
Master Thesis

Sub-Quadratic
Privacy-Preserving Cohort
Selection

Antoine Gansel

Supervisors: Florian Hahn
Yoep Kortekaas

August, 2023

Department of Computer Science
Faculty of Electrical Engineering,
Mathematics and Computer Science

Contents

I. Introduction 1

II. Preliminaries 2
i. Notions . 2

1) Multi Party Computation (MPC) . 2
2) Secret Sharing . 2
3) Composition Theorem[26, Section 7.3.1]. 3
4) The Arithmetic Black Box . 4
5) Phases of the protocol . 5

ii. Security model . 5
iii. Notations . 6

III. Problem Statement 6
i. Formal setting definition . 7
ii. Initialising the ABB . 8

IV. Solution 9
i. Main Protocols . 10
ii. Odd-Even Merge permutation network . 16
iii. Alternative Solutions . 18

V. Results 19
i. Theoretical analysis . 19
ii. Empirical analysis . 22

VI. Potential optimisations 26
i. Optimising comparison with constants : Function Secret Sharing[7] 26
ii. Discarded optimisations . 27

VII. Related Work 28

VIII.Conclusion 29

IX. Code availability 30

A. ABB primitives 34

B. Odd-even Merge: Ideal Functionality by Batcher[4] 39

C. Intuition Composition theorem 39

Abstract

In this work, we present a Privacy Preserving Cohort Selection (PPCS) protocol
for vertically partitioned data running in sub-quadratic time. Cohort selection is used
in case-control studies to match a control group in a distant database, given the knowl-
edge of a test group. Such studies allow one to efficiently put in evidence the effect of
a variable (e.g. a medicine) on a situation (e.g. a disease) and are thus of significant
importance in the medical field. By providing a tool to easily and efficiently respect
the privacy of test subjects in such studies, we aim at mitigating concerns that would
naturally arise when processing the data. In this work, we aspire to bridge a gap in the
literature that mainly focused on PPCS for horizontally partitioned data until now,
as well as to improve on the previous result running in quadratic time. In the follow-
ing, we formally prove the privacy of our solution and show it achieves a complexity
of O(n log2(n)

2). We show that it results in a concrete improvement on the result
of previous research considering cohort selections at a European level, and we elabo-
rate on the impact of the bandwidth bottleneck on real case executions of our protocol.

Keywords: Case control, Cohort Matching, Multi-Party Computation, additive secret
sharing; sub-quadratic complexity

I. Introduction
Cohort Selection is a tool used in observational studies to limit biases[10, 32] that may
have been induced by the initial choice of population. In particular, it is often used in
epidemiology to understand the evolution of an epidemic in the population or the effect of
a drug on a disease[17, 20]. Given an entity owning a very large database D1, executing
a 1:1 (resp. 1:N) matching cohort selection with respect to a smaller database D2 means
selecting when possible, for every individual in D2, the most (resp. the N most) similar el-
ement in D1. In a typical example, a research centre has been conducting an observational
study on the reaction to a disease given the influence of a new medicine, and now owns
some results that need to be put in perspective with people who did not take the drug. In
order to verify the usefulness of the treatment, the laboratory will therefore want to obtain
data on the behaviour of the disease in a control group of individuals (a matched cohort),
that is, a group of individuals with similar features to their initial studied population, but
who did not take the treatment [2, 16, 29]. Such a cohort could typically be obtained
through a hospital that would possess a large number of records of individuals who got
contaminated by the disease. Data involved (whether it originates from the research centre
or the hospitals) is, however, extremely sensitive, and as such, sharing their databases for
processing would violate the privacy rights of the patients (and the GDPR in European
countries). During this research, we came up with a protocol for Privacy-Preserving Cohort
Selection (building on the previous research by Kortekaas et al.[23]) in order to mitigate
this issue. In particular, we use Multi-Party Computation techniques to compute and keep
hidden the intersection between the two data sets (D1 and D2), before finding (but keeping
it hidden) a match in D1 for every element of the intersection.

In this work we:

• Present a new protocol for Privacy-Preserving Cohort Selection. We implement it
in the Arithmetic Black Box model and prove it private in the semi-honest model
such that no party learns more than their own dedicated inputs and outputs of the
protocol

1

• Show that our protocol runs in O(n log2(n)
2) with n = |D1| + |D2|, efficiently im-

proving on the complexity of the previous solution.

• Results: We present a theoretical and empirical run-time analysis of our solution.
We put in evidence the runtime that we can realistically expect given some standard
settings and present what factors are limiting it, and to what extent. Our solution
achieves sub-quadratic complexity and the online phase is executed in 3.3 days for
the FULL setting (table 12), representing cohort selection at a national level. Our
protocol improves on the run time of the previous solution when executed on 3M
records doing a 1:1 matching, or on the FULL setting doing a 1:N matching with
N > 3.

II. Preliminaries

i. Notions

1) Multi Party Computation (MPC)
MPC denotes the set of schemes allowing a set of parties to perform some computations

on a distinct set of data without revealing their personal input to the other involved parties
and without learning anything else than their intended output. Additionally, MPC schemes
usually want to ensure that the final output will always be correct and received (given
that the process terminated), as well as having some guarantees against a dishonest user
(called an adversary) that may take part in the computation[24]. The two most important
properties to know when it comes to defence against adversaries are:

• The privacy property, for which it needs to be proven that an adversary who faith-
fully follows the protocol won’t be able to learn anything else than its view of the
protocol’s execution and its intended output. Adversaries who faithfully follow the
protocol are called semi-honest adversaries.

• The security property, for which it needs to be proven that, in addition to the
privacy property, the adversary is also not able to deviate from the protocol without
notifying the other involved parties. Adversaries who may try to deviate from the
protocol are usually referred to as malicious adversaries.

There are different options when it comes to hiding the data that takes part in the compu-
tation. In particular, for our Privacy-Preserving Cohort Selection algorithm, we will use
the concept of Secret Sharing.

2) Secret Sharing
Secret sharing is a cryptographic tool used to split a secret between multiple servers

in such a way that it can only be retrieved if specific subsets of the involved servers come
together. We refer by N -out-of-M secret sharing to any secret sharing protocol where you
share data between M servers and need at least a subset of N of those servers to recon-
struct the initial secret.

The subsets of parties allowed to retrieve the shared secret are defined through an Access
Structure, which is described by a (non-empty) monotone collection of authorised sets of
parties A (only the sets of parties specified in A can retrieve a secret). We call A monotone

2

if ∀B ∈ A, B ⊆ C =⇒ C ∈ A. The access structure also possesses a distribution scheme
Σ = ⟨Π, µ⟩, where µ can be summarised as a pseudo-random generator over a set R and Π
is a function that given a secret k and a random number r ∈ R return (and secretly send)
the secret shares to all n parties: Π(k, r) = (s1, ..., sn). Formally, we have the following
definition :

Definition 1. (Access Structure, Distribution Scheme [6]) -
Let {p1, ..., pn} be a set of parties. A collection A ⊆ PowerSet({p1, ..., pn}) is monotone
if B ∈ A and B ⊆ C implies that C ∈ A. An access structure is a monotone collection
A ⊆ 2{p1,...,pn} of non-empty subsets of {p1, ..., pn}. Sets in A are called authorized, and
sets not in A are called unauthorized.

A distribution scheme Σ = ⟨Π, µ⟩ with domain of secrets K is a pair, where µ is a
probability distribution on some finite set R called the set of random strings, and Π is a
mapping from K × R to a set of n-tuples K1 × ... × Kn where Kj is called the domain
of shares of pj. A dealer distributes a secret k ∈ K according to the distribution scheme
Σ by first sampling a random string r ∈ R according to µ, computing a vector of shares
Π(k, r) = (s1, ..., sn) and privately communicating each share sj to party pj. For a set
A ⊆ {p1, ..., pn}, we denote Π(s, r)A as the restriction ofΠ(s, r) to its A-entries.

Secret Sharing is then defined with respect to a monotone Access Structure A :

Definition 2. (Secret Sharing[6]) -
Let K be a finite set of secrets, where |K| ≥ 2. A distribution scheme Σ = ⟨Π, µ⟩ with
domain of secrets K is a Secret Sharing scheme realizing an access structure A if the
following requirements hold:

(1) Correctness. — The secret k ∈ K can be reconstructed by any authorized set of
parties. That is, for any B ∈ A (where B = {pi1, ..., pi|B|}) there exists a reconstruction
function R : Ki1 × ... × Ki|B| → K so that for every k ∈ K (and r a already existing
randomly generated string),

Pr[R(Π(k, r)B) = k] = 1

(2) Perfect Privacy. — Every unauthorized set cannot learn anything about the secret
(in the information theoretic sense) from their shares. Formally, for any set T /∈ A, for
every two secret a, b ∈ K and for every possible vector of shares ⟨sj⟩pj ∈ T :

Pr[Π(a, r)T = ⟨sj⟩pj∈T] = Pr[Π(b, r)T = ⟨sj⟩pj∈T]

Note that the set A in the property (2) Perfect Privacy in Definition 2. directly defines
the constant N in N-out-of-M Secret sharing. Indeed, if every set of parties in A contains
at least N elements, then you will be able to retrieve a shared secret if and only if you
manage to bring at least N of the involved servers together.

3) Composition Theorem[26, Section 7.3.1].
Having a tool such as secret sharing to privately handle data is not sufficient to say

that any protocol made with this tool will be private, you first need to prove you are using
it properly before being able to say your protocol is private. When using sub-protocols,
those proofs can quickly become quite tedious in order to properly show that the privacy
of your sub-protocols correctly propagates to your main algorithm.

3

The composition theorem defined by Goldreich aims at simplifying the proof of privacy of
a protocol given the privacy of its sub-protocols. Intuitively, it states that, in the semi-
honest model, given a protocol a that uses a protocol b, the privacy of a is dependent on
the privacy of b. Formally, it is defined through the following definitions and theorem :

Definition 3. (protocols with oracle access [26]) -
An oracle-aided protocol is an ordinary protocol augmented by pairs of oracle-tapes, one
pair per each party, and oracle-call steps defined as follows. Each of the parties may send
a special oracle request message, to the other party. Such a message is typically sent after
this party writes a string, called its query, on its own write-only oracle-tape. In response,
the other party also writes a string, called its query, on its own oracle-tape and responds
to the requesting party with an oracle call message. At this point, the oracle is invoked and
the result is that a string, not necessarily the same, is written by the oracle on the read-only
oracle-tape of each party. This pair of strings is called the oracle answer.

Definition 4. (privacy reductions [26]) -

• An oracle-aided protocol is said to be using the oracle-functionality f if the oracle
answers are according to f . That is, when the oracle is invoked, so that the requesting
party writes the query q1 and the responding party writes the query q2, the answer-
pair is distributed as f(q1, q2), where the requesting party gets the first part (i.e.,
f1(q1, q2)).
We require that the length of each query be polynomially related to the length of the
initial input

• An oracle-aided protocol using the oracle-functionality f is said to privately compute
g if there exist polynomial-time algorithms, denoted S1 and S2, Eq.1 and Eq.2, re-
spectively, where the corresponding views of the execution of the oracle-aided protocol
are defined in the natural manner.

• An oracle-aided protocol is said to privately reduce g to f if it privately computes
g when using the oracle-functionality f . In such a case, we say that g is privately
reducible to f.

Theorem 1 (Composition Theorem for the semi-honest model [26]) -
Suppose that g is privately reducible to f and there exists a protocol for privately computing
f. Then there exists a protocol for privately computing g.

However, note that every MPC operation makes for a single sub-protocol. As such, even
with the help of the composition theorem, we might still very well end up with tedious and
hardly readable proof of privacy, which by their length are also prone to human error.

4) The Arithmetic Black Box
The Arithmetic Black Box (ABB) model, first introduced by Damgård et al[14] and

later generalised by Toft[33, Chapter 4], propose a framework to virtually group every
private MPC operation under a single protocol with oracle access. It describes an ideal
functionality behaving as an honest independent party that trustfully computes a result
if every involved party agrees on what needs to be computed and aborts/gets corrupted
otherwise. Intuitively, the usefulness of the ABB partly lies in the security proofs, as we
can uniquely refer to the ABB when using the Comparison Theorem instead of needing to
refer to each MPC operation as independent protocols (Section II.i.3)). Its usefulness also

4

lies in the generalisation of privacy proofs for any MPC primitives. Taking as example our
current work, while we use secret sharing (reason of this choice Section IV.iii.), one could
theoretically switch to Homomorphic Encryption without compromising the security proofs
by swapping our private Secret Shared operations by private Homomorphic operations (or
any other MPC primitives as long as it supports all the operations we need) in the ABB.

The ABB works in three phases. First (1) the initialisation phase, where it will generate
the correlated randomness necessary for the full protocol execution. This phase is the only
one that happens in the offline phase of the protocol (Section II.5)). Then (2) the loading
phase where all parties input (in rounds) the data necessary to the protocol execution. if
all party agrees, the party i inputting its data is expected to send the query Pi : x← s, and
all other party j is expected to send the query Pj : x←?. And last (3) the computation
phase where, at each round, given an operation ⋆ defined in the ABB and two secrets
s1, s2 previously loaded, each party i queries Pi : x ← s1 ⋆ s2. If every parties agree (i.e.
sent the same query), the ABB computes the result and outputs it to its respective party.

5) Phases of the protocol
Private protocols, in particular those using secret sharing, need an extensive amount

of computational power to generate random elements (i.e. the correlated randomness)
that will be used to share the secret values or perform operations. While computing the
correlated randomness is heavy, it does not depend on the inputs of the protocol and
thus there is no obligation to generate it while executing the program. Protocols are thus
usually split into two phases in order to generate correlated randomness during off-peak
hours.

