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1 Introduction & Background 

When companies are developing a new healthcare technology, such as a new drug, diagnostic technique, or 

surgical procedure, the end goal is to release that technology onto the market. This will almost always involve 

obtaining approval from the healthcare governing bodies in the countries of their target markets, especially so 

for new drugs. For these approvals, some governing bodies will want not just an analysis and proof of the 

health-related effects, but also a health economic evaluation of the new technology when implemented into the 

respective national healthcare programs based on data gathered during the clinical trials (Coyle et al., 2023; 

NICE, 2022). 

In the United Kingdom (UK) specifically, the National Institute for Health and Care Excellence (NICE) that 

governs healthcare technology assessments (HTAs) in the UK notes that a large portion of the technologies 

NICE assesses affect the survival of patients, and thus having an accurate estimation of survival is essential 

(Latimer, 2011; Latimer, 2013). However, patients are typically only monitored for a limited time during a 

clinical trial, and some patients will still be alive at the end of this follow-up period. Thus, to get an estimate of 

the survival of these patients, survival analyses and extrapolations are required (Clark et al., 2003).  

Recent developments have shown that current survival extrapolation methods do not adequately account for 

general population background mortality (GPM), which reflects the mortality of the general population and is 

affected by factors such as age, sex, calendar year, location, etc. (Rutherford et al., 2020; Verheul et al., 1993). 

As GPM increases with age, some extrapolations could result in patients having lower mortality than what is 

observed in the general population if not adjusted correctly for GPM, leading to clinically implausible results 

(Latimer, 2011). Several researchers have described or compared approaches of incorporating GPM 

information into survival extrapolations in specific situations, but a general consensus on what method should 

be used in certain situations is lacking (Guyot et al., 2017; Jackson et al., 2017). Others have recommended 

assessing the performance of GPM incorporating extrapolation methods in a more generalised simulation study 

(van Oostrum et al., 2021). This thesis responds to that recommendation. 

In the next chapter, a problem description will be given based on the given assignment by OPEN Health and 

the context of the van Oostrum et al. (2021) study that inspired the assignment. Then, an extensive literature 

review was conducted, results of which will be reported in Chapter 3. Chapter 4 describes the methods used. 

Chapter 5 will present the results, which will be further discussed in Chapter 6. Finally, Chapter 7 will give 

conclusions and recommendations.   
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2 Problem description 

This chapter will start with a brief literature review of some relevant sources cited by van Oostrum et al. and 

others to get a better understanding of the problem of incorporating GPM into survival analyses as in their 

research. Then, the assignment as originally presented by OPEN Health will be reviewed and a description of 

the problem context of this research will be given. Finally, this chapter will be concluded by describing the core 

problem and defining the research questions.  

2.1 Literature review 

2.1.1 Survival analyses and extrapolations 

Survival analyses are a common technique in health economic evaluations, as a high proportion of technologies 

assessed affect survival (Latimer, 2011; Latimer, 2013). Survival analyses are used to estimate the time to an 

event of interest, generally called the survival time. The event can be many things, such as the time from 

remission until relapse, or from diagnosis until death. Specific survival analysis methods are required because 

survival data is typically censored, for example because the event of interest does not occur during follow-up 

for all patients in the trial or some patients are lost to follow-up (Clark et al., 2003).  

Most survival analyses will use a Kaplan-Meier curve to visualise and describe survival information gathered 

during a clinical trial, for example to obtain the median survival. Such a Kaplan-Meier curve gives a non-

parametric estimate of the survival probability, or S(t), meaning the probability that a patient survives until time 

t. Kaplan-Meier curves are used because the specific formula for S(t) accounts for patients that are censored, 

either because the event of interest did not occur for them or because they were lost to follow-up (Kaplan & 

Meier, 1958). Another important function in survival analyses is the hazard function, or h(t), which is the 

instantaneous event rate for someone who has already survived until time t (Clark et al., 2003).  

The Kaplan-Meier curve, however, will not give any information about expected survival beyond the trial 

period. Thus, to extrapolate survival beyond trial observations, a parametric model is often  fitted to the patient-

level data. For doing so, the hazard function is assumed to follow a certain distribution, such as the Weibull or 

exponential distribution, and parameters are estimated using maximum likelihood estimation (MLE) 

(Kleinbaum & Klein, 2005). Once a distribution has been fitted, outcomes such as expected survival can be 

estimated by extrapolating the survival. 

2.1.2 Survival extrapolations incorporating background mortality 

When a parametric model is fitted solely to the survival data from a clinical trial to make an extrapolation and 

estimate the expected survival as described above, the resulting all-cause mortality (ACM) functions disregard 

the difference between disease-specific mortality (DSM) and general population background mortality (GPM). 

This can lead to the extrapolated overall survival being higher than the survival seen in the general population 

since mortality is mostly driven by DSM during the trial period but GPM hazards will increase over time, for 

example because patients become older during the extrapolation period and the risk of age-related death will 

increase. In other words, extrapolations based solely on the trial data may produce biased extrapolations as the 

increasing GPM hazards are ignored, even though they may explain a larger part of mortality than DSM in the 

long term (van Oostrum et al., 2021). Therefore, recent NICE guidance recommends including GPM in ACM 

functions, as this currently is not common practice in survival analyses (Rutherford et al., 2020), and other 

guidance recommends using GPM when DSM is low or a treatment effect is large (Coyle et al., 2023). 
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Van Oostrum et al. (2021) tested several methods of incorporating GPM hazards into ACM functions, as 

recommended by NICE, and compared these to an extrapolation without adjustment for GPM on three 

datasets from oncological case studies. The following four extrapolation methods were compared: 

• Internal additive hazards: add GPM hazards to the DSM hazard function and fit a distribution over 

the combined hazard function (Jakobsen et al., 2019; Latimer, 2011), 

• Converging hazards: patients have a higher initial mortality compared to the general population, but 

this decreases until the mortality rate converges to that of the general population, 

• Proportional hazards: a hazard ratio that represents the excess mortality between the patients and 

the general population is calculated to multiply the GPM hazards with to obtain ACM, 

• External additive hazards: like the internal additive approach, GPM hazards are added to DSM when 

making extrapolations, however, GPM is ignored when fitting the survival model (Jackson et al., 2017).  

Van Oostrum et al. (2021) compared the four GPM incorporating methods to each other and to extrapolations 

that did not include GPM hazards. For each of the methods and case studies, multiple parametric distributions 

were fitted (exponential, Weibull, log-logistic, lognormal and Gompertz).  

The findings from van Oostrum et al. (2021) were that GPM adjustments are important, as not adjusting for 

GPM will often result in survival extrapolations exceeding that of the general population. The one approach 

they found to have face validity in all instances was the internal additive hazards approach. However, they also 

found that the approaches have very different outcomes, and some methods could be more applicable in 

different situations. Finally, they recommended comparing the performance of the four approaches on 

additional datasets to test the generalisability of their findings beyond the oncological case studies, and to 

compare the approaches using a simulation study with known DSM and GPM (van Oostrum et al., 2021). 

2.2 Given assignment 
The assignment given by OPEN Health was a direct response to the call for this research on the generalisability 

of the findings of van Oostrum et al., which OPEN Health proposed to determine by performing a simulation 

study. A simulation model would be built that can model patients with differing DSM and GPM, incorporating 

additional parametric distributions to generate more varied datasets compared to van Oostrum et al. Then, the 

proposed extrapolation methods by van Oostrum et al. would be applied to the output data of the simulation 

to compare different scenarios and determine the performance of the methods.  

2.3 Problem context 
OPEN Health provides several services to pharmaceutical companies, such as providing support in market 

access strategy and patient engagement. Furthermore, they perform analyses of clinical trials and new health 

technologies, for example to estimate the effectiveness of a new health technology or for gaining approval from 

the relevant healthcare governing bodies. Thus, performing survival analyses is a common practice at OPEN 

Health. The question of whether or not to include GPM in these analyses is typically discussed with clients 

beforehand, and the answer often depends on the specific requirements for the approval processes of new 

healthcare technologies.  

Herein lied the main problem, as the current guidance for HTAs in, for example, the UK and Canada does 

recommend considering GPM adjustment in survival analyses (Coyle et al., 2023; Rutherford et al., 2020),  

guidance on what specific methods to use is lacking (Coyle et al., 2023; Jackson et al., 2017). Van Oostrum et 

al. (2021) drew some initial conclusions, for example that the internal additive hazards approach was at least 

face valid for the different case studies used. However, these conclusions only apply to those specific case 

studies. Thus, more research was needed on the accuracy and applicability of the various GPM adjusting 

approaches in settings other than the oncological case studies to provide more scientific basis for guidance for 

HTAs. 
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2.4 Core problem 
To summarize, the core problem at hand was the lack of guidance for selecting a survival extrapolation method 

that incorporates GPM. Such guidance could be used by OPEN Health to improve the quality of their survival 

analyses, as it would give a stronger scientific basis when selecting an extrapolation method. There were other 

problem owners in this case, such as HTA bodies that want to improve their guidelines and other researchers 

that study survival analysis techniques. Thus, other perspectives that do not necessarily apply to OPEN Health 

were also considered such that the conclusions and recommendations of the research applied to other problem 

owners as well. To summarize, the goal of the research was to provide guidance for selecting a survival 

extrapolation method that incorporates GPM when performing survival analyses for HTAs.  

2.5 Research questions 
Based on the core problem research questions were defined to solve the following research problem: 

More research is needed on the performance of survival extrapolation methods that incorporate GPM because 

of gaps in literature related to the performance of survival extrapolation methods that incorporate GPM.  

As the current research is responding to a recommendation to use a simulation study, the research question 

corresponding to the research problem is as follows: 

What is the performance in terms of accuracy of survival extrapolation methods that incorporate GPM 

information in scenarios with different patient characteristics and availability of information? 

With the following sub-questions: 

1. How can we implement the survival extrapolation methods that incorporate GPM into survival analysis 

packages for R? 

To initialise the research and get a better understanding of the extrapolation methods that incorporate GPM, 

the extrapolation methods compared in this research were implemented into an R script before considering 

how the simulation would be performed. The selection of extrapolation methods to compare was based on a 

literature review described in Chapter 3.  

2. How do we create simulated datasets which reflect a wide range of relevant patient characteristics? 

When the extrapolation methods were implemented and validated, the simulation study was designed. The 

simulation study should create datasets similar to a clinical trial, but with a known survival. As such, datasets 

were generated and censored such that the survival was known from the uncensored data, and extrapolations 

could be performed on the censored data in order to assess the performance of the extrapolation methods. To 

explore how such datasets could be created using a simulation study a literature review was performed and 

described in Chapter 3. 

3. How accurate are the extrapolation methods? 

Finally, to conclude the research, the performance of each of the methods was compared.  
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3 Literature review 

This chapter describes an exploratory literature review aimed at obtaining a better understanding of survival 

analysis, extrapolation, how GPM can be included, and simulation to ensure the research at hand was performed 

with the correct techniques and according to the best practices described in literature. Furthermore, gaps in 

current guidance were identified, as well as the various options available in terms of models, performance 

criteria, etc. In the next section, the search terms and selection process will be described. Afterwards, the results 

of the literature review will be presented in two sections, one on survival analysis and extrapolation, and one 

on simulation studies.  

3.1 Search terms 
As a broad search for “Survival analysis” on PubMed yielded over 695,000 papers, the query needed to be more 

specific. Thus, for finding the literature on survival analysis and extrapolation, two searches were performed, 

namely: 

1. “survival analysis” AND “extrapolation” 

2. “survival analysis” AND (“background mortality” OR “general population mortality” OR GPM) 

Articles that focus on survival analysis techniques in general (i.e. guidance for survival analysis, presents a new 

technique, etc.) were included, and articles that describe an execution of a survival analysis (i.e. an actual 

comparison of two interventions) were excluded. Furthermore, studies discussing methods to address 

measurement errors (i.e., handling wrongly recorded biomarkers, missing data, etc.) in survival analysis and 

performance comparisons between other factors than the survival model used (i.e. effects of level of censoring, 

trial population size, etc.) were also excluded, as these were outside of the scope of the research. The first query 

yielded 455 articles at the time of the search (17th of March 2023), and the second yielded 130 articles on 

PubMed. The initial articles were assessed based on title to determine whether the articles are general 

discussions of survival analysis techniques or an execution of a survival analysis. Then, based on abstracts, the 

articles were screened based on whether they met the inclusion criteria. After screening, the first query yielded 

73 relevant articles, and the second a further 10 relevant articles.  

3.2 Survival analysis and extrapolation 
The general problem context presented in Chapter 2 is also shared by most of the literature found in the search. 

Within the context of health economic analyses, an estimate of additional costs, resources and health 

consequences that result from the use of a novel intervention compared to the usual clinical practice is required 

(Tappenden et al., 2006). Since a high proportion of interventions assessed in HTAs will affect survival, an 

estimate of survival benefit is essential (Latimer, 2013). For the evaluations, estimates over a lifetime horizon 

are usually advocated, particularly so for survival, since the evaluations attempt to reflect all differences in costs 

and outcomes between the two interventions (CADTH, 2017; NICE, 2013). However, since trial data on new 

interventions is often censored, meaning not all patients will have experienced the event of interest at the end 

of the trial (Collett, 2003), obtaining a lifetime estimate is not possible using empirical evidence collected during 

trials and mathematical modelling is required (Eddy, 1985). 

The mean survival can be represented by the area under survival curves (Andersson et al., 2013) that plot the 

proportion of patients that are alive over time (Latimer & Adler, 2022). The mean survival benefit is then 

represented by the area between the survival curves for the patients that received the intervention and the 

patients in the control group (who received the usual care or standard treatment) (Collett, 2003; Tappenden et 

al., 2006). Thus, to obtain an estimate of the lifetime survival, extrapolation is usually performed to obtain a 

survival curve over the entire lifetime of patients. Generally, parametric models are used to do so, but various 

other models are available. Since the choice of the model used can have a substantial impact on the survival 

estimates, and, in turn, cost-effectiveness estimates, the model selection for survival extrapolation is highly 

important (Bullement et al., 2019; Latimer, 2013; Miners et al., 2005).  
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3.2.1 Available models 

Numerous models are available for selection, and several authors have already performed literature reviews of 

HTA submissions to get an overview of the models used in research to set up guides and frameworks (Guyot 

et al., 2011; Jackson et al., 2017; Latimer, 2013; Palmer et al., 2023; Tappenden et al., 2006). Within these 

reviews, it becomes apparent that there are three main characteristics that differ between models, namely 

whether proportional hazards (PH) are assumed or not, and the flexibility of the model (Latimer, 2013). The 

third factor is the use of external data, or data that is not gathered during the trial, which can include data such 

as GPM or background mortality (Jackson et al., 2017).  

The PH assumption refers to the assumption that a constant hazard ratio can be applied to a survival curve of 

one patient group to derive the survival curve of another patient group (Latimer, 2013). The PH assumption 

can be avoided by fitting two separate models to the two patient groups (Guyot et al., 2011), or having the 

hazard ratio change over time (Latimer, 2013). Having a hazard ratio that would change over time would also 

increase the flexibility of the model, which generally refers to the complexity of the model.  

In the next sections, the various models available found in the literature review will be discussed separately. 

Afterwards, methods to include GPM data will be discussed.  

3.2.1.1 Parametric models 

The simplest of survival models is, unsurprisingly, the most often used method in TAs for NICE (Latimer, 

2013), and consists of fitting a parametric model using a certain distribution to the survival data gathered during 

the trial. The PH assumption is still often used, although there are concerns about the use of the PH assumption 

in literature (Coyle et al., 2023). When using the PH assumption, a single model is fit to the survival data of the 

control group (who did not receive the intervention of interest), and the impact of the novel treatment is 

described by a hazard ratio that can be applied to the survival curve of the control group (Latimer, 2013; 

Tappenden et al., 2006). However, as mentioned, separate parametric models can be fit to both treatment arms 

to avoid the PH assumption (Guyot et al., 2011; Latimer, 2011). 

When a parametric model is fit, the assumption is made that the hazard function follows a certain probability 

distribution. The most commonly used distributions are the exponential, Weibull, Gompertz, lognormal and 

loglogistic distributions (Guyot et al., 2011), and NICE recommends to always compare these models and the 

generalised gamma distribution in a survival analysis (Latimer, 2011). Other distributions have also been 

proposed, such as the generalised F distributions (Jackson et al., 2010). Distributions can be fit to the survival 

data using the maximum likelihood estimation (MLE) method. If the PH assumption is used, the hazard ratio 

can be included in the likelihood functions (Collett, 2003). 

3.2.1.2 Piecewise models 

Piecewise or hybrid models involve combining several non-parametric or parametric models (Latimer, 2011), 

which can be done in several ways. One of the earliest methods proposed was developed by Gelber et al. (1993), 

referred to as the Gelber method. It involves fitting a parametric model only to the tail of a survival curve and 

using the estimated parametric model along with estimates from the non-parametric Kaplan-Meier curve to 

obtain a composite survival-function estimator. The point at which the parametric curve takes over from the 

Kaplan-Meier can be determined with log-cumulative hazard probability plots. A common criticism of 

piecewise models is that it requires the analyst to select cut points at which to fit different models, and different 

decisions of these cut points can affect the overall extrapolation profoundly (Bullement et al., 2019). 
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3.2.1.3 Cubic spline models 

Cubic spline models, or flexible parametric models (FPMs), were originally introduced by Royston and Parmar 

(2002), mainly to better understand underlying hazard functions and to overcome the PH assumption. The 

general flexible or spline-based parametric approach attempts to model the logarithm of the baseline hazard 

function as a natural cubic spline function of log time. Spline functions in general, put simply, are functions 

that are defined piecewise by polynomials, typically used to smooth or interpolate data. Splines can have any 

number of subintervals, or k knots, where on the ith knot the spline is defined by the polynomial corresponding 

to that knot (Ahlberg et al., 2016; Wikipedia, n.d.). Natural cubic splines specifically are constrained to be linear 

beyond the boundary knots, or kmin and kmax.  

Royston and Parmar (2002) originally presented methods to smooth log cumulative hazard functions (obtained 

from typical survival data) into natural cubic spline functions by using full maximum likelihood, including 

covariates. Since cubic splines are linear beyond the boundary knots, the log hazard at the boundary knot can 

be used to extrapolate survival to a life-time horizon (Rutherford et al., 2020). 

3.2.1.4 Landmark models 

Landmark models allow for modelling different responses to treatment, assuming that different responses result 

in differing survival for patients. For example, a patient group that does not respond to treatment could have a 

high or increasing hazard, while patients that respond well to treatment can have a low and decreasing hazard. 

This split into different response groups is done at a defined “landmark” time point, after which separate 

survival models are fitted to each response group (Rutherford et al., 2020). The models can take any form, but 

typically parametric models are used (Anderson et al., 1983). Overall survival can then be estimated by weighting 

the different survival functions by the proportion of patients within that group (Rutherford et al., 2020).  

3.2.1.5 Mixture models 

Mixture models are similar to landmark models, as they can account for different sub-populations with different 

survival profiles in a trial. However, mixture models do not explicitly group patients, but rather assign each 

patient a probability of being in each distribution included in the mixture. Standard parametric models can be 

used for different mixture components, and standard selection criteria can be used to select the number of 

mixtures and distributional forms. Extrapolations are weighted for each mixture component and their 

respective hazard rates (McLachlan et al., 2019; Rutherford et al., 2020).  

3.2.1.6 Cure models 

Cure models are traditionally used when a proportion of patients will never experience the event of interest, or 

are, in other words, cured (Boag, 1949). Consequently, their disease-specific hazard rate will reach zero at some 

point, after which the corresponding cause-specific survival function will reach a plateau at a non-zero value. 

As the cause-specific survival will then never reach zero, cure models will typically model cause-specific survival 

alongside other cause mortality, or adopt a relative survival approach. Thus, the model estimates a cure fraction 

among the population, and estimates survival for uncured and cured patients. By combining the two hazard 

functions, an overall hazard function can be estimated (Rutherford et al., 2020).   

3.2.1.7 Polyhazard models 

Polyhazard, or poly-Weibull models are typically used in settings where many competing risks are present. 

Polyhazard models define an overall hazard function as the sum of several independent risk components, which 

are described in a Weibull form. Typically, a Bayesian framework is used, where clinical knowledge is used to 

define the priors (Demiris et al., 2015). 
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3.2.1.8 Machine learning 

Machine learning approaches have also been proposed, such as Random Survival Forests by Ishwaran et al. 

(2008). These approaches, however, focus on using relationships between a large set of factors into a model, 

and serve more as a replacement for PH models used in an epidemiological setting (Aivaliotis et al., 2021) rather 

than for the survival models used in cost-effectiveness analyses. 

3.2.2 Incorporation of GPM information 

The use of external data, or data that was not gathered during a trial, has been long-established in survival 

analysis and used in various applications. For example, researchers have proposed using external data to study 

the loss of life of a patient resulting from a disease (Hakama & Hakulinen, 1977), to put results of survival 

extrapolations into perspective (Verheul et al., 1993) or to use as a substitute for a control group (Pennington 

et al., 2018). For this study specifically, however, the type of external data of interest is that which reflects the 

background, expected, or general population mortality (GPM), terms which are used rather interchangeably in 

literature.  

The expected mortality can be defined as the mortality of a subsample of the general population that is similar 

to the group of patients at the start of the follow-up period regarding aspects affecting survival, which are 

typically limited to age, sex and calendar time, and is typically obtained from life table data (Verheul et al., 1993). 

Using such GPM data has been shown to improve extrapolation performance by several researchers, usually 

for reasons related to models not accurately capturing the increasing risks of death due to aging (Andersson et 

al., 2013; van Oostrum et al., 2021). Others found that incorporating background mortality becomes necessary 

for accurate long-term extrapolation when treatment benefit is large and treatment effect is long, meaning 

survival is relatively high (Vickers, 2019).  

