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ABSTRACT – Businesses perform business 

processes to deliver their product or service to the 

customer. Analyzing data about the execution of 

the business process with process mining allows 

organizations to improve their operations. 

Applying the PM2 methodology, several analysis 

iterations are performed based on the chosen 

objective. A pre-processed event log as input for 

process discovery algorithms and performing a 

root cause analysis allows bottlenecks to be 

detected in the process. A developed dashboard 

allows these process mining algorithms to be 

combined in one tool. Using this tool allows single 

activities or process characteristics to be identified 

as bottlenecks. In the future, research can be done 

on how process mining can support the business 

process in an online setting. So that during 

execution, bottlenecks can be avoided or solved. 
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1. Introduction 

In 2020, three workgroups within the community 

Accounttech, part of the NBA (Koninklijke 

Nederlands Beroepsorganisatie van Accountants), 

started researching forthcoming technologies that 

are relevant for accountants (Patrick Konniger & 

Dirk Niestadt, 2021). Despite the advantages it 

could bring accountants, the research showed that 

existing technologies such as data analytics and 

machine learning are not yet employed by 

accountants. SoliTrust is an organization which 

provides data analytics and IT audit services to 

bridge this gap for small to mid-cap auditor firms. 

The services offered by SoliTrust can be leveraged 

over multiple audit firms to support their business 

process. Thereby, the service of IT auditing and 

data analytics results in a higher quality audit. Since 

the legitimacy of a company’s total financial 

administration can be checked at once, reducing the 

workload and duration of the audit. 

To deliver the services, SoliTrust has a Petri net to 

execute workflows. The Petri net is a static 

structure which models the process in terms of 

activities. During a workflow, tokens flow through 

the Petri net triggering activities to be executed. 

These workflows result in a report requested by an 

auditor firm. The Petri net can handle diverse 

workflows for different outputs and inputs, 

resulting in heterogeneous activities during 

workflow executions. Furthermore, as the Petri net 

handles different kinds of workflows there are 

numerous activities and the process becomes 

complex. In general, the process can be described 

as loading, conversing, analyzing and reporting the 

data delivered by a company. The execution of 

events within the Petri net is logged in an event log 

storing information on all activities performed for a 

workflow. 

The objective of the graduation project is to 

continuously improve the Petri net to improve 

workflow handling. By means of detecting 

bottlenecks in the Petri net by analyzing the event 

log. Solving these bottlenecks allows SoliTrust to 

perform the workflows more efficiently while 

requiring fewer human interventions. 

2. Research Design 

This section discusses the design of the research. It 

explains what methodology is used to achieve the 

objective. First, the methodology of the project is 

discussed. Thereafter, the research questions 

together with their methodology are explained. As 

well as the structure of the paper. 

2.1 Project Methodology 

The project aims to improve the business process 

performance by finding bottlenecks in the Petri net 

by utilizing the event log as input for process 

mining. Hence, a methodology is chosen which is 

suitable for process mining projects. The PM2 

methodology is chosen as a guideline during the 

project. As PM2 is iterative and specifically 

designed for process mining projects tailoring for 

specific process mining activities. Other data-

science project methodologies such as CRISP-DM 

are of a higher level and not made for process 

mining activities. While other process mining 

methodologies as the L* life-cycle model and 
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process diagnostics method are not iterative and not 

suited for large complex process models. 

The PM2 methodology consists of six stages. The 

first two stages are (1) planning and (2) extraction, 

in these stages the initial research questions are 

defined and the data required for the project is 

extracted. After the first two stages, one or more 

analysis iterations are performed. An analysis 

iteration consists of the stages (3) data processing, 

(4) mining and analysis and (5) evaluation. 

Depending on whether the outcomes are 

satisfactory, the project moves to the next stage (6) 

operational support (Van Eck et al., 2015).  

 

Figure 1 plots the methodology in the project based 

on the PM2 methodology visually. It shows what 

steps during the project are performed and how this 

relates to the PM2 methodology. The dotted lines 

are steps which could be performed.  

 

2.2 Research Questions 

To find improvement points with the event log the 

following main research question is formulated: 

How can SoliTrust continuously improve the Petri 

net performance utilizing the event log as input for 

process mining algorithms to detect bottlenecks? 

To answer the main research question, the 

following sub-questions are defined: 

1. What is a Petri net and how to influence its 

performance? 

a. What is a Petri net? 

b. What is an event log? 

2. What is process mining and what 

models/techniques are available for 

(continuous) improvement? 

3. How to prepare the event log as input for 

process mining algorithms?  
4. How can the bottlenecks of the 

(constructed) process (model) be detected 

and what is the outcome of this? 

5. Is the method of detecting bottlenecks 

valid? 

6. What improvement points can be detected 

based on the results of process mining 

algorithms? 

2.3 Methodology Research Questions 

Research Questions 1 & 2 

For RQ1 & RQ2, a systematic literature review has 

been conducted according to the guidelines set by 

Kitchemham (Kitchenham, 2004).  

The digital libraries Scopus and Web of Science are 

used to search for published studies. The search in 

Scopus and Web of Science are performed on 22 

December 2022 for RQ1 and 9 January 2023 for 

RQ2. The search concerns studies published until 

the date of the search performed. To filter for 

relevant results, the following keywords are used: 

• Petri Network 

Figure 1: Project Methodology 
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• Performance 

• Bottleneck 

• Process Mining 

• Discovery 

• Performance Analysis 

• Algorithm 

• Continuous 

For RQ1, the following search string out of the 

keywords is determined: 

• “Petri net*” AND “performance” AND 

“bottleneck” 

For RQ2, the following search strings deducted 

from the keywords are used: 

• “process mining” AND “discovery” AND 

“petri net*” 

• “process mining” AND “performance 

analysis” 

• “process mining” AND “discovery” AND 

“algorithm*” 

• “process mining” AND “contin*” 

To filter for relevant results, inclusion and 

exclusion criteria are set. For the SLR, the 

following inclusion criteria are set: 

1. The paper directly relates to Petri networks 

or process mining in the field of 

accounting and software systems. 

2. The paper addresses the research question. 

3. The paper is accessible online or via 

university resources. 

4. The paper is in English. 

5. The paper discusses process mining 

techniques for large processes and data or 

the technique seems scalable. 

The following excluding criteria are set for this 

SLR: 

1. The paper discusses constructs such as 

process mining and Petri networks to other 

specific domains such as cellular biology 

or digital twins. 

2. The paper discusses analysis made in 

software not available for the research. 

3. The reference comprises papers about a 

conference. 

4. The paper discusses process mining with 

specific characteristics for data such as 

exogenous or incomplete. 

5. The paper discusses perspectives of 

process mining not relevant to the project 

or not contained in the available log such 

as social network mining. 

The table showing the number of papers found and 

what keywords are used is presented in Appendix 

13.1. 

Research Questions 3 

For research question 3 a method is developed to 

pre-process the event log as input for process 

mining algorithms. Where a stepwise refinement 

(Wirth, 1971) methodology is used. Here the top 

goal, a ready event log for process mining, is split 

up into multiple steps. Specifically, the limitations 

of the event log are addressed by the steps below 

the top goal. 

Research Questions 4 and 5 

Research questions 4 and 5 are related to the 

development of the dashboard. Applying a process-

oriented dashboard design methodology proposed 

by Maximilian Kintz (Kintz, 2012). However, for 

the project, a simpler version is needed as only one 

data source is used; the event log. Furthermore, 

there is no online setting so alerting and controlling 

the process is also not part of the graduation 

project. 

Research Question 6 

Research question 6 utilizes the developed 

dashboard to find improvement points in the Petri 

net by using the algorithms in the dashboard. For 

the discovery algorithm and root cause analysis, the 

settings can be adjusted. 

Adjusting the settings is done with trial and error. 

Depending on the outcome, the settings can be 

adjusted. Setting the right interval is important, 

otherwise, the outcome becomes large and 

complex. Depending on the outcome and what the 

outcome shows, new settings can be chosen to 

make the model larger or incorporate other 

activities. For the discovery algorithm, the 

outcomes are judged visually by the user. 

For the root cause analysis, the outcome is a 

decision tree. Here, the settings are set so the 

outcome underfits the data at first. So that only one 

root node is presented which shows the best split of 

the data. Then, the settings are changed so that the 

decision tree grows in depth and width. This stops 

when the decision tree starts to overfit the data or 

no changes can be made in the resulting tree with 

the new settings. The outcomes are judged based on 

the number of traces in the leaf nodes and the Gini-

Index. 

2.4  Paper Structure 

Chapter 3, 4 and 5 address research question 1 and 

2. Chapter 6 concerns research chapter 3. Question 

4 and 5 are discussed in chapter 7 and 8. Chapter 9 
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concerns the results of the dashboard and addresses 

research question 6. The conclusions are drawn in 

Chapter 11. 

3. Petri net 

The project is about improving the business process 

model performance by finding bottlenecks. The 

business process of SoliTrust is executed through a 

Petri net. To understand what the business process 

looks like and what kind of data could be logged in 

the event log, an explanation of a Petri net is 

provided in this section. To understand event 

attributes in the event log, an understanding of Petri 

nets is needed. For that reason, Petri nets are 

discussed before the event log in Chapter 4. 

