
1

Continuously optimizing business process

using process mining
Maxim Bos

University of Twente

MSc Business Information Technology

m.bos-4@student.utwente.nl

ABSTRACT – Businesses perform business

processes to deliver their product or service to the

customer. Analyzing data about the execution of

the business process with process mining allows

organizations to improve their operations.

Applying the PM2 methodology, several analysis

iterations are performed based on the chosen

objective. A pre-processed event log as input for

process discovery algorithms and performing a

root cause analysis allows bottlenecks to be

detected in the process. A developed dashboard

allows these process mining algorithms to be

combined in one tool. Using this tool allows single

activities or process characteristics to be identified

as bottlenecks. In the future, research can be done

on how process mining can support the business

process in an online setting. So that during

execution, bottlenecks can be avoided or solved.

KEYWORDS – Bottleneck Detection, Continuous

Improvement, Event Log, Petri net, Pre-

Processing, Process Discovery, Process Mining,

Root Cause Analysis

1. Introduction

In 2020, three workgroups within the community

Accounttech, part of the NBA (Koninklijke

Nederlands Beroepsorganisatie van Accountants),

started researching forthcoming technologies that

are relevant for accountants (Patrick Konniger &

Dirk Niestadt, 2021). Despite the advantages it

could bring accountants, the research showed that

existing technologies such as data analytics and

machine learning are not yet employed by

accountants. SoliTrust is an organization which

provides data analytics and IT audit services to

bridge this gap for small to mid-cap auditor firms.

The services offered by SoliTrust can be leveraged

over multiple audit firms to support their business

process. Thereby, the service of IT auditing and

data analytics results in a higher quality audit. Since

the legitimacy of a company’s total financial

administration can be checked at once, reducing the

workload and duration of the audit.

To deliver the services, SoliTrust has a Petri net to

execute workflows. The Petri net is a static

structure which models the process in terms of

activities. During a workflow, tokens flow through

the Petri net triggering activities to be executed.

These workflows result in a report requested by an

auditor firm. The Petri net can handle diverse

workflows for different outputs and inputs,

resulting in heterogeneous activities during

workflow executions. Furthermore, as the Petri net

handles different kinds of workflows there are

numerous activities and the process becomes

complex. In general, the process can be described

as loading, conversing, analyzing and reporting the

data delivered by a company. The execution of

events within the Petri net is logged in an event log

storing information on all activities performed for a

workflow.

The objective of the graduation project is to

continuously improve the Petri net to improve

workflow handling. By means of detecting

bottlenecks in the Petri net by analyzing the event

log. Solving these bottlenecks allows SoliTrust to

perform the workflows more efficiently while

requiring fewer human interventions.

2. Research Design

This section discusses the design of the research. It

explains what methodology is used to achieve the

objective. First, the methodology of the project is

discussed. Thereafter, the research questions

together with their methodology are explained. As

well as the structure of the paper.

2.1 Project Methodology

The project aims to improve the business process

performance by finding bottlenecks in the Petri net

by utilizing the event log as input for process

mining. Hence, a methodology is chosen which is

suitable for process mining projects. The PM2

methodology is chosen as a guideline during the

project. As PM2 is iterative and specifically

designed for process mining projects tailoring for

specific process mining activities. Other data-

science project methodologies such as CRISP-DM

are of a higher level and not made for process

mining activities. While other process mining

methodologies as the L* life-cycle model and

2

process diagnostics method are not iterative and not

suited for large complex process models.

The PM2 methodology consists of six stages. The

first two stages are (1) planning and (2) extraction,

in these stages the initial research questions are

defined and the data required for the project is

extracted. After the first two stages, one or more

analysis iterations are performed. An analysis

iteration consists of the stages (3) data processing,

(4) mining and analysis and (5) evaluation.

Depending on whether the outcomes are

satisfactory, the project moves to the next stage (6)

operational support (Van Eck et al., 2015).

Figure 1 plots the methodology in the project based

on the PM2 methodology visually. It shows what

steps during the project are performed and how this

relates to the PM2 methodology. The dotted lines

are steps which could be performed.

2.2 Research Questions

To find improvement points with the event log the

following main research question is formulated:

How can SoliTrust continuously improve the Petri

net performance utilizing the event log as input for

process mining algorithms to detect bottlenecks?

To answer the main research question, the

following sub-questions are defined:

1. What is a Petri net and how to influence its

performance?

a. What is a Petri net?

b. What is an event log?

2. What is process mining and what

models/techniques are available for

(continuous) improvement?

3. How to prepare the event log as input for

process mining algorithms?
4. How can the bottlenecks of the

(constructed) process (model) be detected

and what is the outcome of this?

5. Is the method of detecting bottlenecks

valid?

6. What improvement points can be detected

based on the results of process mining

algorithms?

2.3 Methodology Research Questions

Research Questions 1 & 2

For RQ1 & RQ2, a systematic literature review has

been conducted according to the guidelines set by

Kitchemham (Kitchenham, 2004).

The digital libraries Scopus and Web of Science are

used to search for published studies. The search in

Scopus and Web of Science are performed on 22

December 2022 for RQ1 and 9 January 2023 for

RQ2. The search concerns studies published until

the date of the search performed. To filter for

relevant results, the following keywords are used:

• Petri Network

Figure 1: Project Methodology

3

• Performance

• Bottleneck

• Process Mining

• Discovery

• Performance Analysis

• Algorithm

• Continuous

For RQ1, the following search string out of the

keywords is determined:

• “Petri net*” AND “performance” AND

“bottleneck”

For RQ2, the following search strings deducted

from the keywords are used:

• “process mining” AND “discovery” AND

“petri net*”

• “process mining” AND “performance

analysis”

• “process mining” AND “discovery” AND

“algorithm*”

• “process mining” AND “contin*”

To filter for relevant results, inclusion and

exclusion criteria are set. For the SLR, the

following inclusion criteria are set:

1. The paper directly relates to Petri networks

or process mining in the field of

accounting and software systems.

2. The paper addresses the research question.

3. The paper is accessible online or via

university resources.

4. The paper is in English.

5. The paper discusses process mining

techniques for large processes and data or

the technique seems scalable.

The following excluding criteria are set for this

SLR:

1. The paper discusses constructs such as

process mining and Petri networks to other

specific domains such as cellular biology

or digital twins.

2. The paper discusses analysis made in

software not available for the research.

3. The reference comprises papers about a

conference.

4. The paper discusses process mining with

specific characteristics for data such as

exogenous or incomplete.

5. The paper discusses perspectives of

process mining not relevant to the project

or not contained in the available log such

as social network mining.

The table showing the number of papers found and

what keywords are used is presented in Appendix

13.1.

Research Questions 3

For research question 3 a method is developed to

pre-process the event log as input for process

mining algorithms. Where a stepwise refinement

(Wirth, 1971) methodology is used. Here the top

goal, a ready event log for process mining, is split

up into multiple steps. Specifically, the limitations

of the event log are addressed by the steps below

the top goal.

Research Questions 4 and 5

Research questions 4 and 5 are related to the

development of the dashboard. Applying a process-

oriented dashboard design methodology proposed

by Maximilian Kintz (Kintz, 2012). However, for

the project, a simpler version is needed as only one

data source is used; the event log. Furthermore,

there is no online setting so alerting and controlling

the process is also not part of the graduation

project.

Research Question 6

Research question 6 utilizes the developed

dashboard to find improvement points in the Petri

net by using the algorithms in the dashboard. For

the discovery algorithm and root cause analysis, the

settings can be adjusted.

Adjusting the settings is done with trial and error.

Depending on the outcome, the settings can be

adjusted. Setting the right interval is important,

otherwise, the outcome becomes large and

complex. Depending on the outcome and what the

outcome shows, new settings can be chosen to

make the model larger or incorporate other

activities. For the discovery algorithm, the

outcomes are judged visually by the user.

For the root cause analysis, the outcome is a

decision tree. Here, the settings are set so the

outcome underfits the data at first. So that only one

root node is presented which shows the best split of

the data. Then, the settings are changed so that the

decision tree grows in depth and width. This stops

when the decision tree starts to overfit the data or

no changes can be made in the resulting tree with

the new settings. The outcomes are judged based on

the number of traces in the leaf nodes and the Gini-

Index.

2.4 Paper Structure

Chapter 3, 4 and 5 address research question 1 and

2. Chapter 6 concerns research chapter 3. Question

4 and 5 are discussed in chapter 7 and 8. Chapter 9

4

concerns the results of the dashboard and addresses

research question 6. The conclusions are drawn in

Chapter 11.

3. Petri net

The project is about improving the business process

model performance by finding bottlenecks. The

business process of SoliTrust is executed through a

Petri net. To understand what the business process

looks like and what kind of data could be logged in

the event log, an explanation of a Petri net is

provided in this section. To understand event

attributes in the event log, an understanding of Petri

nets is needed. For that reason, Petri nets are

discussed before the event log in Chapter 4.

3.1 Petri net definition

Petri nets are an abstract and formal model of

information flow. Petri nets are subject to many

prior investigations for process modelling

languages and allow for concurrency and hierarchy.

Petri networks model systems that are constructed

by places and transitions, called nodes, as well as

the relationship between them. The structure of the

network is static. However, tokens can flow

through the network. A Petri net can have different

states, which are determined by the distribution of

the tokens over places. The distribution of tokens

over places is referred to as the marking of a Petri

network. An example of a Petri net is provided in

the bipartite graph of Figure 2. Here, the circles are

places and the squares are transitions for an

insurance claim request.

