
MSc Thesis Applied Mathematics

An implementable
Three-in-a-Tree algorithm to
accelerate Perfect Graph
detection

H.A. Hof

Daily supervisor: dr. M. Walter
Graduate supervisor: prof. dr. M.J. Uetz
Committee member: dr.ing. A.B. Zander

August, 2023

Department of Applied Mathematics
Faculty of Electrical Engineering,
Mathematics and Computer Science

Acknowledgements

I would like to express my deepest gratitude to my supervisor Matthias Walter for his
input and the many fruitful discussions about the contents of this thesis. I would also
like to thank the other members of my assessment committee. I would like to thank my
father for showing me the beauty of mathematics from a young age. I am very grateful
for the support that both my parents gave me throughout my studies. I would also like
to thank all my friends and fellow mathematics students for a great atmosphere to discuss
mathematics while also enjoying our time in Enschede.

2

An implementable Three-in-a-Tree algorithm to accelerate
Perfect Graph detection

H.A. Hof∗

August, 2023

Abstract

In this thesis we implement the algorithm of Chudnovsky et al. (2005) to determine
if a given graph contains an odd-hole or anti-hole. In particular this decides whether
a given graph is perfect according to the strong perfect graph theorem proved by
Chudnovsky et al. (2006). A main bottleneck of this algorithm is the detection of
pyramids in a given graph. We introduce the three-in-a-tree problem and develop new
sub-algorithms to make the decision algorithm of Lai et al. (2020) self-standing and
not based on other highly theoretical results. This new algorithm allows us to actually
implement the three-in-a-tree algorithm and also leads to a reduced running time of
detecting pyramids by three orders of magnitude.

Keywords: Perfect graphs, Berge graphs, Pyramids, Three-in-a-tree, Induced sub-
graph detection, Odd-holes

∗Email: hugohof1996@gmail.com

1

Contents

1 Introduction 3
1.1 Related literature . 4

2 Background 4
2.1 Preliminaries . 4
2.2 Perfect graphs . 5
2.3 Strong perfect graph theorem . 6

3 Berge graph detection 6
3.1 Forbidden substructures . 7

3.1.1 Pyramids . 7
3.1.2 Jewels . 12
3.1.3 Configurations of types T1, T2 and T3 13

3.2 Cleaning algorithm . 16
3.2.1 Generating near-cleaners . 18

3.3 Odd hole detection . 20
3.4 Perfect graph detection . 23

4 Three-in-a-tree 26
4.1 Problem description . 26
4.2 Graph webs . 27
4.3 Tamed sets . 28
4.4 Aiding web . 29
4.5 Flexible arcs . 31
4.6 Solid sets . 34
4.7 Podded sets . 35
4.8 Three-in-a-tree algorithm . 36

4.8.1 Initialisation and complete three-in-a-tree algorithm 38
4.9 Improved pyramid detection . 40

5 Three-in-a-tree implementation 41
5.1 Colouring vertices . 42
5.2 Obtaining wild sets . 43

5.2.1 Representative sets . 43
5.2.2 Wild path generation . 45

5.3 Solid sets . 47
5.4 Podded sets . 49
5.5 Maintaining the aiding web . 52

6 Computational results 55
6.1 Perfect graph detection . 55
6.2 Pyramid detection algorithms comparison 55
6.3 Three-in-a-tree algorithm . 57

7 Concluding remarks 58

2

1 Introduction

Graphs are one of the most important concepts in discrete optimisation. Studying graph-
related problems is therefore of great interest in this field. Perfect graphs are graphs where
for every subgraph the chromatic number and the size of the largest clique are the same.
In such graphs the largest clique and stable set problems are, amongst others, solvable in
polynomial time [16], while these are NP-hard problems in general.

For a complete overview of basic graph theory we refer to the book by Diestel. For
a graph G = (V,E) with vertices V and edges E, we refer to the number of vertices as
|V | = n, and the number of edges as |E| = m.

An odd-hole of a graph is an induced cycle of odd length. In order to determine whether
a graph is perfect Berge conjectured that a graph is perfect if and only if the graph and its
complement are odd-hole free [2]. A graph that contains no odd-hole and no odd anti-hole
is referred to as a Berge graph. In 2005 the Strong Perfect Graph theorem proved Berge’s
conjecture [8]. During this same period of time an algorithm was developed to determine
if a graph is Berge [6], and consequently a perfect graph.

This algorithm to determine perfect graphs essentially relies on three different sub-
algorithms. First, various forbidden substructures of the graphs are found, which indicate
a graph is never perfect. For all graphs without these substructures it is then possible to
determine whether they contain an odd-hole. Because these forbidden substructures are
not present, during the second and third sub-algorithms we are able to detect an odd hole
or anti-hole. A schematic overview of the algorithm is shown in Figure 1.

In Section 3 the algorithm to detect perfect graphs is introduced along with implemen-
tation strategies. For this research the algorithm to detect perfect graphs was implemented,
as far as we can tell for the first time. We are then able to review not only the proven
upper-bounds of the algorithm, but also its effectiveness on various randomly generated
graphs.

Both the algorithm to determine substructures, as well as the second and third algo-
rithms to find holes in the remainder of the graphs have bottlenecks that lead to a running
time of O(n9) as seen in Figure 1. There is, however only one forbidden structure with this
running time, whilst all others have a running time of O(n6) or lower. This substructure is
a so called pyramid. As suggest by the original authors in a later paper [5], these pyramids
are closely linked to another graph problem, namely three-in-a-tree.

The three-in-a-tree problem is a decision problem that decides whether for a given graph
and three vertices, there exists an induced tree connecting the three vertices. While the
relation between pyramids and three-in-a-tree problems was already described in [5], they
were not able to develop an algorithm that was fast enough to compete with the original
O(n9) running time. However, a way faster algorithm for the three-in-a-tree problem was
developed in 2020 by Lai et al. [18].

This new algorithm decides for a graph and three given vertices whether it contains
a three-in-a-tree for these vertices in time O(m log n), or as the authors describe it near-
linear regarding the fact that O(m log n) = Õ(m). This new algorithm consequently leads
to an algorithm with a running time of O(n5 log n) to find pyramids.

We first review the idea behind the algorithm of Lai et al. in Section 4. Several aspects
of this algorithm rely on various yet to be implemented highly theoretical results of other
papers, such as dynamic and incremental SPQR-trees [13], O(log n) dynamic spanning
forests [17] and top space forests [1]. Continuing our efforts to implement an algorithm
to detect perfect graphs, we develop various new sub-algorithms for the three-in-a-tree
algorithm that are actually implementable in Section 5. These new algorithms lead to an

3

overall running time of O(n3) to decide the three-in-a-tree problem, and a running time
of O(n6) to detect pyramids. This slightly slower overall running-time is justified on the
one side from its actual ‘implementability’, while on the other hand it also ties the running
time of pyramids with many of the other forbidden substructures.

Afterwards, in Section 6 we show the results of our perfect graph and three-in-a-tree
algorithm. We investigate both algorithms separately, and compare their performance to
detect pyramids.

Forbidden substructures

Pyramids O(n9)

Jewels O(n6)

Configuration T1 O(n5)

Configuration T2 O(n6)

Configuration T3 O(n6)

Amenable hole detection

Near-cleaner generation O(n5)

For every near-cleaner

Detect odd-hole O(n4)
O(n5)

Figure 1: Running time of sub-algorithms in perfect graph detection of Chud-
novsky et al. (2005)

.

1.1 Related literature

The algorithm to detect Berge graphs can only determine if a given graph contains either
an odd hole or an odd anti-hole. The problem to determine whether a graph contains an
odd hole through a given vertex has already been shown to be NP-complete [3]. This lead
to the belief that deciding whether a graph contains any odd-hole was also NP-complete.
Recently, however, efficient algorithms have been found to determine whether a graph
contains a (shortest) odd hole [10, 11]. Some results to bound the chromatic number of
(families of) odd hole free graphs have also been found [9, 21, 22], although these are surely
not as strong as the results for Berge graphs.

Moreover, research has also been on detecting even holes in graphs [12, 7, 4]. The newest
algorithm to detect even holes is, just like the algorithm to detect Berge graphs, also based
on a decomposition algorithm. During this algorithm another kind of substructure called
a ‘beetle’ is detected. These beetles can also be found using a three-in-a-tree algorithm [4],
and thus by our implementation.

2 Background

2.1 Preliminaries

All graphs that are considered in this thesis will be simple and undirected. We denote
such a graph as G = (V,E), where V denotes the vertices and E denotes the edges of the
graph. The size of the vertex and edge sets will be denoted by n := |V | and m := |E|
respectively. Edges of the graph e ∈ E, can also be referred to as e = (u, v), where u, v ∈ V
are the endpoints of the edge in the graph. We say that vertices u and v are adjacent if
(u, v) ∈ E, and refer to the set of vertices adjacent to v as its neighbours N(v). The degree

4

of a vertex v ∈ V is equal to the number of neighbours it has in the graph, i.e. the size
of N(v). For a set S of vertices, respectively edges, we write |S| to indicate its number of
vertices, respectively edges.

An induced subgraph of a graph G is another graph G′ = (V ′, E′) that is induced by
taking a subset V ′ ⊆ V . The graph G′ consists of all vertices V ′, together with all edges
(u, v) ∈ E, such that u, v ∈ V ′. We may also say that the set V ′ induces the subgraph G′.

A path P = v0, v1, ..., vk of a graph G is a walk along the edges of the graph such that
every vertex on the walk is visited only once. The length k of such a path is equal to
the number of edges it contains, and we refer to even and odd-length paths. Moreover, all
vertices v ∈ P have degree two, except for the end-vertices v0 and vk, which have degree
one. Denote by dG(u, v) the distance, that is the length of the shortest path, between
vertices u and v on graph G.

A cycle C of a graph is a path where the first and last vertex of the path are the same.
We similarly refer the even and odd-length cycles. If the induced subgraph of the vertices
on the cycle is also a cycle, meaning all vertices of this induced graph have degree exactly
2, we call the cycle C a hole. Similarly, an anti-hole is an induced cycle in the complement
graph Ḡ. Odd holes and odd anti-holes are induced cycles that have odd length.

A component of a graph is defined as a connected subgraph that is not a subset of
any other connected subgraph, and an anti-component is a component in the complement
graph Ḡ.

Given a set S ⊆ V , an S-complete vertex v is a vertex such that there exists an edge
from v to every s ∈ S, and similarly an S-complete edge e = (u, v) is an edge such that
both u and v are S-complete.

2.2 Perfect graphs

A complete graph G is a graph that has an edge (u, v) ∈ E between every pair of vertices
u, v ∈ V . A clique of a graph is a complete subgraph induced by vertices K ⊆ V . The size
of a clique is equal to the number of vertices |K| and we call the size of the largest clique
the clique number of the graph.

Vertices of a graph can be coloured using a vertex colouring, where two vertices that
are adjacent must be assigned different colours. The chromatic number of a graph is
defined as the minimum number of colours needed for such a vertex colouring. It becomes
immediately clear that the chromatic number of a graph is at least as large as its clique
number, as every vertex in a clique must be assigned a different colour. We are now ready
introduce a very important class of graphs that follows from this observation.

Definition 2.1 (Perfect graphs). A graph G is said to be perfect if for every induced
subgraph of G its clique number is equal to its chromatic number.

An example of a perfect graph is shown in Figure 2. The chromatic number and the
maximum size of a clique of the graph are 3. It is easy to see that this statement also holds
for all possible subgraphs. In Figure 3 an imperfect graph is shown. The maximum size
of a clique of a 5-cycle is clearly 2, while the chromatic number is 3. As we will see in the
following section, it is not a coincidence that this graph is an odd-hole.

Perfect graphs have a range of useful properties. For example, for such graphs the
chromatic number and clique number can be determined in polynomial time [16], while
this is an NP-hard problem in the general case.

5

Figure 2: Perfect graph with vertex coloring and a max-clique in yellow

Figure 3: Imperfect graph with vertex coloring and a max-clique in yellow

2.3 Strong perfect graph theorem

In 1961 Berge conjectured that every minimal imperfect graph is either an odd hole or an
odd anti-hole [2]. From this conjecture the following definition arose:

Definition 2.2 (Berge graphs). A graph G is said to be a Berge graph if does not contain
any odd hole or odd anti-hole.

The proof of the conjecture was finally announced in 2002 by Chudnovsky, Robertson,
Seymour and Thomas [8]. Their proof spanned over 150 pages and is now known as the
Strong Perfect Graph Theorem.

Theorem 2.1 (Strong Perfect Graph Theorem). A graph is perfect if and only if it is a
Berge graph.

Sufficiency proof. Assume we have a graph G that is perfect but not Berge. This graph
then either contains an odd hole or an odd anti-hole. Note that the complement of every
perfect graph is also perfect, so we assume without loss of generality that G contains an
odd hole. Clearly if we take the subgraph induced by the vertices in this hole we obtain
an odd cycle. The clique number in an odd cycle is 2, while the chromatic number is 3.
This is in contradiction with the assumption that the graph is perfect.

The converse is way more difficult to show. For the beautiful and acclaimed proof we refer
to [8].

One of the consequences of the theorem above is that perfect graphs can be recognised
using a polynomial time algorithm for Berge graphs. In other words, if we can successfully
determine whether a graph or its complement contains an odd hole, we can conclude
whether it is a perfect graph. An algorithm to determine whether a graph is Berge will be
further described in Section 3.

3 Berge graph detection

In this section we introduce and review a polynomial-time algorithm to detect Berge graphs.
The algorithm consists of three different components that will allow us to find odd holes
and anti-holes in graphs. The three components are as follows [6]:

6

1. Forbidden substructures
We first introduce five types of induced subgraphs that will always imply the existence
of an odd hole in the graph. If none of these types are present it allows us to exploit
some nice properties of the graph.

2. Amenable holes and near-cleaners
Secondly, the concept of near-cleaners will be introduced. When none of the forbidden
substructures are present it will allow us to generate polynomially many sets such
that one will be a near-cleaner for an odd hole.

3. Odd hole detection
Lastly, we need an algorithm that allows us to always find an odd hole of the graph
if we are given a near-cleaner that is presents in the sets above, or conclude that the
graph contains no odd holes.

In order to determine whether a graph is Berge, we need to run the algorithm above
twice. First we run the forbidden substructure algorithm on the graph and its complement.
After that the algorithm above will successfully determine whether an odd hole is present
in the graph. If that is the case, we conclude that the graph is not Berge. Repeating the
algorithm for the complement graph will then also detect odd anti-holes. If those exist
we also conclude that the graph is not Berge. If no odd holes and no odd anti-holes are
present the graph is Berge.

In the following sections we will introduce all algorithms and implementations ideas
that are needed to implement an algorithm to detect Berge graphs. During this evaluation
of the algorithm, for some of the proofs and algorithms we will refer to the paper with the
original algorithm by Chudnovsky et al. [6]. We focus mostly on giving implementation
ideas as well as give some additional motivation for some of the ideas.

3.1 Forbidden substructures

The first part of the Berge graph algorithm consists of finding forbidden-substructures.
These structures are called pyramids, jewels, and configurations T1, T2 and T3. It is only
after determining that a graph and its complement contain no such structures, that the
algorithm using near-cleaners for amenable holes will work. In this section we will introduce
the substructures, show how and with which running time we can recognise them, and show
why they always lead to odd-holes.

3.1.1 Pyramids

A pyramid is the first type of an induced subgraph that we will introduce. We will introduce
every one of the forbidden substructures as a graph, but it is important to always keep in
mind that the induced graph cannot contain edges that are not part of the structure. This
is due to the fact that every subgraph induced by a set of vertices X ⊆ V , contains every
edge of the original graph connecting vertices from X.

Definition 3.1 (Pyramid). A graph G = (V,E) is a pyramid if it contains of three base
vertices b1, b2, b3 ∈ V , a top vertex a ∈ V and paths Pi that connects a to bi, such that:

1. Every edge (bi, bj) ∈ E for i ̸= j;

2. For paths Pi and Pj with i ̸= j, we have Pi ∩ Pj = {a} and for every vk ∈ Pi\{bi, a}
and vl ∈ Pj\{bj , a} there is no edge (vk, vl) ∈ E;

7

Figure 4: A pyramid graph,
with the three base vertices in
blue and the top vertex in red.
Green lines indicate paths, of
which at most one has length 1.

Figure 5: A jewel graph, red
dotted lines indicate non-edges,
in green path P with length at
least 2.

3. At most one path Pi, i = 1, 2, 3 has length 1.

An example of a pyramid can be seen in Figure 4. The three blue vertices in the bottom
form the triangle of the base, and the red vertex is the top vertex a. It is not difficult to
prove that a pyramid always contains an odd-hole.

Theorem 3.1 (Pyramids contain odd-holes). Every pyramid with base b1, b2, b3, a top
vertex a and three paths P1, P2, P3 as in Definition 3.1, contains an odd-hole.

Proof. It is immediately clear that each cycle bm- Pm -Pn -bn-bm is also a hole from the
definition of a pyramid. We only need to ensure that at least one of these holes is an odd-
hole. Because we have three paths Pi, i = 1, 2, 3 we know that there exist k, l ∈ {1, 2, 3}
such that k ̸= l and Pl and Pk have the same parity. In both cases bk- Pk -Pl -bl-bk has
odd length and is an odd-hole.

Note that importantly the paths that connect the base vertices to the top of the pyramid
are not necessarily the shortest paths between those vertices. Therefore, it is not immedi-
ately clear how to test for induced pyramids in a given graph, as simply trying all paths
between all bi’s and a will not have a sufficiently low running time bound. Because we only
need to determine whether a pyramid exists as an induced subgraph, we instead only look
for a vertex-minimal pyramid. A pyramid induced by a set K ⊆ V of a graph G = (V,E)
is vertex-minimal if there exists no other set K ′ ⊆ V that also induces a pyramid and
|K ′| < |K|. Clearly, such a vertex-minimal pyramid exists if there exists an induced pyra-
mid in a graph. Such a vertex-minimal pyramid has a special structure that can be used
to determine if a graph contains a pyramid. Due to this special structure, there exists an
algorithm to detect pyramids in time O(n9). Moreover, these vertex-minimal pyramids
can be represented using pyramid frames.

