
Dynamic variable reordering for
Binary Decision Diagrams

Master Thesis by

Andrej Pištek

Graduation committee:
dr. T. van Dijk

dr.ir. M. van Keulen
dr.ing E.M. Hahn

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)
Formal Methods and Tools (FMT)

Enschede, The Netherlands

August 15, 2023

Abstract

Binary Decision Diagrams (BDDs) are data structures that represent and manipulate
Boolean functions efficiently. Variable ordering in BDDs determines the sequence in
which variables are assigned, impacting their compactness and performance. In this
thesis, we have researched, implemented and evaluated the dynamic variable reorder-
ing in the multi-core BDD package Sylvan. We cover how Rudell’s sifting algorithm with
parallel variable swap enables dynamic reordering in Sylvan. Also, we show why hash
maps with chaining, reference-based garbage collection, and roaring bitmaps emerge
as optimal strategies for efficient variable swaps, with the potential for future enhance-
ments outlined. Optimal values for tuning parameters to improve the reordering perfor-
mance are identified, with scaling effects observed in parallelisation. Finally, we evalu-
ate the results with a series of safety game benchmarks, among which Sylvan reordering
outperforms the state of the art CUDD BDD package for sufficiently large samples.

II

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Binary Decision Diagrams . 3
2.2 Sifting algorithm . 6
2.3 Lace . 10
2.4 Sylvan . 11
2.5 CUDD . 13
2.6 Usecases of BDDs . 13
2.7 Safety games . 14

3 Related work 16
3.1 Symmetry sifting . 16
3.2 Group sifting . 17
3.3 Lower bounds in dynamic variable reordering 18
3.4 Dynamic variable reordering scheduling 20
3.5 Evaluation of BDD ordering heuristics 20

4 Research Methodology 22

5 Sylvan hash table 25
5.1 Sylvan hash map . 25
5.2 Chaining . 26
5.3 Chaining vs probing . 28
5.4 Mark-and-sweep vs reference counting 29
5.5 Conclusions . 29

6 Adjacent variable swap 30
6.1 Efficient bitmap traversal . 30
6.2 Roaring bitmaps . 31
6.3 Variable swap phase 0 . 32
6.4 Variable swap phase 1 . 33
6.5 Variable swap phase 2 . 34
6.6 Garbage collection . 37
6.7 Variable swap workflow . 38

III

7 Sifting 40
7.1 Variable interaction . 40
7.2 Dynamic lower bounds . 41
7.3 Rudell’s sifting algorithm . 44
7.4 Reordering configurations and callbacks 46

8 Evaluation of the dynamic variable reordering 49
8.1 Experimental setup . 49
8.2 Reordering procedure profiles . 50
8.3 Regression tests . 53
8.4 Safety games . 57
8.5 Conclusions . 59

9 Reordering user guide 62

10 Discussion 64
10.1 Sifting parallelization . 64
10.2 Roaring bitmaps and thread-safety . 65
10.3 Swapping non-interacting variables . 65
10.4 Automatic reordering . 66
10.5 Reordering heuristics . 66
10.6 Methodology . 66

11 Conclusions 68

IV

List of Abbreviations

ADD Algebraic Decision Diagram
BDD Binary Decision Diagram
CUDD Colorado University Decision Diagram
MTDD Multi-Terminal Decision Diagram
OBDD Ordered Binary Decision Diagram
ROBDD Reduced Ordered Binary Decision Diagram

V

List of Figures

2.1 Binary Decision Diagrams depicting four Boolean formulas. 4
2.2 Shannon cofactors as sub-trees . 4
2.3 Binary decision diagram variable ordering. 5
2.4 Reduction process of a BDD. 6
2.5 A BDD with variable x at level i . 7
2.6 Variable swap between x and y . 7
2.7 Variable swap between x1 and x2 with left children resulting in more nodes 8
2.8 Variable swap between x1 and x2 resulting in the same number of nodes 8
2.9 Sifting algorithm example . 10
2.10 Internal MTBDD node structure . 12
2.11 Synthesis problem with Controller (unknown) and System 15
2.12 Example of when a safety game is solved [35] 15

4.1 Research methodology workflow . 23

5.1 Hash and data table designs with chaining 27
5.2 Example of the Sylvan hash map with chaining 27
5.3 Hash maps with chaining and probing comparison 28

6.1 Bitmap example . 31

7.1 Variable interaction between x and y . 41
7.2 Variable interaction matrix limitation . 41

8.1 Manual reordering reduce_heap and varswap profiles 51
8.2 Manual reordering mrc_gc and varswap_p0 profiles 52
8.3 Manual reordering varswap_p1 and varswap_p2 profiles 52
8.4 Semi-automatic reordering reduce_heap and varswap profiles 52
8.5 Semi-automatic reordering mrc_gc and varswap_p0 profiles 53
8.6 Semi-automatic reordering varswap_p1 and varswap_p2 profiles 53
8.7 Max growth tuning . 54
8.8 Nodes threshold tuning . 54
8.9 Task size runtime impact . 55
8.10 Number of workers speed up . 56
8.11 Sylvan and CUDD with the same reordering trigger points (add) 58
8.12 Sylvan and CUDD with the same reordering trigger points (matrix) . . . 58
8.13 Sylvan semi-automatic and CUDD automatic reorderings 60

VI

List of Tables

8.1 Sylvan and CUDD manual benchmarks 59
8.2 Sylvan semi-automatic and CUDD automatic benchmarks 61

VII

List of Algorithms

1 Variable swap phase 0 . 34
2 Variable swap phase 1 . 35
3 Variable swap phase 2 . 36
4 Variable swap . 39
5 Sifting up . 43
6 Sifting down . 44
7 Sifting back . 45
8 Rudell’s sifting . 48

VIII

Chapter 1

Introduction

In the current fast-paced world, many crucial areas and infrastructures such as traffic
systems, railways, healthcare and others rely on increasingly more complex automated
systems. This demands safety and reliability of such systems more than ever before.
Among others, model checking is a technique that helps to ensure the safety and reli-
ability of such complex automated systems by formally verifying the properties of the
system’s behaviour. It is done by formalizing mathematical models of the system to
check whether certain properties, such as safety and liveness, hold true. This is done
via exploring all possible states and transitions of the system, which is known as the
state space [36, 37]. Besides verifying desired properties of a system, it is also impor-
tant to ensure that the logic circuits of the build system are designed correctly. It can be
done by involving combinational circuit analysis to examine and evaluate logic circuits
composed of interconnected gates. However, when the complexity of a system grows,
the state space capturing the system properties grows as well. Therefore, it is vital to
store and manipulate the states efficiently.

To help store and manipulate the states of a system or logic of a circuit, a funda-
mental data structure called Binary Decision Diagram (BDD) is commonly used. It is a
data structure employed to handle large-scale state spaces and operations on Boolean
functions in a scalable and efficient way. This makes BDDs versatile data structures for
tackling complex computational problems. The variable ordering in a BDD determines
the order in which the variables are considered when traversing a BDD. The choice of
variable ordering can greatly affect the size of a BDD, with certain orderings resulting in
much smaller BDDs than others. As a consequence, variable ordering can greatly affect
the performance and scalability of BDD operations, which makes it an important topic
to study [7].

To find an optimal static variable ordering for BDDs is NP-Hard [4]. An alterna-
tive approach to finding a good variable order is dynamic variable reordering, which
reorders the variables on an existing BDD as the operations proceed. A commonly used
approach to dynamic variable reordering is the sifting algorithm proposed by Rudell
[28]. It performs a series of swap operations that swaps xi and xi+1 in the variable
order. Sifting variables has been shown to largely improve memory peek performance

1

Chapter 1. Introduction

which is the bottleneck of BDDs [24]. Therefore, in this thesis, we will research, imple-
ment and evaluate the sifting algorithm in the multi-core BDD package Sylvan. More-
over, the fine-tuned algorithm will be compared with the state of art Colorado University
Decision Diagram (CUDD) package. CUDD package is the default choice for most of the
symbolic model checkers [10]. It has well-tuned heuristics for controlling memory al-
location and sifting [29]. Hence, the central research question (CRQ) is formulated as
follows:

How to maximize the performance of the dynamic variable reordering for binary decision
diagrams in the Sylvan BDD package?

The central research question covers several aspects namely, how the sifting algorithm
can be implemented in Sylvan, how can different tuning parameters improve the sifting
algorithm, and lastly, how the comparison between Sylvan with the sifting algorithm
and other state of art BDD packages such as CUDD can be made fair. Therefore, the
sub-research questions (RQs) are derived from the central research question to split the
individual aspects into the following separate narrowed RQs:

RQ1: How to implement dynamic variable reordering using the sifting algorithm in Syl-
van?

RQ2: How to tune different parameters to maximize the performance of the dynamic
variable reordering in Sylvan?

RQ3: How can a fair comparison of the dynamic variable reordering performance be
made between Sylvan and CUDD?

RQ4: How does the Sylvan hash map with chaining collision avoidance affect the perfor-
mance compared to linear probing collision avoidance w.r.t dynamic variable reordering?

Before this thesis, the initial prototype implementation of dynamic variable reordering
in Sylvan was provided by the thesis supervisor, dr. T. van Dijk. The implementation
contained a variable swap, a variation of the Sylvan hash map to support single-item
deletion. The remainder of this report is structured as follows. Chapter 2 introduces
the fundamentals of Binary Decision Diagrams, the sifting algorithm, Lace, Sylvan and
CUDD BDD packages, and BDD use cases. Chapter 3 provides an in-depth review of the
related literature, discussing various existing variable reordering techniques. Chapter
4 presents the methodology, detailing the approach to answering the RQs and evalua-
tion of the results. Chapter 5 compares hash map collision avoidance techniques w.r.t
dynamic variable reordering. Chapter 6 details the implementation of a single adjacent
variable swap, a core operation of the sifting algorithm detailed in Chapter 7. Chapter
8 presents the experimental evaluation, including the selection of benchmark models,
performance metrics, and comparative analysis of the results. Chapter 9 provides a
guide to help Sylvan users get the most out of the dynamic variable reordering. Chapter
10 discusses the research findings, highlighting the strengths, limitations, and potential
future work. Finally, Chapter 11 concludes the thesis, summarizing its contributions.

2

Chapter 2

Preliminaries

This chapter explains the basics of Binary Decision Diagrams, Sylvan and CUDD pack-
ages as well as the safety game. Firstly, BDDs are formally introduced together with
BDD reduction and variable ordering. Then, the sifting algorithm proposed by Rudell
is explained. Next, work stealing is introduced together with the framework Lace. Fur-
thermore, two BDD packages are introduced, namely Sylvan and Colorado University
Decision Diagram (CUDD). Lastly, use cases of BDDs and the safety game are intro-
duced.

2.1 Binary Decision Diagrams

In the field of computer science, a Binary Decision Diagrams (BDD) is a fundamental
data structure representing and manipulating Boolean functions denoted as f : Bn → B
with n inputs where n ∈ N. BDDs have demonstrated their efficiency as a data structure
in various logic synthesis algorithms, including logic optimization or verification of both
combinational circuits [1][31][28]. The concept of BDDs was initially introduced by
Akers [1] and further developed by Bryant [6]. BDD is a directed acyclic graph that
represents a Boolean function through the use of Shannon decomposition [30]. The
definitions of BDD and Shannon decomposition are provided below.

Definition 2.1.1 (Binary Decision Diagram). Let G = (V, E) be defined as a single-
rooted, directed, and acyclic graph. Also, let G contain two types of vertices namely, ter-
minal and non-terminal. A terminal vertex v ⊆ V has an attribute value(v) ∈ {0, 1}. A
non-terminal vertex v ⊆ V has an attribute level(v) ∈ {1, ..., n} and two children vertices
low(v), high(v) ∈ V to which low and high edges of v labelled as 0 and 1 are pointing
respectively. Then, G is called a binary decision diagram.

In this thesis, we use circles to denote non-terminal vertices containing variables with
index i and squares to denote terminal vertices containing values 1 or 0. The 1-edge
is drawn using an arrow with a solid line and the 0-edge is drawn using a arrow with
a dashed line. In Figure 2.1 four Boolean formulas are graphically depicted as BDDs.
The Boolean formulas contain boolean algebra operations such as conjunction known
as AND (x ∧ y), and disjunction known as OR (x ∨ y).

3

Chapter 2. Preliminaries

x

1 0

(a) x

x1

x2

1 0

(b) x1 ∧ x2

x1

x2

1 0

(c) x1 ∨ x2

x1

x2

x3

01

(d) (x1 ∧ x2) ∨ x3

Figure 2.1: Binary Decision Diagrams depicting four Boolean formulas.

Definition 2.1.2 (Shannon cofactors). Let F be a Boolean function on X = {xi, ..., xn}.
The positive cofactor Fxi=1 and the negative cofactor Fxi=0 are defined as follows:

F (x1, ..., xi, ..., xn)xi=1 ≡ F (x1, ..., 1, ..., xn)
F (x1, ..., xi, ..., xn)xi=0 ≡ F (x1, ..., 0, ..., xn)

Shannon cofactors are a fundamental concept in Boolean function manipulation.
Given a Boolean function represented as a BDD, Shannon cofactors are obtained by
splitting the BDD based on the value of a selected variable. The positive cofactor repre-
sents the part of the BDD where xi is assigned the value 1. It is obtained by removing
all nodes in the BDD where xi is assigned 0. The negative cofactor represents the part
of the BDD where xi is assigned the value 0. It is obtained by removing all nodes in the
BDD where xi is assigned 1. See Figure 2.2 for a graphical representation provided by
the courtesy of van Dijk [8].

x

Fx=0Fx=1

Figure 2.2: Shannon cofactors as sub-trees

Theorem 2.1.1 (Shannon decomposition). Let F be a Boolean function on X = {xi, ..., xn}.
The following identity is Shannon expansion or decomposition of F with respect to xi:

F ≡ (xi ∧ Fxi=1) ∨ (xi ∧ Fxi=0)

4

Chapter 2. Preliminaries

In 1938, Shannon proposed in [30] the Shannon decomposition or also called expan-
sion. Any Boolean function can be represented by a BDD by applying the Shannon
decomposition recursively. Example 2.1.1 shows the decomposition of a single variable.

Example 2.1.1. Let f(x, y, z) be a function with three inputs x, y, z. By applying the
Shannon decomposition to variable x, we get f(x, y, z) ≡ (x∨ f(1, y, z))∨ (x∧ f(0, y, z)).
After the decomposition, x is not required as an input for function f anymore. By applying
the decomposition recursively, variables y and z can be removed as well leaving us with
only ones and zeros. In more general terms, if f takes n inputs after a single decomposition
of one of its input variables, we need n− 1 inputs for f .

An Ordered Binary Decision Diagram (OBDD) is a BDD where variables are ordered,
and every path from the root to the leaf visits the variables in ascending order. The
bottleneck of BDDs is the need to order the variables [28]. The choice of variable
ordering can greatly affect the size of the BDD, with certain orderings resulting in much
smaller BDDs than others. This can greatly affect the performance and scalability of
such BDD.

The variables can be ordered either statically or dynamically. Static variable ordering
is typically used before the BDD is constructed and the optimal ordering is determined
based on a use case. The dynamic variable reordering is used on an existing BDD as
the operations proceed. In this thesis, we will be concerned with the dynamic variable
reordering. Consider Figure 2.3a, the variable order in this BDD is x1 ≺ x2 ≺ x3 and
the Boolean function is F = (x1 ∧ x3) ∨ x2. By reordering the variables x1 ≺ x3 ≺ x2
as shown in Figure 2.3b, the size of the BDD is reduced while preserving the same
Boolean function F = (x1 ∧ x3) ∨ x2. Note that the Boolean formula in Figure 2.3b is
different from the formula in Figure 2.1d, although the graphical representation of the
BDD resembles the BDD in Figure 2.3b.

x1

x2 x2

x3

01

(a) BDD with F = (x1 ∧ x3) ∨ x2

x1

x3

x2

01

(b) BDD with F = (x1 ∧ x3) ∨ x2

Figure 2.3: Binary decision diagram variable ordering.

A reduced-ordered binary decision diagram (ROBDD) usually simply called BDD, is
a BDD that contains no redundant nodes and it does not contain duplicate sub-graphs.
A redundant node is a node that has two identical child nodes. Any BDD can be reduced
by following the reduction rules:

5

Chapter 2. Preliminaries

1. Merge equivalent nodes
2. Eliminate isomorphic sub-graphs by sharing sub-graphs

x1

x2 x2

x3 x3

1 1 0

(a) Node redundancy

x1

x2

x3 x3

1 0

(b) Duplicate sub-graphs

x1

x2

x3

01

(c) ROBDD

Figure 2.4: Reduction process of a BDD.

Consider Figure 2.4a, it is a BDD but not ROBDD. By applying the reduction rules
we delete the redundant terminal node with value 1 and the redundant variable x2.
Then, in Figure 2.4b both variables x3 point to two isomorphic sub-graphs which can
be merged by applying the reduction rule 2. Finally, in Figure 2.4c we have reached
ROBDD.

2.2 Sifting algorithm

In 1993, a paradigm for maintaining variable orders in a BDD called the sifting algo-
rithm was proposed in [28] by Rudell. It is a dynamic variable reordering algorithm,
meaning the reordering is performed on an existing BDD as the operations proceed.
The sifting algorithm uses adjacent variable swap which affects only the BDD variables
at the two levels xi and xi+1; all other variables remain unchanged. This is possible due
to Theorem 2.2.1 [33].

Theorem 2.2.1. Let F be a BDD over Xn and x be a variable at level i for which we
assume the natural ordering π with π(i) = xi(1 ≤ i ≤ n). Then, moving x down the order
(from i to i + 1) has no effect on nodes at levels < i (the part of the BDD above x is not
affected by the reordering). Similarly, moving x up the variable order (from i to i − 1)
has no effect on nodes at levels > i (the part of the BDD below x is not affected by the
reordering).

Figure 2.5 depicts Theorem 2.2.1 graphically. Level i− 1 is closer to the root of the
BDD, and level i + 1 is closer to the terminal nodes of the BDD. Theorem 2.2.1 implies
that no information is required about the upper part of the BDD (an upper grey area)
when sifting down and the lower part (a lower grey area) when sifting up. Sifting up or
down refers to a series of adjacent variable swaps using which any given variable can
be moved in ordering π. After introducing the concept of sifting, we now introduce an
adjacent variable swap, a core operation on which the sifting algorithm relies.

6

Chapter 2. Preliminaries

xi xi xi

Level i + 1

Level i

Level i − 1

Figure 2.5: A BDD with variable x at level i

Due to Theorem 2.2.1, performing an adjacent variable swap between level i and
i + 1 is considered to be a local operation on any BDD. However, several implications
arise from swapping a variable in a BDD namely, new nodes may be created and some
nodes become dead. A dead node is a node which has no internal references (coming
from other nodes in the forest) and no external references (coming from a user). More-
over, since the variable order is no longer preserved, to refer to a particular variable it is
necessary to maintain a mapping from the original variable ordering to the ordering re-
sulting from the swap. Example 2.2.1 details adjacent variable swaps between variables
x and y.

Example 2.2.1. Let F = (x, F1, F0) with a BDD variable x, cofactors F1 and F0 and
let F11 and F10 be the two cofactors of F1 with respect to x and F01 and F00 be the
two cofactors of F0 with respect to y. Then, using the formula expansion we get F =
(x, (y, F11, F10), (y, F01, F00)). By swapping variable x with y, F becomes (y, (x, F11, F01),
(x, F10, F00)). As a result of the swap, cofactors F10 and F01 are swapped as well. The
resulting formula expansion shows that the order of variables is swapped and the function
of F is preserved. The swap is graphically depicted as follows:

x

y y

F11 F10 F01 F00

y

x x

F11 F01 F10 F00

Figure 2.6: Variable swap between x and y

Consider Example 2.2.1, after the swap, cofactors F1 and F0 of x can be freed if they
become dead since they are no longer referenced by x. However, cofactors F11, F01, F10,

7

Chapter 2. Preliminaries

F00 are referenced after the swap by the newly created variables x and can not be freed.
In more general terms, when a variable is swapped at level i, variables at level i + 1 can
be deleted if their only reference was from level i. This observation can be used in the
incremental garbage collection during the variable swap [28]. Although incremental
garbage collection maybe is employed, a reference count is required for each node in
the forest. Depending on the situation, a variable swap might result in adding more
nodes, removing nodes or staying at the same number. Particular situation depends on
cofactors F11, F01, F10, F00. In Example 2.2.2, variable swap between x and y results in
more nodes.

