercropping to food 

production and its contribution to climate change and ecosystem impacts can be assessed. The results 

cannot only be used at a local scale but can be upscaled to a regional scale, national and global scale to 

inform on these agroecological practices. Moreover, land use policy makers can also use the information 

to develop a system of incentives to farmers adopting sustainable agriculture as more food is produced 

while maintaining the ecosystem.  
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6. CONCLUSION 

This study aimed to evaluate the choices that influence farmers to practice a particular maize based 

cropping pattern and assess the potential of using DESIS hyperspectral remote sensing to discriminate 

and classify these cropping patterns. To do this, three objectives were set and achieved using field data 

collection which included farmers’ survey and field boundary measurements with DESIS hyperspectral 

satellite data. The first objective was to evaluate the factors that influence farmers to practice different 

cropping patterns. From the survey responses evaluation, small size of the farms (fields), large household 

dependency, farmers’ experience and pest prevention measures are the major factors that influence farmers 

to practice intercropping patterns. When it comes to monocropping practices, farmers considered mostly 

the availability of market demand to sell their farm products, household needs and availability of resources 

such as machinery. This indicate that socio-economic factors play a significant role in influencing farmers 

choices and hence it is important to understand these factors for targeted policy interventions.  

 

The second and third objectives were to assess the potential of using DESIS hyperspectral satellite data 

to discriminate the two maize based cropping patterns and analyse the classification accuracy, respectively. 

The discrimination was based on spectral analysis involving identification of spectral bands that are 

statistically different from the spectral signature of monocropped and intercropped maize fields. Using a 

non-parametric statistical method, the Mann-Whitney U test, 110 spectral bands from the visible, red edge 

and NIR region showed significant difference. The result thus supported the alternative hypothesis that 

monocrop and intercrop patterns are different. For the classification, the study aimed at identifying the 

best optimal bands that can be used for classification. Using RF feature selection, 5 informative bands 

from the red edge and NIR region were identified (752.2nm, 767.5nm, 775.2nm, 783nm, 814.2nm) and 

used for classification. An overall accuracy of 74% was achieved, with user accuracy of 91% for maize and 

50% for imaize classes, showing potential land cover classification of the maize based cropping patterns 

using DESIS hyperspectral remote sensing but recognising the limitations due to the DESIS image 

coinciding with the later growing stages of the maize crop which limited classification accuracy for imaize.      

 
This research is the first attempt to understand the factors influencing farmers choices of cropping pattern 

and also use to use DESIS hyperspectral remote sensing to discriminate the maize cropping patterns in 

the complex and heterogenous landscape in Busia, Kenya, and sub-Saharan Africa in general. Hence, there 

were no directly comparable prior studies to put the classification accuracies into context. Despite this gap 

and the limitations discussed, the analysis of the study and the results show potential in discrimination of 

cropping patterns using hyperspectral satellite data. However, it is important to note that this process is 

complex and challenging especially in heterogenous landscapes, and that field surveys that aid in 

understanding farmers land management practises can play a critical role in the interpretation of results. 

Thus, the exploratory nature of this research has opened more avenues for future research. 

 

In conclusion, it is important to understand and involve stakeholders’ perspective, in this case the farmers, 

by understanding the factors that influence their decisions to different agricultural and land use practices. 

The results of this study further highlight that discrimination of maize monocropped and maize 

intercropped fields can be challenging but with the use of early season hyperspectral data, this can be made 

possible. Thus, in the context of food security, understanding the socio-economic factors that influence 

farmers choices can aid in providing necessary support that is required to maximize production of food 

to feed the growing population both locally and globally. In addition, the new and emergent spatial 

technologies, and particularly hyperspectral remote sensing, plays a significant role in informing the future 

of our food production and are expected to improve the monitoring of agricultural management practices 
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such as cropping practices (e.g., irrigation) and cropping patterns (e.g., monocropping and intercropping) 

in the challenging context of food security.  
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APPENDICES 

Appendix A 

UNIVERSITY OF TWENTE RESEARCH 

QUESTIONNAIRE FOR CROP MANAGEMENT PRACTICES IN BUSIA COUNTY 

 

This survey aims to obtain information related to maize crop management including the maize cropping patterns. We will 

ask you questions about one or more of your field plots and we would like to visit those plots with you after the questions. 

