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Abstract—
This paper consists of the development of a robust low-cost

energy meter. The paper aims to use an alternative method
to the one existing for reading currents with high slopes,
this existing method consists on capturing the high-frequency
components. Focusing in the lower frequencies provides a
robust yet accurate reading, as most of the power is contained
in the fundamental frequency. This new approach provides
robustness agains electromagnetic interferences and allows
to use lower-cost components. An ESP32 microcontroller
programmed in C is used to get the readings from a low-
cost current transducer (SEN0211) and a differential voltage
probe. Some experiments with traditional linear loads and
modern non-linear loads are made to validate the system. The
deviations obtained stay under 1% in linear loads and range
between 3.24% to 74% for the most complex non-linear load
setups, probably due to the low sampling frequency used. The
paper discusses the project’s design, measurements and results,
giving explanations and guidelines for better understanding
and future improvements in these measurements.

I. INTRODUCTION

Daily measuring of the power consumption in homes,
offices, or other facilities is necessary for the electricity
providers to charge the users for the services provided. A
modern problem arises in these routinary measurements
with developing new technologies resulting in over or
under-billing clients [1] [2] [3].

Multiple studies, some made at the University of Twente,
have shown that the static energy meters commonly used
in any location where electricity is used can present errors.

These meters have been mainly designed to measure the
power consumption of linear loads. However, lately, with
the use of new technologies based on semiconductors, these
loads have become non-linear and have presented harmonic
distortions. These harmonics distortions, produced by cur-
rents with high slopes, induce errors in the measurements
of the power meters. Some of these experimental deviations
have been up to +2675% when using the standard supply
of a power grid. In contrast, when using an ideal power
supply with standardized impedance, these deviations are
lower (up to +483%) [4].

Some studies have checked the direct effects of these non-
linear loads by measuring the errors in the static meters. To
better understand these errors, dimmers were used to study
the importance of the phase firing angle of these loads and
also give an overview of how different types of current
sensors behave in these measurements [5].

For this reason, it is essential to check whether the current
energy meters installed in households are trustworthy and
if they fall under the quality measuring accuracy set by the
European Union standards [6].

The most recent approach to this problem is to capture all
the high-frequency harmonic components from the current
measurements to obtain an appropriate measurement. This

approach comes with expensive parts that can work at high
frequencies, as these are challenging to capture.

It has been theoretically proven that a different approach
can get good results that fall within the error acceptance
stated by the European Convention. This approach is based
on the orthogonality of the non-fundamental power compo-
nents, which explains that most of the power is contained
in the low-frequency harmonics [7].

The objective is to obtain a robust measurement us-
ing cheap and widely available components, using the
least amount of hardware possible. This meter aims to
monitor pre-installed energy meters, so the system’s non-
intrusiveness will also be considered.

The paper will present a complete hardware and software
analysis of the project’s design. As this study’s importance
relies on the quality of the current and voltage measure-
ments, especially for non-linear loads, alternative hardware
and setups will be studied, analyzing the advantages and
disadvantages of each one of them and presenting alterna-
tive configurations where each one can be used.

Once the hardware is chosen, a couple of experiments
will be made, using a high-quality power analyzer as a
reference for the power measurements for three different
loads with multiple setups: no load, linear loads (electric
heater) and non-linear loads (water pump).

The results will be displayed and analyzed for the dif-
ferent experiments performed. Furthermore, the individual
measurements of current and voltage captured from the
developed hardware will be plotted and compared to the
similar measurements obtained from an oscilloscope, as in
these measurements are the most critical aspects of this
study.

A small discussion of possible future steps for this
research will be shown, giving some insights into what
could have been done differently if the knowledge and
discoveries presented had been known at the beginning of
this study.

Lastly, a conclusion on the overview of the results and
methodology used will be presented, evaluating the results
to measure the project’s success and analyzing the potential
of this study.

II. HARDWARE DESIGN

In this section, the design and analysis of the hardware
will be shown. The system can be seen in Fig. 1.
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Fig. 1: Schematics of the system

It consist on one microcontroller, which will be an
ESP32. This microcontroller will get the current measure-
ments from a low-cost current transducer (CT) that after
passing by a circuit with a low-pass filter (LPF) and a
voltage divider it will have the appropiate values for the
microcontroller to read. Similarly to how the currents are
measured, the voltages measurements also consist on an
analog signal, that comes out of a differential voltage probe,
which is read after transforming the signal with a LPF and
a voltage shifter.

A. Microcontroller

Some different microcontrollers were considered for this
application. The considerations were Arduino, ESP32 and
STM32F4 (a family of STM32 microcontrollers).

The microcontroller was chosen taking into account tech-
nical specifications on top of cost and availability.

The ESP32 has 2 ADCs (STM32F4 has up to 3 depend-
ing on the model), which Arduino does not have available
in the low-cost models considered (UNO and NANO).

Having 2 ADCs allows to read current and voltage with
the minimum phase delay possible. Even though Arduino
consists of only 1 ADC, it can also read multiple channels,
but the time needed to set the channels for each reading
would add a more significant delay between readings. On
top of this, the Arduino ADC has 10 bits resolution, which
gives, taking into an account that the limits of it’s ADC
is 0-5 V [8], 4.88mV of resolution, while for the ESP32
it’s ADCs has 12 bits resolution, and in its maximum
configuration, as it can be seen in table I, the resolution
would be 0.32 mV.

TABLE I: Voltage ranges ADC ESP32 [9]

Attenuation(dB) Voltage input range(mV)
0 100-950

2.5 100-1250
16 150-1750
11 150-2450

The ESP32 was the microcontroller decided to use as it
is low-cost and widely available on top of meeting with the
technical specifications.

To prove that this microcontroller matched the expec-
tations, a couple of experiments needed to be conducted
to check that the system could work under the desired
constraints before the final setup.

The system should be able to:
• Sample at 1 kHz
• Sample current and voltage with negligible phase delay

Sampling at 1 kHz is chosen because it allows to capture
signals up to 500 Hz. The 500 Hz was the cutoff frequency
decided to use in the LPF as filtering at similar frequencies
has been proven to work for these measurements [10].