Definition 3.2 (Pyramid frame). A pyramid frame consists of the four pyramid vertices
b1, b2, b3 and a, as well three middle vertices m1,m2,m3 and three start vertices s1, s2, s3,
such that:

1. Vertex si is the second vertex on the path Pi from a to bi

8

2. Vertex mi is the vertex in the middle of the path Pi from a to bi, possibly closer to
bi. To clarify, denoting with dP (v, w) the distance on path P from v to w, we have
dPi(a,mi)− dPi(mi, bi) ∈ {0, 1}.

Note that in a pyramid there might be one vertex bi that is a neighbour of a, and in
this case bi = si = mi. If the distance from bi to a is two, we have mi = si. In all other
cases the three vertices are uniquely defined. For vertex-minimal pyramids with a given
frame we can always replace paths Pi with shortest sub-paths through the set of vertices
not neighbouring all bj ’s and sj ’s for j ̸= i. This statement is clarified below. The proof
of the following Theorem can be found in [6].

Lemma 3.2 (Vertex-minimal pyramid frames - 2.1 in [6].). We are given a graph G =
(V,E) and a set S ⊆ V that induces a vertex-minimal pyramid with a frame as is Definition
3.2. Let Pi be the path from bi via mi to si on the pyramid with sub-paths Si between si and
m, and Ti between m and bi. Define Pj, Pk similar for i ̸= j ̸= k, i, j, k ∈ {1, 2, 3}. If G′ is
the graph induced by the vertices that are not a neighbour of sj , bj with j ∈ {1, 2, 3}, j ̸= i,
then for every shortest path S′

i between si and m, and T ′
i between m and bi in G′:

1. The path P ′
i induced by the vertices of S′

i ∪ Ti, together with Pj , Pk form a vertex-
minimal pyramid.

2. The path P ′
i induced by the vertices of Si ∪ T ′

i , together with Pj , Pk form a vertex-
minimal pyramid.

Because of Lemma 3.2, we can replace both paths Si and Ti on a pyramid with a
shortest path S′

i and T ′
i respectively and still obtain a vertex-minimal pyramid. These

shortest sub-paths do now allow us to determine if a graph contains a pyramid. This is
done in a few steps to make the algorithm run in the promised running time of O(n9). First
we need to find construct the pyramid frame by enumerating bi’s and si’s for i = 1, 2, 3
and determining all promising paths Pi(mi) for all possible mi’s.

Corollary 3.2.1. If a graph G = (V,E) contains a pyramid with given partial frame
b1, b2, b3, s1, s2, s3, a, we can generate three sets Pi each containing O(n) paths, such that
there are P1 ∈ P1, P2 ∈ P2, P3 ∈ P3 that together form a pyramid using Algorithm 1 in
time O(n3).

Proof. Correctness follows directly from Lemma 3.2. Finding all shortest paths in a graph
can be done in time O(n3) [15]. The loop over si is done O(1) times, the loop over
m ∈ M ∪ {bi, si} is done O(n) times. Things like checking that the pats Si and Ti only
share one vertex, and induce a path together can surely be done in time O(n)2.

The algorithm above generates possible paths between base vertices and the top-vertex,
that could potentially form a pyramid. In particular, if a vertex-minimal pyramid exists,
there are paths P1(m1), P2(m2), P3(m3) that form a vertex-minimal pyramid by Lemma
3.2. What remains is to find a method to test whether these paths are disjoint and do
not have any edges between them except between the base vertices. We could just simply
check for every combination of m’s whether this is the case, but that will be way too slow.
If paths P1(m1) and P2(m2) do obey the statement above, we call vertices m1 and m2 a
good pair. We will first generate all good pairs as follows.

Lemma 3.3 (Good path pairs). Given two lists of paths Pi and Pj containing paths for
each mi ∈ M ∪{bi, si} and mj ∈ M ∪{bj , sj} respectively, we can determine all good pairs
(mi,mj) in time O(n3) using Algorithm 2.

9

Algorithm 1 Promising paths
1: Input: Graph G = (V,E) and vertices b1, b2, b3, s1, s2, s3, a
2: Let M = V \{b1, b2, b3, s1, s2, s3}.
3: for each si, i = 1, 2, 3 do
4: Let L = {v ∈ V |v is a neighbour of bj , sj , j ̸= i}.
5: Let F = V L+ {bi, si}.
6: Find a shortest path Si(m) between si and m for all possible m ∈ M .
7: Find a shortest path Ti(m) between m and bi for all possible m ∈ M .
8: for every possible m ∈ M ∪ {bi, si} do
9: if m = bi then

10: Pi(m) = {bi}.
11: else if m = si then
12: Pi(m) = {si, bi}.
13: else
14: Check if m is not adjacent to bk, sk for k ̸= j.
15: Check if both sub-paths Si(m) and Ti(m) exist.
16: Check if Si(m) ∩ Ti(m) = {m}.
17: Check if Si(m) ∪ Ti(m) induces a path.
18: if All statements above hold then
19: Let Pi(m) be the path induced by Si(m) ∪ Ti(m).
20: else
21: Let Pi(m) be empty.
22: end if
23: end if
24: end for
25: end for

Algorithm 2 Good path pairs
1: for each mi ∈ M ∪ {bi, si} do
2: if Pi(mi) does not exist then
3: continue.
4: end if
5: Colour each vertex in M∪{bi, si} that belongs to, or is a neighbour of Pi(mi) black,

and all other vertices white.
6: for each mj ∈ M ∪ {bj , sj} do
7: if path Pj(mj) contains only white vertices then
8: Label (mi,mj) as a good pair.
9: end if

10: end for
11: end for

Proof. By colouring vertices the algorithm still obviously performs as expected. For the
running time note that there are O(n) vertices mi’s and mj ’s. Because the paths are
predetermined in Algorithm 1, looping through the vertices and checking their colour only
takes O(n) per pair (mi,mj). Consequently, the total running time is as claimed.

Now that we can determine possible paths as well as find good pairs of paths, we only
need to find a list of possible pyramid frames, and formulate the complete algorithm.

10

Lemma 3.4 (Pyramid frame generation). Given a graph G = (V,E) we can generate a
list of all possible pyramid frames b1, b2, b3, s1, s2, s3 such that

1. the sets {bi, si} and {bj , sj} j ̸= i are disjoint, and have only one edge, between bi
and bj;

2. there exists a top-vertex a adjacent to all si’s, and to at most one bi. If a is adjacent
to bi then bi = si.

in time O(n7) using Algorithm 3.

Algorithm 3 Pyramid frame generation
1: for vertex b1 ∈ V do
2: Determine all pairs of neighbours of b1 that are adjacent. And store the bases

b1, b2, b3 as a set B.
3: for each base B ∈ B do
4: for vertex a ∈ V \B and neighbours s1, s2, s3 of a do
5: Check if the sets {bi, si} and {bj , sj} j ̸= i are disjoint.
6: if there is an edge between bi and sj then
7: Check if bj = sj .
8: end if
9: Check if at most one bi is adjacent to a, and in that case if bi = si.

10: if all above statements are true then
11: b1, b2, b3, s1, s2, s3 is a possible pyramid frame.
12: end if
13: end for
14: end for
15: end for
16: return all possible pyramid frames

Proof. The algorithm loops through all possibilities of O(n7) vertices, with a constant time
to check if they form a pyramid base.

Theorem 3.5 (Pyramid detection). Given a graph G = (V,E) we can determine in time
O(n9) whether the graph contains a pyramid using Algorithm 4

Proof. Here we will only discuss running time of the algorithm. For the proof of correctness
we refer to [6]. Generating pyramid frames using Algorithm 3 takes O(n7) time and results
in O(n6) sets through which we loop in line 2. Determining all promising pyramid paths
takes O(n2) time. Determining all good pairs takes O(n3) time. Finding the combinations
of good pairs also takes O(n3) time. This is because for a pair mi, mj we can now check in
O(1) whether they are a good pair, which also leads to a time O(1) for checking a triple.
In total the algorithm therefore takes O(n9) time.

11

Algorithm 4 Pyramid detection
1: Generate all pyramid frames b1, b2, b3, s1, s2, s3 using Algorithm 3.
2: for each pyramid frame do
3: Determine the sets Pi, i = 1, 2, 3 each consisting of O(n) promising pyramid paths

using Algorithm 1.
4: for 1 ≤ i < j ≤ 3 do
5: Determine all good pairs mi, mj using Algorithm 2.
6: end for
7: for all combinations of m1, m2 and m3 do
8: if all combinations of mi and mj i ̸= j are good pairs then
9: return true.

10: end if
11: end for
12: end for
13: return false

3.1.2 Jewels

The second type of forbidden sub-structure is a jewel. An example of a jewel can be seen
in Figure 5. When a graph contains an induced jewel, this will again lead to an induced
odd-hole. First let us introduce the exact definition of a jewel.

Definition 3.3 (Jewel). A jewel is a graph containing of five vertices v1, ..., v5 and a path
P such that:

1. There is a cycle v1, v2, v3, v4, v5, v1;

2. There is no edge between v1 and v3, v1 and v4, or v2 and v4;

3. There exists a path P between v1 and v4, of which no internal vertex is a neighbour
of {v2, v3, v5}.

From this definition it will immediately follow that every graph that contains an induced
jewel, also contains an odd-hole.

Theorem 3.6 (Jewels contain odd-holes). Every jewel consisting of the vertices v1, ..., v5
and a path P that fulfills the conditions of Definition 3.3 contains an odd-hole.

Proof. First check whether the path P is an induced path. Otherwise, there exists a subset
of the path vertices that induce a shorter path with interior vertices adjacent to {v2, v3, v5},
and we take this as path P . Now, if the path P = v1, p1, ..., v4 has even length we see that
v1, p1, ..., v4, v5, v1 is an odd-hole. If path P is an odd-length path, v1, p1, ..., v4, v3, v2, v1 is
an odd hole.

Similar to pyramids we need to find a sub-routine to determine jewels. A trivial enu-
meration method would take O(n7). We can however do it in in O(n6) [6]. At this moment
this does not seem important, because finding pyramids is the bottleneck of the algorithm
already. However, as we will later see the time to find pyramids will be brought down to
O(n6), resulting in both of these sub-algorithms having the same running time of O(n6).
Now we turn to detecting jewels in a graph.

Theorem 3.7. Given a graph G = (V,E) we can determine in time O(n6) whether the
graph contains an induced jewel using Algorithm 5.

12

Algorithm 5 Jewel recognition
1: Generate all tuples (v2, v3, v5) such that (v2, v3) is an edge.
2: for each such tuple (v2, v3, v5) do
3: Let F = {v|v is not a neighbour of v2, v3, v5}.
4: Let V1 = {v|v is a neighbour of v2, v5 and not of v3}.
5: Let V4 = {v|v is a neighbour of v3, v5 and not of v2}.
6: for every component F ′ of F do
7: for every v1 ∈ V1 do
8: if v1 has a neighbour in F ′ then
9: Mark (v1, F

′) as good.
10: end if
11: end for
12: for every v4 ∈ V4 do
13: if v4 has a neighbour in F ′ then
14: Mark (v4, F

′) as good.
15: end if
16: end for
17: end for
18: for each combination of v1 ∈ V1, v4 ∈ V4 and F ′ a component of F do
19: if v1 and v4 are not neighbours, but both (v1, F

′) and (v4, F
′) are good then

20: return true.
21: end if
22: end for
23: end for
24: return false

Proof. Assume a graph G contains an induced jewel containing vertices v2, v3, v5 such that
(v2, v3) is an edge. Then path P has no vertex that is a neighbour of v2, v3, v5, and thus P is
a subset of a component F ′ of the set F . Clearly, the algorithm then finds this component
F ′ and vertices v1, v4. Moreover, because we enumerate all possible tuples (v2, v3, v5) the
algorithm will correctly determine that the graph contains a jewel.

On the other hand assume that the algorithm outputs that a graph G contains a jewel.
Then clearly v1, ..., v5 obey Definition 3.3. We only need to show that there exists a path
P = v1, ..., v4 with no internal vertex that is a neighbour of v2, v3, v5. Take the component
F ′ that has a neighbour of v1 and v4 in it. Clearly, the shortest path P , between v1 and
v4 in the graph induced by the vertices of F ′ ∪{v1, v2} is an induced path of G. Moreover,
P has no internal vertex that is a neighbour of v2, v3, v5. Thus, v1, ..., v5 together with P
form a jewel.

To see that the running-time is indeed as claimed note that we loop over O(n3) tuples.
There are O(n) components, and the sets V1, V4 contain O(n) vertices. Checking if v1 and
v4 are neighbours and both (v1, F

′) and (v4, F
′) are good takes O(1) time, which shows

that the algorithm runs in O(n6).

3.1.3 Configurations of types T1, T2 and T3

In this section, three other easily detectable induced subgraphs that contain an odd-hole
are introduced called T1, T2 and T3. We will do these in order, and T1 is the most obvious
one.

13

Figure 6: Type T2 graph. In red
path P , green oval represents set
X. Lines from a vertex to a set
means fully connected.

Figure 7: Type T3 graph. In
purple path P , green oval repre-
sents set X. Lines from a vertex
to a set mean fully connected.

Definition 3.4 (Configuration T1). A configuration of type T1 are five vertices v1, ..., v5
such that these vertices form an odd-hole.

Checking for these odd-holes can be done in the trivial way, and will also result in our
graph not being a Berge graph. Therefore, we omit writing the algorithm down but still
choose to show the result in a theorem below.

Theorem 3.8 (T1 detection). Given a graph G = (V,E) we can determine in time O(n5)
whether G contains a T1.

Proof. We can simply enumerate all possible combinations of five vertices, name them
v1, ...v5 and checking whether they form an odd-hole in this order. Checking for all 20
edges takes O(1) time, which concludes the proof.

Clearly, the algorithm above can be sped up slightly. When implementing we can for
example generate combinations of vertices starting with all pairs of neighbours of a vertex
v1 and combine this with all pairs of non-neighbours. However, finding these odd-holes of
length five is not a bottleneck of the algorithm anyhow.

We will introduce the other configurations of types T2 and T3 below, and give algorithms
to find those and their running times. A proof that graphs containing T2 and T3 also contain
odd-holes is omitted and we refer to the proof in [6].

Definition 3.5 (Configuration T2). A configuration of type T2 is a graph consisting of 4
distinct vertices v1, v2, v3, v4 together with a set X and a path P such that:

1. The vertices v1, v2, v3, v4 induce a path.

2. Vertices v1 and v4 are the end-points of path P , and P has no internal vertex that is
equal to or a neighbour of v2 or v3. Moreover, no internal vertex of P is X-complete.

3. The set X is an anti-component of all {v1, v2, v4}-complete vertices.

Definition 3.6 (Configuration T3). A configuration of type T3 is a graph consisting of 6
distinct vertices v1, ..., v6 together with a set X and a path P such that:

1. We have edges (v1, v2), (v2, v3), (v3, v4), (v1, v4), (v3, v5) and (v5, v6).

2. No other edges between vertices v1, ..., v6 are allowed, except between v3, v6 and
between v5, v6 which might be edges.

14

3. X is an anti-component of all {v1, v2, v5}-complete vertices.

4. Vertices v3 and v4 are not X-complete

5. Path P has endpoints v5 and v6, has no internal vertex that is equal to v1, v2, v3, v4,
no internal vertex that is a neighbour of v1 or v2 and no internal vertex that is
X-complete

6. Vertex v6 is not X-complete if there is an edge between v5 and v6.

An example of a type T2 and type T3 graph can be found in Figure 6 and 7 respectively.
We will now shortly discuss algorithms to determine whether graph G contains vertices
that induce a configuration of type T2 or T3.

Theorem 3.9 (T2 detection). Given a graph G = (V,E) we can determine in time O(n6)
whether this graph contains a configuration of type T2 using Algorithm 6.

Algorithm 6 T2 detection
1: Find all vertices v1, v2, v3, v4 that induce a path v1, ..., v4.
2: for each path v1, ..., v4 do
3: Let X be the set of all anti-components of {v1, v2, v4}-complete vertices.
4: for each X ∈ X do
5: Let S = {v ∈ V |v /∈ {v2, v3}, (v, v2) /∈ E, (v, v3) /∈ E, v is not X-complete}.
6: if there exists a path P from v1 to v4 in the graph G′ induced by S then
7: return true.
8: end if
9: end for

10: end for
11: return false.

Proof. The algorithm is essentially brute-force and therefore correctness is trivial. There
are at most O(n4) paths v1, ..., v4 and O(n) sets X. Testing if any path P exists can
for example be done using breadth-first search in time O(n), which proves the running-
time.

Theorem 3.10 (T3 recognition). Given a graph G = (V,E) we can determine in time
O(n6) whether this graph contains a configuration of type T3 using Algorithm 7.

Proof. Again the algorithm is simply a (smarter version of a) brute-force and trivially finds
any configuration of type T3 if it exists. There are O(n3) triples (v1, v2, v5), O(n) possible
sets X, O(n) possible vertices v4. Checking if v3, v6 and P exist can be done in time
O(n), trivially for the vertices and again using for example breadth-first search to test the
existence of a path P .

The proof that every graph that contains an induced subgraph of configuration types T2

or T3 also contains an odd-hole is based on the Roussel-Rubio lemma [20], and an example
proof using that lemma can be found in [6].

15

Algorithm 7 T3 detection
1: Find all triples (v1, v2, v5) such that (v1, v2) ∈ E, (vi, v5) /∈ E, i = 1, 2.
2: for each triple (v1, v2, v5) do
3: Let X be the set consisting of anti-components of all {v1, v2, v5}-complete vertices.
4: for each X ∈ X do
5: Let F ′ = {v ∈ V |(v, v1) /∈ E, (v, v2) /∈ E, v is not X-complete}.
6: Let F ′′ be the anti-component of F ′ ∪ {v5} that contains v5.
7: Let M be all X-complete vertices not adjacent to v1, v2, v5 neighbouring F ′′.
8: Let F = F ′′ ∪M .
9: Let V4 = {v|v adjacent to v1, not to v2, v5, with a neighbour in F , not X-complete}.