In the next sections, various methods of incorporating such expected mortality data, henceforth referred to as 

GPM information, found in the literature review will be discussed. Note that most methods are adaptations of 

models already discussed in Section 3.2.1. 

3.2.2.1 Relative survival 

Relative survival modelling, also referred to as internal additive hazards (van Oostrum et al., 2021), is a method 

that derives DSM without requiring specific cause of death information (Andersson et al., 2013). Relative 

survival modelling is typically used for estimating population cancer survival rates with data obtained from 

cancer registries, and not from clinical trials, meaning extrapolation is not required (Dickman & Adami, 2006). 

Recently, however, several authors have adapted the concept to be used for survival extrapolation, such as 

Rutherford et al. (2020) in recent NICE guidance. It decomposes the ACM hazards of the trial population into 

two parts: 

ℎ(𝑡) = ℎ∗(𝑡) + 𝜆(𝑡) 

Where 𝑡 is the time since diagnosis, ℎ∗(𝑡) is the GPM hazard function, stratified by age, sex, calendar year, and 

other covariates, and 𝜆(𝑡) is the DSM, or excess mortality rate. Then, the corresponding survival function can 

be rearranged to give the following equation: 

𝑅(𝑡) =
𝑆(𝑡)

𝑆∗(𝑡)
 

Where 𝑅(𝑡) is the relative survival as a ratio of the all-cause survival of the trial population and expected GPM 

survival. ℎ(𝑡) can then be assumed to follow a certain probability distribution, and the separate DSM and GPM 

hazards can be incorporated in the log-likelihood function of the model during MLE (van Oostrum et al., 2021). 

More complex estimators for relative survival have been proposed, such as the Pohar-Perme statistic and the 

standardised relative survival statistic. However, these serve more for comparison of survival between cohorts 

in, for example, different countries, rather than for survival extrapolation for a single cohort (Perme et al., 2012; 

Sasieni & Brentnall, 2017). 
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3.2.2.2 Constant additive hazards 

A second approach similar to the relative survival method was described by Jackson et al. (2017). Here, however, 

the assumption is made that the excess hazards are constant compared to GPM. The excess hazards are 

estimated from the slope of a linear regression fitted to the logit of the relative survival seen in the latter part 

of the observed data. The linear regression is typically fit after a time at which the hazard ratio is assumed to 

behave in a stable manner, for example when invasive diagnostics or procedures are no longer required (Chu 

et al., 2008; Hwang & Wang, 1999). Extrapolations can then be performed by adding the excess hazards to the 

GPM hazards (Jackson et al., 2017).  

3.2.2.3 External additive hazards 

An extension to the constant additive hazards method was used by van Oostrum et al. (2021), where researchers 

also assume that DSM hazards are always additive to GPM hazards, except not as a constant. Rather, parametric 

models are fit to the trial data, and GPM hazards are added to the fitted hazards afterwards. GPM hazards are 

not included in MLE for model fitting, differentiating the method from the relative survival method. As such, 

van Oostrum et al. (2021) refer to this method as external additive hazards, and the relative survival method as 

internal additive hazards.  

3.2.2.4 Converging hazards 

The converging hazards method, as described by Jackson et al. (2017), assumes that the disease population may 

have a higher mortality than GPM initially, but their mortality decreases until the mortality rate converges to 

GPM after some time. Jackson et al. (2017) proposed setting a time whereafter only GPM hazards affect survival 

of patient, and survival before is estimated using a parametric model fit to the trial data. Other authors 

implemented converging hazards by fitting a parametric model to the ACM hazards of the trial population 

without GPM information, and using the fitted ACM hazards until GPM hazards have become higher (van 

Oostrum et al., 2021). Thus, the overall hazard function of the trial population is as follows: 

ℎ(𝑡) = {
ℎ∗(𝑡)         𝑖𝑓 ℎ∗(𝑡) >  ℎ𝐴𝐶𝑀(𝑡)  

ℎ𝐴𝐶𝑀(𝑡)    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   
 

Jackson et al. (2017) mention that the time at which the hazards converge could be seen as the time at which 

patients are cured, and thus the converging hazards method has strong similarities to cure models when other 

cause mortality is included. The converging hazards method does not use a cure fraction, however.  

3.2.2.5 Proportional hazards 

The proportional hazards assumption has also been proposed for use with external data by Jackson et al. (2017), 

where the hazard ratio between trial populations and the general population is assumed to be constant. Cause 

specific mortality can then be obtained by multiplying GPM with a certain hazard ratio. Jackson et al. (2017) 

state that the hazard ratio should be found in literature. 

3.2.2.6 Methods for cubic spline models 

The previous methods have mostly focused on “standard” parametric models, although methods to incorporate 

external data in cubic spline models have also been proposed. Nelson et al. (2007) extended cubic spline models 

for use with relative survival by including an excess mortality component in the hazard function, also 

introducing methods to include time-sensitive covariates. Andersson et al. (2013) proposed several 

extrapolation methods, as the original implementations do not allow for extrapolation, that use assumptions on 

how DSM compares to GPM as originally suggested by Hakama and Hakulinen (1977).  
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The linear trend method assumes that the hazard function continues linearly beyond the boundary knot, which 

could also be used with the relative survival models proposed by Nelson et al. (2007). The two other methods 

proposed are relatively similar to the converging hazards and external additive hazards methods previously 

described. The cure method assumes that after some time the mortality rate of the patient group will return to 

GPM, like the converging hazards method. Next, the constant excess hazards method assumes that excess hazards 

are constant beyond the boundary knot, which can then be used to estimate the relative survival function 

(Andersson et al., 2013).  

3.2.2.7 Polyhazard models 

Benaglia et al. (2015) adapted a polyhazard model for use with datasets from the general population and one 

from a patient population with some disease of interest to extrapolate the survival of the disease group. Here, 

the hazards for the disease group are assumed to have two causes, one from the disease of interest, and one for 

other causes. As causes of death are not observed in the study data, independent Weibull models cannot be fit. 

Thus, a polyhazard model can be used by assuming that the other-cause survival distribution is the same as that 

for the general population, and the increase in hazards (or excess hazards) due to the disease is obtained by a 

cause-specific log hazard ratio between the study and population groups.   

3.2.3 Available guidance for model selection 

With the available models for survival extrapolations with and without using GPM information described, this 

section will be devoted to the available guidance on selecting between one of those models to use for survival 

analysis for an HTA. Most importantly, the NICE Decision Support Unit Technical Support Documents 

(TSDs) will be discussed, as they are a leading HTA governing body. Furthermore, other literature found in the 

literature review will be discussed.  

TSD 14 presents an algorithm for selecting a model for survival analysis that should be followed when preparing 

a submission to NICE. TSD 14 focuses mostly on standard parametric models and piecewise models. It is 

recommended to develop log-cumulative hazard plots that plot the log(-log) of the survival function against 

log(time) of the two patient groups and selecting different models based on the relationship of the two curves: 

• If the curves are straight and parallel, parametric models with a PH assumption should be considered, 

• If the curves are straight and not parallel, two separate parametric models should be fit and assessed,  

• If the curves are not straight, piecewise or other more flexible models should be considered.  

Then, the various models that are under consideration should be fit and assessed based on certain performance 

criteria, and a selection should be made. For parametric models, TSD 14 recommends that exponential, Weibull, 

Gompertz, log-logistic lognormal and generalised gamma models should always be considered (henceforth 

referred to as the “standard parametric models”). To assess the suitability of a model, TSD 14 recommends 

assessing visual fit of the parametric curve compared to the Kaplan-Meier curve, statistical fit using Akaike’s 

Information Criterion (AIC) or Bayesian Information Criterion (BIC), and clinical plausibility using either 

external data or an expert opinion (Latimer, 2011). The latter has been mentioned in other articles as a highly 

important factor to assess suitability of survival models (Bell Gorrod et al., 2019; Williams et al., 2017). More 

recent NICE guidance (TSD 21) includes descriptions of flexible models for survival analysis intended for use 

when hazard functions are too complex for the models mentioned in TSD 14, but does not provide a selection 

algorithm to distinguish between these models (Rutherford et al., 2020).  

Other researchers have also discussed procedures to select a survival model. For example, the algorithm 

described in TSD 14 was criticised by Bagust and Beale (2014) in part for assuming that patient-level data was 

available to the researchers while manufacturers rarely make patient-level data available, even to those 

contracted by the manufacturers to review the trial evidence. Bagust and Beale (2014) presented their own 

methods for survival extrapolation that were later criticized by Latimer (2014) for recommending the exclusion 

of certain data points, and the recommendation to assume survival follows an exponential model unless other 

evidence exists. Thus, the methods of Bagust and Beale will not be explained further.  
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Palmer et al. (2023) presented a selection algorithm for flexible models to address the lack of such an algorithm 

in TSD 21. The algorithm presents 4 questions that will aid model selection for flexible models, with the most 

important being how many treatment arms are present, whether flexible models are required and whether a 

cure fraction can be assumed. Methodologies to answer each of these questions are presented in intermediate 

steps of the algorithm, where using clinical expert opinion is highly important throughout. Once at the final 

question of the algorithm, plausible models have been selected and a final comparison can be made based on 

external evidence, clinical plausibility, hazard plots (including a comparison with GPM hazards), and AIC or 

BIC statistics.  

3.2.3.1 Guidance on use of external data and background mortality 

The use of external data is not mentioned in the TSD 14 algorithm for model selection, but is recommended 

for assessing model validity. TSD 14, however, does not discuss incorporating GPM into models directly 

(Latimer, 2011). TSD 21 does discuss the relative survival model and recommends incorporating external data 

into the other types of flexible models described in the TSD. For example, for cure models the use of GPM in 

a relative survival approach is recommended when cause-specific mortality is unknown. Furthermore, TSD 21 

recommends that GPM should be used to check if mortality is lower than expected in the general population 

and incorporated if so (Rutherford et al., 2020). Recent guidance from the Canadian Agency for Drugs and 

Technologies in Health (CADTH) states that GPM can either guide the shape of the long-term survival curve 

or be used as an upper limit in extrapolations, and should especially be considered in situations where DSM is 

low or treatment effect is high (Coyle et al., 2023).  

Other authors do not provide much guidance regarding selection between methods to incorporate GPM 

beyond some inconsistent conclusions and recommending the assessment of clinical validity. For example, for 

the GPM assumptions for cubic spline models discussed in Section 3.2.2.6, Jakobsen et al. (2019) found that 

models using the linear trend assumption with relative survival and models using the cure assumption 

performed well in certain settings, but found no consistent satisfactory performance for any of the assumptions 

in other settings, only noting that including GPM is more important in younger populations. Andersson et al. 

(2013) concluded that using the linear trend method with a relative survival approach was sufficiently accurate 

for use with cubic spline models, although cure models were sometimes found to perform better. van Oostrum 

et al. (2021) recommend the external additive hazards method for younger populations and converging or 

proportional hazards models only if their assumptions are clinically plausible. Jackson et al. (2017) simply state 

that long-term assumptions such as the converging or additive hazards assumption are untestable from data 

alone and should be justified using clinical expertise. Palmer et al. (2023) note that the flexible models described 

in their algorithm could be implemented using a relative survival framework to incorporate GPM, but do not 

mention when this is or is not appropriate. For cure models, however, they always recommend using GPM for 

the cured population.  

3.3 Simulation 
To conclude the literature review, literature found related to simulation studies, and specifically what such 

studies tested and how such studies were executed in the context of survival extrapolation will be discussed. To 

start, an often used simulation framework should be mentioned, namely that of Morris et al. (2019). It has been 

used to assess performance of various survival extrapolation methods in, for example, the NICE guidance by 

Rutherford et al. (2020), and several other articles (Gallacher et al., 2021a, 2021b; Kearns et al., 2021). The 

framework is designed specifically for comparing statistical methods using Monte Carlo simulation, or 

simulations that use pseudo-random sampling (Morris et al., 2019), and was used for the rest of this study. 
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Rutherford et al. (2020) used a simulation study in recent NICE guidance to compare the performance of the 

flexible survival methods presented in the guidance. They compared the RMST until the end of follow-up and 

overall mean survival based on extrapolation in a single treatment arm, as they argued that if a survival model 

extrapolates poorly, it is inappropriate for use in economic modelling regardless of how accurately a treatment 

effect can be predicted. Benaglia et al. (2015) also used overall mean survival in a simulation study to assess 

performance of survival extrapolation methods. Some studies have focused specifically on RMST until various 

times beyond follow-up (Gallacher et al., 2021a, 2021b). Others use a loss of lifetime estimate, which serves as 

a function of the area between the general population and patient population survival curves up to a specific 

time point (Jakobsen et al., 2019). 

Many different factors related to survival analysis have been compared with simulation. Most often, simulation 

studies compare extrapolation based on data generated using different survival curves. For example, some 

studies compared different levels of survival or differently shaped survival curves (Benaglia et al., 2015; 

Rutherford et al., 2020). Differences between using different cure fractions have also been explored in some 

studies (Jakobsen et al., 2019; Rutherford et al., 2020). Finally, factors such as differing ages of patients 

(Jakobsen et al., 2019) or different trial sizes have also been compared (Rutherford et al., 2020). Other studies 

do not use “theoretical” trials, but rather take real-world trials and use their characteristics to generate data, for 

example by fitting parametric models to the trial data and using a similar level of censoring as what was seen in 

the trial (Gallacher et al., 2021a, 2021b).  

To generate data, simulation studies usually consider DSM and GPM separately. Rutherford et al. (2020) and 

Jakobsen et al. (2019) both generate two survival times, one based on their defined DSM functions, and one 

based on their GPM functions, and then pick the lowest survival time as a patient’s ACM survival time. Both 

simulations also generate an age per patient that is used as input for their GPM functions. Benaglia et al. (2015) 

generated separate patient and general population datasets to compare effects of models that assume a 

proportional hazard compared to the general population. Then, to censor the data, simulation studies typically 

generate another time using a censoring function, for example by generating a value from an exponential 

function. Each patient is then censored appropriately, either if their censoring time is before their ACM survival 

time, or their ACM survival time is after the end of follow-up (Benaglia et al., 2015; Gallacher et al., 2021b; 

Jakobsen et al., 2019; Rutherford et al., 2020). 

In Rutherford et al.’s simulation study (2020), a frailty term was used in the survival function for disease specific 

survival. This frailty term is based on the frailty models described by Hougaard (1995), which assume that 

variability in survival times originate from two separate sources, the first one being the randomness from a 

hazard function, the second being a random effect called the frailty. The frailty can be univariate or multivariate, 

and can serve as a replacement for other covariates (such as lifestyle, smoking, etc.) that are known to affect 

survival but cannot be explicitly included in the analysis.  
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4 Methods 

In this chapter, the various methods used to obtain results for the research questions defined in Section 2.5 will 

be described. A simulation study was selected for answering the research questions, specifically as it allowed 

for many different scenarios to be compared. For designing the simulation study, the framework of Morris et 

al. (2019) was used (see Section 3.3), meaning this chapter of the report will follow the recommended ADEMP 

structure. First, the overall Aims of the study are defined. Then, the Data-generating mechanisms (DGMs) are 

described, which are the mechanisms used to generate patient survival data in different scenarios. Next, the 

Estimands of interest will be described, following with a definition of the different (extrapolation) Methods 

used to obtain these estimands. Finally, the Performance measures used per estimand are given. 

4.1 Aims 
The overall aim of the simulation study was to assess the performance of several survival extrapolation methods 

that incorporate GPM information for use in health economic models by comparing their extrapolations to a 

known overall survival. Since, for use in health economic modelling, the relative treatment effect between 

treatment arms is not necessarily of interest, only the performance on single treatment arms was assessed. 

Furthermore, an extrapolation method being able to prove there is a difference in treatment effect is not 

relevant if the method performs poorly when extrapolating survival. Performance was compared between many 

different scenarios in order to draw conclusions that could provide guidance for selecting a GPM incorporating 

method in these scenarios. The different scenarios used will be described in the next section.  

4.2 Data generating mechanisms 
A DGM denotes how random numbers are used to generate a dataset, and for a simulation study, many DGMs 

are often used or compared (Morris et al., 2019). One thing to note for DGMs, and more importantly the 

random number generation, is that these random number generators are not actually random, but pseudo-

random, meaning that the chain of values generated can be reproduced using a seed value. The DGMs were 

implemented in R, which has functions readily available for generating random numbers, and these generators 

were assumed to be robust.  

Many factors can differ between research trials, with arguably the most important being the survival of patients 

and their characteristics. Another point of interest is the amount of information available to the researcher and 

thus for extrapolation. For example, different extrapolation methods might be more applicable than others if 

the age and sex of individual patients is known, rather than knowing solely the mean age and division between 

sexes. Thus, there are two main dimensions to the scenarios that were varied between the DGMs, namely the 

patient characteristics and the amount of available information. The patient characteristics affect the survival 

of the patient, and within survival both DSM and GPM should be considered. Thus, the DGMs were structured 

such that a time of event was generated for each patient based on a certain DSM and GPM, and then censored 

the data (i.e., as if only data from a trial was available) to perform the desired extrapolation. In Table 3, an 

overview of all dimensions used for the DGMs is shown. Each of the dimensions will be discussed separately. 
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4.2.1 Patient characteristics 

Performance of the extrapolation methods between various patient populations with different characteristics 

were compared. For patient characteristics, there are a vast number of factors that can affect their survival and 

differ between populations. However, as the number of DGMs could not be exceedingly high due to the 

runtime of the simulation, only a selection of differences in these factors was compared. The final selection of 

factors, along with specifics on how the data is generated, was as follows: 

4.2.1.1 Age 

As the incorporation of GPM information is often recommended for modelling age-related risks of death, 

comparing patient populations with different ages was highly important. Thus, for each DGM, a random age 

was assigned to a patient using a normal distribution, rounded down to an integer. Here, three different means 

were used to represent young (µ = 35), “average” (µ = 50) and older populations (µ = 75). Different standard 

deviations were also used, however, varying standard deviations were included in a separate dimension of 

DGMs, referred to as the heterogeneity of the population, that will be described in Section 4.2.1.3.  

4.2.1.2 Survival 

Next, the survival for each patient needed to be defined. The survival for each patient consisted of two 

components, as both DSM and GPM hazards should be considered. For GPM survival, the most recently 

available life tables from the USA obtained from the CDC (Arias & Xu, 2022) were used in the simulation. As 

each patient also has a generated sex (which is generated differently based on the level of heterogeneity, 

described in Section 4.2.1.3), the appropriate life table was used for each patient. To generate a time until a 

GPM event, a uniform random number was generated between 0 and the current survival probability of the 

patient based on their age and life table. Using this upper limit normalizes the generated survival probability for 

each patient based on their age, as otherwise a negative time until event could be generated. Then, the newly 

generated random number was used to interpolate a time until event from the life table. Note that the method 

to generate a GPM time was the same for all DGMs. 

For DSM, both differing levels of survival and underlying probability distributions were compared in order to 

compare a large variety in survival curves used to generate patient data. To keep the “level of survival” the same 

over different distributions and to remove the need for human input to determine the parameters, basic 

parametric models were fit to real-world survival data of different diseases. For this purpose, three Kaplan-

Meier curves were selected that reflect a low, medium and high level of survival, which were identified based 

on a short brainstorm with the OPEN Health supervisors. For low survival, a survival curve of patients with 

pancreatic cancer was used, with a median survival of 17.0 months (Kuhlmann et al., 2004). For medium 

survival, a survival curve of patients with myocarditis was used, where 56% of patients were still alive after 5 

years (median survival was not reported) (Magnani et al., 2006). For high survival, a survival curve of patients 

with ulcerative colitis was used, where 59% of patients were still alive after 40 years (median survival was not 

reported) (Jess et al., 2006). 

Each of the Kaplan-Meier curves were digitized, and using the Guyot et al. (2012) algorithm, patient-level data 

was generated. Then, parametric models were fit to the survival data, using the Weibull, log-normal, log-logistic 

and Gompertz distribution. These are the standard distributions recommended by Latimer (2011), with the 

exclusion of the exponential distribution and generalised Gamma distribution. The Weibull distribution is also 

capable of modelling constant hazards like the exponential distribution does, hence its exclusion. Since the 

Weibull and lognormal distributions are specialised cases of the generalised Gamma distribution (Latimer, 

2011), the generalised Gamma distribution was excluded as well. Then, the parameters of the various fitted 

survival models were used to generate data for the simulation. The statistical fit of the models to the data was 

not considered further. The resulting Kaplan-Meier curves and parametric models are shown in Figure 1, Figure 

2, and Figure 3. The models and their parameters are shown in Table 1.  
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Figure 1: 

Digitized Kaplan-Meier curve and parametric models used for low survival scenarios based on a pancreatic 

cancer dataset (Kuhlmann et al., 2004) 

 
Figure 2:  

Digitized Kaplan-Meier curve and parametric models used for medium survival scenarios based on a 

myocarditis dataset (Magnani et al., 2006) 
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Figure 3:  

Digitized Kaplan-Meier curve and parametric models used for high survival scenarios based on an 

ulcerative colitis dataset (Jess et al., 2006) 

 
Table 1:  

Overview of survival distributions used for simulation 

Distribution Parameter 1 Parameter 2 

Low survival (pancreatic cancer)   

Weibull λ = 2.127 κ = 1.297 

Log-logistic α = 1.418 β = 2.047 

Lognormal µ = 1.437 σ = 2.307 

Gompertz η = 0.094 b = 0.431 

Medium survival (myocarditis)   

Weibull λ = 7.973 κ = 0.745 

Log-logistic α = 4.221 β = 1.012 

Lognormal µ = 3.858 σ = 5.588 

Gompertz η = -0.046 b = 0.156 

High survival (ulcerative colitis)   

Weibull λ = 84.977 κ = 1.112 

Log-logistic α = 72.418 β = 1.172 

Lognormal µ = 109.720 σ = 6.638 

Gompertz η = 0.028 b = 0.007 
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To generate a time until an all-cause mortality event, the lowest time between the DSM and GPM event times 

was selected for each patient. The GPM data used assumes no person lives longer than 100 years, meaning the 

background hazard at 100 years is infinity. As the internal additive hazards method fails if infinite background 

hazards are supplied, the maximum event time was cut off at 99.999 years. 