To check for both these things, the two ADC pins were
shortcircuited and fed a sinusoidal signal of VPP = 2 V
with a 1.25 V offset to get a fully positive voltage wave
with 50 Hz of frequency using a function generator.

Fig. 2: Reading of the same wave from the 2 ADCs

The result can be seen in Fig. 2. The figure shows that
the wave nearly overlaps completely, being able to neglect
the phase difference. The time difference between ADC1
reading and ADC2 reading is 60 µs which is 1.08º, this
could still have an impact in pulsed currents, specially in
cases where a pulse appears when the voltage of the grid
is close to 0 V.

Fig. 2 shows that each full 50 Hz wave is completed with
20 points, indicating that the sampling is done every 1 ms
(1 kHz), this was also tested with an internal clock that
would print the time taken for every measurement.

It is essential to mention that the baud rate of the
communication can directly impact the sampling, as the
ESP32 needs to be able to finish transmitting the data
before starting the next measurement. This is extremely
important as the time the microcontroller uses to transmit
data is generally much higher than other processes of the
microcontroller, like reading the ADC.

Once this worked, the next step was to start with real
current and voltage measurements.

B. Current measurements

As this paper aims to show a robust low-cost energy
meter, a low-cost (CT) was bought (SEN0211). This CT
can read AC currents from 0 to 20 A, giving a linear AC
output from 0 to 1 V.

As shown in Fig. 3 where the transfer function of the
current probe was taken using the extension ”FRA for pi-
coscope” and the picoscope 4824, the real cutoff frequency
of the probe is closer to 10 kHz. This is different that what
is said in the datasheet, where the CT is said to have a
frequency bandwidth from 50 Hz to 1 kHz [11].
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Fig. 3: Bode plot for the magnitude of the current probe

This CT came with a module to read the current from
the microcontroller that will not be used because it reads
current as a multimeter, giving as an output the Irms, so the
raw data can not be obtained. These rms values are not the
desired ones as the approach of power orthogonality uses
the instant value of the current and voltage, and not the rms
values.

C. Voltage measurements

For the voltage readings, a differential probe will be
used. Even though this is not a low-cost component to
measure the voltage, the objective for this proof of concept
relies in the current measurements. Other more affordable
alternatives should be implemented in future versions.

The differential probe used will be the TA042 (price >
500C), using the mode with a ratio 1:100, which means the
output for the grid measurements of this probe will be an
AC reading between -3.53 V to 3.53 V.

D. Voltage shifter to read AC waves

As the ESP32 cannot read negative voltages (the readings
have to stay between the range of 0.125 V to 2.45 V
[9]), some extra hardware is needed to capture the signals
of current and voltage. For this, the circuit with resistors
from Fig. 4 will be used. The output of this circuit shifts
the voltage to possitive and attenuates the signal, as it is
described by the equation 1.

Fig. 4: Positive voltage shifter

The equation that defines the system is:

Vout = (
VSignal

R1
+

VDD

R2
)

R1R2R3

R1R2 +R3R2 +R1R3
(1)

Where VDD is the 3.3V terminal in Fig. 4.
The diodes in the circuit of Fig. 4 are clamp diodes used

for protection to ensure no voltages out of the expected
range harm the primary circuit. In the circuit, they can

just be considered short circuits that get activated when the
voltage exceeds VDD or goes below the GND value.

This circuit will be used for both measurements, the ones
with current and the ones with voltage. The AC waves are
different for both, so the circuits will vary their resistors
values.

1) CT measurements: The values for the case of the
currents, where the AC signal from the probe lies in the
range -1 to 1 V, the circuit will have the values in the table
II.

TABLE II: Values for the CT voltage divider

Component Value
R1 331Ω
R2 594Ω
R3 9.24kΩ

D1,D2 SR240

This values will transform equation 1 in (Taken into an
account VDD = 3.3 V):

Vout = 0.628 · Vsignal + 1.15(V) (2)

Where, for the max possible value of the CT,the signal
will be the one seen in Fig. 5.

Fig. 5: Plot for eq. 2 to read the CT

It should be noted that the water pump can reach peaks
higher than 20 A. According to the datasheet the maximum
current is 20 A [11] so at this point the CT would get
saturated. Also for the waterpump such high current pulses
are very high frequency, so in case they could be read these
would be filtered by the LPF.

2) Differential voltage probe measurements: As the out-
put of the differential voltage probe is also a sinewave
with positive and negative components, the topology of the
circuit from Fig. 4 will be used again. The values used can
be seen in table III.

TABLE III: Values for the differential probe voltage
divider

Component Value
R1 15kΩ
R2 9.49kΩ
R3 9.38kΩ

D1,D2 SR240

Using the values from table III combined with the equa-
tion 1 will give the next equation:

Vout = 0.239 · Vsignal + 1.25(V) (3)
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Taking into account that the differential probe works with
the ratio 1:100 probe (this means for 100 V input, the output
of the probe is 1 V), so for the grid, which had a maximum
voltage VgridP

= 353 V, the output is VsignalP = 3.53 V.
This VsignalP is the input of the circuit in Fig. 4 which
output can be seen in Fig. 6.

Fig. 6: Plot for eq. 3 to read the differential voltage probe

E. 500 Hz Low-pass filter

Although the current gets filtered by the CT, a LPF will
still be used to get a lower cutoff frequency.

This filter will have a cutoff frequency of around 500
Hz, as a filter with a close value has been proven to work
for similar power measurements in the paper [10], yet to be
published, where the objective was also to filter the higher
frequency components to provide reliable measurements.
Also this value is due to the fact that for a sampling
frequency was decided to be 1 kHz, the maximum signal
sampled can be 500 Hz (fsampling ≥ 2 · fsignal) [12], so
anything above that will be filtered.

To make this filter, a capacitor is added to the circuit in
Fig. 4.