3.1 Petri net definition 

Petri nets are an abstract and formal model of 

information flow. Petri nets are subject to many 

prior investigations for process modelling 

languages and allow for concurrency and hierarchy. 

Petri networks model systems that are constructed 

by places and transitions, called nodes, as well as 

the relationship between them. The structure of the 

network is static. However, tokens can flow 

through the network. A Petri net can have different 

states, which are determined by the distribution of 

the tokens over places. The distribution of tokens 

over places is referred to as the marking of a Petri 

network. An example of a Petri net is provided in 

the bipartite graph of Figure 2. Here, the circles are 

places and the squares are transitions for an 

insurance claim request. 

 

Figure 2: Example Petri net (I. Mukhlash, 2018; 
Peterson, 1977; Salimifard & Wright, 2001; W. Van der 
Aalst, 2016) 

3.2 Petri net notation 

A Petri net can be defined by the triplet N = (P, T, 

F). Here P is the finite set of places, T marks the 

finite set of transitions and F is called the flow 

relation with a set of directed arcs. In the Petri net 

example of Figure 2, the triplet is defined as; 

P = {start, c1, c2, c3, c4, c5, end} 

T = {a, b, c, d, e, f, g, h} 

F = {(start, a), (a, c1), (a, c2), (c1, b),  (c1, c),  (c2, 

d), (b, c3), (c, c3), (d, c4), (c3, e), (c4, e), (e, c5), 

(c5, f ), (f, c1), (f, c2), (c5, g), (c5, h), (g, end), (h, 

end)} 

 A Petri net has to adhere to the following 

conditions; 

- P ∩ T = ∅ 

Meaning that a node in the Petri net can either be a 

place or a transition but not both. 

- F ⊆ (P ×T ) ∪ (T × P) 

Meaning that a flow must always go from a place to 

a transition or a transition to a place (W. Van der 

Aalst, 2016). 

3.3 Marked Petri nets 

In the example Petri net of Figure 2, a token is 

placed on start, therefore the marking shown in 

Figure 2 is {start}. To go on towards a new 

marking, a transition has to be enabled according to 

the firing rule, which is explained in section 3.5. A 

transition can fire if each of the input places of the 

transition contains a token. In the example Petri net, 

a is enabled since the input place of transition a 

possesses a token. Firing a leads to the marking [c1, 

c2]. When a is fired, one token is consumed but two 

tokens are produced. At marking [c1, c2], a is not 

able to fire, since the input place of transition a no 

longer holds a token. However, at marking [c1, c2], 

transitions b ,c and d are enabled. When b is fired, it 

results in marking [c2, c3}]. Now, b and c are not 

enabled anymore. Contrary to transition d, which 

still is enabled (W. Van der Aalst, 2016). 

A marked Petri net is denoted by a pair (N, M), 

where N = (P, T, F}) and M ∈ B (P) is a multi-set 

over P denoting the marking of the Petri net. The 

set where all Petri nets are marked is denoted as N. 

A multi-set is a set with elements where each 

element may occur multiple times. Let [a, b2, c3, d2, 

e] be an example of a multiset. In this multiset, 

there are 9 elements: one a, two b, three c, two d 

and one e. Then the three multi-sets [a, b, b, c3, d, d, 

e], [e, d2, c3, b2, a], and [a, b2, c3, d2, e] are 

identical. Since only the number of occurrences 

matters, not the sequence (W. Van der Aalst, 2016). 

3.4 Input and output nodes 

To formulate the notation for input and output 

places or transitions, the elements in P ∪ T are seen 

as nodes. Node x can serve as an input node of 

another node y if and only if there is a directed arc 
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from x to y meaning (x, y) ∈ F.  Otherwise, x is an 

output node of another node y if and only if (y, x) ∈ 

F. Meaning that the input and output nodes can be 

denoted as: 

•x = {y | (y,x) ∈ F}, notation for node x being an 

input node of node y 

x•={y | (x,y) ∈ F}, notation for node x being an 

output node of node y 

In the example Petri net of Figure 2, •c2 = {a, f} 

and c2•={d} (W. Van der Aalst, 2016). 

3.5 Transition and firing 

In a marked Petri net, transition t ∈ T is enabled, 

notated by (N, M)[t>, if and only if •t ≤ M.  

(N, M)[t>(N, M’) denotes that firing enabled 

transition t results in marking M’. In the Petri net of 

Figure 2, examples are (N, [start])[a>(N, [c1, c2]) 

and (N, [c3, c4])[e>(N, [c5]).  

From a marking, a sequence can be determined in 

which the firings can take place. A firing sequence 

of (N, M) is denoted as σ ∈ T, if and only if there 

exists a natural number for which there are 

markings M1,…,Mn and transitions t1,…,tn ∈ T such 

that σ = <t1,...,tn> and, for all i with 0 ≤ i<n,  

(N, Mi)[ti+1> and (N, Mi)[ti+1>(N, Mi+1). 

Not all markings can be reached from an initial 

marking. In the Petri net of Figure 2, the initial 

marking M0 = [start] enables the empty sequence σ 

= < >. The sequence σ = <a, b> is also enabled 

resulting in the marking [c2, c3]. The firing 

sequence <a, c, d, e, f, b, d, e, g> is also enabled. A 

marking M is reachable from the initial marking if 

there exists a sequence of transitions whose firing 

leads to M from M0. The set of reachable markings 

of (N, M0) is denoted by [N, M0> (M. Leemans, 

2018; W. Van der Aalst, 2016). 

3.6 Labeled Petri net 

In Figure 2 the transitions have been regarded with 

a single letter. However, in the Petri net also larger 

description with more detailed information about 

the activities could be provided. A labeled Petri net 

is denoted by N = (P, T, F, A, l). Here P, T and F 

have the same definition as in the normal definition 

of a Petri net. The set of activity labels is defined by 

A ⊆ A and l ∈ T → A is a labeling function. 

It could be that multiple transitions have the same 

label. The label of the transition can also be seen as 

the observable action. However, sometimes a 

transition is not observable. With the label τ, it is 

denoted that the transition is not observable, 

referred to as a silent or invisible transition. A Petri 

net can be transformed into a labeled Petri net by 

taking A = T and l(t) = t for any t ∈ T. Reversing a 

labeled Petri net is not always possible, as 

transitions may have the same label (W. Van der 

Aalst, 2016). 

3.7 Generic properties 

The Petri net is k-bounded if no node in the Petri 

net contains more than k tokens. The Petri net is 

called safe if and only if it is a 1-bounded net. The 

Petri net in Figure 2 is an example of a safe Petri 

net. As no node could contain more than 1 token. 

A Petri net is deadlock-free if at every marking a 

transition is enabled. When a transition is enabled 

in every possible marking, the transition is deemed 

as live. The entire Petri net is live when every 

transition in the net is always enabled. A deadlock-

free Petri net does not require a live transition, as 

long as one transition is enabled, the Petri net is 

deadlock-free (W. Van der Aalst, 2016). 

3.8 Colored Petri nets 

When the Petri net should capture data-related and 

time-related aspects, a colored Petri net (CPN) 

could be used. Tokens in a CPN can be assigned a 

data value and a time stamp. This data value is 

often referred to as color and describes the 

properties of the object which is modelled by the 

token. The timestamp of the token can be used to 

track the time in the Petri net. Transitions can 

assign delays to the tokens, making a CPN suitable 

for modelling waiting and service times as an 

example (W. Van der Aalst, 2016). 

3.9 Conclusion on (SoliTrust) Petri net 

Petri nets are a static form of modelling processes. 

Through the net flows tokens which triggers the 

activities in the net. Key characteristics of Petri nets 

are hierarchy and concurrency. There can be 

multiple tokens on one place and several statistics 

can be gathered on a token. This is important for 

the graduation project to know to gain an 

understanding on the Petri net of SoliTrust. It 

explains how the Petri net operates which is needed 

for understanding the event log.  

The Petri net of SoliTrust consists of 2816 activities 

of which 339 activities are silent activities. There 

are 2928 input places and 2605 output places. The 

Petri net can handle concurrency and also has 

hierarchy in the structure. The places in the Petri 

net are allowed to have multiple tokens on one 

place. Information about time are not stored on the 

token but the event log holds a starting and ending 

time of activities. The tokens do hold information 

about the command executed in the activity. 
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4. Event Log 

The project aims to find bottlenecks in the Petri net 

using process mining. The input for process mining 

algorithms is an event log. This section discusses 

the definition of an event log as well as the 

characteristics and quality of the event log. Having 

an understanding of the event log is important for 

the success of the project and the quality of the 

outcomes. 

4.1 Definition 

The execution of the Petri net is logged in an event 

log. An event log captures activities performed in 

the execution of a workflow. The activities stored 

in the event log are referred to as an event. The 

workflow for which the event is performed is seen 

as a case in process mining. Each event in a log 

corresponds to one single case and relates to an 

activity or task. Furthermore a case or event can 

have attributes which contain information about the 

case or event. For example; for which customer the 

case is performed or at what time the event started. 