4.2.1.3 Heterogeneity 

In some populations, the differences between patients can be larger than in others. Thus, to get an indication 

of how different methods perform if a population is more heterogenous, three different levels of heterogeneity 

were compared by combining several factors. The first factor is the standard deviation of the normal 

distribution used to generate an age for a patient, with a standard deviation of 3, 6, and 12 for low, medium, 

and high levels of heterogeneity, respectively.  

Secondly, the division over sexes of the patients was considered. Using a random uniform number generator, 

patients were assigned a sex based on a certain percentage of male versus female patients. In the low 

heterogeneity scenario, this percentage was either 90% male versus 10% female or 10% male versus 90% 

female, also assigned randomly with a 50% chance for either sex being the majority. In the medium 

heterogeneity scenario, this split between sexes was 70% versus 30%, and for the high heterogeneity scenario, 

the split was an equal 50% versus 50%. 

Finally, a frailty term was included for the medium and high heterogeneity scenarios. As described in Section 

3.3, frailty models were introduced to be able to model various other factors that affect survival, such as lifestyle 

and smoking habits, by modelling them as a separate, single random variable. Rutherford et al. (2020), however, 

applied the concept in reverse in their simulation study by including a secondary random variable in their DGMs 

for overall DSM survival. This adds an additional source of randomness to the DSM survival times of patients. 

The DSM survival was then as follows: 

𝑆𝑑(𝑡) =  𝑆𝑑0(𝑡)exp (𝑍𝛽) 

Where 𝑆𝑑0(𝑡) are the DSM survival functions as described in the previous section, and 𝑍 is the unknown frailty 

term, distributed normally with a mean of 0 and standard deviation of 1. Different levels of frailty can then be 

generated by using different values for 𝛽. For low heterogeneity, no frailty was used, while for medium and 

high heterogeneity, 𝛽 = 0.5 and 𝛽 = 2 were used, respectively.  

To summarize, three different levels of heterogeneity were compared, with the following factors: 

Table 2:  

Scenarios for heterogeneity used in DGMs of simulation 

Heterogeneity σ of age Division over sexes β of frailty 

Low 3 90% / 10% N.A (frailty not included) 

Medium 6 70% / 30% 0.5 

High 9 50% / 50% 2 
 

4.2.2 Available information for extrapolation 

Besides patient characteristics, another dimension of interest was the available information for extrapolation. 

Here, four different factors were used for comparison, which are the population size of the trial, the length of 

follow-up, the level of right censoring, and whether the covariates are known for extrapolation. Thus, after 

patient data has been generated according to the methods described in the previous section, the data was 

censored according to these four factors. For each patient, a censoring time was generated from an exponential 

distribution, which served as the right censoring time. This time, along with the follow-up length, was compared 

to the ACM event time of each patient. If the ACM event time is after the patients’ censoring time or follow-

up length, the patient was censored accordingly.   
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To reduce the total number of DGMs, the factors were combined into a few scenarios as was done for the 
heterogeneity dimension. Three scenarios were used, which are as follows: 

1. Low level of information 

This DGM had the lowest amount of information available, with a population size of 100 and a follow-up 
length of 1 year. For censoring, a rate of 0.3 was used, which should result in approximately 30% of the 
population being right censored (disregarding their event time). For extrapolation, only the median age of 
patients and percentage of male versus female patients was known, referred to as having “summary” knowledge 
available. In high survival scenarios, the generated datasets were found to often have no events occurring within 
a year of follow-up. As such, scenarios with both low information and high survival were excluded from 
analysis.  

2. Medium level of information 

For the medium level of information, a population size of 300 patients was used, with a follow-up length of 3 
years. The rate for censoring was 0.067, which means approximately 20% of patients are right censored. For 
extrapolation, again only summary knowledge was available. 

3. High level of information 

Finally, the DGM with the highest level of information used a population size of 500 and follow-up length of 
10 years. The censoring rate was 0.01, which censors approximately 10% of patients. For extrapolation, the 
ages and sexes were known for each individual patient and were used for determining the background hazards 
for the internal additive hazards method, which will be referred to as having “full” information. 

4.2.3 DGM overview 

To summarize, for each DGM, survival data was generated based on several dimensions of factors. For 
comparison of results, each level of each dimension was compared to one another, meaning a full-factorial 
experiment design was used. One combination of scenarios was excluded from analysis, namely those with low 
information and high survival. Here, patients have a median survival of over 40 years, while only 1 year of 
follow-up data is recorded, meaning datasets were relatively likely to have zero non-censored events. Not only 
did models often not converge, but such a situation is unrealistic. In total, 288 DGMs were included. The 
dimensions, and their levels, are summarized in Table 3. 

4.3 Estimands 
For estimands, several factors were of interest. Note that per estimand, several performance measures were 

used that will be described in Section 4.5. The most important estimand used was the overall mean survival, as 

calculated by the extrapolation methods. Additional estimands used were the restricted mean survival time 

(RMST), or the fitted survival during the trial, cut off when follow-up ends. Note that RMST until the end of 

follow-up is not an extrapolation, but closer to an interpolation as no estimate is made beyond the available 

data. However, the estimand served as an indicator of model fit to the short-term or available data, and RMST 

has also been used in similar simulation studies (Rutherford et al., 2020). Furthermore, survival probability at 

certain times t based on the level of survival was assessed, with t = 3 for low survival, t = 15 for medium 

survival, and t = 20 for high survival. This serves as an indicator of clinical validity, as clinicians can typically 

give such an estimate for a disease. In medium and high information scenarios (with 3 and 10 years of follow-

up data, respectively), the survival probability for low survival will not be an extrapolation, as 3 years is still 

within follow-up. A time t that was an extrapolation for all scenarios would have been preferable, but since the 

expected disease-specific has already dropped to around 20% after 3 years in low survival scenarios, selecting a 

later time t increases the risk of the generated survival probability being 0, and thus 3 years was selected for low 

survival. For medium survival, the expected survival was also around 20% at 15 years, hence why 15 years was 

selected. For high survival, however, survival would reach 20% long after 40 years, while old populations used 

an average age of 75 and the maximum age of the simulation was 100. Therefore, 20 years was used as time t 

for high survival scenarios. 
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Table 3: 

Overview of DGMs for simulation 

Dimension 

Level Definition # of levels 

Age N ~ (μ, σage) x 3 

Young μ = 35  

Average μ = 50  

Old μ = 75  

Survival Various parametric models x 3 

Low Pancreatic cancer survival  

Medium Myocarditis survival  

High Ulcerative colitis survival  

Parametric distribution of survival 
Weibull, Gompertz, Log-logistic, 

Lognormal 
x 4 

Heterogeneity σage, division over sexes, frailty x 3 

Low σage = 3, 90% / 10%, none  

Medium σage = 6, 70% / 30%, β = 0.5  

High σage = 12, 50% / 50%, β = 2  

Level of available information 
npatients, λcensoring, follow-up length, 

extrapolation knowledge 
x 3 

Low n = 100, λ = 0.3, 1 year, summary  

Medium n = 300, λ = 0.067, 3 years, summary  

High n = 500, λ = 0.01, 10 years, full  

 Total number of DGMs: 288* 
*Since low information and high survival scenarios are excluded, 288 scenarios are compared rather than the full-factorial 324  

4.4 Extrapolation methods 
In this section, the extrapolation methods that were compared will be described, along with details on their 

implementations. Note that the selection of methods followed from van Oostrum et al. (2021). However, the 

proportional hazards method was not included as it was unclear how the hazard ratio was obtained in their 

study. Furthermore, literature related to the method recommends obtaining a hazard ratio from literature, which 

is not possible in this simulation setting. Other models found in the literature review were not included as they 

would have required more complicated DGMs that include more factors, which would have increased the 

number of scenarios tremendously. For example, for testing cure models various cure fractions would have to 

have been simulated in order to compare performance of the GPM incorporating method when different cure 

fractions are assumed. For mixture, landmark, polyhazard and machine learning models either multiple patient 

groups with differing survival or multiple competing risks would have to have been included. Finally, some 

models were excluded because they require human input during modelling, such as deciding cut points for 

piecewise models or the number of knots to use for cubic spline models. 

For  fitting the parametric models, all standard distributions mentioned in NICE guidance were used, which 

are the exponential, Weibull, log-logistic, log-normal, Gompertz and generalized Gamma distributions 

(Latimer, 2011). Furthermore, the generalized F distribution was used. For all methods, extrapolations were 

performed using mid-point Riemann sums with an interval width of 0.1 years, as some methods do not result 

in a parametric model with a function that can be integrated.  
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4.4.1 Non-GPM extrapolation 

For the first extrapolation approach, a parametric distribution was simply fit to the censored data generated by 

the DGMs, as described in Section 3.2.1.1. Since the flexsurv package in R allows fitting a parametric 

distribution to survival data, the exact implementation of this method is not discussed further. However, it is 

important to note that the fitted hazards (ℎ𝑛𝑜𝑛𝐺𝑃𝑀(𝑡)) of these models were used for some of the other 

extrapolation methods.  

4.4.2 Internal additive hazards 

For the internal additive hazards method or relative survival method, flexsurv also had a method readily 

implemented. To use it, a background hazard at the time of event needed to be supplied for each patient in the 

trial data. To obtain this background hazard from the life table, the assumption was made that hazards are 

constant throughout a year, as life tables are typically presented with expected survival at a certain age or 

probability of dying in a year at a certain age. Then, depending on the level of information available, the 

(censored) event time of the patient was added to either the patient’s age or the median age in the trial and a 

survival probability was obtained from the life table. Again, depending on the level of information available, 

either a survival probability weighted based on the division over sexes in the trial obtained from the female and 

male life tables, or a survival probability from the life table corresponding to the patient’s sex was obtained.  

Since the assumption of constant hazards throughout a year was made, this survival probability could easily be 

converted to hazards using the parametrization of the exponential distribution (which assumes constant 

hazards) and solving for the rate:  

𝜆 = −log 𝑆(𝑡)/𝑡 

Note that 𝑡 = 1, since constant hazards for 1 year were used. Furthermore, it is important that the probability 

of surviving another year rather than overall survival was used, as otherwise this equation would give the 

cumulative hazard.  

Once the background hazards per patient are calculated, the values were put into the flexsurv function and 

models were fit using the principles described in Section 3.2.2.1.  

4.4.3 External additive hazards 

For implementing the external additive hazards method, the fitted hazards from the non-GPM models were 

taken and added to the background hazards in extrapolation. For each point of the Riemann sum, hazards were 

calculated as follows: 

ℎ𝐴𝐶𝑀(𝑡) =  ℎ𝑛𝑜𝑛𝐺𝑃𝑀(𝑡) + 𝜆(𝑡)  

Where ℎ𝑛𝑜𝑛𝐺𝑃𝑀(𝑡) are the outputted hazards from the non-GPM models as described in Section 4.4.1, and 

𝜆(𝑡) are the GPM or background hazards, obtained similarly as in the internal additive hazards method. These 

hazards were then converted to overall survival and the area under the curve was calculated. For scenarios 

where patient-level data was available and ages and sexes are known, a weighted average of the hazards was 

taken based on mean age and division over sexes.   

4.4.4 Converging hazards 

As with the external additive hazards method, the fitted hazards from the non-GPM models were used to 

extrapolate for the converging hazards method, except here the background hazards were compared to the 

non-GPM hazards at each point of the Riemann sum, and the highest hazards were used to obtain the survival 

curve.  
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4.5 Performance measures 
Two performance measures were used for each estimand. The main measure of interest was the bias of each 

extrapolation method, or the average deviation from the known survival based on the event times generated by 

the DGMs and the extrapolated survival using the different extrapolation methods. The known survival was 

calculated by using the mean survival time of each patient sample, before their event times were censored. The 

mean was calculated based on the generated patient sample for each replication (with sizes 100, 300 and 500 

based on the level of information available), rather than attempting to get the theoretical survival from the 

underlying survival functions or by pooling all replication data together and calculating the means of these larger 

datasets. Doing the latter could have resulted in an implicit bias when comparing the extrapolated survival to 

the known survival. Furthermore, the consistency of each method was assessed. For this purpose, the root 

mean-square error (RMSE) was used. Initially, coverage was included as a performance measure, but due to the 

high computation time of obtaining lower and upper limits for the hazards based on parametric models, 

coverage was excluded from the performance measures.  
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5 Results 

In this chapter, the results from the simulation will be described using the estimands and performance measures 

as described in Chapter 4. As there were 288 scenarios in total not all results could be analysed in detail, let 

alone be mentioned in this chapter. Thus, only a selection of results (selected based on a Wilcoxon rank sum 

test that will be explained further) is shown in this chapter. Complete results are shown in Appendix A, B, and 

C. Furthermore, this section mostly focuses on summaries and over-arching patterns in results, rather than 

results for individual scenarios or models. The results are split into results per estimand (see Section 4.3 for a 

description of the estimands), and reporting for each estimand follows a similar structure. For further 

interpretation of certain results, specialised datasets were generated, which will be discussed in separate sections 

throughout this chapter. Note that from this point forward, a “model” denotes a combination of a parametric 

distribution and method to incorporate GPM (except for non-GPM models, where GPM is not incorporated).  

For each estimand, the best performing model in terms of lowest absolute mean bias of the estimand was 

identified per scenario, meaning it had the lowest absolute mean bias out of all models. Initially, all GPM 

incorporating methods and parametric distributions used for modelling were considered for each scenario. 

However, this resulted in relatively “noisy” results, and patterns were difficult to identify. Thus, per scenario, 

models were filtered based on the parametric distribution used for modelling and the parametric distribution 

used during data generation. In other words, in scenarios where data was generated using a Weibull distribution, 

only models that use the Weibull distribution were considered. In this manner, the only difference between the 

models under consideration was the method in which GPM was incorporated, which was the main point of 

interest for comparison following from the research question. Moreover, models that used the same underlying 

parametric distribution used to generate the data should perform well and generate more accurate results than 

the other distributions from a theoretical perspective regardless of the GPM method. Per estimand, the filtered 

results will be discussed first and will be used to identify patterns in performance. Then, the unfiltered results 

will be discussed and compared to the results found in the filtered analysis to draw secondary conclusions.  

As only the best performing models were identified, information regarding performance of second best, third 

best, etc. per scenario is lost. To get an indication of how much better the best performing model performed 

over the other models, a Wilcoxon rank sum test was employed. Here, per scenario, the biases per replication 

for each model were taken as samples, and the sample of biases of the best performing model was compared 

to the other models and tested for statistically significant differences (α = 0.05, using a Bonferonni correction 

for the three or 27 pairs of models compared, depending on whether all parametric distributions or only the 

parametric distribution used to generate the data were considered). If the best performing model passed the 

Wilcoxon test for a scenario, it is denoted as a “significant” result.  

Per estimand, an overview of the amount of times a model (GPM method and parametric distribution) 

performed best is shown. Then, per estimand, a visual representation of the best performing models for each 

individual scenario is shown for one of the four parametric distributions used to generate the data (a subset of 

72 scenarios per estimand), as the other dimensions can be ascertained when looking at trial data (i.e., average 

ages and trial size are known factors), while one cannot easily look at a survival curve and reason it looks like a 

lognormal distributed curve. The parametric distribution to visually present in this main body of text was 

selected per estimand based on which distribution had the most significant results using the Wilcoxon test for 

the filtered results. Visual results for the other distributions used to generate survival data can be found in 

Appendix A, although they will be discussed in separate sections in this chapter as well. 
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5.1 Mean survival 

5.1.1 Overview 

Overall, the external additive hazards GPM incorporating method performed best in the most scenarios in 

terms of mean survival (142 scenarios out of 288) when filtering for models that used the same parametric 

distribution as the underlying data. The converging hazards method performed best in 84 scenarios, the internal 

additive hazards method in 38 scenarios, and non-GPM extrapolations in 19 scenarios. A significantly best 

method (using the Wilcoxon test) was found in 78% of scenarios overall. Figure 4 charts the number of times 

each GPM incorporating ranked best for absolute mean bias of mean survival per dimension (keeping all other 

dimensions the same) on the left, and in total on the right.  

Figure 4:  

Times each GPM incorporating method ranked best for absolute mean bias of mean survival per dimension 

and total (models filtered based on parametric distribution)  

 

 

Figure 5:  

Times each GPM incorporating method and distribution ranked best for absolute mean bias of mean 

survival (all distributions considered) 
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When all parametric distributions were considered in the analysis (regardless of whether the parametric 

distribution matched that of the underlying data), the external additive hazards method also performed best in 

the most scenarios in terms of mean survival (123 scenarios out of 288). The converging hazards method 

performed best in 64 scenarios, the internal additive hazards method in 51 scenarios, and non-GPM 

extrapolations in 50 scenarios. A significantly best model was found in 36% of scenarios overall. Figure 5 charts 

the number of times each GPM incorporating method ranked best for mean survival per distribution when all 

distributions were considered.  

5.1.2 Filtered results 

5.1.2.1 Log-logistic results 

For mean survival, the most significant results were found in the scenarios that used the log-logistic distribution 

for generating the survival data when filtering for models that used the same distribution as the underlying data 

(83% of scenarios using the Wilcoxon test). Thus, visualisations of the results per individual scenario will be 

shown here for the log-logistic scenarios. Visualisations of the results for the other distributions can be found 

in Appendix A.1 for the filtered results.  

The results are presented in three tables, where the first (Table 4) shows the number of times the GPM 

incorporating method ranked best for the log-logistic distributed scenarios, but more importantly serves as a 

legend for the other two tables. Table 5 and Table 6 are intended to aid in identifying patterns between 

dimensions of scenarios, which are used for rows and columns. Differently shaded cells represent the best 

performing GPM method for the scenario based on the absolute mean bias. Within cells, the mean bias and 

mean root mean square error (RMSE) is shown, and a black triangle denotes a significant result for the scenario. 

The pair of tables have swapped main axes for both rows and columns: Table 5 groups by survival and ages, 

and Table 6 groups by heterogeneity and level of information. The tables presented for other estimands will 

follow the same structure. 

A distinct pattern can be seen in Table 5 can be seen when moving from the bottom left to the top right 

scenarios, where the converging hazards method performed best the most in scenarios with high survival or 

old ages, although it was mixed with the external additive hazards method in scenarios with high survival 

and young ages; and old ages with either medium or low survival. The external additive hazards method 

performed the best the most often in scenarios with medium survival and young ages; medium survival and 

average ages; and low survival and average ages. Performance in low survival and young ages was more mixed. 

As can be seen in Table 6, the external additive hazards method always performed best in scenarios with low 

information and low heterogeneity, and five out of six times for scenarios with low information and medium 

heterogeneity. The converging hazards method always performed the best in scenarios with medium 

information and high survival, and with high heterogeneity and old ages. In scenarios with either medium or 

high information, the external additive hazards method generally performed the best, unless survival is high 

or populations are old, where the converging hazards method performed better more often. 
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Table 4:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of mean survival for log-logistic distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 1 2 39 30 

 

Table 5:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = 

Significant result (Wilcoxon) 

    

Surv iva l (Log- logistic) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

1.042, 

6.347 
-0.949, 

1.361 
0.381, 

3.233 
0.052, 

0.903 
-0.09, 

0.341 
0.059, 

0.435 
-0.01, 

0.113 
-0.016, 

0.063 

M
ed

iu
m

 

0.851, 

6.063 
-1.205, 

1.558 
-0.084, 

3.122 
-0.07, 

0.888 
-0.063, 

0.365 
0.025, 

0.532 
0.036, 

0.144 
0.007, 

0.078 

H
ig

h
 

0.618, 

2.848 
-1.436, 

1.65 
-0.015, 

2.67 
-0.369, 

1.02 
-0.104, 

0.522 
0.216, 

1.42 
0.078, 

0.541 
0.092, 

0.308 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

1.808, 

3.54 
-2.106, 

2.106 
0.121, 

2.388 
-0.067, 

0.625 
-0.271, 

0.319 
0.024, 

0.396 
-0.002, 

0.101 
-0.006, 

0.056 

M
ed

iu
m

 

1.569, 

3.397 
1.974, 

1.976 
-0.148, 

2.209 
-0.155, 

0.627 
-0.305, 

0.354 
-0.038, 

0.449 
0.013, 

0.127 
-0.025, 

0.066 

H
ig

h
 

1.08, 

1.865 
1.412, 

1.423 
0.522, 

2.081 
-0.384, 

0.752 
-0.454, 

0.535 
-0.313, 

1.027 
-0.032, 

0.423 
-0.112, 

0.242 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.648, 

0.698 
0.06, 

0.12 
-0.353, 

0.848 
-0.543, 

0.546 
0.35, 

0.35 
0.021, 

0.289 
0.081, 

0.097 
0.049, 

0.056 

M
ed

iu
m

 

0.318, 

0.504 
-0.274, 

0.29 
-0.508, 

0.853 
-0.636, 

0.639 
0.248, 

0.249 
-0.066, 

0.293 
-0.115, 

0.123 
0.086, 

0.089 

H
ig

h
 

-0.161, 

0.454 
-0.637, 

0.638 
0.523, 

0.874 
0.48, 

0.505 
-0.015, 

0.137 
0.39, 

0.601 
0.392, 

0.401 
0.132, 

0.148 
 
 

  



26 
 

Table 6:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for log-logistic distributed data. Information and heterogeneity as main axes. (Bias, 

RMSE), ▲ = Significant result (Wilcoxon) 
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5.1.2.2 Results for other parametric distributions 

Overall, not many patterns in performance for mean survival seen for the log-logistic distributed data in Table 
5 and Table 6 were visible across the distributions used to generate survival data for the filtered results (see 
Appendix A.1). Generally speaking, looking at patterns seen in Table 5, the converging hazards method 
performed best more often in scenarios with either high survival or old populations across distributions, even 
more so in scenarios with high information. In scenarios with medium survival and young ages; medium survival 
and average ages; and low survival and average ages, the external additive hazards method performed best 
the most in all but the Weibull distributed scenarios, where it was mixed with either the converging hazards 
method or the internal additive hazards method (see Table 23). Compared to patterns identified in Table 6, 
the external additive hazards method always performed best in scenarios with low information and low 
heterogeneity across distributions, and other patterns did not hold across distributions.  