Fig. 7: Low-pass filter topology

A simple RC LPF could not be used directly, as resistors
were already being used to influence the signal. Therefore,
once the capacitor was added, the transfer function of the
signal would be defined by the next equation:

H(S) =
R2R3

R1R2+R2R3+R1R3

1 + S · C · R1R2R3

R1R2+R2R3+R1R3

(4)

Where the cutoff frequency will be given by:

Wcutoff =
R1R2 +R2R3 +R1R3

CR1R2R3
(5)

To filter at 500 Hz, the desired value of the capacitor will
be 1.53 µF ; therefore, a 1.5 µF capacitor will be used in
the circuit, which has a cutoff frequency of 510 Hz.

Taking the Bode plot from the simulation made in LT-
Spice for frequencies from 0Hz to 10 kHz, as it can be seen
in Fig. 8, it can be seen that the cutoff frequency is indeed
at around 510 Hz.

Fig. 8: Simulated Bode plot for the voltage shiftter

This is confirmed by the theoretical plot obtained, as
shown in Fig. 9, where the simulation was also made for
frequencies from 0 Hz to 1 kHz.

Fig. 9: Theoretical Bode plot for the voltage shiftter

As a phase delay should be compensated to avoid induc-
ing errors, software compensation should be applied. To
avoid this, as it would add complexity to the code, a filter
of the same order and cutoff frequency was also applied to
the voltage signal. This will add the same phase delay to
both measurements.

As it can be hard to get the same phase delay due to
the avaliable values of capacitors, the objective will be to
obtain a phase delay as close as possible at 50 Hz.

As it can be seen from the phase in the Bode diagram in
Fig. 9, the phase delay at 50 Hz is 5.700.

For this, following the same steps as before, a filter was
designed with a cutoff frequency of 510 Hz. The desired
capacitor value would be 88 nF . In the real circuit a
capacitor with the value of 82 nF is used, which gives
a phase delay of 5.380 for 50 Hz.

F. Alternative design for AC readings

An alternative design could also have been used to
measure the current and grid voltage.

This design would use a full bridge rectifier. This flips
the negative voltage into positive so the microcontroller
can read the signal. To differenciate the negative from the
positive parts of the signal, zero cross-detection can be used.

Although this method to read the AC voltages could seem
more straightforward, the reality is that the voltages the
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ESP32 ADCs can capture does not go as low as 0V, as it
can be seen from the table I.

This minimum voltage can be a problem, as it can be
deduced from Fig. 11, a simulation from the circuit in Fig.
10. It can be seen that the signal read by the microcontroller
misses some information as it clips when trying to reach 0V.

Fig. 10: Full bridge rectifier circuit

Fig. 11: Simulation with the input sinewave (blue), the
output of the full bridge rectifier(green) and the signal the

ESP32 would read(red)

This method could be used with an STM32F4, where the
ADCs of this family of microcontrollers can read from 0
V.

III. SOFTWARE DESIGN

In this section a design and analysis of the software will
be given. A flowchart with the main functionality of the
code can be seen in Fig. 12.

Fig. 12: Flowchart of the code’s functionality

A. Code functionality

The microcontroller will be programmed in C language
using the Espressif extension in Visual Studio Code. This

is the extension from the official coding IDE from the
manufacturer of the product.

The microcontroller works as follows:
It uses the 2 ADCs and a timer interrupt to sample

constantly at 1 kHz. On top of this, the UART baud rate was
configured at 460800 bps to send the data through a USB
port to the computer fast enough so it does not interfere with
the sampling. The code has an option to use multisampling
for the ADC readings to compensate for the accuracy in
readings, that option is not used to avoid introducing a phase
delay.

The code starts by configuring the system’s hardware
to work as intended, configuring the UART0, the ADC1,
ADC2 and Timer0. In addition, the watchDog, which re-
starts the code if it is not correctly handled, is disabled to
simplify the code.

The code gets to an infinite loop where it waits and runs
when the interrupt of the Timer gets activated.

In the interrupt, the ESP32 gets the readings of the 2
ADCs. It calculates the real value of the signal from the
attenuated measurements. After every 20 readings, which
is one complete cycle, it updates the value of power(using
the formula P =

∑20
n=1 Vn · In, where n is each reading)

and sends this value along with the readings of current and
voltage.

B. Data gathering
In this project, it is essential to save the data so it can be

analyzed and validated. For this, a code with Python was
made where the serial port of the computer is read and the
data saved in a .csv file.

This code also has the functionality to process the gath-
ered data and plot it so it is easier to analyze and validate
it.

IV. MEASUREMENTS

To validate the measurements taken, parallel to the
setup from Fig. 1, the precision power analyzer Yokogawa
WT5000 was used as a reference. The measurement setup
can be seen in Fig. 13.

Fig. 13: Measurement and validation setup

This power analyzer monitors current and voltage to mea-
sure power precisely, with 0.3% precision for AC readings
[13]. The measurements for this are taken in a period of time
using Matlab. The output of this script gives the average
power consumption in the time taken. This data will be
compared to the data obtained from the measurements with
the microcontroller.

As loads for the experiments, three types will be used
for validation: no load, linear and non-linear loads.

The no load setup will be used in order to check for
major deviations present in the system.

As a linear load, a heater with multiple configurations
will be used. This heater has a knob that can be turned to
get different consumption levels.
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As a non-linear load, a water pump will be used. This
water pump has up to 10 configuration levels that can be
changed using a remote controller.

The measurements were taken for current and volt-
age, and used to calculate the power in the ESP32. As
previously explained, the power would be calculated per
cycle; this means in 20 measurements taken per cycle (as
n = fsampling/fsignal), the power would be

P =

∑20
n=1 V (n) · I(n)

20
(6)

The information on the three parameters, voltage, current
and power, is then sent to the computer. At the same time,
the Yokogawa WT5000 was used as a reference to get an
average of the power consumed (these measurement are not
fully simultaneous as it was not possible to syncronize the
readings).

These measurements are post-processed (PP), where the
DC offset of the voltage signal is eliminated using Python
to check for the validity of the data.

The decision to neglect the DC voltage is based on
its nature. A differential probe is unable to measure DC
components because its output, given by Vout = V+ − V−,
cancels out any DC component. Therefore, any DC offset
does not originate from this probe.