Example 2.2.2. Let F = (x, F1, F0) with a BDD variable x, cofactors F1 and F0, and
let F11 and F10 be the two cofactors of F1 with respect to y. Then, using the formula
expansion we get F = (x, (y, F11, F10), F0). By swapping variable x with y, F becomes
(y, (x, F11, F01), (x, F10, F00)). The resulting formula expansion shows that a new node
was created while preserving function F . Moreover, F01and F10 now point to the same
function. The swap is graphically depicted as follows:

x

y

F11 F10 F0

(a)

y

x x

F11 F01 F10 F00

F01 ≡ F00

(b)

Figure 2.7: Variable swap between x1 and x2 with left children resulting in more nodes

Example 2.2.3. Let F = (x, F1, F0) with a BDD variable x, cofactors F1 and F0, and
let F11 and F10 be the two cofactors of F1 with respect to y. Then, using the formula
expansion we get F = (x, (y, F11, F10), F0). By swapping variable x with y, F becomes
(y, F1, (x, F10, F00)). The resulting formula expansion shows that a new node was created
while preserving function F . Moreover, F1and F00 now point to the same function. The
swap is graphically depicted as follows:

x

y

F11 F10 F0

F11 ≡ F0

(a)

y

x

F1 F10 F00

F1 ≡ F00

(b)

Figure 2.8: Variable swap between x1 and x2 resulting in the same number of nodes

8

Chapter 2. Preliminaries

Consider Example 2.2.2, after the swap, an additional node for variable x is created.
The resulting BDD depicted in Figure 2.7b contains F01 and F00 which both point to the
same children node. The case when an adjacent variable swap reduces the number of
nodes in a BDD is in fact the exact opposite of Example 2.2.2. The reverse swap can be
obtained as follows; first, consider the BDD depicted in Figure 2.7b and swap variable
x with y, then we get a BDD with where cofactor F0 has both its cofactors F01 and F00
pointing to the same function. By applying the BDD reduction rules we eliminate the
node redundancy and are left with only F0 as seen in Figure 2.7a. In Example 2.2.3,
swapping variables x and y results in the same number of nodes which follows the same
node reduction rules. In both, Example 2.2.2 and 2.2.3, the mirrored situation where
variable x would have the right children would result in more nodes and the same
number of nodes, respectively.

Lastly, when the concept of the sitting algorithm and an adjacent variable swap are
introduced, we introduce the sifting algorithm procedure. The algorithm is based on
finding the optimum position for a variable in a forest to minimize the size of a BDD,
assuming all variables are fixed. If there are n variables excluding the terminal nodes,
then there are n potential positions for a variable, including its current position. The
algorithm determines the optimum position for a variable by brute force enumeration
as follows; first, the variable is swapped with its successor until it is next to the last
(terminal) node. In other words, the variable is sifted down to the bottom of the BDD.
Then, the variable is swapped back with its predecessor until there is no predecessor to
swap with. In other words, the variable is sifted up to the top of the BDD. The smallest
BDD size is remembered during this search and then is restored by sifting the variable
down to the optimum position [28].

The asymptotic time complexity of Rudell’s sifting algorithm is as follows. Let n
be the number of variables in a BDD excluding the terminal nodes. In the optimal case
sifting a single variable takes n swaps assuming it is at one of the boundaries of the BDD.
In the worst case, the variable is in the middle of the BDD and first needs to be swapped
n/2 times to one of its boundaries and then n times to the opposite boundary resulting
in n+ n

2 swaps. Moreover, if the optimal position was on the opposite boundary after we
finished the search, another n swaps are required to move the variable to its optimum
position. The other case is when the search ends right at the optimum position in which
case no further swaps are required. Therefore, sifting a variable in a BDD results in ω(n)
and O(2n + n

2) swaps. Finally, sifting each variable in the BDD results in an asymptotic
time complexity with O(n2) swaps. To control the worst-case complexity, sifting a single
variable is abandoned as soon as the BDD reaches a certain size threshold.

Example 2.2.4. Let x1 ≺ x2 ≺ x3 ≺ x4, be the initial ordering of variables in a BDD.
Suppose the optimal ordering of the variables is x1 ≺ x2 ≺ x4 ≺ x3 and we apply the
sifting algorithm to variable x3. Then, the algorithm performs four permutations to search
for the optimum variable position and three more permutations to move the variable to the
remembered optimum position. This is in fact the worst-case. The graphical representation
of the permutations is depicted in Figure 2.9

9

Chapter 2. Preliminaries

Optimum variable position search

Optimum variable position restoration

x1

x2

x3

x4

x1

x2

x4

x3

x1

x2

x3

x4

x1

x3

x2

x4

x3

x1

x2

x4

x1

x3

x2

x4

x1

x2

x3

x4

x1

x2

x4

x3

Figure 2.9: Sifting algorithm example

2.3 Lace

In this thesis, we will use a task-based work-balancing method called work-stealing
used in the Sylvan BDD package. Work stealing is an efficient method to implement
parallelism for small-sized tasks. In particular, we will work with the framework Lace
introduced by van Dijk et al. in [9] also used in Sylvan. Lace is an implementation of
work-stealing using concurrent deques based on the task split queue. The design of the
dequeue includes a dynamic split point between the shared and the private portions of
the dequeue. Due to the split point, memory fences are required on when shrinking the
shared portion of the dequeue. Processors that are idle become thieves by stealing tasks
from the queues of busy processors called victims.

Lace is implemented using C programming language, and its interface is built using
C macros. In this thesis, we will use Lace to parallelize dynamic variable reordering.
Therefore, the basic API is explained. Firstly, Lace tasks have to be defined using macro
TASK_n where n is a number of parameters accepted by the task. In order to split
declaration from implementation, Lace provides TASK_DECL_n for a declaration and
TASK_IMPL_n for an implementation. Lace task can be then invoked by calling it with
macro CALL from an existing Lace task or using RUN from outside of Lace. The tasks
follow the fork-join paradigm. By calling SPAWN on a Lace task definition, a task is
created. To obtain the result (if stolen) or execute the task (if not stolen), invoke SYNC
on the same task. With CALL a task si pushed to a stack and by calling SYNC, a task is
then matched form the stack back. An example of a recursively parallelized Fibonacci
sequence may be defined as follows :

1 TASK_1(int, fibonacci, int, n) {
2 if(n < 2) return n;
3 SPAWN(fibonacci, n-1);
4 int a = CALL(fibonacci, n-2);
5 int b = SYNC(fibonacci);
6 return a+b;
7 }

10

Chapter 2. Preliminaries

Before invoking a Lace task, first Lace needs to be initialized with the number of
workers and the size of the dequeue. Then, macro RUN needs to be used to invoke the
task from outside of Lace. An example may be defined as follows:

1 int main(int argc, char **argv) {
2 int n_workers = 4;
3 lace_start(n_workers, 0);
4 int result = RUN(fibonacci, 42);
5 printf("fibonacci(42) = %d \n" , result);
6 lace_stop();
7 }

Lastly, we introduce two macros which both work similarly namely, NEWFRAME and
TOGETHER. The NEWFRAME macro is used the same way as RUN and CALL, however, NEWFRAME
starts one new task and all other workers help execute this task in parallel while
TOGETHER macro executes a task with local copy given to each worker. For more in-
depth information on how Lace works we refer to [9].

2.4 Sylvan

In 2012, van Dijk et al. [11] introduced a parallel (multi-core) multi-terminal binary
decision diagram (MTBDD) package called Sylvan written in C programming language.
MTBDD is a superset of BDD with arbitrary terminal nodes, mapping from the Boolean
space Bn onto any set. The Sylvan package is implemented using lock-less data struc-
tures and the work-stealing framework Lace [9]. In Sylvan, most BDD operations are
implemented as recursive tasks, calculated in parallel, e.g., operation on xi in a BDD
is performed in parallel for both sub-graphs Fxi=0 and Fxi=1 and the final result is
computed using a hash table.

The explanation of Sylvan’s internal implementation is with emphasis on parts rele-
vant to our implementation of dynamic variable reordering. Sylvan relies on two central
data structures established by Somenzi [33], namely the unique table(or nodes table)
and the computed table(or operation cache). In Sylvan, the unique table is a hash table
which supports garbage collection, it stores the BDD nodes and is used for operations
such as a find-or-insert node or delete node to perform the garbage collection. The com-
puted table is a simplified hash table that stores the results of BDD operations and is
used as the only shared operation cache to minimize interaction between workers. Both
the unique table and the computed table are implemented using a specialized lock-free
hash table. The garbage collection is implemented using a mark-and-sweep approach,
where the marked nodes are kept during the garbage collection.

The concurrent hashmap implemented in Sylvan uses one table in which all nodes
are stored. The table is split into regions and each region can be claimed by a separate
Lace worker. Each worker gets assigned its region using a global thread local variable so
it knows which region to operate on. Splitting the hash map into the regions allows par-
allelization of the hash map. Sylvan uses bitmaps to keep track of unique node indices
as well as to keep track of claimed buckets. During the garbage collection, the bitmap
holding the indices to each unique node is cleared and all externally referenced nodes

11

Chapter 2. Preliminaries

are depth-wise traversed and its node indices are reinserted into the bitmap again. Af-
ter each garbage collection, the global thread-local variables are reset and each worked
claims a new region.

In this thesis, we will be only concerned with MTBDDs and consecutively BDDs due
to the limitations of the scope. An MTBDD is a 64-bit unsigned integer. The low 40 bits
are an index in the unique table. The highest 1 bit is the complement edge, indicating
negation. The definition is as follows:

1 typedef uint64_t MTBDD;

Sylvan uses two 64-bit unsigned integers to store internal information about each
node named a and b. The definition is as follows:

1 typedef struct __attribute__((packed)) mtbddnode {
2 uint64_t a, b;
3 } *mtbddnode_t;

The internal mtbddnode contains the following information. Complement mark (1
bit, first MSB), mark flag (1 bit, second MSB), leaf flag (1 bit, third MSB), map node flag
(1 bit, fourth MSB), variable label (24 bits) and unique table node index to high and
low children nodes (both 40 bits). Each MTBDD node is labelled with a 24-bit variable
label which will be changed during the dynamic variable reordering. See Figure 2.10

high edge low edgevariable

Figure 2.10: Internal MTBDD node structure

The bitmaps for tracking nodes and regions are wrapped using C11 atomic seman-
tics which provides the atomic operations such as store, load, fetch_and_add, or
compare_and_swap. Moreover, several memory ordering can be set such as relaxed,
consume, acquire, release, acq_rel or seq_cst. Each memory ordering defines
different thread safety. For instance, memory order relaxed works as if no thread
memory ordering measures are in place, whereas memory order seq_cst provides the
highest sequential consistency. For more information, we refer to C reference documen-
tation [3]. The structure containing unique table nodes, hashes, ownership bitmap and
the bitmap with node indices containing data is defined as follows:

1 typedef struct llmsset {
2 _Atomic(uint64_t)* table; // table with hashes
3 uint8_t* data; // table with values
4 _Atomic(uint64_t)* bitmap1; // ownership bitmap (per 512 buckets)
5 _Atomic(uint64_t)* bitmap2; // bitmap for "contains data"
6 // --snip--
7 } *llmsset_t;

Common BDD algorithms supported by the Sylvan package are ite, exists, constrain,
compose, satcount and relprod. The Sylvan package also provides the functionality
to draw DOT graphs and supports BDD file input-outputs [12].

12

Chapter 2. Preliminaries

2.5 CUDD

In order to compare and benchmark dynamic variable reordering in Sylvan, a state
of art BDD package CUDD is introduced. The Colorado University Decision Diagram
Package (CUDD) developed by Somenzi [32] is a package designated for the efficient
manipulation of decision diagrams. It supports binary decision diagrams (BDDs), alge-
braic decision diagrams (ADDs), and zero-suppressed binary decision diagrams (ZDDs).
It is a well-recognized package that provides a wide range of functions for creating,
and manipulating BDDs, ADDs, and ZDDs, including functions for Boolean operations,
quantification, and composition. Among other applications, the library is widely used
in formal verification, model checking and model counting.

The BDD operations are implemented as recursive tasks, calculated serially. The
CUDD package uses the unique table and the computed table. The unique table con-
tains as many hash tables as there are variables. These hash tables are called unique
subtables. The computed table stores the result of the BDD operations.

CUDD supports several dynamic variable reordering algorithms such as the sifting
algorithm, simulated annealing, genetic algorithm for variable ordering, or minimiza-
tion of BDDs based on exchanges of variables. Both the genetic algorithm for variable
ordering and the minimization of BDDs based on exchanges of variables are described
as potentially slow by Somenzi in [33]. Algorithms such as the group sifting or sifting
algorithm combined with the detection of symmetric variables called symmetric sifting
have been specifically developed for the CUDD package. The package allows fixing
orders of one or more variables. Besides the dynamic variable reordering, the CUDD
package also implements asynchronous ordering, which is the reordering triggered au-
tomatically either by the increase of the number of variables above a given threshold or
when a new internal node is created. After every reordering, the threshold is adjusted.
When an operation is interrupted due to the dynamic variable reordering, it is aborted
and tried again.

2.6 Usecases of BDDs

BDDs are widely used in, e.g., model checking, model counting, safety synthesis and
many other areas [36, 14, 19]. In the model checking, BDDs are used to store sets
of states and transitions that are represented by Boolean functions. Model counting
is a computational method to count the number of satisfying assignments of a logical
formula. BDDs are used in model counting to represent the formula in question, and
then algorithms are used to count the number of satisfying assignments. The satisfying
assignments are defined as the possible inputs to the formula that make it true. The
efficiency of model counting using BDDs depends on the efficiency of the BDDs. Fur-
thermore, Dudek et. al in [14], present ADDMC as a Weighted Model Counting with
Algebraic Decision Diagrams. ADDs are supported by Sylvan and the improvements
obtained by dynamic variable reordering are directly affecting ADDs as well. Safety
synthesis is a computer-aided method for designing safety-critical systems. The goal of
safety synthesis is to guarantee that the system behaves safely under all possible sce-
narios and that it satisfies a set of safety specifications. The BDDs provide a compact

13

Chapter 2. Preliminaries

and efficient way to represent the system state space and the transitions between states,
which allows for efficient analysis and optimization. The safety synthesis process typ-
ically involves using model-checking algorithms, such as the fix point algorithm, that
traverse the BDD and check for consistency with the safety specifications.

2.7 Safety games

The benchmark used to evaluate and compare the performance of the dynamic variable
reordering is a safety game solver. Therefore, we provide a more detailed introduction
to safe games. Reactive Synthesis Competition1 (SYNTCOMP) is an academic competi-
tion where participants submit solvers to solve a specific problem. The solvers are then
executed to determine which one can solve the maximum number of problems within
a designated time frame. The primary goal is to synthesize a controller or ascertain the
existence of one in the realizability track for a finite state safety game. In the Reactive
Synthesis Competition, participants submit solvers that aim to synthesize a controller
or determine the realizability of a controller for the safety game. The solvers are evalu-
ated based on their ability to solve the maximum number of safety games within a given
time limit, ensuring that the safety objectives are satisfied. For the formal definition of
a safety game, see Definition 2.7.1

Definition 2.7.1 (Safety game). A safety game is formulated as a two-player turn-based
game with a safety objective expressed symbolically. A game is a 5-tuple
G = ⟨L, Xu, Xc, (fl)l∈L, BAD⟩ where [5]:

• L is a finite set of Boolean variables representing latches.
• Xu is a finite set of Boolean variables representing uncontrollable inputs.
• Xc is a finite set of Boolean variables representing controllable inputs.
• (fl)l∈L is the state transition function, where each fl : L ×Xu ×Xc → L defines

the next state given the current state, uncontrollable, and controllable actions.
• BAD ⊆ L represents the set of bad states that must be avoided.

Synthesis problem The synthesis problem of the safety games can be described using
a sequential digital circuit such as the circuit shown in Figure 2.11. The objective is
to synthesize a controller or determine if a controller exists such that the game does
not reach any state in the error set BAD. The controller should select appropriate con-
trollable inputs based on L and Xu such that transition function (fl)l∈L of the system
does not transition to an error state, meaning it is safe. The goal is to maintain the
system safe throughout the entire game. Note how the safety condition differs from the
liveness condition where eventually, the desired property should be true [5, 35].

Safety games The synthesis problem is seen as a game since the controller plays against
the environment on each tick of the global clock. The environment sets Xu inputs, and
the controller responds by setting Xc such that the system remains safe. The game is
solved by an iterative algorithm which computes the set of states from which the envi-
ronment can force the game into unsafe states to determine whether the environment

1http://www.syntcomp.org/

14

Chapter 2. Preliminaries

System

BAD

Controller

Figure 2.11: Synthesis problem with Controller (unknown) and System

has a strategy that guarantees its victory. If we observe that the environment can force
the game to enter the BAD state during the computation, we say the game is unrealiz-
able. Otherwise, the initial state must be in the WIN region as depicted in Figure 2.12,
making the game realizable.

WINInitial State

U
(universe of states)

BAD

Figure 2.12: Example of when a safety game is solved [35]

Symbolic solving The states of the game can be represented symbolically by a Boolean
formula. In the context of the safety games, we represent the winning set using a
propositional formula over the game state that is true iff the state is in the winning
set. The symbolic states can be encoded using a BDD, which provides a compact and
efficient representation of the game state. In this thesis, we focus on games represented
by sequential synchronous circuits encoded as And-Inverter Graphs (AIGs) defined in
Definition 2.7.2 and represented in the AIGER format. The AIGER models representing
safety games are loaded and converted into BDDs and are then used as input data for
the safety game solver. For a description of the AIGER format, we refer to [16].

Definition 2.7.2 (AIG). And-Inverter Graph (AIG) is a directed, acyclic graph that rep-
resents a structural implementation of the logical functionality of a circuit or network. It
is composed of two input AND gates and inverters. Terminal nodes represent inputs and
constants. The AND gates are represented by nodes with two inputs and one output. A
complemented edge indicates inversion.

15

Chapter 3

Related work

In this chapter, existing dynamic variable heuristics are described. Firstly, the Sym-
metric and Group sifting designed for CUDD are described. Then, the dynamic lower
bounds are introduced which aim to reduce the dynamic variable reordering. Lastly, the
evaluation of BDD reordering heuristics and typical use cases of BDDs are presented.

3.1 Symmetry sifting

The effectiveness of sifting depends on the efficiency with which adjacent variables can
be swapped. The sifting algorithm can get trapped in local minima because it primarily
considers the immediate impact of swapping adjacent variables on the size of the BDD,
rather than the long-term effect on the overall structure of the BDD. Additionally, the
algorithm does not take into account the relations between variables when determining
the optimal ordering, which can also contribute to the problem of getting trapped in
local minima. Moller et al. [25] have found that symmetric variables tend to be adjacent
in optimum orders for BDDs without complement arcs for most functions with up to five
variables. However, Panda et al. in [27] argue that there is a linear gap between optimal
orders and the best symmetric orders for cases with and without complement arcs.

Despite the linear gap, Panda et al. proposed in [27] symmetry-sifting algorithm.
The algorithm is similar to the sifting algorithm proposed in [28] by Rudell. However,
there are a few differences. The symmetry algorithm tests for symmetry every time the
adjacency swap is performed. Once two variables are identified as symmetric, they are
locked together and their relative position never changes. This leads to sifting groups
of variables symmetric to each other. To find the locally optimum group of symmetric
variables, they may have to be sifted twice instead of once. The reason is that during a
single variable sifting, the additional variable can be locked to the sifted variable which
invalidates the best-known position and one additional sifting is needed. The symmetry
check is based on Theorem 3.1.1 by Panda et al. [27].

Theorem 3.1.1. Let F be the BDD for f under order π. Let xi and xj be adjacent variables.
Then xi and xj are symmetric in f if and only if:

• For all nodes labeled xi, the condition g
x

′
ixj

= g
xix

′
j

is verified, where g is the function

rooted at the node labeled xi

16

Chapter 3. Related work

• All arcs into nodes labeled xj come from nodes labelled xi

The symmetry sifting algorithm requires no additional data structures, however, ex-
tra bytes are required per variable to keep track of the symmetry information. The
experimental results in [27] show, that the symmetry sifting algorithm improves the ef-
fectiveness of the sifting algorithm by making BDDs smaller and keeping the overhead
negligible when no symmetries are present.