Offline phase Also called the pre-processing phase, it computes every data that do not
need the knowledge of the parties’ inputs to be computed (such as the correlate random-
ness). Despite its name, this phase can imply communication between servers.

Online phase By opposition to the Off-Line phase, it is during this phase that the two
servers actually execute the protocol and communicate with each other. The elements
exchanged as well as the computation done during this phase are dependent on the inputs
of the protocol.

ii. Security model
We assume the existence of an honest but curious adversary A able to corrupt any one of
our two available parties P1 and P2. We prove the security of our protocol in the semi-
honest model using the simulation paradigm defined by Goldreich[26]. We define an ideal
two-party functionality FPPCS : ({0, 1}∗)2 → ({0, 1}∗)2, where the input of P1 and P2 are
their respective database and the output of each party is the results they expect from the
protocol’s execution.
We prove that our protocol can be efficiently simulated by a simulator S so that the real and
simulated execution views are computationally indistinguishable. In particular, we follow
[26, def. 7.2.1]. We define Π = (Π1,Π2) as a 2-party protocol computing FPPCS = (f1, f2).
Given x = (x1, x2) and z = (z1, z2) so that FPPCS(x) = z we define the respective view
and output of each party Pi when executing a protocol as viewΠ

i (x) = {xi, r,m, ...,mn}
(with m, ...,mn the messages exchanged during the protocol execution) and outΠi (x). From
there, we show :

{(S1(x1, f1(x)), z1}
c≡ {viewΠ

1 (x), out
Π
1 (x)} (1)

5

{(S2(x2, f2(x)), z2}
c≡ {viewΠ

2 (x), out
Π
2 (x)} (2)

To prove the security of our protocol, we base ourselves on the composition theorem
[26, Theorem 7.3.3] (Section II.i.3)), where we reduce our protocol ΠPPCS to oracle calls to
the two sub-protocols ΠUSG and ΠMCS (Section IV.i.). Additionally, and similarly to the
work by Kortekaas et al.[23], we define our private operations in the Arithmetic Black-Box
Model (ABB)(Section II.i.4)).

iii. Notations
We introduce a couple of notations we will be using throughout this report. First, we
denote a secret share of an element a as ⟨a⟩, specifying when necessary ⟨a⟩B or ⟨a⟩A,
depending on whether we shared the binary (B) or arithmetic (A) representation of a.
Similarly, given an operation ⋆, we assume a ⋆ b is the plain-text operation returning a
plain-text result and ⟨a⟩ ⋆ ⟨b⟩ or ⟨a⟩ ⋆ b is the operation in the ABB returning a hidden
result. We summarise the symbols that can be taken by ⋆ in Table 1.

Table 1: Operation and related symbols used along this report. If one of those
symbols is used together with one (or more) secret shared elements, it is executed
by the ABB.

Symbol ∧ ∗ = ! ⊕ ∨ + − <

Operation and Mult Equal Not Xor or Add Sub Lower-Than

To limitate redundancy in our pseudocode algorithms, we write coli/i+1 = coli/i+1 + coli
instead of writing in two lines (1) coli = coli + coli (2) coli+1 = coli+1 + coli. Given
an integer n ≥ 1, we also write 0..n = [0, 1, ..., n− 2, n− 1].

Specifically related to the databases involved during the execution of the protocols, we de-
note by dbi.⟨Field⟩ the access of data Field at the ith row of the database. We summarise
the values that can be taken by Field in Table 2.

Table 2: Possible Field names in the secret shared database (Section III.i.).

ID The identifiers of the record as in
the initial database

part Partition label (if from D1) or 0
y Special feature (if from D1) or 0

us under-study bit. Initially zero,
then depends on execution.

imc in-matched-cohort bit. Initially
zero, then depends on execution.

III. Problem Statement
In this work, and similarly to the previous research by Kortekaas et al.[23], we focus on
the problem of Privacy-Preserving cohort selection in the context of vertically partitioned
data. This implies that our two involved parties, P1 and P2, each knows different features
for their respective sets of entities. In particular, we consider that P1 (the hospital in our
previous example) stores in its database D1 the identifiers (such as the Social Security
Number) together with some features and a target variable y (in our example, it would be
"reaction to the disease") for every individual. We consider that P2 (the research centre
in our example) stores in its database D2 the minimum amount of information needed for

6

their case study, which thus reduces for generalisation purposes to the identifier (also the
Social Security Number) and a sensitive attribute X (in our example it could be "followed
the treatment").

In order to enable the "Privacy-Preserving" component of our work, we use secret sharing
to obliviously identify both the intersection between D1 and D2 and a set of individuals in
D1 who do not possess that attribute X but are closely related to the records in the inter-
section. Similarly, the computation needed for the case study is made obliviously thanks
to secret sharing, before publishing the final result to the involved parties. Moreover, we
assume that both P1 and P2 have some interest in executing the cohort selection, and thus
will not try to deviate from the protocol. We thus stick to the semi-honest model when
proving our protocol to be private.

i. Formal setting definition
The notation and variable names used in this section and throughout this report are (when
applicable) the ones used in Kortekaas et al.[23]. Our setup takes into account two parties:

• P1 owns database D1 composed of identifiers and a set of features feat describing the
individual (e.g. age, sex, and other socio-economic or health-related information),
as well as a special feature/outcome y. P1 May be any organisation that collects
user-related data. Formally, we write I1 = [1, 2, ..., |D1|] the set of identifiers in
D1, and describe the database as D1 = {(i,feati, yi)}i∈I1 . This database typically
represents about 99% of the protocol input.

• P2 owns the set of identifiers I2. It also owns a variable of interest X and want to
test how much X influences y. P2 typically represent a research centre. We assume
|I2| ≪ |I1| and that if i ∈ I1, j ∈ I2 are the IDs of a same individual in both
databases, then i = j (this does not imply I2 ⊆ I1).

Figure 1: Graphical representation of a cohort selection with distance τ defined
on two features X and Y . Every black element in an orange zone is suitable for the
matched cohort.

Following the idea of cohort selection, P2 wants to proceed with the creation of cohorts
(Figure 1) to compute statistics on the correlation of X on y (for example, the correlation

7

between the effect of taking medicine X on the "symptoms induced by a specific disease"
y) in different groups of people (cohorts).

The creation of potential cohorts (we refer to these “potential cohorts” specifically as par-
titions) is done with respect to a certain notion of similarity between the vector feat of
each individual. Formally, we describe it by the distance comparison function:

matchτ (feata,featb) =

{
True, if dist(feata,featb) < τ

False, otherwise

Using this function, P1 creates partitions in plain text data so that they do not overlap
each other, and every element of the partition is not further than the distance τ of any
other element in the partition. We represent these subsets of rows through a variable
parti,∀i ∈ I1 so that,∀i, j ∈ I1, parti = partj =⇒ matchτ (feati,featj).

We then proceed with matching the cohorts for every element in I2 ∩I1, to which we refer
as under_study (or us) elements. For each of those us elements, we want to select up
to N ≥ 1 similar (i.e. in the same partition) elements (1:N Matching). The final selection
of elements is referred to as matchedCohortτ , of which we give the following recursive
definition by Kortekaas et al.[23]1 :

Definition 5. (matchedCohortτ) -
matchedCohortτ,0 := ∅
for 1 < k < |underStudy| do

Let I a fixed arbitrary set so that :
(1) |I| < N
(2) {i ∈ I1 ∧ i /∈ underStudy ∧

i ∈ matchedCohortτ,k−1 ∧ partitioni = partitionunderStudy[k]}∀i∈I
matchedCohortτ,k := matchedCohortτk−1 ∩ I

end for
matchedCohortτ := matchedCohortτ,|underStudy|

However, notice that the scope of our work delegates the relevance of matched elements
to the pre-processing phase during which P1’s database is partitioned. Indeed, as mentioned
in [31] the interest of a cohort selection depends on the similarity between the under-study
element and its matched records. In our work, we assume that the distance τ used by
P1 to create the partitions implies that, given an under-study element in a partition A,
any other non-under-study element in A is acceptable as a first-level match. Before our
protocol’s execution, it is thus of P1’s responsibility to define the distance metric and value
τ to feat its data.

ii. Initialising the ABB
We define our 2-out-of-2 additive secret sharing operations in the Arithmetic Black Box
Model as generalised by Toft[33]. Moreover, we extend the basic ABB model to allow
more complex operations (e.g. lower than) and to distinguish between binary (over Z2)
and arithmetic (over Z264) operations. Intuitively, as some operations are more expensive
on binary values than on arithmetic values (e.g. subtraction), this allows us to choose in

1modified in (2) as matchτ (feati,featj) ≠⇒ partitioni = partitionj and we want I in the same
partition as underStudy[k]

8

which format to share our data depending on which operations we want to execute on it.
In practice, every field of the database is shared as binary values except the field "y".

Most of the operations we define in the Arithmetic Black Box come from the previous
solution by Kortekaas et al.[23]. In fact, for this work we only needed to add the Compare-
Switch operation as suggested by Abspoel et al.[1]. Refer to table 3 for a list of the
operations we use and to Appendix.A. for details concerning their implementation and
intuition about their proof of privacy.

In the following, when describing the loading of the data in the ABB we abstract away the
call Pj : x ←? from the party receiving the share. Moreover, when an operation involves
secret shared data we assume that it uses the ABB by default.

Table 3: Summary of operation defined in the ABB and their origin.

Operation(s) Taken from Originates from

AND, Multiplication Kortekaas et
al.[23] Beaver et al.[5]

Equal Kortekaas et
al.[23] Kolesnikov et al.[22]

Load, Reveal, Not, XOR, OR, Add, Sub,
Lower-than

Kortekaas et
al.[23] unknown

Compare-Switch Abspoel et al.[1] unknown

IV. Solution
To achieve sub-quadratic complexity, we identify the under-study elements and then the
elements to match in the cohort using collisions. Intuitively, this works for the under-
study Group identification (USG) because we assume the IDs to be coherent across both
databases. Similarly, it works for the Matched Cohort Selection (MCS) because the parti-
tions have been created by P1 in a pre-processing phase (Section III.i.). In both cases, we
obliviously sort the database (which can be done in O(n log2(n)

2)) on the field of interest
(resp. ID and part) and then go linearly through the sorted database to compute an
equality circuit on every neighbouring element. Notice that it results in a total complexity
in O(n log2(n)

2), thereby satisfying our objective of sub-quadratic complexity.

We argue that such an idea indeed allows us to perform a cohort selection. It works first
to identify the under-study elements: after sorting on ID, if an individual with ID i is
present in the databases from P1 and P0, we will find two records next to each other with
ID i. We can thus detect such cases and set every such individual as being under-study. It
then works in a similar fashion to select the matched cohort: after sorting on part, given
any under-study element with partition j its potential matches (individual with the same
partition label) will be in his M closest neighbours on the right and M closest neighbours
on the left with M the biggest possible cohort size.

As mentioned in Section II.ii., we use the ABB model coupled with the composition theorem
by Goldreich to prove our protocol to be private. Intuitively, given the organisation of our
protocol (Figure 2) the privacy property should propagate through the following structure:

9

(1) We implement the ABB privately and initialise it correctly according to [33]. (2) ΠUSG

and ΠMCS subprotocols are made to have an access pattern independent of the actual
data, and every operation on the data is delegated to the ABB. (3) ΠPPCS only but
coordinates the initialisation of the ABB and the execution of ΠUSG and ΠMCS . It does
not execute anything else than the initialisation round of the ABB and some calls to the
two subprotocols.

Figure 2: Organisation of our PPCS protocol and propagation of the privacy
proof.

i. Main Protocols

Ideal Functionality 1. FUSG : Under Study Group identification.
Inputs:
— Secret shared database db = (id, feat, cost, us, imc) containing every element from
the secret shares of both the private database of P1 (D1) and the set of identifiers of P2

(D2) padding the empty fields with 0.
Output:
— Secret shared database db containing every element from both party’s private
database, where every line whose id field accepts a duplicate has their us field set to 1.

Trusted party T1 executes the following:

1. T1 Obtains the database from the ABB
2. T1 Computes for every 1 < j < |D1|+ |I2| :

dbj .us = dbj ∈ D1 ∧ dbj .id ∈ I2.
Out. T1 output the updated database to the ABB

10

Under-Study Group Identification Protocol ΠUSG (Protocol 1.) is a 2-party protocol
implementation of our ideal functionality FUSG (Ideal Functionality 1.). This protocol is
responsible for identifying the under-study elements in D1 (i.e. the intersection between
both databases). It works by using the odd-even merge sort [3, 21] together with the
compare-switch operation as suggested by Abspoel et al.[1, 3.1]) to order the secret shared
database db = {(id, part, cost, us, imc)}∗ on the id. It then computes an equality circuit on
the identifiers of every direct neighbour in the database, efficiently detecting any duplicated
ID (and thus under-study element). The protocol uses the result to generate a fresh share
of the under-study bit of both elements depending on the (secret shared) comparison’s
result and the current value of the under-study bit.