The plots are/should have been planted with maize and/or intercropped maize or other sole crop(s) e.g. groundnut in one 

plot.  

Do you CONSENT to have this information asked? Y  N   

 

1 Date and time  

2 Location of farmer’s 

household 

 

 

 

Village:  X: 

Ward: Y: 

Crop field ID: 

3 How many plots do you 

have? 

   plots 

 

A. Farmer interview sheet [one sheet per plot, maximum of three plots per farmer] 

0 Crop field ID  

1 What is the size of the plot (ha)  

2 How many crops were grown 

between March 2022 and 

July/Aug 2022 (Long rain)  

 

 

 and Sept 2022-Feb 2023 (Short 

rain)? 

 

 

3 Questions (ask them crop by 

crop)  

1st 

cro

p 

2nd 

cro

p 

3rd 

cro

p 

Notes/codes 

4 Which crop(s)?    Can be Maize monocrop (M), Maize intercrop 

(iM), Cassava (C), Groundnut (G), 

 

 

5 If intercropped, what is the 

dominant crop?  

    

6 Type of intercropping    Can be Mixed (M), strip (S), row (R) 

7 What was the method of 

planting 

 

   Manual or mechanical  
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8 Date of land preparation 

(clearing) 

 

   Month and week (1, 2, 3, 4) 

9 Date of planting of crop(s) 

 

   Month and week (1, 2, 3, 4) 

10 Date of flowering 

 

   Month and week (1, 2, 3, 4) 

11 Date of harvest (or expected 

harvest date) 

 

   Month and week (1, 2, 3, 4) 

      

12 What factors influence the 

choice of cropping pattern that 

you practise? 

 

 

 

 

 

 

 

13 Challenges experienced  

 

 

 

(is the crop healthy or 

malnourished?)  

 

 

 

 

 

 Notes: 
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2021 Data 

1 How many crops were grown 

March 2021 and July/Aug 2021 

(Long rain)  

 

 and Sept 2021-Feb 2021 (Short 

rain)? 

 

2 Questions (ask them crop by 

crop)  
1st 

crop 

2nd 

cro

p 

3rd 

cro

p 

Notes/codes 

3 Which crop(s)? 

 

   Can be Maize monocrop (M), Maize intercrop 

(iM), Cassava (C), Groundnut (G), 

 

4 If intercropped, what is the 

dominant crop?  

    

5 Type of intercropping    Can be Mixed (M), strip (S), row (R) 

6 What was the method of 

planting 

   Manual or mechanical  

7 Date of land preparation 

(clearing) 

   Month and week (1, 2, 3, 4) 

8 Date of planting of crop(s)    Month and week (1, 2, 3, 4) 

9 Date of flowering    Month and week (1, 2, 3, 4) 

10 Date of harvest (or expected 

harvest date) 

   Month and week (1, 2, 3, 4) 

11 What factors influence the 

choice of cropping pattern that 

you practise? 

 

 

 

 

 

 

 

 

12 Challenges experienced  

 

 

 

 

 

 

  

 

 

 

  



 

36 

B. Plot data sheet [one sheet per plot, maximum of three plots per farmer] 

0 Field boundary ID  

1 Date and time  

 Measurements  

2 Corner Coordinates X1: 

X2: 

X3: 

X4: 

Y1: 

Y2: 

Y3: 

Y4: 

3 Field length and width (m) L: W: 

4 Field size (ha) field measurement:             ha 

5 Soil condition Dry/Wet/Flooding with …... cm water level 

6 Plant height (cm), 3 reps (a)  (b)            (c)                     (d) average:         cm 

7 Maize plant age                      days 

8 Take photos of the field and the surrounding area (N, E, S and W). Draw sketch facing to the north 

  

 

Notes 
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Appendix B 

Representative results of individual bands p-values from the Mann-Whitney U test.  
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Appendix C 
Classification report as obtained in RF model. 

 
 

 