All activities together capture the execution of a 

process as an event log. 

 

Figure 3: Structure Event Log 

Figure 3 visually presents the structure of an event 

log,  it shows that the process consists of cases 

which are composed of events. These events relate 

to only one case and the events within a case are 

ordered. ttributes which hold information about the 

event. These attributes can store information about 

the event (W. Van der Aalst, 2016; W. 

Premchaiswadi and P. Porouhan, 2015; Y. 

Caesarita, 2018). 

4.2 Event Log SoliTrust 

The event log of SoliTrust contains activities 

executed for the workflows in the Petri net. As the 

entire event log would be too large with 4,458,549 

events. The event log is reduced to the workflows 

executed for the financial book year 2022. Meaning 

that the event log used in the project holds 

1,226,714 events with 2816 unique activities for 

758 cases. The event log is stored as a table in a 

database of SoliTrust’s SQL server. The table in 

Appendix 13.2 shows what original attributes are 

present in the Event Log. 

4.2.1 Characteristics Event Log SoliTrust 

An event log contains the events executed for the 

business process. These business processes have 

different characteristics, which have an impact on 

the events contained in the event log. Depending on 

the characteristics of the process, challenges may 

arise to using the event log as input for process 

mining. In the case of SoliTrust, process 

characteristics of the Petri net are also represented 

in the event log creating some challenges. 

To start the event log of SoliTrust stores a large 

number of events. The total event log with over 4 

million events is around 30GB, preventing the total 

event log to be loaded into the memory of the 

computer. Furthermore a larger number of events 

also have implications on what process mining 

algorithms are applicable. 

Also there is case heterogeneity in the event log of 

SoliTrust. Inferring that cases have different orders 

in which activities are executed which is known as 

a trace. The event log contains 2 traces which are 

executed in the same manner, all other cases are 

executed differently. Which is caused because the 

Petri net is flexible. The same Petri net can deal 

with different inputs and outputs by executing a 

different part of the Petri net. Which is represented 

in the event log by heterogeneous traces. 

Furthermore the events stored in the event log are 

fine-granular, meaning that there is a large number 

of distinct activities in the event log. Process 

mining algorithms have difficulties with fine-

granular events as this results in complex models. 

However a higher-level view of activities might 

discard relevant information from the log (Bose et 

al., 2013). 

4.2.2 Quality Event Log SoliTrust 

Regarding the quality of the data in an event log 

four broad categories are distinguished; missing, 
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incorrect, imprecise and irrelevant. The event log of 

SoliTrust deals with irrelevant data for the project. 

All activities of the Petri net are logged even 

though the activity does not perform anything. 

Resulting in many events contained in the event log 

not being required for the project. Thereby there are  

activities in the Petri net only for layout options 

with no functioning, these activities are also 

represented within the event log. In addition there 

are also cases which are irrelevant in the event log 

such as test cases. 

The ordering of events in the event log is important. 

As the event is logged when it is fully executed it 

can arise in the wrong location in the log. The 

timestamps are recorded in an Epoch Unix 

timestamp. To be used as process mining input the 

timestamps should be transformed into a timestamp 

in the form of YYYY-MM-DD HH-MM-SS. The 

activities are recorded with a precision to a second, 

which prevents calculating the duration of activities 

with a duration smaller than 1. However this is not 

seen as a problem for the project as these are not 

seen as activities of interest (Bose et al., 2013). 

4.3 Conclusion on event log 

An event log stores information about the execution 

of a process. It stores cases which are made out of 

events. Both cases and events can have attributes 

that hold information. Event logs capture the 

process and therefore also the behavior of the 

process. In case of SoliTrust, the event log is 

voluminous, fine-granular and heterogeneous. 

Furthermore, data in the event log is irrelevant for 

the project. 

5. Process mining 

Process mining is a research discipline that can be 

seen as a combination of machine learning and data 

mining on one hand and process modelling as well 

as analysis on the other hand. Process mining 

intends to discover, monitor and improve processes 

by analyzing available information from event logs. 

This section discusses process mining in terms of 

its role in the business process lifecycle as well as 

what types and perspectives process mining can 

take.  

5.1 Process mining in the BPM life cycle 

Figure 4 represents the business process 

management (BPM) life cycle. The BPM describes 

how processes are designed and how the process is 

adapted through the life cycle. The process starts at 

the design phase, where a process is designed. The 

process is transformed into a functioning system 

during the configuration and implementation phase. 

Once the system configured supports the designed 

process, the phase of enactment/monitoring starts to 

trace improvement points. When improvement 

points are detected, changes in the process can be 

made. In case no new design of the process or new 

software is needed, therefor only adapting 

predefined controls to reconfigure the process. The 

changes can be acted on in the adjustment phase. 

While the diagnosis/requirements phase monitors 

for larger emerging changes in the process and 

whether the system meets the requirements. Such 

changes may trigger the (re)design phase starting 

the cycle again. Process models have a significant 

role in the design and configuration/implementation 

phases of a system. Contrary, data plays a 

significant role in the enactment/monitoring and 

diagnosis/requirements phases. The data can be 

used as documentation to provide insights and 

analyze the performance of the process. While the 

process models have a role in verifying the system 

and determining its specification and configuration. 

In practice, many organizations do not continuously 

or systematically support the 

diagnosis/requirements phase. Only major problems 

or external changes trigger an iteration of the 

lifecycle. Thereby, once the (re)design phase is 

activated, the factual available information about 

the process is not actively taken into account. Here, 

process mining can help to connect all phases of the 

BPM life cycle. The available information can be 

applied to provide valuable insights into the 

process, detect abnormalities and support 

improving the quality of the models (Garcia et al., 

2019; Leemans et al., 2015; Manoj Kumar et al., 

2018; Milani et al., 2022; W. Van der Aalst, 2016; 

W. M. P. van der Aalst, 2011). 

 

Figure 4: Representation of the business process 

management life cycle 

5.2 Types of process mining 

Process mining links the process and the generated 

data to the process model. This link can be made in 

different ways. Therefore, in general, three main 

types of process mining can be identified. 

1. Discovery. Techniques for discovery 

process mining can produce a model out of 

an event log. Such a technique can 

transform an event log into a model 

without deductive reasoning (Batista et al., 
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2019; Leemans et al., 2015; W. Van der 

Aalst, 2016; W. M. P. van der Aalst, 

2010). 

2. Conformance. Here, the event log is used 

to compare the process with the event log. 

The event log is used to check whether the 

actual process in the log corresponds to the 

designed process. For example, it could be 

that an activity with a certain condition 

requires a check. With conformance 

process mining, it can be seen whether this 

check is actually executed if the 

requirements are met. Conformance 

checking can therefore be used to detect, 

locate and explain deviations. 

Furthermore, the gravity of the situation 

can be assessed (Gyunam Park and Wil 

M.P. van der Aalst, 2021; Leemans et al., 

2018).  

3. Enhancement. With enhancement, the 

information available in the event log 

serves as a basis to extend or improve an 

existing process model. Enhancing the 

process is contradictory to conformance, 

as it aims for changing and extending the 

process model. Process mining that uses 

enhancement can use different types: 

a. Repair. Here the model is adapted 

to better reflect the reality it 

should represent. Which can 

occur when activities in the 

model are modelled sequentially. 

While in reality, the activities can 

occur in any order. Correcting the 

model to better reflect reality is 

an example of enhancement. 

b. Extension. An example of an 

extension is to add performance 

data within the model. Adding 

timestamps allows for 

bottlenecks, service levels, 

throughput times, and frequencies 

to be shown (Van der Aalst, 

2016). 

5.3 Perspectives of process mining 

When the process model is extended with 

additional information rather than just the flow, 

process mining can take on different perspectives. 

Perspectives which are commonly used on process 

mining are: 

• The control flow perspective focuses on 

the flow of the process. In other words, the 

ordering of the activities. When using this 

perspective in process mining, the goal is 

to find the behaviour of the process of all 

possible paths. 

• The organizational perspective focuses on 

the resources that are hidden in the log. 

Depending on what information is 

available, the organizational perspective 

searches for the involvement and 

relationships of actors in the process. The 

aim is to structure the organizational 

structure by classifying actors or 

constructing the social network. 

• The case perspective focuses on the 

properties of cases in the event log. The 

cases can be represented by the paths it 

takes in the process or by the activities 

performed. Nevertheless, cases can also be 

characterized by the values of their data 

elements. With delivery, it might be useful 

to know the supplier or the number of 

products ordered. 

• The timing perspective is concerned with 

the timing and frequency of events in the 

process. Including timestamps in the event, 

allows for the detection of bottlenecks, 

measuring service levels, monitoring the 

utilization of resources and making a 

prediction about the remaining processing 

time (Kaouni et al., 2021; W. Van der 

Aalst, 2016). 

5.4 Online and offline process mining 

Many process mining techniques are done offline. 