3.2 Group sifting

The symmetry algorithm explained in Section 3.1 provides a limited advantage over the
sifting algorithm proposed by Rudell [28]. Panda et al. argue in [27] that symmetric
variables are not often found in practical circuits, and therefore, proposed an extension
to symmetric sifting which is a more general version of the algorithm called group sift-
ing. Among the goals of the group sifting algorithm is to be consisted in formulating a
dependable criterion for the grouping of variables. Furthermore, Panda et al. propose
an aggregation criterion which is based on letting sifting itself identify variables with
strong attraction, and on applying a relaxation of the symmetry check called extended
symmetry check [26].

Group sifting Group sifting is an extension of the symmetry sifting algorithm. A group
of variables are moved at the time, where one variable is a special case of a group.
Panda et al. define two types of groups, namely Hard group and Soft group. Hard
groups are passed to the reordering procedure by the caller and may contain sugges-
tions on the structure of the ordering. Moreover, hard groups can be nested and fixed.
The sub-groups of a fixed group do not move relative to its super-group throughout the
reordering. Soft groups are groups created by the reordering algorithm when it iden-
tifies strong affinity among the variables. The lifetime of a soft group ends in between
the successive invocations of the reorderings. Hard groups are structured as a tree and
they initially contain no soft groups. The group reordering procedure traverses the tree
in a post-order fashion and sifts the children of each non-terminal non-fixed node. The
soft groups are only created while reordering a set of individual variables contrary to
the reordering of a set of groups.

Variable Aggregation An important aspect of the group sifting algorithm is the aggre-
gation criteria. Panda et al. introduced two criteria, namely extended symmetry and the
method of the second difference. Also, filtering condition based on variable interaction
is applied after some other aggregation criterion. If two variables do not appear in
the support of the same output, they are said to be non-interacting. All non-interacting
variables are not aggregated.

The extended symmetry check builds on the top of Theorem 3.1.1 which shows that
all edges going into a variable at level i should come from level i− 1, and the condition
gx′

ixj
= gxix′

j
must be true for positive symmetry, or gxixj = gx′

ix
′
j

must be true for
negative symmetry. The extended symmetry check is augmented by allowing mixed
cases of positive and negative symmetry and a fixed percentage of violations is allowed.

17

Chapter 3. Related work

The method of the second difference measures the number of re-combinations oc-
curring between two variables when they are adjacent in a manner that is relatively
independent of their position in the BDD. The method of the second difference is de-
fined in Definition 3.2.1.

Definition 3.2.1 (The method of the second difference). Let N(i) be the number of the
nodes labeled i. Let n− 1 be the largest variable index appearing in the BDD. Let i be such
that 0 < i < n − 1. Then, let S(i) = N(i+1)

N(i) −
N(i)

N(i−1) where S(i) is a quantity related to
the second difference of the sequence N(i).

Consider Definition 3.2.1, a negative S(i) indicates a lot of re-combinations for given
xi and xi+1. Hence, when aggregating variables, xi and xi+1 should be kept together.

Reordering schemes Besides the aggregation criteria, the Relative Absolute Position
(RAP) method is proposed by Panda et al. in [26], which is composed of two phases.
In the first phase, a variable that has not been sifted yet is chosen. This variable is
shifted up and down while checking for extended symmetry. If an extended symmetry
is found, a group is formed. At the end, the variable is returned to the best-known local
minima position. During the return, if the best know size was achieved before the group
was formed, the group is dissolved. If an extended symmetry has been found, the next
variable is chosen for the sifting, otherwise the second phase starts. In the second phase,
the variable is checked against the two adjacent variables, to see if a group should be
formed. The aggregation test is the method of the second difference followed by the
variable interaction check. If the test succeeds, a soft group is formed with a size of up
to three and the group goes through the second phase of sifting. If this sifting brings
the soft group to a new position, the new group is dissolved.

3.3 Lower bounds in dynamic variable reordering

When using variants of the sifting algorithm that add up in complexity, for instance,
the symmetry sifting or the group sifting, the run-time of those algorithms is generally
increased. To balance the run-time increase, Drechsler et al. in [13] proposed lower
bounds in dynamic variable ordering called lb-sifting. The lower bounds restrict the
minimum size of the BDD to which it can fall after reordering the BDD variables. The
goal is to stop early while sifting a variable up or down the BDD. The sifting can be
stopped if the lower bound already exceeds the smallest recorded BDD size. In such
case, we can continue with sifting the next variable without changing the yielded results
[13]. Theorem 3.3.1 and Theorem 3.3.2 are described in [15] where Xn := {x1, ..., xn}
are a Boolean variables bounded to value B := {0, 1}. The kth element of variable
xi is written as π(k) = xi. A BDD node v is labelled with some variable xi = var(v).
The nodes labelled with the same variable are referred to as nodes(F, xi) = {v|v ∈
V, var(v) = xi where F is a graph (V, E)}. Let, I ⊆ Xn and for a BDD F and xi ∈ Xn,
let label(F, xi) = |nodes(F, xi)| and label(F, I) = |nodes(F, I)|. BDDs are defined for
multi-output functions f : Bn → Bm, using a graph for each of the m single-output
functions f

(n)
i 1 ≤ i ≤ m for the shared BDD representation. Given a set O of output

nodes of a BDD, notation Oi
j refers to the set of output nodes at levels i, ...j. Every root

18

Chapter 3. Related work

node is an output node. A set of variables in Xn interacting with xi ∈ Xn are denoted
with Ii,n. d For a detailed explanation and looking at the theory behind the Theorems
3.3.1 and 3.3.2, we refer to [15].

Theorem 3.3.1. Let F be a BDD over Xn, for which we assume the natural ordering π
with π(i) = xi(1 ≤ i ≤ n). Let |F ′

j | denote the size of the BDD after moving variable xi to
position j. When moving down a variable xi ∈ Xn as a lower bound on the size of resulting
BDD F ′, we have

lb↓(F, xi)

= label(F, X1
i−1)

+ max
{

label(F, Xi+1
n \ Ii,n) + 1 + 1

2 label(F, Xi+1
n ∩ Ii,n), label(F, xi)

}
When moving up a variable xi ∈ Xn as a lower bound on the size of resulting BDD F ′, we
have

lb↑(F, xi) = label(F, X1
i−1 \ Ii,n) + |X1

i−1 ∩ |Ii,n|}+ label(F,xi)
2|X1

i−1∩Ii,n| + label(F, Xi+1
n).

Later in 2006, Ebendt et al. in [15], proposed an enhanced method with tightened
lower bounds called elb-sifting which combines the lb-sifting with the new tighten
bounds. To use the new lower bounds together with bounds in Theorem 3.3.1, it is
crucial to avoid counting nodes twice, as this would destroy the soundness of the new
combined bound. The bounds while moving up are specified in Theorem 3.3.2 [15].

Theorem 3.3.2. Let F be a BDD over Xn, with the set of output nodes O, for which we
assume the natural ordering π with π(i) = xi(1 ≤ i ≤ n). When moving up a variable
xi ∈ Xn, as a lower bound on the size of resulting BDD F ′, we have

lb↑(F, xi)

= max
{

label(F, X1
i−1 \ Ii,n)

+max
{
|X2

i −1∩Ii,n|+label(F, {x1}∩Ii,n), |X1
i −1∩Ii,n| 1

2|X1
i−1∩Ii,n| label(F, xi)

}
,

label(F, Xi+1
n)− |O|

}
+ label(F, Xi+1

n)

As shown in [15], the experimental results suggest the lower bounds have a reduction
of run-time up to 89.2%. The average improvement is 74.1%. The lower bounds do not
impact the quality of the sifting, instead, they stop early the reordering process when
no further optimization is possible.

19

Chapter 3. Related work

3.4 Dynamic variable reordering scheduling

There are many ways to schedule a variable swap during dynamic variable reordering
in a BDD. Jiang et al. in [21] proposed and compared several scheduling heuristics to
dynamically reorder variables. The goal was to consider greedy, no lookahead, heuris-
tics which perform a minimum number of swaps. The scheduling heuristics are based
on swappable inversion between two variables in the BDD.

Definition 3.4.1 (Swappable inversion). Let F be a BDD over Xn where πt denotes the
target ordering, πn the current ordering and let πn+1 denote an ordering resulting from
swapping two adjacent variables in πn. Then, we say vi and vj form an inversion if their
relative orderings are different in πn and πt. The inversion is swappable if vi and vj are
adjacent in πn. Lastly, let I(πn, πt) denote the total number of inversions between πn and
πt:

I(πn, πt) =
∑

1≤i,j≤L,vi≺πn vj

Ii,j(πn, πt)

where I(πn, πt) = 1 if vi and vj form an inversion, 0 otherwise.

The following are the scheduling heuristics proposed in [21]:

• Random (RAN): Randomly choose a swappable inversion
• Bring Up (BU): Choose the swappable inversion with the highest variable in π not

yet in its final position
• Sink Down (SD): Choose the swappable inversion with the lowest variable in π

not yet in its final position
• Lowest Inversion (LI): Choose the lowest swappable inversion
• Highest Inversion (HI): Choose the highest swappable inversion
• Lowest Cost (LC): Choose the swappable inversion where the variable on top has

the fewest associated nodes
• Lowest Memory (LM): Choose the swappable inversion that will result in the

smallest BDD next

The comparison between the heuristics was done on the largest difference before and
after the reordering; the peak number of nodes during reordering, and the required
number of swaps. The experimental result in [21] shows, that BU, SD, LI and HI are
all similarly superior and reliable in performance. LC did not perform comparably to
the before mentioned heuristics, Jiang et al. argue in [21] that instead of the time
complexity of a single swap, reordering should focus on the influence of the swaps on
the number of nodes. Moreover, Jiang et al. are suggesting that a "good" heuristic
mostly requires a low peak memory.

3.5 Evaluation of BDD ordering heuristics

The optimal variable reordering problem for OBDD is NP-Hard [4]. Since there is no
algorithm that could solve the optimal variable ordering in polynomial time, unless
P = NP , polynomial-time heuristics are used. The polynomial-time heuristics gen-
erally provide no guarantee of the quality of the solution. To study such heuristics,

20

Chapter 3. Related work

fundamental principles of experimental design, randomization, replication, and organi-
zation to reduce error are used [17]. In [17], Harlow et al. present a methodology for
Computer-aided design (CAD) experiments. The methodology consists of three abstrac-
tions, namely circuit equivalence classes, treatments, and evaluation. Moreover, Harlow et
al. demonstrated experimental evaluation designs for the dynamic variable reordering
heuristics, comparison of the performance of two different BDD packages and others.

The circuit equivalence classes abstraction is necessary to create classes of circuits
which are invariant in desired properties, for instance logically equivalent isomorphism
equivalence classes. The treatment abstraction involves the application of the evaluated
algorithm to each member of the circuit equivalence class, with the goal to minimize
the desired cost function. Lastly, the evaluation abstraction covers the evaluation of the
results of an experiment consisting of calculating values for the desired cost functions
and examining their frequency distributions. Cost functions are defined depending on
an application. Harlow et al. in [17] used the final BDD sizes for each instance in a
circuit equivalence class.

21

Chapter 4

Research Methodology

This chapter describes the research problem together with the type of data necessary
to conduct the research. Based on the research problem, the methods describing the
analysis process of the data are proposed and described. Lastly, the methodological
choices are evaluated and justified.

The problem statement described in the introduction leads to the research questions,
which aim to bring more knowledge into dynamic variable ordering in the Sylvan BDD
package, fine-tuning and comparing different heuristics described in Chapter 3. To
provide knowledge on how Sylvan can benefit from the dynamic variable reordering
and how the Sylvan user should configure it.

To answer the CRQ, implementation of the dynamic variable ordering in the Sylvan
is necessary, as well as evaluation of the reordering performance. For the comparison
and evaluation of the reordering, quantitative data in the form of the synthesised Binary
Decision Diagram will be used. In particular, the safety synthesis process of automati-
cally constructing a BDD from a given safety specification to check if the system satisfies
the specification can be used. In this process, the BDD is used as a compact represen-
tation of the state space of the system, which enables efficient verification of the safety
properties. In the context of safety synthesis, a BDD solver is used to check the satis-
faction of the safety specification with respect to the system’s state space, represented
by a BDD. An example of a simple BDD solver by Walker was published in The Reactive
Synthesis Competition [19].

The dynamic variable ordering will be first implemented using Rudell’s sifting algo-
rithm. Then, variable reordering heuristics will be tested with the sifting algorithms,
such as the dynamic lower bounds. Implementation of the dynamic reordering and the
fine-tuning with Sylvan will answer RQ 1. Once the dynamic variable reordering is im-
plemented and the safety synthesis pipeline is prepared, the results will be evaluated.
Equivalence classes will be derived together with the cost functions described in Section
3.5 proposed by Harlow et al. in [17]. The quality of the reordering will be evaluated,
meaning the lower the resulting BDD size the better the quality. Also, the runtime of the
heuristics will be evaluated, and suggestions will be derived based on the benchmarks
on which heuristics improve the reordering and when. Finally, a comparison between
the state of art package CUDD will be made under the fairest circumstances. This will
ultimately answer RQ 2 and RQ 3. Once all sub-research questions are answered, the

22

Chapter 4. Research Methodology

answer to the CRQ can be provided.

Figure 4.1 depicts the workflow and individual phases using which the RQs 1, 2, and 3
will be answered and will lead to the CRQ answer.

Implementation of
Rudell’s sifting algorithm

Implementation of various
BDD reordering heuristics

Fine-tune the variable
reordering in Sylvan

Design and implementation
of the evaluation framewrok

Evaluation of the variable
reordering in Sylvan w.r.t

runtime, quality and
other BDD packages

Repeat if
an improvement

was achieved

Figure 4.1: Research methodology workflow

The expected challenge is to design an evaluation framework in a way that it will be able
to equivalently evaluate parallel BDD package Sylvan as well as non-parallel package
CUDD w.r.t.dynamic variable reordering. Moreover, when using the BDD solver as a
performance benchmark, it will be necessary to make the Sylvan BDD solver as close as
possible to the CUDD solver, which will be necessary to evaluate performance fairly.

The expected work is split into work packages (WP) planned ahead. WP is a group
of related tasks in a project. Hence, a list of tasks (T) is provided for each WP. A task
is a set of specific actions necessary to complete the WP. The following WPs are defined
chronologically in this thesis:

• Work Package 1: Implementation of Rudell’s sifting algorithm

– T1.1: Get familiar with the Sylvan code base
– T1.2: Verify the existing Sylvan adjacent variable swap implementation
– T1.3: Implement Rudell’s sifting algorithm in Sylvan
– T1.4: Implement tests to verify the correctness of the dynamic variable or-

dering in Sylvan

23

Chapter 4. Research Methodology

– T1.5: Compare Sylvan hash map with chaining to linear probing

• Work Package 2: Implementation of various BDD reordering heuristics

– T2.1: Select criteria based on which to decide which heuristics to implement

– T2.2: Implement the chosen heuristics

• Work Package 3: Design and implementation of the evaluation framework

– T3.1: Select criteria for the evaluation framework

– T3.2: Implement the heuristics evaluation benchmark

– T3.3: Implement the evaluation benchmark using the Sylvan and CUDD BDD
solvers

• Work Package 4: Evaluation and fine-tuning of the dynamic variable reordering

– T4.1: Evaluate and fine-tune the dynamic variable reordering

24

Chapter 5

Sylvan hash table

This chapter introduces a new variant of Sylvan hash table implementation. A hash ta-
ble also known as a hash map, is a data structure which implements an associative array
or dictionary, mapping keys to a particular value. It uses a hash function using which,
a hash (key) is computed given a value. However, it might happen that for a different
value the same key is computed, this is called a hash collision. Two common approaches
to solving a hash collision are open addressing and separate chaining. The current Syl-
van hash map implementation uses open addressing. We will show the limitations of
the current Sylvan hash table implementation w.r.t dynamic variable reordering and in-
troduce a hash map variant using separate chaining collision avoidance. The hash map
variant was provided as a part of the initial prototype implementation. Furthermore,
we will also show the limitations of the mark-and-sweep garbage collection technique
w.r.t variable reordering and we will show why reference counting is a more optimal
alternative.

Firstly, the current hash map implementation provided in Sylvan will be briefly in-
troduced. Then, the Sylvan hash map implementation with separate chaining will be
introduced and described. Furthermore, the mark-and-sweep and reference counting
garbage collection techniques will be compared and explained. Both open addressing
and chaining approaches will be compared as well, and conclusions will be drawn w.r.t
dynamic variable reordering.

5.1 Sylvan hash map

In [11], van Dijk et al. presented the following three variants of Sylvan hash maps 1)
variant with reference counter and tombstones, 2) variant with independent locations,
and 3) variant with bit arrays to manage the data array. As described in Section 2.4,
Sylvan is using a variant with bit arrays also known as bitmaps to manage the data array.
The hash map splits the hashes and the data content into two arrays, table for storing
the hashes and data for storing the values. Furthermore, bitmap1 is used to maintain
the ownership of the buckets claimed by a worker, where for instance n − th bit set
to 1 means the n − th bucket is claimed by some worker. The ownership is not given
back until the garbage collection. After the garbage collection bitmap1 (ownership)
is reset and all workers claim new buckets. The second bitmap maintaining indices

25

Chapter 5. Sylvan hash table

to existing data is stored in bitmap2. If n − th bit is set to 1 it means the n − th
element in the data array contains some valid data. Sylvan uses the mtbddnode_t with
the size of 16 bytes as a structure stored in the data table. The current Sylvan hash
table does not provide a function to delete a single entry from the table. Instead, the
mark-and-sweep garbage collection technique is used. To implement efficient dynamic
variable reordering, we need to be able to delete a single entry from the table. Sylvan
hash table implements open addressing collision resolution technique called probing.
When a new entry is inserted the buckets are examined from the entry to which the
hash points. If it is occupied, we follow the next entry defined by the probe sequence
until an unoccupied slot is found. To handle element removal, simply removing the
element breaks the probing sequence, causing subsequent elements to be misplaced
during future insertions and searches. This issue arises because the probing sequence
relies on the consecutive arrangement of elements for correct indexing. One approach
to element removal is to utilize tombstones. With tombstone deletion, an element is
replaced by a marker called a tombstone, indicating that an element used to be present
but has been removed. When performing a lookup, the same procedure is followed:
navigate to the hashed location and continue moving forward until an empty spot is
found. The concept behind tombstone deletion is that a tombstone is not considered
an empty spot, so it is skipped during the search process to locate the desired element.
Another approach to deleting a single element is using separate chaining through the
use of linked lists. In separate chaining, each element in the hash map maintains a
linked list of elements that have collided at that particular hash location. To remove
an element, it is necessary to locate it within the linked list and adjust the pointers
accordingly. In the new hash map variant, we use spate chaining introduced in Section
5.2.

5.2 Chaining

To support the removal of a single element in the Sylvan hash map, chaining collision
avoidance is introduced. The prototype implementation was provided at the beginning
of the thesis, since, the current version of Sylvan v1.8.0 only contains a hash table
with probing and without the function to delete a single element. The implementation
of the hash map with chaining uses the same sylvan_table.h header with a macro
SYLVAN_USE_LINEAR_PROBING. In case the linear probing macro is set to 0, the function
clear_one_hash which removes a single entry from the hash table and clear_one_data
which removes a single entry from the data table are included. Two implementation
files are provided sylvan_table.c which contains the original hash table with probing
and sylvan_table_chaining.c. Using CMake option SYLVAN_USE_LINEAR_PROBING,
Sylvan user can select at compile time which implementation will be included.

The structure of the new hash table is depicted in Figure 5.1. Each table slot is
128 bits long where the first 64 most significant bits (MSB) are used as a chain head
and a lock when performing an operation on a particular chain. When -1 is set (in
hexadecimal 0xffffffffffffffff) it signals the chain is locked in case another worker
tries to modify the chain while some other worker has in progress operation on it. In
such a case, new workers accessing the chain wait until the chain is free again using

26

Chapter 5. Sylvan hash table

spinlock. Otherwise, the first 24 MSBs are unused and only the next 40 bits are utilized
to store the index to the head of the chain. Then, the next 24 bits are used to store a
hash of the entry and the 40 least significant bits are used to store the index of the next
item in the chain.

data
data

data

Data array:

index of next entry hash index of next entry index of first entry 0:

40 bits

Hash array:

24 bits 40 bits

index of next entry hash index of next entry index of first entry 1:

index of next entry hash index of next entry index of first entry n:

128 bits24 bits

Figure 5.1: Hash and data table designs with chaining

Example 5.2.1. Let U be the universe of all keys and K ⊆ U . Suppose K contains the
following set of keys {k1, k2, k3, k4, k5}. Moreover, let hash function h map the keys as
follows h(k1) = 2, h(k2) = 3, h(k3) = 3, h(k4) = 3, h(k5) = 4. Then, we insert k1 at
position 2, and k2 at 3. No next item in the chain is set for both keys, and the head points
to themselves. Now, we would like to insert k3 which should be inserted at position 3,
however, it is already occupied by k2. Instead, we will search for an empty slot in the table
which is at position 2. At this point, the head index at position 3 of the chain changes from
1 to 2 and k3 starts pointing to position 1 where k2 is. Similarly, k4 should be inserted at
position 3. The next empty slot is at position 3. Hence, it is inserted at position 3. The head
index at position 3 is updated from 2 to 3 and k4 starts pointing to position 2 where k3 is.
Lastly, k5 is inserted at position 4 since it is an empty non-conflicting slot. The end result
is depicted in Figure 5.2.