Protocol 1. ΠUSG : Under Study Group identification
Inputs: Database structure db containing at least:
— all binary identifiers from P1 and P2 : ∀i ∈ 0..|I1|+ |I2|, dbi.⟨id⟩B ̸= 0
— Private bit for every element: ∀i ∈ 0..|I1|+ |I2|, dbi.⟨us⟩B = ⟨0⟩B
Output:
— Updated private bits for all i ∈ 0..|I1| + |I2| indicating whether there exists
j ∈ 0..|I1|+ |I2| so that dbi.id = dbj .id =⇒ dbi.us = 1

The Protocol:
1: rec_sort_id(db, 0, |I1|+ |I2|)
2: for i in 0..|db| do
3: dbi/i+1.⟨us⟩B ← dbi/i+1.⟨us⟩B ⊕ dbi.⟨id⟩B = dbi+1.⟨id⟩B
4: end for

rec_sort_id:
Inputs:
— database db to sort (as specified above)
— starting index start
— length n fo the sub-list
Output: sorted database
1: if n > 1 then
2: n_l← ⌈n/2⌉
3: n_r ← ⌊n/2⌋
4: rec_sort(db, start, n_l)
5: rec_sort(db, start, n_r)
6: Πmerge(db, n_l, n_r, 1) //Section IV.ii., with compare-switch on id
7: end if

Lemma 1 (Correctness of ΠUSG) -
Protocol ΠUSG (Protocol 1.) is a correct 2-party computation protocol for computing FUSG

(Ideal Functionality 1.).

Proof. In the first line of the protocol, ΠUSG executes the odd-even merge sort proto-
col, whose correctness depends on the correctness of our odd-even merge implementation
(Lemma 5). It follows that from line 2., our shared database db is correctly ordered on the
IDs of the records.
Then for any line 1 < i < |D1| + |I2|, dbi ∈ D1 if and only if dbi.part ̸= 0 (as ev-
ery element of D1 has a partition value greater than 0), and moreover dbi.id ∈ I2 if

11

∃j ∈ [1; |D1|+ |I2|] ∩ [i− 1, i+ 1] so that dbj .id = dbi.id (by correctness of our sorting
step). It follows that the "for" loop lines 2 to 4 correctly set the us field to 1 (= true) for
any element originating from D1 and whose ID also exists in I2, and 0 otherwise.
Therefore, ΠUSG correctly implements FUSG.

Lemma 2 (Privacy of ΠUSG) -
The protocol ΠUSG (Protocol 1.) is private in the security model defined in III.ii.

Proof. A party’s execution view of our protocol can be summarised to (in, r, abb1, ..., abbx),
with in the party input, r its random tape and abb1, ..., abbx all the messages exchanged
with the oracle of the Arithmetic Black Box. We note that it is indeed the case as every
element that is not involved with the ABB is independent of the user input, and thus
trivially simulatable. Following Goldreich’s composition theorem, it follows that the view
generated by ΠUSG can be efficiently simulated by oracle calls to FABB. As such, ΠUSG

is private if and only if the ABB is private too.
Therefore, as the ABB is proven private, so is ΠUSG.

Ideal Functionality 2. FMCS : Matched Cohort Selection
Inputs:
— Secret shared database db containing every element from both party’s private
database, where every line originally from D1 whose id field accepts a duplicate in
D2 has their us field set to 1.
— N the number of elements to match for every under-study elements
— M the biggest partition size
Outputs:
— Secret shared database db containing every element from both party’s private
database, where the field imc has been set with respect to the fields us and feat as
specified in definition 5.

Trusted party T2 executes the following:

1. T2 obtains from the ABB the database with the under-study bit set correctly.
2. T2 Computes for every 1 < j < |D1|+ |I2| with dbj ∈ D1 :
T2 executes, for i ∈ [j±M] : dbi.mcs← (dbj .feat = dbi.feat)∧(dbi.us = dbi.mcs =
0) ∧ (already-matched < N).

Out. T2 outputs the updated database to the ABB.

Matching Cohort Identification Protocol ΠMCS (Protocol 2.) is a 2-party protocol
implementation of our ideal functionality FMCS (Ideal Functionality 2.). This protocol is
responsible for, given the knowledge of every under-study element, selecting the matched
cohort following the Definition 5.. It works by first ordering (again through the odd-even
merge sort) the big secret shared database db = {(id, part, cost, us, imc)}∗ on its partition
label. It then computes an equality circuit on the partition of every two lines i, j in the
newly ordered database with |i− j| ≤M (M the maximal partition size). Using the secret
shared result of the comparison, a new share is generated for dbj .imc so that it respects
the definition 5.

Lemma 3 (Correctness of ΠMCS) -
Protocol ΠMCS (Protocol 2.) is a correct 2-party computation protocol for computing FMCS

(Ideal Functionality 2.).

12

Protocol 2. ΠMCS : Matched Cohort Selection
Inputs:Database structure db containing at least:
— all binary identifiers from P1 and P2 : ∀i ∈ 0..|I1|+ |I2|, dbi.⟨id⟩B ̸= 0
— Private binary label for every element: dbi.⟨part⟩B
— Private bit for every element: dbi.⟨us⟩B
— Private bit for every element: ∀i ∈ 0..|I1|+ |I2|, dbi.⟨imc⟩B = ⟨0⟩B
— Maximal partition size M (Public)
Output:
— Updated private bits for all i ∈ [0..|I1|+ |I2|] indicating whether i is in the matched
cohort: dbi.⟨in_mathced_cohort⟩B

The Protocol:
1: rec_sort_part(db, 0, |I1|+ |I2|)
2: for i in |I2|...|I1|+ |I2| do
3: for j in 1..M do
4: dbi−j .⟨imc⟩B ← (dbi−j .⟨imc⟩B⊕dbi⟨.us⟩B)∧ (dbi−j .⟨part⟩B = dbi.⟨part⟩B) ∧

(!dbi−j .⟨us⟩B) ∧ (⟨matched⟩B < ⟨N⟩B)
5: ⟨matched⟩B ← ⟨matched⟩B + dbi−j .⟨imc⟩B
6: dbi+j .⟨imc⟩B ← (dbi+j .⟨imc⟩B⊕dbi.⟨us⟩B)∧ (dbi+j .⟨part⟩B = dbi.⟨part⟩B) ∧

(!dbi+j .⟨us⟩B) ∧ (⟨matched⟩B < ⟨N⟩B)
7: ⟨matched⟩B ← ⟨matched⟩B + dbi+j .⟨imc⟩B
8: end for
9: end for

rec_sort_part:
Inputs:
— database db to sort (as specified above)
— starting index start
— length n fo the sub-list
Output: sorted database
1: if n > 1 then
2: n_l← ⌈n/2⌉
3: n_r ← ⌊n/2⌋
4: rec_sort(db, start, n_l)
5: rec_sort(db, start, n_r)
6: Πmerge(db, n_l, n_r, 1) //Section IV.ii., with compare-switch on part
7: end if

Proof. In the first line of the protocol, ΠUSG executes the odd-even merge sort proto-
col, whose correctness depends on the correctness of our odd-even merge implementation
(Lemma 3). It follows that from line 2., our shared database db is correctly ordered on the
partition label. Then, setting M the largest partition size, for any 1 < i < |D1|+ |I2| the
elements j potentially satisfying dbj .part = dbi.part are in [1; |D1|+|I2|]∩[i±max_cohort]
ΠMCS indeed access all j ∈ [1; |D1|+ |I2|]∩ [i±max_cohort] for every 1 < i < |D1|+ |I2|,
keeping a counter of the number of matched elements. When setting the imc bit, we argue
that the range of the loop is correct because of the way we initialise the secret shared
database (Protocol 3.). Indeed, the partition value of every element in P2 is zero while
the elements from P1 have values greater than zero. It follows that after sorting, all the

13

elements from P1 have indices in |I2|...|I1| + |I2|. Then, with "dbi±j .part = dbi.part"
we indeed only set it to 1 if and only if both elements are in the same partition; with
"∧ matched < N" we indeed only set it to 1 if and only if we matched less than N ele-
ments; and with "∧ dbi.us" we indeed only set it to 1 if and only if dbi is under-study.
Therefore, ΠMCS correctly implements FMCS .

Lemma 4 (Privacy of ΠMCS) -
The protocol ΠMCS (Protocol 2.) is private in the security model defined in III.ii..

Proof. The proof for Lemma 4 is analogue to the proof for Lemma 2. As such, privacy of
ΠMCS follows by privacy of the ABB

Ideal Functionality 3. FPPCS : Privacy Preserving Cohort Selection
Inputs:
— Private database of entities of P1: D1 of length X
— Private set of identifiers of P2: I2 of length Y
— Public integer N ≥ 1 describing how many entities we match for every entity P1 and
P2 share
Output:
— Private structure associating for every elements of P1: (1) a binary value in the ABB
indicating if it is shared with P2 and (2) a binary value in the ABB indicating if it is in
the matched cohort.

Trusted party T executes the following:

1. T Receives the private database D1 and private set of identifier I2 in a single big
database db = (id, feat, cost, us, imc), padding for every missing field in a database
with zeros. It then inputs it to the ABB together with the received N .

2. T instructs the ABB to compute the functionality FUSG.

3. T instructs the ABB to compute the functionality FMCS .

Out. T outputs the result of step 3.

Cohort Selection Protocol ΠPPCS (Protocol 3.) is a 2-party protocol implementation
of our ideal functionality FPPCS (Ideal Functionality 3.). Its role is to implement a Privacy-
Preserving Cohort Selection following our settings in Section III.i.. It starts by executing
the initialisation round of the ABB, instructing P1 (and then P2) to secret share its database
into the first available slots of an (initially empty) database of size |I1| + |I2|. It then
delegates the rest of the ideal functionality’s implementation: (1) to ΠUSG (Protocol 1.)
that will detect which elements in D1 are under-study, (2) to ΠMCS (Protocol 2.) that,
given the under-study elements will decide which elements need to be put in the matched
cohort.

Theorem 2 (Correctness of ΠPPCS) -
Given that both protocols ΠUSG and ΠMCS are correct 2-party computation protocol for
computing functionalities FUSG and FMCS respectively, ΠPPCS is a correct 2-party com-
putation protocol for computing functionality FPPCS (Ideal Functionality 3.).

Proof. During the first step of ΠPPCS , both parties input their private data in a single big
database db = (id, part, cost, us, imc) in the ABB using the Load functionality, padding

14

Protocol 3. ΠPPCS : Full Privacy Preserving Cohort Selection algorithm
Inputs:
— Private database of entities of P1: D1 of length X
— Private set of identifiers of P2: I2 of length Y
— Public integer N ≥ 1 describing how many entities we match for every entity P1 and
P2 share
Output:
— Private structure associating for every elements of P1: (1) a binary value in the ABB
indicating if it is shared with P2 and (2) a binary value in the ABB indicating if it is in
the matched cohort.

The Protocol:

1. Setup.

(a) P1 Computes on plaintext D1 a partition label partitioni = 0,∀i ∈ I1 such
that: partitioni = partitionj =⇒ matchτ (feati, featj)∀j ∈ I1

(b) P1 runs for all (i, partitioni, yi) ∈ D1 :
— Load P1 : dbi.⟨id⟩(= ⟨i⟩B)← BinRepr(i)
— Load P1 : dbi.⟨part⟩(= ⟨partitioni⟩B)← BinRepr(partitioni)
— Load P1 : dbi.⟨y⟩(= ⟨yi⟩A)← yi

— Load P1 : dbi.⟨us⟩(= ⟨0⟩B)← BinRepr(0)
— Load P1 : dbi.⟨imc⟩(= ⟨0⟩B)← BinRepr(0)

(c) P2 runs for all j ∈ I2 :
— Load P2 : dbX+j .⟨id⟩(= ⟨j⟩B)← BinRepr(j)
— Load P2 : dbX+j .⟨part⟩(= ⟨0⟩B)← BinRepr(0)
— Load P2 : dbX+j .⟨y⟩(= ⟨0⟩A)← 0

— Load P2 : dbX+j .⟨us⟩(= ⟨0⟩B)← BinRepr(0)
— Load P2 : dbX+j .⟨imc⟩(= ⟨0⟩B)← BinRepr(0)

2. (ΠUSG)Under Study Group Identification.

// Orders on ⟨id⟩ with the odd-even merge sort (Section III.ii.).
// for all elements in the sorted database, P1, P2 instruct ABB to compute :

dbi/i+1.⟨us⟩ ← dbi/i+1.⟨us⟩ ∨ dbi+1.⟨id⟩ = dbi.⟨id⟩
3. (ΠMCS)Matched Cohort Selection

// Orders on Partitions with the odd-even merge sort (Section III.ii.).
// For every element i in the database, tries to set the M elements on the right

and on the left of i (M = max cohort size) in the matched cohort according to
N and definition 5.
dbj .⟨imc⟩ ← dbj .⟨in_matching_cohort⟩ ∨ (dbi.⟨us⟩
∧ (dbj .⟨part⟩ = dbi.⟨part⟩) ∧ (already matched < N) ∧ !dbj .⟨us⟩)

the fields that were not existing in their private database with zeros. This is indeed a
correct implementation of the first step of FPPCS . We emphasise that it is here assumed
that P1 created partitions on its plaintext data using a carefully defined distance τ .
In the second step, ΠPPCS queries ΠUSG to compute FUSG. It follows that the second
step is correctly implemented if FUSG is correctly implemented by ΠUSG, and the ABB

15

now "knows" which elements are under-study.
In the third step, ΠPPCS queries ΠMCS to compute FMCS . It follows that the third step
is correctly implemented if FMCS is correctly implemented by ΠMCS , and the ABB now
also "knows" the matched cohort that needs to be returned to P0.
Therefore, ΠPPCS correctly implements FPPCS if and only if ΠUSG and ΠMCS correctly
implement FUSG and MCS respectively. Thus, we can state that ΠPPCS is a correct
implementation of FPPCS by correctness of Lemma 1 and Lemma 3.