Meaning that processes are analyzed afterwards to 

see how they can be improved. However, many 

techniques can also be used in an online setting, 

where improvement is made during the process. 

Which is also referred to as operational support. An 

example of operational support is predicting the 

remaining processing time or intercepting the 

process when a deviation in conformance takes 

place (W. Van der Aalst, 2016). 

5.5 Play-In, Play-Out and Replay 

An important aspect of process mining is the 

relationship between a process model and the 

reality represented by the event log. The terms 

Play-In, Play-Out and Replay are used to reflect on 

this relationship. Figure 5 visually shows Play-In, 

Play-Out and Replay. 

Play-Out refers to the traditional use of process 

models, where the events in the process model are 

logged. In the case of a Petri net, Play-Out traces 

the token in the network. Play-Out can be used to 

analyze and enact business processes. Simulation 

tools and workflow engines are suitable for the 

Play-Out relationship. 
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Play-In is in contrast with Play-Out, it uses example 

behaviour to construct a process model. The Play-In 

relationship is also called inference. With the usage 

of process mining, process models can be 

discovered from event logs. 

Replay uses both an event log and a process model. 

Where the event log is rehearsed on the process 

model. Replay may be used to extend the model, 

construct predictive models, conformance checking 

or operational support (W. Van der Aalst, 2016). 

 

Figure 5: Play-In, Play-Out, Replay (W. Van der 

Aalst, 2016) 

5.6 Root Cause Analysis 

Process mining allows the detection of bottlenecks 

in a business process. Providing valuable 

information to organizations on where to improve 

their operations. However, solely indicating a 

bottleneck does provide organizations small 

information on how to deal with the bottleneck. 

Information on how the bottleneck originates can 

provide insights into how to oppose the bottleneck. 

With a root cause analysis, a more refined analysis 

can be performed to correlate different process 

characteristics. 

De Leoni et al (De Leoni et al., 2016) propose a 

framework on how to correlate process 

characteristics to perform a more refined analysis. 

Analysis use cases can be used to provide valuable 

information to organizations. An analysis use case 

is a triplet consisting of a dependent characteristic, 

a set of independent characteristics and an event-

selection filter.  

The result of performing an analysis use case is a 

decision or regression tree where the independent 

characteristic relates to the dependent characteristic. 

So that the independent characteristic explains the 

dependent characteristics. The event-selection filter 

selects the events for which an analysis is made. 

For example, events performed by a specific 

resource. In case there is little information about the 

traces stored in the event log, the log and traces can 

be manipulated to add process characteristics. 

Following the paths to the leaf nodes in the decision 

or regression tree explains how the dependent 

variable is impacted. The traces in the leaf nodes 

can also be used as a cluster for other process 

mining activities, such as process discovery (De 

Leoni et al., 2016). 

5.7 Conclusion on Process Mining 

Process mining is a combination of BPM and data 

science. For the project, process discovery with 

enhancement are relevant. Conformance is not 

relevant as the workflows cannot differ from the 

structure of the SoliTrust Petri net. The time 

perspective and case perspective are relevant for the 

project. As conclusions can be drawn about the 

throughput time of workflows and what workflows 

are troublesome. The project is conducted in an 

offline setting with post-mortem data. Play-In and 

replay are relevant techniques to find potential 

bottlenecks in the process. Because the discovered 

process model can be extended. Root cause analysis 

is also relevant for the project as this can unveil 

potential causes why a bottleneck occurs. 

6. Event Log Pre-processing 

Event logs store information about the execution of 

the business process. Process mining algorithms 

can use an event log as input and extract the 

knowledge to gain meaningful insights into the 

process. Therefore, the log used as input has a great 

impact on the result of the process mining 

algorithm.  Or in other words; “garbage in – 

garbage out”, referring to low-quality data implying 

low final-quality knowledge. Therefore attention 

should be given to the event log as input to succeed 

in process mining. This section discusses how an 

event log can be preprocessed to serve as input for 

valuable results. These pre-processing steps oppose 

the process characteristics and quality issues within 

the event log discussed in section 4.2. 

6.1 Pre-processing theory 

Real-life processes can be complex, hence the data 

in the event log can be voluminous and of high 

variability. Using this raw event log as input for 

process mining algorithms infers spaghetti-like 

process models which are difficult to analyze. With 

the help of pre-processing; algorithms can provide 

simpler process models which are easier to analyze. 

Which is visually shown in Figure 6. 
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Figure 6: Event Log Pre-Processing (Marin-Castro & Tello-Leal, 2021)

Marin-Castro (Marin-Castro & Tello-Leal, 2021) 

proposes a taxonomy for preprocessing techniques, 

where event log preprocessing can be organized 

into two main groups; transformation techniques 

and detection and visualization techniques. 

 

Figure 7: Pre-Processing Taxonomy 

6.1.1 Transformation techniques 

Transformation techniques search for changes in 

the original structure of the raw event log to 

improve the quality. For transformation techniques, 

two approaches are determined; filtering-based and 

time-based.  

Filtering based 

Filtering based aims to exclude events or traces 

with a lower frequency, focusing on the likelihood 

of occurrences for an event or a trace. Removing 

these events or traces from the log excludes them to 

appear in the constructed process model. On the 

other hand time-based focuses to maintain and 

correct the order of events within the event log. 

Filtering techniques search for a typical behaviour 

in the log to eliminate. It fundamentally addresses 

the concerns for noise and anomalous events in the 

event log which may affect the performance of 

future process mining tasks. By filtering out 

infrequent behaviour in the log based on frequency.  

Time-based 

Time-based transformation techniques are another 

way to preprocess the event log. Timestamps can 

point out performance issues in the process. Time-

based transformation techniques can repair and 

change the timestamps present in an event log. 

Furthermore an incorrect ordering of events can 

harm the result of process mining techniques. 

Especially discovery algorithms benefit from an 

event log where the events are properly sorted. 

Strategies concerning the information in 

timestamps and the ordering of events are therefore 

of interest to improve process mining outcomes. 

6.1.2 Detection and visualization techniques 

Detection-visualization techniques is a 

preprocessing group aiming to recognize, group and 

isolate events or traces which may cause quality 

issues in the log. The event log is divided into 

subsets by clustering techniques, these subsets are 

analyzed for noise and anomalous elements. It is 

possible to extract imperfection patterns from the 

formation of similar clusters (Fani Sani, 2020; 

Marin-Castro & Tello-Leal, 2021). 

6.2 Data Preparation Method 

As the quality of the event log is important, a 

method is used to preprocess the event log to ensure 

the quality of the process mining algorithms. The 

data preparation method should deal with the 
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characteristics of the event log mentioned in section 

4.2.  

The event log is extracted from one process. Which 

has as benefit that the event log does not have to be 

compiled from multiple sources. As the system 

automatically stores the execution of processes 

within the Petri net. Thereby guaranteeing the same 

fine granularity in the event log.  

Because the Petri net fires every transition, even 

when the transition does not execute an activity for 

the business process, the event log contains noise. 

As it stores transitions that are not relevant to the 

analysis of the business process. Trace attributes are 

not found in the event log and are constructed from 

other available databases in the SQL server of 

SoliTrust. 

The Petri net is designed to handle workflows for 

financial analysis. As the customers come from 

different sectors implying variation in the output 

and input. The Petri net has a flexible setup so that 

only a partition of the transitions is actually run. 

Causing the event log to have a heterogeneous mix 

of traces with diverse and unstructured behaviours. 

For these reasons, the data preparation method 

should pre-process an event dealing with fine-

granular, voluminous and heterogeneous 

characteristics. As a method, the process in Figure 8 

is proposed. 
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Figure 8: Event Log Pre-Processing Method 
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6.2.1 Filtering 

Figure 8 starts at the Petri net filling the raw event 

log with data. This raw event log contains over 4 

million events. To reduce the lavish data, the first 

step in the data preprocessing step is filtering. 

The first filtering step of the data pre-processing 

uses attributes extracted from the trace or event 

attributes to exclude events or traces to preserve 

wanted behaviour. Attributes and values used to 

include and exclude events or traces are: 

• Financial Year: 2022 

For the graduation project only workflows 

for the financial book year 2022 are 

considered. This is the year before the 

graduation project and contains the 

behaviour of the Petri net in its most recent 

shape. Furthermore, taking a financial year 

should still provide plenty of data points 

for all kinds of workflows in the Petri net. 

In addition, taking the financial book year 

2022 is set with the approval of SoliTrust. 

• Scripts: Empty 

There are 2816 distinct transitions stored 

in the event log. However, not all fired or 

stored transitions do execute a process or 

activity when fired. Some transitions are in 

the Petri net for an easier layout. To only 

consider transitions actually executing 

activities, events with no scripts are 

excluded from the event log.  

• Duration: 0 

In case an event has a duration of zero 

seconds, the event is excluded from the 

event log. Because the event has not been 

executed but does contain a script. The 

timestamps in the event log are stored with 

precision to the second. In case, a 

transition is executed but takes less than a 

second, it is also excluded. However, this 

is not seen as an issue. As improving these 

transitions is not the goal of the graduation 

project because of lesser yield. An 

exception is made for events which cause 

an error and have a duration of zero. These 

are of interest for the graduation project to 

reduce errors. 