Across distributions, the internal additive hazards method was rarely selected as the best performing method 
for mean survival, except for the Weibull distributed scenarios (see Table 23), where in low survival scenarios 
the internal additive hazards method performed the best the most amount of times. Across other 
distributions, the only times the internal additive hazards performed best in a scenario was in low survival 
scenarios as well. 
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5.1.3 Unfiltered results 

5.1.3.1 Log-logistic results 

For results of mean survival where all models were considered, regardless of whether the parametric distribution 

used for modelling matched the distribution used to generate the survival data, tables with a similar structure 

to Tables 4, 5 and 6 will be presented and compared to the filtered results. Thus, the unfiltered results of mean 

survival for the log-logistic distributed scenarios are shown here (since the log-logistic distributed scenarios had 

the most significant results for the filtered results). Visualisations of results for the other distributions can be 

found in Appendix B.1, although they will be discussed in this section as well. For the unfiltered results, multiple 

models using different parametric distributions were under consideration for each GPM incorporating method. 

As such, Tables 7, 8 and 9 now differ in brightness of colour based on the best performing parametric 

distribution used for modelling. Table 7 serves as a legend for Tables 8 and 9, and shows the number of times 

each model (parametric distribution and GPM incorporating method) ranked best for scenarios that used the 

log-logistic distribution to generate survival data. 

None of the patterns seen in the filtered results for mean survival (Tables 5 or 6) showed as explicitly in the 

unfiltered results (Tables 8 and 9). The scenarios with medium survival and young ages; medium survival and 

average ages; and low survival and average ages still showed a slight preference for the external additive 

hazards method, albeit more mixed (see Table 8), as was seen in the filtered results (Table 5). In scenarios with 

low survival, young ages, there was a stronger preference in the unfiltered results for the external additive 

hazards method than in the filtered results. Furthermore, in scenarios with low information, there was a 

preference for the external additive hazards method regardless of heterogeneity, where in the filtered results 

this was only true for low or medium heterogeneity (see Table 6). 

5.1.3.2 Results for other parametric distributions 

Comparing the unfiltered results for mean survival of the log-logistic scenarios to scenarios that used other 

parametric distributions to generate the data, the patterns described in the previous section held for the Weibull 

distributed scenarios, less strongly for lognormal distributed scenarios and not at all for Gompertz distributed 

scenarios (see Table 80). Compared to the patterns seen in the filtered results across distributions, the 

converging hazards method still performed better more often scenarios with high survival or old populations 

in the unfiltered results, although performance within scenarios with high survival or old ages was more mixed 

with all the other methods. Furthermore, when moving from high to low survival or from older to younger 

ages, it becomes more rare for the converging hazards method to have performed best.  

The internal additive hazards method was selected as the best performing method for mean survival more 

often in scenarios with medium survival in scenarios that used other distributions to generate the data, 

compared to it only being selected in low survival scenarios for filtered results. The internal additive hazards 

method was still mostly absent from scenarios with high survival, however. Across distributions, non-GPM 

extrapolations mostly performed best in scenarios with high survival, and were relatively absent in scenarios 

with medium or low survival. Another noteworthy result was how for the Gompertz distributed data, models 

that used the Gompertz distribution only ranked highest in 8 scenarios, while generalised gamma ranked highest 

in 21 scenarios and Weibull ranked highest in 19 scenarios (see Table 79). For other distributions, the 

distribution used to generate the data was selected the most often as the highest ranking distribution for 

extrapolation.  
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Table 7:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for 

log-logistic distributed data. Amount of times the model ranked best 

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 1 1 0 5 4 2 15 

Internal additive 2 4 2 0 0 0 1 9 

External additive 6 0 14 4 3 3 1 31 

Converging 1 3 5 2 1 5 0 17 

Tota l 11 8 22 6 9 12 4 
 

Table 8:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for log-

logistic distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon) 
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0.06, 
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0.121, 
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0.093, 
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0.024, 
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-0.006, 
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14.968 
0.269, 

3.915 
-0.148, 
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0.04, 

2.064 
0.039, 

0.339 
0.031, 

0.303 
0.013, 

0.127 
-0.012, 

0.065 
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-0.029, 

4.214 
-0.241, 

0.58 
0.235, 

3.827 
-0.258, 
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0.203, 

0.379 
0.164, 

1.14 
0.013, 
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0.008, 
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0.929 
-0.028, 

0.315 
-0.123, 
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0.1, 
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0.028, 
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0.021, 

0.289 
0.028, 

0.082 
0.004, 

0.034 
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0.011, 

0.589 
-0.141, 

0.534 
-0.082, 

2.266 
0.035, 

0.577 
0.013, 

0.08 
-0.016, 

0.206 
-0.015, 

0.069 
-0.027, 

0.037 
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-0.096, 

0.547 
0.011, 

0.384 
0.223, 

1.445 
-0.036, 

0.377 
-0.015, 

0.137 
-0.238, 

0.497 
0.081, 

0.263 
-0.014, 

0.076 
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Table 9:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for log-

logistic distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

    
In form ation 

    Low Medium High 
    

Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic) 
    Medium Low High Medium Low High Medium Low 
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0.001, 

0.082 

A
ve

ra
ge
 

-0.148, 

2.209 
0.031, 

0.303 
-0.184, 

14.968 
0.04, 

2.064 
0.013, 

0.127 
0.269, 

3.915 
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5.1.4 Exploring performance of the external additive hazards method 
To explore possible reasons why the external additive hazards method outperformed the internal additive 

hazards method (the latter of which is currently most often recommended in literature) more often, a set of 

models was generated for two scenarios with different levels of survival that had relatively large differences in 

mean bias of extrapolated mean survival between the internal additive hazards and external additive hazards 

method and where an external additive hazards model performed relatively well.  

The first was the scenario with young ages, high survival generated using the Gompertz distribution, medium 

heterogeneity and high information, where external additive hazards models combined had a mean bias of mean 

survival of 0.47, and the internal additive hazards models combined had a mean bias of 21.13. Following from 

the unfiltered results from the simulation for this scenario, the external additive hazards models that performed 

the best used the generalised gamma distribution (with a mean bias of 0.015, the lowest out of all the models 

for this scenario) and the internal additive hazards models that performed the best used the Weibull distribution 

(with a mean bias of 13.54). Figure 6 charts the expected GPM and DSM survival curves for this scenario with 
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the generated known Kaplan-Meier curve, and the extrapolated survival over time for the generalised gamma 

external additive hazards model and the Weibull internal additive hazards model (the extrapolated non-GPM 

generalised gamma survival is shown as its hazards are used for the external additive hazards extrapolation).  

The second is the scenario with average ages, medium survival generated using the log-logistic distribution, low 

heterogeneity and ;pw information, where external additive hazards models combined had a mean bias of -0.17, 

and internal additive hazards models combined had a mean bias of 4.17. Based on the unfiltered results of the 

simulation, the external additive hazards models that performed the best used the log-logistic distribution (with 

a mean bias of 0.12, the lowest out of all the models for this scenario. The best performing model did not have 

a significant result using the Wilcoxon test), and the internal additive hazards models that performed best used 

the Weibull distribution (with a mean bias of -2.14, which was the fourth lowest mean bias for this scenario). 

Figure 7 charts the expected GPM and DSM survival curves for this scenario with the generated known Kaplan-

Meier curve, and the extrapolated survival over time for log-logistic external additive hazards model and the 

Weibull internal additive hazards model (the extrapolated non-GPM log-logistic survival is shown as its hazards 

are used for the external additive hazards extrapolation). 

Figure 6:  

Survival curves for the best performing external additive hazards and internal additive hazards model in 

terms of mean survival for scenario with young ages, high survival, medium heterogeneity, high 

information, Gompertz distribution 
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Figure 7:  

Survival curves for the best performing external additive hazards and internal additive hazards model in 

terms of mean survival for scenario with average ages, medium Weibull survival, low heterogeneity and 

low information 

 

5.2 Survival probability at time t 

5.2.1 Overview 

For survival probability at time t (t = 3 for low survival, t = 15 for medium survival, t = 20 for high survival), 

the external additive hazards GPM incorporating method performed best in terms of absolute mean bias in the 

most scenarios when filtering for models that used the same parametric distribution as the distribution used to 

generate the survival data (99 out of 288 scenarios). The internal additive method ranked the highest in 75 

scenarios, the converging hazards method in 68 scenarios and the non-GPM extrapolations in 41 scenarios. A 

significant result was found in 53% of scenarios (using the Wilcoxon test). Note that for low survival, and either 

medium or high information scenarios, the estimated probabilities were not extrapolations, but interpolations, 

as the time t is either at the end or within follow-up. Figure 8 charts the number of times each GPM 

incorporating ranked best for absolute mean bias of survival probability at time t per dimension (keeping all 

other dimensions the same) on the left, and in total on the right. 
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Figure 8: 

Times each GPM incorporating method ranked best for absolute mean bias of survival probability at time 

t per dimension and total (models filtered based on parametric distribution)  

 

 

The external additive hazards method also performed best in the most scenarios for survival probability at time 

t when all parametric distributions were considered for analysis (93 out of 288 scenarios). Next, the internal 

additive hazards method performed the best in 73 scenarios, the converging hazards method in 64 scenarios 

and the non-GPM extrapolations in 58 scenarios. A significantly best model was found in 14% of the scenarios 

overall using the Wilcoxon test. In Figure 9 the number of scenarios each method ranked best for survival 

probability at time t per distribution when all distributions were considered is shown. 

Figure 9:  

Times each GPM incorporating method and distribution ranked best for absolute mean bias of survival 

probability at time t (all distributions considered) 
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5.2.2 Filtered results 

5.2.2.1 Lognormal results 

The scenarios with lognormal distributed survival data had the most significant results for survival probability 
at time t (60% of scenarios) when filtering for models that also used the lognormal distribution, thus, its results 
are presented in Tables 10, 11 and 12. Visualisations of the results for the other distributions can be found in 
Appendix A.2 for the filtered results. The results are presented in a similar manner to Tables 4, 5 and 6 (see 
Section 5.1.2 for an explanation). For scenarios that were not an extrapolation (low survival and medium or 
high information), a * is noted in the column of the results tables. 

Table 10:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute mean 

bias of survival probability at time t for lognormal distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 6 15 37 13 

Table 11:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), 

▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    

Surv iva l (Lognorm al) 
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Table 12:  

Filtered colour-coded table for best ranking method for absolute mean bias of survival probability at time t per 

scenario for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = 

Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
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0.014 
0.003, 

0.01 

O
ld
 -0.016, 

0.031 
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As can be seen in Table 11, the external additive hazards method performed best for nearly all the scenarios 

that had medium survival in scenarios that used lognormal distributed survival data for survival probability at 

time t. In scenarios with high survival and young or average populations, the external additive hazards 

method also performed the best the most often. The converging hazards method performed the best for all 

scenarios with high survival and old ages. For scenarios with low survival and young or average ages, the 

internal additive hazards method performed the best most often. Performance in scenarios with low survival 

and old ages was mixed. Table 12 shows no distinct patterns in performance between the methods when 

comparing information and heterogeneity as main axes for scenarios that used the lognormal distribution for 

survival data. 
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5.2.2.2 Results for other parametric distributions 

There were a few similarities in patterns in performance for survival probability at time t across the distributions 

used to generate the survival data. Over all distributions, the converging hazards method is only outperformed 

once by a non-GPM extrapolation out of all the scenarios with high survival and old ages. The results for 

scenarios with low survival were similar throughout the distributions, where the internal additive hazards 

method performed best the most often for young and average ages, and performance was mixed between the 

methods for old ages. For scenarios with medium survival, the external additive hazards method performed 

the best the most often for scenarios that used log-logistic (Table 38) and Gompertz (Table 44) distributions, 

but not for the scenarios that used the Weibull distribution, where performance was mixed between the 

methods (see Table 35). It was relatively rare for the internal additive hazards method to have performed the 

best in either medium or high survival scenarios across distributions. 

5.2.3 Unfiltered results 

5.2.3.1 Lognormal results 

The lognormal results when all parametric distributions used for modelling were under consideration will be 

presented in Tables 13, 14 and 15 in order to compare to the filtered lognormal results (which had the most 

significant results) described in the previous section. For the unfiltered results, a significant result was found in 

7% of the scenarios that used the lognormal distribution to generate the survival data. Visualisations for the 

scenarios with other parametric distributions can be found in Appendix B.2. The tables shown here follow a 

similar structure to those described in Section 5.1.3 for the unfiltered results. 

The unfiltered results for lognormal distributed scenarios for survival probability at time t were relatively similar 

to the filtered results (Tables 11 and 12) in scenarios with medium and low survival. Table 14 shows that in 

medium survival scenarios, models that used the external additive hazards method still performed the best 

the most often, but the performance was more mixed with other models across the age, information and 

heterogeneity dimensions. In low survival scenarios with young or average ages, the internal additive hazards 

method performed the best most often. In low survival scenarios with old ages performance was relatively 

mixed between the methods (see Table 14), as was seen in Table 11. However, the scenarios with high survival 

no longer showed a preference for the external additive hazards method in scenarios with young or average 

ages where performance was now mixed between the methods. In scenarios with high survival and old ages, 

the converging hazards method was now outperformed by non-GPM extrapolations in the high information 

scenarios. With heterogeneity and information used as main axes the results looked similar (see Table 15 and 

Table 12), as there were no distinct patterns in performance between the methods.  

5.2.3.2 Results for other parametric distributions 

Across the scenarios using different parametric distributions to generate survival data, results looked relatively 

similar for high and low survival scenarios for survival probability at time t when all parametric distributions 

used for modelling were considered in analysis (see Appendix B.2). In scenarios with high survival and young 

or average ages performance was mixed between the methods across distributions. For scenarios with high 

survival and old ages the converging hazards method nearly always performed the best in medium 

information scenarios, and the non-GPM extrapolations always performed the best in high information 

scenarios across distributions. It was still relatively rare for the internal additive hazards method to perform 

the best in high and medium survival scenarios for the unfiltered results, as was seen in the filtered results across 

distributions. In low survival scenarios, the internal additive hazards method still performed the best the 

most often in scenarios with young or average ages across distributions when compared to the filtered results.  

For scenarios with medium survival, however, there no longer was a preference for the external additive 

hazards method in the results for scenarios that used the Weibull (Table 71) and Gompertz (Table 80) 

distributions for survival data. Finally, for scenarios that used the Weibull distribution for generating survival 

data, Weibull models did not perform the best in the most scenarios (13 scenarios out of 72), but rather the 

generalised gamma models were selected the most often (25 scenarios).  
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Table 13:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability 

at time t for lognormal distributed data. Amount of times the model ranked best 

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 1 5 3 2 4 0 17 

Internal additive 0 1 4 7 0 3 4 19 

External additive 2 0 0 12 4 4 0 22 

Converging 0 5 3 2 1 1 2 14 

Tota l 4 7 12 24 7 12 6 
 

Table 14:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per 

scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon), * denotes scenarios that are not extrapolations   
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0.013 



37 
 

Table 15:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario 

for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result, 

* denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.003, 

0.078 
-0.002, 

0.059 
0.008, 

0.125 
0.002, 

0.046 
-0.002, 

0.006 
-0.002, 

0.023 
0.001, 

0.011 
-0.004, 

0.009 

A
ve

ra
ge
 

0.002, 

0.073 
0.001, 

0.06 
-0.004, 

0.132 
0.003, 

0.024 
0, 

0.006 
0.016, 

0.032 
0.004, 

0.012 
-0.002, 

0.008 

O
ld
 

-0.002, 

0.027 
-0.004, 

0.117 
-0.002, 

0.028 
-0.002, 

0.026 
-0.003, 

0.01 
0.005, 

0.027 
0.005, 

0.009 
0, 

0.009 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.001, 

0.077 
-0.008, 

0.059 
0.272, 

0.272 
0.001, 

0.046 
-0.002, 

0.006 
0.001, 

0.022 
0.002, 

0.01 
-0.004, 

0.009 

A
ve

ra
ge
 

0.002, 

0.071 
-0.001, 

0.058 
0, 

0.12 
-0.003, 

0.024 
0.001, 

0.006 
0.018, 

0.032 
0.006, 

0.013 
-0.001, 

0.009 

O
ld
 0.005, 

0.05 
-0.002, 

0.109 
-0.007, 

0.018 
0.001, 

0.025 
-0.005, 

0.011 
-0.004, 

0.028 
0.001, 

0.008 
-0.002, 

0.009 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.001, 

0.064 
-0.001, 

0.061 
-0.003, 

0.044 
0.003, 

0.024 
-0.001, 

0.006 
0.001, 

0.019 
-0.002, 

0.01 
-0.001, 

0.009 

A
ve

ra
ge
 

0.004, 

0.058 
0, 

0.043 
0, 

0.044 
0.001, 

0.034 
-0.001, 

0.006 
-0.012, 

0.021 
-0.009, 

0.014 
0.001, 

0.008 

O
ld
 0.01, 

0.06 
0, 

0.04 
0.029, 

0.035 
-0.001, 

0.018 
0, 

0.006 
0.025, 

0.045 
0.002, 

0.01 
0.007, 

0.013 
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5.3 RMST 

5.3.1 Overview 

Overall, for absolute mean bias RMST (calculated until the end of follow-up, which was 1 year for low 

information, 3 years for medium information, and 10 years for high information scenarios), the internal additive 

hazards method performed best the most often when filtering for models that used the same parametric 

distribution as the generated survival data (135 out of 288 scenarios). Next, the non-GPM extrapolations 

performed the best in 107 scenarios, the converging hazards method in 26 scenarios, and the external additive 

hazards method in 15 scenarios. A significant result was found in 57% of scenarios overall when models were 

filtered based on the parametric distribution used for modelling and generating the data. Figure 10 charts the 

number of times each GPM incorporating ranked best for absolute mean bias of RMST per dimension (keeping 

all other dimensions the same) on the left, and in total on the right. 

Figure 10: 

Times each GPM incorporating method ranked best for absolute mean bias of RMST per dimension and 

total (models filtered based on parametric distribution)  

 

 

When all models using all distributions were considered for analysis, the internal additive hazards method also 

performed best the most for RMST (130 out of 288 scenarios). The non-GPM extrapolations performed best 

in 75 scenarios, the converging hazards method in 51 scenarios, and the external additive hazards method in 

29 scenarios. In 20% of scenarios a significant result was found using the Wilcoxon test for the unfiltered 

results. In Figure 11 the number of scenarios where each GPM incorporating method ranked best per 

distribution is shown for RMST when all distributions are considered. 
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Figure 11:  

Times each GPM incorporating method and distribution ranked best for absolute mean bias of RMST (all 

distributions considered) 

 

5.3.2 Exploring performance of the non-GPM models 

Before continuing onto the scenario-specific results for RMST, the performance of non-GPM interpolations 
for RMST should be discussed, as there were 78 scenarios in the unfiltered results where non-GPM 
interpolations had a lower absolute mean bias, which was more often than both the converging hazards method 
(51 scenarios) and the external additive hazards method (21 scenarios). There were a combined 104 out of 576 
scenarios where non-GPM extrapolations had a lower absolute mean bias than models that incorporate GPM 
for the other two estimands. However, for overall mean survival and survival probability at time t, non-GPM 
extrapolations were selected as the best the least often compared to the other methods.    

Across all three estimands, non-GPM extrapolations performed the best in 186 out of 864 scenarios across 
estimands in results that were not filtered for matching distributions used to generate survival data and used 
for modelling, yet only 55 (30%) of these results were significant using the Wilcoxon test. The converging 
hazards method performed the best in 179 out of 864 scenarios across estimands, yet only 24 (13%) of these 
results were significant using the Wilcoxon test. Within the insignificant results for non-GPM extrapolations, 
the converging hazards method as second best in 90 out of 131 scenarios across estimands, while within 
insignificant results for converging hazards extrapolations, the non-GPM extrapolations were second best in 
27 out of 155 scenarios across estimands. 

5.3.3 Filtered results 

5.3.3.1 Lognormal results 

For the filtered results where only models that used the same parametric distribution as the distribution used 
to generate the survival data were under consideration, the results for the scenarios that used the lognormal 
distribution had the most significant results (72% using the Wilcoxon test), and thus its results will be shown 
here. Visualisations for the other distributions can be found in Appendix A.3. The results are presented in a 
similar manner to Tables 4, 5 and 6 (see Section 5.1.2 for an explanation) in Tables 16, 17 and 18. 