10: for each v4 ∈ V4 do
11: Find a vertex v3 adjacent to v2, v4, v5, not to v1 that is not X-complete.
12: Let v6 be any neighbour of v4 in F .
13: Let G′ be the graph induced by F ′.
14: Let P be any path from v5 to v6 in G′.
15: if v3, v6 and P exist then
16: return true
17: end if
18: end for
19: end for
20: end for
21: return false

3.2 Cleaning algorithm

We now turn to finding odd-holes in our graph G. For this we first introduce a clean
(odd-)hole. If we have any hole C we consider vertices neighbouring C. Such a neighbour
can be the neighbour of multiple vertices in C, and we call this neighbour C-major if it
has neighbours v1, v2, v3 ∈ C such that v1, v2 and v3 do not lie on an induced path of
length three. Such a C-major vertex can then be used for a shorter route between these
vertices. If no vertex is C-major in a graph without pyramids and without jewels, holes
are easily obtainable. In particular, this will allow us to find holes by finding the shortest
path between three relatively evenly spaced vertices on C.

Definition 3.7 (Clean hole). A clean hole is a hole such that there are no C-major vertices.

A clean hole then will have no vertices that allow a ‘much shorter path’ between vertices
on the cycle. In general of course shorter paths could exist if two neighbours of the cycle
are connected, however this will not be the case. We first need an important result. The
proof of the following theorem is over five pages long and therefore we refer to [6] for the
proof as well.

Theorem 3.11 (Theorem 4.1 in [6]). Given a graph G = (V,E) that does not contain
an induced pyramid or induced jewel. Let C be a shortest clean odd-hole in G. Take two
vertices v1, v2 ∈ C that are not neighbours and let L1 ⊆ C and L2 ⊆ C be the two paths of
the cycle joining the vertices where |L1| < |L2|. Then

1. L1 is a shortest path between v1 and v2;

2. For every other shortest path P between v1 and v2, we have that P ∪L2 also induces
a clean shortest odd-hole.

16

Figure 8: An amenable hole. In green an anti-component X of C-major vertices.
The red edge indicates an X-complete edge.

From Theorem 3.11 it becomes clear that shortest clean odd-holes are easy to find. If
we simply enumerate all tuples of three vertices v1, v2, v3 and find shortest paths between
them, if there exists a clean odd-hole we will pick three vertices on the shortest clean odd-
hole eventually. By applying Theorem 3.11 multiple times, the shortest paths between
these vertices then form such a clean odd-hole upon inspection.

In reality, not all shortest odd-holes are clean. Imagine there would be a way to
enumerate polynomially many sets such that one set contains exactly all C-major vertices
for some shortest odd-hole and no vertex of C. We call this set S a cleaner of hole C. If
we would then delete each set one by one from G and test for a clean odd-hole we would
clearly find C in the graph induced by V \S using Theorem 3.11. Unfortunately, generating
sets such that one of them is a cleaner is not that easy. However, it is possible to generate
sets that are almost as good.

Definition 3.8 (Near-cleaner). Given a graph G = (V,E) and a shortest odd-hole C, a
set S ⊆ V is a near-cleaner of C if it contains all C-major vertices, |C ∩ S| ≤ 3 and the
vertices of C ∩ S induce a path.

In the remainder of this section we will then show how to obtain polynomially many,
more precisely O(n5), sets such that one of them is a near-cleaner if the input graph
contains an odd-hole and no forbidden substructures. In Section 3.3, we will show how we
can find an odd-hole if we are provided with a near-cleaner.

Obtaining sets such that one of them is a near-cleaner for a shortest odd-hole C, is not
possible for every shortest odd-hole C in general. We introduce a special type of odd-hole.

Definition 3.9 (Amenable hole). Given a graph G = (V,E) a hole C ⊆ V is amenable if

1. C is a shortest odd-hole;

2. |C| ≥ 7;

3. For every anti-connected set X ⊆ V consisting of C-major vertices, there exists an
X-complete edge on the cycle.

An example of an amenable hole can be seen in Figure 8. In another highly technical
proof of over five pages long in [6], the following is shown:

Theorem 3.12 (Forbidden substructures lead to amenable holes - Theorem 8.1 in [6]).
Given a graph G = (V,E), such that G and the complement graph Ḡ do not have a subset
that induces a pyramid, jewel or configuration of type T1, T2, T3, then every shortest odd-
hole C ⊆ V is amenable.

17

Clearly, this is exactly what we wanted, and we now need to generate sets such that
one of them is a near-cleaner for C if C is an amenable hole.

3.2.1 Generating near-cleaners

Firstly, note that if an amenable hole only has one anti-component X of C-major vertices,
then by Definition 3.9 this entire component can be easily found by generating sets con-
taining all neighbours of every pair of neighbouring vertices. One of those neighbouring
sets then contains all C-major vertices, and no vertex of C, because C is a hole and two
neighbouring vertices on a hole share no neighbours of C. However, when there are multi-
ple anti-components there is no such easy solution. Still, however, if we manage to choose
two vertices a and b on the cycle C the set of their common neighbours N(a, b) consists of
only C-major vertices. If we would manage to find all anti-components containing C-major
vertices, except for one, we could combine this set with the sets of all neighbours of two
neighbouring vertices and be guaranteed that one of those unions contains all C-major
vertices.

Secondly, if we could pick two vertices a and b on the hole C that have distance greater
than three on the cycle, then all their common neighbours are by definition C-major.
Picking these vertices a, b in a smart way and extending the set of their neighbours with
some other vertices will do the job. In order to do this, we need introduce relevant triples.

Definition 3.10 (Relevant triples and their accompanying sets). A set of three vertices
a, b, c is called a relevant triple if a, b are two distinct non-adjacent vertices and c /∈ N(a, b),
however c might be in {a, b}. Moreover we also define the following sets and values regard-
ing the anti-components of N(a, b):

1. r(a, b, c) is the size of the largest anti-component of N(a, b) that contains at least
one non-neighbour of c;

2. Y (a, b, c) ⊆ N(a, b) is the union of all anti-components with size strictly greater than
r(a, b, c);

3. W (a, b, c) is an anti-component of the graph induced by N(a, b) ∪ {c} that contains
c;

4. Z(a, b, c) is the set consisting of all vertices that are Y (a, b, c) ∪W (a, b, c)-complete;

5. X(a, b, c) = Y (a, b, c) ∪ Z(a, b, c).

All the sets from Definition 3.10 can be found in Figure 9. We will now work out this
example to give a better understanding of what is going on. The two red vertices on the
cycle are vertices a and b, the third red vertex on the right bottom is vertex c. Vertices
in coloured vertical ovals are not connected because they are anti-components, while thick
coloured lines between vertices and sets or sets themselves mean fully connected edges.
The dashed red-line from vertex c to the purple oval means this edges is not present.

Therefore, this purple set is the largest anti-component that contains a non-neighbour
of c, and r(a, b, c) = 3. The set Y (a, b, c) is equal to the green anti-component as it is the
only one that is larger than r(a, b, c). Then W (a, b, c), the anti-component containing c,
is the purple anti-component together with c, which is also indicated with a dark green
oval. Note that here W (a, b, c) is the set with size r(a, b, c) together with c because c is
fully connected to all other anti-components, however this does not need to be the case in
general. The set Z(a, b, c) consist of all oranges vertices, which are the blue anti-component

18

Figure 9: Example of a hole with a relevant triple (a, b, c) in red

and the orange vertex next to Y (a, b, c). Lastly, X(a, b, c) is then the union of Y (a, b, c)
and Z(a, b, c), which contains both the green and the blue anti-component, and the orange
vertex.

We can already see in this example there is exactly one anti-component Q of C-major
vertices not in X(a, b, c), which we will be able to determine because there must exist an
Q-complete edge on C. As we will now see this is always the case for this set X(a, b, c).
For this we first need the following lemma.

Lemma 3.13 (Lemma 9.1 in [6]). Given a graph G = (V,E) with an amenable hole C,
there exist a relevant triple (a, b, c) such that:

1. The set of all C-major vertices that are not present in X(a, b, c) form an anti-
connected set;

2. The intersection of X(a, b, c) and the vertices of C induce a path of length at most
three.

Clearly now, if we have a graph that has an amenable hole we can generate all possible
sets X(a, b, c) from relevant triples. Then we will have found a set X(a, b, c) which covers all
except at most one anti-component of C-major vertices. By Definition 3.9 of an amenable
hole there then exist two vertices u, v ∈ C such that the neighbours N(u, v) of these
vertices contain the last anti-component of C-major vertices. The union of these two sets
then form a near-cleaner. Because we do not know the actual hole, the idea is just to
generate all possible sets X(a, b, c) and N(u, v) and their combinations. The following
theorem formally completes the suggestions above. Note that the algorithm does not go
into detail on how to obtain sets Y, Z,W,X as this is trivially done by checking neighbours
in the graph G and its component Ḡ.

Theorem 3.14 (Near-cleaners). Given a graph G = (V,E) that contains an amenable
odd-hole C, we can generate O(n5) sets such that one of those sets is a near-cleaner in
time O(n5) using Algorithm 8.

19

Algorithm 8 Near-cleaners
1: Find for all pairs of neighbouring vertices u, v ∈ V the set of common neighbours

N(u, v).
2: Generate all relevant triples (a, b, c).
3: Find the sets Y (a, b, c),W (a, b, c), Z(a, b, c), X(a, b, c) for each triple (a, b, c).
4: return all combinations of N(u, v) and X(a, b, c).

Figure 10: Odd hole constructed from an induced path (x1,m, x2) and two short-
est paths to vertex y1.

Proof. First of all clearly the algorithm outputs O(n5) sets and runs in time O(n5). Assume
G contains an amenable hole C. Then by Lemma 3.13, there exists (a, b, c) such that
X(a, b, c) covers all but at most one anti-component, say Q, of the set of C-major vertices.
By Definition 3.9, there are u, v ∈ C such that Q ⊆ N(u, v). Clearly N(u, v) ∩ C = ∅,
and by Lemma 3.13 X(a, b, c) ∩ C is an induced path of length of at most 3. Therefore
N(u, v)∪X(a, b, c) contains all C-major vertices, and intersects with C in at most 3 vertices
on a path. Therefore N(u, v) ∪ X(a, b, c) is a near-cleaner and it is found by Algorithm
8.

3.3 Odd hole detection

From the sections above we know that we can first search any graph G for forbidden
substructures to guarantee that if it contains an odd-hole it contains an amenable odd-hole.
Moreover, we can then generate O(n5) sets such that one of them contains a near-cleaner
if such an amenable hole exists. The only thing that remains is an algorithm to find an
odd-hole in a graph G given a near-cleaner X ⊆ V . Obviously, we could just generate
every combination of maximal three vertices from the near-cleaner, remove the rest from
the graph and we are guaranteed to be left with a clean hole which we know how to find.
However, this would be very slow and there is a better method. This method relies on
first finding paths between all vertices with internal vertices outside of X, and afterwards
‘repairing’ the hole C with a 3-vertex path of vertices of the original graph. The beauty of
the algorithm lies in the fact that it finds two vertices that are exactly on opposite sides of
the cycle of the three vertex subset that is the intersection between the near-cleaner and
C. Because these vertices are as far apart as possible, we can say a lot about the length
of the respective paths and the non-existence of other paths.

Theorem 3.15 (Detect amenable hole from near-cleaner). Given a graph G = (V,E) and
a set X ⊆ V that is a possible near-cleaner, we can decide whether the graph G contains
an amenable hole with near-cleaner X using Algorithm 9 in time O(n4).

20

Algorithm 9 Detect amenable hole from near-cleaner
1: Let G′ = (V ′, E′) be the graph induced by V \X.
2: Find all shortest paths R(x, y) between vertices x, y ∈ V with internal vertices in V ′.
3: Let r(x, y) be equal to the number of vertices in R(x, y) or ∞ if the path does not

exist.
4: Find all possible triples (x1,m, x2) ⊆ V that induce a path x1,m, x2 in G.
5: for each vertex y1 ∈ V ′ do
6: for each triple (x1,m, x2) do
7: Let y2 be the neighbour of y1 on the path R(x2, y1).
8: Check if R(x1, y1) and R(x2, y1) both exist.
9: Check if r(x2, y1) = r(x1, y1) + 1 = r(x1, y2)(= K).

10: Check if r(m, y1), r(m, y2) ≥ K.
11: if everything above is true then
12: return true
13: end if
14: end for
15: end for
16: return false

Proof. We will show that the algorithm outputs true if and only if there exists an amenable
hole with near-cleaner X. We found that in this proof it is easier to talk about the number
of vertices in a path, and not its length. While we also omit the word length, this remark
is made as not to confuse the reader.

(Suffiency)
We first show that if the algorithm outputs true, that then there does exist an odd-hole.

Consider the paths R(x1, y1) and R(x2, y1) as also shown in Figure 10. We will show that
these paths either form an odd-hole, or there is a smaller odd-hole using parts of these
paths.

First note that because r(x2, y1) = r(x1, y1) + 1 the vertex x2 /∈ R(x1, y1). Moreover,
because x1 and x2 are non-neighbours and from the same argument x1 /∈ R(x2, y1), as
otherwise r(x2, y1) = r(x1, y1) + 2, a contradiction. Similarly, we can deduce that y2 /∈
R(x1, y1) and vertex m is a part of neither path. Moreover, m has no neighbours on
R(x1, y1) and R(x2, y1) except x1 and x2, because otherwise either r(m, y1) or r(m, y2)
would be smaller than K.

Secondly, we show that the two paths R(x1, y1) and R(x2, y1) have no other common
vertex than y1. From the output of the algorithm we know that r(x2, y1) = r(x1, y1) + 1.
Let us write for the paths R(x1, y1) = v1, v2, v3, ..., vK−1 and R(x2, y1) = w1, w2, w3, ..., wK ,
where vK−1 = wK = y1 and wK−1 = y2. Assume to the contrary that the two paths do have
a vertex in common, say vi = wj . Then, because vi and wj are both part of a shortest path
to y1, we know that the sub-paths vi, vi+1, ..., y1 and wj , wj+1, ..., y1 must have the same
length. Consequently, j = i + 1 and vertex vi = wi+1. Then, P = v1, ..., vi, wi+2, ...wK−1

is a path from x1, to y2 containing K − 2 vertices. However, in the algorithm it was
determined that r(x1, y2) = K. This is a contradiction and therefore the paths R(x1, y1)
and R(x2, y1) intersect only at vertex y1.

Note now that if there are also no edges between any vertices from R(x1, y1) and
R(x2, y1) we find that the vertices of R(x1, y1) ∪ R(x2, y1) ∪ {m} induce a hole of length
(K − 2) + (K − 1) + 2 = 2K − 1, and thus the graph indeed contains an odd-hole and the

21

algorithm correctly outputs true.
Assume now that there does exist an edge between R(x1, y1) and R(x2, y1), namely be-

tween vertices vi and wj . Suppose i < j. Then there is a path P = v1, ..., vi, wj , ..., wK−1

between x1 and y2 and |P | ≤ K − 1. However, all internal vertices of this path are in V ′

and thus r(x1, y2) ≤ K − 1, a contradiction. On the other hand, suppose i > j. Then
there is a path P = w1, ..., wj , vi, ..., vK−1 from x2 to y1. Again, all internal vertices of P
are in V ′ and |P | ≤ K − 1. Another contradiction with the fact that r(x2, y1) = K. We
conclude that i = j. Take the lowest i such that there is an edge between vi and wi. Then
C = x1,m, x2, w2, w3, ..., wi, vi, vi−1, ..., v3, v2, x1 is a cycle of length 2i + 1 without any
other edges between its vertices. Thus C is an odd-hole and the output of the algorithm
was correct.

(Necessity)
Now we need to show that if X is a near-cleaner for a shortest odd hole C of the graph,

then the algorithm will indeed output true. Let us again refer to Figure 10 and assume that
C is a shortest odd-hole of length 2K − 1. Because the algorithm tries all combinations of
triples (x1,m, x2) and vertices y1, we can freely pick a combination of these vertices that
is considered during the algorithm. Firstly, we ensure that all four vertices x1,m, x2, y1 lie
on C. Because X is a near-cleaner for an amenable hole, we know that C ∩X is the subset
of a three vertex path, and we pick (x1,m, x2) such that C ∩X ⊆ {x1,m, x2}. Lastly, we
pick the vertex y1 such that the sub-path P1 of the cycle from x1 to y1 that does not pass
x2 has K − 1 vertices, and the sub-path P2 from x2 to y1 has K vertices.

For this choice of (x1,m, x2) and y1 consider R(x1, y1) that is computed in the algo-
rithm. Because C ∩ X ⊆ {x1,m, x2} we know that none of the internal vertices of P1

lies in X. Thus, r(x1, y1) ≤ |P1|, as r(x1, y1) is the length of the shortest path without
internal vertices in X and P1 is one such path. Let us construct a graph G′′ = (V ′′, E′′)
that is induced by the vertices V ′′ = (V \X)∪{x1,m, x2}. We know that by definition of a
near-cleaner, the hole C is a clean odd-hole in graph G′′. By assumption C was a shortest
odd-hole and therefore by Theorem 3.11, P1 is a shortest path in G′′ between x1 and y1.
Note that the path R(x1, y1) is also a path of G′′, as by definition its internal vertices are
not a part of X. Therefore r(x1, y1) ≥ |P1|.

Because we showed that both r(x1, y1) ≥ |P1| and r(x1, y1) ≤ |P1|, we conclude
r(x1, y1) = |P1| = K − 1. Again by Theorem 3.11, we can replace path P1 by path
R(x1, y1) in C, and C is still a shortest clean odd-hole in G′′. By the exact same argument
and Theorem 3.11 we know that r(x2, y1) = |P2| = K, because P2 is a shortest path from
x2 to y1. Because both P1 and P2 are shortest paths, we also know that shortest paths
from m to y1 or y2 through x1 and x2 respectively contain K vertices. If xi ∈ X for
i = 1, 2 the path from m to yi might be longer or does not even exist. In all cases however
r(m, y1), r(m, y2) ≥ K, as for non-existing paths r(u, v) is infinite.

For this choice of (x1,m, x2) and y1 the algorithm will output true, and because the
algorithm tries all combinations it will output true for every set X such that X is a near-
cleaner for a shortest odd hole C of the graph.

(Running time)
Now we show that the running time is as claimed. Finding all pairs of shortest paths is
done in O(n3) [15]. We generate the set of triples inducing a path in time O(n4) at most.
We then loop through O(n) vertices and O(n3) triples, while all checks inside the loop take
constant time.