• Test: True 

Sometimes test workflows are run through 

the Petri net. These test runs are excluded 

from the event log as they do not represent 

the behaviour of interest. 

• Termination: False 

A workflow through the Petri net can be 

terminated, either by the user or the 

network itself. When a workflow is 

terminated, the events remaining or being 

executed are stored in the event log. When 

the workflow is run over, the same case id 

is used so the events executed twice are 

stored double in the event log. Keeping the 

terminated events provides wrong inputs 

for process mining algorithms. However, 

the trace is kept because it is of interest as 

something causes the workflow to be 

terminated which could be improved. 

• Attributes 

Some attributes are not relevant as input 

for process mining algorithms. These are 

removed from the event log. For example, 

which processor core of the computer the 

workflow is run on, is excluded from the 

event log. 

Figure 9 shows the decline in the number of events 

in the log when the event attribute filters are 

applied. Filtering on the financial year, script, 

duration, test and termination reduces the number 

of events from around 4.5 million to around 386 

thousand. 

 

Figure 9: Event Attribute Filtering 

6.2.2 Time-Based 

For the analysis of the Petri net, the time viewpoint 

is used to determine throughput time and 

determining potential bottlenecks. Errors in the 

timestamps can provide misleading results in the 

performance of the Petri net. In addition, the correct 

ordering of events is also addressed in the second 

step of preprocessing. 

• Granularity 

In case timestamps have a different level 

of granularity, the events can be wrongly 

ordered. Which may affect the process 

models discovered. The event log is 

checked whether timestamps hold the 

same granularity. In case the granularity is 

different, all timestamps are transformed 
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to the lowest granularity available in the 

log. 

• Ordering 

Checking whether the events are in the 

right order is important for the quality of 

especially process mining discovery 

algorithms. The events should be ordered 

in occurrence in each trace. In case the 

ordering is mistaken, the ordering is 

changed to the correct order. 

6.2.3 Outlier Detection 

To remove outliers, anomalous traces are detected 

using isolation forest. Isolation forest uses the 

decision tree algorithm to isolate outliers. By 

randomly selecting a feature from the set of features 

and applying a split on the feature. The random 

partitioning of features produces shorter paths in 

trees for anomalous data. Thereby distinguishing 

anomalies from other data points in the available 

data. 

It does not construct a profile of what is normal 

behaviour and does not make use of point-based 

distances. It uses the principle that anomalous 

observations are few and different. Which should 

make them easier to identify. 

6.2.4 Principal Component Analysis 

It could be that a pre-processing technique suffers 

from dimensionality. Therefore, a principal 

component analysis is used to reduce the number of 

features. In the pre-processing method, the principal 

component analysis is used to select the features 

until the set variance is explained. These features 

can be used by, for example, the clustering 

algorithm to cluster the traces (Zandkarimi et al., 

2020). 

6.2.5 Clustering 

The event log of SoliTrust consists of 

heterogeneous traces. Using all traces as input for 

process mining may result in complex outcomes. 

Clustering the traces into similar clusters to analyze 

may prevent the variability of the traces to be 

represented in the outcome. Thereby resulting in 

simpler outcomes. 

To cluster traces in the event log, the K-Means 

algorithm is chosen. The K-Means algorithm is 

chosen because it is fast, the number of clusters can 

be chosen and resulted in sufficiently occupied 

clusters. The algorithm aims to minimize the 

distance between data points in the dataset. To not 

overload the algorithm with features, features 

resulting from the principal component analysis are 

used. 

For K, tests have been performed to see what value 

of K suits best. By determining K, a trade-off is 

made between the distribution of traces over the 

clusters and the total number of clusters. When 

clusters are assigned a very low number of traces, it 

is less beneficial to analyze these traces. Otherwise, 

when there is one cluster with a large number of 

traces, there is still too much variability causing 

complex models. Furthermore, a reasonable amount 

of clusters to analyze is desirable. Else, too many 

clusters need to be analyzed. After performing a test 

with several K’s, K is set to 4. As 4 clusters are 

seen as a reasonable amount of clusters to analyze 

and all clusters had a reasonable amount of traces. 

Other clustering algorithms DBSCAN, OPTICS 

and Agglomerative clustering showed less 

satisfactory results. The algorithms resulted in low-

occupied clusters with one main cluster. Other trace 

clustering algorithms such as hybrid trace clustering 

are seen as too expensive processing for the event 

log because it requires a discovery step during the 

process (Zandkarimi et al., 2020). 

6.2.6 Multi-Range Filtering 

Multi-range filtering is used as the last pre-

processing step before using the event log as input 

for process mining algorithms.  

The first filtering step in the pre-processing uses 

attributes to exclude events and traces. Multi-range 

filtering uses frequency to exclude or incorporate 

traces and events. Many filtering techniques or 

tools use frequency as an ultimate measure. Where 

only the most occurring traces or events are kept as 

input for process mining. However, users therefore 

have little influence on what information stays in 

the model and what can be left out. Because 

everything below or above a certain threshold is 

used. 

However, depending on the goal of process mining, 

the information contained in infrequent activities 

can be of interest. Multi-range filtering allows for 

simpler models to be constructed while 

incorporating activities and traces to the user's 

needs by setting multiple ranges as input. With 

multiple ranges, both the big-picture and potentially 

valuable infrequent behaviour can be used to 

discover and analyze a process model. Allowing, 

otherwise disregarded behaviour, also to be 

analyzed to gain insights in the process (Vidgof et 

al., 2020). 

After applying the multi-range filtering to the sub-

filtered event logs, process mining algorithms 

should be able to construct understandable process 

models. After analyzing the constructed process 
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models, new ranges can be set to multi-range 

filtering to start an iterative analysis. Based on the 

results of previous ranges, new insights can be 

discovered.  

6.2.7 Generalization 

In the case of fine-granular events in the event log, 

generalization can be used to abstract events from 

the event log. Which combines possibly multiple 

events into one allowing for a simpler 

comprehensible output. It is chosen not to apply 

generalization as a processing step because possible 

relevant information can be discarded. In the search 

for improvement points in the Petri net, possible 

bottlenecks must be kept in the event log. Thereby, 

most grouping techniques apply semantic 

ontologies, are partly automated and lack domain 

significance (Bose et al., 2013). 

6.2.8 Trace Attributes 

The event log of SoliTrust does not contain other 

trace attributes than the case id. To perform analysis 

with a case perspective, trace attributes are 

composed. Attributes composed for traces are the 

views filled during the case, for what customer the 

case is performed, the ERP system and what type of 

file the input consists of. These trace attributes are 

compiled out of data existing in other data tables in 

the SQL server or are constructed from event 

attributes. 

6.2.9 Sublogs 

Not always, the entire business process is needed as 

input for process mining. It could also be 

interesting to zoom in on specific parts of the 

process. Therefore, the attributes are enhanced with 

an attribute event type. The event type is 

constructed from the script run so that only likewise 

activities are grouped in eight sub-logs. Taking a 

sub-log could still provide complex process mining 

outcomes. Therefore, the pre-processing method is 

also applied to sub-logs before being used as input 

for process mining. Nevertheless, taking a sub-log 

allows for a zoomed-in analysis instead of the 

whole event log. The table in Appendix 13.5 shows 

what sub-logs are available along with statistics on 

the number of activities and events. 

6.3 Applying Pre-Process Method 

The goal of the event log pre-processing method is 

to prepare the event log as input for process mining 

algorithms. Before applying the event log pre-

processing method, process discovery resulted in 

large spaghetti-like models. Applying the pre-

processing method allows for simpler models to be 

discovered. Showing the functioning of the pre-

processing method. In addition, the pre-processing 

method is flexible in the setup. The user can select 

different sub-logs, clusters, filtering intervals, 

contamination and explained variance in the 

process. Allowing the user to select the required 

input for process mining. 

Figure 10 shows a process model discovered 

without good application of the event log pre-

processing method. In Figure 11, the event log is 

pre-processed to provide a simpler outcome. Which 

shows that the event log pre-processing method is 

effective for simpler models to be discovered. 

 

Figure 10: Complex Process Model Discovered 

 

Figure 11: Simpler Process Model Discovered 

7. Dashboard 

SoliTrust continuously wants to improve the Petri 

net. Therefore, a dashboard is created which 

incorporates process mining to provide information 

on the business process of SoliTrust. The advantage 

of the dashboard is that multiple process mining 

functionalities are combined in one tool. This 

section discusses the dashboard as well as the 

functionalities within the dashboard. 

7.1 Goal Dashboard 

The goal of the dashboard is to detect bottlenecks in 

the Petri net. Bottlenecks are seen as activities 

which cause rework or lengthen the duration of a 

workflow. 

Rework is seen as starting an activity in the Petri 

net again. Thereby also triggering activities behind 

the started activity. The activity must be started by 

an human intervention. In an discovered process 

model, rework can be detected with a loop 

construct. Which means a transition to a previous 

activity. Because the process stops there and starts 

again in front of that activity. 