Theorem 3 (Privacy of ΠPPCS) -
The protocol ΠPPCS is private in the security model defined in III.ii., given that ΠUSG and
ΠMCS are.

Proof. A party’s execution view of ΠPPCS can be summarised as (in, r, abb1, ..., abbx, usg1, ...,
usgy,mcs1, ...,mcsz), with in the party input, r the random tape, abb1, ..., abbx the mes-
sages exchanged with an ABB oracle when sharing the elements, usg1, ..., usgy the messages
exchanged with the oracle answering according to FUSG and mcs1, ...,mcsz the messages
exchanged with the oracle answering according to FMCS . Following Goldreich’s composi-
tion theorem[26, Theorem 7.3.3], ΠPPCS is privately reducible to ΠABB, ΠUSG and ΠMCS ,
and it thus follows that ΠPPCS is private if all three protocols are. As we assume the inputs
to ΠABB to be private, ΠUSG is private by the correctness of Lemma 2 and Lemma 4.

ii. Odd-Even Merge permutation network
While Batcher [4] speaks about the odd-even merge permutation network with two lists
of different and arbitrary sizes, in the literature we only found algorithms that exclusively
accept lists of equal length and in power of 2. In order for us to execute the odd-even
merge sort algorithm on any list of arbitrary length we, therefore, created an odd-even
merge protocol accepting any list composed of two halves A,B of respective size p ≥ q,
differing of at most 1. The only true difference of our protocol with respect to already
available ones is that we do not step from one half to the other using the recursive step
value. Indeed, while this value remains correct inside one half, it does not describe the
distance between the two halves correctly if the initial list size was not of the form 2n. We
solve this issue by keeping the start index of both halves across the recursion and using
those indexes when stepping over to the second half.
In Protocol 4., by ’compare_switch’ we refer to the operation we detailed in Appendix
A.xii.. Notice however that the operation detailed in Appendix is but a framework to
adapt to the elements to swap. In our case, the swapping component needs to be executed
on every field.

Lemma 5 (Correctness of Πmerge) -
The protocol Πmerge (Protocol 4.) correctly implements the ideal functionality specified by
Batcher (Appendix B.) for any two lists A,B of respective size p ≥ q, with p− q ≤ 1.

Proof. Following the proof sketch by Batcher[4, Appendix A] given [a0, a1, ...] and [b0, b1, ...]
the two ordered input lists, [c0, c1, ...] their ordered merge (i.e. the result), [d0, d1, ...] the
ordered merge of their odd-indexed terms and [e0, e1, ...] the ordered merge of their even-
indexed terms. We have :

c0 = e0

c2i = max(ei, di−1), ∀i ≥ 1

c2i−1 = min(ei, di−1), ∀i ≥ 1

(3)

16

Protocol 4. Πmerge : Recursive odd-even merge for arbitrary length

Inputs:
— a vector V ec of size n with the sub-vectors V ec[0..⌈n/2⌉] and V ec[⌈n/2⌉..n] are
ordered
— n_l = ⌈n/2⌉ and n_r = n−n_l the respective size of the left and right sub-vectors.
— s_l and s_r the respective starting position od the left and right sub-vectors
— step the number of elements between each neighbouring elements in the sub-vectors
Output:
— the vector V ec fully ordered

The Protocol:
1: if n_l > 1 then
2: n_even_l← ⌈n_l/2⌉
3: n_even_r ← ⌈n_r/2⌉
4: n_odd_l← ⌊n_l/2⌋
5: n_odd_r ← ⌊n_r/2⌋
6: ns← step ∗ 2
7: Πmerge(V ec, n, n_even_l, n_even_r, s_l, s_r, ns)
8: Πmerge(V ec, n, n_odd_l, n_odd_r, s_l + step, s_r + step, ns)
9: i, j ← 0, 0

10: while i+ 1 ≤ (n_r + n_l − 1)/2 do
11: if (i ∗ ns) + step >= nl ∗ step then
12: compare_switch(V ec, s_r + (j ∗ step), s_r + (j ∗ step) + step)
13: j ← j + 2
14: else if (i ∗ ns) + 2 ∗ step >= n_l ∗ step then
15: compare_switch(V ec, s_l + (i ∗ ns) + step, s_r)
16: j ← 1
17: else
18: compare_switch(V ec, s_l + (i ∗ ns) + step, s_l + (i ∗ ns) + 2 ∗ step)
19: end if
20: i← i+ 1
21: end while
22: else if (n_l = 1) ∧ (nr = 1) then
23: compare_switch(V ec, s_l, s_r)
24: end if

We prove the correctness of our protocol by induction. Assume we are in the n− 1th

recursive call. For this recursive step, the input lists A and B for the even-indexed recursion
are respectively [a0∗2n−1 , a1∗2n−1 , ..., ax∗2n−1] and [b0∗2n−1 , b1∗2n−1 , ..., by∗2n−1], of size x and
y with x ∗ 2n−1 ≤ p and y ∗ 2n−1 ≤ q . We only prove the even-indexed recursion as both
odd and even-indexed recursion are symmetric. After calling the recursive merge on each
odd and even element, we have (with ∥ the concatenation) :

[e0, e1, ...] = ORDER([a0∗2n , a1∗2n , ...] || [b0∗2n , b1∗2n , ...])
[d0, d1, ...] = ORDER([a(0∗2n)+1, a(1∗2n)+1, ...] || [b(0∗2n)+1, b(1∗2n)+1, ...])

(4)

Then, during the execution, the elements of our lists have been swapped as follows :

1. If x is even, we have [a′0∗2n−1 , a
′
1∗2n−1 , ..., a

′
x∗2n−1] = [e0, d0, ..., ex/2−1, dx/2−1] and

[b′0∗2n , b
′
1∗2n , ...] = [ex/2, dx/2, ...]

17

2. If x is odd, then [a′0∗2n−1 , a
′
1∗2n−1 , ..., a

′
x∗2n−1] = [e0, d0, ..., e⌊x/2⌋] and

[b′0∗2n , b
′
1∗2n , ...] = [d⌊x/2⌋, e⌊x/2⌋+1, ...]

Following Eq. 3, for case 1. and 2. we want to obtain respectively:

1. [c0, c1, ...] = [a′0,min(a′1, a
′
2), ...,min(a′x−1, b

′
0),max(a′x−1, b

′
0),min(b′1, b

′
2), ...]

2. [c0, c1, ...] = [a′0,min(a′1, a
′
2), ...,max(a′x−1, a

′
x−2),min(b′0, b

′
1), ...]

In both cases, we continue alternating the compare swap until we can’t anymore. If there
remains an element, (i.e. the size x+ y of A∥B is even) then the last element is b′y−1. In
such a case, b′y−1 either (1) the largest element of list d if x and y are odd or (2) the largest
element of list e if x and y are even. Because of the initial ordering of both A and B, this
implies that b′y−1 is indeed the largest element of A∥B.
In other words, we need to start by compare-switching a1∗2n−1 and a2∗2n−1 and continue
two by two until we access the last elements of list a (managed "IF..Then..Else" instructions
lines 17-18), then (1) if the last element of a is an "even" element we need to compare
the last element of a with the first element of b (managed by the "IF..Then..Else" in-
struction over lines 14-16) and then compare-switch the elements of b two by two from
b1∗2n (managed by the "IF..Then..Else" instruction over lines 11-13); or (2) we directly
compare-switch the elements of b two by two from b0∗2n (managed by the "IF..Then..Else"
instruction over lines 11-13).
As the protocol works for the first recursion (for n = 1), the proof by induction is success-
fully initialised and the correctness of our protocol holds for any recursive step n.

Lemma 6 (Privacy of Πmerge) -
The protocol Πmerge (Protocol 4.) is privately given that "compare_switch" is.

Proof. The compare switch operation being the only one that is dependent on the input
data, the execution view of the protocol can be written as (in, r, comp1, ..., compx) with
in the party input, r its random tape and comp1, ..., compx the messages induced by
every oracle call to the "compare_switch" functionality. As such, the privacy of our
Odd-Even Merge protocol depends on whether or not "compare_switch" is private. The
"compare_switch" being defined in the ABB, the privacy of our protocol follows by the
privacy of the ABB.

iii. Alternative Solutions
Before arriving at the solution we presented above, we had envisioned other potential ways
to implement similar functionalities. We detail here the reasons why we decided not to go
further with those potential solutions.

Choice of privacy-enhancing primitives Starting the project, we were seeing three
possible choices of privacy-enhancing primitives to use: Secret Sharing, Homomorphic En-
cryption and Differential Privacy. First of all, we identified Differential Privacy as not
suitable for a 6-month research project. It would indeed have required a lot of experimen-
tation with the security parameters in order to produce cohort selection private and precise
enough to be used, which was unlikely to produce usable results in such a short period of
time. Then, we gave up on Homomorphic Encryption (HE) because of its heavy online
phase(Section II.i.5)). Indeed, while the overall execution time would quite probably be
faster with HE than with Secret Sharing[34], Secret Sharing allows us to pour most of its
computation during the pre-computation phase which is less restrictive to execute than
the online phase.

18

Ordering with Hamda et al.[19] This technique is the one we were planning to use in
the Research Project. In this paper, they propose an oblivious shuffling pre-processing step
to be able to then use traditional sorting methods (such as the quicksort algorithm), which
implies knowing the result of the comparison between two elements. Hamda et al. based
their technique on the idea that, in order to know the ordering of the list after executing
the sorting protocol, you need to know both the initial configuration of the list and the
permutation that ordered the list. By first shuffling obliviously, the initial configuration is
hidden from the potential adversary and the final ordering thus ends up being hidden too,
even though leaking the comparison bits leaks the permutation. However, we ended up
doubting the privacy of this scheme in a context where one party knows the big majority
of the list to sort. Taking our context as an example, as P1 knows about 99% of the joint
database, an adversary that would corrupt P1 could use the knowledge of the permutation
to deduce some probability for a given element to be under-study. Indeed, knowing if an
element is under-study is the same as knowing the result of the "lower-equal" comparison
with its neighbouring elements. Leaking this permutation (i.e. the comparison bits when
sorting) is thus potentially breaking the privacy of our protocol. Intuitively, on lists of sizes
two and three (note that in bigger lists this would happen in every step while recursively
sorting) we have :

• list of size 2 with n,m any two elements that can be compared :

– [n,m] =⇒ with n > m We will know n is not under-study
– [n,m] =⇒ with n only case where we do not get information

• list of size 2 with n,m, p any three elements that can be compared :

– [n,m, p] =⇒ with n,m < p we will know p is not under-study (if previous
recursion was on part of the list before n)

– [n,m, p] =⇒ with n,m > p we will know p is not under-study
– [n,m, p] =⇒ with n > p ≥ m we will know n is not under-study (if previous

recursion was on part of the list after p)
– [n,m, p] =⇒ with m > p ≥ n we will know m is not under-study

The example of this scheme in particular led us to decide to search for another sorting
protocol that would not introduce any leakage distinct from the final output. We also
added the requirements to avoid schemes adding one (or more) independent third party, to
reduce the execution cost of our final protocol, which led us to focus on sorting networks[21],
finally choosing to use the Odd-Even Merge Sort by Batcher et al.[4].

V. Results

i. Theoretical analysis
We determine the theoretical runtime of our protocol by counting the number of operations
processed during one execution. In particular, we reduce all those operations to the number
of equalities, scalar multiplications and logical XOR, AND, NOT and OR executed. From
this point on, we extract the number of bits that needs to be communicated throughout
the protocol execution and we determine the runtime by counting our heaviest operation,
the secret shared multiplication (i.e. the number of multiplication triple used).

19

We discuss in table 5, table 6 and table 7 the number of operations executed by each
component of our protocols before presenting in table 10 what it implies regarding the bits
communication and in table 11 what constants it creates in our computational complexity.

During this section, we denote by l the number of bits used to represent our elements, by
n the number of records processed during the execution, by M the maximum cohort size
and by N for the constant in "1:N matching".

Table 4: Summary of the variables in our complexity analysis

n l M N

number of records size of our data (bits) maximum cohort size 1:N matching

Sorting network: According to Batcher et al.[4], the odd-even merge sort executes
2log2(n)−2(log2(n)

2− log2(n)+ 4)− 1 (≈ n
2 log2(n)

2 +2n− 1 = O(n log2(n)
2)) comparison-

switches (Section A.xii.). In our protocol, each time we execute a compare switch on a
record we do one lower-than comparison on l bits binary values (implying 2 ∗ l XOR, 2 ∗ l
AND, 2 ∗ l NOT and l OR) before using this result to perform a switch on the four fields
of the records. We thus have 4 binary switches (on the ID, feats, us and imc fields) and
one Arithmetic switch (on the cost field), which implies 16 AND, 16 XOR, and 4 scalar
multiplications.

Table 5: Summary of ABB operations to execute an Odd-Even Merge Sort on n
records with fields encoded on l bits.

Protocol total
EQ 0

XOR (16 + 2l) · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

AND (16 + 2l) · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

NOT (2l) · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

OR l · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

Arit Mult 4 · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

Setting the under-study bit We compute an equality circuit between all pairs of
neighbouring elements, which amounts to n − 1 executions of the said circuit. For each
individual execution, we use one equality and one XOR operation (Protocol 1., line 3).

Table 6: Summary of ABB operations to set the under-study bits of a list of n
records.