Figure 2: Example Petri net (I. Mukhlash, 2018;
Peterson, 1977; Salimifard & Wright, 2001; W. Van der
Aalst, 2016)

3.2 Petri net notation

A Petri net can be defined by the triplet N = (P, T,

F). Here P is the finite set of places, T marks the

finite set of transitions and F is called the flow

relation with a set of directed arcs. In the Petri net

example of Figure 2, the triplet is defined as;

P = {start, c1, c2, c3, c4, c5, end}

T = {a, b, c, d, e, f, g, h}

F = {(start, a), (a, c1), (a, c2), (c1, b), (c1, c), (c2,

d), (b, c3), (c, c3), (d, c4), (c3, e), (c4, e), (e, c5),

(c5, f), (f, c1), (f, c2), (c5, g), (c5, h), (g, end), (h,

end)}

 A Petri net has to adhere to the following

conditions;

- P ∩ T = ∅

Meaning that a node in the Petri net can either be a

place or a transition but not both.

- F ⊆ (P ×T) ∪ (T × P)

Meaning that a flow must always go from a place to

a transition or a transition to a place (W. Van der

Aalst, 2016).

3.3 Marked Petri nets

In the example Petri net of Figure 2, a token is

placed on start, therefore the marking shown in

Figure 2 is {start}. To go on towards a new

marking, a transition has to be enabled according to

the firing rule, which is explained in section 3.5. A

transition can fire if each of the input places of the

transition contains a token. In the example Petri net,

a is enabled since the input place of transition a

possesses a token. Firing a leads to the marking [c1,

c2]. When a is fired, one token is consumed but two

tokens are produced. At marking [c1, c2], a is not

able to fire, since the input place of transition a no

longer holds a token. However, at marking [c1, c2],

transitions b ,c and d are enabled. When b is fired, it

results in marking [c2, c3}]. Now, b and c are not

enabled anymore. Contrary to transition d, which

still is enabled (W. Van der Aalst, 2016).

A marked Petri net is denoted by a pair (N, M),

where N = (P, T, F}) and M ∈ B (P) is a multi-set

over P denoting the marking of the Petri net. The

set where all Petri nets are marked is denoted as N.

A multi-set is a set with elements where each

element may occur multiple times. Let [a, b2, c3, d2,

e] be an example of a multiset. In this multiset,

there are 9 elements: one a, two b, three c, two d

and one e. Then the three multi-sets [a, b, b, c3, d, d,

e], [e, d2, c3, b2, a], and [a, b2, c3, d2, e] are

identical. Since only the number of occurrences

matters, not the sequence (W. Van der Aalst, 2016).

3.4 Input and output nodes

To formulate the notation for input and output

places or transitions, the elements in P ∪ T are seen

as nodes. Node x can serve as an input node of

another node y if and only if there is a directed arc

5

from x to y meaning (x, y) ∈ F. Otherwise, x is an

output node of another node y if and only if (y, x) ∈

F. Meaning that the input and output nodes can be

denoted as:

•x = {y | (y,x) ∈ F}, notation for node x being an

input node of node y

x•={y | (x,y) ∈ F}, notation for node x being an

output node of node y

In the example Petri net of Figure 2, •c2 = {a, f}

and c2•={d} (W. Van der Aalst, 2016).

3.5 Transition and firing

In a marked Petri net, transition t ∈ T is enabled,

notated by (N, M)[t>, if and only if •t ≤ M.

(N, M)[t>(N, M’) denotes that firing enabled

transition t results in marking M’. In the Petri net of

Figure 2, examples are (N, [start])[a>(N, [c1, c2])

and (N, [c3, c4])[e>(N, [c5]).

From a marking, a sequence can be determined in

which the firings can take place. A firing sequence

of (N, M) is denoted as σ ∈ T, if and only if there

exists a natural number for which there are

markings M1,…,Mn and transitions t1,…,tn ∈ T such

that σ = <t1,...,tn> and, for all i with 0 ≤ i<n,

(N, Mi)[ti+1> and (N, Mi)[ti+1>(N, Mi+1).

Not all markings can be reached from an initial

marking. In the Petri net of Figure 2, the initial

marking M0 = [start] enables the empty sequence σ

= < >. The sequence σ = <a, b> is also enabled

resulting in the marking [c2, c3]. The firing

sequence <a, c, d, e, f, b, d, e, g> is also enabled. A

marking M is reachable from the initial marking if

there exists a sequence of transitions whose firing

leads to M from M0. The set of reachable markings

of (N, M0) is denoted by [N, M0> (M. Leemans,

2018; W. Van der Aalst, 2016).

3.6 Labeled Petri net

In Figure 2 the transitions have been regarded with

a single letter. However, in the Petri net also larger

description with more detailed information about

the activities could be provided. A labeled Petri net

is denoted by N = (P, T, F, A, l). Here P, T and F

have the same definition as in the normal definition

of a Petri net. The set of activity labels is defined by

A ⊆ A and l ∈ T → A is a labeling function.

It could be that multiple transitions have the same

label. The label of the transition can also be seen as

the observable action. However, sometimes a

transition is not observable. With the label τ, it is

denoted that the transition is not observable,

referred to as a silent or invisible transition. A Petri

net can be transformed into a labeled Petri net by

taking A = T and l(t) = t for any t ∈ T. Reversing a

labeled Petri net is not always possible, as

transitions may have the same label (W. Van der

Aalst, 2016).

3.7 Generic properties

The Petri net is k-bounded if no node in the Petri

net contains more than k tokens. The Petri net is

called safe if and only if it is a 1-bounded net. The

Petri net in Figure 2 is an example of a safe Petri

net. As no node could contain more than 1 token.

A Petri net is deadlock-free if at every marking a

transition is enabled. When a transition is enabled

in every possible marking, the transition is deemed

as live. The entire Petri net is live when every

transition in the net is always enabled. A deadlock-

free Petri net does not require a live transition, as

long as one transition is enabled, the Petri net is

deadlock-free (W. Van der Aalst, 2016).

3.8 Colored Petri nets

When the Petri net should capture data-related and

time-related aspects, a colored Petri net (CPN)

could be used. Tokens in a CPN can be assigned a

data value and a time stamp. This data value is

often referred to as color and describes the

properties of the object which is modelled by the

token. The timestamp of the token can be used to

track the time in the Petri net. Transitions can

assign delays to the tokens, making a CPN suitable

for modelling waiting and service times as an

example (W. Van der Aalst, 2016).

3.9 Conclusion on (SoliTrust) Petri net

Petri nets are a static form of modelling processes.

Through the net flows tokens which triggers the

activities in the net. Key characteristics of Petri nets

are hierarchy and concurrency. There can be

multiple tokens on one place and several statistics

can be gathered on a token. This is important for

the graduation project to know to gain an

understanding on the Petri net of SoliTrust. It

explains how the Petri net operates which is needed

for understanding the event log.

The Petri net of SoliTrust consists of 2816 activities

of which 339 activities are silent activities. There

are 2928 input places and 2605 output places. The

Petri net can handle concurrency and also has

hierarchy in the structure. The places in the Petri

net are allowed to have multiple tokens on one

place. Information about time are not stored on the

token but the event log holds a starting and ending

time of activities. The tokens do hold information

about the command executed in the activity.

6

4. Event Log

The project aims to find bottlenecks in the Petri net

using process mining. The input for process mining

algorithms is an event log. This section discusses

the definition of an event log as well as the

characteristics and quality of the event log. Having

an understanding of the event log is important for

the success of the project and the quality of the

outcomes.

4.1 Definition

The execution of the Petri net is logged in an event

log. An event log captures activities performed in

the execution of a workflow. The activities stored

in the event log are referred to as an event. The

workflow for which the event is performed is seen

as a case in process mining. Each event in a log

corresponds to one single case and relates to an

activity or task. Furthermore a case or event can

have attributes which contain information about the

case or event. For example; for which customer the

case is performed or at what time the event started.

All activities together capture the execution of a

process as an event log.

Figure 3: Structure Event Log

Figure 3 visually presents the structure of an event

log, it shows that the process consists of cases

which are composed of events. These events relate

to only one case and the events within a case are

ordered. ttributes which hold information about the

event. These attributes can store information about

the event (W. Van der Aalst, 2016; W.

Premchaiswadi and P. Porouhan, 2015; Y.

Caesarita, 2018).

4.2 Event Log SoliTrust

The event log of SoliTrust contains activities

executed for the workflows in the Petri net. As the

entire event log would be too large with 4,458,549

events. The event log is reduced to the workflows

executed for the financial book year 2022. Meaning

that the event log used in the project holds

1,226,714 events with 2816 unique activities for

758 cases. The event log is stored as a table in a

database of SoliTrust’s SQL server. The table in

Appendix 13.2 shows what original attributes are

present in the Event Log.

4.2.1 Characteristics Event Log SoliTrust

An event log contains the events executed for the

business process. These business processes have

different characteristics, which have an impact on

the events contained in the event log. Depending on

the characteristics of the process, challenges may

arise to using the event log as input for process

mining. In the case of SoliTrust, process

characteristics of the Petri net are also represented

in the event log creating some challenges.

To start the event log of SoliTrust stores a large

number of events. The total event log with over 4

million events is around 30GB, preventing the total

event log to be loaded into the memory of the

computer. Furthermore a larger number of events

also have implications on what process mining

algorithms are applicable.