The dashboard incorporates process discovery, 

statistics and root cause analysis to find bottlenecks 

in the Petri net. Process discovery is used to 

discover a process model. After which replay is 
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used to highlight activities with a higher frequency 

or duration. This is seen as a method which unveils 

bottlenecks in literature and therefore has been 

included in the dashboard. 

Root cause analysis provides insights into why a 

deviation occurs. Giving a direction to SoliTrust on 

how to solve the bottleneck, a root cause analysis 

perspective is included into the dashboard. 

7.2 Dashboard outline 

The dashboard is created in Dash where callbacks 

are performed on process mining tasks. Both the 

process mining tasks as well as the dashboard are 

written in Python. The dashboard uses Dash as a 

package while the tasks for process mining utilize 

the Fraunhofer package for process mining in 

Python PM4PY. The dashboard consists of three 

parts; discovery, statistics and root cause analysis. 

Conformance checking is not part of the dashboard 

as it is not seen as relevant to the project. As the 

process can not deviate from the original Petri net 

(Dash, n.d.; PM4PY, n.d.). 

As input the dashboard uses the event log of 

SoliTrust and the trace attributes. The event log is 

already enhanced in the SQL server of SoliTrust. 

Both the event log and trace attributes can be 

provided as a CSV file. Given event attributes the 

event log is divided into eight clusters which can 

also be selected for analysis. 

The main advantage of the dashboard is that 

multiple event log pre-processing steps and process 

mining algorithms are combined in one tool. 

Therefore, no knowledge of other process mining 

tools is required to execute every step in the 

process. Furthermore, the results are presented in 

one go and no intermediate steps are required. 

Figure 12 shows what the starting page of the 

dashboard looks like. The figure shows the title on 

top. Below the title, the entire log or a sub-log can 

be selected to be analyzed. In the tabs for discovery 

and root cause analysis, settings can be made for 

the algorithm. The tab statistics show data tables 

regarding the whole event log. The result tab shows 

the figure resulting from either the discovery or root 

cause algorithm. Both the statistics and root cause 

analysis tab are provided in Appendix 13.3.  

7.3 Process Discovery 

The first part of the dashboard is process discovery. 

Discovering a process model can provide insights 

into what the process looks like. In addition, the 

discovered process model could be used as input for 

other process mining algorithms. 

Taking the entire event log as input for process 

discovery results in complex, hard-to-analyze 

process models. Therefore the event log is pre-

processed as discussed in Chapter 6. As a discovery 

algorithm, the inductive miner (IMd) is used. This 

miner is chosen as the inductive miner can produce 

sound and valid process models. Furthermore, the 

inductive miner is scalable and allows for a large 

number of events to be handled. Thereby, the 

output of the inductive miner can be transformed 

into a Petri net which is the desired representation 

type. The log is replayed on the constructed Petri 

net so that frequencies or duration of activities can 

be added to the resulting figure. The duration and 

frequency of activities can be used to detect 

bottlenecks in the constructed process model. Also, 

constructs in the process model can indicate a 

potential bottleneck. When a loop construct occurs, 

it indicates that the activity starts again and causes 

rework (Ceravolo et al., 2018; Christian W. 

Günther & Wil M.P. van der Aalst, 2007; Denisov 

et al., 2018; Leemans et al., 2018; Sander J.J. 

Figure 12: Landing page dashboard 
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Leemans et al., 2013; Weijters & Ribeiro, 2011; 

Wen et al., 2009). 

An output example of process discovery is provided 

in Figure 11. 

7.4 Statistics 

The second part of the dashboard contains statistics 

about the traces in the event log. There are two data 

tables on this tab, one shows the performance of 

cases with the number of activities, duration and a 

rework ratio. The second table shows what 

activities cause rework to start. 

Originating the cause of rework is important for 

SoliTrust. As rework requires manual intervention. 

These interventions are costly for SoliTrust, so 

eliminating these interventions is beneficial. To 

construct the statistics for which activities enable 

rework, the context of the activity is used. 

The event log contains all activities executed during 

a workflow in the Petri net. However, a workflow 

can execute the same activity in the Petri net 

automatically. As an example, when 100 CSV files 

need to be opened for a workflow. The activity 

open CSV file occurs 100 times in the event log. 

Applying replay and the normal rework statistic 

does not provide the correct causes of rework in the 

Petri net. As these algorithms cannot distinguish 

between activities occurring multiple times but are 

started by the Petri net and activities which are 

occurring multiple times but started by an 

intervention. 

To only take into account the interventions, which 

are of interest for SoliTrust, the surrounding context 

of the activity is taken into account. First, the event 

log is filtered for activities which are reworked, 

which is done by event attribute filtering. 

Thereafter, for each activity in a trace, it is checked 

whether the input of that activity is an output of 

another activity in the trace. If the event has an 

input which is an output of another activity, it can 

be assumed that the activity is triggered by the 

output of that activity. Thereby only taking starting 

points of rework into account.  

In other words, it is checked whether an activity 

that has occurred multiple times in a case could be 

fired multiple times. If not, the activity must be the 

start of rework. 

At last, a filter is applied to remaining activities or 

only takes into account activities which are of 

higher level in the Petri net. In addition, the number 

of times an activity starts rework is counted and the 

activities are sorted. 

7.5 Root Cause Analysis 

The third part of the dashboard is root cause 

analysis which results in a decision tree. The 

dependent and independent characteristics can be 

selected to be used in the analysis. Furthermore, the 

features for the decision tree can be selected. 

Incorporated dependent variables are rework ratio 

and case duration. Case characteristics can be used 

as features in the decision tree. To construct the 

decision tree, two classes are calculated; lower and 

higher. The class lower consist of all traces from 

the lowest value until the average. While higher 

contains all traces between the average and the 

maximum of the dependent variable.  

The decision tree makes choices inferred from the 

independent characteristics of the trace. Thereby 

splitting the traces to group the classified traces. 

The Gini index is used to measure the impurity of a 

node. A higher Gini index indicates that there are 

traces present in the node which have another 

classification. While a low Gini index indicates that 

traces present in the node are mostly of the same 

classification. The lower the Gini index, the purer 

the traces in the node are. 

To prevent the tree from over- or underfitting, the 

maximum depth, minimum samples in a leaf node 

and the number of leaf nodes can be adjusted. 

Thereby, the classes are balanced so that each class 

has even priority in a node. 

With this setup, the user can perform use-case 

analysis with different independent as well as 

dependent characteristics. Allowing for different 

types of questions about the performance and how 

the performance originated to be answered. 

Preferably, nodes want to be found with a high 

sample of traces and a low Gini index. Indicating 

that there is a lower chance of misclassifying a trace 

in the node and improving more samples results in 

more workflows being improved. 

An example decision tree as output for a root cause 

analysis is shown in Figure 13. Here, the ERP 

system LN shows a higher duration for 13 samples.
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8. Validation and Continuous 

Implementation 

This section discusses how the dashboard is 

validated and implemented. Thereby discussing 

research question 5. 

8.1 Validation 

After the first version of the dashboard was 

constructed, a presentation was given to 6 

employees of SoliTrust. In this presentation, a 

demo of the dashboard was given as well as an 

explanation of why these process mining algorithms 

were used. This is one large iteration in the 

development of the dashboard.  

During the discussion, these specific improvement 

points were given: 

• More concrete, work down to a single 

activity as bottleneck. Giving a high-level 

overview of problems does not provide 

enough insights into where to improve the 

Petri net. 

• Other perspectives such as file type, 

customer and ERP system are also relevant 

to discover bottlenecks in the process. 

• Explanation of settings. For example, what 

does minimum samples in leaf node mean 

and how do we need to alter it to make an 

analysis. 

• Instead of reworked activities, look for 

activities that start the rework. Do not take 

into account all activities that are 

reworked. Some activities are executed 

correctly but are started by the process 

itself or are executed after rework. 

Thereafter, a different approach is used to identify 

the rework enablers as well as calculate the rework 

in a trace. Leading to clear and understandable 

outcomes for detecting single activities that start 

rework. 

In addition, more attributes are extracted for traces 

so that other additional root cause analyses could be 

performed. Allowing for more use cases to be 

analyzed for SoliTrust. 

The final dashboard is checked and explained to 

one employee of SoliTrust concerning the code and 

reasoning behind the dashboard. 

Preliminary results from the dashboard were also 

checked with SoliTrust’s employees as well as the 

company supervisor. After a number of iterations 

and evaluations, the dashboard is seen as valid. 

8.2 Continuous Implementation 

The dashboard supports the enactment and 

monitoring phase in the BPM lifecycle. Based on 

data on the execution of the business process, 

bottlenecks can be detected so that adaptations in 

the process can be made. In case the process 

changes drastically, a new design phase can be 

started where new requirements can be set. In the 

case of SoliTrust, the dashboard supports the 

triggering of the adjustment phase. Here, a smaller 

change in the process is made rather than changing 

the entire process. 