Protocol total
EQ n− 1

XOR 2(n− 1)
AND 0
NOT 0
OR 0

Setting in-matched-cohort We execute an equality circuit on every individual element
of our list to verify if the element is under-study and, if it is, set the imc bit to 1 (= true).
We thus execute n instances of the equality circuit, during which we access M elements to

20

the right and M elements to the left of the current element (Protocol 2., line 3 to 7). Each
time we access one of those 2M elements, we execute one equality, one binary lower-than
with the constant N (implying 2 ∗ l XOR, 2 ∗ l AND, 2 ∗ l NOT and l OR), one binary
ADD (implying 2 ∗ l XOR, 2 ∗ l AND, 2 ∗ l NOT and l OR), 4 AND, 2 NOT and 1 XOR.

Table 7: Summary of ABB operations to set the in-matched-cohort bits of a list
of n records organised in partitions of at most M elements and which fields are
encoded on l bits.

Protocol total
EQ 2Mn

XOR 5 · 2Mln
AND (4 + 4l)2Mn
NOT (2 + 4l)2Mn
OR (2l)2Mn

Focusing on the operations used throughout our execution, they do not all have the same
impact on the communication or multiplicative complexity. In particular, are involved
in the communication complexity only the equality, AND, OR and Scalar multiplication,
having a respective communication of log2(l)2, 2l, 2l and 2l bits (table 8).
Similarly, only the equality, AND, OR and Scalar multiplication participate in the multi-
plicative complexity. Those operations use respectively log2(l), 1, 1 and 1 multiplication
triples. (table 9).

Table 8: Summary of the com-
munication (in bits) induced by
each of the operations of interest
considering elements of l bits.

Protocol Communication (bits)
EQ log2(2l)

2

XOR 0
AND 2l
NOT 0
OR 2l

Scal. Mult 2l

Table 9: Summary of the num-
ber of multiplication triples used
by each of the operations of inter-
est considering elements of l bits.

Protocol # Mult. triple
EQ log2(2l)

XOR 0
AND 1
NOT 0
OR 1

Scal. Mult 1

Combining the figures put in evidence up until now, we can thus compute the communica-
tion and multiplicative complexity of the sub-protocols ΠUSG and ΠMCS , which will give
us the complexity of our ΠPPCS protocol (table 10 and table 11). In particular, the com-
munication and multiplicative complexity of ΠUSG is made of both the complexity from
one Odd-Even Merge Sort and from setting the under-study bits, and the communication
and multiplicative complexity of ΠMCS is made from the second Odd-Even Merge Sort
and from setting the in-matched-cohort bits.

For readability purposes, we replaced the formula 2log2(n)−2 · (log2(n)2 − log2(n) + 4)− 1
(≈ n

2 log2(n)
2 + 2n − 1 = O(n log2(n)

2)) by Omerge. Note that this formula defines the
complexity of the Odd-Even Merge Sort algorithm as being sub-quadratic, and by extension,
as it is the heaviest complexity in the algorithms we use, it defines the complexity of our
full protocol as being sub-quadratic too.

21

Table 10: Summary of the communication (in bits) generated by executing each
of our (sub) protocols on a database of n records with partitions of at most M
elements and data encoded on l bits.
We note Omerge = (2log2(n)−2 · (log2(n)2 − log2(n) + 4)− 1)

Protocol communication (# transmitted bits)
ΠPPCS log2(l)

2 · (n− 1) + 2(40 + 6l)l ·Omerge + (log2(l)
2 + 8 + 12l)l · 2Mn

ΠUSG log2(l)
2 · (n− 1) + (40 + 6l)l ·Omerge

ΠMCS (log2(l)
2 + 8 + 12l)l · 2Mn+ (40 + 6l)l ·Omerge

Table 11: Summary of the multiplicative complexity of our (sub) protocols con-
sidering a database of n records with partitions of at most M elements and data
encoded on l bits. We note Omerge = (2log2(n)−2 · (log2(n)2 − log2(n) + 4)− 1)

Protocol complexity (# multiplication triples)
ΠPPCS log2(l) · (n− 1) + 2(20 + 3l) ·Omerge + (log2(l) + 5 + 6l) · (M − 1)n
ΠUSG (20 + 3l) ·Omerge + log2(l) · (n− 1)
ΠMCS (log2(l) + 4 + 6l) · 2Mn+ (20 + 3l) ·Omerge

ii. Empirical analysis
As per Kortekaas et al.[23], we tested the implementation using a commodity laptop (i7-
10750H CPU @ 2.60GHz, 16GB RQM), using two single-threaded processes emulating P1

and P2. We used randomly generated datasets D1 and I2 with sizes ranging from 10.000
and 100 records to 2.2M and 25.000 respectively (see full test settings in table 12). We
simulated both servers P1 and P2 on the commodity laptop and made them communicate
through local host. In particular, this implies that the amount of communication we were
able to transmit per second was higher than what we could expect in practice, as it was
equivalent to having access to an internet connection of 15Gb/s. We discuss the impact of
the bandwidth capacity on the execution time further down in this section.

Table 12: Dataset size for evaluation settings

TOY SMALL MEDIUM FULL
|D1| 10.000 22.000 220.000 2.2M
|I2| 100 250 2.500 25.000

Looking at the runtime for the different settings and putting it in relation to the runtime
of the solution by Kortekaas et al.[23] on the same set-up, we put in evidence the sub-
quadratic complexity of our solution (Table 13). Yet, due to the huge constants in front of
our sub-quadratic factor (Table 10 and 11), our current solution does not perform better
than the previous one in the given settings. It is however important to notice that the
FULL setting is only representative of a cohort selection made at a national level, consid-
ering a country of similar size to the Netherlands (about 17.5M inhabitants).

Figure 3 makes our sub-quadratic complexity more explicit by putting it side by side with
the previous solution’s quadratic complexity. Moreover, we can notice that our current
solution would start outperforming the previous one in settings containing more than 3M

22

records. This leads us to observe that our solution should, at least, be providing a signifi-
cant practical improvement considering countries about twice the size of the Netherlands.

Table 13: Run time of our protocol (in seconds) assuming M = 10 and l = 32,
with comparisons to the run-time of Kortekaas et al.[23] in 1:1 matching

TOY SMALL MEDIUM FULL
ΠUSG 2.39 · 102 6.44 · 102 9.60 · 103 1.37 · 105
ΠMCS 2.97 · 102 7.56 · 102 1.07 · 104 1.49 · 105
ΠPPCS 5.36 · 102 1.41 · 103 2.03 · 104 2.85 · 105
current

Kortekaas et al.[23] 121.27 60.26 8.60 1.30

Figure 3: Evolution of the execution time of the current and previous solution for
a 1:1 matching, with M=10 and l = 32.

Our solution also improves on the solution of Kortekaas et al.[23] considering a cohort
selection wtih 1:N matching (N > 1). Indeed, the execution time of the current solution
represented in Figure 3 would not change whether we match in 1:1 or 1:10. This is because,
considering our settings definition (Section III.i.), we do not have any guarantee that the
probability to get two under-study elements in a same partition is low. As such, we need
to access every element in the cohort to ensure that we will always match all necessary
elements, which implies processing M elements at the right and left of every under-study
element (with M = 10 the maximal cohort size, Table 4). This means that our solution
would start outperforming the previous solution in the FULL setting for 1:N matching with
N > 3. Assuming that the partition is made so that there is a low probability to find two
under-study elements in a same partition, we could thus have some further improvements
by defining the number of elements to process using the constant N instead of M . In such
a case and staying in the FULL setting, we could expect our solution to outperform the

23

solution of Kortekaas et al.[23] for any 1:N matching case where N > 1 (table 4).

Figure 4: Evolution of the execution time of both the previous and current solution
given the number of elements N to match for each under-study element in the FULL
context

As per the solution of Kortekaas et al.[23], the bottleneck of our runtime is the bandwidth
capacity rather than the computational power of our system. Indeed, always considering
the FULL setting, the local computation only makes up for 4.4% of the total execution
time (≈ 3.5 hours on ≈ 79 hours). Figure 5 puts this observation in perspective by putting
together the total execution time (orange curve) and the local computation time (green
curve). Visually, assuming an optimal bandwidth, there would basically be no communi-
cation overhead (i.e. additional time due to the communication) and the two curves would
be flushed.

There however does not yet exist communication channels that could support such a com-
munication per second. Indeed, as shown in Figure 6, assuming similar computational
power as during our tests and a setting with 2.2M of records to process, our program
would generate in average 324 Gbits/s, of which more than two-thirds are due to the sort-
ing network. Ultimately, it is reasonable to expect that executing our protocol in a real
case scenario would be slower than our tests, as it is quite unlikely that both involved par-
ties will have access to a bandwidth of 15 Gb/s or more. On the flip side, this also means
that it is not necessary to allocate a lot of computational power to the online phase of our
protocol, as it would be limited by the bandwidth anyway (note that this remark does not
apply when simulating the protocol, as the size of the simulated bandwidth depends on
the computational power). Assuming the data of both parties are stored in a data centre
where they are allocated a 2.5 Gb/s cable, the cohort selection would be about six times
slower to execute in practice, resulting in about 19 days of online execution time for our
FULL setting (with 2.2M records). In the best case scenario, where both parties have
access to a bandwidth of 10 Gb/s, the practical execution would still be about 30% slower
resulting in about 4.2 days of online execution time (again for the FULL setting).

24

Figure 5: Evolution of the local and total execution time of the protocol depending
on the number of records in D1, assuming |I2| = |D1|/100 and given M = 10

Figure 6: Average traffic generated by our program (on our set-up) per second
of local computation depending on the number of records in D1, assuming |I2| =
|D1|/100 and given M = 10

25

VI. Potential optimisations
Regarding our results, while the initial goal of a sub-quadratic complexity is indeed fulfilled,
the large constants lead us to practical results worst than the previous work by Kortekaas et
al.[23] when considering settings of about 2.2M records (representative of a cohort selection
at a national level in the Netherlands). This slowness is induced by the large amount of data
that needs to be communicated between servers during the execution, and in particular
during the oblivious swaps needed when executing the sorting network. In this section, we
present a potential optimisation to reduce those communications, as well as unsuccessful
optimisation ideas.

i. Optimising comparison with constants : Function Secret
Sharing[7]
Literature review and application to our case. Function Secret Sharing (FSS) is a
concept introduced by Boyle et al.[7], that is, in the idea, comparable to additively sharing
the truth table of a simple function between two or more servers. Mainly thought for
Private Information Retrieval (PIR), the Distinct Point Function (DPF) is a subclass of
FSS where one creates a function fα,β that can be evaluated on any element x to compare
it with a constant α, and returns a result β if the comparison is successful. Typically,
the function’s truth table would be shared as a tree, and evaluating fα,β on x would be
equivalent to seeing which path in the tree is taken by x. This also shows the deterministic
nature of FSS which thus implies the need for some precautions before using DPFs. To
begin with, we would need to generate during the pre-computation phase one DPF f⟨α⟩γ ,β
for every comparison we want to do with α, ⟨α⟩γ representing α shared additively with
respect to a random γ. From there, evaluating f⟨α⟩γ ,β on x would be done in two steps:
obtaining ⟨x⟩γ and executing f⟨α⟩γ ,β(⟨x⟩γ) (which only asks for one communication between
servers). However, with respect to the initial papers on FSS and DPFs, using DPFs for
comparison in our case brings issues related to the key (tree) generation in the distributed
setting. How could we generate the decision tree using only our two servers (P0 and P1)
without leaking the meaning of the different paths? This issue has been tackled in the
latest research on FSS [8, 15]. In particular, it got first tackled by Doerner et al.[15] and
then further improved by Boyle et al.[8].

Time required to evaluate the DPFs The papers on this subject being focused on
PIR, the complexity mentioned is often with respect to a function EvalAll that executes
the DPF on every element in the domain. In our case, however, we are interested in the
execution time per element (for the Eval operation). In particular, we focus on the work by
Doerner et al.[15], as what we would need seems to be closely related to their OramWrite
protocol. Focusing on the full version of their paper we notice that their optimised FSS
algorithm does not seem to need any communication for the Eval operation. Translating
their work into our context, we would thus have a single online communication (during the
online phase) to obtain the aforementioned ⟨α⟩γ .

Concrete impact This optimisation would impact the communication complexity when
setting the imc bit, by limiting communication when comparing the counter and the value
N (Protocol 2.). The obtained complexity (table 14 and 15) would indeed improve even
so slightly on the current ones (table 7 and 10). This would however not make for any
significant increase in the online computation time.

26

Table 14: Summary of ABB operations to set the in-matched-cohort bits of a list
of n records organised in partitions of at most M elements and which fields are
encoded on l bits (if using FSS for comparisons with constants).

Protocol total
EQ 2Mn

XOR 5 ∗ 2Mln
AND (4 + 2l)2Mn
NOT (2 + 2l)2Mn
OR l · 2Mn

Table 15: Summary of the communication (in bits) generated by executing each of
our (sub) protocols on a database of n records with partitions of at most M elements
and data encoded on l bits (when using FSS for comparisons with constants). We
note Omerge = (2log2(n)−2 · (log2(n)2 − log2(n) + 4)− 1)

Protocol complexity (# communication)
ΠPPCS log2(l)

2 · (n− 1) + 2(40 + 6l)l ·Omerge + (log2(l)
2 + 8 + 6l)l · 2Mn

ΠUSG log2(l)
2 · (n− 1) + (40 + 6l)l ·Omerge

ΠMCS (log2(l)
2 + 10 + 6l)l · 2Mn+ (40 + 6l)l ·Omerge

ii. Discarded optimisations
Optimising comparison with secrets: Function Secret Sharing[7] Similar to the
optimisation of comparisons with constants, we would have liked to optimise comparisons
between secret s1 and s2. We had two potential solutions: (1) creating DPFs on secret
shared elements and (2) comparing s1 − s2 to 0. Unfortunately, (1) is dependent on the
protocol’s input as we need to have access to the secret shared elements to execute a
distributed FSS Generation algorithm such as the one presented by Doerner et al[15]. This
would force us to generate the FSS in the online phase (Section II.i.5)) thus making for a
slower option than the one we are currently using. Similarly, proceeding with a subtraction
between secrets in (2) translates in practice to asking the ABB to compute ⟨s1⟩−⟨s2⟩. This
is as slow as executing a "lower-than" operation which uses 2l + 1 multiplication triples
against log2(2l) multiplication triples for an equality (with l the bit size of the elements).
We thus decided not to look further into this idea.