22

0 5 10 15 20
0

0.5

1

1.5

2

Number of nodes

R
un

ni
ng

ti
m

e
(s

)
0.9
0.95
1

Figure 11: Average running
time of a pyramid detection sub-
algorithm for varying edge prob-
abilities.

0 5 10 15 20
0

1

2

3

4

5

·10−2

Number of nodes

R
un

ni
ng

ti
m

e
(s

)

0.9
0.95
1

Figure 12: Average running
time of a jewel detection sub-
algorithm for varying edge prob-
abilities.

3.4 Perfect graph detection

In the sections above a complete algorithm is given to detect perfect graphs. We first
determine for a given graph G in time O(n9) whether it contains one of the five forbidden
substructures. Afterwards we know that if G contains a hole C, then it contains an
amenable hole C ′. Therefore, we generate O(n5) sets of vertices, such that if G contains
an amenable hole, one of these sets is a near-cleaner for it. For each of these sets we try to
find and repair an amenable hole in time O(n4). In total this means that both the part of
the algorithm where forbidden substructures are detected, as well as the remainder of the
algorithm run in time O(n9). Notably, the only forbidden substructure with this running
time are pyramids, while jewels and configurations of types T1, T2, T3 are all found in O(n6).
Of course, in practice it is beneficial to look for forbidden substructures in a different order
than in which they were presented in this thesis. Pyramids are always considered as last
of the five.

We implemented the entire algorithm in Python 3.8, to not only determine the the-
oretical bottleneck with the highest asymptotic running time, but also the bottleneck in
running time that arises for real problem inputs. Here we discuss only the running times
of all sub-components of our Berge detection algorithm, to motivate our choice to find
a better pyramid algorithm. All other interesting computational results are discussed in
Section 6.

In Figures 12, 11, 13, 14, 15 and 16, we can see the average running times for all sub-
components of our Berge detection algorithm. The simulations are done for an increasing
number of nodes and 25 graphs for each number of nodes. These random graphs are
generated with a certain probability for each edge, known as a Erdös-Rènyi graph. The
probabilities for edges here are p = 0.9, 0.95, 1.0. These probabilities seem relatively high,
however graphs with probabilities that are a little bit lower are almost never perfect and
therefore less interesting. More about this will follow in Section 6. Also note that choosing
very low probabilities on the other hand, has the exact same effect as very high probabilities
because the Berge algorithm runs on the graph as well as its complement.

In the figures we only take the average of completed runs for each forbidden substruc-
ture, or each sub-routine. While in general the algorithm might already stop quickly in

23

0 5 10 15 20
0

1

2

3

4

5

·10−3

Number of nodes

R
un

ni
ng

ti
m

e
(s

)

0.9
0.95
1

Figure 13: Average running
time of a configuration type T1

detection sub-algorithm for vary-
ing edge probabilities.

0 5 10 15 20
0

2

4

6

·10−2

Number of nodes

R
un

ni
ng

ti
m

e
(s

)

0.9
0.95
1

Figure 14: Average running
time of a configuration type T2

detection sub-algorithm for vary-
ing edge probabilities.

0 5 10 15 20
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

Number of nodes

R
un

ni
ng

ti
m

e
(s

)

0.9
0.95
1

Figure 15: Average running
time of a configuration type T3

detection sub-algorithm for vary-
ing edge probabilities.

0 5 10 15 20
0

2

4

6

8

10

Number of nodes

R
un

ni
ng

ti
m

e
(s

)

0.9
0.95
1

Figure 16: Average running
time of near-cleaner and odd
hole detection routines for vary-
ing edge probabilities.

24

many cases with low edge probabilities, because it finds a configuration of type T1, we
here consider the worst-case scenarios for our algorithm, to find bottleneck sub-routines.
Therefore, for each sub-algorithm we only average over the runs in which it has fully been
executed.

Interestingly, the sub-algorithms testing for configurations of type T3 and the algorithm
for detecting amenable odd-holes from near-cleaners perform much worse for lower edge
probabilities, while the other sub-algorithms are almost unaffected. This comes from the
fact that in both cases a lot of outer loops of the algorithms depend on some set of vertices
and at least one non-edge between them.

While clearly for lower edge probabilities the bottleneck of the Berge detection algo-
rithm lies in routines 1 and 3, for highly dense graphs the pyramid detection algorithm
is the bottleneck. For graphs that are not very dense, often a substructure of types T1,
T2, T3 or a jewel can be found without the need to run the pyramid detection and the
algorithm to clean and detect amenable holes. Therefore, highly dense graphs are partic-
ularly important and hard to decide leading us to look for a better alternative to detect
pyramids.

25

4 Three-in-a-tree

The next half of this thesis is focused on finding an algorithm that brings down the running-
time to detect pyramids to O(n6), which makes it a tied theoretical bottleneck of the
forbidden substructures part of the algorithm. In this section we start by introducing the
three-in-a-tree problem. As will be seen later this problem relates very closely to finding
pyramids in a graph.

4.1 Problem description

For the three-in-a-tree problem we are given a simple, undirected graph G, together with
three vertices that we will refer to as terminals. The three-in-a-tree problem then asks
whether there exists an induced tree on the graph G that connects all the terminals. More
formally:

Definition 4.1. (Three-in-a-tree) Given a simple, undirected graph G = (V,E) and three
different vertices v1, v2, v3 called terminals. We say that the graph together with the
terminals allows three-in-a-tree if there exists W ⊆ V , such that v1, v2, v3 ∈ W , and the
subgraph induced by W is a tree.

If our graph contains multiple components, either the terminals lie in different compo-
nents, or we can solve the three-in-a-tree problem in a smaller graph that is the shared
component of the terminals. Therefore, we assume from here on that our graph G is con-
nected and every vertex has at least a degree of 1. We refer to a vertex with degree exactly
1 as a leaf of the graph. From here on we will also assume without loss of generality that
the given terminals are leaves of the original graph G. Clearly, if they are not leaves we can
modify the graph by adding an extra leaf vertex to each terminal. Because all terminals
are leaves, for every vertex-minimal induced tree there is exactly one vertex m ∈ V with
degree d(m) = 3. We will refer to this vertex vc as the center vertex of the tree.

Lemma 4.1 (Center vertex). Every vertex-minimal induced tree connecting the three ter-
minals of the three-in-a-tree problem contains exactly one center-vertex of degree three. All
other vertices that are not terminals have degree two.

Proof. Clearly, all vertices that are not terminals have degree at least two, because of the
minimality of the tree.

Now, first assume that there exists a vertex-minimal induced tree where all vertices
have degree at most two. Clearly this tree is then a path and one of the terminal vertices
is not a leaf in this tree. This is a contradiction with the terminal being a leaf of the graph.
From this we conclude there exists at least one vertex with degree at least three.

Assume now that there exists a vertex with degree at least four. Because a tree is
cycle-free, this means that the tree has at least four leaves. This is in contradiction with
the minimality of the induced tree.

Lastly, assume that there exist more than one vertex with degree three. The tree will
then contain at least four leaves, which again contradicts the minimality of the induced
tree.

The next sections will outline the characterisation of the vertices of the graph into a
web as described in [18].

26

Figure 17: Example
of a simple web, where
green circles represent
nodes and red rectan-
gles are simple arcs.

Figure 18: A web
with H-tamed sets of
vertices on its outside
in light green.

Figure 19: A web
with H-wild sets of
vertices on its outside
in red.

4.2 Graph webs

An important observation to decide whether we can find three-in-a-tree, is that the inducing
vertex set of the tree can never contain three vertices from the same clique of the original
graph. Because, if we would have three such vertices in the inducing vertex set, the tree
would contain a cycle. This idea leads to the characterisation of a subset of the vertices
into nodes and arcs which together form a web.

The nodes and arcs in the web behave similar as vertices and edges would in a graph;
Each arc connects two nodes, which lie at the end of the arc. We stress that for the web,
however, multiple arcs between two neighbours are allowed. Remember that we have a
simple undirected graph G = (V,E). We will first define the nodes, and a subclass of the
arcs called simple arcs. For now we will focus on these simple arcs, but later we will define
another type of arcs called flexible arcs.

Definition 4.2 (Node). A node of a web consists of vertices N ⊆ V such that for every
two vertices v1, v2 ∈ N that do not lie in the same arc we have (v1, v2) ∈ E.

Definition 4.3 (Simple Arc). A simple arc of a web consist of vertices A ⊆ V such that
these vertices together form a minimal induced path between two nodes.

We write for an arc A = UV , meaning the arc has end-nodes U and V . For simple arcs
this means that the arc A shares exactly one vertex with U and V . By now we are ready
to define a web.

Definition 4.4 (Web). A web H = (X,N ,A) over a graph G and three terminals consists
of arcs A ∈ A, and nodes N ∈ N , where A,N ⊆ V . The set X contains all vertices of the
web, i.e. X = (

⋃
A∈AA)∪ (

⋃
N∈N N). Every vertex of X is part of exactly one arc, and a

maximum of two nodes. Moreover, the set X is connected and contains all terminals.

We look at an example of a web consisting of simple arcs and nodes as seen in Figure
17. This web consist of three nodes that are coloured green, three leaf nodes in blue, and
six simple arcs coloured in red. The vertices in this web can never form a tree together
connecting all three terminals. Importantly, this is always the case for every web.

27

Lemma 4.2 (Web contains no tree - simple web version). There exists no subset of vertices
of a web that induce a tree connecting all three terminals.

Proof. From Lemma 4.1 we know that every induced tree, containing vertices T , connecting
the terminals should contain a center vertex vc. This vertex has degree three, and can
therefore not be part of a simple arc. Therefore, vc is part of a node N . Clearly then, vc
has at most one of its neighbours of T in its arc A, and must have two neighbours in N .
However, by definition all vertices in N form a complete subgraph and the graph induced
by T contains a triangle.

The observation that the vertices in a web can never create an induced tree connecting
the three terminals, leads us to a clear algorithmic idea.

We want to start with some initial web, which is then grown while we maintain the
fact that no three-in-a-tree exists. During each step of the algorithm we then either find
a three-in-a-tree or try to increase the size of the web. Then, when neither is possible
we are able to conclude that no three-in-a-tree exists. In the next section we will describe
different kinds of vertices outside of the web. These classifications help to conclude whether
no three-in-a-tree exists, or we can grow the web.

4.3 Tamed sets

As described in the section above, the graph that is induced from all vertices in a web
can never contain an induced tree that connects the terminals. We will now consider the
vertices that are not yet present in the web. We introduce the following definitions that
will help distinguish those.

Definition 4.5 (Tamed set). Take a web H over a graph G. We say a set S ⊆ X of
vertices in the web is tamed if every pair of vertices in the set share a common node or arc.

Note that from the definition above, it is not necessary that all vertices in S share a
common arc or node. In our web using simple arcs, there is only one such case that can
appear. Take three vertices v1, v2, v3, which are all part of a different node Ni, i ∈ {1, 2, 3},
and arcs Ai = {vj |j ̸= i}. Clearly, every pair of vertices share an arc, but there is no
common arc or node. We will refer to this special structure as a triad if and only if the
graph induced by ∪i ̸=j(Ni ∩Nj) induces a triangle, or more formally:

Definition 4.6 (Triad). A triad is a sub-structure of a web consisting of vertices that
lie in three nodes N1, N2, N3, such that every arc A = NiNj contains exactly all vertices
in Ni ∩ Nj . Moreover, if A1, A2, A3 are the three arcs between these nodes, then for all
v1 ∈ A1, v2 ∈ A2 and v3, A3 the graph induced by v1, v2, v3 is a triangle graph.

An example of such a triad is seen in Figure 20. As argued above, in every tamed
set all vertices either share one arc, one node or are a subset of a triad. We extend this
definition to find H-tamed sets of vertices outside the web.

Definition 4.7 (Tamed web). A vertex or a set of vertices Y ⊆ V \X is called H-tamed if
the set of its neighbours in the web is tamed. Moreover, if in a graph every induced path
of vertices outside the web is H-tamed, we say that the underlying graph is H-tamed. We
refer to specifically an H-untamed induced path of vertices Y ∈ V \X as H-wild.

If Figure 18 and Figure 19 some examples of H-tamed and H-wild sets are shown.
Importantly, when every connected component of vertices outside the web is H-tamed, we
can conclude something about the existence of trees connecting the terminals inside the
web.

28

Figure 20: Part of a web containing three red vertices that form a triad

Theorem 4.3 (Tamed web - simple web version). Take a simple undirected graph G =
(V,E), three terminals and a web H = (X,N ,A) over G. If the graph G is H-tamed, the
graph G with the given terminals does not allow a solution to the three-in-a-tree problem.

Proof. Remember that every valid vertex-minimal tree connecting the three terminals is
cycle-free and contains a center-vertex according to Lemma (4.1). We will show that for a
graph G that is H-tamed, those statements can never be jointly true.

Assume that there exists a valid tree connecting the terminals and that center-vertex
vc is part of the vertices of our web, i.e. vc ∈ X. The center-vertex must have at least one
neighbour y outside of the web that is also part of this tree, as in a simple arc it can only
have two neighbours, and by the definition of a node it can have only a single neighbour
in a node without forming a triangle. We call the connected component that y lies in Y .
We consider different cases for the neighbourhood NX(Y) of the set Y ⊆ V \X. Note that
by choice of Y , always vc ∈ NX(Y). We consider three cases, where the tamed set NX(Y)
consists of vertices . . .

• . . . with a common node N . Then within the tree vc can have at most one neighbour
in N , and must surely have a neighbour in Y . Because all non-terminal vertices have
degree 2 in the tree, there is a finite number of vertices in Y before returning to a
vertex in NX(Y). This vertex is either vc or one of its neighbours and we found a
cycle.

• . . . with a common arc A. There are three disjoint paths from vc to all terminals.
Because the terminals lie neither in Y , and at most one is an end-vertex of A, those
paths must all contain one of the end-vertices of the arc path. Because there are only
two end-vertices of the arc, the tree contains a cycle.

• . . . that form a triad. By assumptions, there exists a path from y to one of the
terminals that does not contain vc. This path must then contain another vertex
from the triad, which is also a neighbour of vc. We again find a cycle which yields a
contradiction.

The proof that vc can not lie in one of the sets Y ∈ V \X is very similar to the cases
above and therefore omitted.

4.4 Aiding web

In the previous section it was shown that a graph G with three given terminals, and a web
H such that G is H-tamed, can never contain an induced tree connecting the terminals.

29

The converse is however not true. Sets outside the web that are wild might or might not
allow three-in-a-tree. In this section we introduce the aiding web, which will allow us to
find stronger wild sets.

Definition 4.8 (Split-component). Given a graph G with a web H we call G a split-
component of the web if G is either an arc (U, V), or G is the maximal subgraph such that
the set {U, V } forms a cut-set for the graph induced by X, but U and V are not adjacent
in G and do not form a cut-set in the subgraph G. We also refer to {U, V } as the split-pair
of G for H.

Definition 4.9 (Chunks). Given a graph G = (V,E) with a web H we call C ⊆ V a
chunk of H if it contains the vertices of one or more split-components that share a common
split-pair. We also write that C is the (U, V)-chunk of H. A maximal chunk is a chunk
that is not contained by any other chunk.

It should be noted that a chunk can contain at most one of the terminals of the three-
in-a-tree problem, which then lies in one of the split-nodes of the chunk. We now observe
that a wild set of a web H, that is Y ∈ V \X, which neighbours NX(Y) all lie in a single
chunk behaves like a tamed set. In particular the following theorem holds:

Theorem 4.4. Given a graph G = (V,E) together with three terminals and a web H. If
all sets Y ∈ V \X are tamed or NX(Y) ⊆ C for some chunk C of H, then there exists no
induced tree connecting the three terminals.

Proof. Assume to the contrary that this graph has an induced tree connecting the termi-
nals. By Theorem 4.3, we only need to consider the sets Y ∈ V \X where NX(Y) ⊆ C
for some chunk C = (U,W) of H and vc ∈ C ∪ Y . Because vc is the center-vertex, there
exist three disjoint paths from vc to the terminals. If the chunk contains no terminals, the
three paths all contain a vertex in one of the split-nodes of the arc. At least two of those
share a node and are either the same vertex, or neighbours from the definition of a node
in Definition 4.2, meaning the tree contains a cycle. If on the other hand the chunk does
contain a terminal, then this terminal lies in a split-node of the chunk, which is w.l.o.g.
U . Moreover, there exist two disjoint paths P1, P2 from vc to the other terminals, both
containing a vertex in W . These two vertices are either the same vertex, or they lie in dif-
ferent arcs and are neighbours from the definition of a node. This means the tree contains
a cycle, which is again a contradiction. We conclude that the graph contains no induced
tree connecting the three terminals.

We want to use the property observed above, to create a smaller web with fewer wild
sets. Therefore, we use the operation Merge.

Definition 4.10 (Merge). Given a three-in-a-tree problem with graph G = (V,E) and
terminals T ⊆ V and web H, the operation Merge(C) defined on a chunk C = UV
consisting of all vertices in arcs Ai, i = 1, 2, ..K does the following:

1. Delete all nodes of vertices in the chunk that are not the split-nodes U and V of the
chunk;

2. Delete all arcs Ai, i = 1, 2, ..K in the chunk;

3. Create one new arc A = UV with all vertices in C and end-nodes U and V .

We are now ready to define the aiding web.

30

Figure 21: A web
H, consisting of green
nodes and red arcs.
Nodes U and V form
a split-pair.

Figure 22: An aiding
web H†, for the web in
Figure 21

Figure 23: A web
that is self-aiding, in
other words H= H†

Definition 4.11 (Aiding web). An aiding web H† for a graph G with web H is a web where
every maximal chunk with split-nodes {U,W} is merged to become an arc A = (U,W)
where the vertex set of the arc is A = C. We also refer to sets that are wild in the aiding
web as H†-wild.

In Figure 21 a web can be seen with its aiding web in Figure 22, the split-nodes U and
V are merged into a single arc in the aiding web. The web shown in Figure 23 is self-aiding,
meaning that H = H†.