Also, for the current probe, being a CT makes it only
able to read AC currents; as for the DC currents, it would
have a 0 output, making it also impossible to have a DC
offset that is not induced by the shifter circuit.

Despite from the previously explained, the appearance
of this DC offset makes sense, as the voltage shifter circuit
of Fig. 4 induces a voltage offset to be able to read the
entire wave. The offsets in the components values make
it very hard to calculate the DC offset exactly. It should
also be taken into an account that the temperature of the
components can change their values.

Due to this, the post-processing data will be the one
analyzed for validation. Later, it will be explained how to
get rid of the DC offsets in future measurements so post-
processing is not needed to obtain the same measurements.

The measurements will be presented then as non-
processed data, which will be the ones marked ESP32
measurements, PP data, marked as PP and the Yokogawa
WT5000, marked as Y measurements. This will allow to
make a good comparison and show the importance of taking
out the DC offset from the measurements.

The experiments made will be presented in the following
order; first, no load measurements; after this, measurements
for linear loads, before and after adding a LPF, and finally,
non-linear loads.

For this, the testing setup is the one that can be found in
Fig. 13. Fig. 14 shows a picture of the actual lab setup.

Fig. 14: Lab setup

A. Measurements for no load

To validate the system, no load measurements were taken.
This can ensure that there are no significant deviations that
could result in future mistakes.

Fig. 15 shows one of the measurements presented for the
no load configuration.

Fig. 15: No load measurement

Table IV shows the power measured in the different
experiments done with no load.

TABLE IV: Power in the no load configuration

Time
(s)

PESP32

(W)
PPP

(W)
9.5 -8.91 -0.64
12 -8.99 -0.60

47.5 -9 -0.48
64 -25.8 -0.61

As shown in table IV, there is a pretty constant deviation
when measuring the no load setup of around -0.6 W
for the PP data. In the table it can also be seen that
the measurements from the ESP32 have a much more
considerable deviation. This finds its explanation on the DC
offset component from both measurements.

The DC offset would not be a problem, but due to the
non ideality of the components, the DC offset was not a
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straightforward calculation. The resistors value can vary
with changes in the temperature of the circuit and a small
value of them can have a big impact on the DC offset when
re-scaling. Also the parasitic resitance from the capacitor
was not taken into an account.

It can be seen from Fig. 15 that the readings have a lot
of noise, as the power measured oscillates between values
around ±20 W having an average over time close to 0 W.
These high peaks come from the low accuracy of the ADC.

This can still be considered an acceptable value as it is
very low (especially when comparing this offset to the total
consumption a household could have in the long term), and
it seems by the experiments done that it is very constantly
close to 0 over time.

Although the value seems very stable in the different
measurements, it cannot be proven to be just a coincidence,
and therefore adding 0.6 W to compensate for this deviation
could end up being a new source of errors.

B. Measurements for linear loads

This section shows the measurements for the linear loads
before and after adding the LPF. The obtained results can
be seen in table V.

TABLE V: Errors measured in linear loads

Load type LPF Load size (W) Error ESP32 (%) Error PP (%)
1800 0.57 0.32

No 800 3.79 0.92
Heater 310 5.67 -0.28

(Linear) 1800 0.94 0.50
Yes 800 4.66 0.69

310 6.00 -0.82

1) Measurements with no LPF: Proving that the energy
meter works for linear loads before adding the filtering is
necessary to validate the final system. For this, a couple of
experiments using an electric heater were made.

The three experiments done were for the heater with a
1800 W configuration, 800 W configuration and 310 W
configuration. The results can be found in the table V.

The measurement for 1800 W configuration can be seen
in Fig. 16. The rest of the measurements can be found in
the appendix A.

Fig. 16: Measurements for heater in 1800 W configuration

Taking a look at the table V it can be seen that both
measurements are close to the reference measurement given
by the Yokogawa, being the PP measurement slightly better.

As the next results are checked, it can be seen that the
PP measurements are always under 1% of deviation. In
contrast, as explained in the previous sections, the deviation
in power calculated by the ESP32 grows the smaller the
power consumption is (3.76% for 800 W configuration and
5.67% for 310 W configuration).

This makes sense as the DC deviation will have more
weight in smaller measurements.

2) Measurements with LPF: Once the filter was added,
a new set of measurements were taken.

First, a measurement of current and voltage was done to
ensure that the filters used provided the same phase shift or
a neglectable difference. This can have a big impact when
dealing with non-linear loads, as the peaks of current are
dependent in the phase of the voltage to give the correct
power measurement. This result can be seen in Fig. 17.

Fig. 17: Current and voltage after filtering

As seen in Fig. 17, the phase difference between them is
negligible. For this reason, as expected, there was no need
to compensate digitally for the phase difference.

After this, the same experiments as in the previous
setup were taken. The objective of this is repeating the
experiments to double-check if the system needs again
calibration.

For 1800 W, the results can be seen in Fig.18.
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Fig. 18: Measurements for heater in 1800 W configuration
with filter

As seen in table V, the results are within the expectations,
being very similar to the ones obtained for the measure-
ments with no filter.

In Fig. 18 it can be seen a dip of consumption in the
PP data, which cannot be seen in the measurements of
the ESP32, most likely this could be due to an error in
the communication between the microcontroller and the
computer, as the baud rate is half the maximum baud rate
that the microcontroller supports and the faster the baud rate
the easier it is to have transmission errors (like bit errors).

This statement can be supported by Fig. 19 where it can
be seen that the voltage does not follow (only in one point)
the expected value for the grid, and this transmission error
would explain the difference of the dip in the PP power and
the power calculated by the ESP32.

Fig. 19: Error in current measurement from Fig. 18

As it can be seen from these experiments, all the read-
ing have been more than satisfactory having a maximum
deviation of less than 1%.

C. Measurements for non-linear loads

Lastly, the measurements for non-linear loads were made.
For this, a water pump with different consumption levels
was used. The experiments were done for three out of the
ten possible consumption levels, 10, 5 and 1.