Overall, there were two distinct patterns that can be seen in Tables 17 and 18 for the scenarios that used the 
lognormal distribution to generate the survival data. Table 17 shows that non-GPM extrapolations nearly 
always performed best in high survival scenarios, and as survival becomes lower and ages become younger, the 
internal additive hazards method performed best more often in the lognormal distributed scenarios. 
Secondly, as can be seen in Table 18, the internal additive hazards method always performed best in scenarios 
with low information. Then, as information becomes higher, non-GPM extrapolations performed better more 
often. 
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Table 16:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of RMST for lognormal distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 26 42 0 3 

 

Table 17:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST 

per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant 

result (Wilcoxon) 

    

Surv iva l (Lognorm al) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
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en
ei

ty
 

L
o
w

 

-0.001, 

0.004 
-0.016, 

0.026 
-0.011, 

0.011 
-0.021, 

0.023 
-0.006, 

0.034 
-0.016, 

0.016 
-0.037, 

0.037 
-0.041, 

0.041 

M
ed

iu
m

 

NA -0.017, 

0.027 
-0.012, 

0.012 
-0.022, 

0.024 
-0.002, 

0.034 
-0.017, 

0.017 
-0.035, 

0.035 
-0.037, 

0.038 

H
ig

h
 

0.004, 

0.009 
-0.035, 

0.042 
-0.008, 

0.012 
-0.005, 

0.017 
-0.02, 

0.042 
-0.02, 

0.02 
-0.028, 

0.029 
-0.008, 

0.034 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.003, 

0.006 
-0.041, 

0.045 
-0.01, 

0.011 
-0.012, 

0.017 
-0.064, 

0.066 
-0.015, 

0.015 
-0.032, 

0.032 
-0.028, 

0.029 

M
ed

iu
m

 

-0.004, 

0.006 
-0.044, 

0.047 
-0.01, 

0.011 
-0.014, 

0.019 
-0.068, 

0.07 
-0.016, 

0.016 
-0.029, 

0.03 
-0.019, 

0.023 

H
ig

h
 

-0.008, 

0.011 
-0.073, 

0.075 
-0.008, 

0.012 
0.001, 

0.017 
-0.05, 

0.057 
-0.019, 

0.02 
-0.023, 

0.025 
0.049, 

0.055 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.019, 

0.02 
-0.211, 

0.211 
0.002, 

0.007 
-0.04, 

0.04 
-0.11, 

0.11 
-0.003, 

0.007 
0.019, 

0.021 
-0.016, 

0.026 

M
ed

iu
m

 

-0.021, 

0.022 
-0.197, 

0.197 
0.001, 

0.007 
-0.043, 

0.043 
-0.106, 

0.106 
-0.005, 

0.008 
0.022, 

0.023 
-0.019, 

0.028 

H
ig

h
 

-0.029, 

0.029 
-0.187, 

0.187 
0, 

0.011 
-0.041, 

0.042 
-0.12, 

0.12 
-0.012, 

0.015 
0.03, 

0.033 
-0.065, 

0.066 
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Table 18:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST 

per scenario for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ 

= Significant result (Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.011, 

0.011 
-0.016, 

0.016 
-0.001, 

0.004 
-0.021, 

0.023 
-0.037, 

0.037 
-0.016, 

0.026 
-0.006, 

0.034 
-0.041, 

0.041 

A
ve

ra
ge
 

-0.01, 

0.011 
-0.015, 

0.015 
-0.003, 

0.006 
-0.012, 

0.017 
-0.032, 

0.032 
-0.041, 

0.045 
-0.064, 

0.066 
-0.028, 

0.029 

O
ld
 

0.002, 

0.007 
-0.003, 

0.007 
-0.019, 

0.02 
-0.04, 

0.04 
0.019, 

0.021 
-0.211, 

0.211 
-0.11, 

0.11 
-0.016, 

0.026 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.012, 

0.012 
-0.017, 

0.017 NA 
-0.022, 

0.024 
-0.035, 

0.035 
-0.017, 

0.027 
-0.002, 

0.034 
-0.037, 

0.038 

A
ve

ra
ge
 

-0.01, 

0.011 
-0.016, 

0.016 
-0.004, 

0.006 
-0.014, 

0.019 
-0.029, 

0.03 
-0.044, 

0.047 
-0.068, 

0.07 
-0.019, 

0.023 

O
ld
 0.001, 

0.007 
-0.005, 

0.008 
-0.021, 

0.022 
-0.043, 

0.043 
0.022, 

0.023 
-0.197, 

0.197 
-0.106, 

0.106 
-0.019, 

0.028 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.008, 

0.012 
-0.02, 

0.02 
0.004, 

0.009 
-0.005, 

0.017 
-0.028, 

0.029 
-0.035, 

0.042 
-0.02, 

0.042 
-0.008, 

0.034 

A
ve

ra
ge
 

-0.008, 

0.012 
-0.019, 

0.02 
-0.008, 

0.011 
0.001, 

0.017 
-0.023, 

0.025 
-0.073, 

0.075 
-0.05, 

0.057 
0.049, 

0.055 

O
ld
 0, 

0.011 
-0.012, 

0.015 
-0.029, 

0.029 
-0.041, 

0.042 
0.03, 

0.033 
-0.187, 

0.187 
-0.12, 

0.12 
-0.065, 

0.066 
 

5.3.3.2 Results for other parametric distributions 

Both patterns described in the previous sections for scenarios that use lognormal distributed survival data 

generally held across distributions (see Appendix A.3), with the largest difference being that the internal 

additive hazards method no longer always outperformed the other methods in scenarios with low 

information, although it still performed the best the most in those scenarios across distributions. Furthermore, 

in scenarios with old ages and medium survival, there was a stronger preference for the non-GPM 

extrapolations, which performed best in 27 out of 36 scenarios with those characteristics across distributions. 

The external additive hazards method only performed the best in 15 scenarios out of 72 for RMST when 

filtering models for the parametric distribution used to generate the survival data. 12 out of those 15 scenarios 

were in the Weibull distributed scenarios (see Table 48), where the external additive hazards method only 

performed best in scenarios with high heterogeneity, except for scenarios with high survival or old ages. The 

other 3 scenarios where the external additive hazards method were in the log-logistic distributed scenarios 

(see Table 51), where it also only ever performed best in scenarios with high heterogeneity and medium survival. 
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5.3.4 Unfiltered results 

5.3.4.1 Lognormal results 

For comparison with the filtered lognormal results (which had the most significant results) described in the 

previous section, the results for the lognormal distributed scenarios when all parametric distributions used for 

modelling were included in the analysis will be shown here. In the lognormal distributed scenarios, a significant 

result was found in 26% of scenarios when all parametric distributions are considered. Visualisations for the 

scenarios with other parametric distributions can be found in Appendix B.3. Tables 19, 20 and 21 follow a 

similar structure to those described in Section 5.1.3 for the unfiltered results.  

Compared to the filtered results for lognormal distributed scenarios, similar patterns can be seen in both Tables 

17 and 20, and Tables 18 and 21. Table 20 shows that the non-GPM extrapolations nearly always performed 

best in high survival scenarios when models using all parametric distributions were considered. Once again, the 

internal additive hazards method performed best more often as survival becomes lower and ages become 

younger in the lognormal distributed scenarios. Furthermore, when comparing Tables 18 and 22 the internal 

additive hazards method nearly always performed best in scenarios with low information in both tables. 

However, for the unfiltered results (Table 21), performance was more mixed between all GPM methods in 

scenarios with medium or high information, where in the filtered results (Table 18) the mix was mostly between 

the internal additive hazards method and non-GPM extrapolations. 

Table 19:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for 

lognormal distributed data. Amount of times the model ranked best 

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 6 5 0 5 2 0 20 

Internal additive 2 15 9 4 4 3 0 37 

External additive 2 4 0 0 0 0 0 6 

Converging 0 4 5 0 0 0 0 9 

Tota l 6 29 19 4 9 5 0 
 

 

5.3.4.2 Results for other parametric distributions 

Results across the scenarios with different parametric distributions for RMST when all parametric distributions 

used for modelling were considered in analysis looked relatively similar (see Appendix B.3). The patterns 

described in the previous section for lognormal distributed scenarios for the internal additive hazards method 

held across distributions, where it performed best more often as survival becomes lower and ages become 

younger. Compared to the filtered results across distributions in scenarios where the non-GPM extrapolations 

generally performed best the most (high survival scenarios, and scenarios with medium survival and old ages), 

the converging hazards method performed best more often in the unfiltered results (for example, compare 

the filtered and unfiltered results for Weibull distributed scenarios in Tables 47 and 83). 
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Table 20:  

Colour-coded table for best ranking model for absolute mean bias of of RMST per scenario for lognormal 

distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    

Surv iva l (Lognorm al) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 
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0, 

0.004 
0.003, 

0.018 
-0.002, 

0.016 
0.002, 

0.013 
-0.005, 

0.032 
-0.012, 

0.013 
-0.009, 

0.013 
-0.024, 

0.024 

M
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-0.002, 

0.004 
0.004, 

0.019 
-0.004, 

0.016 
0.003, 

0.014 
-0.002, 

0.032 
-0.013, 

0.013 
-0.005, 

0.012 
-0.011, 

0.017 

H
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0.001, 

0.008 
-0.005, 

0.03 
0, 

0.009 
-0.005, 

0.017 
-0.014, 

0.04 
0, 

0.01 
-0.011, 

0.016 
-0.008, 

0.034 
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H
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-0.001, 

0.005 
-0.003, 

0.023 
-0.004, 

0.007 
0.001, 

0.012 
-0.025, 

0.039 
-0.012, 

0.012 
-0.005, 

0.012 
-0.014, 

0.016 

M
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m

 

-0.001, 

0.005 
-0.003, 

0.023 
-0.004, 

0.007 
0.001, 

0.012 
-0.023, 

0.041 
-0.012, 

0.012 
0, 

0.012 
-0.001, 

0.015 

H
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0, 

0.008 
0.002, 

0.031 
0.001, 

0.009 
-0.001, 

0.017 
-0.003, 

0.043 
0.001, 

0.01 
-0.007, 

0.014 
0.036, 

0.046 
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-0.007, 

0.009 
-0.026, 

0.03 
0.002, 

0.007 
-0.001, 

0.014 
-0.009, 

0.03 
-0.002, 

0.006 
0.009, 

0.014 
0.002, 

0.024 

M
ed
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-0.008, 

0.01 
-0.027, 

0.031 
0.001, 

0.007 
-0.001, 

0.014 
-0.004, 

0.03 
-0.002, 

0.011 
0, 

0.017 
-0.006, 

0.027 
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h
 

0, 

0.018 
-0.022, 

0.055 
0, 

0.01 
-0.001, 

0.022 
0.009, 

0.035 
-0.003, 

0.01 
0.006, 

0.019 
-0.022, 

0.038 
 

Finally, models using the Weibull distribution ranked highest a relatively high amount of times for RMST 

compared to other estimands where performance across distributions used for modelling was more evenly 

spread. In total, models that used the Weibull distribution were selected as the best in 87 out of 288 scenarios, 

and were selected as the best the most often in scenarios where either the Gompertz, log-logistic or lognormal 

distribution was used to generate survival data. However, in scenarios where the Weibull distribution was used 

for generating data, models that used the log-logistic distribution performed the best in 18 scenarios, and 

models that used the Weibull distribution performed best in 16 scenarios.  
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Table 21:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for lognormal 

distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low High Medium Low 
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-0.004, 
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-0.005, 

0.012 
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-0.014, 

0.016 
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-0.002, 
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-0.007, 
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0.03 
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0.03 
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-0.004, 
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-0.013, 

0.013 
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-0.005, 

0.012 
0.004, 

0.019 
-0.002, 

0.032 
-0.011, 
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-0.004, 
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0, 
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0.034 
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0.001, 

0.009 
0.001, 

0.01 
0, 
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0.014 
0.002, 

0.031 
-0.003, 

0.043 
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0, 

0.01 
-0.003, 
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0, 
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-0.022, 
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0.009, 

0.035 
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0.038 
 

5.3.5 Exploring discrepancies in parametric distribution for simulation and for modelling  

To explore what occurred in scenarios where the parametric distribution of the best performing model did not 

correspond with the parametric distribution used to generate the data, a scenario that used the Gompertz 

distribution and where models using other distributions performed best for all three estimands was selected to 

explore further. This was the scenario with young ages, medium survival, medium heterogeneity and high 

information. However, deviating from the high information scenario, a trial size of 1,000,000 patients, a very 

low level of right censoring and follow-up length of 100 was used to determine whether Gompertz models 

would outperform the models using other distributions when the dataset becomes larger. In Figure 12, the 

survival curve for the best performing model overall (the non-GPM exponential model), and the best 

performing model using the Gompertz distribution for the bias of mean survival (which was also the model 

without GPM adjustment) is shown alongside the KM-curve and the expected DSM and GPM survival.  
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Figure 12:  

Survival curves for the best performing model  overall and for best performing model using the Gompertz 

distribution for mean survival for scenario with young ages, medium Gompertz survival, medium 

heterogeneity and high information (trial size increased to 1,000,000 and almost no censoring) 

 

 

5.4 Summary 
To summarize, in results where models were filtered based on the parametric distribution used for generating 

the survival data and for modelling, the methods that incorporate GPM outperformed non-GPM extrapolations 

in 264 out of 288 scenarios for mean survival, 242 scenarios for survival probability at time t, and 176 scenarios 

for RMST (an average of 79% of scenarios across estimands). For results where all parametric distributions 

were considered, the methods that incorporate GPM outperformed non-GPM extrapolations in 238 out of 288 

scenarios for mean survival, 230 scenarios for survival probability at time t, and 210 scenarios for RMST (an 

average of 78% of scenarios across estimands). 
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6 Discussion 

The results show that incorporation of GPM information into survival extrapolations is important in certain 

situations, as there was a large number of tested scenarios where an extrapolation that incorporated GPM 

outperformed a non-GPM extrapolation (an average of 79% of scenarios across estimands when models were 

filtered based on the parametric distributions used for generating survival data, and an average of 78% of 

scenarios across estimands when all models were considered for analysis). However, between the GPM 

incorporating methods, patterns between which method performed best were not as clear as was hoped for at 

the start of this research. This chapter will start with theoretical interpretations for the identified patterns in 

performance and further interpretation of certain results that contradict current knowledge from literature. 

Next, the limitations and  the strengths of the study will be discussed and related to previous literature found. 

Finally, to conclude this chapter, the identified patterns in performance will be discussed and used to draw 

recommendations for guidance for HTA submissions and recommendations for future research will be made. 

6.1 Interpretation of results 
In this section the results of the study will be interpreted further and possible reasons for certain results being 

contradictory to current knowledge or otherwise unexpected will be identified.  

6.1.1 Performance of the external additive hazards method 

In general, the external additive hazards method extrapolated the best in the most scenarios for overall mean 

survival and survival probability at time t in both the filtered and unfiltered results (RMST was an interpolation, 

as it was calculated until the end of follow-up). However, in literature, most authors that compared GPM 

incorporating methods recommend using an internal additive hazards approach (more commonly referred to 

as relative survival models) (Andersson et al., 2013; Palmer et al., 2023; Rutherford et al., 2020). To explore 

possible reasons why, two scenarios were selected for further exploration, as described in Section 5.1.4. 

In Figure 6, the internal additive hazards model follows the known Kaplan-Meier curve relatively closely until 

at some point it starts overestimating the survival after around 7 – 10, while the external additive hazards model 

follows the Kaplan-Meier curve more closely until the end of the data (when patients have reached age 100). 

Figure 7 shows that both models extrapolated rather poorly. However, the external additive hazards model 

starts adjusting for GPM more strongly after around 20 years when comparing its extrapolation to its non-

GPM counterpart. This indicates that the internal additive hazards method does not account enough for GPM 

at the tail-end of the data when GPM becomes higher, while the external additive hazards method does. This 

could be due to the internal additive hazards method only capturing GPM hazards of patients during the trial, 

meaning GPM hazards will be the same for all patients that are censored at the end of follow-up. Thus, the 

internal additive hazards method could lead to a bias in scenarios where many patients are censored at the end 

of follow-up, as the effect of GPM hazards is underestimated if the GPM hazards are low at that time.  

For example, for the dataset shown in Figure 6 (using high survival and young ages), 384 out of 500 patients 

were still alive at the end of follow-up (10 years), where expected GPM survival is still above 95%. For the 

dataset shown in Figure 7 (using medium survival and average ages), 71 out of 100 patients were still alive at 

the end of follow-up (1 year), where expected GPM survival is also still above 95%. Since the external additive 

hazards method uses the entire life table to calculate GPM hazards after fitting a model, rather than only using 

a background hazard calculated for each patient before fitting a model, this bias is not present. This would also 

explain why the internal additive hazards method generally only performed best in low survival scenarios across 

estimands, as in those scenarios, patients are less likely to still be alive at the end of follow-up and GPM has 

less of an effect on overall ACM survival. 
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6.1.2 Performance of non-GPM extrapolations  

Next, the performance of non-GPM extrapolations should be discussed, as although there seems to be a 

consensus in the literature that incorporating GPM information should increase accuracy of a survival model, 

there were several scenarios in which a non-GPM extrapolation had a lower absolute mean bias for an estimand 

than a model that did incorporate GPM information. Across estimands and survival distributions used to 

generate survival data, non-GPM extrapolations generally only performed the best in scenarios with high 

survival or old ages, where the other method that often performed the best was the converging hazards method. 

Since the converging hazards method takes the lowest hazards from either the GPM hazards or the fitted 

hazards from the non-GPM models, the non-GPM extrapolations and converging hazards extrapolations 

should look relatively similar in scenarios where DSM survival is high, and GPM hazards are the most important 

cause of mortality.  

This is confirmed not only by the converging hazards often being selected as the best performing method in 

scenarios similar to scenarios where non-GPM extrapolations were selected as the best, but also by the relatively 

low number of significant results for the non-GPM extrapolations and converging hazards extrapolations. 

Furthermore, in many scenarios where the non-GPM extrapolations performed best, but results were not 

significant using the Wilcoxon test, models using the converging hazards method were often second best (as 

described in Section 5.3.2), meaning there was no significant difference between the extrapolations that did not 

use GPM information and the converging hazards extrapolations. Thus, the converging hazards method seems 

to be an adequate substitute in situations where non-GPM extrapolations performed the best, but in situations 

where the converging hazards method performed the best, non-GPM extrapolations are less likely to be an 

adequate substitute.   

6.1.3 Discrepancies in parametric distribution for simulation and for modelling 

Within the results that consider models using all parametric distributions when selecting the best performing 

model, there were several sets of scenarios where the distribution used for generating the survival data is not 

the same as the distribution most often selected as the best performing model (regardless of the GPM 

incorporating method). This occurred for scenarios that use the Gompertz distribution to generate survival 

data for the overall mean survival estimand (generalised gamma is selected most often) and for scenarios that 

use the Weibull distribution to generate survival data for the survival probability at time t estimand (generalised 

gamma is selected most often). For RMST, models that used the Weibull distribution were selected most often 

in scenarios that used the Gompertz, log-logistic or lognormal distributions to generate survival data, and 

models that used the log-logistic distribution were selected most often in scenarios that used the Weibull 

distribution to generate survival data. 

First, it should be noted that the Weibull distribution is a specialised case of the generalised gamma distribution 

(Latimer, 2011), which may explain the discrepancy for Weibull distributed scenarios for the survival probability 

at time t estimand (where models using the generalised Gamma distribution performed best in more scenarios 

than models using the Weibull distribution). For the other distributions, a scenario where the best performing 

model did not use the same parametric distribution as the one used to generate data for all three estimands was 

selected to explore further, as described in Section 5.3.5. For this scenario, a large dataset of 1,000,000 patients 

was generated. Figure 12 shows that the KM-curve matches the shape of the expected DSM survival until 

around 30 years where it starts to decrease faster than the expected DSM survival, likely due to GPM having a 

stronger effect after a certain period of time. The Gompertz model actually followed the KM-curve relatively 

closely, but underestimates survival from around 10 to 30 years. The non-GPM exponential model was the best 

performing model for bias of overall mean survival, but had a worse visual fit than the Gompertz model. As 

such, it seems safe to assume that discrepancies in the distribution used to generate survival data and the 

distribution selected for modelling were due to GPM altering the shape of the expected DSM survival in smaller 

datasets, and using traditional selection techniques for a parametric distribution (which includes assessing visual 

fit) would result in selecting a distribution that matches the underlying data. 
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6.2 Limitations 
There are various limitations found throughout execution of this research that should be considered for the 

conclusions and that could possibly be addressed in future research. First, it is possible that more patterns in 

performance between methods across scenarios would have become apparent if more analysis had been done 

on the methods that were only slightly outperformed by the best performing method. For example, more 

analysis on the pool of best methods (meaning the methods that are among the highest ranking using a pairwise 

Wilcoxon signed rank test) could have been conducted, as it is possible other GPM methods could have been 

within that pool, and more patterns could emerge if also considering the second, third, etc. best performing 

methods per scenario where a significant result was not found. Furthermore, when all parametric distributions 

are under consideration, there could be scenarios where the pool of best methods all use the same GPM 

incorporating method that were not found using the current analysis, or the pool of best methods actually 

contains a majority of models using another GPM incorporating method. An attempt to rectify these issues 

was made by filtering the models under consideration for using the same parametric distribution as was used 

for generating the survival data in that scenario, but using a more sophisticated selection process could have 

improved the overall analysis. 

The estimands used could also be improved. RMST is an often-used metric in survival analysis, and was also 

used in another simulation study on survival extrapolations, where RMST until the end of follow-up was 

assessed (Rutherford et al., 2020), and thus, RMST was implemented similarly for this study. In doing so, the 

estimand did not explicitly help to answer the main research question, which was to assess extrapolation 

performance while RMST until the end of follow-up can be estimated without extrapolation. Furthermore, the 

RMST would also not be of interest in real-world situations for a lot of scenarios tested in this study. For 

example, for a trial with the characteristics of the high survival and medium information scenarios, looking at 

RMST has very little value when the expected survival (based on the underlying survival distribution using the 

ulcerative colitis data) is still over 90% after 3 years. This could be addressed by changing the estimand to a 

RMST at twice the follow-up length of the trial, for instance. However, the RMST as it currently stands did 

prove to be useful as an indicator of short-term fit of the survival models to the data. For survival probability 

at time t in low survival (t = 3) scenarios, the estimand was also not extrapolated in the scenarios with medium 

or high information (where follow-up is 3 and 10 years, respectively).  