4.5 Flexible arcs

We now introduce the concept of flexible arcs. Contrary to the simple arcs, these do not
consist of an induced path of vertices, but they do still connect their two end-nodes. The
flexible arcs can consist of vertices from multiple non-disjoint paths connecting the nodes.
To introduce flexible arcs, we first need the concept of sprouts. These sprouts will then give
us important properties of the arc, that will guarantee the existence of a three-in-a-tree in
many cases. There are three types of sprouts defined as follows:

Definition 4.12 (Sprouts). Given a graph G, its web H two of the nodes of the web N1,
N2 and a set S ⊆ V . Then an (S,N1, N2)-sprout is an induced subgraph S, such that one
of three following conditions holds:

1. The induced subgraph S is a tree that intersects each of S, N1 and N2 at exactly
one vertex;

2. The induced subgraph S consists of an induced path between S and N1, and a disjoint
induced path between S and N2;

3. The induced subgraph S consist of an induced path between N1 and N2, and a
disjoint induced path between S and N1 ∪N2.

We also refer to the three types of sprouts as Si, i = 1, 2, 3. These sprouts are an
important tool in showing the existence of a three-in-a-tree. In particular, if sets outside of
the web are connected to a sprout, this will always lead to the existence of a three-in-a-tree.
Luckily, we can introduce a type of arc, called flexible arc that contains sprouts for all of

31

Figure 24: A flexible arc with all three types of sprouts. The set S in blue and
an (S,N1, N2)-sprout in red.

its subsets, and grow our web in such a way that it will only contain simple and flexible
arcs.

Definition 4.13 (Flexible arcs). A flexible arc of a web consist of vertices A ⊆ V that
connect two end-nodes N1 and N2, such that for every non-empty subset S ⊆ A, (S,N1, N2)
is a sprout.

A flexible arc containing sprouts of all three types is shown in Figure 24. Here the
vertices in S are shown in blue and an (S,N1, N2) sprout is shown in red, along with the
edges it induces.

Remember in a web H = (X,N ,A) every pair of vertices v1, v2 ∈ N in a node N ∈ N
that lie in different arcs, have an edge between them. If two vertices share the same flexible
arc, they do not necessarily need to be connected by an edge but might be. As shown later
the operation Merge(C) as introduced above is only used in such a way that our web H
maintains the property that it only consists of simple and flexible arcs. In our aiding web,
other more complex and non-flexible edges might arise as a result from merging arcs. The
aiding web is, however, only used for obtaining fewer wild sets. Our web H will always
consist of only simple and flexible arcs. Therefore, we only need to focus on a web with
simple and flexible arcs and show that such a web still allows no trees. In order to do so,
we now extend Lemmas 4.2 and 4.7, and show that they still hold for a web with simple
and flexible arcs.

Lemma 4.5 (Web contains no tree - flexible web version). There exists no subset of vertices
of a flexible web that induces a tree containing all three terminals.

Proof. Firstly, following the reasoning of Lemma 4.2, we can immediately conclude that
the vertex vc cannot lie in a simple arc, or in a node such that the vertex is the intersection
of a node and a simple arc. We consider two more cases, either the center vertex vc is part
of a flexible arc but not of a node, or vc lies in the intersection of a flexible arc and a node.

1. First assume that vc is part of a flexible arc A, but not of any node and assume
that our graph G contains a subset of vertices X ⊆ V that induces a tree between
the terminals. Then the paths P1, P2, P3 from vc to the terminals t1, t2, t3 ∈ T
respectively, must all consist of vertices from A, and vertices not from A. Possibly
exactly one of the terminals lies in A, however that will not matter for the following
argument. Because three paths ‘leave’ arc A, we know that at least two of the paths
must do so via the same node N1. Indeed, note that if one of the terminals is part of
A, the other two paths still contain vertices from a mutual node N1 and the former

32

still holds. Without loss of generality assume that the paths P1 and P2 contain
vertices of N1, and denote by P ′

1 and P ′
2 the sub-paths from vc until the first vertices

of each path that lies in node N1. Clearly, not both of these paths can end in N1

and therefore the set X contains at least one more vertex v ∈ X to induce a tree
connecting the terminals. However now vc ∪P ′

1 ∪ v ∪P ′
2 ⊆ X and these vertices form

a cycle. This is a contradiction and vc is not part of the interior of a flexible arc.

2. Secondly, assume that vc lies in the intersection of a flexible arc A and a node N
and we have a set X ⊆ V that induces a tree connecting the terminals. Then, there
exists at most one other arc A′ that contains vertices of X ∩ N , because otherwise
we find an induced triangle by the definition of a node. In particular, all vertices of
X in N lie in either A or A′. Therefore, there must be a flexible arc that contains
at least two neighbours of vc. These two neighbours then lie on paths P1 and P2 to
terminals t1 and t2. As stated before, X contains no other vertices of N that are not
a part of A or A′. Clearly then, these paths P1 and P2 leave their common arc A
(or A′) through the same end-node N2. Because at least one terminal can lie in N2,
we know that X also contains a vertex v in N2 from a different third arc A′′. Then
taking again P ′

1 and P ′
2 as the sub-paths from vc until the first vertex in N2, we find

that vc ∪ P ′
1 ∪ v ∪ v ⊆ X forms a cycle.

We conclude that the vertex vc ∈ X cannot be part of any node, simple or flexible arc
of a web where vc contains no neighbours that are not present in the web. We will extend
the proof for tamed sets, meaning that if our graph with a flexible web H is H-tamed, there
cannot be any X ⊆ V that induces a tree containing the terminals.

Lemma 4.6 (Tamed web - flexible web version). Take a simple undirected graph G =
(V,E), three terminals and a flexible web H over G. If the graph G is H-tamed, the graph
G with the given terminals does not allow three-in-a-tree.

Proof. Assume to the contrary that there exists a set X ⊆ V that induces a tree containing
the three terminals. Following the proof of Lemma 4.5 we can see that the center-vertex
vc of our tree induced by X cannot be part of any node, simple or flexible arc. This can be
seen because the argument that multiple paths must leave arcs through the same node still
holds when our graph is H-tamed, as such tamed sets are only paths that have end-vertices
in the same solid set. There are however two more options. Either vc is the end-vertex
of some tamed path P , or vc is part of a flexible arc A and has at least one neighbour in
some tamed path P .

1. In the first case, where vc is the end vertex of some tamed path P , note that at
least two neighbours of vc must all lie in either the same node or arc. Also the other
end-vertex of the path P that is not vc can have only neighbours in this node or arc,
and share no neighbours with vc as otherwise they form a cycle. Therefore, there are
at least three vertices of X that share some common node or arc, and are part of
three disjoint paths to the terminals of the three. If they share a common node, they
must also share a common arc because otherwise they form a cycle together with vc
from the definition of a node. Thus there are three vertices on three disjoint paths
P1, P2, P3 that share an arc. Again at least two of these paths contain vertices from
one end-node N1 of the common arc. Moreover, because X must contain a vertex of
N1 that is not part of the common arc, we find a cycle.

2. Now assume vc is part of a flexible arc A and has at least one neighbour in some
tamed path P . Because vc cannot be part of a node, we know that vc lies in the

33

interior of arc A, and has exactly one neighbour in P , as well as two neighbours in A.
The end-vertex of P that is not a neighbour of vc then also only contains neighbours
in A, by definition of a tamed web. Again we have three vertices that share an arc
A, but lie on three disjoint paths to the terminals and the conclusion of the proof is
the same as above.

In conclusion the vertex vc does not exist, and therefore there is no X ⊆ V that induces a
tree connecting the terminals.

4.6 Solid sets

There are two different types of H†-wild sets that will not allow us to immediately conclude
the existence of a tree connecting the terminals. We will show how to find these sets, and
consequently how to grow the size of our web. The first type are solid sets.

Definition 4.14 (Solid sets). Given a graph G = (V,E) with web H consisting of the
vertices X ⊆ V , a set S ⊂ X is H-solid if S is either equal to all vertices in a single node,
or S is a subset of an arc A = N1N2 such that there is no (S,N1, N2)-sprout. Moreover,
a set Y ∈ V \X is also referred to as H-solid if Y is an induced path y1y2 . . . yK such that
both NX(y1) and NX(yK) are solid sets, and NX(yj) = ∅ for j = 2, . . . ,K − 1.

We already know that by definition flexible arcs contain sprouts for every subset S of
their vertices. Therefore we only need to consider the vertices in simple arcs. It turns out
that sprouts are present for most subsets S of a simple arc, except for one specific case.

Lemma 4.7. Given a graph G = (V,E) with a web H and a simple arc A = N1N2 of the
web, consisting of the vertices in an induced path P . A set S ⊆ P is H-solid if and only if
|S| = 2 and the vertices s1, s2 ∈ S are neighbours.

Proof.
(Sufficiency)
Let s1, s2 ∈ S be closest to N1 and N2 respectively. If s1 = s2 then clearly there exists
a sprout of type S1. Otherwise, if s1 ̸= s2 and s1, s2 are not neighbours, there exists a
sprout of type S2. Therefore, s1 and s2 must be two separate vertices that are neighbours.
Because s1 and s2 were chosen closest to N1 and N2, it follows that |S| = 2.

(Necessity)
Assume we have a set S ⊆ P with |S| = 2 and s1 ∈ N(s2) that is a subset of a simple arc
A = N1N2. We need to show that there exists no induced subgraph S that is a (S,N1, N2)-
sprout. Clearly the only tree that intersects both N1 and N2 is equal to P , so no sprout
of type S1 exists.

Assume s1 is the vertex closest to N1 on P . Then, every induced path between S and
N1 contains at least s1, and similarly every induced path between S and N2 contains s2.
Because s1 and s2 are neighbours, these paths are never disjoint and there exists no sprout
of type S2.

Lastly, every induced path between N1 and N2 contains S, so there exists no sprout of
type S3.

Therefore no sprout exists and S is H-solid.

All that is left to show is that a wild H-solid set Y ∈ V \X can be used to grow the
size of our web.

Theorem 4.8. If for a web H = (X,N ,A) we have a Y ∈ V \X that is H-solid, we
can strictly increase the size of our web maintaining its properties, such that the new web
contains only simple and flexible arcs.

34

Figure 25: A flexible arc with
an H-podded wild set in blue.

Figure 26: A flexible arc with
two wild sets. The blue set is both
H-podded and H-solid. The red
set is H-podded but not H-solid.

Proof. From the definition of an H-solid set, together with Lemma 4.7 we know that Y
is an induced path and the neighbours of its end-points in X are either a node or two
neighbouring vertices in a simple arc. We denote by Sj = NX(yj) the endpoints of the
induced path Y .

If Sj is a node, we simply add vertex yj to the node. If Sj is equal to two vertices s1, s2
in an arc A = N1N2 such that s1, s2 is an edge and s1 is the vertex in S closest to N1 and
the arc A consists of vertices on the induced path P , we do three things:

1. Create a node N = {s1, s2, yj};

2. Create two new arcs: A1 = N1N consisting of the vertices of path P from N1 ∩A to
s1 and A2 = N2N consisting of the vertices on P from s2 to N2 ∩A;

3. Remove the arc A from the web.

Lastly, we create a new arc AY with vertices Y and its induced path y1y2 . . . yK . It is easy
to directly confirm that Hnew is still a web of the graph, while its size has strictly increased
by adding the vertices of Y . Moreover, the newly added arc is a simple arc. If one more
or more arcs of the web are split up when a new node is created, this arc was simple by
definition of a solid set, and the resulting two arcs are also clearly simple. Therefore, we
maintain the fact that our web consists of only simple and flexible arcs.

4.7 Podded sets

The second type of wild sets that do not allow us to directly conclude that a graph and
its terminals allow three-in-a-tree are podded sets. First we need to define pods.

Definition 4.15 (Pod). Given a graph G = (V,E) with web H consisting of the vertices
X ⊆ V , a pod of Y ⊆ V \X, such that Y is an induced path Y = y1y2 . . . yK is a chunk
C = N1N2 such that NX(Y) ⊆ N1 ∪ C ∪N2 and for both end-nodes of the chunk, i.e. for
i = 1, 2 either

1. NNi(y) ⊆ C, or

2. Ni ⊆ C ∪N(y)

holds for an end-vertex y ∈ {y1, yK}. Moreover, we say that Y allows a pod in the web H
if such a pod exists. A podded set is defined as an induced path Y ⊆ V \X such that Y
allows a pod in H. We might then also say that the set Y is H-podded.

35

Examples of a wild sets with a pod are shown in Figures 25 and 26. Note that the wild
set of blue vertices in Figure 26 is both solid and podded. Similarly to Theorem 4.8 we
want to show that a podded wild set allows us to increase the size of our web. Note that if
a set Y is H-podded we can always find such a unique smallest pod of this set, i.e. a pod
C = N1N2 that is a minimal chunk and there is no other chunk consisting of only a subset
of the arcs of chunk C. Our algorithm to grow the web will only work for such a smallest
pod. Luckily such a smallest pod is easy to find.

Lemma 4.9. For a web H = (X,N ,A), let Y ⊆ V \X be H-podded and not H-solid. We
can construct a new web H′ where Y has a minimal pod C ′ = N1N2 such that for each
end-node Nj either

1. there is more than one arc of C ′ incident with Nj,

2. there is a single flexible arc of C ′ incident with Nj, or

3. there is a single simple arc of C ′ incident with Nj and NX(Y) intersects N2\C.

Moreover, this new web will only consist of simple and flexible arcs.

Proof. Because the set Y is H†-wild, we know that for at least one of the end-nodes of C,
which we assume w.l.o.g. is N1, it holds that NX(Y) ⊆ N1\C. Now we look at the other
end-node N2. If there is a flexible arc of C incident with N2 or there is more than one
arc of C incident with Nj , we are immediately done. Assume there is a single simple arc
A = MN2 incident with Nj and NX(Y) does not intersect N2\C. From the minimality
of the pod we must have |NX(Y) ∩ (C\M)| ≥ 1. Now let v2 be the vertex on the path
of arc A closest to N2 (possibly in N2), and v3 the neighbour of v2 on the same path and
further away from N2. Then, create a new node N3 consisting of the vertices v2 and v3, and
update the arcs accordingly. Clearly, the result is still a web H′ of the graph G consisting
of simple and flexible arcs. However, there exists a new smallest chunk C ′ = N1N3 and
NX(Y) intersects N3\C.

Now we are ready to add our H†-wild set to our newly found web H′.

Theorem 4.10. If for a web H containing vertices X ∈ V we have an Y ∈ V \X that
is H-podded and not H-solid, we can strictly increase the size of our web maintaining its
properties, such that the new web contains only simple and flexible arcs.

Proof. We can first use Lemma 4.9 to obtain a new web which we will still denote H and
a minimal pod C = N1N2 obeying the conditions of the lemma. We now simply merge
all arcs of C into one flexible arc and add all vertices of Y to that arc. Moreover, each
end-vertex yj of Y must have that for one of the nodes Ni, Ni ⊆ C ∪NX(y), by definition
of a pod and Lemma 4.9. Therefore we can add the vertex yj to such a node Ni and
preserve the web condition for nodes.
The only thing that we still need to show is that the resulting merged arc A is in fact
flexible and we are done. This proof is very tedious and it is needed to identify one of
three sprout types in many different cases. We refer to the proof of Lemma 3.2(2) in [18].

4.8 Three-in-a-tree algorithm

In the sections above we have shown two things:

36

1. For a graph G and terminals T with a taming web H = (X,N ,A), there exists no
induced tree connecting the terminals.

2. Let G be a graph with terminals T , a taming web H = (X,N ,A) and a wild set
Y ⊆ V \X such that Y is either H-solid or H-podded. We can then increase the size
of our web.

If we can show that all other wild sets Y that are neither podded nor solid will allow us
to directly decide something about the existence of trees for the three-in-a-tree problem,
we have a clear path to an algorithm. This is possible and in particular we find that all
such wild sets allow us to directly find a tree connecting the terminals. For this we first
need an important lemma. Let us call the graph where nodes and arcs of the aiding web
H† are edges and vertices H†.

Lemma 4.11 (Center vertex in an aiding web). Given a graph H† that is the graph
representation of an aiding web H†, then from every vertex of H† that has degree at least
3, there exist disjoint paths to the three leaf vertices of H†.

Proof. To the contrary, assume there exists a vertex v with degree at least 3, but there are
no disjoint paths to the three leafs of the graph. First note that the graph only contains
exactly 3 leafs, and therefore there exist paths from v through three of its neighbours
v1, v2, v3 to the leafs that thus do not share the first vertex on their path. Now, because
we assumed the contrary of the lemma, there must be a vertex on every pair of paths of
these of these vertices, without loss of generality v1 and v2. Now, from a special case of
Menger’s theorem [19] these paths must then all intersect in a single vertex w. Therefore,
all the arcs between the node variants of v and w share these nodes as their split-nodes
and form a non-trivial chunk. Thus these arcs should have been merged and cannot be
present in the aiding web H†. This is a contradiction and thus the lemma is true.

The lemma above shows us that if we can find, with the help of a wild set, a vertex
vc that contains 3 disjoint paths to three different aiding arcs, then we will find a tree
that connects the terminals. Clearly, in such a graph where a vertex is connected to three
different aiding arcs, there are no additional chunk-like structures. That we can always
find such a vertex if a wild set is neither solid or podded is shown in the theorem below.

Theorem 4.12 (Wild set theorem). Given a graph G = (V,E) with a web H consisting of
vertices X and terminals T , and a non-solid non-podded vertex-minimal H†-wild path Y ,
there is a subset of the vertices X ∪ Y that induce a tree connecting the terminals.

Proof. There are two cases to consider. Either the neighbours of the end-vertices of the
path Y are all part of one aiding arc A and its end-nodes N1 and N2, or the end-vertices
of the path lie in at least two such arcs and their end-nodes.

In the first case, because the H†-wild set is neither podded or solid, there must be at
least one end-node, w.l.o.g. N1, and a vertex v in this node, but not in A such that NX(Y)
intersects the node minus the arc N1\A, but v /∈ NX(Y), as other-wise Y is either solid or
podded. First, observe that the node N1 has vertices from at least three different arcs, as
otherwise we obtain a non-trivial chunk in our aiding web.

Therefore, there must exist two vertices u,w ∈ X such that u and w do not share an
aiding arc, and u is a neighbour of Y in the web, but w is not. Now let vc = u. This
vertex has a neighbour in its own aiding arc A′, it has as a neighbour the vertex w from a
different aiding arc A′′, and it neighbours the path Y which connects to arc A. Thus this
vertex vc has three disjoint paths to three different aiding arcs, and it follows that there is
a tree connecting the terminals by Lemma 4.11.