Hash array:
U

(universe of keys)

K
(actual keys)

k1

k3
k4

k2

k5

0:

1:

2:

3:

4:

n:

Data array:

k3 data
k4 data
k5 data

k1 data
k2 data

0
3
4

k1
k2
k3
k4
k5

-
-
1
2
-

Figure 5.2: Example of the Sylvan hash map with chaining

27

Chapter 5. Sylvan hash table

5.3 Chaining vs probing

In this section, we will compare the performance impact of using the Sylvan hash map
implementations with probing and chaining. The comparison was done by creating
nodes until the table is full and measuring the time it takes to create a single node
using the Sylvan function mtbdd_makenode. Therefore, testing the speed of the lookup
function as a consequence. The test was run 10 times where the first run was warm up
and its results were not considered. Furthermore, the test was done with 1, 2, 3 and
4 workers. The hash table with chaining introduces an overhead by maintaining the
chain with all items for which the hash function produced the same hash. Therefore, it
is expected to see runtime superiority of the hash map with probing over the hash map
with chaining. In Figure 5.3, we see that indeed probing is superior until approximately
60% of the table capacity. The hash table with chaining linearly increases the runtime
of the make_node function.

0 10 20 30 40 50 60 70 80 90 100
Table usage [%]

0.0

15.7

31.4

47.1

62.9

78.6

94.3

110.0

R
un

ti
m

e
of

m
ak

en
od

e
[m

s]

Chaining
Probing

(a) Hash map comparison with 1 Lace worker

0 10 20 30 40 50 60 70 80 90 100
Table usage [%]

0.0

15.7

31.4

47.1

62.9

78.6

94.3

110.0

R
un

ti
m

e
of

m
ak

en
od

e
[m

s]

Chaining
Probing

(b) Hash map comparison with 2 Lace workers

0 10 20 30 40 50 60 70 80 90 100
Table usage [%]

0.0

15.7

31.4

47.1

62.9

78.6

94.3

110.0

R
un

ti
m

e
of

m
ak

en
od

e
[m

s]

Chaining
Probing

(c) Hash map comparison with 3 Lace workers

0 10 20 30 40 50 60 70 80 90 100
Table usage [%]

0.0

15.7

31.4

47.1

62.9

78.6

94.3

110.0

R
un

ti
m

e
of

m
ak

en
od

e
[m

s]

Chaining
Probing

(d) Hash map comparison with 4 Lace workers

Figure 5.3: Hash maps with chaining and probing comparison

28

Chapter 5. Sylvan hash table

5.4 Mark-and-sweep vs reference counting

By using the bitmaps mentioned in Section 5.1, we can determine whether a value in the
data table is used or not without the need to maintain a counter with references. How-
ever, the current Sylvan hash map implementation does not provide a function to delete
the individual value from the table. Instead, it uses the mark-and-sweep technique to
collect garbage. Mark-and-sweep contains two phases. First, all data that should stay is
marked during the marking phase and then during the sweep phase, everything which
is not marked is removed. The advantage is that less memory is necessary. However,
deleting individual values is impossible since we do not know whether any other objects
rely on the value. This only becomes known after the marking phase. An alternative to
mark-and-sweep is a reference counter where the counter is used for each object, and
every time another object references it, the counter is increased and when the reference
is removed the counter is decreased. Using reference counters allows to implement se-
lective garbage collection. For example, an object is considered dead when the reference
count reaches 0, meaning it is not used anywhere else and can be deleted selectively.

When implementing dynamic variable reordering, often more than 1000 swaps can
be performed in a single second. Each variable swap may produce some nodes which
are no longer used and can be deleted. With mark-and-sweep garbage collection, this
becomes an expensive run-time operation. After each swap, we need to go through all
valid objects in the hash table, mark them and then rehash them again. Whereas, with
reference counter, the counters can be updated on-fly during a single variable swap.
Then, after each swap dead object can be removed from the hash map.

5.5 Conclusions

The goal of comparing Sylvan hash tables with different hash collision strategies was
to understand the impact on the dynamic variable reordering. Both open addressing
and separate chaining have their pros and cons. Open addressing, with techniques
like tombstone deletion, offers efficient element removal and minimizes memory over-
head. However, it can be prone to clustering, where consecutive collisions create long
sequences of occupied slots. In [36], van Dijk argues that when using tombstones,
over time, all empty buckets become tombstones, and the find-or-insert operation
is forced to go over the entire probe sequence even if the table is close to being empty.
On the other side, separate chaining handles collisions by utilizing linked lists, enabling
better distribution of elements which requires additional memory for maintaining the
linked list structure and introduces slightly higher overhead during element removal
due to traversal operations. Based on the comparison of the make_node function using
caching and probing, we see that no significant overhead is introduced. However, it
is clear that chaining introduces a certain level of overhead when approximately less
than 60% of the table is occupied. Furthermore, the chaining implementation allows a
single element removal and together with reference garbage collection, they provide an
efficient way to remove nodes selectively, which is important for making adjacent vari-
able swap efficient operation as well. Hence, Sylvan hash map implementation with
chaining is advised when using dynamic variable reordering.

29

Chapter 6

Adjacent variable swap

In order to implement the sifting algorithm, a core operation called adjacent variable
swap is required. In this chapter, we will describe how adjacent variable swap works in
Sylvan, what design choices were made and how bitmaps together with roaring bitmaps
are important in making the adjacent variable swap efficient.

As described in Chapter 5, Sylvan has one unique table in which all nodes are stored.
The ownership of the table is then split into regions and each region is owned by some
Lace worker. The implication is that traversing through all nodes of a particular variable
is asymptotically bounded to the number of nodes in the forest. In [33], Somenzi
et al. argue that splitting the unique table into subtables with each subtable holding
nodes specific to its variable, allows efficient implementation of the dynamic variable
reordering. In Sylvan, the current design does not allow splitting the unique table into
subtables due to the hash map regions shared between Lace workers. This means we
need to make the traversal of the unique table as efficient as possible.

In this chapter, the implementation of efficient bitmap traversal will be detailed.
Then, we will show how the traversal can be further optimized using the Roaring
bitmaps. The remainder of the chapter will introduce garbage collection using refer-
ence counting and describe the design of the adjacent variable swap in Sylvan split into
phase 0, phase 1, and phase 2. Lastly, the variable workflow is explained.

6.1 Efficient bitmap traversal

A bitmap, also known as a bit array, is a data structure that represents a sequence of
bits, where each bit can be either 0 or 1. It is a simple and efficient way to represent a
set of binary values. Sylvan uses the bitmap2 for storing indexes to nodes in the unique
table, meaning if, at a particular position in the bitmap, a value 1 is stored it means that
the data table contains some valid data at that location, if the location holds 0, it means
the position does not contain any useful data. A bitmap is split into words depending
on the architecture of a particular system. The term "word" refers to a fixed-size unit of
data that is handled as a single entity by the computer’s hardware and software. The
size of a word is determined by the architecture and design of the computer system. For
example, a typical 64-bit architecture has a word size of 64 bits (8 bytes). This tightly
correlates with CPU caches which are organized into a hierarchy of levels 1 (L1), 2 (L2)

30

Chapter 6. Adjacent variable swap

and 3 (L3), where each level offers different capacities and speeds. The smallest unit of
data that can be transferred between the cache and the main memory is often referred
to as a cache line. A cache line typically corresponds to the word size of the computer
architecture. By using a 64-bit architecture we can fit 8 words in a single cache line.

To illustrate a bitmap, consider Figure 6.1 with a simple example where word size is
equal to 8 bits to make the example more concise. Suppose we would like to iterate only
over the indices which contain 1. The naive approach is to go over each bit using bitwise
operators and check its value. However, this solution is not scalable with a growing
number of elements. The first improvement that can be made is to take advantage of
compiler built-in bit counting functions such as GCC ctz1 which returns the number of
trailing 0-bits in x, starting at the least significant bit position. The time complexity of
the function is O(log2(n)) which improves finding the successor bit in a word from a
linear time to a logarithmic time operation. The second improvement that can be made
is to take advantage of the fact that some words may be equal to zero in which case
we can skip them during iterations altogether. This, however, strongly depends on how
sparse the indices are in the bitmap.

word 1 word 2 word 3

01 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
230 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Figure 6.1: Bitmap example

We have implemented a set of bitmap operations compatible with Sylvan bitmaps
with two variants namely, regular bitmaps and atomic bitmaps. The atomic bitmaps
support the C11 atomic semantics. The implementation offers functions to set, clear or
get a particular bit at a given position. To iterate over the bitmap, forward and back-
ward iterators are implemented as well. Using these iterators, both compiler-built-in
bits counting as well as skipping empty words are implemented. When profiling the
application with the bitmap iterator, the unique table traversal was still the bottleneck.
Hence, further optimization was necessary. This leads to the next section in which Roar-
ing bitmaps are introduced and further improve the runtime of unique table traversal.

6.2 Roaring bitmaps

As described in Section 6.2, while compiler built-in bits counting and skipping over
empty words provide a runtime improvement, the bottleneck of the application runtime
was still unique table data traversal. The limitation of using plain bitmaps is that if the
indices are sparse only a few words can be actually skipped and if many consecutive
words are empty we still check each word separately instead of directly jumping over
to the successor word holding some index. Besides the runtime performance, plain
bitmaps have impractical memory usage when the size of the bitmap is large. One
approach to avoid these issues is to use compressed bitmaps. Compressed bitmaps
employ various techniques to reduce storage and allow efficient querying. For instance,

1https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

31

Chapter 6. Adjacent variable swap

compressed bitmaps are used by Elasticsearch, Apache Spark, Netflix’s Atlas, LinkedIn’s
Pinot, and others to accelerate queries [23].

One approach to design a compressed bitmap is using Roaring which partitions the
space [0, 232) into 16-bit chunks which represent 32-bit unsigned integers of a set S.
The 32-bit value stored in S is split into two parts. The most significant 16 bits are used
as a shared key coupled with a reference to a value and the remaining least significant
16 bits are stored in a container as the value. Hence, Roaring bitmap is a key-value data
structure where each key-value pair represent a set of all 32-bit integers of S that share
the same most significant 16 bits [23, 22]. There are three types of containers in which
the least significant 16 bits are stored:

• bitset containers of 216 bits or 8kB
• array containers of 4096 sorted 16-bit integers
• run containers of a series of sorted ⟨l, r⟩ pairs indicating presence of [l, l + r]

values

Each container uses at most 216 bits or 8kB of memory. This makes it possible to fit
several containers into the level 1 CPU cache which is typically between 16kB to 64kB
The type of a container is determined dynamically based on the values to minimize
memory usage. For instance, when performing the intersection operation between two
bitset containers, the Roaring bitmap decides whether the result should be an array or
another bitset container. In [22], Lamire et al. further specify that any bitset container
is required to hold a minimum of 4097 distinct values, whereas an array container
can store a maximum of 4096 distinct values. Additionally, if a run container contains
more than 4096 distinct values, it must be limited to having no more than 2047 runs;
otherwise, the number of runs should be less than half the number of distinct values.
For a more in-depth explanation of Roaring bitmaps, we refer to [22].

Roaring provides efficient random access with logarithmic time complexity O(log(n)),
which is a significant improvement compared to an almost linear time complexity of the
bitmap traversal presented in Section 6.2. To determine the presence of a 32-bit integer,
a binary search is used on the container corresponding to the sixteen most significant
bits of the integer. If this prefix is not found in the list, it infers that the integer is not
present. In case a bitmap container is encountered during the search, it checks the cor-
responding bit. For array or run containers, a binary search is also used to locate the
integer efficiently [22]. In this thesis, we use CRoaring2 implementation of the Roaring
bitmap written in C programming language.

6.3 Variable swap phase 0

The initial phase of the adjacent variable swap is called phase 0 during which hash
table entries of nodes modified during the swap are removed. The terminal nodes are
skipped since they are not swapped and will node be deleted regardless. Performing
a removal of an entry from the hash table is not allowed while performing lookup
operation. The lookup operation is performed conditionally based on the results of
phase 1. Therefore, we first remove the entries separately in phase 0. To implement

2https://github.com/RoaringBitmap/CRoaring

32

Chapter 6. Adjacent variable swap

an efficient adjacent variable swap in Sylvan, we need to avoid traversing the unique
table as much as possible. Sylvan already contains a plain bitmap with node indices,
making it the starting point. As discussed in the above sections, traversing a plain
bitmap might be inefficient. Instead of using a plain bitmap during the swap phases,
we use the efficient bitmap iterator presented in Section 6.2 to collect the indices into a
Roaring bitmap denoted as node_ids. Then, in phase 0 we iterate over node_ids and
remove the target hash entries from the hash table. Besides removing the hash entries,
we collect nodes relevant for phase 1 into another Roaring bitmap denoted as p1_ids.
For instance, suppose we want to swap variable i, then we collect indices of nodes with
variable labels i and i + 1. As a consequence, we get a Roaring bitmap with random
access time complexity O(log(ni +ni+1)) where ni is the number of nodes for a variable
i. This pattern is then repeated in phase 1, where node indices for phase 2 are collected.

The CRoaring bitmap implementation is not thread-safe, so we need to ensure that
no two workers are trying to modify the same bitmap simultaneously. One approach
is to use a parallel binary reduction pattern where the data is split into two smaller
chunks which are then split again recursively. Using this pattern we can provide a
unique Roaring bitmap to each worker and when the task is completed we merge the
results of the sub-tasks recursively.

Algorithm 1 depicts the swap phase 0 procedure. It utilizes parallel reduction by
splitting each task recursively and giving it a new roaring bitmap. Once the tasks are
split by the TASK_SIZE, each task starts with its own first element and iterates until its
own last element. Nodes with the variable labels i and i + 1 are collected and used
during the variable swap phase 1. Among the tuning parameters of dynamic variable
reordering in Sylvan, TASK_SIZE is also subject to tuning. The value is set to 1024,
which resulted as the most optimal value based on tuning described in Section 8.3.

6.4 Variable swap phase 1

Once the hash entries of nodes with variable labels i and i + 1 are removed, we enter
phase 1 of the swap. For all nodes with variable i + 1 we set a new variable label i and
rehash them back into the hash table. For all nodes with variable i depending on a node
with variable i, set the new variable label to i+1 and rehash them back into the hash ta-
ble. The remaining nodes with variable label i which are dependent on i+1 nodes, their
unique table indices are added into p2_ids roaring bitmap and are handled in phase 2.
The parallel reduction pattern follows similarly as in phase 0. Algorithm 2 depicts the
procedure invoked during variable swap phase 1 except the parallel reduction, which
follows similarly as in phase 0. Phase 1 performs all the trivial swaps in which only
the variable labels are swapped, and no nodes are created. Node deletion is handled
separately after a variable swap is finished. We also maintain counters to keep track of
the number of nodes per variable which are updated during phase 1. A node is said to
be dependent on another node if one of its children’s edges points to such a node. Since
Sylvan stores all nodes in one unique table unlike CUDD, the dependent node swap is
performed in a separate phase to let phase 1 first update all variable indices without
interfering.

33

Chapter 6. Adjacent variable swap

Algorithm 1 Variable swap phase 0

1: procedure varswap_p0 (var, first, count, node_ids, p1_ids)
2: if count > TASK_SIZE then
3: split← count

2
4: a← init_roaring_bitmap
5: SPAWN(varswap_p0, var, first, split, node_ids, a)
6: b ← init_roaring_bitmap
7: CALL(varswap_p0 , var , first + split, count − split, node_ids, b)
8: p1_ids.or_inplace(a)
9: SYNC(varswap_p0)

10: p1_ids.or_inplace(b)
11: return
12: end if
13: iter ← p1_ids.init_iterator_at(first)
14: while iter .has_val & iter .curr < first + count do
15: index ← iter .curr
16: advance_iterator(iter)
17: node ← get_node(index)
18: if node.is_leaf () then
19: continue
20: else if node.var = var or node.var = var + 1 then
21: p1_ids.add(index)
22: clear_one_hash(index)
23: end if
24: end while
25: end procedure

6.5 Variable swap phase 2

The last phase of the adjacent variable swap creates new nodes and also as a conse-
quence creates dead nodes which the garbage collector later removes. For all nodes in
p2_ids we determine the cofactors F00, F01, F10, and F11, and obtain nodes (F0, (F00, F10))
and (F1, (F01, F11)). Then we substitute the outgoing edges with new F0 and F1 and
rehash both nodes back into the hash table. Besides modifying the nodes, we also up-
date counters used by the garbage collection such as the number of nodes per variable,
the number of internal references per node, and a total number of nodes. The Sylvan
build function can query the total number of nodes. However, the function performs
parallel counting over the nodes, which can be avoided by just maintaining one counter.
The counters are later used by a heuristic called dynamic lower bounds implemented
with the sifting algorithm. As described in Section 2.2, after a swap, F0 and F1 are no
longer referenced by F and their reference counters are decreased. For new_F0 and
new_F1 we increase the reference count since they will be in-place inserted to F . The
new nodes might also be existing nodes required by some other functions. If the nodes
are created we increase the following counters the number of all nodes, the number of
nodes for the variable, and the number of internal references for its cofactors. Next, we

34

Chapter 6. Adjacent variable swap

Algorithm 2 Variable swap phase 1

1: procedure varswap_p1 (var , first, count, p1_ids, p2_ids)
2: if count > TASK_SIZE then
3: //−−parallel reduction−−
4: end if
5: iter ← node_ids.init_iterator_at(first)
6: while iter .has_val & iter .curr < first + count do
7: index ← iter .curr
8: advance_iterator(iter)
9: if node.var = var + 1 then

10: var_nnodes_add(var , 1)
11: var_nnodes_add(var + 1 ,−1)
12: node.set_variable(var)
13: rehash(node)
14: continue
15: end if
16: if node.depends_on(var) then
17: p2_ids.add(index)
18: else
19: var_nnodes_add(var ,−1)
20: var_nnodes_add(var + 1 , 1)
21: node.set_variable(var + 1)
22: rehash(node)
23: end if
24: end while
25: end procedure

insert the new node indices into the node_ids. Lastly, if exception P2_CREATE_FAIL is
raised, it means the unique table is full and a recovery phase is required followed by
table resizing and variable swap repeated from the beginning. In the actual implemen-
tation, we use a local reduction pattern using which we collect the counters locally and
then update them all at once to avoid accessing shared resources.