Figure 13: Example Output Root Cause Analysis 
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In case a bottleneck is detected, SoliTrust can 

perform two things to solve the bottleneck. To start, 

SoliTrust can look into the activity itself and 

improve this activity. Meaning adjusting the code 

used by that activity to better perform or adjusting 

the layout of the Petri net. Thereby relocating the 

activity in the Petri net. Also, activities can be 

removed or added to the Petri net to resolve a 

bottleneck. 

As the dashboard can analyze future event logs, 

SoliTrust can continuously improve the Petri net 

and close the BPM lifecycle. 

9. Results 

This section presents the outcomes of applying the 

incorporated process mining techniques in the 

constructed dashboard. The results of the research 

questions are discussed in section 11. The goal was 

to improve the business process performance. 

Hence, bottlenecks in the process are sought. 

Detecting the bottlenecks is the first step to 

improving the process, along with how these 

bottlenecks originate. Which is in line with the 

monitoring of activities and diagnosing problems in 

the BPM lifecycle. Whereafter, improvements can 

be made in the process with adjustments or (re-

)design of the process. 

To detect bottlenecks in the business process of 

SoliTrust, the flow-, case- and time perspectives are 

taken into account. SoliTrust is particularly 

interested in detecting activities which cause 

rework. Because a human intervention in the 

process is required, which costs SoliTrust valuable 

time which could be spent on other activities. In 

addition, reducing the throughput time of a 

workflow allows for a faster and increased 

throughput. Hence, bottlenecks in the business 

process are seen as activities which enable rework 

in the process or extend the duration of the process. 

This part is split into three sections. First, process 

discovery is discussed. Thereafter, statistics are 

discussed using the method to detect rework 

enablers explained in section Statistics7.4. At last, 

root cause analysis results are presented. The results 

when applying the event log in the dashboard 

provide an answer to research question 6. 

9.1 Process Discovery 

Obtaining results 

Constructed process models are analyzed visually 

by the user. Where there is searched for loop 

constructs or strange patterns in frequency or 

duration. For example in Figure 11, each place has 

a silent transition towards the place in front of the 

transition, meaning a loop construct. Which can 

indicate that the transition is a bottleneck or is 

executed automatically by the Petri net. 

By changing the settings, a new model can be 

constructed. Depending on previous outcomes, the 

user can select new settings to zoom in or out into 

the model. Which is done by trial and error and 

depends on the goal of the user. For the graduation 

project, each (sub)log is analyzed with different 

settings. In total, around 40 discovered process 

models are analyzed. 

Results 

Constructed process models showed that 

conversions as well as call bronbestanden were 

incorporated and highlighted in the process models. 

Showing that these activities occur relatively often. 

Thereby, a loop construct was visible around these 

activities. Indicating that these activities start 

rework in the process. 

Thereby, the activity Bankafschrift Matching can be 

seen as a bottleneck. This activity is the start of a 

loop construct in several process models. Indicating 

that the activity enables rework. 

Furthermore, the activities 

JSON: SoliTrust_Werkprogramma_Debiteuren, 

JSON: SoliTrust_Werkprogramma_Crediteuren and 

JSON: SoliTrust_Werkprogramma_Fraude  

also show a large frequency and start of loop 

constructs. Showing that rework is caused and 

therefore these activities might also be relevant for 

improvement. 

9.2 Statistics 

Section 7.4 presents a methodology to unveil 

activities which cause rework in the process. 

Thereby only taking into consideration the activities 

where human intervention is necessary. It uses the 

input and output of other reworked activities to 

discover whether an activity was enabled and 

thereby enables rework. The top 5 activities which 

enable rework in the process are: 

1. Call bronbestanden 

2. Conversie tabel Verkoopfactuur 

3. Conversie tabel Artikelmutatie 

4. Conversie tabel Inkoopfactuur 

5. Conversie tabel Algemeen validatie bron 

9.3 Root Cause Analysis 

For the root cause analysis, two dependent 

characteristics are chosen; rework ratio and 

duration. As independent characteristics the 

customer, file type, views and ERP system of the 
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traces are used. This section first discusses the 

dependent characteristic duration for each of the 

independent characteristics. Thereafter, the rework 

ratio is also discussed as a dependent characteristic. 

For each dependent and independent variable, the 

settings are set so that the decision tree underfits the 

data. Thereafter, the settings are changed so that the 

tree is allowed to grow. The analysis stops when the 

tree starts to overfit the data or no new changed in 

the tree are present. 

9.3.1 Duration 

Customer 

There are traces performed for specific customers 

which tend to have an increased duration. These 

customers count up to around 3.5% of the total 

workflows performed each. Larger customers 

around 25% of the total workflows are also 

classified as higher. However, these customers do 

have a high Gini index indicating impurity. Traces 

are being classified as higher, as well as the node 

having a low Gini index. However, these are small 

customers who count up to 0.5% of the total 

workflows performed each. 

File Type 

CSV files often result in an increased duration of 

the workflow. Especially in combination with .bak, 

.xml and .xlsx files. Thereby, traces with DBC files 

also classify as traces with a higher duration. 

Views 

When the view Autorisatie is used during the 

workflow, the workflow is likely to have a higher 

duration. Thereby, traces containing the attribute 

view Salaris are classified as traces which have a 

higher duration. 

ERP system 

AFAS and AccountView are ERP systems which 

tend to cause a higher duration. Because of the high 

Gini index for the leaf nodes of these ERP systems, 

there is not a clear conclusion for these ERP 

systems. The combination of ExactGlobe and 

ProActive does show a lower Gini index, however 

only 24 traces are having both these ERP systems.  

9.3.2 Rework Ratio 

Customer 

A few customers tend to increase the rework ratio. 

One larger customer, with up to around 25% of the 

total workflows. Though, the Gini index is still 

relatively high. There is a customer with a lower 

Gini index where traces are being classified higher 

for their rework ratio. However, SoliTrust 

performed around 4% of the total workflows for 

this customer. 

File Type 

Workflows utilizing a CSV file classify as 

workflows with a higher rework ratio. The 

combination of CSV and XML also results in traces 

with a higher rework ratio. In case there are CSV 

and XML files as well as a .bak file, the workflow 

behaves quite normally. However, when the trace 

lacks a .bak file, the workflow classifies with a 

higher rework ratio. The combination of CSV, 

XML, not .bak and a .xlsx file results in traces 

being classified with a higher rework ratio. 

Views 

The view Verkooplevering tends to cause rework in 

the workflow. Especially the view combination of 

Verkooplevering and Optie. Besides, traces with the 

view Salaris and the combination of Bankafschrift 

and Betaalopdracht result in the trace being 

classified with a higher rework ratio. 

ERP system 

AFAS is an ERP system which causes traces to be 

classified as one with a higher rework ratio. AFAS 

has a relatively high Gini index indicating impurity 

and also a significant number of traces having a 

lower rework ratio. Other, less occurring ERP 

systems such as ExactOnline and UNIT4 also cause 

traces to be classified as one with a higher rework 

ratio. These ERP systems have a lower Gini index. 

The 11 workflows with UNIT4 ERP system all 

classify as workflows with a higher rework ratio. 

10. Contribution 

This section discusses how the project contributes 

to both science and practice. 

10.1 Contribution to Science 

The results of this graduation project show that the 

dashboard can detect bottlenecks in the Petri net of 

SoliTrust with help of process mining algorithms. 

With help of process discovery techniques as well 

as replay and root cause analysis are used as 

generalizable methods. These methods can be 

applied to any process as long as the required 

information is stored in the event log. 

The method for detecting activities which start 

rework however is specifically designed for Petri 

nets and cannot be applied to every process model. 

As the method uses attributes for input and output 

of a transition which are not always available in an 

event log. Thereby is the method tailored to the 

process of SoliTrust, to be in line with the hierarchy 

and events of the SoliTrust process. 

Furthermore, the event log pre-processing method 

shows that these steps can be used to pre-process a 

voluminous, fine-granular and heterogenous event 
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log. Where before, complex process models were 

discovered and after applying the method simple 

understandable models were discovered. In 

addition, the method is flexible in setup. Therefore, 

the method can be applied to other event logs with 

the same characteristics. 

10.2 Contribution to Practice 

With the dashboard, SoliTrust is able to find 

bottlenecks in the Petri net. Solving these 

bottlenecks can improve the performance of the 

Petri net in terms of decreased rework and duration. 

The dashboard is able to find specific activities and 

trace characteristics of the bottleneck. Informing 

SoliTrust where the bottleneck is located and a 

possible cause of the bottleneck. 

Which has as benefit that SoliTrust requires fewer 

human interventions and can decrease the 

throughput time of a workflow. Therefore, 

employees can focus on different activities and the 

total throughput of the system can be increased. 

For the duration, the project contributed in 

recognizing the following characteristics as 

troublesome; 

• 4 file types 

• 6 customers 

• 4 ERP systems 

• 7 views 

Regarding the rework, the following number of 

trace characteristics can be identified as 

troublesome; 

• 3 file types 

• 2 customers 

• 3 ERP systems 

• 6 views 

Furthermore, 15 conversions are identified as 

rework enablers with more than 200 times enabling 

rework. Alongside call brondbestanden with 341 

times enabling rework, it is the activity which 

causes the most rework. 