Finally, some minor limitations and assumptions used in the coding of this research should be addressed. For 

example, ages are limited to 100 due to the lifetables assuming infinite hazards at age 100, thus making this a 

hard assumption to avoid. Due to these infinite hazards, however, the max event time of a patient had to be 

limited to 99.999, as certain R function used for the internal additive hazards method would fail if infinite 

hazards were supplied. However, this would only affect modelling if the event time was uncensored, which can 

only occur if a patient is older than 99 for low information scenarios, older than 97 for medium information 

scenarios or older than 90 for high information scenarios. When 100,000,000 patients were generated using 

functions for the old ages and high heterogeneity scenario, only 4% of patients were older than 90, and thus 

this assumption is assumed to not have affected results significantly.  

The generalised F distribution was also considered in analysis, but in a majority of the scenarios (217 out of 

288), generalised F models failed to converge in at least one replication due to the standard optimisation 

function used by the flexsurv package failing to find an optimal result. Since changing the optimisation 

function resulted in other models often failing to converge, the decision was made to keep using the standard 

optimisation function (the Broyden-Fletcher-Goldfarb-Shanno algorithm). 
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6.3 Strengths  
In this section, strengths of the study will be discussed. Overall, this study seems to be the first simulation study 

for survival extrapolation where such a large number of scenarios is compared, as although all the dimensions 

of scenarios that were used in this study have been compared in other simulation studies individually, none 

have compared all dimensions in a full-factorial manner. Furthermore, although the analysis methods used 

(such as the colour-coded tables and Wilcoxon test) could be improved further (as discussed in the limitations), 

they are relatively novel methods that could be employed for similar simulation studies in the future.  

6.4 Comparison with literature 
Before making recommendations for guidance, the results of this study will be briefly compared to previous 

literature that is not official HTA guidance. Firstly, as has already been discussed in Section 6.1.1, most articles 

that discuss GPM incorporating methods recommend using an internal additive hazards approach, yet this 

study found many scenarios where an external additive hazards approach performed better than an internal 

additive hazards approach. Furthermore, Jackson et al. (2017) stated that the long-term assumptions used to 

incorporate GPM information (most of which were included in this study) cannot be tested from data alone, 

while there certainly are a few patterns in performance resulting from this study that prove otherwise (which 

will be discussed in Section 6.5).  

Otherwise, this study supports the general consensus that incorporating GPM into survival extrapolations 

improves survival extrapolations, especially considering the interpretation for scenarios where non-GPM 

extrapolations performed best (see Section 6.1.2). Furthermore, the results of the simulation somewhat support 

a conclusion drawn by van Oostrum et al. (2021), as they recommend using the external additive hazards 

method in young populations. In this study, the external additive hazards method generally performed the best 

most often in scenarios with young ages and medium survival for overall mean survival (for both filtered and 

unfiltered results). In scenarios with young ages and low or high survival, however, the preference for the 

external additive hazards method was less strong, although it still performed the best the most often.  

6.5 Recommendations for guidance for selecting a GPM method 
Current guidance for survival extrapolations for HTA submissions states that incorporating GPM information 

should at least be used for assessing clinical plausibility of the extrapolation (Latimer, 2011), and more recent 

NICE guidance recommends to always incorporate GPM information, where using clinical expertise to select 

a GPM incorporating method is recommended (Rutherford et al., 2020). The simulation results show that 

incorporating GPM information generally improves survival extrapolations, providing support for the guidance 

stating that GPM information should always be incorporated in parametric survival models. In scenarios where 

non-GPM extrapolations did outperform GPM incorporating models in terms of absolute mean bias, the results 

were often not significant using the Wilcoxon test and the converging hazards method was often the second 

best performing method (see Section 6.1.2). 

Furthermore, the results show that the current recommendations for incorporating GPM information into 

survival extrapolations using the standard parametric models, which mostly recommend using the internal 

additive hazards approach (referred to as relative survival in the guidance) (Rutherford et al., 2020), could be 

extended to explicitly include the external additive hazards and converging hazards methods. For example, for 

mean survival, the internal additive hazards method was outperformed by the external additive hazards method 

and converging hazards method more often (see Figures 4 and 5). Currently, the converging hazards and 

external additive hazards are only vaguely mentioned throughout the guidance, and mostly for other types of 

models (cubic spline models, mixture, landmark, piecewise and cure models). The distinction between the three 

methods could be more explicit, and concise information as to how to extrapolate or fit a standard parametric 

model using the assumptions as was done for the relative survival approach is lacking (Rutherford et al., 2020). 
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Before continuing onto patterns in the performance of the methods, it should be noted that there are technically 

two decisions to be made for the types of models tested in this research, namely the way in which GPM 

information is incorporated, but also what parametric distribution to use for the model. Current guidance 

already has a clear selection process for choosing a parametric distribution based on trial data until the end of 

its follow-up. Given the differences in results for the RMST and overall mean survival estimand, it is arguable 

that the GPM incorporating method should be selected first and then a parametric distribution should be 

selected using the already published guidance afterwards.  

For example, current guidance recommends assessing visual fit using AIC or BIC tests to assess statistical fit 

of the models under consideration to the (short-term) trial data to select a parametric distribution (Latimer, 

2011). RMST is also known at the end of a trial, and thus, performance of a model on RMST in this study could 

be seen as a test on fit to the short-term trial data. Since the results for RMST show that external additive 

hazards models were selected the least often as the best performing method, while for overall mean survival it 

was the selected the most, selecting a GPM incorporating method using the current guidance could lead to 

inaccurate results as the internal additive hazards models might have a higher AIC or BIC.  

First, for overall mean survival and survival probability at time t estimands, the internal additive hazards method 

generally did not perform well in scenarios with high survival in both the filtered (see Appendix A.1 and A.2) 

and unfiltered results (see Appendix B.1 and B.2). This is likely due to the relatively high number of patients 

that are still alive at the end of follow-up, where GPM can still be low (see Section 6.1.1). Thus, for trials with 

high survival, using either a converging or external additive hazards adjustment is more appropriate. Although 

the converging hazards method had a lower bias over the high survival scenarios (0.54, see Table 97) than the 

external additive hazards method (-2.52, see Table 96) overall, there were high survival scenarios in which the 

external additive hazards models significantly outperformed converging hazards models, and thus both 

methods should be considered.  

In low survival, the internal additive hazards method did generally perform better for survival probability at 

time t, but this was likely due to the medium and high information scenarios not being an extrapolation as 

results for survival probability at time t look similar to the results for RMST in scenarios with low survival. For 

mean survival, there were a few low survival scenarios where the internal additive hazards performed the best, 

and thus the method should be included in analysis for low survival diseases. Furthermore, the converging 

hazards generally performed better in scenarios with either old ages or high or medium survival, and was rarely 

the best performing method in scenarios with low survival and young or average ages (and never significantly 

so) for both the overall mean survival and survival probability at time t estimands. Thus, the converging hazards 

method can be excluded from analysis in trials with low survival and young or average ages.  

Next, in low information scenarios, external additive hazards models were often among the best for overall 

mean survival, often significantly so (see Appendix A.1 and Appendix B.1), which is likely due to a similar 

reason to what is described in Section 6.1.1, as more patients are likely to still be alive at the end of follow-up 

if the follow-up length is short. Thus, the internal additive hazards method performed poorly in these scenarios. 

Since there were still a few low information scenarios where converging hazards models performed the best in 

both the filtered and unfiltered results, the method cannot be excluded entirely in low information scenarios 

and both the external additive method and converging hazards method should be considered.  

The patterns described in the previous paragraphs are summarised in a flowchart in Figure 13. For definitions 

of the scenarios, refer to Table 3. More specific patterns were found in the results, but they involve 

combinations of three dimensions of scenarios. If a trial happens to match three out of the four discernible 

dimensions (level of survival, ages, heterogeneity and level of information), a researcher could look at the colour 

coded tables presented in Appendix A and Appendix B. For scenarios not mentioned in Chapter 5 or in this 

section, using clinical expertise to select between a GPM incorporating method still seems to be the only 

sufficient way to select a GPM incorporating method. 
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Figure 13: 

Flowchart for selecting a GPM incorporating method for parametric survival extrapolations. (Refer to Table 

3 for definitions of scenarios) 

 

6.6 Recommendations for future research 
In future research more complex DGMs could be tested, as for generating data, only an additive hazards 

assumption was used in this study, where the lowest out of a generated DSM and GPM time was selected for 

the ACM event time per patient. Although results sometimes showed preference for using a converging hazards 

assumption, the robustness of these methods over more complex data generation mechanisms should be 

assessed. This could be assessed by selecting a base-case scenario for the other dimensions of scenarios used in 

this study, and only comparing different assumptions about the relationship between DSM and GPM. Using 

more complex DGMs would also allow the possibility of more complex models to be compared, for example 

by incorporating a cure fraction and comparing incorporation of GPM information into cure models using 

different assumptions. However, as the mechanism used in this research has been used in multiple prior 

simulation studies (Rutherford et al., 2020) and (Jakobsen et al., 2019), comparing more complex survival 

functions was outside of the scope. Furthermore, the bias that could have resulted from using an additive 

hazards assumption in data generation was not addressed, which could for example have been alleviated by 

explicitly using a converging hazards methods during data generation and weighting the results. However, 

considering that the results still showed scenarios where the converging hazards method performed best, this 

bias may be assumed to be small.  

Furthermore, the low performance of the internal additive hazards method in datasets with a relatively low 

GPM and high level of censoring that was identified in Section 6.1.1 could be explored further, as the consensus 

in literature seems to be that the internal additive hazards method usually is most appropriate the best while 

the results prove otherwise for the scenarios considered in this study. Another possible extension of the 

simulation could be to vary the factors for scenarios continuously and attempt to fit a statistical model to the 

results to find patterns between the methods on a continuous scale. 
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7 Conclusions & recommendations 

To conclude, and to answer the main research question of the study (“What is the performance in terms of accuracy of 

survival extrapolation methods that incorporate GPM information in scenarios with different patient characteristics and availability 

of information?”), methods that incorporate GPM information outperformed non-GPM extrapolations in a 

majority of scenarios across estimands overall. Thus, the study strongly supports the current NICE guidance 

and showed that GPM information should always be incorporated into survival extrapolations, as even in 

scenarios where non-GPM extrapolations outperformed extrapolations that did use GPM information, the 

converging hazards method was generally an adequate substitute. 

The results of the study show that the method used to incorporate GPM information should be selected before 

choosing what parametric model to use, and that all standard parametric distributions mentioned by NICE 

should be considered. Based on the performance of the internal additive hazards method being rather low, yet 

it being the only method currently explicitly mentioned in NICE guidance for parametric models, the research 

would recommend including the converging hazards and external additive hazards methods explicitly in HTA 

guidance for standard parametric models.  

Furthermore, the study shows that there are certain GPM methods that can be excluded from analysis in certain 

situations. In situations with high survival (median survival of over 40 years, or similar survival to ulcerative 

colitis), or with low information (trial size of around 100 patients per treatment arm or less, around 30% of 

patients being right censored and follow-up time of 1 year), the internal additive hazards method can be 

excluded. In situations with a young patient population (average age of 35) and medium survival (median 

survival of over 5 years, or survival similar to myocarditis), the external additive hazards method can be used 

unless there are explicit doubts of its clinical validity. In situations with low survival (median survival of 17 

months, or similar survival to pancreatic cancer), and young (average age of 35) or average ages (average age of 

50), the converging hazards method can be excluded from analysis. These findings are summarised in Figure 

13. For other situations simulated in this study, clinical expertise should be used to select a GPM incorporating 

method, as is in line with current NICE guidance.  

In future research, performance of the GPM incorporating methods used in this study, as well as other models, 

should be explored using more complex relationships between GPM and DSM, for example by using a 

converging hazards assumption in the data generating mechanisms rather than an additive hazards assumption. 

Moreover, the relationship between the performance of the internal additive hazards method and datasets that 

have a low GPM and high level of censoring should be explored further. Finally, a similar simulation study 

could be performed with the intention of fitting a statistical model to the results from the onset. 
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Appendix A: Filtered colour-coded tables for best ranking methods per 

scenario 

This Appendix shows the results of the simulation by colour-coding the tested methods and showing the best 

performing method for each scenario based on the absolute mean bias for the estimand. Separate tables are 

shown for each estimand and underlying survival distribution used to generate data separately. For each 

distribution used to generate survival data, only models that used the same distribution were considered. The 

DGM dimensions (survival, age, heterogeneity, level of information) are used as rows and columns for the 

tables, tables are shown in pairs with flipped “minor” “and major” dimension of rows and columns. Cells show 

the mean bias and mean RMSE for the method over 2,500 replications. A triangle denotes whether the result 

was significant based on a Wilcoxon signed-rank test (α = 0.05). Each pair of tables is accompanied by another 

that mostly serves as a legend, but also shows the overall number of times a method ranked best and the 

percentage of that result which was significant for each survival distribution used to generate the data. 
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A.1:  Overall mean survival 

Weibull distributed data 

Table 22:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of mean survival for Weibull distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 8 23 14 23 

 

 

Table 23:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for Weibull distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = 

Significant result (Wilcoxon) 
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Information Information Information 
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ed
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m
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-0.325, 

3.627 
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1.3 
0.117, 

0.407 
-0.305, 

0.485 
-0.19, 

0.192 
-0.058, 
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ig

h
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5.364 
1.023, 

1.356 
-3.353, 

4.742 
-1.288, 

1.804 
-0.019, 

0.512 
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3.347 
-2.14, 

2.142 
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NA 1.964, 

1.996 
0.054, 

2.756 
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0.817 
-0.377, 

0.398 
0.034, 

0.358 
-0.034, 

0.052 
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ed
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NA 1.644, 

1.706 
-0.447, 

2.72 
0.309, 
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0.329, 
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h
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ld
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w
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0.287 
0.418, 

1.402 
0.365, 

0.473 
0.061, 

0.093 
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h
 

0.403, 

1.053 
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1.417 
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0.316 
0.016, 
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Table 24:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for Weibull distributed data. Information and heterogeneity as main axes. (Bias, 

RMSE), ▲ = Significant result (Wilcoxon) 

    
In form ation 
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0.339 
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2.756 
0.034, 

0.358 NA -0.188, 
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1.964, 
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ld
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-0.19, 

0.192 
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0.407 
-0.058, 

0.058 

A
ve

ra
ge
 

-0.447, 

2.72 
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2.451 
-0.608, 
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1.297 
0.806, 

0.932 
0.428, 

0.505 
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O
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1.417 
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Log-logistic distributed data 

Table 25:  

Legend for filtered colour-coded table and times a GPM incorporating method for absolute mean bias of 

mean survival for log-logistic distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 1 2 39 30 

 

Table 26:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = 

Significant result (Wilcoxon) 
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0.381, 

3.233 
0.052, 
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-0.09, 

0.341 
0.059, 
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0.851, 
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0.121, 

2.388 
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-0.271, 

0.319 
0.024, 

0.396 
-0.002, 

0.101 
-0.006, 

0.056 
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1.569, 

3.397 
1.974, 
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2.209 
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-0.038, 

0.449 
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0.06, 

0.12 
-0.353, 
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-0.543, 
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0.35, 

0.35 
0.021, 

0.289 
0.081, 

0.097 
0.049, 
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0.318, 
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-0.274, 

0.29 
-0.508, 

0.853 
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0.249 
-0.066, 

0.293 
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0.123 
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0.523, 
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0.48, 
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0.39, 
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0.392, 
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0.132, 
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Table 27:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for log-logistic distributed data. Information and heterogeneity as main axes. (Bias, 

RMSE), ▲ = Significant result (Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic) 
    Medium Low High Medium Low High Medium Low 
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3.233 
0.059, 

0.435 
1.042, 

6.347 
0.052, 

0.903 
-0.01, 

0.113 
-0.949, 
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-0.09, 

0.341 
-0.016, 

0.063 

A
ve

ra
ge
 

0.121, 

2.388 
0.024, 

0.396 
1.808, 

3.54 
-0.067, 

0.625 
-0.002, 

0.101 
-2.106, 

2.106 
-0.271, 

0.319 
-0.006, 

0.056 

O
ld
 

-0.353, 

0.848 
0.021, 

0.289 
0.648, 

0.698 
-0.543, 

0.546 
0.081, 

0.097 
0.06, 

0.12 
0.35, 

0.35 
0.049, 

0.056 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.084, 

3.122 
0.025, 

0.532 
0.851, 

6.063 
-0.07, 

0.888 
0.036, 

0.144 
-1.205, 

1.558 
-0.063, 

0.365 
0.007, 

0.078 

A
ve

ra
ge
 

-0.148, 

2.209 
-0.038, 

0.449 
1.569, 

3.397 
-0.155, 

0.627 
0.013, 

0.127 
1.974, 

1.976 
-0.305, 

0.354 
-0.025, 

0.066 

O
ld
 -0.508, 

0.853 
-0.066, 

0.293 
0.318, 

0.504 
-0.636, 

0.639 
-0.115, 

0.123 
-0.274, 

0.29 
0.248, 

0.249 
0.086, 

0.089 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.015, 

2.67 
0.216, 

1.42 
0.618, 

2.848 
-0.369, 

1.02 
0.078, 

0.541 
-1.436, 

1.65 
-0.104, 

0.522 
0.092, 

0.308 

A
ve

ra
ge
 

0.522, 

2.081 
-0.313, 

1.027 
1.08, 

1.865 
-0.384, 

0.752 
-0.032, 

0.423 
1.412, 

1.423 
-0.454, 

0.535 
-0.112, 

0.242 

O
ld
 0.523, 

0.874 
0.39, 

0.601 
-0.161, 

0.454 
0.48, 

0.505 
0.392, 

0.401 
-0.637, 

0.638 
-0.015, 

0.137 
0.132, 

0.148 
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Lognormal distributed data 

Table 28:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of mean survival for lognormal distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 1 7 48 15 

 

Table 29:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = 

Significant result (Wilcoxon) 

    

Surv iva l (Lognorm al) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.924, 

3.828 
-0.462, 

0.967 
0.107, 

2.786 
0.022, 

0.86 
-0.121, 

0.346 
0.037, 

0.372 
-0.032, 

0.076 
-0.037, 

0.039 

M
ed

iu
m

 

NA -0.546, 

1.098 
0.158, 

2.766 
0.043, 

0.879 
-0.113, 

0.348 
0.045, 

0.496 
-0.021, 

0.118 
-0.026, 

0.048 

H
ig

h
 

0.075, 

2.113 
-0.413, 

1.221 
0.195, 

2.584 
0.298, 

1.021 
0.051, 

0.503 
0.188, 

1.527 
0.09, 

0.601 
-0.029, 

0.288 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.612, 

1.949 
-1.633, 

1.635 
0.082, 

2.1 
-0.087, 

0.603 
-0.321, 

0.352 
0.071, 

0.385 
-0.017, 

0.068 
-0.023, 

0.03 

M
ed

iu
m

 

-0.777, 

1.924 
-1.792, 

1.795 
0.058, 

2.04 
-0.124, 

0.629 
-0.347, 

0.382 
0.056, 

0.466 
0, 

0.108 
0.007, 

0.04 

H
ig

h
 

-0.631, 

1.5 
-1.658, 

1.684 
0.072, 

1.749 
0.065, 

0.697 
-0.369, 

0.492 
0.051, 

1.124 
-0.016, 

0.429 
-0.183, 

0.264 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.838, 

0.843 
-0.098, 

0.138 
-0.344, 

0.766 
-0.527, 

0.531 
0.249, 

0.249 
0.115, 

0.352 
0.052, 

0.083 
0.001, 

0.028 

M
ed

iu
m

 

0.531, 

0.582 
-0.426, 

0.429 
-0.37, 

0.771 
-0.597, 

0.6 
0.159, 

0.164 
0.056, 

0.345 
0.096, 

0.121 
0.022, 

0.038 

H
ig

h
 

0.081, 

0.443 
-0.8, 

0.8 
-0.486, 

0.758 
0.596, 

0.607 
-0.076, 

0.146 
-0.226, 

0.508 
-0.406, 

0.412 
0.078, 

0.11 

 

  



63 
 

Table 30:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for lognormal distributed data. Information and heterogeneity as main axes. (Bias, 

RMSE), ▲ = Significant result (Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.107, 

2.786 
0.037, 

0.372 
-0.924, 

3.828 
0.022, 

0.86 
-0.032, 

0.076 
-0.462, 

0.967 
-0.121, 

0.346 
-0.037, 

0.039 

A
ve

ra
ge
 

0.082, 

2.1 
0.071, 

0.385 
-0.612, 

1.949 
-0.087, 

0.603 
-0.017, 

0.068 
-1.633, 

1.635 
-0.321, 

0.352 
-0.023, 

0.03 

O
ld
 

-0.344, 

0.766 
0.115, 

0.352 
0.838, 

0.843 
-0.527, 

0.531 
0.052, 

0.083 
-0.098, 

0.138 
0.249, 

0.249 
0.001, 

0.028 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

0.158, 

2.766 
0.045, 

0.496 NA 
0.043, 

0.879 
-0.021, 

0.118 
-0.546, 

1.098 
-0.113, 

0.348 
-0.026, 

0.048 

A
ve

ra
ge
 

0.058, 

2.04 
0.056, 

0.466 
-0.777, 

1.924 
-0.124, 

0.629 
0, 

0.108 
-1.792, 

1.795 
-0.347, 

0.382 
0.007, 

0.04 

O
ld
 -0.37, 

0.771 
0.056, 

0.345 
0.531, 

0.582 
-0.597, 

0.6 
0.096, 

0.121 
-0.426, 

0.429 
0.159, 

0.164 
0.022, 

0.038 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0.195, 

2.584 
0.188, 

1.527 
0.075, 

2.113 
0.298, 

1.021 
0.09, 

0.601 
-0.413, 

1.221 
0.051, 

0.503 
-0.029, 

0.288 

A
ve

ra
ge
 

0.072, 

1.749 
0.051, 

1.124 
-0.631, 

1.5 
0.065, 

0.697 
-0.016, 

0.429 
-1.658, 

1.684 
-0.369, 

0.492 
-0.183, 

0.264 

O
ld
 -0.486, 

0.758 
-0.226, 

0.508 
0.081, 

0.443 
0.596, 

0.607 
-0.406, 

0.412 
-0.8, 

0.8 
-0.076, 

0.146 
0.078, 

0.11 
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Gompertz distributed data 