35

Chapter 6. Adjacent variable swap

Algorithm 3 Variable swap phase 2

1: procedure varswap_p2(var, first, count, p2_ids, node_ids)
2: if count > TASK_SIZE then
3: //−−parallel reduction−−
4: end if
5: iter ← node_ids.init_iterator_at(first)
6: while iter.has_val & iter.curr < first + count do
7: index← iter.curr
8: advance_iterator(iter)
9: F0, F1 ← getlow(node), gethigh(node)

10: F00, F01, F10, F11 ← getlow(F0), gethigh(F0), gethigh(F1), gethigh(F1)
11: new_F0 ← nogc_make_node(var + 1, F00, F10)
12: if new_F0 = invalid then
13: raise P2_CREATE_FAIL
14: end if
15: F0.ref_nodes_add(−1)
16: new_F0.ref_nodes_add(1)
17: if new_F0.is_created() then
18: nnodes_add(1)
19: var_nnodes_add(var + 1, 1)
20: F11.ref_nodes_add(1)
21: F01.ref_nodes_add(1)
22: node_ids.add(new_F0)
23: end if
24: new_F1 ← nogc_make_node(var + 1, F01, F11)
25: if new_F1 = invalid then
26: raise P2_CREATE_FAIL
27: end if
28: F1.ref_nodes_add(−1)
29: new_F1.ref_nodes_add(1)
30: if new_F0.is_created() then
31: nnodes_add(1)
32: var_nnodes_add(var + 1, 1)
33: F10.ref_nodes_add(1)
34: F00.ref_nodes_add(1)
35: node_ids.add(new_F1)
36: end if
37: make_node(node, new_F0, new_F1)
38: rehash(node)
39: end while
40: end procedure

36

Chapter 6. Adjacent variable swap

6.6 Garbage collection

Among the crucial aspects of making an efficient adjacent variable swap is the ability
to selectively delete nodes. Current Sylvan version 1.8.0 relies on the mark-and-sweep
algorithm as described in Section 5.1. As a consequence, it is not possible to delete
individual nodes unless the table is traversed again which we aim to avoid. The ap-
proach introduced in Section 5.4 called reference counting allows deleting individual
elements without traversing the entire unique table by maintaining reference counters.
As a part of the thesis, we implemented a garbage collector based on reference counting.
The individual counters rely on C11 Atomic using which the thread safety guarantees
are provided. Counter maintaining number of all nodes in the unique table is of type
size_t which is an unsigned integer data type defined by C/C++ standards, e.g. the
C99 ISO/IEC 9899 standard. On a 64-bit architecture, the data type refers to a 64-bit
unsigned integer. All other counters use 32-bit unsigned integers. To avoid overflows
and underflows modifying the counters is guarded by flooring min counter value to 0
and ceiling maximum value to 232− 1. We defined a counter structure holding an array
of counters as follows:

1 typedef struct atomic_counters32 {
2 _Atomic(uint32_t) *container;
3 size_t size;
4 } atomic_counters32_t;

The downside of garbage collection implemented using reference counters com-
pared to mark-and-sweep is the additional memory requirements to store the counters.
In our implementation, the structure holding all data necessary for manual garbage
collection (MRC) is defined as follows:

1 typedef struct mrc {
2 roaring_bitmap_t* node_ids; // unique table node indices
3 _Atomic(size_t) nnodes; // # of nodes all nodes in DD
4 atomic_counters32_t ref_nodes; // # of internal ref. per node
5 atomic_counters32_t var_nnodes; // # of nodes per variable
6 atomic_bitmap_t ext_ref_nodes; // nodes with external references
7 } mrc_t;

Since Sylvan’s primary garbage collector remains mark-and-sweep and reference
counting is complementing it only during dynamic variable reordering, MRC initialisa-
tion is performed before every dynamic reordering procedure and then destroyed once
reordering is completed. At every initialisation, ref_nodes, var_nnodes, and ext_-
ref_nodes are allocated dynamically. The overall number of bits allocated dynamically
is respectively as follows 32n + 32v + n where n denotes the number of nodes and v de-
notes the number of variables in the forest and 32 refers to the 32-bit unsigned integer
data type. The initialization procedure then traverses through all nodes and updates the
counters respectively. Moreover, references created using Sylvan API sylvan_protect
of sylvan_ref are collected into ext_ref_nodes bitmap introduced in Section 6.2. We
mutate ext_ref_nodes concurrently, therefore we use our thread-safe implementation
of bitmaps instead of using Roaring bitmaps.

37

Chapter 6. Adjacent variable swap

The garbage collection routine is called at the end of every swap to delete all dead
nodes. A node can become dead if it is not referenced internally as well as externally
and it is still in the bitmap2. This means after the swap nodes with external references
are never going to be deleted, however, nodes which are not externally referenced and
whose internal reference counter reaches 0 will be deleted. To avoid iterating over all
nodes in the unique table, we instead use the already created roaring bitmap p1_ids
which contains all nodes of variables i and i + 1 where the reference counters could
be decreased depending on the swap. For every node in p1_ids, we check whether
the node became dead and if so then we perform a deletion. A node deletion involves
removing the node index from the node_ids roaring bitmap and decreasing the var_-
nnodes counter. In case the given node is not leaf we decrease the respective reference
counters and check whether the children are dead nodes as well. If so, then we repeat
the procedure recursively until we do not encounter any more dead nodes. We follow
this procedure for all nodes in the p1_ids roaring bitmap. After the garbage collection is
completed, we reset the global thread local regions assigned to each worker. Moreover,
we also clear the ownership bitmap1.

The garbage collection depends on the macro USE_LINEAR_PROBING. Based on the
option flag given during compilation to CMake, the macro USE_LINEAR_PROBING can be
either 1 or 0. If the linear probing table is not used, then during the garbage collec-
tion nodes are node deleted individually. Otherwise, we iterate over the entire unique
table by invoking two functions namely, clear_and_mark and rehash_all. This has a
negative performance impact compared to using the Sylvan hash table with chaining.

6.7 Variable swap workflow

By invoking the procedure depicted in Algorithm 4, all varswap phases including the
garbage collection are executed. Suppose we want to sift down a variable at level i with
i + 1, then providing level i is enough. When sifting up a variable, level i − 1 needs to
be provided which will swap the variable at level i− 1 with level i.

The swap procedure also depends on whether the Sylvan hash map with linear
probing or chaining is used. Besides the garbage collection which depends on the type
of the table used, phase 0 is invoked only when chaining is used. This means p1_-
ids are not collected when using linear probing, and hence we traverse through the
entire unique table in both phase 1 as well as during garbage collection. Lastly, after
the garbage collection, we update level_to_order, and order_to_level by invoking
swap_level_mappings.

In case phase 2 raises an exception, we perform a recovery phase in which we undo
the current changes. The exception is raised if the table is full and no new node could
be created. After the recovery, we raise an exception again to let the caller handle the
swap error.

38

Chapter 6. Adjacent variable swap

Algorithm 4 Variable swap

1: procedure varswap(var)
2: p1_ids← init_roaring_bitmap
3: p2_ids← init_roaring_bitmap
4: if USE_LINEAR_PROBING then
5: clear_all_hashes()
6: varswap_p1(var, 0, nodes.table_size, mrc.node_ids, p2_ids)
7: else
8: varswap_p0(var, 0, nodes.table_size, mrc.node_ids, p1_ids)
9: varswap_p1(var, 0, nodes.table_size, p1_ids, p2_ids)

10: end if
11: if p2_ids.cardinality > 0 then
12: try
13: varswap_p2(var, 0, nodes.table_size, p2_ids, mrc.node_ids)
14: catch P2_CREATE_FAIL exception
15: varswap_recovery(var, mrc.node_ids)
16: raise P2_CREATE_FAIL
17: end try
18: end if
19: if USE_LINEAR_PROBING then
20: mrc_gc(mrc.node_ids)
21: else
22: mrc_gc(p1_ids)
23: end if
24: swap_level_mappings(var, var + 1)
25: end procedure

39

Chapter 7

Sifting

In this chapter, we will introduce the sifting algorithm implementation in Sylvan. Once
the adjacent variable swap is implemented, the algorithm is straightforward as de-
scribed in Section 2.2. However, plain sifting does not need to provide the most optimal
results. For instance, the algorithm does not stop early in situations in which no fur-
ther improvements can be made which negatively impacts runtime. One approach to
overcome redundant swaps is to use the dynamic lower-bounds heuristic. We will show
how the dynamic lower bounds can be implemented together with the sifting algorithm
in Sylvan.

Firstly, we will introduce the concept of variable interaction and we will show why
it is needed to implement the dynamic lower bounds. Then, the dynamic lower bounds
will be introduced. Finally, Rudell’s sifting algorithm utilizing the dynamic lower bounds
will be described after which the tunning parameters to adjust the reordering will be
detailed.

7.1 Variable interaction

Consider Figure 7.1, if F00 = F01 and F10 = F11, then x does not depend on y. If this is
the case for all the nodes of variable x, we say that variables x and y do not interact. If
x and y do not interact, then it is not necessary to perform the adjacent variable swap
since the resulting BDD would be logically the same function. This observation can
be used to improve the runtime of the adjacent variable swap [33]. Sommenzi et al.
argues in [33], that in practice over 90% of swaps can be performed inexpensively, e.g.
if we are swapping non-interacting variables. However, this highly depends on a use
case which we will discuss in Chapter 10.

Information about which variables interact together can be utilized during an ad-
jacent swap operation and also it is necessary information to implement the dynamic
lower bounds introduced in Section 7.2. By counting the number of nodes for each
interacting variable during a sifting, we can decide to stop early if no further improve-
ment can be obtained. It is enough to collect information about which variables in-
teract together only once before each reordering since reordering will not affect it as
we will show later in this section. To store variable interaction information we use the
atomic_bitmap_t structure presented in Section 6.2. By using this data structure we

40

Chapter 7. Sifting

y

x x

F11 F01 F10 F00

Figure 7.1: Variable interaction between x and y

reduce necessary memory requirements by only using 1-bit for each interaction and
have thread-safety guarantees. Definition 7.1.1 provides a formal definition of this data
structure holding the variable interaction.

Definition 7.1.1 (Variable interaction matrix). Let the interaction matrix I be the square
matrix over {0, 1}, and let Iij = 0 if and only if i-th and j-th variables satisfy [33]:

f|x=0 = f|x=1 ∨ f|y=0 = f|y=1

To compute the variable interaction matrix, we use the external references from
which we perform a depth-first search. This ensures any sub-function used by the ex-
ternally referenced nodes will be reached and included in the matrix. As pointed out by
Sommenzi et al. in [33], Definition 7.1.1 does not identify all non-interacting variables.
Example 7.1.1 depicts a case in which two different situations yield the same results for
the variable interaction matrix.

Example 7.1.1. Consider Figure 7.2a, and let D ≡ F . The interaction matrix would con-
clude A and F interact. Now, in Figure 7.2b we swap variables A and B. The interaction
matrix will still conservatively conclude A and F interact even though A and F do not
interact anymore.

A

B B

C D E F

(a)

B

A

C E F

(b)

Figure 7.2: Variable interaction matrix limitation

7.2 Dynamic lower bounds

When sifting a variable up or down, we might reach a point at which no further im-
provement can be made. In particular, if the number of nodes with target variables is 0.

41

Chapter 7. Sifting

By using the variable interaction matrix and maintaining the number of nodes per vari-
able we can efficiently calculate this information before every swap and decide whether
to proceed further or not. In fact, it is the idea behind the dynamic lower bounds in-
troduced in Section 7.2. In this thesis, we implemented simple bounds calculations for
sifting up and sifting down specified in Theorem 7.2.1 from Fabio et al. [33].

Theorem 7.2.1. Let F be a BDD over Xn, and let Ni be the number of nodes at level i,
with 0 ≤ i < n, for which we assume the natural ordering π with π(i) = xi(1 ≤ i ≤ n).
When moving up a variable j ∈ Xn, the BDD size can not be reduced below:

lb↑(j) = N0 +
∑

j≤i<n

Ni

When moving down a variable j ∈ Xn, the BDD size can not be reduced below:

lb↓(j) = Nj +
∑

0≤i<j

Ni

When sifting a variable up, lb↑ implies that the lower part of the BDD is unaffected,
and lb↓ implies the upper part of the BDD is unaffected when sifting down. In fact,
this implication follows implications of Theorem 2.2.1. The bounds can be further im-
proved by using the variable interaction matrix especially when many individual BDDs
are sifted. Thus, instead of counting every level, we only consider levels which interact
with the target variable. The goal of the sifting algorithms is to identify the smallest
encountered size and remember its position. Hence, we need to provide two arguments
namely, best_size and best_pos which will be used to store this information. We as-
sume that the arguments best_size and best_pos are pointer types and are mutated
in place, hence mutating the value pointing to. Both arguments will be used later in the
sifting algorithm in Section 7.3.

Sifting up Algorithm 5 depicts the sifting up procedure. The l_bound expresses the
lower bound on the number of nodes. In other words, how many nodes can not be
removed by further sifting up. Thus, we initialize the l_bound with the current number
of nodes, and then we subtract interacting nodes which are in the lower part of the
forest with respect to the variable at pos. These are the nodes that will not be removed
and are part of the BDD. Next, we subtract nodes of y since they will not be removed
regardless as shown in Section 2.2. Since we are changing the variable labels, we need
to use the level_to_order mapping with the interaction matrix which was initialized
at the very beginning of the reordering. Now the l_bound is initialised, and we proceed
further with the algorithm by swapping the variable from its current position to the
low which is defined by the caller. Since we are sifting up and the varswap procedure
swaps i with i + 1, we provide it pos− 1. Then, the best size and position are captured
if an improvement was obtained. Now we update the l_bound with the new level y
into which we swapped the variable in case it interacts with x. Finally, we update the
limit_size if we reduced it by the varswap to keep up to date number of all nodes.

42

Chapter 7. Sifting

Algorithm 5 Sifting up

1: procedure sift_up(pos, low, best_size, best_pos)
2: limit_size, l_bound← size
3: x, y, y_index← low, pos, level_to_order[pos]
4: while x < pos do
5: if test_interaction(level_to_order[x], y_index) then
6: l_bound← l_bound− var_nnodes_get(x)
7: end if
8: x← x + 1
9: end while

10: l_bound← l_bound− var_nnodes_get(y)
11: while pos > low & l_bound ≤ limit_size do
12: x, y, x_index← pos− 1, pos, level_to_order[x]
13: varswap(x)
14: if size ≤ best_size then
15: best_pos, best_size← pos, size
16: end if
17: if test_interaction(x_index, y_index) then
18: l_bound← l_bound + var_nnodes_get(y)
19: end if
20: if size < limit_size then
21: limit_size← size
22: end if
23: pos← pos− 1
24: end while
25: end procedure

We repeat these steps until we reach the caller defined low or the l_bound reaches the
current number of nodes which indicates there are no nodes to remove anymore.

Sifting down Algorithm 6 depicts the sifting down procedure. The r_bound expresses
the upper bound on node decrease. In other words, the number of nodes that still can
be deleted by further sifting down. Therefore, we start by initializing r_bound to zero,
and then we add all interacting nodes in the upper part of the forest to r_bound with
respect to the variable at pos. Then, we start swapping the variable until either we
reach caller defined high or there are no nodes that could be deleted. Since we express
r_bound as the upper bound on node decrease, we remove the interacting nodes for the
swapped level before each swap. Lastly, we swap the variable and update best_size,
best_pos, and limit_size as we did in Algorithm 5.

43

Chapter 7. Sifting

Algorithm 6 Sifting down

1: procedure sift_down(pos, high, best_size, best_pos)
2: r_bound, y, x_index, limit_size← 0, high, level_to_order[pos], size
3: while y > pos do
4: if test_interaction(x_index, level_to_order[y]) then
5: r_bound← r_bound + var_nnodes_get(y)
6: end if
7: y ← y − 1
8: end while
9: while pos < high & size− r_bound < limit_size do

10: x, y, y_index← pos, pos + 1, level_to_order[y]
11: if test_interaction(x_index, y_index) then
12: r_bound← r_bound− var_nnodes_get(y)
13: end if
14: varswap(x)
15: if size ≤ best_size then
16: best_pos, best_size← pos, size
17: end if
18: if size < limit_size then
19: limit_size← size
20: end if
21: pos← pos + 1
22: end while
23: end procedure

7.3 Rudell’s sifting algorithm

In this section, we will present the main algorithm used in Sylvan to dynamically re-
order variables, built on top of all previously presented algorithms. In particular, we
will present the implementation of Rudell’s sifting algorithm introduced in Section 2.2.
As described earlier, the algorithm reduces the number of nodes by sifting each variable
given all other variables are fixed in their position, up and down and then returning
to the most optimal position and proceeding further until all variables are sifted. The
algorithms for sifting up and down are described in Algorithm 5 and Algorithm 6 re-
spectively. Now we introduce the sifting back algorithm which is the last algorithm
necessary to introduce Rudell’s sifting algorithm.

Sifting back Algorithm 7 depicts the sifting back procedure used for returning to the
most optimal position. Sifting back is a straightforward procedure, given a variable at
position pos, best_size, and best_possition, it sifts the variable either to the best_-
possition or to the closest position with the number of nodes equal to best_size. We
use two while loops using which the variable is either shifted down or up. Similarly,
as with sifting up and down, we assume the arguments pos, best_size, and best_-
possition are a pointer type and the values are mutated in-place.

44

Chapter 7. Sifting

Algorithm 7 Sifting back

1: procedure sift_back(pos, best_size, best_pos)
2: while pos ≤ best_pos do
3: if size = best_size then
4: return
5: end if
6: varswap(pos)
7: pos← pos + 1
8: end while
9: while pos ≥ best_pos do

10: if size = best_size then
11: return
12: end if
13: varswap(pos− 1)
14: pos← pos− 1
15: end while
16: end procedure

Rudell’s sifting Algorithm 8 depicts the Rudell’s sifting algorithm. The public API using
which dynamic variable reordering is triggered is named reduce_heap. It internally
first calls pre reordering procedure, then sift procedure and lastly, post reorder pro-
cedure. The pre and post-reordering procedures take care of memory allocation and
deallocation as well as initializing and deinitializing necessary objects such as MRC or
interaction matrix. The algorithm starts by sorting the existing levels in descending
order based on the number of nodes per each level. Sorting the levels is an inexpen-
sive operation thanks to the counters maintained by MRC holding a number of nodes
per level. We only need to query counters per each level and sort them in descend-
ing order. Then, we mark with -1 each level which contains less number of nodes
than the provided nodes_threshold value. Furthermore, we initialize all states such
as i, pos,best_pos,best_size. Lastly, before sifting the variables based on the order
given by levels, we capture the current level_to_order mapping into old_level_-
to_order. We need to capture the mapping since the variables will be sifted which
would invalidate sorted_levels variable.

Now we proceed further with the while loop by getting the variable position. Firstly,
we obtain the respective level from the sorted_levels. If the variable is marked (-1)
already we can break the while loop. Since the levels are sorted there are no more
levels to sift. Otherwise, we use the captured mapping the obtain the correct variable
which we then translate back to the actual level. We use two mappings to maintain the
information linking which variable is currently at the initial sorted variable sorted_-
levels. Next, we check the boundaries defined by the caller. Lastly, before invoking
the sifting procedures we update the current pos,best_pos so it corresponds to the
particular level we will sift as each level is sifted independently.

Invoking the sifting procedures is split into four cases, firstly the boundaries low
and high are checked. In case we are at the boundaries, we only need to shift either
up or down depending if we are at the low or high boundary respectively. Otherwise,

45

Chapter 7. Sifting

we need to determine which boundary is closer and shift to that boundary first. The
boundary distance is determined by comparing pos− low with high− pos. If pos− low
is larger than high− pos it means we are further away from the upper boundary, hence
we are in the lower part of the forest and we need to sift down first and then up and
finally back to the optimum position. Finally, the else branch is executed which means
we are in the upper part of the forest, hence we sift up, down and return back to the
optimum position. We catch P2_CREATE_FAIL exception and call post-order procedures
to perform the cleanup, then we invoke the mark-and-sweep Sylvan garbage collection
which also resizes the table. Finally, we are able to start the reordering again with the
resized table by invoking the pre-reordering and sift procedures.

7.4 Reordering configurations and callbacks

Using dynamic variable reordering might perform differently in different use cases, it
might also be that the user has specific needs such as levels restriction or reordering
time restrictions. For these needs, we introduce the sifting configurations using which
Sylvan user is able to adjust the sifting. Moreover, we also introduce several callbacks
using which different stages of sifting can be tracked.

Reordering configs The structure holding the configurations for the dynamic variable
reordering is defined as follows:

1 typedef struct reorder_configs
2 uint32_t threshold; // max number of nodes per level
3 double max_growth; // max. allowed size growth
4 uint32_t max_swap; // max. number of swaps per sifting
5 uint32_t max_var; // max. number of vars swapped per sifting
6 double time_limit_ms; // time limit in milliseconds
7 reordering_type_t type; // type of reordering algorithm
8 bool print_stat; // flag to print the sifting results
9 } reorder_configs_t;

Each struct member can be configured using public Sylvan API. Sylvan compiled doc
will contain all information about the reordering API. In terms of the reordering_-
type_t, we currently provide two options SYLVAN_REORDER_SIFT which is plain sifting
without the dynamic lower bounds and SYLVAN_REORDER_BOUNDED_SIFT which is the
variant shown in this thesis utilizing the dynamic lower bounds.

Sifting callbacks In case Sylvan user is interested in tracking different stages of reorder-
ing we provide three callbacks namely, pre-reordering, progress, and post-reordering
callbacks. The progress reordering callbacks are invoked after each variable sifting if
the number of nodes was reduced. See below for an example of how to attach the
callbacks:

1 VOID_TASK_0(reordering_start) {
2 // execute custom pre-reordering procedures here...

46

Chapter 7. Sifting

3 }
4 VOID_TASK_0(reordering_progress) {
5 // execute custom progress-reordering procedures here...
6 }
7 VOID_TASK_0(reordering_end) {
8 // execute custom post-reordering procedures here...
9 }

10 int main(int argc, char **argv) {
11 // --snip--
12 sylvan_re_hook_prere(TASK(reordering_start));
13 sylvan_re_hook_progre(TASK(reordering_progress));
14 sylvan_re_hook_postre(TASK(reordering_end));
15 // --snip--
16 }

Reorder stats To analyse the performance of the reordering we collect three Sylvan
statistical data points attributes, namely the number of reordering calls, the number of
reordering swaps and the total time spent on the reordering. To use Sylvan stats, it is
necessary to enable the CMake option SYLVAN_STATS. See below for an example output
of reordering statistics:

Variable reordering
RE executions 1
RE swaps 1,183
Total time spent 0.328742 sec.