As the dashboard can analyze future workflows, 

SoliTrust can continuously improve Petri net 

performance. 

11. Conclusion 

The objective of the graduation project is to 

continuously improve the Petri net to improve 

workflow handling. The main research question is 

therefore formulated as follows: 

How can SoliTrust continuously improve the Petri 

net performance utilizing the event log as input for 

process mining algorithms to detect bottlenecks? 

First, a literature study has been performed to 

provide an answer to research questions 1 & 2. To 

provide an understanding of what a Petri net and 

event log are as well as what process mining 

entails. A Petri net is a static structure which can be 

used to describe process models. Through the 

structure, a token flows from a place to a transition 

to execute activities. In the case of SoliTrust, the 

transitions of the Petri net handling workflows are 

logged in an event log. Which consists of traces, 

events and attributes. This event log can be used as 

input for process mining to discover, monitor and 

improve processes. 

Since the event log is voluminous, heterogenous 

and fine-granular, the event log cannot directly be 

used as input for process mining. Before the event 

log can be used as input, the event log is pre-

processed based on findings during research 

question 3. For event log pre-processing, a 

methodology is designed where the event log is 

filtered based on attributes and anomalies. 

Furthermore, clusters with similar traces or events 

are created. Resulting in an input which could be 

used as input for process mining. 

To discover bottlenecks, process discovery with 

replay, root cause analysis as well as a custom 

detection algorithm for activities that enable rework 

are used. Applying these process mining techniques 

showed specific activities as well as characteristics 

of traces which cause an increased duration or 

rework. Which answers research questions 4 & 6. 

To combine the event log pre-processing and 

process mining techniques in one tool, a dashboard 

is developed. This dashboard allows for future 

event logs to be analysed. Hence, a continuous 

implementation. Furthermore, based on expert 

feedback on the process, the dashboard is evaluated, 

improved and validated. Which provides an answer 

to research question 5. 

To conclude the main research question, SoliTrust 

can continuously improve the Petri net performance 

by applying the process mining techniques in the 

developed dashboard to detect activities and 

process characteristics which cause an increased 

duration or rework ratio. Thereby monitoring the 

process and closing the BPM lifecycle. 

12. Limitations and recommendations 

One performance-related aspect of the dashboard is 

the duration of the workflow. Which is chosen 
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because decreasing the duration of workflows 

allows for more throughput. However, parts of the 

activities in the process cannot be optimized in time 

aspect. As an example, opening a CSV file takes 

time. When the file is larger for a workflow, it 

processes longer in the workflow. However, this is 

not something that can be optimized but which is 

limited to the process. Therefore, the duration 

aspect might sometimes not provide meaningful 

insights. 

One recommendation for SoliTrust is to provide 

more structure to the process in the event log. 

Activities are now given a type based on the script 

that is run. However, especially in process 

discovery, it might be that intermediate activities 

are filtered out. Giving a better structure or 

hierarchy might improve the way the event log can 

be analysed and deal with the fine granularity in the 

event log. 

Furthermore, one recommendation is to store more 

trace attributes within the event log. These are now 

constructed from other databases. Assigning 

attributes to traces in the event log table creates an 

easier input for the dashboard. Especially trace 

attributes with regards to whether a trace is 

successful or not could be interesting for SoliTrust. 

As the root cause analysis determines the 

successfulness of a trace with respect to the other 

traces in the log. However, using this type of 

classification for traces could misclassify traces. 

Such as traces with large data, these take longer to 

process because of computational limitations. But 

do not need to imply that the trace was executed 

with faults or bottlenecks. Though, the trace could 

be classified as one with a higher duration. 

Another limitation is that the dashboard only takes 

into account post-mortem data. Or in other words, 

data about workflows that already have been 

performed are used as input for the dashboard. 

Meaning that the analysis made is based on data 

from the past. Meaning that the current workflows 

executed in real-time are not supported by process 

mining to improve the business process 

performance. A recommendation to SoliTrust could 

be to implement process mining in an online 

setting. So that current workflows are supported by 

process mining outcomes. Especially remaining 

processing time and error predictions could be 

interesting for SoliTrust. As the path through the 

Petri net is already fixed from the start, the flow 

perspective is less relevant.  
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13. Appendix 

13.1  Literature review 

Table 1: Result Systematic Literature Review 

RQ1: What is a Petri net and how to enhance the performance 

Search strings: Scope Date Date range #Articles 

Scopus 

“Petri net*” AND “performance” 

AND “bottleneck” 

TITLE-ABS-

KEY 

9-1-

2023 
Until 20-12-2022 #157 

Web of Science 

“Petri net*” AND “performance” 

AND “bottleneck” 

TITLE-ABS-

KEY 

9-1-

2023 
Until 20-12-2022 #50 

Total: 207 

Removing Duplicates: (-57) 150 

Removing based on exclusion criteria: (-129) 21 

Removed after reading abstract: (-10) 11 

Removed after more extensive reading: (-6) 5 

Added by recommendation: 1 

Total: 6 

RQ2: What is process mining and what models/techniques are available for (continuous) 
improvement? 

Scopus 

“process 

mining” AND 

“discovery” 

AND “petri 

net*” 

TITLE-ABS-KEY 9-1-2023 
Until 9-

1-2023 
#168 

“process 

mining” AND 

“performance 

analysis” 

TITLE-ABS-KEY 9-1-2023 
Until 9-

1-2023 
#147 

“process 

mining” AND 

“discovery” 

AND 

“algorithm*” 

TITLE-ABS-KEY 9-1-2023 
Until 9-

1-2023 
#523 
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“process 

mining” AND 

“contin*” 

TITLE-ABS-KEY 9-1-2023 
Until 9-

1-2023 
#294 

Web of Science 

“process 

mining” AND 

“discovery” 

AND “petri 

net*” 

TITLE-ABS-KEY 9-1-2023 
Until 9-

1-2023 
#134 

“process 

mining” AND 

“performance 

analysis” 

TITLE-ABS-KEY 9-1-2023 
Until 9-

1-2023 
#87 

“process 

mining” AND 

“discovery” 
AND 

“algorithm*” 

TITLE-ABS-KEY 9-1-2023 
Until 9-

1-2023 
#361 

“process 

mining” AND 

“contin*” 

TITLE-ABS-KEY 9-1-2023 
Until 9-

1-2023 
#169 

Total: 1883 

Removing Duplicates: 
(-1218) 

665 

Removing based on exclusion criteria: (-585) 80 

Removed after reading abstract: (-56) 24 

Removed after more extensive reading: (-16) 8 

Added by recommendation: 1 

Total: 9 
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13.2 Attributes Event Log 

Table 2: Event Attributes Event Log 

Attributes in Event log 

Column Description Format 

action_id Id for each event in the event log Integer 

task_id Id for each workflow in the event 

log 

Integer 

script Script called in the transition String 

command Command executed by the script String 

in_format Input place for transition String 

out_format Output place for transition String 

in_tokens Tokens used as input String 

trans_id Id for each transition String 

name Name for each transition String 

parameters Variables used in transition String 

started Starting time of transition Timestamp 

finished Ending time of transition Timestamp 

success Return whether transition was 

successful 

0, 1 

returncode Return code when error occurs -1,0,1,404 

std_out Standard output String 

st_derr Output what the error is String 

skipped Value whether transition is skipped 0, 1 

out_tokens Tokens produced by transition String 

params Variables produced by transition String 

deleted Value if trace is deleted 0, 1 

core Core of processor used Integer 
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13.3 Dashboard layout 

 

Figure 14: Statistics Tab Trace Level 

 

 

Figure 15: Statistics Tab overview Event Level 

 

 

 

Figure 16: Root Cause Analysis Tab Layout
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13.4 Event Log Filtering 

Table 3: Filtering Steps Event Log 

Filtering Activities 

Filter Reason #Activities Percentage 

Book Year Only take workflows for book year 2022 1,226,714 100% 

Script Only want to take into account activities 

which perform certain tasks. 

886,944 72,30% 

Duration Filter out activities which take zero time, 

these do not perform any tasks in the 
workflow. In addition, more improvement 

is likely with events that take a larger 

time. However, activities that take no time 

but have an error are kept in the event log. 

394,079 32,12% 

Tests Filter out cases with are run for tests in the 

network. 

390,940 31,87% 

Terminated Cases which are terminated are excluded 

for the event log.  

386,206 31.48% 

13.5 Sublogs Type 

Table 4: Event Type Sub-Logs 

Sublogs 

Additional Type Name Distinct Count 

Activities 

Distinct 

Count Script 

# Events 

orders 00 Crm 20 11 27,660 

{l 01 Copy db 94 75 139,357 

D: 02 Conversie 61 57 34,625 

 03 Samenvoegen 

Tabellen 

6 5 283 

 04 Classificatie 22 10 12,950 

 05 Validatie 1 1 1,585 

 06 Report 36 2 7,915 

 07 Export 2345 857 160,526 

 General General 1 1 1,305 

 

 