37

In the second case, the set Y is clearly not podded, as it is not contained by a single
aiding arc and its end-nodes. Because the wild set is also not solid, there must be an end-
vertex y1 of the path Y which neighbours NX(y1) do not form a solid set. If its neighbours
are part of two different nodes or arcs, but do not consist of an entire triad, finding a tree
is trivial from Lemma 4.11. If however, its neighbours S = NX(y1) are a subset of a single
simple arc, flexible arc or a node a bit more care is needed. We look at all cases for this
set S.

1. If the set of neighbours S of y1 in the web is a subset of a simple arc A, then we
know that either |S| ̸= 2 or the two vertices in S are not neighbours. If |S| = 1, the
neighbour of y1 is the center vertex of our web. In both cases |S| > 2 and |S| = 2
the vertex y1 has two non-neighbours in the web because S is the subset of a simple
arc. Therefore, y1 is the center-vertex of our web, because it can induce paths to two
different nodes and a different arc or node of our graph.

2. If the set of neighbours S of y1 in the web is any subset of a flexible arc, then by
definition of a flexible arc we know that there must exist a sprout for this set S in the
arc. For each sprout type S1, S2 and S3 it is not hard to see that this leads to finding
a center-vertex in the aiding arc, or in case of a sprout of type S3 in its end-node.

3. If the set of neighbours S of y1 in the web is a subset of a node, then any neighbour
of y1 in this node can be the center-vertex, as there exists another vertex in this node
that is a non-neighbour of y1, it has a neighbour in its own arc, and it has y1 has
neighbour which via path Y connects to a different aiding arc, and we again find a
vertex that has disjoint paths to three different aiding arcs.

All in all, in all cases that we have a wild set Y that is not solid or podded, we can
construct a tree connecting the terminals from the vertices of X ∪ Y .

The only thing that is left for us to do, is to show how to obtain an initial web H for
a given three-in-a-tree problem. This is easily done as shown in the following section.

4.8.1 Initialisation and complete three-in-a-tree algorithm

We turn to the step of finding an initial web for a given three-in-a-tree problem. If we could
conclude immediately that for our given graph there exists a solution there is no need to
find an initial web. For all graphs of which we cannot make an immediately conclusion
however we do need to find some set of vertices that form a web according to definition.
The following theorem shows us a very simple way to achieve this.

Theorem 4.13. Given a three-in-a-tree problem with graph G and terminals T = {t1, t2, t3}
we are able to obtain an initial web or decide there exists a solution to the three-in-a-tree
problem in time O(n2).

Proof. We calculate a shortest path P1 between t1 and t2, and a shortest path P2 between
t3 and all vertices of P1. We look at the graph H that is induced from G by the vertices
in P1 and P2. First of all note that the graph induced only by the vertices in P1 or only
by the vertices in P2 contains no cycles, as those are shortest paths. We will refer to the
second to last vertex in path P2 as a3, i.e. P2 = t3p1, p2, ..., a3, pK . clearly pK is also a
vertex of the path P1 and a3 is not. Moreover a3 is the only vertex of P2 with neighbours
in P1, as otherwise P2 would not be a shortest path.

We look at the number of neighbours of a3 that lie on the path P1. If |NP1(a3)| = 1

38

Figure 27: Shortest paths con-
necting the blue terminal vertices
T . In red dashes path P1 in green
dashes path P2. The green vertex
is vertex a3. The vertex a3 has 3
neighbours on the path P1, allow-
ing for a tree.

Figure 28: Shortest paths con-
necting the blue terminal vertices
T . In red dashes path P1 in green
dashes path P2. The green vertex
is vertex a3. The neighbours of
a3 on P1 together with a3 form a
triangle.

we have found a tree consisting of all vertices in P1 and P2 with center-vertex vc = pK . If
|NP1(a3)| ≥ 2 we define a1 ∈ NP1(a3) as the vertex closest to t1 on P1 and a2 closest to t2
on P1, see Figure 27. Let P3 be the sub-path connecting a1 and a2 on P1. If a1 and a2 are
not neighbours, it becomes immediately clear that the vertices (P1 ∪ P2)\P3 induce a tree
with as center vertex vc = a3.

Otherwise, if the vertices a1 and a2 are neighbours as seen in Figure 28, then no subset
S of the vertices in P1 ∪P2 induces a tree connecting the terminals. This is clear from the
fact that a1, a2 and a3 all must be elements of S to connect the terminals, but they induce
a triangle. In this case consider the set X = P1 ∪P2, create arcs Ai from the unique paths
in X connecting ti and ai for i = 1, 2, 3 and create a node N = {a1, a2, a3}. It can be
directly verified from Definitions 4.2, 4.3 and 4.4 that the vertices in X partitioned into
these arcs and node form a web H over our graph.

It is easy to see that the steps above can decide in time O(n2) for every graph G
whether there exists a trivial solution to the three-in-a-tree problem, or obtain an initial
web.

Concluding from all theorems and proofs of the sections above, the algorithm to decide
on three-in-a-tree problems has the following form for a given three-in-a-tree problem with
graph G = (V,E) and terminals T . Running time and implementation strategies will be
discussed in the next section, therefore we omit good strategies here to obtain for example
wild sets, which is clearly possible but the asymptotic running time is unclear for now.

Theorem 4.14 (Three-in-a-tree correctness). The three-in-a-tree algorithm described in
Algorithm 10 and concluding all the sections above determines correctly whether a given
graph G = (V,E) contains a three-in-a-tree for given terminals T .

Proof. The proof is based on the fact that we know that during our entire algorithm, our
web H consists of only simple and flexible arcs based on its initialization and the proofs of
Theorems 4.8 and 4.10. If there is a tamed set there is no tree from Lemma 4.6. Moreover,
if there is a wild set connecting to a web of simple and flexible arcs that is neither solid or

39

Algorithm 10 Three-in-a-tree algorithm
1: Obtain an initial web H.
2: while true do
3: if H† is taming then
4: return false.
5: else
6: Obtain a vertex-minimal induced path Y ⊆ V \X that is H†-wild.
7: if Y is neither H-solid or H-podded then
8: return true.
9: else if Y is H-solid then

10: Add Y to the web.
11: Update the aiding web accordingly
12: else if Y is H-podded then
13: Add Y to the web.
14: end if
15: end if
16: end while

podded, there always exists a solutions to the three-in-a-tree problem according to Theorem
4.12. If the set is solid or podded we know for sure that the vertices of our web together
with that solid or podded set do not contain a solution to the three-in-a-tree problem,
because they can be joined in a web with only simple and flexible arcs. Moreover, our web
strictly increases each iteration because each wild set consists of at least one vertex and is
always completely added to the web.

4.9 Improved pyramid detection

In the sections above we described how we can find out for a graph and three terminals
whether this graph contains a set of vertices that induces a tree connecting these terminals.
It was already hinted that this is used to now improve upon the algorithm for pyramid
detection in Algorithm 4. We now show how we can use Algorithm 10 to detect pyramids.
When discussing all the implementation strategies in the Section below, we will find that
we can implement the three-in-a-tree algorithm in time O(n3). This algorithm also clearly
needs to be run at most O(n3) times, as its input consists of 3 terminals. But, how can
we decide for three terminals of our graph if there is a three-in-a-tree whether a pyramid
also exists? This is shown below.

Theorem 4.15 (Improved pyramid detection). Given a graph G = (V,E) and a three-in-
a-tree algorithm that runs in time O(n3), we can determine whether G contains a pyramid
using Algorithm 11 in time O(n6).

Proof. Assume graph G contains a pyramid induced by a set H ⊆ V . Then the base
b1, b2, b3 is generated as a set T of terminals. Clearly in the graph without the edges
between each bi and bj the vertices of H induce a tree between the base vertices. No
vertices of N(ti) ∩N(tj) \ {tk} are in H, because the top vertex of a pyramid is adjacent
to at most one of the base vertices. Moreover, exactly one neighbour of each base vertex
is present in H. Therefore the vertices of H still induce a tree between the base vertices
in graph G′, and this tree is found by our three-in-a-tree algorithm.

Now assume our algorithm determines that there exists a three-in-a-tree for some set
of terminals T and graph G′. Then, this tree contains exactly one vertex N(ti), i = 1, 2, 3

40

Algorithm 11 Pyramids from three-in-a-tree
Generate all sets T = {t1, t2, t3} ⊆ V that induce a triangle
for Each set T do

Create a copy graph G′ = (V,E)
Remove all vertices N(ti) ∩N(tj) \ {tk}, with i, j, k permutation of {1, 2, 3}
Remove edges between all ti and tj
Add edges to each set of neighbours N(ti), i = 1, 2, 3
if G′ contains an induced tree for terminals T then

return True
end if

end for
return False

thus none of the edges added to the graph are present in the three. Clearly, there are no
edges or overlapping vertices between the paths of the base vertices to the center-vertex
vc of the three, and this center vertex is the top-vertex of the pyramid. Consequently,
by adding the edges between the base vertices we find a pyramid. Adding the deleted
vertices N(ti) ∩ N(tj)\tk does of course not change the graph induced by the vertices of
the three-in-a-tree that was found.

For the running time, note that we loop over O(n3) sets of terminals. Changes made to
the graph can be done in O(n2) per triangle, running the three-in-a-tree algorithm takes
O(n3) per triangle by assumption, which is shown to be true in the next section.

5 Three-in-a-tree implementation

In the sections above an algorithmic idea to solve the three-in-a-tree problem was intro-
duced. The asymptotic running time for the algorithm however is not immediately clear,
for example considering adding solid and podded sets to our web. In the next sections we
will introduce implementation strategies and algorithmic ideas to obtain a running time of
O(n3) to solve the three-in-a-tree problem for a given graph G and terminals T . The imple-
mentation strategy for our three-in-a-tree algorithm follows a similar idea to Lai et al. [18].
They provide implementation ideas for an algorithm with a running time of O(n2 log n).
This algorithm, however, relies heavily on highly theoretical graph theory results from
other papers, such as dynamic and incremental SPQR-trees [13], dynamic spanning forests
[17] and top space forests [1]. These results are nearly impossible to implement and it is
even unclear if their implementation would pay off in practice.

Therefore, we present a more ‘implementable’ algorithm that does not rely on other
results. This algorithm has a running time of O(n3) instead of O(n2 log n) [18], but the
trade-off is enough as we will review later. Specifically the resulting algorithm for pyra-
mid detection in time O(n6) will have the same running time as many of the other sub-
algorithms for Berge graph detection. We start by introducing some general implementa-
tion ideas, after which we will explain how we obtain wild sets and grow the web over our
graph. Lastly, the maintenance of the aiding web is discussed.

To start our implementation we are given some graph G = (V,E) with three terminals
T . Moreover we assume we have an adjacency matrix containing the incidence relation
between our vertices. Remember that by N(v) and NS(v) we denote the neighbours of a
vertex v and the neighbours of v in the set S respectively.

41

5.1 Colouring vertices

In order to maintain our web H = (X,N ,A) we will associate colours with every arc,
aiding arc and node of a web. Every vertex that is present in the web is then coloured
using a maximum of three colours: one arc colour, and at most two node colours. Because
the vertices in an arc or a node might be recoloured during our algorithm we refer to a
node or arc of a given colour as dummy when it contains no vertices. Moreover, for each
node we maintain information of whether its present in the aiding web. Lastly, for the arcs
we store whether it is a simple or a flexible arc.

Note that we in particular do not store for every component which vertices it contains as
this will lead to slower running times, however we do maintain the size of every component
as well as the size of the intersection between every arc and node. For simple arcs we do
store the vertices in its induced path as a linked list. To speed up the recolouring of our
vertices we additionally save a colour inheritance map that will map an arc colour to a
different one. Below we summarize all the information that we store during our algorithm
that was introduced above.

Web information

List of Arcs, A;
List of Aiding arcs, A†;
List of Nodes, N ;
Map containing colour inheritance, M(A) : A → A;
Map containing intersection size of arcs and nodes I(A,N) : (A,N) → N;
Map that indicates for every arc A part of which aiding arc A† it is.

Arc information

Arc colour, Ac;
Arc size, |A|;
Arc type, Atype ∈ {simple, flexible, dummy};
Arc path, AP , (only for simple arcs).

Node information

Node colour, Nc;
Node size, |N |;
Node type, Ntype ∈ {aiding, non-aiding, dummy}.

Vertex information

Arc colour vA ∈ A;
Node colours vN1 , vN2 ∈ N .

Note that each vertex does not store itself directly which aiding arc colour it has, but

42

it knows its arc color vA, and the arc A knows in which aiding arc A† this arc A lies.
Therefore, we do write directly vA† ∈ A†, to indicate that every vertex keeps track of its
aiding arc colour.

5.2 Obtaining wild sets

In order to decide if a solution exists to our given three-in-a-tree problem, an important
sub-part of Algorithm 10 suggests that we must obtain H†-wild sets of our web or decide
that none exist. Clearly, taking all possible subsets of vertices outside the web and checking
whether they are a vertex-minimal wild induced path will never lead to a running time of
O(n2). A more intricate idea is introduced in this section to handle this problem. This
idea consists of two steps, where we first want to create a database which allows us to
check in constant time if a vertex is H†-wild and secondly use this database twice to obtain
a vertex-minimal H†-wild induced path in time O(n2).

5.2.1 Representative sets

First we will introduce the concept of representative sets. Our goal is to be able to find sets
containing of at most three vertices that will represent the behaviour of the neighbours of
sets outside the web.

Definition 5.1 (Representative set). Given a three-in-a-tree problem with a graph G,
terminals T and a web H = (X,N ,A) over the graph. A set R ⊆ X is a representative set
of a set S ⊆ X, if

1. R contains at most three vertices,

2. R is H†-tamed if an only if S is H†-tamed and

3. for every other set Z ⊆ X we have that R ∪ Z is H†-wild if and only if S ∪ Z is
H†-wild.

We will show that such representative sets for a set S ⊆ X can be generated in time O(|S|).
Clearly if the set S is wild we can simply choose two vertices that do not share a node or
an arc and R is also wild. If two sets are tamed however, we must be careful to ensure that
we correctly determine whether they are wild together. Moreover, it then follows that if
we have two representative sets R1, R2 for Y1 and Y2 respectively, we will be able to find
the representative set R for Y1∪Y2 in constant time, as |R1∪R2| ≤ 6. The theorem below
shows that this is indeed the case.

Theorem 5.1 (Representative set generation). Given a three-in-a-tree problem with graph
G, terminals T and a web H we are able to find a representative set of a set S ⊆ X in time
O(|S|) using Algorithm 12.

43

Algorithm 12 Representative sets

1: Collect the set of aiding arcs AS ⊆ A† of which a vertex is in S.
2: if |AS | = 1 then
3: return a vertex from both end-nodes and an internal vertex of the arc if they exist.
4: else
5: Determine a vertex s1 ∈ S with a minimal amount of Node colours.
6: if vertex v1 has no node colours then
7: return a vertex v1 together with a vertex v2 such that (v2)A† ̸= (v1)A† .
8: else if vertex v1 has one node colour N then
9: if all vertices in S also have node colour N then

10: return vertex v1, and at most 2 other vertices that do not share arcs with
v1 or each other.

11: else
12: return two vertices that do not share any node and arc colours.
13: end if
14: else
15: if the vertices lie in a triad then
16: return a vertex that lies in every pair of nodes Ni, Nj i ̸= j.
17: else
18: return two vertices that do not share any node and arc colours.
19: end if
20: end if
21: end if

Proof. We will first show correctness. Clearly, the algorithm considers all possible cases of
sets in X and always return a set of at most three vertices. For our proof we will distinct
the cases where S is a wild or a tamed set. We consider the return statements in lines 3,
7, 10, 12, 16 and 18 and argue that they all return a correct representative set.

(7,12,18) First observe that the set S is clearly H†-wild if the algorithm reaches the return
statements in lines 7, 12 and 18, and a wild set is indeed returned containing two
vertices that share no arc and node colours. Therefore, we can immediately con-
clude that such a wild set consisting of two vertices is indeed by definition a correct
representative set of S.

(3) Clearly if all vertices of S lie in a single arc, the set is tamed. Because there are only
three different types of vertices, one in both end-nodes and one internal vertex of the
arc outside of the nodes, it becomes immediately clear that picking one from every
one of these cases if it exist suffices to represent S. Therefore line 3 returns a correct
representative set.

(10) Consider the set R returned in line 10, where all vertices have node colour N . Clearly
S and R are both tamed sets. If a set Z ⊆ X is wild, then also both S∪Z and R∪Z
are wild. If Z is tamed and S ∪ Z is tamed as well, Z ∪ R is by definition tamed
too. Now assume that Z is a tamed set, but S ∪Z is wild. This case requires a little
more care. First, we can without loss of generality assume that |Z| = 1, and denote
Z = {z}. Then, because S ∪ z is wild z cannot have N as one of its node colours.

The set R returned either contains three or two vertices. We look at the case where
|R| = 2 first. Both vertices in R have a different arc colour, and share node colour N .
Note that in our aiding web, there exist no parallel arcs between two nodes, as those

44

surely share their split pair. Therefore, the arcs that r1, r2 lie in have a different
end-node N1, N2. Assume to the contrary now that R ∪ z is tamed, and therefore
we may assume that z also has node colour N1 as it needs to share at least a node
with r1 or r2. If z and r2 share an arc, then that arc must be A = NN1, which
is a contradiction. On the other hand if z and r2 share a node N2 then they lie in
a triangle zr1r2. Such a triangle is only tamed if it is a subset of a triad induced
by the nodes N , N1 and N2. Therefore, S = {r1, r2} and S ∪ z is tamed, another
contradiction. The case R = 3 is trivial, because z has to share an arc colour with a
vertex in r and a node colour with another, which leads to parallel arcs.

(16) The vertices returned here are exactly equal to the set S, and therefore this case is
trivial.

We conclude that for every set S a correct representative set is returned. All lines except
(12) and (18) can be trivially implemented in time O(|S|) by looping through the vertices
once. For line (12) we know that there exists a vertex v2 that does not have N as a node
colour. This vertex can be found in O(|S|), either v1, v2 share an aiding arc colour or they
can be returned. If they share an arc, then because |AS | ≥ 2 we loop once more through
the vertices and find another vertex v3 that does not share a node and arc colour with
either v1 or v2. In line (18), because all vertices lie in two nodes, but not a triad wild set
is trivially found by returning two vertices that do not share any nodes by bookkeeping
every combination of nodes when looping through S.