47

Chapter 7. Sifting

Algorithm 8 Rudell’s sifting

1: procedure sift(low, high, nodes_threshold)
2: sorted_levels← get_descending_levels_sorted_by_nnodes()
3: sorted_levels← mark_skipped_levels(sorted_levels, nodes_threshold)
4: i, pos, best_pos, best_size← 0, 0, 0, size
5: old_level_to_order ← level_to_order
6: while i < number_of_levels do
7: level← sorted_levels[i]
8: if level = −1 then
9: break

10: end if
11: pos← order_to_level[old_level_to_order[level]]
12: if pos < low or pos > high then
13: continue
14: end if
15: best_pos, best_size← pos, size
16: try
17: if pos = low then
18: sift_down(pos, low, best_size, best_pos)
19: sift_back(pos, best_size, best_pos)
20: else if pos = high then
21: sift_up(pos, high, best_size, best_pos)
22: sift_back(pos, best_size, best_pos)
23: else if (pos− low) > (high− pos) then
24: sift_down(pos, low, best_size, best_pos)
25: sift_up(pos, high, best_size, best_pos)
26: sift_back(pos, best_size, best_pos)
27: else
28: sift_up(pos, high, best_size, best_pos)
29: sift_down(pos, low, best_size, best_pos)
30: sift_back(pos, best_size, best_pos)
31: end if
32: catch P2_CREATE_FAIL exception
33: post_reorder()
34: sylvan_gc()
35: pre_reorder()
36: return sift(low, high, nodes_threshold)
37: end try
38: i← i + 1
39: end while
40: end procedure

48

Chapter 8

Evaluation of the dynamic variable
reordering

To understand the strengths and weaknesses of the dynamic variable reordering imple-
mentation, we will evaluate it through a series of benchmarks. Firstly, we will introduce
the evaluation framework1 with which all the benchmarks are implemented. Then we
will profile the reordering procedures to identify the bottlenecks and possible areas for
future work. Furthermore, we will evaluate the performance of the dynamic variable
reordering to achieve the most optimal results. After evaluating the dynamic variable
reordering in Sylvan, we will compare it in a fair way with the state-of-the-art BDD
package CUDD.

8.1 Experimental setup

Several benchmarks have been set up to evaluate the dynamic variable rendering imple-
mentation in Sylvan. To keep the benchmarks in one environment, we set up a Docker
file using which a Docker container can be created. Docker is a tool which decouples the
operating system from the requirements of an application. The evaluation framework
contains all benchmarks presented in this chapter and also in Chapter 5. The bench-
marks were compiled and ran on a cluster computer with the test machine Dell R750XA
with the 2xSilver-4314 CPU, where each benchmark was assigned 16 cores and 16GB
RAM. For measuring many consecutive reordering runtimes, we used the benchmarking
tool Hyperfine2.

Variable reordering in BDDs provides two primary benefits, reduced runtime and
memory consumption. The reduced memory consumption is referred to as the qual-
ity of the reordering, where a smaller number of nodes (less memory) means higher
reorder quality and vice versa. Therefore, three types of experiments are set up to eval-
uate the runtime and quality namely, reordering profiles, Sylvan regression tests, and
comparison between Sylvan and CUDD.

The reordering profiles provide insight into the runtime effect of the procedures in-
voked during the reordering. The reordering procedure includes procedures which are

1https://github.com/apdofficial/sylvan-benchmarks
2https://github.com/sharkdp/hyperfine

49

Chapter 8. Evaluation of the dynamic variable reordering

ideally invoked only once, such as pre_reorder or post_reorder and other procedures
which are invoked many times, such as the sift_up, sift_down or sift_back. This im-
plies that the runtime effect of the procedures is different depending on the frequency
of the reordering invocations. Therefore, the profiler was executed on two use cases
namely, manual reordering and semi-automatic reordering. Manual reordering runs ex-
actly once, whereas semi-automatic reordering is invoked by calling a test procedure
that determines whether the reordering is necessary. We use manual reordering to sift
169619 nodes loaded at once from the publicly accessible model add10y.aag3. The
semi-automatic reordering was triggered four times for the same model as the manual
reordering in one execution with the following number of nodes 4640, 661, 1421, 3016.
The model represents a safety game and is part of the Reactive Synthesis Competition,
as Section 2.7 explains.

The regression tests provide insight into how tuning parameters affect runtime and
quality of the reordering. We tested various values for TASK_SIZE used to set the gran-
ularity of the parallelization, max growth, which controls how much a BDD can grow
during sifting up or down, nodes threshold using which BDDs with the less than desired
size will be skipped during the reordering, and number of workers to understand how
the reordering scales.

The Sylvan comparison with CUDD gives an insight into how the dynamic reorder-
ing performs in real use cases compared to the state of art CUDD package. To compare
the BDD packages in a fair way, we use the same Safety Games models from which
BDDs were constructed. As a benchmark, we use a BDD safety game solver developed
by Walker4 for the Reactive Synthesis Competition, which supports both Sylvan and
CUDD. The solver won the 2014, 2015, 2016 and 2017 sequential realizability tracks
[34]. Since the solver supports both Sylvan and CUDD, it is an ideal candidate for a fair
comparison, as we can select desired reordering trigger points with the same BDDs to
reorder and measure the resulting runtime and quality. The comparison will be split into
two parts. Firstly, we will provide the same conditions to both Sylvan and CUDD, such
as the same BDDs with the same number of nodes and trigger the reordering simultane-
ously. Secondly, we will compare Sylvan and CUDD from the user perspective, meaning
we will compare the actual runtime of the entire application rather than just the runtime
of the reordering. Moreover, we will use CUDD automatic and Sylvan semi-automatic
reorderings and compare the runtimes and quality. Both packages were compiled using
the same test machine and software configurations with the -O3 optimisation flag.

8.2 Reordering procedure profiles

This section presents the profiler results of manual and semi-automatic reordering. Each
reordering starts by calling the main reordering procedure, which contains the following
sub-procedures pre_reorder, sift_up, sift_down, sift_back, and, post_reorder.
The sifting procedures are explained with their sub-procedures in detail in Chapter 6,
and adjacent variable swap procedures are described in Chapter 7.

3https://github.com/SYNTCOMP/benchmarks
4https://github.com/apdofficial/sylvan-benchmarks/tree/main/syntcomp

50

Chapter 8. Evaluation of the dynamic variable reordering

Manual reordering Figures 8.1, 8.2, and 8.3 contain profiles for procedures executed
during the manual ordering. Firstly, we observe that Figure 8.1a shows the pre_-
reorder procedure takes 1% of the relative runtime, which means no significant re-
sources are used even when we provide 169619 nodes to initialize the reordering ob-
jects. During the pre_reorder procedure, the variable interaction matrix and the ref-
erence counters are initiated. The profile of varswap in Figure 8.1b shows that when
executing a larger model, the garbage collection procedure takes almost half of the run-
time. In particular, as seen in Figure 8.2a, the majority of time is spent on mrc_gc_go,
which performs the actual deletion of the nodes. The mrc_gc_go procedure iterates
over the modified nodes and recursively deletes dead nodes as described in Section 6.6.

sift_up

45%

sift_down

28%

sift_back

26%

pre_reorder1%

(a) reduce_heap

mrc_gc

48%

varswap_p0

22%

varswap_p2

19%
varswap_p1

8%
other

3%

(b) varswap

Figure 8.1: Manual reordering reduce_heap and varswap profiles

Now, consider Figures 8.2b, 8.3a, and 8.3b, each contains SYNC_SLOW which is func-
tion generated by Lace for each procedure respectively. The relatively high runtime
spent on SYNC_SLOW could indicate that tasks need to be frequently moved from the
shared part of the Lace stack back to the private part, suggesting a possible shortage
of available tasks for stealing. This may result in a higher fraction of the queue being
shared. However, as we will see later in this Section, we need to consider a trade-off
between the number of tasks and task cost. The tuning parameter TASK_SIZE is shown
in Algorithm 1, and its impact on the runtime is presented in Figure 8.9. The clear_-
one_hash, rehash_bucket, and makenode are expected to take a significant part of the
runtime. However, in Figure 8.1b, we see a significant part of the runtime is taken by
ref_nodes_add, which mutates the atomic reference counters ref_nodes described in
Section 6.6 and is a possible hotspot. The lace_steal is a Lace internal function called
during a task stealing.

Semi-automatic reordering Figures 8.4, 8.5, and 8.6 depict the profiles of procedures
executed during the automatic reordering. The main procedure in Figure 8.4a shows
results similar to manual reordering. Procedure pre_reorder is expected to take less run-
time since the number of nodes given to reordering is smaller. However, at the same
time, it is executed multiple times. In Figure 8.4b, mrc_gc procedure is more balanced
than other procedures, which is expected since the garbage collection is done on fewer
nodes. Nevertheless, the runtime of procedure reset_all_regions now increased due

51

Chapter 8. Evaluation of the dynamic variable reordering

mrc_gc_go

62%

bitmap_remove

17%

other

11%
advance_iterator

7%
reset_all_regions

4%

(a) mrc_gc

SYNC_SLOW

33%clear_one_hash

23%

advance_iterator

16%

other

13% bitmap_add

8%
lace_steal

7%

(b) varswap_p0

Figure 8.2: Manual reordering mrc_gc and varswap_p0 profiles

rehash_bucket

33%

SYNC_SLOW

30%

other

21%
bitmap_add

8%
lace_steal

6%

advance_iterator3%

(a) varswap_p1

SYNC_SLOW

27%

ref_nodes_add

24%

makenode

23%

other

21%

bitmap_add
7%

rehash_bucket

5%

lace_steal

3%

(b) varswap_p2

Figure 8.3: Manual reordering varswap_p1 and varswap_p2 profiles

to a higher number of invocations, and advance_iterator procedure dropped be-
low 1% as expected due to a smaller number of nodes. Consider Figures 8.5b, 8.6a,
and 8.6b, similarly as with manual reordering, clear_one_hash, rehash_bucket, and
makenode take a significant part of the runtime which is expected.

sift_up

35%

sift_down
34%

sift_back

30%

pre_reorder1%

(a) reduce_heap

varswap_p0

28%

mrc_gc

27%

varswap_p2

26%

varswap_p1

17%

other3%

(b) varswap

Figure 8.4: Semi-automatic reordering reduce_heap and varswap profiles

52

Chapter 8. Evaluation of the dynamic variable reordering

mrc_gc_go

53%

reset_all_regions

27%

bitmap_remove

16%

other
4%

(a) mrc_gc

SYNC_SLOW

30%
clear_one_hash

24%

advance_iterator

18%

other

14% bitmap_add

8%

lace_steal
6%

(b) varswap_p0

Figure 8.5: Semi-automatic reordering mrc_gc and varswap_p0 profiles

SYNC_SLOW

32%
rehash_bucket

30%

other

21%

bitmap_add

7% lace_steal

5%
advance_iterator

5%

(a) varswap_p1

makenode

37%

SYNC
24%

other

15%

ref_nodes_add

13%
bitmap_add

9%
lace_steal

2%

(b) varswap_p2

Figure 8.6: Semi-automatic reordering varswap_p1 and varswap_p2 profiles

8.3 Regression tests

The results of the dynamic reordering parameters tuning, such as the max growth, nodes
threshold, and TASK_SIZE are presented in this section. Both max growth and nodes
threshold impact runtime and quality of the reordering. The TASK_SIZE parameter im-
pacts only the runtime. Finally, we test how the dynamic variable reordering scales with
an increased number of Lace workers.

Max growth In Figure 8.7, the results of runtime and quality tests of the max growth
tuning are depicted. We observe in Figure 8.7a, that with an increased maximum
growth percentage, the runtime execution also increases. However, the rate of change
slows down with increasing maximum growth. The biggest impact on runtime is be-
tween 0 to 10%. In Figure 8.7b, the reordering quality is improved the most in between
0 to 10%. Therefore, the runtime is most negatively impacted between 0 to 10% since
reordering needs to perform more variable swaps to reduce the size. We also observe
that increasing max growth beyond 20% does not provide further quality improvements
and only increases the runtime. Setting the max growth below 10% reduces quality on
average by more than 50% which will negatively impact the runtime of the consecu-
tive reordering. Thus, the max growth parameter seems optimal between 10 to 20%
depending on whether the priority is runtime or quality, respectively.

53

Chapter 8. Evaluation of the dynamic variable reordering

0 5 10 15 20 25 30
Max growth [%]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
R

un
ti

m
e

[s
]

model
add10y
add12y
mult_bool_matrix_2_3_3
mult_bool_matrix_2_3_4

(a) Max growth runtime tests

0 5 10 15 20 25 30
Max growth [%]

2000

4000

6000

8000

10000

12000

14000

R
es

ul
ti

ng
nu

m
be

r
of

no
de

s

model
add10y
add12y
mult_bool_matrix_2_3_3
mult_bool_matrix_2_3_4

(b) Max growth quality tests

Figure 8.7: Max growth tuning

Nodes threshold The nodes threshold tuning restuls are depicted in Figure 8.8. Figure
8.8a shows that increasing the threshold positively impacts the runtime. It is expected
since more variables which do not satisfy the threshold are skipped. However, in Figure
8.8b, the quality effect differs per model characteristics. The difference between the
models is that the add model contains fewer variables with more nodes, and the matrix
multiplication model contains more variables with fewer nodes per variable. This im-
plies that setting the exact values is use-case specific. Nevertheless, the threshold values
between 0 and 128 provide an average runtime speedup of 0 to 10% with no quality
trade-off in the specified use case.

0 200 400 600 800 1000
Nodes threshold

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
un

ti
m

e
[s

]

model
add10y
add12y
mult_bool_matrix_2_3_3
mult_bool_matrix_2_3_4

(a) Nodes threshold runtime tests

0 200 400 600 800 1000
Nodes threshold

0

5000

10000

15000

20000

25000

30000

35000

R
es

ul
ti

ng
nu

m
be

r
of

no
de

s

model
add10y
add12y
mult_bool_matrix_2_3_3
mult_bool_matrix_2_3_4

(b) Nodes threshold quality tests

Figure 8.8: Nodes threshold tuning

54

Chapter 8. Evaluation of the dynamic variable reordering

Task size To understand the impact of tuning parameter TASK_SIZE, we present a re-
gression test comparing several task sizes and identifying the most optimal value. In
Figure 8.9, we present the results of an experiment in which three safety synthesis mod-
els are used, namely add10y.aag, add12y.aag, add14y.aag with the 38133, 169619,
and 744993 nodes, respectively. Moreover, the manual reordering was used to load the
nodes at once. We test the parallelization of Algothim 4 since the remaining reordering
algorithms are executed sequentially. The task size determines the number of indices
processed by each task. However, the workload distribution is not even since the nodes
inserted in the unique table might be spread over the entire table. We observe that
tasks with size 128 perform the worst, followed by 512. However, tasks with size 1024
performed better than tasks with size 4096. When the task size is too small, it has a
negative impact on the runtime since many roaring bitmaps have to be created, which
is the case with the sizes 128 and 512. On the other hand, tasks with sizes beyond
1024 do not seem to improve the runtime. Consequently, they increase the SYNC_SLOW
runtime, which means there is a lack of tasks as discussed in Section 8.2. Hence, the
most optimal value for the TASK_SIZE tuning parameter is 1024.

200000 400000 600000
Number of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
un

ti
m

e
[s

]

128
512
1024
4096

Figure 8.9: Task size runtime impact

Number of workers Figure 8.10 depicts the number of workers runtime impact with 1
to 16 Lace workers. Considering we run varswap in parallel and the other algorithms
such as sift_up, sift_down or sift_back sequentially, together with Amdahl’s law, we see
expected results. Amdahl’s Law states that there is a theoretical upper bound on the
speed up of a parallel execution bounded by the part of the program which runs se-
quentially[2]. Hence, even with an infinite number of processors, there is an upper
bound on speed up for algorithms which contain sequential executions. The portion
of the sequential execution for the dynamic reordering depends on the use case and a
test machine. With bigger BDDs single swap takes a bigger portion of the algorithm,
consequently improving the speed up. Therefore, the bigger the model is, the bigger

55

Chapter 8. Evaluation of the dynamic variable reordering

the speed up. However, we observe that the peak is reached on average with 8 work-
ers, and an increasing number of workers negatively impacts the runtime. We provide
two hypotheses, mutually not exclusive, on why the speed up decreases after a certain
number of Lace workers:

• The degree of parallelization depends on the task size; the smaller the task size,
the higher the degree of parallelization since we can create more tasks for the
same job. If there is not enough tasks for a Lace worker, it steals a task from a
victim. Since the tasks do not have an evenly distributed workload, it might be
that the victim has to steal a task back from the thief, which is called leapfrog-
ging. If this happens often, the runtime speed up is decreased. Thus, decreasing
the task size will provide more tasks for each worker and should improve the par-
allelization speed up. However, in the task size test, we saw that the task itself
has a creation cost due to creating a roaring bitmap to iterate over the unique
table nodes efficiently. Thus, reducing the task creation cost positively impacts
the speed up only until the task size 1024.

• We observed in the reordering profiles that in the variable swap phase 2, signif-
icant runtime is spent on updating the node reference counters, which act as a
hotspot. The increased number of workers increases the probability of accessing
the same shared reference counter. This negatively affects the runtime. A solu-
tion could be to use the local reduction pattern, calculate the reference difference
locally in each task, merge the results with its parent, and eventually update the
shared resource in one go, or update the shared resource at the end of each task.
However, this solution requires an efficient data structure that can hold sparse
large indices, mapping them to their reference counter difference.

5 10 15
workers

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Sp
ee

d
up

add12y
add14y
mult_bool_matrix_2_3_4

mult_bool_matrix_2_3_5

Figure 8.10: Number of workers speed up

56

Chapter 8. Evaluation of the dynamic variable reordering

8.4 Safety games

In this section, we compare the dynamic reordering in Sylvan with the state of the art
BDD package CUDD. Firstly, we compare the Sylvan and CUDD BDD solvers by provid-
ing the same conditions. We trigger the reordering at the same locations of the code
and disable CUDD automatic reordering to avoid interference. Then, we compare Syl-
van and CUDD from the user perspective, meaning we compare the actual runtime of
the entire application rather than just the runtime of the reordering.

Manual reordering Figures 8.11 and 8.12 show the results of reordering two safety
game models namely, add the adder benchmarks and mult_bool_matrix the matrix mul-
tiplier benchmarks. For more information about add, and mult_bool_matrix models,
we refer to [18] and [20], respectively. We tested the runtime of a single reordering
execution on different BDD sizes after the AIG gates were loaded into the BDD pack-
ages. We let each BDD package load the complete model first and then reorder the
variables. CUDD offers several reordering heuristics as described in Chapter 3. To make
the comparison fair, we use Rudell’s sifting with dynamic lower bounds as we provide in
Sylvan, and we also added the Group sifting algorithm explained in Section 3.2, which
was developed specifically for the CUDD package. We used 8 workers in Sylvan due
to the results presented in the regression tests. We observe that CUDD is performant
until approximately 106 nodes, after which Sylvan outperforms CUDD reordering run-
time as seen in Table 8.1. The reordering quality of both Sylvan and CUDD Rudell’s
sifting is equal. The CUDD Group sifting yields better-reordering quality as seen in Fig-
ure 8.11, which means Rudell’s sifting due to local minima trap resulted in more does.
On the other hand, in Figure 8.12, we observe that the quality is slightly wors with the
Group sifting heuristic compared to Rudell’s sifting. In particular, Table 8.1 shows that
the Group sifting reordering quality is worse by less than 1%. Lastly, we observe that
the dynamic variable reordering reduces the number of nodes and consequently mem-
ory requirements by as high as 353 times with the mult_bool_matrix_2_3_8 benchmark
shown in Table 8.1.