These are the most important measurements of the
project, as they are the ones causing problems in the
measurements of the static meters and the aim of this project
is to prove how to measure them.

To begin a comparison between the current and voltage
readings will be displayed. For this the picoscope was
used to capture similar measurements as a reference for
comparison.

Later the power measurements will be shown taking again
the Yokogawa WT5000 as reference for the measurements.

1) Currents and voltage in non-linear loads: As the
importance of the non-linear loads rests on the current
measurements, some current and voltage measurements
from the power measurements displayed to be studied.

Firstly the current in the level 10 configuration can be
seen in Fig. 20

Fig. 20: Current and voltage measurement from power
(level 10) in Fig. 39

For comparison, current and voltage measurements were
also taken using the picoscope (not simultaneously). The
result can be seen in Fig. 21.

Fig. 21: Current and voltage measurement for water pump
in level 10

Checking Fig. 20 it can be seen a spike made by 2
points, which can be considered similar to the one in Fig.
21 captured by the picoscope, although it seems some infor-
mation is still missing. They are not the same amplitude,
but this could be because they are not synchronized, and
the consumption for the water pump is also not a constant
value.
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It should be noted that the water pump changes the phase
of the peaks and the amplitude to get different instant power,
so at different times, for the same level, we can still get
different readings with the same tools.

It can also be seen that the zero-current measured by
the microcontroller has some significant noise. This values
of this noise in the current should cancel out in extended
periods, averaging 0, as it happens for measurements with
no load.

It is also essential to check the signals measured for the
lower levels of functionality of the water pump. These levels
have been the ones to give the most problems in other
research where the deviations came up to be, as said in
the introduction, up to 2675% [4].

Therefore the same procedures were made for the water
pump in levels 5 and 1. The figures for level 5 can be found
in the appendix A.

For level 1, the measured current and voltage can be seen
in Fig. 22 and the readings from the picoscope can be seen
in Fig. 23.

Fig. 22: Current and voltage measurement from power
(level 1) in Fig. 27

Fig. 23: Current and voltage measurement for water pump
in level 1

In this case, again, the plot from Fig. 22 shows a very
similar result to the one found in Fig. 23. The current peaks
are much bigger than for level 10, but also higher frequency,
as they get captured only with one measurement. Also, these
peaks are found in a phase where the grid voltage is much
lower than for the level 10 configuration.

It is also good to check that the current captured by
the picoscope was up to 24 A at some points, while the
maximum read by the microcontroller was never above 15
A. Althought different probes were used, for the picoscope
and the ESP32, and as said in the hardware analysis the
CT used cannot read more than 20 A, this has its origin in
the filter, as the point where it measures 24 A (where the
CT should measure 20 A) is very short in time, so it gets
filtered.

Another difference can be seen not in the current mea-
surement but in the voltage, as it can be seen the voltage
has a dip in the readings gotten from the picoscope in
Fig. 23, which is not captured in the measurements done
with the microcontroller, this is expected as the dip is high
frequency and the sampling only allows it to be represented
by one point, the voltage there can truly have a dip, but
it will not be visible. For these voltage measurements the
same differential probe wa used, so the differences are more
visible in these measurements.

In some measurements some change in the DC offset of
the current can be seen. Fig. 24 is an example where this
DC offset is seen.

Fig. 24: Two seconds of current readings from Fig. 35

This did not seem to cause a negative effect on the
readings, as this still gave similar power readings as before
because there was a positive and negative peak in power that
got cancelled, as it can be seen in Fig. 35 in the appendixA,
so it can be clearly said that these high frequency changes
in DC offset get cancelled in the PP measurements, not so
much in the ESP32 measurements where it can be seen a
DC component in the power as well.

2) Power measurements: The power calculated for these
experiments can be seen in table VI
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TABLE VI: Errors measured in non-linear loads

Water pump
level

(Non-linear)

Time
(s)

PY

(W)
PESP32

(W)
EESP32

(%)
PPP

(W)
EPP

(%)

15 99.8 53 -46.5 96.6 -3.24
15 102.5 57.7 -43.7 97.4 -4.95

10 20 116.1 101.3 -12.8 109.1 -6.05
40 135.7 95.0 -30 106.2 -21.7
40 132.1 86.5 -35.2 108.3 -18.0
40 116.5 94.7 -18.7 106.1 -8.93
40 67 52.9 -21.0 63.5 -5.25

5 40 68.1 53.2 -21.8 63.8 -6.28
40 26.9 19.4 -34.3 31.6 6.61

1 40 26.9 22.9 -22.5 32.3 9.09
40 18.4 22.0 19.5 32.0 74

.
The errors calculated do not fall into the expectations.The

minimum error for PP measurements is 3.24% and up until
-74%. Although many of the measurements are below 10%
of deviation this seems to be more arbitraty than a patern.
At the same time, the power calculated by the ESP32 has
a minimum error of -12.8%, being the highest -46.5%.

Firstly the consumption for level 10 was measured. Six
different measurements were taken, two for 15 seconds, one
for 20 seconds, and three for 40 seconds, to avoid deviations
due to the Yokogawa not being fully syncronized with the
ESP32. The relevant data can be seen in the table VI, and
one of the measurements for 40 seconds can be found in
Fig. 25. The rest of the measurements can be found in the
appendix A.

Fig. 25: Measurement water pump level 10
(PY = 135.7W )

The measurements are displayed in chronological order.
First the measurements for 15 and 20 seconds were taken.
These measurements had an acceptable value, having their
highest deviation at 6.05% in PP data. But after the mea-
surements for lower configurations it was seen that the
non-syncronization between the ESP32 and the Yokogawa
WT5000 was causing big discrepances. Therefore the mea-
surements were also taken for longer time periods.

The new measurements for 40 seconds showed a bigger
devation than expected taking into an account that the
previous had been much better.

After this, two measurements for the water pump in
level 5 were taken. These measurements were done for 40
seconds. The results can also be found in table VI, and one
of the measurements can be seen in Fig. 26.

Fig. 26: Measurement water pump level 5 (PY = 68.1W )

The last set-up for measurements was done using level
1. Three measurements were done for 40 seconds each.