5.2.2 Wild path generation

The next step is to use our representative sets and find a set Y that is H†-wild. The idea is
to start by calculating the representative sets for all single vertices in Y = V \X. Denote
with Ry the representative set of a vertex y, and by R1 = {Ry|y ∈ Y }. All these sets
can be calculated in time O(|Y ||X|) from Theorem 5.1, and if one of them is wild we are
immediately done. If none of them are wild, we need to find a vertex-minimal induced
wild path. Clearly, looping through all sets of vertices in Y is too slow. We will show
a different approach with a suitable running time. Note that the alternative approach
for this sub-algorithm in [18] runs in time O(n log n), but relies heavily on results from
[13]. The algorithm below is as all results in this paper self-contained and can be directly
implemented with a running time of O(n2).

Theorem 5.2 (Wild path generation). Given a three-in-a-tree problem with graph G,
terminals T , a web H and corresponding representative sets Ry ∈ R1 for all y ∈ V \X, we
can find a vertex minimal induced wild path using Algorithm 13 in time O(n2).

45

Algorithm 13 Wild path generation
1: Obtain the graph induced by the vertices Y = V \X.
2: Find a connected component induced by Yc ⊆ Y , such that NX(Yc) is wild.
3: Pick a random vertex y1 ∈ Yc, and let YT = {y1}.
4: while the set YT is tamed do
5: Add a vertex to YT using breadth-first search and remember its parent vertex.
6: Calculate the new representative set for YT .
7: end while
8: Obtain the path PY = y1, y2..., yK from y1 to the last vertex added to YT .
9: Let RT = RyK and y = yK .

10: while the set RT is tamed do
11: Let y be the next vertex in PY in reverse order
12: Update the representative set RT as RT ∪NX(y)
13: end while
14: Let m be the index of the last y in the loop above, such that ym = y.
15: return The sub-path of PY , Ywild = ym, ym+1, ...yK .

Proof. Again we will first discuss the correctness of the algorithm. We need to show three
things. Namely, that the set Y returned by the algorithm is:

1. wild;

2. an induced path;

3. vertex minimal.

Because the algorithm finds a wild connected component Yc, there clearly exists a subset
of Yc that is wild. Clearly, the last vertex added to YT can form a wild set together with
one of the other vertices. Therefore a shortest path between two such vertices will form a
wild set. A sub-path of this path then also exists that is wild.

We know that the path that is returned is a shortest path from y to yK . Assume this
is not an induced path. Then there is some edge connecting two vertices in the path, and
the path is not a shortest path. Therefore an induced path is returned.

Lastly, we need to show vertex-minimality. Assume to the contrary that the returned
path ym, ym+1, ..., yK is not vertex-minimal. This means that one of the induced paths
ym, ym+1, ..., yK−1 or ym+1, ym+2, ..., yK is also a wild path. If ym, ym+1, ..., yK−1 is wild,
then the set YT \yK in the algorithm is also wild. Because the vertex yK is the last vertex
added to YT this is a contradiction. Clearly, from lines 10-12 of the algorithm it immediately
follows that the path ym+1, ym+2, ..., yK is tamed. Therefore, we can conclude that the
path is indeed vertex-minimal. Using some standard algorithms for finding connected
components and breadth-first search the algorithm can clearly be implemented in time
O(n2).

Using Algorithms 12 and 13 we are able to obtain a vertex minimal H†-wild induced path
in time O(n2). In the following sections we will check whether this set is podded or solid
and show how to increase the size of our web if that is the case. Remember from Algorithm
10 that in all other cases we are immediately done.

46

5.3 Solid sets

Let Ywild be the H†-wild induced path obtain from Algorithm 13. We will first show how
to check whether this set is solid. If |Ywild| ≥ 2 any straightforward implementation of
the definition is sufficient, however we advise to take care when checking this for a single
vertex. We simply propose the following algorithm that will work for both cases.

Theorem 5.3. Given a three-in-a-tree problem with graph G, terminals T , a web H and
a vertex minimal H†-wild induced path Ywild, we can determine in time O(n2) whether this
set is solid using algorithm 14.

Algorithm 14 Solid set check
1: if |Ywild| > 2 then
2: for every internal vertex y of the path Ywild do
3: if NX(y) ̸= ∅ then
4: return false
5: end if
6: end for
7: end if
8: Let S = NX(Y).
9: Obtain all arc and node colors from the vertices in S, NS and AS respectively.

10: for every node N ∈ NS do
11: if the amount of vertices in S with node color Nc is equal to |N | then
12: Save node N as a solid set.
13: end if
14: end for
15: for every arc A ∈ AS do
16: if there are exactly two vertices v1, v2 ∈ S with arc colour Ac, A is a simple arc

and v1 is a neighbour of v2 then
17: Save arc A as a solid set
18: end if
19: end for
20: if there are not exactly two saved solid sets then
21: return false
22: end if
23: for each vertex v ∈ Y do
24: if v does not have a node or arc colour corresponding to one of the two solid sets

then return false
25: end if
26: end for
27: return true

Proof. Correctness of the algorithm should be clear as it is almost a direct implementation
of the definition of a solid set. Regarding the running time, there are O(n) possible arcs
and nodes to check, and every check is just looping through O(n2) vertices and the running
time is evidently as claimed.

If Algorithm 14 determines that our wild set Y is in fact a solid set, we will increase the
size of our web as proposed in Theorem 4.8. In order to do this, note that from Algorithm
14 we could also obtain the two solid sets S1, S2, such that Sj is the set of neighbours of

47

yj for each end-vertex of Y . In the following algorithm the reason for maintaining paths
Ap for all our simple arcs will also become clear.

Theorem 5.4. Given a three-in-a-tree problem with graph G, terminals T , a web H, a
vertex minimal H†-wild induced path Ywild and two solid sets Sj, such that Sj are the
neighbours of yj for each end-vertex of Y , we can strictly increase the size by implementing
Theorem 4.8 in time O(n) using Algorithm 15.

Algorithm 15 Solid set increase
1: for j ∈ {1, |Y |} do
2: if Sj is a node of the web H then
3: Move vertex yj into the web and give it the node colour of Sj .
4: else
5: Let A = N1N2 be the arc of which the vertices in Sj are a subset.
6: Create a new simple arc A′.
7: Let v be the vertex in Ap that lies in N1, give it the new arc colour A′

c.
8: Remove v from Ap and add it to A′

p.
9: while v is not in Sj do

10: Let v be the next vertex in path Ap.
11: Recolour the arc colour of vertex v to A′

c.
12: Remove v from Ap and add it to A′

p.
13: end while
14: Create a new node N ′ with vertices Sj ∪ yj .
15: Set the Node-arc-intersection of N ′ with Ap and A′ to 1.
16: Set the Node-arc-intersection of N1 with Ap to 0, and with A′ to 1.
17: end if
18: end for
19: Create another new simple arc A′′.
20: Give all vertices in Y arc colour A′′

c , and set its path as the induced path of Y .
21: Set the Node-arc-intersection of A′′ with the nodes of the end-vertices of Y to 1.

Proof. Again, correctness of the Algorithm is immediately clear from Theorem 4.8 and its
proof. For the running time we only need to mention that in line 12 removing the vertex v
from Ap and adding it to A′

p takes time O(1) because v is removed from and added to the
end of the respective paths. This means that our while loop takes O(n) time. Obviously
all other steps can be implemented in time O(n) as well.

48

5.4 Podded sets

We will now move on to podded sets. While the algorithms below can determine for all wild
sets whether they are podded, note that it is important to always first determine whether
the wild set is solid. In particular, examples can be constructed where adding a set that is
both solid and podded to the web using the algorithm below will lead to incorrect taming
webs and mislabelling of three-in-a-tree problems. The algorithms here are based on the
proof of Theorem 4.10 and its corresponding Lemmas.

Note that first of all we need to be able to obtain a smallest chunk C = N1N2 such
that it is a pod of our wild set Y . In particular in contrast with the results in [18], we
cannot rely on an incremental dynamic SPQR tree [13] over our graph which immediately
gives such smallest chunks, but use a new and different approach to find a smallest chunk
C containing a given set of arcs end nodes. An articulation vertex of a connected graph G
is a vertex v such that G− v is a disconnected graph.

We write H for the graph of the web H, where its arcs are edges and its nodes are
vertices. It is clear that the end-nodes of a chunk are articulation vertices n1, n2 in H,
and there is a component H ′ of H\{n1, n2} for which the graph induced by VH′ ∪{n1, n2}
contains all nodes and arcs of NX(Y). In particular we need to find n1 and n2 such that
there are no other vertices in VH′ ∪{n1, n2} for which this holds. First we will show how
to find articulation points of a graph, then we will obtain a minimum chunk and lastly we
will test whether it is a pod of Y .

Theorem 5.5. Given a three-in-a-tree problem with graph G, terminals T , a web H and
a vertex minimal H†-wild induced path Ywild = y1y2...yK , we can determine in time O(n)
whether this set has a H†-pod C = N1N2 using Algorithm 16.

Algorithm 16 Podded set check
1: if The neighbours of Ywild do not all lie in C and its end-nodes N1, N2. then
2: return false
3: end if
4: for end-nodes N ∈ {N1, N2} do:
5: for end-vertex y ∈ {y1, yK} do
6: Count the number µ(y) of neighbours of y that lie in node N , but not have

aiding arc color C. I.e. determine |NX(Y) ∩N\C|.
7: end for
8: if µ(y) = 0 for both y or µ(y) = |N\C| for one y and 0 for the other then
9: continue

10: else
11: return false
12: end if
13: end for
14: return true

Proof. The correctness of the algorithm is evident by looking at the definition of a pod.
For each end vertex of the wild path we count all neighbours in the nodes N1\C and N2\C.
Because we know the size of each node, and the size of the intersection of a node and an
arc, we can calculate the size of each Ni\C i = 1, 2 and check whether the neighbours of
Y either cover this set, or do not intersect with it at all.

Checking the running time, all loops just have two iterations. Counting the neighbours

49

of Y and checking their node and arc colours takes O(n). Concluding for each end-vertex
is done in time O(1) and the running time is as claimed.

Now that we can determine for a given chunk C = N1N2 whether this set is a pod of
a wild set Ywild, we want to generate minimal chunks that are potential pods in the aiding
web. We do this in two steps, firstly we check whether an entire aiding arc is a pod, after
which we generate a smallest chunk that still is a pod of Y . Note that first of all, every
pod always contains one of the end-nodes of an aiding arc. And secondly, if the aiding arc
is a pod of a set Y , there could exist a smaller pod, however surely there exists a smallest
pod as the aiding arc itself is one. Using Algorithm 16 we can determine for every wild
non-solid set whether it allows a pod. We simply determine if all neighbours lie in a single
aiding arc and its end-nodes, after which we test whether those sets together are a pod
of Y . We now turn to obtaining a smallest pod for our wild set. In order to find such
smallest sets, we will rely on finding articulation points of our web.

Lemma 5.6. For a given graph G we can obtain all articulation points in time O(n2).

Proof. Running Tarjan’s algorithm [23] will yield all articulation points in time O(|n +
m|) = O(n2).

Lemma 5.7. Given a three-in-a-tree problem with graph G, terminals T , a web H and a
set of nodes NY that all appear in a chunk C = N1N2 and either N1 or N2 appears in
NY , we can find the smallest chunk C ′ = N ′

1N
′
2, and all nodes between the end-nodes using

Algorithm 17.

Algorithm 17 Smallest chunk
1: Determine the end-nodes of C that are in NY .
2: if both end-nodes are in NY then
3: return The entire chunk C.
4: end if
5: Let N1 be the end-node of C that is in NY , and N2 the other end-node of the chunk

C.
6: Construct the graph HC where the nodes, arcs and node-arc intersections of the chunk

C form the vertices and edges of the graph HC .
7: Determine the shortest paths from N2 to all other nodes in the graph HC .
8: Let the node N∗

Y ∈ NY be closest to N2, with distance d∗.
9: Determine the articulation point N ′

2 such that the distance d(N2, N
′
2) is the maximum

distance that is still smaller than d∗.
10: Remove the node N ′

2 from the graph HC .
11: Determine the set C ′ of all arcs that are still reachable from N ′

2.
12: return chunk C ′ = N1N

′
2.

It is only for these smallest pods that we can guarantee correctness of the total three-in-
a-tree algorithm. We turn to show how such wild sets with a minimal pod will increase the
size of our web. The correctness of the algorithm already follows from 4.10, and therefore
we only discuss the algorithm and its running time.

Theorem 5.8. Given a three-in-a-tree problem with graph G, a web H and a vertex minimal
H†-wild induced path Ywild = y1y2...yK with corresponding minimal pod C, we can strictly
increase the size of our web while maintaining its properties by implementing Theorem 4.10
and Lemma 4.9 in time O(n) as in Algorithm 18.

50

Algorithm 18 Podded increase
1: Determine the end-node N of C = N1N2 that has no vertex neighbouring Y .
2: if N exists and is the end-node of more than one arc or a flexible arc of C then
3: Let A be the simple arc in C that has end-node N .
4: Find vertex v2 ∈ NA(Y) closest to N2 on A, and v3 its neighbour on A further

away from N2.
5: Create a node N3 with v2 and v3 and add the end vertex of Y which is their

neighbour to it.
6: Update the arcs accordingly.
7: Let C ′ be the new minimal pod of Y .
8: end if
9: Merge the arcs of C ′ and add all vertices of Y to the new arc.

Proof. The algorithm is a direct implementation of Lemma 4.9 and Theorem 4.10 and
their proofs show correctness of the algorithm. In order to see that the running time is
correct, see that from Lemma 5.7 we know all arcs and nodes of our smallest chunk. The
first few checks are therefore easily done in O(n). Finding the vertex furthest away from
N on A that is also a neighbour of Y takes O(n) too. As last we need to update our arcs.
However, this is easily done by counting the number of vertices on the resulting simple arc
from N3 to N . From this number we can update the arc sizes, and this takes only O(n)
time. Merging takes O(n) time as well.

51

Figure 29: Graph representation of arcs and nodes inside a single arc of the aiding
web. A new arc from a solid wild set has been added to the blue node. Red nodes
indicate articulation points closest to the blue node in both directions. Green arcs
will merged into new aiding arcs.

5.5 Maintaining the aiding web

During our algorithm when searching for wild sets, we always consider our aiding web H†.
This web is maintained during the entire algorithm. Firstly, note that during the first step
of the Algorithm 10 the aiding web is always equal to the web of the graph. Then during
the remainder of the algorithm, there are two parts where the aiding web could possibly
change: when adding podded sets, or when adding solid sets. For our desired running time
it is too slow to construct a new aiding web every time. Remember again that the aiding
web in [18] is maintained as an incremental dynamic SPQR-tree during the algorithm,
based on the result in [13], which was omitted to make the algorithm implementable.
Therefore, we will consider a different way to maintain our aiding web. Again we will rely
on the articulation points of subgraphs, using Tarjan’s algorithm [23].

We first consider when a H†-podded set is added to our web. By definition, this set
only has neighbours in one aiding arc and its end-nodes. Clearly, after these vertices are
added to an arc, they will always have the end-nodes of this aiding arc as split-nodes.
Therefore, the aiding web never changes when an H†-podded set is added to our web.

The second case is, however, a bit more difficult. Note for example the web and its
aiding web in Figures 21 and 22. When an arc is added and we obtain the new web as in
Figure 23. The aiding web has to change now because many arcs now have new split-nodes
and new aiding arcs appear. In this case the aiding web becomes equal to the web, but
this does not need to be the case in general.

We will now describe how to update our aiding web during the algorithm. In the
following we will look at our updated web Hnew after adding a solid set, and refer to our
aiding web that still needs to be updated as web H†

old. As seen in Algorithm 15, the solid
H†-wild set Y will form a new arc A. The newly added arc containing the vertices from
the wild-set has two end-nodes N1 and N2 in the web Hnew. If both of these end-nodes are
also nodes in the aiding web H†

old, it is obvious to see that the aiding web does not change
at all. On the other hand, if these end-nodes are internal nodes of an aiding arc, the web
will always change. We consider the aiding arcs A†

1 and A†
2 of the internal nodes N1 and

N2 separately, if they exist. In particular, all other aiding arcs will stay the same, because
the split-nodes of the internal web components can not change. We can update the two
aiding arcs separately, and the resulting aiding web will be the aiding web of Hnew.

Theorem 5.9. Given an aiding arc A† with end-nodes N1, N2, the set of all its arcs A′

and one of its internal nodes Nnew to which an arc Anew, consisting of the vertices of a
solid H†-wild set Y , has been added in Algorithm 15, we can update the part of the aiding
web inside this aiding arc in time O(n2) using Algorithm 19.

52

Algorithm 19 Aiding web maintenance
1: Let H ′ be the graph were all arcs in A′ are edges and their end-nodes are vertices.
2: Find a shortest path from Nnew to every vertex in H ′.
3: Let P1 be the path from Nnew to N1 and P2 similarly to N2.
4: Determine the set S of all articulation points in the graph.
5: if Nnew ∈ S then
6: Let M1 and M2 be equal to Nnew.
7: else
8: Let M1 be the articulation point on P1 closest to Nnew.
9: Let M2 be similar to M1 on P2.

10: end if
11: Create a new aiding arc A†

new.
12: for each arc A ∈ A′ do
13: if A lies the component between N1 and M1 then
14: Remove A from A† and add it to aiding arc A†

new.
15: Update sizes of A, A† and A†

new and the aiding arc of A accordingly.
16: else if A lies in the component between M1 and M2 then
17: Create a new aiding arc that is just a copy of A.
18: Update arc sizes and such accordingly.
19: else if A lies in the component between M2 and N2 then
20: Do nothing.
21: end if
22: end for

Proof. An example of an aiding arc to which a new solid set has been added can be seen in
Figure 29, while the structure cannot appear in this exact way in the web it will allow us to
proof the theorem for almost all kinds of aiding arcs. The only thing that should be noted
is that there are no non-trivial split-nodes in between the articulation points closest to the
vertex Anew, because when podded sets are added to our web, chunks are also merged in
the web H.