Automatic reordering Besides manually triggering reordering, CUDD also provides
automatic reordering. When the automatic reordering is enabled, it checks at every
unique table lookup operation whether the table size has doubled compared to the pre-
vious reordering. If the reordering was not yet initiated, it requires at least 4000 nodes
to start the reordering. The reordering status is checked before every operation, which
allows to start reordering at any time. In the case of Sylvan, we require a user to invoke
test_reduce_heap after a Sylvan operation completes. The reason is that the garbage
collection might be started as the operation proceeds, during which reordering is not
allowed. Therefore, starting reordering at arbitrary execution time is currently not sup-
ported. Figure 8.13 depicts the overall runtime benchmarks between semi-automatic
Sylvan and automatic CUDD reorderings. We observe that CUDD outperforms Sylvan in
every benchmark. Moreover, Group sifting yields even further runtime improvements
with the add models compared to just CUDD sifting with dynamic lower bounds. The
runtime superiority is likely due to two factors. Firstly, we observed with the man-
ual reordering that Sylvan starts outperforming CUDD only with reordering above 106

57

Chapter 8. Evaluation of the dynamic variable reordering

0 1 2 3
Given number of nodes ×106

0

20

40

60

80
R

un
ti

m
e

Solver
cudd-group
cudd-sift
sylvan-sift

(a) Safety game add runtime benchmarks

0 1 2 3
Given number of nodes ×106

500

1000

1500

2000

2500

3000

3500

4000

R
es

ul
ti

ng
nu

m
be

r
of

no
de

s

Solver
cudd-group
cudd-sift
sylvan-sift

(b) Safety game add quality benchmarks

Figure 8.11: Sylvan and CUDD with the same reordering trigger points (add)

0 2 4 6 8
Given number of nodes ×106

0

100

200

300

400

500

600

R
un

ti
m

e

Solver
cudd-group
cudd-sift
sylvan-sift

(a) Safety game matrix runtime benchmarks

0 2 4 6 8
Given number of nodes ×106

10000

12500

15000

17500

20000

22500

25000

R
es

ul
ti

ng
nu

m
be

r
of

no
de

s

Solver
cudd-group
cudd-sift
sylvan-sift

(b) Safety game matrix quality benchmarks

Figure 8.12: Sylvan and CUDD with the same reordering trigger points (matrix)

nodes. With automatic reordering, the number of nodes is kept as low as possible,
which is in advantage of CUDD. Secondly, thanks to the fully automatic reordering in
CUDD, nodes can be reduced further compared to Sylvan, which only reorders after an
operation completes. Consequently, CUDD runs reordering more times, yielding better
runtime and quality than Sylvan. Lastly, we observe that the Sylvan semi-automatic
reordering improves the execution runtime significantly. For instance, consider bench-
mark add14y.aag and Tables 8.2 and 8.1, with only one reordering per execution, the
reordering alone took 3.2 seconds whereas, with the semi-automatic reordering, the
entire execution including loading, reordering and solving took 0.5 seconds.

58

Chapter 8. Evaluation of the dynamic variable reordering

Initial Size Resulting Size Reordering Time [s] Solver
Model
add10y.aag 38133 1510 0.247967 sylvan-sift
add10y.aag 38132 1509 0.030000 cudd-sift
add10y.aag 38132 500 0.040000 cudd-group
add12y.aag 169618 799 0.300000 cudd-group
add12y.aag 169618 2218 0.200000 cudd-sift
add12y.aag 169619 2219 0.822110 sylvan-sift
add14y.aag 744993 3060 3.222659 sylvan-sift
add14y.aag 744992 950 4.470000 cudd-group
add14y.aag 744992 3059 2.730000 cudd-sift
add16y.aag 3243423 4033 15.411469 sylvan-sift
add16y.aag 3243422 1003 89.720000 cudd-group
add16y.aag 3243422 4032 54.870000 cudd-sift
mult_bool_matrix_2_3_5.aag 154640 8622 0.770000 cudd-sift
mult_bool_matrix_2_3_5.aag 154640 8695 1.070000 cudd-group
mult_bool_matrix_2_3_5.aag 154641 8623 2.017540 sylvan-sift
mult_bool_matrix_2_3_6.aag 599360 13295 7.738878 sylvan-sift
mult_bool_matrix_2_3_6.aag 599359 13482 7.860000 cudd-group
mult_bool_matrix_2_3_6.aag 599359 13294 5.360000 cudd-sift
mult_bool_matrix_2_3_7.aag 2320047 18895 45.640000 cudd-sift
mult_bool_matrix_2_3_7.aag 2320048 18896 37.805228 sylvan-sift
mult_bool_matrix_2_3_7.aag 2320047 19115 69.900000 cudd-group
mult_bool_matrix_2_3_8.aag 9012706 25715 615.990000 cudd-group
mult_bool_matrix_2_3_8.aag 9012706 25463 299.180000 cudd-sift
mult_bool_matrix_2_3_8.aag 9012707 25464 163.407733 sylvan-sift

Table 8.1: Sylvan and CUDD manual benchmarks

8.5 Conclusions

The Sylvan dynamic variable reordering evaluation aimed to determine the reordering
runtime and quality effects. The evaluation was split into three parts namely, profiling
the reordering procedures, performing a regression test on the selected tuning param-
eters, and comparing the manual and semi-automatic reorderings with the state of art
BDD package CUDD.

We observed that the Sylvan reordering procedure does not take full advantage of
the parallelization due to a task cost introduced by creating separate roaring bitmaps
for each task. Moreover, we observed that the unique table is traversed efficiently even
with one table for the entire forest using the roaring bitmaps. This implies real-time
performance could be obtained by decreasing task cost and consequently increasing the
parallelization degree.

The tunning regression tests showed that the optimal max growth is between 10
to 20% depending on whether runtime or quality is a priority, respectively. The nodes
threshold parameter seems optimal between 0 and 128, providing an average runtime

59

Chapter 8. Evaluation of the dynamic variable reordering

ad
d1

0y
.aa

g

ad
d1

4y
.aa

g

ad
d1

8y
.aa

g

ad
d2

0y
.aa

g

Model

0.0

0.2

0.4

0.6

0.8

1.0
R

un
ti

m
e

[s
]

Solver
cudd-group
cudd-sift
sylvan-sift

(a) Safety game add benchmarks

matr
ix_

2_
3_

3.a
ag

matr
ix_

2_
3_

4.a
ag

matr
ix_

2_
3_

5.a
ag

matr
ix_

2_
3_

6.a
ag

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
un

ti
m

e
[s

]

Solver
cudd-group
cudd-sift
sylvan-sift

(b) Safety game matrix benchmarks

Figure 8.13: Sylvan semi-automatic and CUDD automatic reorderings

speedup of 0 to 10% with negligible negative quality impact in models containing mi-
nority variables with nodes below the threshold. The optimum parallel granularity for
the TASK_SIZE seems to be with a task size of 1024. Further increase of the task sizes
resulted in no further runtime improvements. The runtime speed-up peak was reached
with 8 Lace workers, and further worker increase impacted the runtime only negatively.
We also observed the parallelization speedup is increased with the model size, which is
expected due to the increased variable swap parallel procedure portion.

In the manual reordering benchmarks, CUDD is performant until approximately 106

nodes, after which Sylvan outperforms CUDD. Moreover, the dynamic variable reorder-
ing reduces the number of nodes and consequently memory requirements by as high as
353 times in the presented benchmarks. Conversely, in the automatic reordering bench-
marks, CUDD outperforms Sylvan. Moreover, Group sifting yields even further runtime
improvements with certain models compared to just sifting with dynamic lower bounds.
Lastly, observed that the Sylvan semi-automatic reordering improves the execution run-
time significantly. In some cases, with only one reordering per execution, the reordering
alone took 3.2 seconds, whereas with the semi-automatic reordering, the entire execu-
tion, including loading, reordering and solving, took 0.5 seconds.

In general, Sylvan reordering is effective in reducing runtime and memory con-
sumption. The reordering takes advantage of the parallelization, using which Sylvan
outperformed state of the art CUDD package in reorderings beyond a 106 number of
nodes. Furthermore, the significance of the reordering quality implies some models
larger than the available memory could be loaded using the reordering, which could
not be otherwise.

60

Chapter 8. Evaluation of the dynamic variable reordering

stddev Runtime [s] min max Solver
Model
add10y.aag 0.001438 0.019986 0.018080 0.021609 cudd-group
add10y.aag 0.001397 0.026103 0.023695 0.027994 cudd-sift
add10y.aag 0.004455 0.172905 0.168463 0.182778 sylvan-sift
add14y.aag 0.001190 0.022621 0.020128 0.023856 cudd-group
add14y.aag 0.001315 0.035290 0.032725 0.037109 cudd-sift
add14y.aag 0.007131 0.510578 0.498666 0.522277 sylvan-sift
add18y.aag 0.001290 0.034658 0.032446 0.036656 cudd-group
add18y.aag 0.002971 0.071830 0.065476 0.073264 cudd-sift
add18y.aag 0.012516 0.710484 0.692769 0.729251 sylvan-sift
add20y.aag 0.001253 0.050076 0.048315 0.051733 cudd-sift
add20y.aag 0.015232 1.052314 1.016005 1.059145 sylvan-sift
add20y.aag 0.001430 0.045475 0.042260 0.046292 cudd-group
mult_bool_matrix_2_3_3.aag 0.002120 0.025479 0.021961 0.028465 cudd-sift
mult_bool_matrix_2_3_3.aag 0.001227 0.031433 0.028372 0.032427 cudd-group
mult_bool_matrix_2_3_3.aag 0.004420 0.144638 0.139832 0.153181 sylvan-sift
mult_bool_matrix_2_3_4.aag 0.001460 0.047192 0.044608 0.048792 cudd-sift
mult_bool_matrix_2_3_4.aag 0.001114 0.053860 0.052163 0.055332 cudd-group
mult_bool_matrix_2_3_4.aag 0.009467 0.314767 0.298625 0.324041 sylvan-sift
mult_bool_matrix_2_3_5.aag 0.024882 0.746512 0.731614 0.801891 sylvan-sift
mult_bool_matrix_2_3_5.aag 0.002318 0.044529 0.039302 0.047248 cudd-sift
mult_bool_matrix_2_3_5.aag 0.003337 0.068252 0.060287 0.072121 cudd-group
mult_bool_matrix_2_3_6.aag 0.002976 0.069254 0.062656 0.070729 cudd-sift
mult_bool_matrix_2_3_6.aag 0.002629 0.126161 0.122164 0.130229 cudd-group
mult_bool_matrix_2_3_6.aag 0.017171 0.759130 0.749500 0.798918 sylvan-sift

Table 8.2: Sylvan semi-automatic and CUDD automatic benchmarks

61

Chapter 9

Reordering user guide

In this chapter, we will provide a basic guide from the Sylvan user perspective on how
to employ variable reordering. Using dynamic variable reordering in existing projects
might require certain work to be done. For instance, if the user depends on a certain
variable order it will not anymore hold after a variable reordering is performed. How-
ever, if the user requires only a logical function of a certain variable then the variable
reordering will not cause any influence. For users that require to keep track of the
variables, we provide an API using which these changes can be tracked. When using
reordering it is convenient to use levels and map levels to a certain variable. This way
we make a clear distinction between specific variable order and logical function at some
level. Sylvan provides the following public API to map levels to variable order and vice
versa; sylvan_level_to_order and sylvan_order_to_level. By default Sylvan has
dynamic variable reordering disabled which means calling any API related to reorder-
ing will not have any effect. To enable the variable rendering us the following API
after the Sylvan package is initialized sylvan_init_reorder. When dynamic variable
reordering is enabled, the configurations described in Section 7.4 can be set together
with attaching the callbacks.

To invoke the reordering Sylvan API offers three functions each at a different depth;
sylvan_reorder_perm which is for users that want to reorder the variables based on a
given permutation, sylvan_reduce_heap which is for users that would like to invoke
reordering with either with our without the dynamic lower bounds, and lastly sylvan_-
test_reduce_heap which is for users that need CUDD like automatic reordering. The
function sylvan_test_reduce_heap will check whether reordering is needed and if so
the default reordering type unless specified will be used to reorder the variables. If the
reordering was not yet run, a minimum of 400 nodes is required to start the reordering.
Otherwise, reordering will be started every time the number of nodes doubles compared
to the last reordering.

As seen in Chapter 8, if performance is of the highest importance then calling
sylvan_test_reduce_heap after every Sylvan operation is recommended. Also, in
cases a model to be loaded using Sylvan is too large, it might be more optimal to use
dynamic variable reordering since generally less memory will be required and Sylvan
will also keep the unique table size as low as possible.

In case of running into issues, Sylvan defines an enum reorder_result_t which

62

Chapter 9. Reordering user guide

hols currently has thirteen error codes describing errors during individual reordering
stages. Also, Sylvan API provides a function sylvan_reorder_resdescription using
which a given error code can be mapped to an error message so an error message can
be printed instead of an error code for the user’s convenience.

63

Chapter 10

Discussion

The results presented in Chapter 8 are promising. We observed that when using a
larger number of nodes, Sylvan dynamic variable reordering keeps pace and even out-
performs the state of art BDD package CUDD. Despite the strategical subtable design
used in CUDD, Sylvan can iterate over all nodes using the roaring bitmaps efficiently
and in parallel. However, we also observed that when automatic reordering is enabled
in CUDD, Sylvan no longer performs comparably. On the other hand, we also saw that
loading a large model using reordering reduces runtime and requirements on memory
consumption by requiring less nodes. This implies that using variable reordering allows
loading models into Sylvan, which would not be possible otherwise due to memory lim-
itations. In this chapter, we discuss the possible improvements that could be made in
Sylvan to improve dynamic variable reordering further, and we reflect on the method-
ology and the execution process.

10.1 Sifting parallelization

In section 8.3, we observed that the most optimal TASK_SIZE is 1024. Decreasing the
TASK_SIZE parameter increased runtime. Moreover, we observed in Section 8.2 that
SYNC_SLOW took a significant part of varswap, which could mean there is not enough
tasks available for stealing. Hence, it’s clear that the current design does not benefit
fully from the possible parallelization, but increasing the number of tasks has a neg-
ative impact on the runtime. In terms of Lace, creating more tasks should not have
more overhead. However, we use the parallel reduction pattern by which we create a
Roaring bitmap for each task and then merge the results once the children tasks are fin-
ished. Thread-safe roaring bitmaps could be a solution. We discuss the roaring bitmaps
and thread safety in more detail in the following section. The reason for using roaring
bitmaps is to efficiently traverse the Sylvan unique table where all nodes are stored.
Traversing nodes of a particular variable requires traversing the entire table, unlike in
CUDD, where a separate suitable is created for each variable. Thus, another option
could be to use the suitable design in Sylvan as well, which complicates the implemen-
tation of parallelism due to the region division. The remainder of the sifting algorithm
must also have parallel implementation to take advantage of parallelism. Lastly, we also
observed in Section 8.2, that mutating reference counters in varswap phase 2 tasks a

64

Chapter 10. Discussion

noticeable part of the runtime. A solution could be to use the local reduction pattern,
calculate the reference difference locally in each task, merge the results with its parent,
and eventually update the shared resource in one go. However, this solution requires
an efficient data structure that can hold large sparse indices, mapping them to their
reference counter difference.

10.2 Roaring bitmaps and thread-safety

The CRoaring bitmap implementation used in this thesis is not thread-safe. Therefore,
we faced the challenge of using the roaring bitmaps with multiple Lace workers in a
thread-safe manner. A solution to overcome this challenge is to use the local reduction
pattern to create a local roaring bitmap for each task so that each worker can mutate its
bitmap safely. Then, the bitmap is recursively merged with its parent bitmap so that the
root task can merge the results with the desired bitmap. However, this creates a cost
for task creation. One option to avoid creating local roaring bitmaps would be using
our thread-safe implementation of the regular bitmaps. We observed that the runtime
of traversing regular bitmaps impacts the runtime more negatively than using a local
copy of the roaring bitmap for each worker. Another solution could be to use thread-
safe, perhaps lock-free roaring bitmaps, which could be shared with all workers. To
avoid hotspots by providing the same shared resources to all workers, one could use
the roaring bitmap containers where the data is stored and distribute them among the
workers. Depending on the data characteristics, such as the number of elements or
how sparse the data is, the respective number of containers is created. This approach
would also improve the fact that the task workload is currently not evenly distributed
since we only split the tasks into ranges of indices from zero to the maximum table size.
In practice, the indices can be distributed ununiformly across the entire table. Lastly,
Sylvan uses regular bitmaps to store the ownership data and the indices of nodes in the
unique table. The memory and runtime could be improved by using the above-described
thread-safe roaring bitmaps instead.

10.3 Swapping non-interacting variables

When two variables do not interact the variable swap can become an inexpensive opera-
tion if we can swap only the mappings and avoid modifying the unique table altogether.
The inexpensive swaps in CUDD are handled by only swapping the subtables. Sylvan
does not have subtables, and swapping only the mappings will not be enough since the
rest of Sylvan relies directly on reading the variable label from the internal mtbddnode.
To implement the inexpensive swap in Sylvan, we need to ensure that the variable label
will be correctly mapped to the corresponding variable at every place. For instance, we
would need to use mappings in every Sylvan operation. The performance gain from
just swapping the mappings is that we can avoid all phases of the swap including the
garbage collection, since no nodes will or will become dead. However, the practical
performance gain depends on a use case, for instance, the safety game benchmarks use
many interacting variables and hence we did not see a noticeable impact of CUDD inex-
pensive swaps. The difference will be much more significant for other use cases when

65

Chapter 10. Discussion

there are many non-interacting variables. Hence, implementing inexpensive swaps in
Sylvan is a significant performance improvement for specific use cases.

10.4 Automatic reordering

The most significant difference when comparing dynamic variable reordering in Syl-
van and CUDD was obtained when automatic reordering was enabled in CUDD. As
a consequence, CUDD was able to outperform Sylvan in every benchmark. The rea-
son is that when automatic reordering is enabled in CUDD, before every unique table
lookup operation, a check is done on whether reordering is necessary. This means the
variables are reordered more often than compared to Sylvan. This implies CUDD can
avoid the local minima trap more effectively, which is a disadvantage of Rudell’s sifting
algorithm. To implement similar automatic reordering in Sylvan, we need to handle co-
operation with garbage collection. During a Sylvan operation, garbage collection might
be triggered. Sylvan distinguishes two phases namely, normal operation and garbage
collection. However, we would require a third phase during which the reordering would
be performed. Therefore, running dynamic variable reordering before every unique ta-
ble lookup operation is not supported. Running dynamic reordering more often yields
smaller BDDS and improves runtime. Hence, supporting variable reordering before ev-
ery unique table lookup operation might provide the most significant improvements
among all suggested improvements for automatic dynamic reordering benchmarks.

10.5 Reordering heuristics

Rudell’s sifting algorithm sifts one variable at a time, given all other variables are fixed.
As a consequence, the algorithm might be trapped in local minima and never reach the
global minima. Moreover, the smaller the BDD size is, the faster the variable rendering
can be performed. Due to these reasons, Somenzi et al. implemented a sifting algo-
rithm for CUDD called group sifting. Group sifting helps to avoid local minima traps
by sifting a group of variables identified by symmetry rather than just sifting a single
variable. Indeed, the heuristic comparison presented in Section 8.4shows that CUDD
group sifting is more performant than Rudell’s sifting by reducing BDD to a smaller size
and consecutively increasing the runtime. Hence, implementing group sifting in Sylvan
would result in improved quality of reordering as well as improved runtime.

10.6 Methodology

To reach the research objectives in a structured manner, the methodology described in
Chapter 4 was defined. It contains four standalone work packages with defined Tasks
ordered chronologically, using which the planning was prepared. Using the planning,
thesis progress could be tracked together with the expected outcomes of each work
package. However, along the process, we found that several parts of the reordering
need to be improved to make Sylvan comparable to CUDD with respect to runtime.

66

Chapter 10. Discussion

This implied additional tasks had to be added, such as implementing the reference-
based garbage collector described in Chapter 5 or the roaring bitmap traversal described
in Chapter 6. The planning had to be adjusted, and priorities were shifted. As a result,
originally planned Weighted Model Counting (WMC) reordering benchmarks were not
included in this thesis due to time limitations. DPMC solver1 that solves WMC and sup-
ports both CUDD and Sylvan provides a different type of benchmark where many small
BDDs are created during the process. The options were to either skip further reordering
improvements and continue with the work plan, which would have a significant nega-
tive impact on the reordering runtime or to shift the priorities. Therefore the priorities
were shifted. Consequently, the remaining allocated time for the evaluation appeared to
be not sufficiently large for all desired experiments. Thus, including WMC benchmarks
and additional synthetic benchmarks could provide deeper insight into regression tests
and the comparison between Sylvan and CUDD.