Table 31:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of mean survival for Gompertz distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 9 6 41 16 

 

Table 32:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for Gompertz distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = 

Significant result (Wilcoxon) 

    

Surv iva l (Gom pertz) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

-4.44, 

14.143 
0.498, 

5.327 
7.272, 

13.268 
1.573, 

4.517 
-0.184, 

0.724 
4.48, 

4.964 
-0.007, 

0.101 
-0.042, 

0.042 

M
ed

iu
m

 

-3.34, 

14.042 
-0.49, 

5.246 
7.21, 

13.496 
2.748, 

5.062 
0.65, 

0.952 
4.462, 

5.177 
0.151, 

0.368 
-0.017, 

0.046 

H
ig

h
 

2.048, 

8.417 
1.697, 

2.191 
14.071, 

14.834 
9.887, 

9.887 
3.248, 

3.248 
14.477, 

14.5 
8.179, 

8.179 
2.154, 

2.154 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

3.328, 

15.746 
-0.382, 

2.601 
4.077, 

9.096 
0.46, 

2.713 
0.299, 

0.548 
2.741, 

3.225 
0.001, 

0.096 
-0.032, 

0.032 

M
ed

iu
m

 

3.137, 

15.385 
-0.55, 

2.561 
3.462, 

8.701 
1.052, 

2.958 
-0.181, 

0.442 
2.909, 

3.613 
0.05, 

0.286 
-0.001, 

0.034 

H
ig

h
 

-0.124, 

4.596 
-1.281, 

1.498 
8.472, 

9.123 
5.44, 

5.442 
0.876, 

0.905 
9.103, 

9.124 
4.674, 

4.674 
0.684, 

0.687 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.944, 

1.644 
0.006, 

0.325 
-0.179, 

2.658 
0.219, 

0.906 
0.026, 

0.089 
0.595, 

1.1 
-0.026, 

0.081 
-0.049, 

0.049 

M
ed

iu
m

 

1.006, 

3.708 
-0.156, 

0.373 
-0.194, 

2.58 
0.254, 

0.873 
0.001, 

0.089 
0.494, 

1.13 
0.005, 

0.163 
-0.044, 

0.045 

H
ig

h
 

-0.563, 

1.031 
0.179, 

0.342 
1.133, 

1.765 
-0.113, 

0.401 
-0.282, 

0.284 
1.94, 

1.986 
0.355, 

0.389 
-0.224, 

0.225 
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Table 33:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean 

survival per scenario for Gompertz distributed data. Information and heterogeneity as main axes. (Bias, 

RMSE), ▲ = Significant result (Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Gompertz) Survival (Gompertz) Survival (Gompertz) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

7.272, 

13.268 
4.48, 

4.964 
-4.44, 

14.143 
1.573, 

4.517 
-0.007, 

0.101 
0.498, 

5.327 
-0.184, 

0.724 
-0.042, 

0.042 

A
ve

ra
ge
 

4.077, 

9.096 
2.741, 

3.225 
3.328, 

15.746 
0.46, 

2.713 
0.001, 

0.096 
-0.382, 

2.601 
0.299, 

0.548 
-0.032, 

0.032 

O
ld
 

-0.179, 

2.658 
0.595, 

1.1 
-0.944, 

1.644 
0.219, 

0.906 
-0.026, 

0.081 
0.006, 

0.325 
0.026, 

0.089 
-0.049, 

0.049 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

7.21, 

13.496 
4.462, 

5.177 
-3.34, 

14.042 
2.748, 

5.062 
0.151, 

0.368 
-0.49, 

5.246 
0.65, 

0.952 
-0.017, 

0.046 

A
ve

ra
ge
 

3.462, 

8.701 
2.909, 

3.613 
3.137, 

15.385 
1.052, 

2.958 
0.05, 

0.286 
-0.55, 

2.561 
-0.181, 

0.442 
-0.001, 

0.034 

O
ld
 -0.194, 

2.58 
0.494, 

1.13 
1.006, 

3.708 
0.254, 

0.873 
0.005, 

0.163 
-0.156, 

0.373 
0.001, 

0.089 
-0.044, 

0.045 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

14.071, 

14.834 
14.477, 

14.5 
2.048, 

8.417 
9.887, 

9.887 
8.179, 

8.179 
1.697, 

2.191 
3.248, 

3.248 
2.154, 

2.154 

A
ve

ra
ge
 

8.472, 

9.123 
9.103, 

9.124 
-0.124, 

4.596 
5.44, 

5.442 
4.674, 

4.674 
-1.281, 

1.498 
0.876, 

0.905 
0.684, 

0.687 

O
ld
 1.133, 

1.765 
1.94, 

1.986 
-0.563, 

1.031 
-0.113, 

0.401 
0.355, 

0.389 
0.179, 

0.342 
-0.282, 

0.284 
-0.224, 

0.225 
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A.2:  Survival probability at time t 

Weibull distributed data 

Table 34:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of survival probability at time t for Weibull distributed data. Amount of times the method ranked 

best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 8 25 12 23 

 

Table 35:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for Weibull distributed data. Survival and ages as main axes. (Bias, RMSE), 

▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    

Surv iva l (Weibull) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium* High* 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

NA 0.013, 

0.028 
0.001, 

0.115 
-0.004, 

0.037 
0.002, 

0.012 
-0.006, 

0.083 
-0.006, 

0.009 
-0.006, 

0.01 

M
ed

iu
m

 

NA 0.012, 

0.029 
-0.01, 

0.116 
-0.006, 

0.037 
-0.003, 

0.012 
-0.051, 

0.086 
-0.012, 

0.013 
0.009, 

0.012 

H
ig

h
 

-0.061, 

0.095 
-0.006, 

0.02 
-0.108, 

0.125 
-0.053, 

0.056 
-0.003, 

0.011 
-0.075, 

0.082 
-0.006, 

0.008 
0.033, 

0.033 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

NA 0.041, 

0.047 
-0.002, 

0.103 
-0.008, 

0.035 
0.008, 

0.013 
-0.001, 

0.08 
-0.004, 

0.008 
-0.004, 

0.009 

M
ed

iu
m

 

NA 0.038, 

0.045 
0.002, 

0.111 
0.001, 

0.036 
0.002, 

0.012 
-0.051, 

0.085 
-0.01, 

0.011 
0.006, 

0.011 

H
ig

h
 

-0.02, 

0.086 
0.027, 

0.032 
-0.076, 

0.105 
-0.025, 

0.037 
-0.002, 

0.011 
-0.074, 

0.081 
-0.003, 

0.007 
0.026, 

0.026 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.013, 

0.019 
0.008, 

0.011 
-0.011, 

0.035 
-0.02, 

0.021 
0.026, 

0.026 
0.004, 

0.075 
-0.006, 

0.009 
-0.007, 

0.01 

M
ed

iu
m

 

-0.014, 

0.021 
-0.018, 

0.02 
-0.021, 

0.037 
-0.029, 

0.029 
0.018, 

0.018 
-0.027, 

0.078 
0.011, 

0.012 
0.005, 

0.01 

H
ig

h
 

-0.039, 

0.04 
-0.039, 

0.039 
-0.002, 

0.044 
0.011, 

0.02 
0.007, 

0.011 
-0.037, 

0.058 
-0.008, 

0.01 
0.009, 

0.012 
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Table 36:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for Weibull distributed data. Information and heterogeneity as main axes. 

(Bias, RMSE), ▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Weibull) Survival (Weibull) Survival (Weibull) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.001, 

0.115 
-0.006, 

0.083 NA 
-0.004, 

0.037 
-0.006, 

0.009 
0.013, 

0.028 
0.002, 

0.012 
-0.006, 

0.01 

A
ve

ra
ge
 

-0.002, 

0.103 
-0.001, 

0.08 NA -0.008, 

0.035 
-0.004, 

0.008 
0.041, 

0.047 
0.008, 

0.013 
-0.004, 

0.009 

O
ld
 

-0.011, 

0.035 
0.004, 

0.075 
0.013, 

0.019 
-0.02, 

0.021 
-0.006, 

0.009 
0.008, 

0.011 
0.026, 

0.026 
-0.007, 

0.01 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.01, 

0.116 
-0.051, 

0.086 NA 
-0.006, 

0.037 
-0.012, 

0.013 
0.012, 

0.029 
-0.003, 

0.012 
0.009, 

0.012 

A
ve

ra
ge
 

0.002, 

0.111 
-0.051, 

0.085 
NA 0.001, 

0.036 
-0.01, 

0.011 
0.038, 

0.045 
0.002, 

0.012 
0.006, 

0.011 

O
ld
 -0.021, 

0.037 
-0.027, 

0.078 
-0.014, 

0.021 
-0.029, 

0.029 
0.011, 

0.012 
-0.018, 

0.02 
0.018, 

0.018 
0.005, 

0.01 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.108, 

0.125 
-0.075, 

0.082 
-0.061, 

0.095 
-0.053, 

0.056 
-0.006, 

0.008 
-0.006, 

0.02 
-0.003, 

0.011 
0.033, 

0.033 

A
ve

ra
ge
 

-0.076, 

0.105 
-0.074, 

0.081 
-0.02, 

0.086 
-0.025, 

0.037 
-0.003, 

0.007 
0.027, 

0.032 
-0.002, 

0.011 
0.026, 

0.026 

O
ld
 -0.002, 

0.044 
-0.037, 

0.058 
-0.039, 

0.04 
0.011, 

0.02 
-0.008, 

0.01 
-0.039, 

0.039 
0.007, 

0.011 
0.009, 

0.012 
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Log-logistic distributed data 

Table 37:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of survival probability at time t for log-logistic distributed data. Amount of times the method ranked 

best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 11 21 20 20 

 

Table 38:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, 

RMSE), ▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    

Surv iva l (Log- logistic) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium* High* 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.034, 

0.137 
0.018, 

0.028 
0.005, 

0.09 
-0.001, 

0.027 
0.004, 

0.011 
0, 

0.057 
-0.004, 

0.01 
-0.004, 

0.009 

M
ed

iu
m

 

-0.032, 

0.132 
0.018, 

0.028 
0.001, 

0.089 
0.003, 

0.027 
0.004, 

0.011 
-0.021, 

0.058 
-0.007, 

0.011 
-0.009, 

0.011 

H
ig

h
 

-0.004, 

0.065 
0.012, 

0.02 
-0.027, 

0.069 
0.001, 

0.025 
0.004, 

0.011 
-0.025, 

0.045 
-0.006, 

0.01 
-0.003, 

0.008 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.039, 

0.121 
0.055, 

0.057 
0.004, 

0.083 
-0.003, 

0.025 
-0.01, 

0.013 
0, 

0.055 
-0.002, 

0.01 
-0.002, 

0.008 

M
ed

iu
m

 

0.041, 

0.12 
0.056, 

0.057 
-0.006, 

0.076 
-0.006, 

0.025 
-0.011, 

0.014 
-0.018, 

0.056 
-0.005, 

0.011 
-0.007, 

0.01 

H
ig

h
 

0.044, 

0.071 
-0.054, 

0.054 
0.001, 

0.066 
-0.012, 

0.025 
-0.015, 

0.017 
-0.018, 

0.044 
-0.002, 

0.008 
0.001, 

0.008 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.017, 

0.02 
0.009, 

0.012 
-0.001, 

0.028 
-0.009, 

0.013 
-0.019, 

0.02 
0.005, 

0.051 
0.005, 

0.011 
0, 

0.008 

M
ed

iu
m

 

-0.009, 

0.018 
-0.018, 

0.019 
-0.01, 

0.028 
-0.015, 

0.017 
-0.025, 

0.025 
0.005, 

0.051 
0, 

0.01 
-0.007, 

0.01 

H
ig

h
 

-0.033, 

0.035 
-0.04, 

0.04 
-0.028, 

0.037 
-0.031, 

0.032 
0.02, 

0.021 
-0.001, 

0.04 
-0.001, 

0.009 
-0.02, 

0.02 
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Table 39:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for log-logistic distributed data. Information and heterogeneity as main axes. 

(Bias, RMSE), ▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.005, 

0.09 
0, 

0.057 
-0.034, 

0.137 
-0.001, 

0.027 
-0.004, 

0.01 
0.018, 

0.028 
0.004, 

0.011 
-0.004, 

0.009 

A
ve

ra
ge
 

0.004, 

0.083 
0, 

0.055 
0.039, 

0.121 
-0.003, 

0.025 
-0.002, 

0.01 
0.055, 

0.057 
-0.01, 

0.013 
-0.002, 

0.008 

O
ld
 

-0.001, 

0.028 
0.005, 

0.051 
0.017, 

0.02 
-0.009, 

0.013 
0.005, 

0.011 
0.009, 

0.012 
-0.019, 

0.02 
0, 

0.008 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

0.001, 

0.089 
-0.021, 

0.058 
-0.032, 

0.132 
0.003, 

0.027 
-0.007, 

0.011 
0.018, 

0.028 
0.004, 

0.011 
-0.009, 

0.011 

A
ve

ra
ge
 

-0.006, 

0.076 
-0.018, 

0.056 
0.041, 

0.12 
-0.006, 

0.025 
-0.005, 

0.011 
0.056, 

0.057 
-0.011, 

0.014 
-0.007, 

0.01 

O
ld
 -0.01, 

0.028 
0.005, 

0.051 
-0.009, 

0.018 
-0.015, 

0.017 
0, 

0.01 
-0.018, 

0.019 
-0.025, 

0.025 
-0.007, 

0.01 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.027, 

0.069 
-0.025, 

0.045 
-0.004, 

0.065 
0.001, 

0.025 
-0.006, 

0.01 
0.012, 

0.02 
0.004, 

0.011 
-0.003, 

0.008 

A
ve

ra
ge
 

0.001, 

0.066 
-0.018, 

0.044 
0.044, 

0.071 
-0.012, 

0.025 
-0.002, 

0.008 
-0.054, 

0.054 
-0.015, 

0.017 
0.001, 

0.008 

O
ld
 -0.028, 

0.037 
-0.001, 

0.04 
-0.033, 

0.035 
-0.031, 

0.032 
-0.001, 

0.009 
-0.04, 

0.04 
0.02, 

0.021 
-0.02, 

0.02 
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Lognormal distributed data 

Table 40:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of survival probability at time t for lognormal distributed data. Amount of times the method ranked 

best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 6 15 37 13 

 

Table 41:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), 

▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    

Surv iva l (Lognorm al) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium* High* 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.008, 

0.125 
-0.027, 

0.03 
-0.003, 

0.078 
-0.002, 

0.025 
0.003, 

0.011 
-0.002, 

0.059 
-0.004, 

0.009 
-0.004, 

0.009 

M
ed

iu
m

 

NA -0.024, 

0.027 
-0.001, 

0.077 
-0.002, 

0.026 
0.004, 

0.011 
-0.008, 

0.059 
-0.004, 

0.009 
-0.004, 

0.009 

H
ig

h
 

-0.003, 

0.044 
-0.013, 

0.02 
-0.001, 

0.064 
0.003, 

0.024 
-0.002, 

0.01 
-0.001, 

0.041 
-0.001, 

0.008 
-0.001, 

0.009 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.027, 

0.069 
-0.06, 

0.06 
0.002, 

0.073 
-0.003, 

0.024 
-0.011, 

0.014 
0.001, 

0.06 
-0.002, 

0.009 
-0.002, 

0.008 

M
ed

iu
m

 

-0.021, 

0.065 
-0.055, 

0.055 
0.002, 

0.071 
-0.004, 

0.024 
-0.012, 

0.014 
-0.001, 

0.058 
-0.001, 

0.009 
-0.001, 

0.009 

H
ig

h
 

0, 

0.044 
-0.033, 

0.037 
0.004, 

0.058 
0.004, 

0.023 
-0.009, 

0.014 
0, 

0.043 
-0.002, 

0.008 
0.003, 

0.01 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.02, 

0.021 
0.008, 

0.011 
-0.002, 

0.027 
-0.009, 

0.014 
-0.021, 

0.021 
0.017, 

0.061 
0.007, 

0.012 
0, 

0.009 

M
ed

iu
m

 

-0.007, 

0.018 
-0.019, 

0.021 
-0.006, 

0.028 
-0.014, 

0.017 
-0.026, 

0.026 
0.005, 

0.054 
0.005, 

0.011 
-0.004, 

0.009 

H
ig

h
 

-0.032, 

0.035 
-0.043, 

0.043 
-0.016, 

0.031 
-0.025, 

0.027 
0.02, 

0.021 
-0.013, 

0.04 
0.004, 

0.009 
-0.021, 

0.021 
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Table 42:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for lognormal distributed data. Information and heterogeneity as main axes. 

(Bias, RMSE), ▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.003, 

0.078 
-0.002, 

0.059 
0.008, 

0.125 
-0.002, 

0.025 
-0.004, 

0.009 
-0.027, 

0.03 
0.003, 

0.011 
-0.004, 

0.009 

A
ve

ra
ge
 

0.002, 

0.073 
0.001, 

0.06 
-0.027, 

0.069 
-0.003, 

0.024 
-0.002, 

0.009 
-0.06, 

0.06 
-0.011, 

0.014 
-0.002, 

0.008 

O
ld
 

-0.002, 

0.027 
0.017, 

0.061 
0.02, 

0.021 
-0.009, 

0.014 
0.007, 

0.012 
0.008, 

0.011 
-0.021, 

0.021 
0, 

0.009 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.001, 

0.077 
-0.008, 

0.059 NA 
-0.002, 

0.026 
-0.004, 

0.009 
-0.024, 

0.027 
0.004, 

0.011 
-0.004, 

0.009 

A
ve

ra
ge
 

0.002, 

0.071 
-0.001, 

0.058 
-0.021, 

0.065 
-0.004, 

0.024 
-0.001, 

0.009 
-0.055, 

0.055 
-0.012, 

0.014 
-0.001, 

0.009 

O
ld
 -0.006, 

0.028 
0.005, 

0.054 
-0.007, 

0.018 
-0.014, 

0.017 
0.005, 

0.011 
-0.019, 

0.021 
-0.026, 

0.026 
-0.004, 

0.009 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.001, 

0.064 
-0.001, 

0.041 
-0.003, 

0.044 
0.003, 

0.024 
-0.001, 

0.008 
-0.013, 

0.02 
-0.002, 

0.01 
-0.001, 

0.009 

A
ve

ra
ge
 

0.004, 

0.058 
0, 

0.043 
0, 

0.044 
0.004, 

0.023 
-0.002, 

0.008 
-0.033, 

0.037 
-0.009, 

0.014 
0.003, 

0.01 

O
ld
 -0.016, 

0.031 
-0.013, 

0.04 
-0.032, 

0.035 
-0.025, 

0.027 
0.004, 

0.009 
-0.043, 

0.043 
0.02, 

0.021 
-0.021, 

0.021 
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Gompertz distributed data 

Table 43:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of survival probability at time t for Gompertz distributed data. Amount of times the method ranked 

best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 16 14 30 12 

 

Table 44:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for Gompertz distributed data. Survival and ages as main axes. (Bias, 

RMSE), ▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    

Surv iva l (Gom pertz) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium* High* 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.198, 

0.375 
-0.007, 

0.054 
0.147, 

0.314 
0.009, 

0.117 
-0.001, 

0.016 
0.011, 

0.144 
-0.005, 

0.007 
-0.005, 

0.009 

M
ed

iu
m

 

-0.167, 

0.369 
-0.012, 

0.059 
0.139, 

0.317 
0.033, 

0.117 
0.001, 

0.015 
-0.004, 

0.139 
-0.004, 

0.007 
-0.003, 

0.009 

H
ig

h
 

0.015, 

0.19 
0.011, 

0.029 
0.288, 

0.311 
0.191, 

0.191 
0.027, 

0.027 
0.12, 

0.124 
-0.002, 

0.005 
-0.05, 

0.05 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.127, 

0.376 
-0.014, 

0.068 
0.143, 

0.292 
0.003, 

0.101 
0.002, 

0.015 
0.005, 

0.14 
-0.003, 

0.006 
-0.003, 

0.009 

M
ed

iu
m

 

-0.117, 

0.378 
-0.014, 

0.067 
0.118, 

0.279 
0.022, 

0.104 
0.011, 

0.018 
-0.001, 

0.138 
-0.002, 

0.006 
0, 

0.008 

H
ig

h
 

0.003, 

0.168 
-0.033, 

0.042 
0.27, 

0.292 
0.174, 

0.174 
0.011, 

0.015 
0.117, 

0.121 
0.001, 

0.005 
-0.046, 

0.046 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.023, 

0.042 
-0.007, 

0.016 
0.04, 

0.089 
-0.018, 

0.032 
0.008, 

0.012 
0.01, 

0.136 
-0.006, 

0.007 
-0.007, 

0.01 

M
ed

iu
m

 

-0.044, 

0.05 
-0.003, 

0.03 
0.034, 

0.088 
-0.02, 

0.033 
0.01, 

0.013 
0.001, 

0.128 
-0.005, 

0.007 
-0.004, 

0.009 

H
ig

h
 

-0.039, 

0.042 
-0.035, 

0.035 
0.064, 

0.082 
0.02, 

0.027 
0.004, 

0.011 
0.087, 

0.096 
-0.003, 

0.006 
0.004, 

0.012 
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Table 45:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival 

probability at time t per scenario for Gompertz distributed data. Information and heterogeneity as main axes. 