The results can be found in the table VI, and one of the
measurements can be seen in Fig. 27.

Fig. 27: Measurement water pump level 1 (PY = 29.6W )

These measurements also show a similar performance
than before, having one of the experiments for level 1,
which is the most challenging measurement, up to -74%
of deviation.

From the table VI, it can be seen that the values of
the measurements are very repetitive. This could find an
explanation in the peaks being captured at the exact moment
of the voltage phase, having similar power consumption
per cycle. This makes the most probable problem that the
microcontroller cannot capture important parts of the signals
when sampling at this frequency, such as the voltage dip of
the grid or some parts of the current signal.

V. NEXT STEPS

This section discusses what could have been done differ-
ently, knowing what is known after this research.

As seen from the measurements, the DC offset introduced
by the voltage shifter was a big problem throughout the
process and could only be solved with post-processing.

This problem could be solved by saving significant
amounts of data and then processing them similarly to
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how it is done in Python. This would take time where the
ESP32 stops reading unless the double core is partitioned to
handle both tasks simultaneously, but this could still impact
the performance other tasks. Therefore, a more suitable
direction is using the alternative measurement technique
shown in the analysis, the full bridge rectifier.

For this, a change of microcontroller should also be done,
as it was shown in the analysis part that the ADCs of
the ESP32 cannot read up to 0 V value, which would be
necessary for this application.

The STM32F4 family of microcontrollers is a suitable
option, they are still a widely available microcontroller, and
many models in this family of STM32 microcontrollers have
multiple ADCs that can read 0 V signals.

As discussed, the sampling frequency should be increased
to capture more information about the signal. This should
be easily doable in both ESP32 and STM32F4, but it needs
to have some constrains taken into an account. During the
project, much time was spent coding the communication be-
tween the ESP32 and the Python script to save and process
the data. There were problems with the class of the data
sent by the microcontroller, which directly impacted the
transmission time and, as a result, the system’s capability
to sample at the correct frequency. Therefore this should be
taken into an account when applying these changes.

Multisampling is also an option that should help filter the
high-power spikes produced by the inaccuracy of the ADC
and give a more reliable power measurement in shorter
periods. This could be applied by measuring both channels
alternatively on each sample so it does not need compensa-
tion for the phase shift, instead of how it is now designed
in the code, which, if used, still needs compensation for the
phase difference.

VI. CONCLUSION

This research aimed to create a non-intrusive robust
low-cost energy meter focusing in the low-frequency com-
ponents of the current measurements. For this, the least
amount of extra hardware had to be used and still be able to
read correctly, especially the non-linear loads, which have
been a source of severe mistakes in energy measurements.

For this, an ESP32 was combined with a low-cost CT,
a differential voltage probe and some extra hardware based
on resistors and capacitors to design a LPF. Although the
differential probe will not be used in the future to read
voltages, as it is pretty expensive, the main objective of
this paper is to focus more on the current measurements.

The measurements show that linear loads have very
satisfying results after post-processing (always less than 1%
deviation). Still, for the non-linear loads, the results could
be more satisfactory (never less than 3.24% deviation).

The problems with non-linear loads, as discussed in the
paper, are most likely due to the low sampling that pre-
vents the microcontroller from capturing all the information
needed from the signal. Considering that the filtering is
done at 500 Hz, the sampling rate was set to the minimum
allowed value to capture the signal’s information, which is
1 kHz. A higher sampling frequency (while maintaining the
filtering) would allow to capture more points of the signal.

As discussed, the next step this project should follow is
changing the microcontroller to one that can read from 0
V. This will allow the use of a full-bridge rectifier for the
measurements avoiding the need to post-process the data in

the computer to get rid of the DC offsets that appear in the
current and voltage measurements. An STM32F4 with at
least 2 ADCs fits the project well.

Using a higher sampling frequency should also be one of
the next steps, but some constraints with the transmission
of data to the computer should be considered as it might
interfere with the sampling frequency.

Although the power measurements of the non-linear loads
were not as precise as expected when starting the project,
it can be seen from the plots of current and voltage that the
individual measurements show a lot of potential.

Therefore the objective of this project, of proving that
a robust low-cost energy meter can be done, still needs
some more time and testing to be entirely answerable.
Nevertheless, it shows a lot of promise with the proposed
changes in hardware and software.

GLOSSARY

CT Current transducer. 2, 3, 6, 9, 11

LPF Low-pass filter. 2–4, 6, 7, 11

PP Post-processed. 6, 7
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APPENDIX

A. Additional measurements

In this section all the measurements can be found.

Fig. 28: First no load measurement

Fig. 29: Second no load measurement

Fig. 30: Fourth no load measurement

1) Measurements for no load:

Fig. 31: Measurements for heater in 800W configuration

2) Measurements for linear loads: 32

Fig. 32: Measurements for heater in 310W configuration

Fig. 33: Measurements for heater in 800W configuration
with filter
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Fig. 34: Measurements for heater in 310W configuration
with filter

Fig. 35: Measurement water pump level 10 (PY = 99.8W )

Fig. 36: Measurement water pump level 10
(PY = 102.5W )

Fig. 37: Measurement water pump level 10
(PY = 116.1W )

Fig. 38: Measurement water pump level 10
(PY = 116.5W )

Fig. 39: Measurement water pump level 10
(PY = 132.1W )



14

Fig. 40: Measurement water pump level 5 (PY = 67.0W )

Fig. 41: Measurement water pump level 1 (PY = 29.6W )

Fig. 42: Measurement water pump level 1 (PY = 18.4W )

3) Measurements for non-linear loads:

4) Currents and voltage in non-linear loads: 43

Fig. 43: Current and voltage measurement from power
(level 5) in Figure 26

Fig. 44: Current and voltage measurement for water pump
in level 5
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B. Code for the ESP32

The code developed for the microcontroller is the next

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include <unistd.h>
5 #include "freertos/FreeRTOS.h"
6 #include "freertos/task.h"
7 #include "soc/soc_caps.h"
8 #include "esp_log.h"
9 #include "esp_adc/adc_oneshot.h"