1https://github.com/apdofficial/sylvan-benchmarks

67

Chapter 11

Conclusions

We have researched, implemented and evaluated the dynamic variable reordering in
the Sylvan BDD package. The two primary benefits of dynamic variable reordering
are reduced runtime and reduced memory consumption. Based on the evaluation, we
observed that Sylvan reordering is effective in reducing runtime and memory consump-
tion. The reordering takes advantage of the parallelization, using which Sylvan out-
performs the state of the art CUDD package in reorderings with more than 1 000 000
nodes. Furthermore, the significance of the reordering quality implies some models
larger than the available computer memory could be loaded using the reordering which
could not be otherwise. The answers to the research questions are as follows:

RQ1: How to implement dynamic variable reordering using the sifting algorithm in Syl-
van?

Sylvan uses one unique table for all nodes, making it asymptotically bounded to the
size of the unique table when traversing nodes of a variable. To make the traversal
efficient, roaring bitmap can be used as an efficient iterator to traverse the nodes with
the random access time complexity O(log(n)). Moreover, we observed that mark-and-
sweep is not optimal as a garbage collection mechanism since it requires traversing
the entire unique table every time and does not allow selective deletion. Instead, we
introduced reference-based garbage collection which can delete the elements as soon
as the reference counter for any given element reaches zero. Lastly, we used a parallel
reduction pattern and parallelized the adjacent variable swap which takes advantage
of the task based parallelism in Sylvan. Roaring bitmaps, reference-based garbage
collection, and the sifting algorithm with parallel variable swap allow efficient imple-
mentation of dynamic variable reordering in Sylvan.

RQ2: How to tune different parameters to maximize the performance of the dynamic
variable reordering in Sylvan?

The tunning regression tests showed that the optimal max growth is between 10 to
20% depending on whether runtime or quality is a priority, respectively. The nodes
threshold parameter seems optimal between 0 and 128, providing an average runtime
speedup of 0 to 10% with negligible negative quality impact in models containing
minority variables with nodes below the threshold. The optimum parallel granularity

68

Chapter 11. Conclusions

for the TASK_SIZE seems to be with a task size of 1024. Further increase in the
task sizes resulted in no further runtime improvements. The runtime speed-up peak
was reached with 8 Lace workers, and further worker increase impacted the runtime
only negatively. Lastly, we also observed that the parallelization speedup is increased
with the model size, which is expected due to the increased variable swap parallel
procedure portion.

RQ3: How can a fair comparison of the dynamic variable reordering performance be
made between Sylvan and CUDD?

By using the same input models and benchmark solvers for both Sylvan and CUDD
and triggering the same reordering heuristics at the same execution point with the
same BDDs, the comparison can be made fair. In the manual reordering benchmarks,
CUDD is performant until approximately 1 000 000 nodes, after which Sylvan out-
performs CUDD. Moreover, the dynamic variable reordering reduces the number of
nodes and, consequently, memory requirements by as high as 353 times in the pre-
sented benchmarks. Conversely, in the automatic reordering benchmarks, CUDD out-
performs Sylvan. Moreover, the CUDD Group sifting yields even further runtime im-
provements with certain models compared to just sifting with dynamic lower bounds.
Lastly, we observed that the Sylvan semi-automatic reordering improves the execu-
tion runtime significantly. In some cases, with only one reordering per execution, the
reordering alone took 3.2 seconds, whereas with the semi-automatic reordering, the
entire execution, including loading, reordering and solving, took 0.5 seconds.

RQ4: How does the Sylvan hash map with chaining collision avoidance affect the perfor-
mance compared to linear probing collision avoidance w.r.t dynamic variable ordering?

Based on the comparison of the Sylvan hash map with chaining and probing, we con-
clude that no significant overhead is introduced when using the chaining. However,
it is clear that chaining introduces a certain level of overhead when approximately
less than 60% of the table is occupied. Beyond 60%, chaining outperforms linear
probing. On the other hand, the current Sylvan hash map implementation does not
allow single-item removal, and an additional approach using tombstones would need
to be implemented. However, when using tombstones, over time, all empty buckets
become tombstones which is undesired. On the other hand, the chaining implemen-
tation allows a single element removal and together with the reference garbage col-
lection, they provide an efficient way to remove nodes selectively. This has been ob-
served to be important for making the adjacent variable swap efficient. Hence, when
using dynamic variable reordering, Sylvan hash map implementation with chaining
is advised.

Finally, considering the above conclusions, the answer to the central research ques-
tion is as follows:

How to maximize the performance of the dynamic variable reordering for binary decision
diagrams in the Sylvan BDD package?

69

Chapter 11. Conclusions

Using a hash map with chaining collision avoidance and reference garbage collection
provides an efficient way to delete items in Sylvan selectively. Furthermore, roaring
bitmaps provide an efficient way to traverse unique table in Sylvan. Efficient dele-
tion of individual items together with efficient unique table traversal is necessary for
maximizing the performance of the adjacent variable swap, which is a core opera-
tion used during Rudell’s sifting algorithm. The runtime can be further improved by
taking advantage of take-based parallelism in the adjacent variable swap. Using the
dynamic lower bounds, the reordering stops early when no further improvements can
be made without negatively impacting the quality. Lastly, by controlling parameters
such as maximum growth and nodes threshold, the reordering can be steered towards
improved reordering runtime or quality.

The direction for future work on the dynamic variable reordering in Sylvan was
given in several directions namely, sifting parallelization, thread-safe roaring bitmaps,
improving non-interacting swaps, implementing automatic reordering, implementing
more elaborate reordering heuristics such as group sifting and proposing additional
benchmarks such as the Weighted Model Counting.

70

Bibliography

[1] Akers. “Binary Decision Diagrams”. In: IEEE Transactions on Computers C-27.6
(1978), pp. 509–516. DOI: 10.1109/TC.1978.1675141.

[2] Gene Amdahl. “Validity of the Single Processor Approach to Achieving Large
Scale Computing Capabilities, Reprinted from the AFIPS Conference Proceed-
ings, Vol. 30 (Atlantic City, N.J., Apr. 18–20)”. In: Solid-State Circuits Newsletter,
IEEE 12 (Feb. 2007), pp. 19 –20. DOI: 10.1109/N-SSC.2007.4785615.

[3] Atomic operations library - cppreference.com. URL: https://en.cppreference.
com/w/c/atomic.

[4] Beate Bollig and Ingo Wegener. “Improving the variable ordering of OBDDs is
NP-complete”. In: IEEE Transactions on Computers 45 (9 1996), pp. 993–1002.
ISSN: 00189340. DOI: 10.1109/12.537122.

[5] Romain Brenguier et al. “Compositional Algorithms for Succinct Safety Games”.
In: Electronic Proceedings in Theoretical Computer Science, EPTCS 202 (Feb. 2016),
pp. 98–111. DOI: 10.4204/EPTCS.202.7. URL: http://arxiv.org/abs/1602.
01174http://dx.doi.org/10.4204/EPTCS.202.7.

[6] Randal E. Bryant. “Symbolic Boolean manipulation with ordered binary-decision
diagrams”. In: ACM Computing Surveys (CSUR) 24 (3 Sept. 1992), pp. 293–318.
ISSN: 15577341. DOI: 10.1145/136035.136043. URL: https://dl-acm-org.
ezproxy2.utwente.nl/doi/10.1145/136035.136043.

[7] Sagar Chaki and Arie Gurfinkel. “BDD-based symbolic model checking”. In: Hand-
book of Model Checking (May 2018), pp. 219–245. DOI: 10.1007/978-3-319-
10575-8_8/COVER. URL: https://link-springer-com.ezproxy2.utwente.nl/
chapter/10.1007/978-3-319-10575-8_8.

[8] Tom van Dijk. “The parallelization of binary decision diagram operations for
model checking”. In: (2012). URL: http://essay.utwente.nl/61650/.

[9] Tom van Dijk and Jaco C. van de Pol. “Lace: non-blocking split deque for work-
stealing”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics) 8806 (2014), pp. 206–
217. ISSN: 16113349. DOI: 10.1007/978- 3- 319- 14313- 2_18/COVER. URL:
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-
3-319-14313-2_18.

71

https://doi.org/10.1109/TC.1978.1675141
https://doi.org/10.1109/N-SSC.2007.4785615
https://en.cppreference.com/w/c/atomic
https://en.cppreference.com/w/c/atomic
https://doi.org/10.1109/12.537122
https://doi.org/10.4204/EPTCS.202.7
http://arxiv.org/abs/1602.01174 http://dx.doi.org/10.4204/EPTCS.202.7
http://arxiv.org/abs/1602.01174 http://dx.doi.org/10.4204/EPTCS.202.7
https://doi.org/10.1145/136035.136043
https://dl-acm-org.ezproxy2.utwente.nl/doi/10.1145/136035.136043
https://dl-acm-org.ezproxy2.utwente.nl/doi/10.1145/136035.136043
https://doi.org/10.1007/978-3-319-10575-8_8/COVER
https://doi.org/10.1007/978-3-319-10575-8_8/COVER
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-3-319-10575-8_8
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-3-319-10575-8_8
http://essay.utwente.nl/61650/
https://doi.org/10.1007/978-3-319-14313-2_18/COVER
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-3-319-14313-2_18
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-3-319-14313-2_18

Bibliography

[10] Tom van Dijk et al. “A comparative study of BDD packages for probabilistic
symbolic model checking”. In: Lecture Notes in Computer Science 9409 (2015),
pp. 35–51. ISSN: 16113349. DOI: 10.1007/978-3-319-25942-0_3/COVER. URL:
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-
3-319-25942-0_3.

[11] Tom Van Dijk, Alfons Laarman, and Jaco Van De Pol. “Multi-Core BDD Operations
for Symbolic Reachability”. In: Electronic Notes in Theoretical Computer Science
296 (Aug. 2013), pp. 127–143. ISSN: 1571-0661. DOI: 10.1016/J.ENTCS.2013.
07.009.

[12] Tom Van Dijk and Jaco Van De Pol. “Sylvan: Multi-core Decision Diagrams”. In:
Lecture Notes in Computer Science (2015).

[13] Rolf Drechsler and Wolfgang Glint. “Using Lower Bounds during Dynamic BDD
Minimization”. In: (2 2000).

[14] Jeffrey M. Dudek, Vu H.N. Phan, and Moshe Y. Vardi. “ADDMC: Weighted Model
Counting with Algebraic Decision Diagrams”. In: Proceedings of the AAAI Confer-
ence 34 (02 Apr. 2020), pp. 1468–1476. ISSN: 2374-3468. DOI: 10.1609/AAAI.
V34I02.5505. URL: https://ojs.aaai.org/index.php/AAAI/article/view/
5505.

[15] Rüdiger Ebendt and Rolf Drechsler. “Effect of improved lower bounds in dynamic
BDD reordering”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25 (5 May 2006), pp. 902–908. ISSN: 02780070. DOI: 10.
1109/TCAD.2005.854632.

[16] Institute for Formal Models and Verification. AIGER. URL: https://fmv.jku.at/
aiger/.

[17] Justin E. Harlow and Franc Brglez. “Design of experiments and evaluation of BDD
ordering heuristics”. In: International Journal on Software Tools for Technology
Transfer 3 (2 2001), pp. 193–206. ISSN: 14332779. DOI: 10.1007/S100090100052/
METRICS. URL: https://link-springer-com.ezproxy2.utwente.nl/article/
10.1007/s100090100052.

[18] Swen Jacobs et al. “The First Reactive Synthesis Competition (SYNTCOMP 2014)”.
In: (2014).

[19] Swen Jacobs et al. “The Reactive Synthesis Competition (SYNTCOMP): 2018-
2021”. In: (June 2022). DOI: 10.48550/arxiv.2206.00251. URL: https://
arxiv-org.ezproxy2.utwente.nl/abs/2206.00251v1.

[20] Swen Jacobs et al. “The Second Reactive Synthesis Competition (SYNTCOMP
2015)”. In: (2015), pp. 27–57. DOI: 10.4204/EPTCS.202.4.

[21] Chuan Jiang et al. “Variable Reordering in Binary Decision Diagrams”. In: 26th
International Workshop on Logic Synthesis (Jan. 2017).

[22] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. “Consistently faster and
smaller compressed bitmaps with Roaring”. In: (2016). DOI: 10.1002/spe.2402.
URL: https://onlinelibrary.wiley.com/doi/10.1002/spe.2402.

72

https://doi.org/10.1007/978-3-319-25942-0_3/COVER
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-3-319-25942-0_3
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-3-319-25942-0_3
https://doi.org/10.1016/J.ENTCS.2013.07.009
https://doi.org/10.1016/J.ENTCS.2013.07.009
https://doi.org/10.1609/AAAI.V34I02.5505
https://doi.org/10.1609/AAAI.V34I02.5505
https://ojs.aaai.org/index.php/AAAI/article/view/5505
https://ojs.aaai.org/index.php/AAAI/article/view/5505
https://doi.org/10.1109/TCAD.2005.854632
https://doi.org/10.1109/TCAD.2005.854632
https://fmv.jku.at/aiger/
https://fmv.jku.at/aiger/
https://doi.org/10.1007/S100090100052/METRICS
https://doi.org/10.1007/S100090100052/METRICS
https://link-springer-com.ezproxy2.utwente.nl/article/10.1007/s100090100052
https://link-springer-com.ezproxy2.utwente.nl/article/10.1007/s100090100052
https://doi.org/10.48550/arxiv.2206.00251
https://arxiv-org.ezproxy2.utwente.nl/abs/2206.00251v1
https://arxiv-org.ezproxy2.utwente.nl/abs/2206.00251v1
https://doi.org/10.4204/EPTCS.202.4
https://doi.org/10.1002/spe.2402
https://onlinelibrary.wiley.com/doi/10.1002/spe.2402

Bibliography

[23] Daniel Lemire et al. “Roaring Bitmaps: Implementation of an Optimized Software
Library”. In: (2022).

[24] Yukio Miyasaka, Alan Mishchenko, and Masahiro Fujita. “A Simple BDD Pack-
age without Variable Reordering and Its Application to Logic Optimization with
Permissible Functions”. In: (2016).

[25] Dirk Moller’, Paul Molitor, and Rolf Drechsler’. “Symmetry Based Variable Order-
ing for ROBDDs”. In: IFIP Advances in Information and Communication Technology
(1995), pp. 70–81. DOI: 10.1007/978-0-387-34920-6_7. URL: https://link-
springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-0-387-34920-
6_7.

[26] Shipra Panda and Fabio Somenzi. “Who are the variables in your neighborhood”.
In: IEEE/ACM International Conference on Computer-Aided Design, Digest of Tech-
nical Papers (1995), pp. 74–77. ISSN: 10923152. DOI: 10.1109/ICCAD.1995.
479994.

[27] Shipra Panda, Fabio Somenzi, and Bernard F. Plessier. “Symmetry detection and
dynamic variable ordering of decision diagrams”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (1994), pp. 628–631. ISSN: 02780070.

[28] R. Rudell. “Dynamic variable ordering for ordered binary decision diagrams”.
In: Proceedings of 1993 International Conference on Computer Aided Design (IC-
CAD) (1993), pp. 42–47. DOI: 10.1109/ICCAD.1993.580029. URL: http://
ieeexplore.ieee.org/document/580029/.

[29] Ellen M. Sentovich. “A brief study of BDD package performance”. In: Lecture
Notes in Computer Science 1166 (1996), pp. 389–403. ISSN: 16113349. DOI: 10.
1007 / BFB0031823 / COVER. URL: https : / / link - springer - com . ezproxy2 .
utwente.nl/chapter/10.1007/BFb0031823.

[30] Claude E. Shannon. “A symbolic analysis of relay and switching circuits”. In:
Electrical Engineering 57 (12 July 2013), pp. 713–723. ISSN: 0095-9197. DOI:
10.1109/EE.1938.6431064.

[31] Guoyong Shi. “A survey on binary decision diagram approaches to symbolic anal-
ysis of analog integrated circuits”. In: Analog Integrated Circuits and Signal Pro-
cessing 74 (2 Feb. 2013), pp. 331–343. ISSN: 09251030. DOI: 10.1007/S10470-
011 - 9773 - 8 / TABLES / 2. URL: https : / / link - springer - com . ezproxy2 .
utwente.nl/article/10.1007/s10470-011-9773-8.

[32] Fabio Somenzi. CUDD: CU Decision Diagram Package Release 2.4.1. 2015. URL:
http://web.mit.edu.ezproxy2.utwente.nl/sage/export/tmp/y/usr/
share/doc/polybori/cudd/cuddIntro.html.

[33] Fabio Somenzi. “Efficient manipulation of decision diagrams”. In: International
Journal on Software Tools for Technology Transfer 3 (2 2001), pp. 171–181. ISSN:
14332779. DOI: 10.1007/S100090100042.

[34] The Reactive Synthesis Competition | www.syntcomp.org. 2023. URL: http://www.
syntcomp.org/.

73

https://doi.org/10.1007/978-0-387-34920-6_7
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-0-387-34920-6_7
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-0-387-34920-6_7
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/978-0-387-34920-6_7
https://doi.org/10.1109/ICCAD.1995.479994
https://doi.org/10.1109/ICCAD.1995.479994
https://doi.org/10.1109/ICCAD.1993.580029
http://ieeexplore.ieee.org/document/580029/
http://ieeexplore.ieee.org/document/580029/
https://doi.org/10.1007/BFB0031823/COVER
https://doi.org/10.1007/BFB0031823/COVER
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/BFb0031823
https://link-springer-com.ezproxy2.utwente.nl/chapter/10.1007/BFb0031823
https://doi.org/10.1109/EE.1938.6431064
https://doi.org/10.1007/S10470-011-9773-8/TABLES/2
https://doi.org/10.1007/S10470-011-9773-8/TABLES/2
https://link-springer-com.ezproxy2.utwente.nl/article/10.1007/s10470-011-9773-8
https://link-springer-com.ezproxy2.utwente.nl/article/10.1007/s10470-011-9773-8
http://web.mit.edu.ezproxy2.utwente.nl/sage/export/tmp/y/usr/share/doc/polybori/cudd/cuddIntro.html
http://web.mit.edu.ezproxy2.utwente.nl/sage/export/tmp/y/usr/share/doc/polybori/cudd/cuddIntro.html
https://doi.org/10.1007/S100090100042
http://www.syntcomp.org/
http://www.syntcomp.org/

Bibliography

[35] The Reactive Synthesis Competition – Adam Walker –. URL: https://adamwalker.
github.io/The-Reactive-Synthesis-Competition/.

[36] Tom van Dijk. “Sylvan: multi-core decision diagrams”. English. PhD thesis. Uni-
versity of Twente, July 2016. ISBN: 978-90-365-4160-2. DOI: 10.3990/1.9789036541602.

[37] Pengcheng Zhang, Henry Muccini, and Bixin Li. “A classification and comparison
of model checking software architecture techniques”. In: Journal of Systems and
Software 83 (5 May 2010), pp. 723–744. ISSN: 0164-1212. DOI: 10.1016/J.JSS.
2009.11.709.

74

https://adamwalker.github.io/The-Reactive-Synthesis-Competition/
https://adamwalker.github.io/The-Reactive-Synthesis-Competition/
https://doi.org/10.3990/1.9789036541602
https://doi.org/10.1016/J.JSS.2009.11.709
https://doi.org/10.1016/J.JSS.2009.11.709

	Introduction
	Preliminaries
	Binary Decision Diagrams
	Sifting algorithm
	Lace
	Sylvan
	CUDD
	Usecases of BDDs
	Safety games

	Related work
	Symmetry sifting
	Group sifting
	Lower bounds in dynamic variable reordering
	Dynamic variable reordering scheduling
	Evaluation of BDD ordering heuristics

	Research Methodology
	Sylvan hash table
	Sylvan hash map
	Chaining
	Chaining vs probing
	Mark-and-sweep vs reference counting
	Conclusions

	Adjacent variable swap
	Efficient bitmap traversal
	Roaring bitmaps
	Variable swap phase 0
	Variable swap phase 1
	Variable swap phase 2
	Garbage collection
	Variable swap workflow

	Sifting
	Variable interaction
	Dynamic lower bounds
	Rudell's sifting algorithm
	Reordering configurations and callbacks

	Evaluation of the dynamic variable reordering
	Experimental setup
	Reordering procedure profiles
	Regression tests
	Safety games
	Conclusions

	Reordering user guide
	Discussion
	Sifting parallelization
	Roaring bitmaps and thread-safety
	Swapping non-interacting variables
	Automatic reordering
	Reordering heuristics
	Methodology

	Conclusions