Also there is case heterogeneity in the event log of

SoliTrust. Inferring that cases have different orders

in which activities are executed which is known as

a trace. The event log contains 2 traces which are

executed in the same manner, all other cases are

executed differently. Which is caused because the

Petri net is flexible. The same Petri net can deal

with different inputs and outputs by executing a

different part of the Petri net. Which is represented

in the event log by heterogeneous traces.

Furthermore the events stored in the event log are

fine-granular, meaning that there is a large number

of distinct activities in the event log. Process

mining algorithms have difficulties with fine-

granular events as this results in complex models.

However a higher-level view of activities might

discard relevant information from the log (Bose et

al., 2013).

4.2.2 Quality Event Log SoliTrust

Regarding the quality of the data in an event log

four broad categories are distinguished; missing,

7

incorrect, imprecise and irrelevant. The event log of

SoliTrust deals with irrelevant data for the project.

All activities of the Petri net are logged even

though the activity does not perform anything.

Resulting in many events contained in the event log

not being required for the project. Thereby there are

activities in the Petri net only for layout options

with no functioning, these activities are also

represented within the event log. In addition there

are also cases which are irrelevant in the event log

such as test cases.

The ordering of events in the event log is important.

As the event is logged when it is fully executed it

can arise in the wrong location in the log. The

timestamps are recorded in an Epoch Unix

timestamp. To be used as process mining input the

timestamps should be transformed into a timestamp

in the form of YYYY-MM-DD HH-MM-SS. The

activities are recorded with a precision to a second,

which prevents calculating the duration of activities

with a duration smaller than 1. However this is not

seen as a problem for the project as these are not

seen as activities of interest (Bose et al., 2013).

4.3 Conclusion on event log

An event log stores information about the execution

of a process. It stores cases which are made out of

events. Both cases and events can have attributes

that hold information. Event logs capture the

process and therefore also the behavior of the

process. In case of SoliTrust, the event log is

voluminous, fine-granular and heterogeneous.

Furthermore, data in the event log is irrelevant for

the project.

5. Process mining

Process mining is a research discipline that can be

seen as a combination of machine learning and data

mining on one hand and process modelling as well

as analysis on the other hand. Process mining

intends to discover, monitor and improve processes

by analyzing available information from event logs.

This section discusses process mining in terms of

its role in the business process lifecycle as well as

what types and perspectives process mining can

take.

5.1 Process mining in the BPM life cycle

Figure 4 represents the business process

management (BPM) life cycle. The BPM describes

how processes are designed and how the process is

adapted through the life cycle. The process starts at

the design phase, where a process is designed. The

process is transformed into a functioning system

during the configuration and implementation phase.

Once the system configured supports the designed

process, the phase of enactment/monitoring starts to

trace improvement points. When improvement

points are detected, changes in the process can be

made. In case no new design of the process or new

software is needed, therefor only adapting

predefined controls to reconfigure the process. The

changes can be acted on in the adjustment phase.

While the diagnosis/requirements phase monitors

for larger emerging changes in the process and

whether the system meets the requirements. Such

changes may trigger the (re)design phase starting

the cycle again. Process models have a significant

role in the design and configuration/implementation

phases of a system. Contrary, data plays a

significant role in the enactment/monitoring and

diagnosis/requirements phases. The data can be

used as documentation to provide insights and

analyze the performance of the process. While the

process models have a role in verifying the system

and determining its specification and configuration.

In practice, many organizations do not continuously

or systematically support the

diagnosis/requirements phase. Only major problems

or external changes trigger an iteration of the

lifecycle. Thereby, once the (re)design phase is

activated, the factual available information about

the process is not actively taken into account. Here,

process mining can help to connect all phases of the

BPM life cycle. The available information can be

applied to provide valuable insights into the

process, detect abnormalities and support

improving the quality of the models (Garcia et al.,

2019; Leemans et al., 2015; Manoj Kumar et al.,

2018; Milani et al., 2022; W. Van der Aalst, 2016;

W. M. P. van der Aalst, 2011).

Figure 4: Representation of the business process

management life cycle

5.2 Types of process mining

Process mining links the process and the generated

data to the process model. This link can be made in

different ways. Therefore, in general, three main

types of process mining can be identified.

1. Discovery. Techniques for discovery

process mining can produce a model out of

an event log. Such a technique can

transform an event log into a model

without deductive reasoning (Batista et al.,

8

2019; Leemans et al., 2015; W. Van der

Aalst, 2016; W. M. P. van der Aalst,

2010).

2. Conformance. Here, the event log is used

to compare the process with the event log.

The event log is used to check whether the

actual process in the log corresponds to the

designed process. For example, it could be

that an activity with a certain condition

requires a check. With conformance

process mining, it can be seen whether this

check is actually executed if the

requirements are met. Conformance

checking can therefore be used to detect,

locate and explain deviations.

Furthermore, the gravity of the situation

can be assessed (Gyunam Park and Wil

M.P. van der Aalst, 2021; Leemans et al.,

2018).

3. Enhancement. With enhancement, the

information available in the event log

serves as a basis to extend or improve an

existing process model. Enhancing the

process is contradictory to conformance,

as it aims for changing and extending the

process model. Process mining that uses

enhancement can use different types:

a. Repair. Here the model is adapted

to better reflect the reality it

should represent. Which can

occur when activities in the

model are modelled sequentially.

While in reality, the activities can

occur in any order. Correcting the

model to better reflect reality is

an example of enhancement.

b. Extension. An example of an

extension is to add performance

data within the model. Adding

timestamps allows for

bottlenecks, service levels,

throughput times, and frequencies

to be shown (Van der Aalst,

2016).

5.3 Perspectives of process mining

When the process model is extended with

additional information rather than just the flow,

process mining can take on different perspectives.

Perspectives which are commonly used on process

mining are:

• The control flow perspective focuses on

the flow of the process. In other words, the

ordering of the activities. When using this

perspective in process mining, the goal is

to find the behaviour of the process of all

possible paths.

• The organizational perspective focuses on

the resources that are hidden in the log.

Depending on what information is

available, the organizational perspective

searches for the involvement and

relationships of actors in the process. The

aim is to structure the organizational

structure by classifying actors or

constructing the social network.

• The case perspective focuses on the

properties of cases in the event log. The

cases can be represented by the paths it

takes in the process or by the activities

performed. Nevertheless, cases can also be

characterized by the values of their data

elements. With delivery, it might be useful

to know the supplier or the number of

products ordered.

• The timing perspective is concerned with

the timing and frequency of events in the

process. Including timestamps in the event,

allows for the detection of bottlenecks,

measuring service levels, monitoring the

utilization of resources and making a

prediction about the remaining processing

time (Kaouni et al., 2021; W. Van der

Aalst, 2016).

5.4 Online and offline process mining

Many process mining techniques are done offline.

Meaning that processes are analyzed afterwards to

see how they can be improved. However, many

techniques can also be used in an online setting,

where improvement is made during the process.

Which is also referred to as operational support. An

example of operational support is predicting the

remaining processing time or intercepting the

process when a deviation in conformance takes

place (W. Van der Aalst, 2016).

5.5 Play-In, Play-Out and Replay

An important aspect of process mining is the

relationship between a process model and the

reality represented by the event log. The terms

Play-In, Play-Out and Replay are used to reflect on

this relationship. Figure 5 visually shows Play-In,

Play-Out and Replay.

Play-Out refers to the traditional use of process

models, where the events in the process model are

logged. In the case of a Petri net, Play-Out traces

the token in the network. Play-Out can be used to

analyze and enact business processes. Simulation

tools and workflow engines are suitable for the

Play-Out relationship.

9

Play-In is in contrast with Play-Out, it uses example

behaviour to construct a process model. The Play-In

relationship is also called inference. With the usage

of process mining, process models can be

discovered from event logs.

Replay uses both an event log and a process model.

Where the event log is rehearsed on the process

model. Replay may be used to extend the model,

construct predictive models, conformance checking

or operational support (W. Van der Aalst, 2016).

Figure 5: Play-In, Play-Out, Replay (W. Van der

Aalst, 2016)

5.6 Root Cause Analysis

Process mining allows the detection of bottlenecks

in a business process. Providing valuable

information to organizations on where to improve

their operations. However, solely indicating a

bottleneck does provide organizations small

information on how to deal with the bottleneck.

Information on how the bottleneck originates can

provide insights into how to oppose the bottleneck.

With a root cause analysis, a more refined analysis

can be performed to correlate different process

characteristics.

De Leoni et al (De Leoni et al., 2016) propose a

framework on how to correlate process

characteristics to perform a more refined analysis.

Analysis use cases can be used to provide valuable

information to organizations. An analysis use case

is a triplet consisting of a dependent characteristic,

a set of independent characteristics and an event-

selection filter.

The result of performing an analysis use case is a

decision or regression tree where the independent

characteristic relates to the dependent characteristic.

So that the independent characteristic explains the

dependent characteristics. The event-selection filter

selects the events for which an analysis is made.

For example, events performed by a specific

resource. In case there is little information about the

traces stored in the event log, the log and traces can

be manipulated to add process characteristics.

Following the paths to the leaf nodes in the decision

or regression tree explains how the dependent

variable is impacted. The traces in the leaf nodes

can also be used as a cluster for other process

mining activities, such as process discovery (De

Leoni et al., 2016).