First note that because M1 is a articulation point, all arcs between M1 and N1 share
the split-pair (M1, N1). This split-pair is also maximal, as otherwise another articulation
point closer to Nnew would exist. The same holds for M2 and N2, and therefore these two
sets of arcs are correctly merged into chunks of the aiding web in the algorithm.

All other arcs in the web between the articulation points M1 and M2 do not share any
split-nodes anymore after the arc Anew has been added to the web. Therefore all these
arcs become arcs in the aiding web, and the algorithm correctly handles this.

Because we maintain the graph H† as well as our actual aiding web H†during our three-
in-a-tree algorithm, the algorithm just works on a simple graph. Finding all shortest paths
and determining articulation points is thus done in time O(n2). The components of the
arcs can easily be found by removing articulation points of the graph and looping through
the components. All updates to the arcs and aiding arcs are done in O(1). In total our
algorithm therefore take O(n2) time.

Now that all algorithms are introduced, and our implementation strategies are discussed
we turn to the main results about the running time of our complete algorithm.

Lemma 5.10 (Running time three-in-a-tree). We can implement Algorithm 10 in time
O(n3) to find a three-in-a-tree for a given graph G and terminals T .

53

Proof. First we obtain an initial web of our graph in time O(n2) as seen in Theorem 4.13.
Now we turn to the main loop of our algorithm. Because the size of our web strictly
increases, as seen in Theorems 4.8 and 4.10, we know that at least one vertex is added to
the web in each iteration and the algorithm is done in O(n) iterations.

During each iteration we first generate all representative sets of the vertices of the
web, and find a vertex-minimal wild induced path as seen in Theorem 5.2 in time O(n2).
Checking whether this set is H-solid takes O(n2) time as seen in Theorem 5.3 and checking
whether it is H-podded takes O(n) as in Theorem 5.5. Adding podded and wild sets can
also be done in time O(n2) from Theorems 5.4 and 5.8.

After a wild set is added to the web we update our aiding web in time O(n)2 as stated
in Theorem 5.9. In conclusion, everything during one iteration is of time O(n2), and in the
total O(n) iterations we obtain an algorithm to find the three-in-a-tree in time O(n3).

Theorem 5.11 (Running time improved pyramid detection). Given a graph G = (V,E)
we can determine in time O(n6) whether there is a subset S ⊆ V that induces a pyramid.

Proof. Follows from Lemma 5.10 and Theorem 4.15.

54

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Edge probability

R
un

ni
ng

ti
m

e
(s

)

15 nodes
20 nodes

Figure 30: Fraction of graphs that is perfect for varying edge probabilities

6 Computational results

Both the implementation for the perfect graph detection and the three-in-a-tree algorithms
that were discussed in this thesis have been implemented in Python 3.8. Because we believe
the Berge graph detection from [6] has not been implemented before, we first discuss the
results of that implementation. Next, we compare the original pyramid detection sub-
algorithm to our new and improved implementation using a three-in-a-tree algorithm.
Lastly, we discuss some interesting findings about the three-in-a-tree implementation in
general.

In this section we again make use of Erdös-Rènyi random graphs, generated from a
given edge-probability.

6.1 Perfect graph detection

Some of the running times for sub-components of the Berge graph detection algorithm
were already shown in Section 3.4. These plots showed that the running times for several
sub-algorithms are slower for graphs that have a slightly lower edge probability. Because
we know that fully connected graphs are always perfect, while sparse graphs are mostly
not perfect we check for which edge density our graphs tend to be perfect. Because graphs
with multiple components are not of interest, we generate these random graphs such that
they are always connected and consist of a single component.

In Figure 30 we see for graphs with a given number of nodes, but a varying edge-
probability the amount of graphs that are perfect. For each edge-probability and number
of nodes we ran 200 randomly generated test cases and plotted the fraction of those that
are perfect. It turns out that there is a sharp and not too large region which is critical
for the algorithm. In this region the graphs are either perfect or non-perfect, while graphs
with low edge-probability are never perfect and (almost) complete graphs are of course
always perfect.

6.2 Pyramid detection algorithms comparison

In order to check the performance of the three-in-a-tree algorithm for finding pyramids
in comparison with the original sub-algorithm to detect pyramids we constructed more
random graphs. We want to determine for which edge-probability both algorithm perform
worst. For this, we generate random graphs with 15 and 20 nodes and varying edge-
probability. The results are seen in Figures 31 and 32. Interestingly, the worst running

55

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Edge probability

R
un

ni
ng

ti
m

e
(s

)
Original algorithm

Three-in-a-tree

Figure 31: Average running
times for pyramid detection in
randomly generated graphs with
15 nodes.

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

Edge probability

R
un

ni
ng

ti
m

e
(s

)

Original algorithm
Three-in-a-tree

Figure 32: Average running
times for pyramid detection in
randomly generated graphs with
20 nodes.

5 10 15 20 25
0

5

10

15

Number of nodes

R
un

ni
ng

ti
m

e
(s

)

Original algorithm
Three-in-a-tree

Figure 33: Average running times for pyramid detection in randomly generated
graphs with edge-probability 0.9 and an increasing number of nodes.

times of the original algorithm correspond to the region of the edge-probabilities in which
some but not all graphs are perfect as seen in Figure 30. The new algorithm based on
three-in-a-tree performs increasingly worse with growing edge probability.

Of course, the edge-probabilities around which the graphs are sometimes but not always
perfect are the most important for our pyramids detection. Therefore, we now fix our edge-
probability on 0.9 and compare both algorithms for an increasing number of nodes as seen
in Figure 33. In line with our expectations the new pyramid algorithm based on three-in-
a-tree clearly outperforms the old algorithm.

As mentioned before, the running time for the algorithm that uses three-in-a-tree gets
increasingly higher with increasing edge probability for a fixed number of nodes. Because
the pyramid algorithms both rely on the generation of triangles in the graph, which are
higher for denser graphs, it seems that the three-in-a-tree running time mostly depends
on this factor. Therefore, we plot the number of triangles that are generated in random
graphs in Figure 34 and the running time for both algorithms per triangle in a graph with
20 nodes in Figure 35. The running time of our new algorithm still grows with increasing
edge-probability even per triangle.

The new algorithm to detect pyramids does not only rely on the three-in-a-tree algo-

56

0.5 0.6 0.7 0.8 0.9 1
0

1,000

2,000

3,000

4,000

Edge probability

R
un

ni
ng

ti
m

e
(s

)

10 nodes
15 nodes
20 nodes
25 nodes
30 nodes

Figure 34: Average number of triangles in Erdös-Rènyi random with varying edge
probabilities.

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

·10−3

Edge probability

R
un

ni
ng

ti
m

e
(s

)

Original algorithm
Three-in-a-tree

Figure 35: Average running time of two pyramid detection algorithms per triangle
in a graph with 20 nodes

rithm. We also need to generate triangles in O(n3) time, and for each triangle change the
graph such that we can run the three-in-a-tree algorithm in O(n2) time per triangle, as
seen in Algorithm 11. We check for the effect on the running time of each of these parts.
In Figures 36 and 37 we compare for graphs with 20 and 25 nodes the running time of
these three different sub-algorithms.

Unexpectedly, the preprocessing algorithm is in average responsible for the majority
of the running time for detecting pyramids. The keyword here is average because it turns
out that the three-in-a-tree algorithm is very quick in almost all cases, which we will show
in the next section.

6.3 Three-in-a-tree algorithm

The three-in-a-tree algorithm consist of one initial step, and is followed by multiple iterative
steps. We want to determine in how many steps the algorithm is done in general, and how
often it solves the problem in the initialization step alone. Finding solutions already in the
initialization step only takes O(n2), and has a huge speed benefit over the original pyramid
algorithm. While it seems that the algorithm can in practice indeed be often done in a
small number of steps, theoretically the algorithm can of course take O(n) steps. Therefore,

57

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Edge probability

R
un

ni
ng

ti
m

e
(s

)
Three-in-a-tree

Triangle generation
Preprocessing

Figure 36: Running time of
sub-algorithms for pyramid de-
tection using three-in-a-tree in
Erdös-Rènyi random with 20
nodes and varying edge probabil-
ities.

0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

Edge probability

R
un

ni
ng

ti
m

e
(s

)

Three-in-a-tree
Triangle generation

Preprocessing

Figure 37: Running time of
sub-algorithms for pyramid de-
tection using three-in-a-tree in
Erdös-Rènyi random with 30
nodes and varying edge probabil-
ities.

Table 1: Number of iterations of the three-in-a-tree algorithm in 100000 random
graphs

Number of nodes init. step 1 it. 2 it. 3 it. 4 it. 5+ it. max it. (#times)
20 19569 79185 204 158 136 748 17 (29)
25 19548 79272 186 131 134 729 22 (3)
30 19457 79294 204 165 134 746 27 (2)
35 19515 79311 208 138 114 715 31 (2)
40 19457 79401 169 142 121 710 34 (1)
50 19482 79350 171 153 120 754 38 (1)

we look at the average number of iterations for different amount of nodes. We generate
100000 random graphs with varying number of vertices. We choose an edge-probability
of 0.925, as at this probability for all amounts of nodes the three-in-a-tree problem is not
trivial, and the decision problems answer both yes and no in many cases. In each graph we
pick 3 random vertices and run the three-in-a-tree algorithm. The number of steps that
the three-in-a-tree algorithm takes to decide is seen in Table 1.

It becomes immediately clear why the algorithm seems to perform so well on average. In
approximately 98% of the cases, the three-in-a-tree algorithm is done after a single iteration
of searching for a wild set, which then either does not exist meaning the algorithm decides
no, or is neither solid nor podded thus the algorithm directly decides yes.

7 Concluding remarks

In this thesis we introduced an implementable three-in-a-tree algorithm to accelerate per-
fect graph detection. The original perfect graph detection algorithm by Chudnovsky et al.
as well as a new pyramid detection algorithm based on the three-in-a-tree algorithm by
Lai et al. have been implemented. Because the new pyramid detection in time O(n6) ties
the asymptotic running time with jewel, type T2 and type T3 detection, the forbidden
substructure part of the algorithm has a running time of O(n6) now. The clear sole bottle-

58

neck is now the cleaning and detection of amenable holes, on which future research should
be focused. Because this sub-algorithm seems nearly impossible to accelerate, a better
approach would be to introduce new additional forbidden substructures, or generalise the
current ones, leading to odd-holes that are easier to detect.

Our implementation to detect perfect graphs has an important consequence in the field
of Mixed Integer Programming (MIP). For a perfect graph G, the LP relaxation of the set
packing problem that corresponds to the stable set problem of the graph G has only integer
solutions. In particular, when researching a set packing problem that seems to always yield
integral solutions for its relaxation, we can test the graph of the corresponding stable set
problem for perfection. If the graph is perfect and the set packing problem contains all
cliques of the corresponding graph, this is enough to show integrality. This way, we can
get an idea why a problem is integral and if the graphs are perfect try to prove that this
is the case.

The results of our implementable three-in-a-tree algorithm are here used to accelerate
perfect graph detection. The three-in-a-tree implementation can however be used for many
other related induced subgraph problems. For example beetles can be found using a three-
in-a-tree algorithm, which is part of the algorithm to detect even holes [4].

59

References

[1] Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Main-
taining information in fully dynamic trees with top trees. ACM Trans. Algorithms,
1(2):243–264, oct 2005. ISSN 1549-6325. doi: 10.1145/1103963.1103966. URL
https://doi.org/10.1145/1103963.1103966.

[2] C. Berge. Farbung von graphen, deren samtliche bzw. deren ungerade kreise starr
sind. Wissenschaftliche Zeitschrift, 1961. URL https://cir.nii.ac.jp/crid/
1573387450390873216.

[3] Dan Bienstock. On the complexity of testing for odd holes and induced odd paths.
Discrete Mathematics, 90(1):85–92, 1991. ISSN 0012-365X. doi: https://doi.org/
10.1016/0012-365X(91)90098-M. URL https://www.sciencedirect.com/science/
article/pii/0012365X9190098M.

[4] Hsien-Chih Chang and Hsueh-I Lu. A faster algorithm to recognize even-hole-
free graphs. Journal of Combinatorial Theory, Series B, 113:141–161, 2015. ISSN
0095-8956. doi: https://doi.org/10.1016/j.jctb.2015.02.001. URL https://www.
sciencedirect.com/science/article/pii/S0095895615000155.

[5] Maria Chudnovsky and Paul Seymour. The three-in-a-tree problem. Combinatorica,
30(4):387–417, Jul 2010. ISSN 1439-6912. doi: 10.1007/s00493-010-2334-4. URL
https://doi.org/10.1007/s00493-010-2334-4.

[6] Maria Chudnovsky, Gérard Cornuéjols, Xinming Liu†, Paul Seymour†, and Kristina
Vušković‡. Recognizing berge graphs. Combinatorica, 25(2):143–186, Mar 2005.
ISSN 1439-6912. doi: 10.1007/s00493-005-0012-8. URL https://doi.org/10.1007/
s00493-005-0012-8.

[7] Maria Chudnovsky, Ken-ichi Kawarabayashi, and Paul Seymour. Detecting even holes.
Journal of Graph Theory, 48(2):85–111, 2005. doi: https://doi.org/10.1002/jgt.20040.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20040.

[8] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong
perfect graph theorem. Annals of Mathematics, 164(1):51–229, 2006. URL http:
//www.jstor.org/stable/20159988.

[9] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. K4-free
graphs with no odd holes. Journal of Combinatorial Theory, Series B, 100(3):313–
331, 2010. ISSN 0095-8956. doi: https://doi.org/10.1016/j.jctb.2009.10.001. URL
https://www.sciencedirect.com/science/article/pii/S009589560900080X.

[10] Maria Chudnovsky, Alex Scott, Paul Seymour, and Sophie Spirkl. Detecting an odd
hole, 2019.

[11] Maria Chudnovsky, Alex Scott, and Paul Seymour. Finding a shortest odd hole, 2020.

[12] Michele Conforti, Gérard Cornuéjols, Ajai Kapoor, and Kristina Vušković. Even-hole-
free graphs part ii: Recognition algorithm. Journal of Graph Theory, 40(4):238–266,
2002. doi: https://doi.org/10.1002/jgt.10045. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/jgt.10045.

[13] G. Di Battista and R. Tamassia. On-line maintenance of triconnected components

60

https://doi.org/10.1145/1103963.1103966
https://cir.nii.ac.jp/crid/1573387450390873216
https://cir.nii.ac.jp/crid/1573387450390873216
https://www.sciencedirect.com/science/article/pii/0012365X9190098M
https://www.sciencedirect.com/science/article/pii/0012365X9190098M
https://www.sciencedirect.com/science/article/pii/S0095895615000155
https://www.sciencedirect.com/science/article/pii/S0095895615000155
https://doi.org/10.1007/s00493-010-2334-4
https://doi.org/10.1007/s00493-005-0012-8
https://doi.org/10.1007/s00493-005-0012-8
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.20040
http://www.jstor.org/stable/20159988
http://www.jstor.org/stable/20159988
https://www.sciencedirect.com/science/article/pii/S009589560900080X
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.10045
https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.10045

with spqr-trees. Algorithmica, 15(4):302–318, Apr 1996. ISSN 1432-0541. doi: 10.
1007/BF01961541. URL https://doi.org/10.1007/BF01961541.

[14] Reinhard Diestel. Graph Theory. Springer Berlin Heidelberg, Berlin, Heidelberg, 2017.

[15] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, jun
1962. ISSN 0001-0782. doi: 10.1145/367766.368168. URL https://doi.org/10.
1145/367766.368168.

[16] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences
in combinatorial optimization. Combinatorica, 1(2):169–197, Jun 1981. ISSN 1439-
6912. doi: 10.1007/BF02579273. URL https://doi.org/10.1007/BF02579273.

[17] Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic de-
terministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-
edge, and biconnectivity. J. ACM, 48(4):723–760, jul 2001. ISSN 0004-5411. doi:
10.1145/502090.502095. URL https://doi.org/10.1145/502090.502095.

[18] Kai-Yuan Lai, Hsueh-I Lu, and Mikkel Thorup. Three-in-a-tree in near linear time.
page 1279–1292, 2020. doi: 10.1145/3357713.3384235. URL https://doi.org/10.
1145/3357713.3384235.

[19] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:96–115,
1927.

[20] F. Roussel and P. Rubio. About skew partitions in minimal imperfect graphs.
Journal of Combinatorial Theory, Series B, 83(2):171–190, 2001. ISSN 0095-8956.
doi: https://doi.org/10.1006/jctb.2001.2044. URL https://www.sciencedirect.
com/science/article/pii/S0095895601920441.

[21] Alex Scott and Paul Seymour. Colouring graphs with no odd holes. 10 2014.

[22] Jialei Song and Baogang Xu. On the chromatic number of a family of odd hole free
graphs, 2021.

[23] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972. doi: 10.1137/0201010. URL https://doi.org/10.
1137/0201010.

61

https://doi.org/10.1007/BF01961541
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1007/BF02579273
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/3357713.3384235
https://doi.org/10.1145/3357713.3384235
https://www.sciencedirect.com/science/article/pii/S0095895601920441
https://www.sciencedirect.com/science/article/pii/S0095895601920441
https://doi.org/10.1137/0201010
https://doi.org/10.1137/0201010

	Introduction
	Related literature

	Background
	Preliminaries
	Perfect graphs
	Strong perfect graph theorem

	Berge graph detection
	Forbidden substructures
	Pyramids
	Jewels
	Configurations of types T1, T2 and T3

	Cleaning algorithm
	Generating near-cleaners

	Odd hole detection
	Perfect graph detection

	Three-in-a-tree
	Problem description
	Graph webs
	Tamed sets
	Aiding web
	Flexible arcs
	Solid sets
	Podded sets
	Three-in-a-tree algorithm
	Initialisation and complete three-in-a-tree algorithm

	Improved pyramid detection

	Three-in-a-tree implementation
	Colouring vertices
	Obtaining wild sets
	Representative sets
	Wild path generation

	Solid sets
	Podded sets
	Maintaining the aiding web

	Computational results
	Perfect graph detection
	Pyramid detection algorithms comparison
	Three-in-a-tree algorithm

	Concluding remarks