10 #include "esp_adc/adc_cali.h"
11 #include "esp_task_wdt.h"
12 #include "esp_adc/adc_cali_scheme.h"
13 #include "esp_timer.h"
14 #include "esp_sleep.h"
15 #include "esp_system.h"
16 #include "sdkconfig.h"
17 #include "driver/gpio.h"
18 #include "driver/uart.h"
19

20

21 //WatchDog initialization (set to 1 to initialize -> if it's initialized the function to refresh ...
needs to be called)

22 #define WATCHDOG_STATE 0
23

24 #define PRINT_STATE 0 //put to 1 to print a line that indicates that the configurations are done
25

26 //ADC Channels and attenuation chosen
27 #define ADC1_CHAN ADC_CHANNEL_4 //pin D32 of the board
28 #define ADC2_CHAN ADC_CHANNEL_0 //pin D4 of the board
29 #define ADC1_ATTEN ADC_ATTEN_DB_11
30 #define ADC2_ATTEN ADC_ATTEN_DB_11
31

32 //Timer and sampling
33 #define N_MULTISAMPLING 1 //number of readings for each sample (more samples -> bigger phase shift)
34 #define SAMPLING_FREQUENCY 1000 //select the sampling frequency (in Hz), may have ...

problems if set > 2kHz
35 #define GRID_FREQ 50 //frequency of the grid, needed for some calculations
36 #define TIME_US_TIMER 1000000/(SAMPLING_FREQUENCY) //value passed to the timer interruption
37 #define SAMPLES_PER_CYCLE SAMPLING_FREQUENCY/GRID_FREQ //number of samples per cycle for power ...

cycle calculation
38

39 //Attenuation of the resistors attached to transistor and voltage probe
40 #define TRANSDUCER_BOARD_ATTENUATION 0.5488
41 #define DIFF_PROBE_BOARD_ATTENUATION 0.245629798
42 #define VOLTAGE_OFFSET_TRANSDUCER 1400 //mV offset given by the resistor board attached to the ...

current probe
43 #define VOLTAGE_OFFSET_DIFF_VP 1280 //mV offset given by the resistor board attached to the ...

differential voltage probe
44 #define CURRENT_PROBE_SCALING 20 //current probe scaling (current 1:20)
45 #define DIFFERENTIAL_PROBE_SCALING 100 //diferential probe scaling (current 1:100)
46

47

48 //Baudrate of UART0 communication (if it's too small it might not be able to sample fast,
49 // if the sampling frequency needs to be bigger than 2kHz, or there is a lot of information
50 // to be sent there is the possibility to boost the baudrate to 922190, according to datasheet)
51 #define BAUDRATE 460800 //bps
52

53

54 //initialization of functions
55 static bool adc_calibration_init(adc_unit_t unit, adc_atten_t atten, adc_cali_handle_t *out_handle);
56 int make_ADC_read(adc_oneshot_unit_handle_t handle_ADC, adc_cali_handle_t handle_CAL,adc_channel_t ...

chan, int N_SAMPLES);
57 static void sampling_timer_interrupt(void* arg);
58 void timer_INIT();
59 void ADCs_INIT();
60 void system_INIT();
61 void UART_init();
62 void power_calculation (int current_read, int voltage_read);
63

64

65 //global handles for the use of ADCs
66 adc_oneshot_unit_handle_t adc1_handle;
67 adc_oneshot_unit_handle_t adc2_handle;
68 adc_cali_handle_t adc1_cali_handle = NULL;
69 adc_cali_handle_t adc2_cali_handle = NULL;
70

71

72

73 void app_main(void)
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74 {
75 system_INIT(); //Hardware initialization of the microcontroller
76

77

78 while (1); //Code runs in the interruption
79

80

81 }
82

83 //..............USER FUNCTIONS.............................//
84

85 void power_calculation (int current_read, int voltage_read)
86 {
87 float voltage_grid = 0, current_grid = 0;
88 float instant_power;
89 static uint8_t cycle_counter = 0;
90 static float total_power_cycle = 0, power = 0;
91

92 //transform the voltage readings into the proper values of current and voltage of the grid
93 current_grid = CURRENT_PROBE_SCALING * (current_read - ...

VOLTAGE_OFFSET_TRANSDUCER)/TRANSDUCER_BOARD_ATTENUATION; //scale_probe * (reading - ...
offset) / transfer_factor

94 voltage_grid = DIFFERENTIAL_PROBE_SCALING * (voltage_read - ...
VOLTAGE_OFFSET_DIFF_VP)/DIFF_PROBE_BOARD_ATTENUATION;

95

96 instant_power = current_grid * voltage_grid; //calculate the instant power of the circuit
97

98 total_power_cycle += instant_power; //add the instant power to the total power in each cycle
99

100 cycle_counter++; //each interaction update cycle counter
101

102 if(cycle_counter ≥ SAMPLES_PER_CYCLE) //When a cycle is completed we update the power value ...
for that cycle

103 {
104 // printf("%f\n\r",total_power_cycle);
105 power = total_power_cycle / cycle_counter;
106 // otherPower = total_power_cycle/cycle_counter;
107 cycle_counter = 0;
108 total_power_cycle = 0;
109 // printf("%f,%f,%f,%f\n\r", voltage_grid,current_grid,power,otherPower); //send ...

information through the serial port
110 // while(1);
111

112 }
113

114

115 printf("%f,%f,%f\n\r", voltage_grid,current_grid,power); //send information through the serial port
116

117 // printf("%ld,%ld\n\r", voltage_grid,current_grid);
118 }
119

120

121 static void sampling_timer_interrupt(void* arg) //timer interruption, main code runs here
122 {
123 int ADC1_v, ADC2_v;
124

125 /*
126 uint64_t time, time2 = 0;
127 time = esp_timer_get_time(); //time readings can be used to debug the ammount of time it takes ...