5.7 Conclusion on Process Mining

Process mining is a combination of BPM and data

science. For the project, process discovery with

enhancement are relevant. Conformance is not

relevant as the workflows cannot differ from the

structure of the SoliTrust Petri net. The time

perspective and case perspective are relevant for the

project. As conclusions can be drawn about the

throughput time of workflows and what workflows

are troublesome. The project is conducted in an

offline setting with post-mortem data. Play-In and

replay are relevant techniques to find potential

bottlenecks in the process. Because the discovered

process model can be extended. Root cause analysis

is also relevant for the project as this can unveil

potential causes why a bottleneck occurs.

6. Event Log Pre-processing

Event logs store information about the execution of

the business process. Process mining algorithms

can use an event log as input and extract the

knowledge to gain meaningful insights into the

process. Therefore, the log used as input has a great

impact on the result of the process mining

algorithm. Or in other words; “garbage in –

garbage out”, referring to low-quality data implying

low final-quality knowledge. Therefore attention

should be given to the event log as input to succeed

in process mining. This section discusses how an

event log can be preprocessed to serve as input for

valuable results. These pre-processing steps oppose

the process characteristics and quality issues within

the event log discussed in section 4.2.

6.1 Pre-processing theory

Real-life processes can be complex, hence the data

in the event log can be voluminous and of high

variability. Using this raw event log as input for

process mining algorithms infers spaghetti-like

process models which are difficult to analyze. With

the help of pre-processing; algorithms can provide

simpler process models which are easier to analyze.

Which is visually shown in Figure 6.

10

Figure 6: Event Log Pre-Processing (Marin-Castro & Tello-Leal, 2021)

Marin-Castro (Marin-Castro & Tello-Leal, 2021)

proposes a taxonomy for preprocessing techniques,

where event log preprocessing can be organized

into two main groups; transformation techniques

and detection and visualization techniques.

Figure 7: Pre-Processing Taxonomy

6.1.1 Transformation techniques

Transformation techniques search for changes in

the original structure of the raw event log to

improve the quality. For transformation techniques,

two approaches are determined; filtering-based and

time-based.

Filtering based

Filtering based aims to exclude events or traces

with a lower frequency, focusing on the likelihood

of occurrences for an event or a trace. Removing

these events or traces from the log excludes them to

appear in the constructed process model. On the

other hand time-based focuses to maintain and

correct the order of events within the event log.

Filtering techniques search for a typical behaviour

in the log to eliminate. It fundamentally addresses

the concerns for noise and anomalous events in the

event log which may affect the performance of

future process mining tasks. By filtering out

infrequent behaviour in the log based on frequency.

Time-based

Time-based transformation techniques are another

way to preprocess the event log. Timestamps can

point out performance issues in the process. Time-

based transformation techniques can repair and

change the timestamps present in an event log.

Furthermore an incorrect ordering of events can

harm the result of process mining techniques.

Especially discovery algorithms benefit from an

event log where the events are properly sorted.

Strategies concerning the information in

timestamps and the ordering of events are therefore

of interest to improve process mining outcomes.

6.1.2 Detection and visualization techniques

Detection-visualization techniques is a

preprocessing group aiming to recognize, group and

isolate events or traces which may cause quality

issues in the log. The event log is divided into

subsets by clustering techniques, these subsets are

analyzed for noise and anomalous elements. It is

possible to extract imperfection patterns from the

formation of similar clusters (Fani Sani, 2020;

Marin-Castro & Tello-Leal, 2021).

6.2 Data Preparation Method

As the quality of the event log is important, a

method is used to preprocess the event log to ensure

the quality of the process mining algorithms. The

data preparation method should deal with the

11

characteristics of the event log mentioned in section

4.2.

The event log is extracted from one process. Which

has as benefit that the event log does not have to be

compiled from multiple sources. As the system

automatically stores the execution of processes

within the Petri net. Thereby guaranteeing the same

fine granularity in the event log.

Because the Petri net fires every transition, even

when the transition does not execute an activity for

the business process, the event log contains noise.

As it stores transitions that are not relevant to the

analysis of the business process. Trace attributes are

not found in the event log and are constructed from

other available databases in the SQL server of

SoliTrust.

The Petri net is designed to handle workflows for

financial analysis. As the customers come from

different sectors implying variation in the output

and input. The Petri net has a flexible setup so that

only a partition of the transitions is actually run.

Causing the event log to have a heterogeneous mix

of traces with diverse and unstructured behaviours.

For these reasons, the data preparation method

should pre-process an event dealing with fine-

granular, voluminous and heterogeneous

characteristics. As a method, the process in Figure 8

is proposed.

12

Figure 8: Event Log Pre-Processing Method

13

6.2.1 Filtering

Figure 8 starts at the Petri net filling the raw event

log with data. This raw event log contains over 4

million events. To reduce the lavish data, the first

step in the data preprocessing step is filtering.

The first filtering step of the data pre-processing

uses attributes extracted from the trace or event

attributes to exclude events or traces to preserve

wanted behaviour. Attributes and values used to

include and exclude events or traces are:

• Financial Year: 2022

For the graduation project only workflows

for the financial book year 2022 are

considered. This is the year before the

graduation project and contains the

behaviour of the Petri net in its most recent

shape. Furthermore, taking a financial year

should still provide plenty of data points

for all kinds of workflows in the Petri net.

In addition, taking the financial book year

2022 is set with the approval of SoliTrust.

• Scripts: Empty

There are 2816 distinct transitions stored

in the event log. However, not all fired or

stored transitions do execute a process or

activity when fired. Some transitions are in

the Petri net for an easier layout. To only

consider transitions actually executing

activities, events with no scripts are

excluded from the event log.

• Duration: 0

In case an event has a duration of zero

seconds, the event is excluded from the

event log. Because the event has not been

executed but does contain a script. The

timestamps in the event log are stored with

precision to the second. In case, a

transition is executed but takes less than a

second, it is also excluded. However, this

is not seen as an issue. As improving these

transitions is not the goal of the graduation

project because of lesser yield. An

exception is made for events which cause

an error and have a duration of zero. These

are of interest for the graduation project to

reduce errors.

• Test: True

Sometimes test workflows are run through

the Petri net. These test runs are excluded

from the event log as they do not represent

the behaviour of interest.

• Termination: False

A workflow through the Petri net can be

terminated, either by the user or the

network itself. When a workflow is

terminated, the events remaining or being

executed are stored in the event log. When

the workflow is run over, the same case id

is used so the events executed twice are

stored double in the event log. Keeping the

terminated events provides wrong inputs

for process mining algorithms. However,

the trace is kept because it is of interest as

something causes the workflow to be

terminated which could be improved.

• Attributes

Some attributes are not relevant as input

for process mining algorithms. These are

removed from the event log. For example,

which processor core of the computer the

workflow is run on, is excluded from the

event log.

Figure 9 shows the decline in the number of events

in the log when the event attribute filters are

applied. Filtering on the financial year, script,

duration, test and termination reduces the number

of events from around 4.5 million to around 386

thousand.

Figure 9: Event Attribute Filtering

6.2.2 Time-Based

For the analysis of the Petri net, the time viewpoint

is used to determine throughput time and

determining potential bottlenecks. Errors in the

timestamps can provide misleading results in the

performance of the Petri net. In addition, the correct

ordering of events is also addressed in the second

step of preprocessing.

• Granularity

In case timestamps have a different level

of granularity, the events can be wrongly

ordered. Which may affect the process

models discovered. The event log is

checked whether timestamps hold the

same granularity. In case the granularity is

different, all timestamps are transformed

4458549

1226714

886944

394079

390940

386206

Number of Activities

14

to the lowest granularity available in the

log.

• Ordering

Checking whether the events are in the

right order is important for the quality of

especially process mining discovery

algorithms. The events should be ordered

in occurrence in each trace. In case the

ordering is mistaken, the ordering is

changed to the correct order.

6.2.3 Outlier Detection

To remove outliers, anomalous traces are detected

using isolation forest. Isolation forest uses the

decision tree algorithm to isolate outliers. By

randomly selecting a feature from the set of features

and applying a split on the feature. The random

partitioning of features produces shorter paths in

trees for anomalous data. Thereby distinguishing

anomalies from other data points in the available

data.

It does not construct a profile of what is normal

behaviour and does not make use of point-based

distances. It uses the principle that anomalous

observations are few and different. Which should

make them easier to identify.

6.2.4 Principal Component Analysis

It could be that a pre-processing technique suffers

from dimensionality. Therefore, a principal

component analysis is used to reduce the number of

features. In the pre-processing method, the principal

component analysis is used to select the features

until the set variance is explained. These features

can be used by, for example, the clustering

algorithm to cluster the traces (Zandkarimi et al.,

2020).

6.2.5 Clustering

The event log of SoliTrust consists of

heterogeneous traces. Using all traces as input for

process mining may result in complex outcomes.

Clustering the traces into similar clusters to analyze

may prevent the variability of the traces to be

represented in the outcome. Thereby resulting in

simpler outcomes.

To cluster traces in the event log, the K-Means

algorithm is chosen. The K-Means algorithm is

chosen because it is fast, the number of clusters can

be chosen and resulted in sufficiently occupied

clusters. The algorithm aims to minimize the

distance between data points in the dataset. To not

overload the algorithm with features, features

resulting from the principal component analysis are

used.