Replacing online communication by local computation using FSS-based ORAM
ORAM stands for Oblivious Random Access Memory and denotes the set of techniques
used to hide the local access patterns. Such techniques usually find uses in distant or
distributed database storage, where analysing the frequency of data accesses may leak sen-
sitive information to the server(s) hosting the data.

The idea of this optimisation would be to replace some of the communication due to sorting
(in particular due to swapping the fields ID, FEAT and COST) by some local computation
that could be further optimised through code parallelisation. In our theoretical set-up, P0

and P1 would be considered as hosting the data, and the secure computation (the Arith-
metic Black Box) would act as the client. We would now create two secret shared lists of
size n = |D1|+ |I2|: LDB = {ID, feat, cost, us, imc} and Lpoint = {$p} (with $p pointing
towards an element of LDB) that will be used to do the sorting. Notice that Lpoint could

27

be generated in the off-line phase, as it only needs an empty LDB to be initialised.

There are plenty of publications about ORAM, but the most efficient ones seem to be
related to Function Secret Sharing (FSS)[7]. In particular, Boyle et al.[8] and Doerner
et al.[15] both published some fairly fast solutions using FSS, which are however built to
minimise the computation time of key generation (that needs to be done by the client),
replacing it by a heavier computation when evaluating the Tree (that needs to be done
by the servers). Applied to our case, the naive "unoptimised" implementation mentioned
in [8] seems to be the most promising, as the computation that needs to be done by the
client can be executed during the offline phase. The time necessary to compute EvalAll
grows linearly in the number of records, so we can expect the time necessary to retrieve
an element in a context with 2.2M records to be of 0.001584 seconds, which would mean
0.001584 · 2 · Omerge = 7.44 · 105 seconds for a full sort. While this is dependent on the
computer setup, it still seems a bit discouraging. However, this time being due to local
computation it may very well be further optimisable through parallelization and may sill
be interesting given a big enough decrease in the communication complexity. As such,
following this setup, and keeping the same protocol idea as before, We are now interested
in the new communication complexity of our protocol (Table 16 and 17). Unfortunately,
with respect to our current figures (table 10 and 13) this optimisation idea does not seem
to lead to a big enough decrease in the communication complexity to counterbalance the
increased local computation time introduced by the ORAM.

Table 16: Summary of ABB operations to execute an Odd-Even Merge Sort on n
records with fields encoded on l bits (if using FSS-based ORAM).

Protocol total
EQ 0

XOR (4 + 2l) · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

AND (4 + 2l) · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

NOT (2l) · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

OR l · (2log2(n)−2(log2(n)
2 − log2(n) + 4)− 1)

Table 17: Summary of the communication (in bits) generated by executing each
of our (sub) protocols on a database of n records with partitions of at most M
elements and data encoded on l bits (when using FSS-based ORAM). We note
Omerge = (2log2(n)−2 · (log2(n)2 − log2(n) + 4)− 1)

Protocol complexity (# communication)
ΠPPCS log2(l)

2 · (n− 1) + 2(8+ 6l)l ·Omerge + (log2(l)
2 + 10 + 12l)l · 2Mn

ΠUSG log2(l)
2 · (n− 1) + (8+ 6l)l ·Omerge

ΠMCS (log2(l)
2 + 10 + 12l)l · 2Mn+ (8+ 6l)l ·Omerge

VII. Related Work
Excluding the research from Kortekaas et al.[23] from which this work is a direct succes-
sor, there is little to none literature on the topic of Privacy Preserving Cohort Selection
(PPCS). In particular, we only denote two other works focusing on Privacy Preserving
Cohort Selection assuming horizontally partitioned data[12, 36]. Assuming that all par-

28

ties involved possess the same amount of information on the individuals in their database
(horizontal partitioning) allowed them to implement a hidden joined query-able database
through Searchable Encryption. However, we specifically aim at providing an option allow-
ing the research centre not to collect any data about its test subject, which would not be
a possibility in those previous works. As such, a setting with horizontally partitioned data
was not coherent with our requirements, and their solutions are not directly related to ours.

There are however some significant literature available in the closely related field of Pri-
vate Set Intersection (PSI). PSI denotes the schemes aiming at privately computing the
intersection X ∩ Y between two distant sets X and Y [11, 30]. In particular, the latest
research in this field showed some schemes made to be used together with MPC to per-
form some further computation on the intersection instead of returning it directly [13, 25].
While it could theoretically have been used to identify the under-study elements, the way it
extracts the intersection could have led to a significant amount of additional computations.

When it comes to sorting obliviously, there exist different possible approaches in the litera-
ture. First, here are different categories of sorting algorithms with oblivious data access, of
which the sorting networks[4, 35] that we decided to use, and for which O(nlog2(n)2) seems
to be the limit for generalised sorting networks (not that for networks tailored to specific
list sizes, it is possible to slightly go below this nlog2(n) barrier[21, Section 5.3.4]). Aside
from sorting networks, we also find randomised schemes[18, 27, 28] that usually accept a
smaller complexity than the sorting networks but have a low probability of failing. We con-
sidered the probability of failing to be too much of an issue given our use case, hence why
we decided to go with the slightly slower, but constant, sorting networks. Other oblivious
sorting schemes will rely on a trusted third party to do all or part[19] of the permutation in
order to hide the access pattern. Aside from the concern we had inherent to [19] (Section
IV.iii.), we also considered that using additional third parties would induce unnecessary
costs and thus decided to not go with those types of protocols.

VIII. Conclusion
During this Master internship, we built a solution for two-party PPCS on vertically par-
titioned data. The solution is proven secure in the semi-honest model and runs in sub-
quadratic time (and in particular in O(n log2(n)

2)), efficiently improving on the complexity
of the previous research by Kortekaas et al.[23]

The complexity achieved being sub-quadratic, it fulfils the initial objective of this research.
While this does translate into some practical improvements considering our test settings,
it is important to notice that it is far from being the case in every use case of interest. In
fact, while we performed at best 30% slower than the previous research on our test settings
(representative of a 1:1 cohort selection at a national level in a country of about 17M or
fewer inhabitants), we can foresee some significant improvement on bigger populations.
According to our simulation, we indeed start achieving some practical improvements when
working on settings with 3M records or more, thus making our solution faster considering
cohort selection at the European level for example. Additionally, considering a cohort se-
lection with 1:N matching (and N ≥ 3) or solution performs similarly or better than the
previous one. We can moreover notice that the efficiency of our solution in 1:N matching
can be further improved depending on how the initial partitions have been created. As-
suming there is a low probability to get 2 under-study elements in a same partition, we

29

could indeed slightly modify our protocol in such a way that it would perform similarly or
better than the previous solution for any 1:N matching with N ≥ 2.

Notice that the bandwidth bottleneck will prove to be the biggest limitation in a practical
use case. Indeed, testing our program by simulating our two servers on the same local
machine allowed us to communicate 15 Gb/s of data, which is not representative of reality.
Considering an average data centre, we can expect to have access to a cable with a capacity
of about 2.5 Gb/s and up to 10 Gb/s, which would make the execution time 1.30 to 6 times
slower. While we propose optimisation ideas, this likely won’t have a big enough impact on
the communication overhead to solve this bottleneck even though it will slightly mitigate
it. As long as we still consider sorting networks, we might not be able to find any satisfying
optimisation for our protocol. Except if we have access to an efficient ORAM, we indeed
need to swap every field of the records to stay oblivious when sorting. Any significant
optimisation on a part of the protocol would obviously have a much-welcomed impact but,
as shown in Figure 6, the sorting network puts a hard limit on our minimal communication
complexity.

m-party setting (m > 2) - While we only focused on the two-party setting in our
current work, there are some incentives in enabling our solution to work in the m-party
setting (m > 2). Indeed, as we are working with vertically partitioned data we end up
matching the control group exclusively on individuals present in both databases (from the
hospital and the research centre), which implies a non-negligible probability that not all
test cases will be matched to a control case. Jointly executing a cohort selection with
multiple hospitals could help mitigate this issue by extending the set in which we select
the control group.
However, notice that some parts of our protocol may have to be modified to fit this case.
We indeed have two situations that may arise in the case of m-party PPCS. (1) All m
databases are concatenated together, and the protocol is executed on the resulting list.
This would ask us to modify our condition to set an element as under-study, as detecting
a collision would not be equivalent anymore to detecting an under-study element. (2) The
m−1 hospitals’ databases are joined together eliminating the duplicates at the same time,
and we then concatenate the resulting database with the research centre’s database. In
this case, our current methods should still work.

Fully malicious model - As we placed ourselves in the semi-honest model, while our
protocol is private it is still fully vulnerable to a malicious attacker. As medical data tends
to be a recurring target for hackers, it may be of interest to extend the current work to
prove its security in the malicious model. Given the current protocol, the translation of
the ABB in the fully malicious model should be rather straightforward. The ABB as well
as MPC primitives implemented in the ABB indeed all have known secure implementation
in the malicious model. It thus remains to tailor the rest of the protocol to the malicious
model, to ensure that the adversary cannot possibly diverge from it. Considering the
optimisation mentioned in V.i., the feasibility of the FSS distributed Generation protocol
in the malicious model has been discussed by Boyle et al. earlier this year [9].

IX. Code availability
You can find the complete implementation of the protocols described in this work in the
following GitHub repository: https://github.com/utwente-scs/subquadratic-ppcs.

30

https://github.com/utwente-scs/subquadratic-ppcs

To execute the proof of concept, you will also need to use the library "Replicated secret
sharing", created by my supervisor Yoep Kortekaas, that we modified for the current imple-
mentation. You can find the latest version used in this work in the following GitHub direc-
tory, under the MIT-License: https://github.com/utwente-scs/rustsecretsharing/
tree/from-antoine

References
[1] Mark Abspoel, Daniel Escudero, and Nikolaj Volgushev. Secure training of decision

trees with continuous attributes. Cryptology ePrint Archive, Paper 2020/1130, 2020.

[2] Guadalupe Aguilar-Madrid, Eduardo Robles-Pérez, Cuauhtémoc Arturo Juárez-
Pérez, Isabel Alvarado-Cabrero, Flavio Gerardo Rico-Méndez, and Kelly-García
Javier. Case-control study of pleural mesothelioma in workers with social security
in mexico. Am. J. Ind. Med., 53(3):241–251, March 2010.

[3] Axel Bacher, Olivier Bodini, Hsien-Kuei Hwang, and Tsung-Hsi Tsai. Generating
random permutations by coin tossing: Classical algorithms, new analysis, and modern
implementation. ACM Trans. Algorithms, 13(2), feb 2017.

[4] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April 30–
May 2, 1968, Spring Joint Computer Conference, AFIPS ’68 (Spring), page 307–314,
New York, NY, USA, 1968. Association for Computing Machinery.

[5] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan
Feigenbaum, editor, Advances in Cryptology — CRYPTO ’91, pages 420–432, Berlin,
Heidelberg, 1992. Springer Berlin Heidelberg.

[6] Amos Beimel. Secret-sharing schemes: A survey. Lect. Notes Comput. Sci. (including
Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 6639 LNCS:11–46, 2011.

[7] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function Secret Sharing: Improvements
and Extensions. Cryptology ePrint Archive, 2018.

[8] Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Programmable dis-
tributed point functions. In Yevgeniy Dodis and Thomas Shrimpton, editors, Ad-
vances in Cryptology – CRYPTO 2022, pages 121–151, Cham, 2022. Springer Nature
Switzerland.

[9] Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Information-theoretic
distributed point functions. Cryptology ePrint Archive, Paper 2023/028, 2023. https:
//eprint.iacr.org/2023/028.

[10] Stefan Breitenstein, Antonio Nocito, Milo Puhan, Ulrike Held, Markus Weber, and
Pierre-Alain Clavien. Robotic-assisted versus laparoscopic cholecystectomy: outcome
and cost analyses of a case-matched control study. Ann. Surg., 247(6):987–993, June
2008.

[11] Hao Chen, Kim Laine, and Peter Rindal. Fast Private Set Intersection from Homo-
morphic Encryption. Cryptology ePrint Archive, 2017.

[12] Arnab Chowdry, Alexander Kompel, and Michael Polcari. Cohort selection with pri-
vacy protection, Oct 2018.

31

https://github.com/utwente-scs/rustsecretsharing/tree/from-antoine
https://github.com/utwente-scs/rustsecretsharing/tree/from-antoine
https://eprint.iacr.org/2023/028
https://eprint.iacr.org/2023/028

[13] Michele Ciampi and Claudio Orlandi. Combining private set-intersection with se-
cure two-party computation. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11035
LNCS:464–482, 2018.