to execute the code
128 printf("%lld\n\r",time);
129 */
130

131 //read the voltage in the 2 channels
132 ADC2_v = make_ADC_read(adc2_handle,adc2_cali_handle,ADC2_CHAN, N_MULTISAMPLING);
133 ADC1_v = make_ADC_read(adc1_handle,adc1_cali_handle,ADC1_CHAN, N_MULTISAMPLING);
134

135 power_calculation(ADC2_v,ADC1_v);
136

137 /*
138 //Debugging time?? uncomment these lines and line 97 to check the time taken to execute the code
139 time2 = esp_timer_get_time();
140

141 printf("%lld\n\r", time2-time);
142 */
143

144 }
145

146

147 //Function to give back the voltage reading (USER CALL TO READ CHANNEL)
148 int make_ADC_read(adc_oneshot_unit_handle_t handle_ADC, adc_cali_handle_t handle_CAL,adc_channel_t ...

chan, int N_SAMPLES)
149 {
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150 int register_value = 0, voltage_read = 0, raw;
151

152 //for loop to use multisampling (loop doesn't execute when N_SAMPLES = 1)
153 for(int i = 0; i < N_SAMPLES; i++)
154 {
155 adc_oneshot_read(handle_ADC, chan, &raw);
156 register_value = register_value + raw;
157

158 }
159

160

161 //get the average of multiple readings (Up to this point we have a register value)
162 register_value = register_value / N_MULTISAMPLING;
163

164 //Transform register into voltage
165 adc_cali_raw_to_voltage(handle_CAL, register_value, &voltage_read);
166

167 return voltage_read;
168 }
169

170

171

172 //....................INITIALIZATION FUNCTIONS..................................//
173 /*
174 * The functions below are mostly taken from the datasheet, they can be changed mostly from the
175 * definitions at the beginning of the code
176 */
177

178

179 //Function to give back the voltage after the ADC reading (USED IN FUNCTION make_ADC_read)
180 static bool adc_calibration_init(adc_unit_t unit, adc_atten_t atten, adc_cali_handle_t *out_handle)
181 {
182 adc_cali_handle_t handle = NULL;
183 esp_err_t ret = ESP_FAIL;
184 bool calibrated = false;
185

186 if (!calibrated) {
187

188 adc_cali_line_fitting_config_t cali_config = {
189 .unit_id = unit,
190 .atten = atten,
191 .bitwidth = ADC_BITWIDTH_DEFAULT,
192 };
193 ret = adc_cali_create_scheme_line_fitting(&cali_config, &handle);
194 if (ret == ESP_OK) {
195 calibrated = true;
196 }
197 }
198

199 *out_handle = handle;
200

201 return calibrated;
202 }
203

204

205

206 //Configuration of the ADC, both used in ONE_SHOT mode
207 void ADCs_INIT(){
208

209 //ADC1
210 adc_oneshot_unit_init_cfg_t init_config1 = {
211 .unit_id = ADC_UNIT_1,
212

213 };
214 ESP_ERROR_CHECK(adc_oneshot_new_unit(&init_config1, &adc1_handle));
215

216 //ADC2
217 adc_oneshot_unit_init_cfg_t init_config2 = {
218 .unit_id = ADC_UNIT_2,
219 .ulp_mode = ADC_ULP_MODE_DISABLE,
220 };
221 ESP_ERROR_CHECK(adc_oneshot_new_unit(&init_config2, &adc2_handle));
222

223

224 //ADCs Calibration Init
225 adc_calibration_init(ADC_UNIT_1, ADC1_ATTEN, &adc1_cali_handle);
226 adc_calibration_init(ADC_UNIT_2, ADC2_ATTEN, &adc2_cali_handle);
227

228 //ADCs load Config
229 adc_oneshot_chan_cfg_t config = {
230 .bitwidth = ADC_BITWIDTH_DEFAULT,
231 .atten = ADC1_ATTEN,
232 };
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233

234

235 ESP_ERROR_CHECK(adc_oneshot_config_channel(adc1_handle, ADC1_CHAN, &config));
236 ESP_ERROR_CHECK(adc_oneshot_config_channel(adc2_handle, ADC2_CHAN, &config));
237

238 if(PRINT_STATE)
239 printf("ADCs initialized succesfully\n\r");
240 }
241

242 //Timer initialization, esily configurable time from the defines at the beginning of the code
243 void timer_INIT()
244 {
245 //Timer to handle sampling
246 const esp_timer_create_args_t sampling_timer_args = {
247 .callback = &sampling_timer_interrupt,
248 .name = "sampling"
249 };
250

251 esp_timer_handle_t sampling_timer;
252 ESP_ERROR_CHECK(esp_timer_create(&sampling_timer_args, &sampling_timer));
253

254 //Start running the timer
255 ESP_ERROR_CHECK(esp_timer_start_periodic(sampling_timer, TIME_US_TIMER));
256

257 if(PRINT_STATE)
258 printf("Timer initialized succesfully\n\r");
259 }
260

261 //UART0 configuration, to change the baudrate do it from the defines at the beginning of the code
262 void UART_init() {
263 if (uart_driver_install(UART_NUM_0, 2*1024, 0, 0, NULL, 0) != ESP_OK) {
264 // ESP_LOGE(TAG, "Driver installation failed");
265 vTaskDelete(NULL);
266 }
267

268 uart_config_t uart_config = {
269 .baud_rate = BAUDRATE,
270 .data_bits = UART_DATA_8_BITS,
271 .parity = UART_PARITY_DISABLE,
272 .stop_bits = UART_STOP_BITS_1,
273 .flow_ctrl = UART_HW_FLOWCTRL_DISABLE,
274 .source_clk = UART_SCLK_DEFAULT,
275 };
276

277 uart_param_config(UART_NUM_0, &uart_config);
278

279 if(PRINT_STATE)
280 printf("UART0 initialized succesfully\n\r");
281 }
282

283 //call the initialization functions
284 void system_INIT()
285 {
286 //WatchDog de-initialization?
287 if(!WATCHDOG_STATE)
288 esp_task_wdt_deinit();
289 ADCs_INIT();
290 timer_INIT();
291 UART_init();
292

293 if(PRINT_STATE)
294 printf("System initialized succesfully\n\r");
295 }
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