For K, tests have been performed to see what value

of K suits best. By determining K, a trade-off is

made between the distribution of traces over the

clusters and the total number of clusters. When

clusters are assigned a very low number of traces, it

is less beneficial to analyze these traces. Otherwise,

when there is one cluster with a large number of

traces, there is still too much variability causing

complex models. Furthermore, a reasonable amount

of clusters to analyze is desirable. Else, too many

clusters need to be analyzed. After performing a test

with several K’s, K is set to 4. As 4 clusters are

seen as a reasonable amount of clusters to analyze

and all clusters had a reasonable amount of traces.

Other clustering algorithms DBSCAN, OPTICS

and Agglomerative clustering showed less

satisfactory results. The algorithms resulted in low-

occupied clusters with one main cluster. Other trace

clustering algorithms such as hybrid trace clustering

are seen as too expensive processing for the event

log because it requires a discovery step during the

process (Zandkarimi et al., 2020).

6.2.6 Multi-Range Filtering

Multi-range filtering is used as the last pre-

processing step before using the event log as input

for process mining algorithms.

The first filtering step in the pre-processing uses

attributes to exclude events and traces. Multi-range

filtering uses frequency to exclude or incorporate

traces and events. Many filtering techniques or

tools use frequency as an ultimate measure. Where

only the most occurring traces or events are kept as

input for process mining. However, users therefore

have little influence on what information stays in

the model and what can be left out. Because

everything below or above a certain threshold is

used.

However, depending on the goal of process mining,

the information contained in infrequent activities

can be of interest. Multi-range filtering allows for

simpler models to be constructed while

incorporating activities and traces to the user's

needs by setting multiple ranges as input. With

multiple ranges, both the big-picture and potentially

valuable infrequent behaviour can be used to

discover and analyze a process model. Allowing,

otherwise disregarded behaviour, also to be

analyzed to gain insights in the process (Vidgof et

al., 2020).

After applying the multi-range filtering to the sub-

filtered event logs, process mining algorithms

should be able to construct understandable process

models. After analyzing the constructed process

15

models, new ranges can be set to multi-range

filtering to start an iterative analysis. Based on the

results of previous ranges, new insights can be

discovered.

6.2.7 Generalization

In the case of fine-granular events in the event log,

generalization can be used to abstract events from

the event log. Which combines possibly multiple

events into one allowing for a simpler

comprehensible output. It is chosen not to apply

generalization as a processing step because possible

relevant information can be discarded. In the search

for improvement points in the Petri net, possible

bottlenecks must be kept in the event log. Thereby,

most grouping techniques apply semantic

ontologies, are partly automated and lack domain

significance (Bose et al., 2013).

6.2.8 Trace Attributes

The event log of SoliTrust does not contain other

trace attributes than the case id. To perform analysis

with a case perspective, trace attributes are

composed. Attributes composed for traces are the

views filled during the case, for what customer the

case is performed, the ERP system and what type of

file the input consists of. These trace attributes are

compiled out of data existing in other data tables in

the SQL server or are constructed from event

attributes.

6.2.9 Sublogs

Not always, the entire business process is needed as

input for process mining. It could also be

interesting to zoom in on specific parts of the

process. Therefore, the attributes are enhanced with

an attribute event type. The event type is

constructed from the script run so that only likewise

activities are grouped in eight sub-logs. Taking a

sub-log could still provide complex process mining

outcomes. Therefore, the pre-processing method is

also applied to sub-logs before being used as input

for process mining. Nevertheless, taking a sub-log

allows for a zoomed-in analysis instead of the

whole event log. The table in Appendix 13.5 shows

what sub-logs are available along with statistics on

the number of activities and events.

6.3 Applying Pre-Process Method

The goal of the event log pre-processing method is

to prepare the event log as input for process mining

algorithms. Before applying the event log pre-

processing method, process discovery resulted in

large spaghetti-like models. Applying the pre-

processing method allows for simpler models to be

discovered. Showing the functioning of the pre-

processing method. In addition, the pre-processing

method is flexible in the setup. The user can select

different sub-logs, clusters, filtering intervals,

contamination and explained variance in the

process. Allowing the user to select the required

input for process mining.

Figure 10 shows a process model discovered

without good application of the event log pre-

processing method. In Figure 11, the event log is

pre-processed to provide a simpler outcome. Which

shows that the event log pre-processing method is

effective for simpler models to be discovered.

Figure 10: Complex Process Model Discovered

Figure 11: Simpler Process Model Discovered

7. Dashboard

SoliTrust continuously wants to improve the Petri

net. Therefore, a dashboard is created which

incorporates process mining to provide information

on the business process of SoliTrust. The advantage

of the dashboard is that multiple process mining

functionalities are combined in one tool. This

section discusses the dashboard as well as the

functionalities within the dashboard.

7.1 Goal Dashboard

The goal of the dashboard is to detect bottlenecks in

the Petri net. Bottlenecks are seen as activities

which cause rework or lengthen the duration of a

workflow.

Rework is seen as starting an activity in the Petri

net again. Thereby also triggering activities behind

the started activity. The activity must be started by

an human intervention. In an discovered process

model, rework can be detected with a loop

construct. Which means a transition to a previous

activity. Because the process stops there and starts

again in front of that activity.

The dashboard incorporates process discovery,

statistics and root cause analysis to find bottlenecks

in the Petri net. Process discovery is used to

discover a process model. After which replay is

16

used to highlight activities with a higher frequency

or duration. This is seen as a method which unveils

bottlenecks in literature and therefore has been

included in the dashboard.

Root cause analysis provides insights into why a

deviation occurs. Giving a direction to SoliTrust on

how to solve the bottleneck, a root cause analysis

perspective is included into the dashboard.

7.2 Dashboard outline

The dashboard is created in Dash where callbacks

are performed on process mining tasks. Both the

process mining tasks as well as the dashboard are

written in Python. The dashboard uses Dash as a

package while the tasks for process mining utilize

the Fraunhofer package for process mining in

Python PM4PY. The dashboard consists of three

parts; discovery, statistics and root cause analysis.

Conformance checking is not part of the dashboard

as it is not seen as relevant to the project. As the

process can not deviate from the original Petri net

(Dash, n.d.; PM4PY, n.d.).

As input the dashboard uses the event log of

SoliTrust and the trace attributes. The event log is

already enhanced in the SQL server of SoliTrust.

Both the event log and trace attributes can be

provided as a CSV file. Given event attributes the

event log is divided into eight clusters which can

also be selected for analysis.

The main advantage of the dashboard is that

multiple event log pre-processing steps and process

mining algorithms are combined in one tool.

Therefore, no knowledge of other process mining

tools is required to execute every step in the

process. Furthermore, the results are presented in

one go and no intermediate steps are required.

Figure 12 shows what the starting page of the

dashboard looks like. The figure shows the title on

top. Below the title, the entire log or a sub-log can

be selected to be analyzed. In the tabs for discovery

and root cause analysis, settings can be made for

the algorithm. The tab statistics show data tables

regarding the whole event log. The result tab shows

the figure resulting from either the discovery or root

cause algorithm. Both the statistics and root cause

analysis tab are provided in Appendix 13.3.

7.3 Process Discovery

The first part of the dashboard is process discovery.

Discovering a process model can provide insights

into what the process looks like. In addition, the

discovered process model could be used as input for

other process mining algorithms.

Taking the entire event log as input for process

discovery results in complex, hard-to-analyze

process models. Therefore the event log is pre-

processed as discussed in Chapter 6. As a discovery

algorithm, the inductive miner (IMd) is used. This

miner is chosen as the inductive miner can produce

sound and valid process models. Furthermore, the

inductive miner is scalable and allows for a large

number of events to be handled. Thereby, the

output of the inductive miner can be transformed

into a Petri net which is the desired representation

type. The log is replayed on the constructed Petri

net so that frequencies or duration of activities can

be added to the resulting figure. The duration and

frequency of activities can be used to detect

bottlenecks in the constructed process model. Also,

constructs in the process model can indicate a

potential bottleneck. When a loop construct occurs,

it indicates that the activity starts again and causes

rework (Ceravolo et al., 2018; Christian W.

Günther & Wil M.P. van der Aalst, 2007; Denisov

et al., 2018; Leemans et al., 2018; Sander J.J.

Figure 12: Landing page dashboard

17

Leemans et al., 2013; Weijters & Ribeiro, 2011;

Wen et al., 2009).

An output example of process discovery is provided

in Figure 11.

7.4 Statistics

The second part of the dashboard contains statistics

about the traces in the event log. There are two data

tables on this tab, one shows the performance of

cases with the number of activities, duration and a

rework ratio. The second table shows what

activities cause rework to start.

Originating the cause of rework is important for

SoliTrust. As rework requires manual intervention.

These interventions are costly for SoliTrust, so

eliminating these interventions is beneficial. To

construct the statistics for which activities enable

rework, the context of the activity is used.

The event log contains all activities executed during

a workflow in the Petri net. However, a workflow

can execute the same activity in the Petri net

automatically. As an example, when 100 CSV files

need to be opened for a workflow. The activity

open CSV file occurs 100 times in the event log.

Applying replay and the normal rework statistic

does not provide the correct causes of rework in the

Petri net. As these algorithms cannot distinguish

between activities occurring multiple times but are

started by the Petri net and activities which are

occurring multiple times but started by an

intervention.

To only take into account the interventions, which

are of interest for SoliTrust, the surrounding context

of the activity is taken into account. First, the event

log is filtered for activities which are reworked,

which is done by event attribute filtering.