[14] Ivan Damgård and Jesper Buus Nielsen. Universally composable efficient multiparty
computation from threshold homomorphic encryption. In Dan Boneh, editor, Ad-
vances in Cryptology - CRYPTO 2003, pages 247–264, Berlin, Heidelberg, 2003.
Springer Berlin Heidelberg.

[15] Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS
’17, page 523–535, New York, NY, USA, 2017. Association for Computing Machinery.

[16] Ayman El-Menyar, Brijesh Sathian, Bianca M Wahlen, Husham Abdelrahman, Ruben
Peralta, Hassan Al-Thani, and Sandro Rizoli. Prehospital administration of tranex-
amic acid in trauma patients: A 1:1 matched comparative study from a level 1 trauma
center. Am. J. Emerg. Med., 38(2):266–271, February 2020.

[17] Anne M. Euser, Carmine Zoccali, Kitty J. Jager, and Friedo W. Dekker. Cohort
Studies: Prospective versus Retrospective. Nephron Clinical Practice, 113(3):c214–
c217, oct 2009.

[18] Michael T. Goodrich. Randomized Shellsort: A Simple Oblivious Sorting Algorithm,
pages 1262–1277. Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA).

[19] Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Lncs
7839 - practically efficient multi-party sorting protocols from comparison sort algo-
rithms. 2012.

[20] Masao Iwagami and Tomohiro Shinozaki. Introduction to Matching in Case-Control
and Cohort Studies. Annals of Clinical Epidemiology, 4(2):33–40, 2022.

[21] Donald E Knuth. The art of computer programming: Volume 3: Sorting and Searching.
Addison-Wesley Professional, 1998.

[22] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. Improved garbled
circuit building blocks and applications to auctions and computing minima. Cryptol-
ogy ePrint Archive, Paper 2009/411, 2009.

[23] Yoep Kortekaas. Privacy-Preserving Cohort Selection over Vertically Partitioned
Data. Internal Archive.

[24] Yehuda Lindell. Secure Multiparty Computation (MPC). Cryptol. ePrint Arch.,
64(1):86–98, jan 2020.

[25] Payman Mohassel, Peter Rindal, and Mike Rosulek. Fast Database Joins and PSI for
Secret Shared Data. 2020.

[26] Goldreich Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, USA, 1st edition, 2009.

32

[27] Olga Ohrimenko, Michael T. Goodrich, Roberto Tamassia, and Eli Upfal. The mel-
bourne shuffle: Improving oblivious storage in the cloud. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages,
and Programming, pages 556–567, Berlin, Heidelberg, 2014. Springer Berlin Heidel-
berg.

[28] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. CacheShuffle: An oblivious shuffle
algorithm using caches. May 2017.

[29] Hao Peng, Mingzhi Zhang, Xiaoqin Cai, Jennifer Olofindayo, Anna Tan, and
Yonghong Zhang. Association between human urotensin II and essential hypertension–
a 1:1 matched case-control study. PLoS One, 8(12):e81764, December 2013.

[30] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable Private Set Intersec-
tion Based on OT Extension. Cryptology ePrint Archive, 21(2), jan 2016.

[31] Jeremy A Rassen, Abhi A Shelat, Jessica Myers, Robert J Glynn, Kenneth J Rothman,
and Sebastian Schneeweiss. One-to-many propensity score matching in cohort studies.
21 Suppl 2:69–80, May 2012.

[32] PAUL R. ROSENBAUM and DONALD B. RUBIN. The central role of the propensity
score in observational studies for causal effects. Biometrika, 70(1):41–55, 04 1983.

[33] Tomas Toft et al. Primitives and applications for multi-party computation. Unpub-
lished doctoral dissertation, University of Aarhus, Denmark, 2007.

[34] Thijs Veugen, Frank Blom, Sebastiaan J.A. De Hoogh, and Zekeriya Erkin. Secure
comparison protocols in the semi-honest model. IEEE Journal on Selected Topics in
Signal Processing, 9(7):1217–1228, oct 2015.

[35] Abraham Waksman. A permutation network. J. ACM, 15(1):159–163, jan 1968.

[36] Jiawei Yuan, Bradley Malin, François Modave, Yi Guo, William R. Hogan, Elizabeth
Shenkman, and Jiang Bian. Towards a privacy preserving cohort discovery framework
for clinical research networks. Journal of Biomedical Informatics, 66:42–51, February
2017.

33

A. ABB primitives

i. Load

We assume (for valid i, j) that Pi owns a se-
cret s (defined over S = Z2 or Z264) to share
(in binary or arithmetic representation). It
generates β selected uniformly at random
over S, set ⟨s⟩ = β (i.e. Pi : ⟨s⟩ ← s)
and send s− β (s⊕ β when sharing bit rep-
resentation) to Pj . It is clear that it be-
haves according to the ABB if Pj waits for
a message m from Pi and sets ⟨s⟩ = m (i.e.
Pj : ⟨s⟩ ←?).

Πload−Arith : Share a secret (Arith-
metic)

Input: Pi: an arithmetic secret s defined
over S.
Output: Secret shares of s for Pi, Pj .
Protocol:
Pi : ⟨s⟩i ← rand_over(S)
Pi : send(Pj , s− ⟨s⟩i)
Pj : ⟨s⟩j ← wait_for(Pi,m)

Πload−Bin : Share a secret (Binary)
Input: Pi: a binary secret s defined over S.
Output: Secret shares of s for Pi, Pj .
Protocol:
Pi : ⟨s⟩i ← rand_over(S)
Pi : send(Pj , s⊕ ⟨s⟩i)
Pj : ⟨s⟩j ← wait_for(Pi,m)

Security intuition: β being uniformly
random, we can affirm that ⟨s⟩i and ⟨s⟩j
are uniformly random and (computation-
ally) independent. It follows that for a cor-
rupted Pj , the value received from Pi is in-
distinguishable from random.

ii. Reveal

We assume that P1, P2 each owns a (arith-
metic or binary) share of a secret s,
that they want to reveal. On call Pi :
sec←reveal(s) from both parties, the ABB

will answer with ⟨s⟩1+ ⟨s⟩2 (resp ⟨s⟩1⊕⟨s⟩2
in case of binary shares).

ΠReaveal−Arith : Reveal a secret
(Arithmetic)

Input: Pi: an arithmetic secret share ⟨s⟩i
for i ∈ {1, 2}.
Output: revealed secret s.
Protocol:
P1 : s←reveal(⟨s⟩1)
P1 : s←reveal(⟨s⟩2)
assert(s = ⟨s⟩1 + ⟨s⟩2)

ΠReavel−Bin : Reveal a secret (Bi-
nary)

Input: Pi: a binary secret share ⟨s⟩i for
i ∈ {1, 2}.
Output: revealed secret s.
Protocol:
P1 : s←reveal(⟨s⟩1)
P1 : s←reveal(⟨s⟩2)
assert(s = ⟨s⟩1 ⊕ ⟨s⟩2)

iii. Not
We assume that P1, P2 each owns a (binary)
share of a secret s. To obtain shares of the
secret ¬s, P1 negates its share and P2 let
it as is. Notice that when revealing, given
β the hiding, we indeed find ¬β ⊕ s ⊕ β =
s⊕ {1}∗ = ¬s. Given i ∈ {1, 2} :

Πnot : negates a shared secret
Input: Pi: share ⟨s⟩i of secret to negate
Output: Pi: ⟨¬s⟩i.
Protocol:
P1 : ⟨¬s⟩1 ← ¬⟨s⟩1
P2 : ⟨¬s⟩2 ← ⟨s⟩2

Security intuition: No communication
between parties is required, and it follows
that no party learn more about s or ¬s than
what they knew before executing the proto-
col.

34

iv. Xor
We assume that P1, P2 each owns (binary)
shares of two secrets s1, s2. To obtain shares
of the secret s1⊕ s2 both parties simply xor
their person shares. Given i, j ∈ {1, 2} :

Πxor : xor two shared secrets
Input: Pi: share ⟨sj⟩i of secrets to xor
Output: Pi: ⟨s1 ⊕ s2⟩i.
Protocol:
P1 : ⟨s1 ⊕ s2⟩1 ← ⟨s1⟩1 ⊕ ⟨s2⟩1
P2 : ⟨s1 ⊕ s2⟩2 ← ⟨s1⟩2 ⊕ ⟨s2⟩2

Security intuition: No communication
between parties is required, and it follows
that no party learn more about s1, s2 or
s1⊕ s2 than what they knew before execut-
ing the protocol.

v. And[5]
We assume that P1, P2 each own a (binary)
share of two secrets s1, s2 and of a mul-
tiplication triple a,b,c, such that a and b
are random and c = a ∗ b and none of the
parties knows a,b or c. From there we re-
veal A = s1 ⊕ a and B = s2 ⊕ b, and set
s1 ∗ s2 = ⟨c⟩ ⊕ ⟨s2⟩ ∧ A⊕ ⟨s1⟩ ∧B ⊕ A ∧B
which gives x∧y⊕r with r (pseudo) random-
ness depending on ABB’s security, and r =
(s2∧a⊕⟨s1⟩∧b⊕⟨s1⟩∧s2⊕⟨s2⟩∧a⊕⟨s2⟩∧s1)

Πand : or of two secret shares
Input: Pi: shares ⟨sj⟩i of secrets to ’AND’,
shares of a multiplication triple a ∗ b = c
Output: Pi: ⟨s1 ∧ s2⟩i.
Protocol:
Pi/j : A← Reveal(s1 ⊕ a)
Pi/j : B ← Reveal(s2 ⊕ b)
Pi/j : ⟨s1 ∧ s2⟩i/j
← ⟨c⟩i/j⊕⟨s2⟩i/j∧A⊕⟨s1⟩i/j∧B⊕A∧B

Security intuition: Our result is indis-
tinguishable from random if ⟨c⟩i/j , ⟨s1⟩i/j ,
⟨s2⟩i/j , A and B are. As a and b are uni-
formly random unknown elements, A and B
are indistinguishable from random as well.
Then, our protocol’s security thus follows

from the security of our secret shared ’Load’
(Section A.i.) operation, that guarantees
that ⟨c⟩i/j , ⟨s1⟩i/j and ⟨s2⟩i/j are indistin-
guishable from random.

Communication overhead: This proto-
col implies 2 reveal operations, and its com-
munication overhead is thus of 2l give l the
size of our data.

vi. Multiplication[5]
We assume that P1, P2 each owns an (arith-
metic) share of two secrets s1, s2 and of a
multiplication triple a,b,c, such that a and
b are random and c = a ∗ b and none of the
parties knows a,b or c. From there we re-
veal A = s1 − a and B = s2 − b, and set
s1 ∗ s2 = ⟨c⟩+ ⟨s2⟩ ∧A+ ⟨s1⟩ ∧B −A ∧B.

Πmult : or of two secret shares
Input: Pi: shares ⟨sj⟩i of secrets to ’AND’,
shares of a multiplication triple a ∗ b = c
Output: Pi: ⟨s1 ∧ s2⟩i.
Protocol:
Pi/j : A← Reveal(s1 − a)
Pi/j : B ← Reveal(s2 − b)
Pi/j : ⟨s1 ∧ s2⟩i/j
← ⟨c⟩i/j+⟨s2⟩i/j∗A+⟨s1⟩i/j∗B−A∧B

Security intuition: Our result is indis-
tinguishable from random if ⟨c⟩i/j , ⟨s1⟩i/j ,
⟨s2⟩i/j , A and B are. As a and b are uni-
formly random unknown elements, A and B
are indistinguishable from random as well.
Then, our protocol’s security thus follows
from the security of our secret shared ’Load’
(Section A.i.) operation, that guarantees
that ⟨c⟩i/j , ⟨s1⟩i/j and ⟨s2⟩i/j are indistin-
guishable from random.

Communication overhead: This proto-
col implies 2 reveal operations, and its com-
munication overhead is thus of 2l, with l the
size of the data.

vii. Or
We assume that P1, P2 each owns (binary)
shares of two secrets s1, s2. The parties then

35

set x∨y = x∧y⊕(x⊕y). Given i, j ∈ {1, 2}:

Πor : or of two secret shares
Input: Pi: share ⟨sj⟩i of secrets to or
Output: Pi: ⟨s1 ∨ s2⟩i.
Protocol:
Pi/j : ⟨s1 ∨ s2⟩i/j ← (⟨s1⟩i/j ∧ ⟨s2⟩i/j) ⊕
(⟨s1⟩i/j ⊕ ⟨s2⟩i/j)

Security intuition: Our result is indis-
tinguishable from random if ⟨s1⟩i/j ∧ ⟨s2⟩i/j
and a⊕ b (for any a, b) are. Our protocol’s
security thus follows from the security of our
secret shared ’AND’ (Section A.v.) and se-
cret shared ’XOR’ (Section A.iv.) opera-
tion.

Communication overhead: We use one
secret shared ’AND’ (Section A.v.) and two
secret shared ’XOR’ (Section A.iv.) opera-
tion, so we have an overhead of 2.

viii. Add

1) Arithmetic addition

Two shares-add We assume that P1, P2

each owns (arithmetic) shares of two secrets
s1, s2. As we shared the secrets additively
(Section A.i.), we simply add both shares.
Given i, j ∈ {1, 2}:

Πadd−secret : add of two arithmetic
secret shares

Input: Pi: share ⟨sj⟩i of secrets to add
Output: Pi: ⟨s1 + s2⟩i.
Protocol:
Pi/j : ⟨s1 + s2⟩i/j ← ⟨s1⟩i/j + ⟨s2⟩i/j

Constant-add We assume that P1, P2

each owns a constant c and an (arithmetic)
share of a secret s. As we shared the secrets
additively (Section A.i.), we simply ask one
of our parties to add the constant, and the
other one not to change anything. Given
i, j ∈ {1, 2}:

Πadd−const : add of an arithmetic
secret and a constant

Input: Pi: share ⟨s⟩i and constant c
Output: Pi: ⟨s+ c⟩i.
Protocol:
P1 : ⟨s+ c⟩1 ← ⟨s1⟩1 + c
P2 : ⟨s+ c⟩2 ← ⟨s1⟩2

Security intuition: No communication
between parties is required, and it follows
that no party learn more about s or s ⊕ c
than what they knew before executing the
protocol.