Thereafter, for each activity in a trace, it is checked

whether the input of that activity is an output of

another activity in the trace. If the event has an

input which is an output of another activity, it can

be assumed that the activity is triggered by the

output of that activity. Thereby only taking starting

points of rework into account.

In other words, it is checked whether an activity

that has occurred multiple times in a case could be

fired multiple times. If not, the activity must be the

start of rework.

At last, a filter is applied to remaining activities or

only takes into account activities which are of

higher level in the Petri net. In addition, the number

of times an activity starts rework is counted and the

activities are sorted.

7.5 Root Cause Analysis

The third part of the dashboard is root cause

analysis which results in a decision tree. The

dependent and independent characteristics can be

selected to be used in the analysis. Furthermore, the

features for the decision tree can be selected.

Incorporated dependent variables are rework ratio

and case duration. Case characteristics can be used

as features in the decision tree. To construct the

decision tree, two classes are calculated; lower and

higher. The class lower consist of all traces from

the lowest value until the average. While higher

contains all traces between the average and the

maximum of the dependent variable.

The decision tree makes choices inferred from the

independent characteristics of the trace. Thereby

splitting the traces to group the classified traces.

The Gini index is used to measure the impurity of a

node. A higher Gini index indicates that there are

traces present in the node which have another

classification. While a low Gini index indicates that

traces present in the node are mostly of the same

classification. The lower the Gini index, the purer

the traces in the node are.

To prevent the tree from over- or underfitting, the

maximum depth, minimum samples in a leaf node

and the number of leaf nodes can be adjusted.

Thereby, the classes are balanced so that each class

has even priority in a node.

With this setup, the user can perform use-case

analysis with different independent as well as

dependent characteristics. Allowing for different

types of questions about the performance and how

the performance originated to be answered.

Preferably, nodes want to be found with a high

sample of traces and a low Gini index. Indicating

that there is a lower chance of misclassifying a trace

in the node and improving more samples results in

more workflows being improved.

An example decision tree as output for a root cause

analysis is shown in Figure 13. Here, the ERP

system LN shows a higher duration for 13 samples.

18

8. Validation and Continuous

Implementation

This section discusses how the dashboard is

validated and implemented. Thereby discussing

research question 5.

8.1 Validation

After the first version of the dashboard was

constructed, a presentation was given to 6

employees of SoliTrust. In this presentation, a

demo of the dashboard was given as well as an

explanation of why these process mining algorithms

were used. This is one large iteration in the

development of the dashboard.

During the discussion, these specific improvement

points were given:

• More concrete, work down to a single

activity as bottleneck. Giving a high-level

overview of problems does not provide

enough insights into where to improve the

Petri net.

• Other perspectives such as file type,

customer and ERP system are also relevant

to discover bottlenecks in the process.

• Explanation of settings. For example, what

does minimum samples in leaf node mean

and how do we need to alter it to make an

analysis.

• Instead of reworked activities, look for

activities that start the rework. Do not take

into account all activities that are

reworked. Some activities are executed

correctly but are started by the process

itself or are executed after rework.

Thereafter, a different approach is used to identify

the rework enablers as well as calculate the rework

in a trace. Leading to clear and understandable

outcomes for detecting single activities that start

rework.

In addition, more attributes are extracted for traces

so that other additional root cause analyses could be

performed. Allowing for more use cases to be

analyzed for SoliTrust.

The final dashboard is checked and explained to

one employee of SoliTrust concerning the code and

reasoning behind the dashboard.

Preliminary results from the dashboard were also

checked with SoliTrust’s employees as well as the

company supervisor. After a number of iterations

and evaluations, the dashboard is seen as valid.

8.2 Continuous Implementation

The dashboard supports the enactment and

monitoring phase in the BPM lifecycle. Based on

data on the execution of the business process,

bottlenecks can be detected so that adaptations in

the process can be made. In case the process

changes drastically, a new design phase can be

started where new requirements can be set. In the

case of SoliTrust, the dashboard supports the

triggering of the adjustment phase. Here, a smaller

change in the process is made rather than changing

the entire process.

Figure 13: Example Output Root Cause Analysis

19

In case a bottleneck is detected, SoliTrust can

perform two things to solve the bottleneck. To start,

SoliTrust can look into the activity itself and

improve this activity. Meaning adjusting the code

used by that activity to better perform or adjusting

the layout of the Petri net. Thereby relocating the

activity in the Petri net. Also, activities can be

removed or added to the Petri net to resolve a

bottleneck.

As the dashboard can analyze future event logs,

SoliTrust can continuously improve the Petri net

and close the BPM lifecycle.

9. Results

This section presents the outcomes of applying the

incorporated process mining techniques in the

constructed dashboard. The results of the research

questions are discussed in section 11. The goal was

to improve the business process performance.

Hence, bottlenecks in the process are sought.

Detecting the bottlenecks is the first step to

improving the process, along with how these

bottlenecks originate. Which is in line with the

monitoring of activities and diagnosing problems in

the BPM lifecycle. Whereafter, improvements can

be made in the process with adjustments or (re-

)design of the process.

To detect bottlenecks in the business process of

SoliTrust, the flow-, case- and time perspectives are

taken into account. SoliTrust is particularly

interested in detecting activities which cause

rework. Because a human intervention in the

process is required, which costs SoliTrust valuable

time which could be spent on other activities. In

addition, reducing the throughput time of a

workflow allows for a faster and increased

throughput. Hence, bottlenecks in the business

process are seen as activities which enable rework

in the process or extend the duration of the process.

This part is split into three sections. First, process

discovery is discussed. Thereafter, statistics are

discussed using the method to detect rework

enablers explained in section Statistics7.4. At last,

root cause analysis results are presented. The results

when applying the event log in the dashboard

provide an answer to research question 6.

9.1 Process Discovery

Obtaining results

Constructed process models are analyzed visually

by the user. Where there is searched for loop

constructs or strange patterns in frequency or

duration. For example in Figure 11, each place has

a silent transition towards the place in front of the

transition, meaning a loop construct. Which can

indicate that the transition is a bottleneck or is

executed automatically by the Petri net.

By changing the settings, a new model can be

constructed. Depending on previous outcomes, the

user can select new settings to zoom in or out into

the model. Which is done by trial and error and

depends on the goal of the user. For the graduation

project, each (sub)log is analyzed with different

settings. In total, around 40 discovered process

models are analyzed.

Results

Constructed process models showed that

conversions as well as call bronbestanden were

incorporated and highlighted in the process models.

Showing that these activities occur relatively often.

Thereby, a loop construct was visible around these

activities. Indicating that these activities start

rework in the process.

Thereby, the activity Bankafschrift Matching can be

seen as a bottleneck. This activity is the start of a

loop construct in several process models. Indicating

that the activity enables rework.

Furthermore, the activities

JSON: SoliTrust_Werkprogramma_Debiteuren,

JSON: SoliTrust_Werkprogramma_Crediteuren and

JSON: SoliTrust_Werkprogramma_Fraude

also show a large frequency and start of loop

constructs. Showing that rework is caused and

therefore these activities might also be relevant for

improvement.

9.2 Statistics

Section 7.4 presents a methodology to unveil

activities which cause rework in the process.

Thereby only taking into consideration the activities

where human intervention is necessary. It uses the

input and output of other reworked activities to

discover whether an activity was enabled and

thereby enables rework. The top 5 activities which

enable rework in the process are:

1. Call bronbestanden

2. Conversie tabel Verkoopfactuur

3. Conversie tabel Artikelmutatie

4. Conversie tabel Inkoopfactuur

5. Conversie tabel Algemeen validatie bron

9.3 Root Cause Analysis

For the root cause analysis, two dependent

characteristics are chosen; rework ratio and

duration. As independent characteristics the

customer, file type, views and ERP system of the

20

traces are used. This section first discusses the

dependent characteristic duration for each of the

independent characteristics. Thereafter, the rework

ratio is also discussed as a dependent characteristic.

For each dependent and independent variable, the

settings are set so that the decision tree underfits the

data. Thereafter, the settings are changed so that the

tree is allowed to grow. The analysis stops when the

tree starts to overfit the data or no new changed in

the tree are present.

9.3.1 Duration

Customer

There are traces performed for specific customers

which tend to have an increased duration. These

customers count up to around 3.5% of the total

workflows performed each. Larger customers

around 25% of the total workflows are also

classified as higher. However, these customers do

have a high Gini index indicating impurity. Traces

are being classified as higher, as well as the node

having a low Gini index. However, these are small

customers who count up to 0.5% of the total

workflows performed each.

File Type

CSV files often result in an increased duration of

the workflow. Especially in combination with .bak,

.xml and .xlsx files. Thereby, traces with DBC files

also classify as traces with a higher duration.

Views

When the view Autorisatie is used during the

workflow, the workflow is likely to have a higher

duration. Thereby, traces containing the attribute

view Salaris are classified as traces which have a

higher duration.

ERP system

AFAS and AccountView are ERP systems which

tend to cause a higher duration. Because of the high

Gini index for the leaf nodes of these ERP systems,

there is not a clear conclusion for these ERP

systems. The combination of ExactGlobe and

ProActive does show a lower Gini index, however

only 24 traces are having both these ERP systems.

9.3.2 Rework Ratio

Customer

A few customers tend to increase the rework ratio.

One larger customer, with up to around 25% of the

total workflows. Though, the Gini index is still

relatively high. There is a customer with a lower

Gini index where traces are being classified higher

for their rework ratio. However, SoliTrust

performed around 4% of the total workflows for

this customer.

File Type

Workflows utilizing a CSV file classify as

workflows with a higher rework ratio. The

combination of CSV and XML also results in traces

with a higher rework ratio. In case there are CSV

and XML files as well as a .bak file, the workflow

behaves quite normally. However, when the trace

lacks a .bak file, the workflow classifies with a

higher rework ratio. The combination of CSV,

XML, not .bak and a .xlsx file results in traces

being classified with a higher rework ratio.

Views

The view Verkooplevering tends to cause rework in

the workflow. Especially the view combination of

Verkooplevering and Optie. Besides, traces with the

view Salaris and the combination of Bankafschrift

and Betaalopdracht result in the trace being

classified with a higher rework ratio.

ERP system

AFAS is an ERP system which causes traces to be

classified as one with a higher rework ratio. AFAS

has a relatively high Gini index indicating impurity

and also a significant number of traces having a

lower rework ratio. Other, less occurring ERP

systems such as ExactOnline and UNIT4 also cause

traces to be classified as one with a higher rework

ratio. These ERP systems have a lower Gini index.

The 11 workflows with UNIT4 ERP system all

classify as workflows with a higher rework ratio.

10. Contribution

This section discusses how the project contributes

to both science and practice.

10.1 Contribution to Science

The results of this graduation project show that the

dashboard can detect bottlenecks in the Petri net of

SoliTrust with help of process mining algorithms.

With help of process discovery techniques as well

as replay and root cause analysis are used as

generalizable methods. These methods can be

applied to any process as long as the required

information is stored in the event log.

The method for detecting activities which start

rework however is specifically designed for Petri

nets and cannot be applied to every process model.

As the method uses attributes for input and output

of a transition which are not always available in an

event log. Thereby is the method tailored to the

process of SoliTrust, to be in line with the hierarchy

and events of the SoliTrust process.

Furthermore, the event log pre-processing method

shows that these steps can be used to pre-process a

voluminous, fine-granular and heterogenous event

21

log. Where before, complex process models were

discovered and after applying the method simple

understandable models were discovered. In

addition, the method is flexible in setup. Therefore,

the method can be applied to other event logs with

the same characteristics.

10.2 Contribution to Practice

With the dashboard, SoliTrust is able to find

bottlenecks in the Petri net. Solving these

bottlenecks can improve the performance of the

Petri net in terms of decreased rework and duration.

The dashboard is able to find specific activities and

trace characteristics of the bottleneck. Informing

SoliTrust where the bottleneck is located and a

possible cause of the bottleneck.

Which has as benefit that SoliTrust requires fewer

human interventions and can decrease the

throughput time of a workflow. Therefore,

employees can focus on different activities and the

total throughput of the system can be increased.

For the duration, the project contributed in

recognizing the following characteristics as

troublesome;

• 4 file types

• 6 customers

• 4 ERP systems

• 7 views

Regarding the rework, the following number of

trace characteristics can be identified as

troublesome;

• 3 file types

• 2 customers

• 3 ERP systems

• 6 views

Furthermore, 15 conversions are identified as

rework enablers with more than 200 times enabling

rework. Alongside call brondbestanden with 341

times enabling rework, it is the activity which

causes the most rework.

As the dashboard can analyze future workflows,

SoliTrust can continuously improve Petri net

performance.

11. Conclusion

The objective of the graduation project is to

continuously improve the Petri net to improve

workflow handling. The main research question is

therefore formulated as follows:

How can SoliTrust continuously improve the Petri

net performance utilizing the event log as input for

process mining algorithms to detect bottlenecks?

First, a literature study has been performed to

provide an answer to research questions 1 & 2. To

provide an understanding of what a Petri net and

event log are as well as what process mining

entails. A Petri net is a static structure which can be

used to describe process models. Through the

structure, a token flows from a place to a transition

to execute activities. In the case of SoliTrust, the

transitions of the Petri net handling workflows are

logged in an event log. Which consists of traces,

events and attributes. This event log can be used as

input for process mining to discover, monitor and

improve processes.

Since the event log is voluminous, heterogenous

and fine-granular, the event log cannot directly be

used as input for process mining. Before the event

log can be used as input, the event log is pre-

processed based on findings during research

question 3. For event log pre-processing, a

methodology is designed where the event log is

filtered based on attributes and anomalies.

Furthermore, clusters with similar traces or events

are created. Resulting in an input which could be

used as input for process mining.

To discover bottlenecks, process discovery with

replay, root cause analysis as well as a custom

detection algorithm for activities that enable rework

are used. Applying these process mining techniques

showed specific activities as well as characteristics

of traces which cause an increased duration or

rework. Which answers research questions 4 & 6.

To combine the event log pre-processing and

process mining techniques in one tool, a dashboard

is developed. This dashboard allows for future

event logs to be analysed. Hence, a continuous

implementation. Furthermore, based on expert

feedback on the process, the dashboard is evaluated,

improved and validated. Which provides an answer

to research question 5.

To conclude the main research question, SoliTrust

can continuously improve the Petri net performance

by applying the process mining techniques in the

developed dashboard to detect activities and

process characteristics which cause an increased

duration or rework ratio. Thereby monitoring the

process and closing the BPM lifecycle.

12. Limitations and recommendations

One performance-related aspect of the dashboard is

the duration of the workflow. Which is chosen

22

because decreasing the duration of workflows

allows for more throughput. However, parts of the

activities in the process cannot be optimized in time

aspect. As an example, opening a CSV file takes

time. When the file is larger for a workflow, it

processes longer in the workflow. However, this is

not something that can be optimized but which is

limited to the process. Therefore, the duration

aspect might sometimes not provide meaningful

insights.

One recommendation for SoliTrust is to provide

more structure to the process in the event log.

Activities are now given a type based on the script

that is run. However, especially in process

discovery, it might be that intermediate activities

are filtered out. Giving a better structure or

hierarchy might improve the way the event log can

be analysed and deal with the fine granularity in the

event log.

Furthermore, one recommendation is to store more

trace attributes within the event log. These are now

constructed from other databases. Assigning

attributes to traces in the event log table creates an

easier input for the dashboard. Especially trace

attributes with regards to whether a trace is

successful or not could be interesting for SoliTrust.

As the root cause analysis determines the

successfulness of a trace with respect to the other

traces in the log. However, using this type of

classification for traces could misclassify traces.

Such as traces with large data, these take longer to

process because of computational limitations. But

do not need to imply that the trace was executed

with faults or bottlenecks. Though, the trace could

be classified as one with a higher duration.

Another limitation is that the dashboard only takes

into account post-mortem data. Or in other words,

data about workflows that already have been

performed are used as input for the dashboard.

Meaning that the analysis made is based on data

from the past. Meaning that the current workflows

executed in real-time are not supported by process

mining to improve the business process

performance. A recommendation to SoliTrust could

be to implement process mining in an online

setting. So that current workflows are supported by

process mining outcomes. Especially remaining

processing time and error predictions could be

interesting for SoliTrust. As the path through the

Petri net is already fixed from the start, the flow

perspective is less relevant.

23

12. References

Batista, E., Solanas, A., Ieee, & Ieee, U. P. U. P. U.

P. (2019). Skip Miner: Towards the

Simplification of Spaghetti-like Business

Process Models. 10th International

Conference on Information, Intelligence,

Systems and Applications (IISA), 40–45. <Go

to ISI>://WOS:000589872200007

Bose, R. P. J. C., Mans, R. S., & Van Der Aalst, W.

M. P. (2013). Wanna improve process mining

results? Proceedings of the 2013 IEEE

Symposium on Computational Intelligence

and Data Mining, CIDM 2013 - 2013 IEEE

Symposium Series on Computational

Intelligence, SSCI 2013, 127–134.

https://doi.org/10.1109/CIDM.2013.6597227

Ceravolo, P., Guetl, C., & Rinderle-Ma, S. (Eds.).

(2018). Data-Driven Process Discovery and

Analysis (Vol. 307). Springer International

Publishing. https://doi.org/10.1007/978-3-

319-74161-1

Christian W. Günther, & Wil M.P. van der Aalst.

(2007). Fuzzy Mining: Adaptive Process

Simplification Based on Multi-perspective

Metrics.

Dash. (n.d.). 2023.

De Leoni, M., Van Der Aalst, W. M. P., & Dees,

M. (2016). A general process mining

framework for correlating, predicting and

clustering dynamic behavior based on event

logs. Information Systems, 56, 235–257.

https://doi.org/10.1016/j.is.2015.07.003

Denisov, V., Belkina, E., Fahland, D., & Van Der

Aalst, W. M. P. (2018). The Performance

Spectrum Miner: Visual Analytics for Fine-

Grained Performance Analysis of Processes.

https://github.com/processmining-in-

logistics/psm

Fani Sani, M. (2020). Preprocessing Event Data in

Process Mining.

Garcia, C. D. S., Meincheim, A., Faria Junior, E.

R., Dallagassa, M. R., Sato, D. M. V,

Carvalho, D. R., Santos, E. A. P., &

Scalabrin, E. E. (2019). Process mining

techniques and applications – A systematic

mapping study. Expert Systems with

Applications, 133, 260–295.

https://doi.org/10.1016/j.eswa.2019.05.003

Gyunam Park and Wil M.P. van der Aalst. (2021).