2) Binary addition

We assume that P1, P2 each owns (bi-
nary) shares of two secrets s1, s2 of l bits. To
obtain shares of the secret s1+ s2 both par-
ties add (i.e. XOR with borrow) their shares
bits by bits. Assuming we access the nth bit
of a secret s by s[n], and given i, j ∈ {1, 2}:

Πbin−add : add of two binary secret
shares

Input: Pi: share ⟨sj⟩i of secrets to add
Output: Pi: ⟨s1 + s2⟩i.
Protocol:
Pi : ⟨borrow⟩i ← 0
Pi : ⟨s1 + s2⟩i ← ⟨[0...0]⟩i // N zeros
for n ∈ 0..N do

Pi : ⟨a_xor_b⟩i ← ⟨s1[n]⟩i ⊕ ⟨s2[n]⟩i
Pi : ⟨a_and_b⟩i ← ⟨s1[n]⟩i ∧ ⟨s2[n]⟩i
Pi : ⟨(s1 + s2)[n]⟩i ← ⟨a_xor_b⟩i ⊕

⟨borrow⟩i
Pi : ⟨borrow⟩i ← ⟨a_and_b⟩i ∨

(⟨a_xor_b⟩i ∧ ⟨borrow⟩i)
end for

Security intuition: Our result is com-
puted using exclusively our ’XOR’ (Section
A.iv.), ’AND’ (Section A.v.) and ’OR’ (Sec-
tion A.vii.) operations. As such, the se-
curity of our secret shared binary addition
follows from the security of those three pro-
tocols.

Communication overhead: We use two
’XOR’ (Section A.iv.), two ’AND’ (Section

36

A.v.) and one ’OR’ (Section A.vii.) opera-
tion on each bit. As such, we have a com-
munication overhead of 4l.

ix. Subtraction

1) Arithmetic subtraction
Two shares-sub We assume that P1, P2

each owns (arithmetic) shares of two se-
crets s1, s2. As we shared the secrets ad-
ditively (Section A.i.), we simply subtract
both shares. Given i, j ∈ {1, 2}:

Πsub−secret : add of two arithmetic
secret shares

Input: Pi: share ⟨sj⟩i of secrets to add
Output: Pi: ⟨s1 − s2⟩i.
Protocol:
Pi/j : ⟨s1 − s2⟩i/j ← ⟨s1⟩i/j − ⟨s2⟩i/j

Constant-sub We assume that P1, P2

each owns a constant c and an (arithmetic)
share of a secret s. As we shared the secrets
additively (Section A.i.), we simply ask one
of our parties to subtract the constant, and
the other one not to change anything. Given
i, j ∈ {1, 2}:

Πsub−const : add of an arithmetic
secret and a constant

Input: Pi: share ⟨s⟩i and constant c
Output: Pi: ⟨s− c⟩i.
Protocol:
P1 : ⟨s− c⟩1 ← ⟨s1⟩1 − c
P2 : ⟨s− c⟩2 ← ⟨s1⟩2

Security intuition: No communication
between parties is required, and it follows
that no party learn more about s or s ⊕ c
than what they knew before executing the
protocol.

2) Binary subtraction
We assume that P1, P2 each owns (bi-

nary) shares of two secrets s1, s2 of N bits.
To obtain shares of the secret s1 − s2 both
parties add (i.e. XOR with borrow) their

shares bits by bits. Assuming we access
the nth bit of a secret s by s[n], and given
i, j ∈ {1, 2}:

Πbin−sub : add of two binary secret
shares

Input: Pi: share ⟨sj⟩i of secrets to add
Output: Pi: (⟨s1 − s2⟩i, ⟨borrow⟩i).
Protocol:
Pi : ⟨borrow⟩i ← 0
Pi : ⟨s1 − s2⟩i ← ⟨[0...0]⟩i // N zeros
for n ∈ 0..N do

Pi : ⟨a_xor_b⟩i ← ⟨s2[n]⟩i ⊕ ⟨s1[n]⟩i
Pi : ⟨a_not_b⟩i ← ⟨s2[n]⟩i ∧¬⟨s1[n]⟩i
Pi : ⟨(s1 − s2)[n]⟩i ← ⟨a_xor_b⟩i ⊕

⟨borrow⟩i
Pi : ⟨borrow⟩i ← ⟨a_not_b⟩i ∨

(⟨a_xor_b⟩i ∧ ⟨borrow⟩i)
end for

Security intuition: our result is com-
puted using exclusively our ’XOR’ (Section
A.iv.), ’AND’ (Section A.v.) and ’OR’ (Sec-
tion A.vii.) operations. As such, the se-
curity of our secret shared binary addition
follows from the security of those three pro-
tocols.

Communication overhead: We use two
’XOR’ (Section A.iv.), two ’AND’ (Section
A.v.) and one ’OR’ (Section A.vii.) opera-
tion on each bit. As such, we have a com-
munication overhead of 4 ∗N .

x. Equal[22]

We assume that P1, P2 each owns (binary)
shares of two secrets s1, s2 of l bits. To
obtain shares of the secret s1 = s2 both
parties first compute ¬s1⊕ s2, and then re-
cursively ’AND’ the leftmost and rightmost
halves of the result until they cannot create
halves anymore (i.e. the length is 1). When
s1 = s2, we will have ¬s1⊕ s2 = [1....1] and
thus ’AND’ing the halves will give a one.
When we do not have equality, at least one
of the bits will be zero after the XOR and it
will propagate during the ’AND’ing of the
halves to give a final result of zero. Assum-

37

ing we access the nth bit of a secret s by
s[n], and given i, j ∈ {1, 2}:

Πeq : equality test of two binary se-
cret shares

Input: Pi: share ⟨sj⟩i of length 2N

Output: Pi: ⟨s1
?
= s2⟩i.

Protocol:
for n ∈ 0..N do

Pi : ⟨s⟩i ← ¬⟨s1⟩i ⊕ ⟨s2⟩i
while length(s) > 1 do

Pi : ⟨s⟩i ← ⟨s[...2
N

2]⟩i ∧ ⟨s[2
N

2 ...]⟩i
end while

end for

Security intuition: Our result is com-
puted using exclusively our ’XOR’ (Section
A.iv.) and ’AND’ (Section A.v.) opera-
tions. As such, the security of our secret
shared equality protocol follows by the se-
curity of those two protocols.

Communication overhead: We use one
’XOR’ (Section A.iv.) and 2log2(l) ’AND’
(Section A.v.) operations for this protocol.
As such, we have a communication overhead
of 2 ∗ log2(l)2.

xi. Lower than

We assume that P1, P2 each owns (binary)
shares of two secrets s1, s2 of l bits. To
obtain shares of the secret s1 <= s2, each
party computes the subtraction with borrow
of s1 and s2, and the result of the compari-
son is, by definition, the borrow bit. Given
i, j ∈ {1, 2}:

Πlt : lower than of two binary secret
shares

Input: Pi: share ⟨sj⟩i
Output: Pi: ⟨s1 < s2⟩i.
Protocol:

for n ∈ 0..N do
Pi : (_, ⟨s1 < s2⟩i)← ⟨s1⟩i − ⟨s2⟩i

end for

Security intuition: Computing this
comparison is entirely dependent on our
secret shared ’subtraction’ (Section A.ix.)
operation, and as such the security of our
’lower than’ protocol follows from the secu-
rity of the ’subtraction’ protocol

Communication overhead We use one
secret shared ’subtraction’ (Section A.ix.)
operation for our protocol. As such, its com-
munication overhead is of 4 ∗ l.

xii. Compare-switch[1, 3.1]
We assume that P1, P2 each own shares of
two secrets s1, s2 of 2N bits, ordered in a
list such that s1 is before s2. They want to
compare s1 < s2 and inverse the position of
both secrets if the comparison is successful:

Πleq : lower or equal of two binary
secret shares

Input: Pi: share ⟨s1⟩i, ⟨s2⟩i
Output: Pi: ⟨s′1⟩i, ⟨s′2⟩i.
Protocol:

for n ∈ 0..N do
Pi : ⟨b⟩i ← ⟨s1⟩i < ⟨s2⟩i
Pi : ⟨s′1/2⟩i ← ⟨b⟩i⟨s1/2⟩i + ⟨b⟩i⟨s2/1⟩i

end for

Security intuition: Computing this
comparison is entirely dependent on our
secret shared ’lower than’ (Section A.xi.),
secret shared ’AND’ or ’Mult’ in case of
Arithmetic shares)(Section A.v., A.vi.) and
secret shared ’ADD’ (Section A.viii.) op-
erations, and as such the security of our
’compare-switch’ protocol follows from the
security of the aforementioned protocols.

Communication overhead We use one
secret shared ’lower than’ (Section A.xi.),
two secret shared ’AND’ or ’Mult’ in case of
Arithmetic shares)(Section A.v., A.vi.) and
one secret shared ’ADD’ (Section A.viii.)
operations for our "compare-switch". It fol-
lows that its communication overhead is of
8l, with l our bit size.

38

B. Odd-even Merge: Ideal Functionality by
Batcher[4]

An "s by t" merging network can be built by presenting the odd-indexed numbers of the
two input lists to one small merging network (the odd merge), presenting the even-indexed
numbers to another small merging network (the even merge) and then comparing the
outputs of these small merges with a row of comparison elements. The lowest output of
the odd merge is left alone and becomes the lowest number of the final list. The ith output
of the even merge is compared with the i + 1th output of the odd merge to form the 2ith

and 2i + Ith numbers of the final list for all applicable i’s. This may or may not exhaust
all the outputs of the odd and even merges; if an output remains in the odd or even merge
it is left alone and becomes the highest number in the final list.

C. Intuition Composition theorem
We give the intuition using the security proof of ΠPPCS as example:

Let’s define (for all z ∈ {ABB,USG,MCS}) Oz the oracle to the functionality Fz,
with Bz, the optimal adversary to Πz and βz its probability to break the protocol’s security.
We now define SPPCS the simulator for ΠPPCS with random tape r, that simulates the view
USG using oracle call to OUSG, ABB using oracle calls to OABB and MCS using oracle
calls to OMCS . Noting A the optimal adversary for SPPCS , it forwards each slice of its view
(USG, ABB and MCS) to its respective optimal adversary. Given the answers ’b’ (i.e. 0
for ’Real’, 1 for ’Simulated’) received from every Bz and their respective probability βz to
win their game, A will agree with a given adversary BX with the following probabilities
(for X,Y, Z ∈ {USG,ABB,MCS}, b ∈ 0, 1 and b̄ = 1− b):
1. As every adversaries Bz are independent from one another, and Bz(b) meaning that Bz
returns b:

P (BX(b)) =P (BX(b) ∧ b) + P (BX(b) ∧ b̄) = P (BX(b)|b)P (b) + P (BX(b)|b̄)P (b̄) = 1/2

P (BX(b̄)) =1/2

P (b|BX(b)) =P (b ∧ BX(b))/P (BX(b)) = P (BX(b)|b) ∗ P (b)/P (BX(b)) = β/2P (BX(b)) = β

(5)

2. It follows that:

P (b|BX(b) ∧ BY (b) ∧ BZ(b̄)) = P (b ∧ BX(b) ∧ BY (b) ∧ BZ(b̄))/P (BX(b) ∧ BY (b) ∧ BZ(b̄))
= P (b ∧ BX(b) ∧ BY (b) ∧ BZ(b̄)) ∗ 8
= 8 ∗ P (BX(b) ∧ BY (b) ∧ BZ(b̄)|b) ∗ P (b)

= 4 ∗ βX ∗ βY ∗ (1− βZ)

(6)

Note that if all β ≡ 1/2 (i.e. Adv. BX ≡ 0), P (b|BX(b)∧BY (b)∧BZ(b̄)) = 1/2 too, and it
is clear that it would be the same for P (b|BX(b)∧BY (b̄)∧BZ(b̄)) and P (b|BX(b̄)∧BY (b̄)∧
BZ(b̄)). In definitive, assuming all our protocols are secure, the main one would be secure
too.

AdvSPPCS (A) = |Pr[Win(A)]− 1

2
| (7)

39

	Introduction
	Preliminaries
	Notions
	Security model
	Notations

	Problem Statement
	Formal setting definition
	Initialising the ABB

	Solution
	Main Protocols
	Odd-Even Merge permutation network
	Alternative Solutions

	Results
	Theoretical analysis
	Empirical analysis

	Potential optimisations
	Optimising comparison with constants : Function Secret SharingBoyle2018
	Discarded optimisations

	Related Work
	Conclusion
	Code availability
	ABB primitives
	Load
	Reveal
	Not
	Xor
	AndBeaver92
	MultiplicationBeaver92
	Or
	Add
	Subtraction
	EqualKolsnikov09
	Lower than
	Compare-switch[3.1]Abspoel2020

	Odd-even Merge: Ideal Functionality by BatcherBatcher1968
	Intuition Composition theorem