A General Framework for Action-Oriented

Process Mining.

I. Mukhlash, W. N. R. D. A. and R. S. (2018).

Business process improvement of production

systems using coloured petri nets. Bulletin of

Electrical Engineering and Informatics.

Kaouni, A., Theodoropoulou, G., Bousdekis, A.,

Voulodimos, A., & Miaoulis, G. (2021).

Visual analytics in process mining for

supporting business process improvement. In

Frontiers in Artificial Intelligence and

Applications (Vol. 338, pp. V–VI).

https://doi.org/10.3233/FAIA210089

Kintz, M. (2012). A Semantic Dashboard

Description Language for a Process-oriented

Dashboard Design Methodology.

Kitchenham, B. (2004). Procedures for Performing

Systematic Reviews.

Leemans, S. J. J., Fahland, D., & Van Der Aalst, W.

M. P. (2015). Scalable process discovery with

guarantees. In Lecture Notes in Business

Information Processing (Vol. 214, pp. 85–

101). https://doi.org/10.1007/978-3-319-

19237-6_6

Leemans, S. J. J., Fahland, D., & van der Aalst, W.

M. P. (2018). Scalable process discovery and

conformance checking. Software and Systems

Modeling, 17(2), 599–631.

https://doi.org/10.1007/s10270-016-0545-x

M. Leemans, W. M. P. V. D. A. and M. G. J. V. D.

B. (2018). Hierarchical performance analysis

for process mining. ACM International

Conference Proceeding Series.

Manoj Kumar, M. V, Thomas, L., & Annappa, B.

(2018). Simplifying spaghetti processes to

find the frequent execution paths. In Smart

Innovation, Systems and Technologies (Vol.

79, pp. 693–701).

https://doi.org/10.1007/978-981-10-5828-

8_66

Marin-Castro, H. M., & Tello-Leal, E. (2021).

Event log preprocessing for process mining:

A review. In Applied Sciences (Switzerland)

(Vol. 11, Issue 22). MDPI.

https://doi.org/10.3390/app112210556

Milani, F., Lashkeyich, K., Maggi, F. M., & Di

Francescomarino, C. (2022). Process Mining:

A Guide for Practitioners. 16th International

Conference on Research Challenges in

24

Information Sciences (RCIS), 446, 265–282.

https://doi.org/10.1007/978-3-031-05760-

1_16

Patrick Konniger, & Dirk Niestadt. (2021, March

30). Process mining, een introductie.

Peterson, J. L. (1977). Petri Nets*.

PM4PY. (n.d.). 2023.

Salimifard, K., & Wright, M. (2001). Petri net-

based modelling of workflow systems: An

overview. European Journal of Operational

Research, 134(3), 664–676.

https://doi.org/10.1016/S0377-

2217(00)00292-7

Sander J.J. Leemans, Dirk Fahland, & Wil M.P. van

der Aalst. (2013). Discovering Block-

Structured Process Models from Event Logs -

A Constructive Approach.

Van der Aalst, W. (2016). Process mining: Data

science in action. In Process Mining: Data

Science in Action. Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-

662-49851-4

van der Aalst, W. M. P. (2010). Process Discovery:

Capturing the Invisible. Ieee Computational

Intelligence Magazine, 5(1), 28–41.

https://doi.org/10.1109/mci.2009.935307

van der Aalst, W. M. P. (2011). Process Mining. In

Process Mining. Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-19345-3

Van Eck, M. L., Lu, X., Leemans, S. J. J., & Van

Der Aalst, W. M. P. (2015). PM 2 : a Process

Mining Project Methodology.

Vidgof, M., Djurica, D., Bala, S., & Mendling, J.

(2020). Cherry-picking from spaghetti: Multi-

range filtering of event logs. Lecture Notes in

Business Information Processing, 387 LNBIP,

135–149. https://doi.org/10.1007/978-3-030-

49418-6_9

W. Premchaiswadi and P. Porouhan. (2015).

Process modeling and bottleneck mining in

online peer-review systems.

Weijters, A. J. M. M., & Ribeiro, J. T. S. (2011).

Flexible heuristics miner (FHM). IEEE SSCI

2011: Symposium Series on Computational

Intelligence - CIDM 2011: 2011 IEEE

Symposium on Computational Intelligence

and Data Mining, 310–317.

https://doi.org/10.1109/CIDM.2011.5949453

Wen, L., Van Dongen, B. F., Alves De Medeiros,

A. K., & Wen, L. (2009). Process Mining:

Overview and Outlook of Petri Net Discovery

Algorithms. www.processmining.org

Wirth, N. (1971). Program Development by

Stepwise Refinement.

Y. Caesarita, R. S. and K. R. S. (2018). Identifying

bottlenecks and fraud of business process

using alpha ++ and heuristic miner

algorithms.

Zandkarimi, F., Rehse, J.-R., Soudmand, P., &

Hoehle, H. (2020). A Generic Framework for

Trace Clustering in Process Mining.

https://doi.org/10.6084/m9.figshare.12607742

.v2

25

13. Appendix

13.1 Literature review

Table 1: Result Systematic Literature Review

RQ1: What is a Petri net and how to enhance the performance

Search strings: Scope Date Date range #Articles

Scopus

“Petri net*” AND “performance”

AND “bottleneck”

TITLE-ABS-

KEY

9-1-

2023
Until 20-12-2022 #157

Web of Science

“Petri net*” AND “performance”

AND “bottleneck”

TITLE-ABS-

KEY

9-1-

2023
Until 20-12-2022 #50

Total: 207

Removing Duplicates: (-57) 150

Removing based on exclusion criteria: (-129) 21

Removed after reading abstract: (-10) 11

Removed after more extensive reading: (-6) 5

Added by recommendation: 1

Total: 6

RQ2: What is process mining and what models/techniques are available for (continuous)
improvement?

Scopus

“process

mining” AND

“discovery”

AND “petri

net*”

TITLE-ABS-KEY 9-1-2023
Until 9-

1-2023
#168

“process

mining” AND

“performance

analysis”

TITLE-ABS-KEY 9-1-2023
Until 9-

1-2023
#147

“process

mining” AND

“discovery”

AND

“algorithm*”

TITLE-ABS-KEY 9-1-2023
Until 9-

1-2023
#523

26

“process

mining” AND

“contin*”

TITLE-ABS-KEY 9-1-2023
Until 9-

1-2023
#294

Web of Science

“process

mining” AND

“discovery”

AND “petri

net*”

TITLE-ABS-KEY 9-1-2023
Until 9-

1-2023
#134

“process

mining” AND

“performance

analysis”

TITLE-ABS-KEY 9-1-2023
Until 9-

1-2023
#87

“process

mining” AND

“discovery”
AND

“algorithm*”

TITLE-ABS-KEY 9-1-2023
Until 9-

1-2023
#361

“process

mining” AND

“contin*”

TITLE-ABS-KEY 9-1-2023
Until 9-

1-2023
#169

Total: 1883

Removing Duplicates:
(-1218)

665

Removing based on exclusion criteria: (-585) 80

Removed after reading abstract: (-56) 24

Removed after more extensive reading: (-16) 8

Added by recommendation: 1

Total: 9

27

13.2 Attributes Event Log

Table 2: Event Attributes Event Log

Attributes in Event log

Column Description Format

action_id Id for each event in the event log Integer

task_id Id for each workflow in the event

log

Integer

script Script called in the transition String

command Command executed by the script String

in_format Input place for transition String

out_format Output place for transition String

in_tokens Tokens used as input String

trans_id Id for each transition String

name Name for each transition String

parameters Variables used in transition String

started Starting time of transition Timestamp

finished Ending time of transition Timestamp

success Return whether transition was

successful

0, 1

returncode Return code when error occurs -1,0,1,404

std_out Standard output String

st_derr Output what the error is String

skipped Value whether transition is skipped 0, 1

out_tokens Tokens produced by transition String

params Variables produced by transition String

deleted Value if trace is deleted 0, 1

core Core of processor used Integer

28

13.3 Dashboard layout

Figure 14: Statistics Tab Trace Level

Figure 15: Statistics Tab overview Event Level

Figure 16: Root Cause Analysis Tab Layout

29

13.4 Event Log Filtering

Table 3: Filtering Steps Event Log

Filtering Activities

Filter Reason #Activities Percentage

Book Year Only take workflows for book year 2022 1,226,714 100%

Script Only want to take into account activities

which perform certain tasks.

886,944 72,30%

Duration Filter out activities which take zero time,

these do not perform any tasks in the
workflow. In addition, more improvement

is likely with events that take a larger

time. However, activities that take no time

but have an error are kept in the event log.

394,079 32,12%

Tests Filter out cases with are run for tests in the

network.

390,940 31,87%

Terminated Cases which are terminated are excluded

for the event log.

386,206 31.48%

13.5 Sublogs Type

Table 4: Event Type Sub-Logs

Sublogs

Additional Type Name Distinct Count

Activities

Distinct

Count Script

Events

orders 00 Crm 20 11 27,660

{l 01 Copy db 94 75 139,357

D: 02 Conversie 61 57 34,625

 03 Samenvoegen

Tabellen

6 5 283

 04 Classificatie 22 10 12,950

 05 Validatie 1 1 1,585

 06 Report 36 2 7,915

 07 Export 2345 857 160,526

 General General 1 1 1,305