(Bias, RMSE), ▲ = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Gompertz) Survival (Gompertz) Survival (Gompertz) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.147, 

0.314 
0.011, 

0.144 
-0.198, 

0.375 
0.009, 

0.117 
-0.005, 

0.007 
-0.007, 

0.054 
-0.001, 

0.016 
-0.005, 

0.009 

A
ve

ra
ge
 

0.143, 

0.292 
0.005, 

0.14 
-0.127, 

0.376 
0.003, 

0.101 
-0.003, 

0.006 
-0.014, 

0.068 
0.002, 

0.015 
-0.003, 

0.009 

O
ld
 

0.04, 

0.089 
0.01, 

0.136 
-0.023, 

0.042 
-0.018, 

0.032 
-0.006, 

0.007 
-0.007, 

0.016 
0.008, 

0.012 
-0.007, 

0.01 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

0.139, 

0.317 
-0.004, 

0.139 
-0.167, 

0.369 
0.033, 

0.117 
-0.004, 

0.007 
-0.012, 

0.059 
0.001, 

0.015 
-0.003, 

0.009 

A
ve

ra
ge
 

0.118, 

0.279 
-0.001, 

0.138 
-0.117, 

0.378 
0.022, 

0.104 
-0.002, 

0.006 
-0.014, 

0.067 
0.011, 

0.018 
0, 

0.008 

O
ld
 0.034, 

0.088 
0.001, 

0.128 
-0.044, 

0.05 
-0.02, 

0.033 
-0.005, 

0.007 
-0.003, 

0.03 
0.01, 

0.013 
-0.004, 

0.009 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0.288, 

0.311 
0.12, 

0.124 
0.015, 

0.19 
0.191, 

0.191 
-0.002, 

0.005 
0.011, 

0.029 
0.027, 

0.027 
-0.05, 

0.05 

A
ve

ra
ge
 

0.27, 

0.292 
0.117, 

0.121 
0.003, 

0.168 
0.174, 

0.174 
0.001, 

0.005 
-0.033, 

0.042 
0.011, 

0.015 
-0.046, 

0.046 

O
ld
 0.064, 

0.082 
0.087, 

0.096 
-0.039, 

0.042 
0.02, 

0.027 
-0.003, 

0.006 
-0.035, 

0.035 
0.004, 

0.011 
0.004, 

0.012 
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A.3:  RMST 

Weibull distributed data 

Table 46:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of RMST for Weibull distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 26 22 12 8 

 

Table 47:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST 

per scenario for Weibull distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon) 

    

Surv iva l (Weibull) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

NA -0.007, 

0.02 
-0.003, 

0.008 
0, 

0.015 
-0.015, 

0.04 
-0.015, 

0.015 
-0.037, 

0.037 
-0.046, 

0.046 

M
ed

iu
m

 

NA -0.008, 

0.021 
-0.002, 

0.008 
0.002, 

0.016 
0.005, 

0.037 
-0.016, 

0.016 
-0.024, 

0.025 
-0.029, 

0.029 

H
ig

h
 

0.001, 

0.008 
0.026, 

0.036 
0.006, 

0.012 
0.039, 

0.04 
0.128, 

0.128 
0.001, 

0.011 
0.04, 

0.041 
0.121, 

0.121 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

NA -0.018, 

0.026 
-0.002, 

0.008 
0.008, 

0.016 
-0.026, 

0.043 
-0.014, 

0.014 
-0.032, 

0.032 
-0.036, 

0.036 

M
ed

iu
m

 

NA -0.018, 

0.028 
-0.001, 

0.008 
-0.006, 

0.016 
-0.006, 

0.038 
-0.015, 

0.015 
-0.02, 

0.021 
-0.014, 

0.017 

H
ig

h
 

-0.001, 

0.008 
0.004, 

0.032 
0.004, 

0.011 
0.028, 

0.031 
0.017, 

0.05 
-0.001, 

0.011 
0.032, 

0.033 
0.059, 

0.063 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.009, 

0.011 
-0.087, 

0.087 
-0.006, 

0.009 
-0.018, 

0.022 
-0.082, 

0.082 
-0.003, 

0.007 
0.023, 

0.024 
-0.053, 

0.053 

M
ed

iu
m

 

-0.009, 

0.012 
-0.077, 

0.078 
-0.006, 

0.009 
-0.016, 

0.021 
-0.067, 

0.068 
-0.004, 

0.008 
-0.032, 

0.033 
-0.045, 

0.045 

H
ig

h
 

-0.009, 

0.014 
-0.051, 

0.058 
0.001, 

0.011 
0.018, 

0.024 
-0.002, 

0.036 
-0.002, 

0.011 
0.024, 

0.027 
0.025, 

0.034 
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Table 48:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST 

per scenario for Weibull distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = 

Significant result (Wilcoxon)  

    
In form ation 

    Low Medium High 
    

Survival (Weibull) Survival (Weibull) Survival (Weibull) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.003, 

0.008 
-0.015, 

0.015 NA 
0, 

0.015 
-0.037, 

0.037 
-0.007, 

0.02 
-0.015, 

0.04 
-0.046, 

0.046 

A
ve

ra
ge
 

-0.002, 

0.008 
-0.014, 

0.014 NA 0.008, 

0.016 
-0.032, 

0.032 
-0.018, 

0.026 
-0.026, 

0.043 
-0.036, 

0.036 

O
ld
 

-0.006, 

0.009 
-0.003, 

0.007 
-0.009, 

0.011 
-0.018, 

0.022 
0.023, 

0.024 
-0.087, 

0.087 
-0.082, 

0.082 
-0.053, 

0.053 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.002, 

0.008 
-0.016, 

0.016 NA 
0.002, 

0.016 
-0.024, 

0.025 
-0.008, 

0.021 
0.005, 

0.037 
-0.029, 

0.029 

A
ve

ra
ge
 

-0.001, 

0.008 
-0.015, 

0.015 
NA -0.006, 

0.016 
-0.02, 

0.021 
-0.018, 

0.028 
-0.006, 

0.038 
-0.014, 

0.017 

O
ld
 -0.006, 

0.009 
-0.004, 

0.008 
-0.009, 

0.012 
-0.016, 

0.021 
-0.032, 

0.033 
-0.077, 

0.078 
-0.067, 

0.068 
-0.045, 

0.045 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0.006, 

0.012 
0.001, 

0.011 
0.001, 

0.008 
0.039, 

0.04 
0.04, 

0.041 
0.026, 

0.036 
0.128, 

0.128 
0.121, 

0.121 

A
ve

ra
ge
 

0.004, 

0.011 
-0.001, 

0.011 
-0.001, 

0.008 
0.028, 

0.031 
0.032, 

0.033 
0.004, 

0.032 
0.017, 

0.05 
0.059, 

0.063 

O
ld
 0.001, 

0.011 
-0.002, 

0.011 
-0.009, 

0.014 
0.018, 

0.024 
0.024, 

0.027 
-0.051, 

0.058 
-0.002, 

0.036 
0.025, 

0.034 
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Log-logistic distributed data 

Table 49:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of RMST for log-logistic distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 27 35 3 7 

 

Table 50:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST 

per scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant 

result (Wilcoxon) 

    

Surv iva l (Log- logistic) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0, 

0.004 
-0.008, 

0.019 
-0.007, 

0.008 
-0.014, 

0.017 
0.011, 

0.029 
-0.015, 

0.015 
-0.038, 

0.038 
-0.04, 

0.043 

M
ed

iu
m

 

-0.001, 

0.004 
-0.008, 

0.02 
-0.007, 

0.009 
-0.012, 

0.016 
0.014, 

0.03 
-0.016, 

0.016 
-0.04, 

0.04 
-0.039, 

0.043 

H
ig

h
 

0, 

0.008 
0.007, 

0.028 
0, 

0.009 
0.007, 

0.016 
-0.024, 

0.04 
-0.01, 

0.013 
-0.01, 

0.016 
-0.018, 

0.034 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.001, 

0.005 
-0.022, 

0.028 
-0.006, 

0.008 
-0.005, 

0.013 
-0.045, 

0.048 
-0.015, 

0.015 
-0.034, 

0.034 
-0.027, 

0.035 

M
ed

iu
m

 

-0.001, 

0.005 
-0.021, 

0.028 
-0.006, 

0.008 
-0.003, 

0.013 
-0.046, 

0.049 
-0.016, 

0.016 
-0.035, 

0.035 
-0.02, 

0.031 

H
ig

h
 

-0.001, 

0.008 
-0.019, 

0.032 
0, 

0.01 
-0.005, 

0.016 
0, 

0.033 
-0.009, 

0.012 
-0.005, 

0.015 
0.041, 

0.051 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.01, 

0.012 
-0.101, 

0.101 
0.007, 

0.009 
-0.03, 

0.03 
-0.043, 

0.046 
-0.004, 

0.006 
0.016, 

0.018 
0, 

0.026 

M
ed

iu
m

 

-0.011, 

0.013 
-0.093, 

0.093 
0.006, 

0.008 
-0.029, 

0.03 
-0.043, 

0.046 
-0.006, 

0.008 
0.015, 

0.018 
0.001, 

0.027 

H
ig

h
 

-0.013, 

0.016 
-0.091, 

0.092 
-0.006, 

0.011 
-0.014, 

0.019 
-0.041, 

0.048 
-0.003, 

0.01 
-0.031, 

0.031 
-0.02, 

0.036 
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Table 51:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST 

per scenario for log-logistic distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ 

= Significant result (Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.007, 

0.008 
-0.015, 

0.015 
0, 

0.004 
-0.014, 

0.017 
-0.038, 

0.038 
-0.008, 

0.019 
0.011, 

0.029 
-0.04, 

0.043 

A
ve

ra
ge
 

-0.006, 

0.008 
-0.015, 

0.015 
-0.001, 

0.005 
-0.005, 

0.013 
-0.034, 

0.034 
-0.022, 

0.028 
-0.045, 

0.048 
-0.027, 

0.035 

O
ld
 

0.007, 

0.009 
-0.004, 

0.006 
-0.01, 

0.012 
-0.03, 

0.03 
0.016, 

0.018 
-0.101, 

0.101 
-0.043, 

0.046 
0, 

0.026 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.007, 

0.009 
-0.016, 

0.016 
-0.001, 

0.004 
-0.012, 

0.016 
-0.04, 

0.04 
-0.008, 

0.02 
0.014, 

0.03 
-0.039, 

0.043 

A
ve

ra
ge
 

-0.006, 

0.008 
-0.016, 

0.016 
-0.001, 

0.005 
-0.003, 

0.013 
-0.035, 

0.035 
-0.021, 

0.028 
-0.046, 

0.049 
-0.02, 

0.031 

O
ld
 0.006, 

0.008 
-0.006, 

0.008 
-0.011, 

0.013 
-0.029, 

0.03 
0.015, 

0.018 
-0.093, 

0.093 
-0.043, 

0.046 
0.001, 

0.027 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0, 

0.009 
-0.01, 

0.013 
0, 

0.008 
0.007, 

0.016 
-0.01, 

0.016 
0.007, 

0.028 
-0.024, 

0.04 
-0.018, 

0.034 

A
ve

ra
ge
 

0, 

0.01 
-0.009, 

0.012 
-0.001, 

0.008 
-0.005, 

0.016 
-0.005, 

0.015 
-0.019, 

0.032 
0, 

0.033 
0.041, 

0.051 

O
ld
 -0.006, 

0.011 
-0.003, 

0.01 
-0.013, 

0.016 
-0.014, 

0.019 
-0.031, 

0.031 
-0.091, 

0.092 
-0.041, 

0.048 
-0.02, 

0.036 
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Lognormal distributed data 

Table 52:  

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute 

mean bias of RMST for lognormal distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 26 42 0 3 

 

Table 53:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST 

per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant 

result (Wilcoxon) 

    

Surv iva l (Lognorm al) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.001, 

0.004 
-0.016, 

0.026 
-0.011, 

0.011 
-0.021, 

0.023 
-0.006, 

0.034 
-0.016, 

0.016 
-0.037, 

0.037 
-0.041, 

0.041 

M
ed

iu
m

 

NA -0.017, 

0.027 
-0.012, 

0.012 
-0.022, 

0.024 
-0.002, 

0.034 
-0.017, 

0.017 
-0.035, 

0.035 
-0.037, 

0.038 

H
ig

h
 

0.004, 

0.009 
-0.035, 

0.042 
-0.008, 

0.012 
-0.005, 

0.017 
-0.02, 

0.042 
-0.02, 

0.02 
-0.028, 

0.029 
-0.008, 

0.034 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.003, 

0.006 
-0.041, 

0.045 
-0.01, 

0.011 
-0.012, 

0.017 
-0.064, 

0.066 
-0.015, 

0.015 
-0.032, 

0.032 
-0.028, 

0.029 

M
ed

iu
m

 

-0.004, 

0.006 
-0.044, 

0.047 
-0.01, 

0.011 
-0.014, 

0.019 
-0.068, 

0.07 
-0.016, 

0.016 
-0.029, 

0.03 
-0.019, 

0.023 

H
ig

h
 

-0.008, 

0.011 
-0.073, 

0.075 
-0.008, 

0.012 
0.001, 

0.017 
-0.05, 

0.057 
-0.019, 

0.02 
-0.023, 

0.025 
0.049, 

0.055 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.019, 

0.02 
-0.211, 

0.211 
0.002, 

0.007 
-0.04, 

0.04 
-0.11, 

0.11 
-0.003, 

0.007 
0.019, 

0.021 
-0.016, 

0.026 

M
ed

iu
m

 

-0.021, 

0.022 
-0.197, 

0.197 
0.001, 

0.007 
-0.043, 

0.043 
-0.106, 

0.106 
-0.005, 

0.008 
0.022, 

0.023 
-0.019, 

0.028 

H
ig

h
 

-0.029, 

0.029 
-0.187, 

0.187 
0, 

0.011 
-0.041, 

0.042 
-0.12, 

0.12 
-0.012, 

0.015 
0.03, 

0.033 
-0.065, 

0.066 
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Table 54:  

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST 

per scenario for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ 

= Significant result (Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.011, 

0.011 
-0.016, 

0.016 
-0.001, 

0.004 
-0.021, 

0.023 
-0.037, 

0.037 
-0.016, 

0.026 
-0.006, 

0.034 
-0.041, 

0.041 

A
ve

ra
ge
 

-0.01, 

0.011 
-0.015, 

0.015 
-0.003, 

0.006 
-0.012, 

0.017 
-0.032, 

0.032 
-0.041, 

0.045 
-0.064, 

0.066 
-0.028, 

0.029 

O
ld
 

0.002, 

0.007 
-0.003, 

0.007 
-0.019, 

0.02 
-0.04, 

0.04 
0.019, 

0.021 
-0.211, 

0.211 
-0.11, 

0.11 
-0.016, 

0.026 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.012, 

0.012 
-0.017, 

0.017 NA 
-0.022, 

0.024 
-0.035, 

0.035 
-0.017, 

0.027 
-0.002, 

0.034 
-0.037, 

0.038 

A
ve

ra
ge
 

-0.01, 

0.011 
-0.016, 

0.016 
-0.004, 

0.006 
-0.014, 

0.019 
-0.029, 

0.03 
-0.044, 

0.047 
-0.068, 

0.07 
-0.019, 

0.023 

O
ld
 0.001, 

0.007 
-0.005, 

0.008 
-0.021, 

0.022 
-0.043, 

0.043 
0.022, 

0.023 
-0.197, 

0.197 
-0.106, 

0.106 
-0.019, 

0.028 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.008, 

0.012 
-0.02, 

0.02 
0.004, 

0.009 
-0.005, 

0.017 
-0.028, 

0.029 
-0.035, 

0.042 
-0.02, 

0.042 
-0.008, 

0.034 

A
ve

ra
ge
 

-0.008, 

0.012 
-0.019, 

0.02 
-0.008, 

0.011 
0.001, 

0.017 
-0.023, 

0.025 
-0.073, 

0.075 
-0.05, 

0.057 
0.049, 

0.055 

O
ld
 0, 

0.011 
-0.012, 

0.015 
-0.029, 

0.029 
-0.041, 

0.042 
0.03, 

0.033 
-0.187, 

0.187 
-0.12, 

0.12 
-0.065, 

0.066 
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Gompertz distributed data 

Table 55:  

Legend for colour-coded table and times a GPM incorporating method ranked best for absolute mean 

bias of RMST for Gompertz distributed data. Amount of times the method ranked best 

 Non-GPM Internal additive External additive Converging 
Times method ranked best 28 36 0 8 

 

Table 56:  

Colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST per 

scenario for Gompertz distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon) 

    

Surv iva l (Gom pertz) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.001, 

0.003 
-0.006, 

0.012 
-0.007, 

0.007 
-0.01, 

0.012 
0.013, 

0.025 
-0.017, 

0.017 
-0.035, 

0.035 
-0.042, 

0.042 

M
ed

iu
m

 

-0.002, 

0.003 
-0.007, 

0.013 
-0.008, 

0.008 
-0.012, 

0.013 
0.012, 

0.026 
-0.018, 

0.018 
-0.033, 

0.033 
-0.038, 

0.038 

H
ig

h
 

-0.007, 

0.008 
-0.019, 

0.024 
-0.012, 

0.014 
-0.026, 

0.026 
-0.076, 

0.076 
-0.024, 

0.024 
-0.058, 

0.058 
-0.214, 

0.214 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.002, 

0.004 
-0.007, 

0.014 
-0.007, 

0.008 
-0.002, 

0.008 
-0.039, 

0.041 
-0.016, 

0.016 
-0.03, 

0.03 
-0.032, 

0.032 

M
ed

iu
m

 

-0.002, 

0.004 
-0.009, 

0.015 
-0.008, 

0.008 
-0.002, 

0.009 
-0.042, 

0.043 
-0.017, 

0.017 
-0.028, 

0.028 
-0.02, 

0.022 

H
ig

h
 

-0.007, 

0.009 
-0.022, 

0.027 
-0.009, 

0.015 
-0.018, 

0.019 
0.033, 

0.05 
-0.023, 

0.023 
-0.052, 

0.052 
-0.141, 

0.141 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.007, 

0.008 
-0.027, 

0.03 
-0.009, 

0.009 
-0.021, 

0.022 
-0.046, 

0.047 
-0.002, 

0.011 
0.024, 

0.024 
-0.049, 

0.049 

M
ed

iu
m

 

-0.008, 

0.01 
-0.027, 

0.031 
-0.01, 

0.01 
-0.023, 

0.023 
-0.051, 

0.051 
-0.006, 

0.009 
0.024, 

0.025 
-0.05, 

0.05 

H
ig

h
 

-0.014, 

0.015 
-0.04, 

0.042 
-0.016, 

0.016 
-0.038, 

0.038 
-0.139, 

0.139 
-0.016, 

0.016 
0.003, 

0.016 
-0.213, 

0.213 
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Table 57:  

Colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST per 

scenario for Gompertz distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = 

Significant result (Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Gompertz) Survival (Gompertz) Survival (Gompertz) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.007, 

0.007 
-0.017, 

0.017 
-0.001, 

0.003 
-0.01, 

0.012 
-0.035, 

0.035 
-0.006, 

0.012 
0.013, 

0.025 
-0.042, 

0.042 

A
ve

ra
ge
 

-0.007, 

0.008 
-0.016, 

0.016 
-0.002, 

0.004 
-0.002, 

0.008 
-0.03, 

0.03 
-0.007, 

0.014 
-0.039, 

0.041 
-0.032, 

0.032 

O
ld
 

-0.009, 

0.009 
-0.002, 

0.011 
-0.007, 

0.008 
-0.021, 

0.022 
0.024, 

0.024 
-0.027, 

0.03 
-0.046, 

0.047 
-0.049, 

0.049 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.008, 

0.008 
-0.018, 

0.018 
-0.002, 

0.003 
-0.012, 

0.013 
-0.033, 

0.033 
-0.007, 

0.013 
0.012, 

0.026 
-0.038, 

0.038 

A
ve

ra
ge
 

-0.008, 

0.008 
-0.017, 

0.017 
-0.002, 

0.004 
-0.002, 

0.009 
-0.028, 

0.028 
-0.009, 

0.015 
-0.042, 

0.043 
-0.02, 

0.022 

O
ld
 -0.01, 

0.01 
-0.006, 

0.009 
-0.008, 

0.01 
-0.023, 

0.023 
0.024, 

0.025 
-0.027, 

0.031 
-0.051, 

0.051 
-0.05, 

0.05 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.012, 

0.014 
-0.024, 

0.024 
-0.007, 

0.008 
-0.026, 

0.026 
-0.058, 

0.058 
-0.019, 

0.024 
-0.076, 

0.076 
-0.214, 

0.214 

A
ve

ra
ge
 

-0.009, 

0.015 
-0.023, 

0.023 
-0.007, 

0.009 
-0.018, 

0.019 
-0.052, 

0.052 
-0.022, 

0.027 
0.033, 

0.05 
-0.141, 

0.141 

O
ld
 -0.016, 

0.016 
-0.016, 

0.016 
-0.014, 

0.015 
-0.038, 

0.038 
0.003, 

0.016 
-0.04, 

0.042 
-0.139, 

0.139 
-0.213, 

0.213 
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Appendix B: Colour-coded tables for best ranking methods per scenario 

This Appendix shows the results of the simulation by colour-coding the tested methods and showing the best 

performing method for each scenario based on the absolute mean bias for the estimand. Separate tables are 

shown for each estimand and underlying survival distribution used to generate data separately. The DGM 

dimensions (survival, age, heterogeneity, level of information) are used as rows and columns for the tables, 

tables are shown in pairs with flipped “minor” “and major” dimension of rows and columns. Cells show the 

mean bias and mean RMSE for the method over 2,500 replications. A triangle denotes whether the result was 

significant based on a Wilcoxon signed-rank test (α = 0.05). Each pair of tables is accompanied by another that 

mostly serves as a legend, but also shows the overall number of times a method ranked best and the percentage 

of that result which was significant for each survival distribution used to generate the data. 
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B.1:  Overall mean survival 

Weibull distributed data 

Table 58:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for 

Weibull distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 0 4 0 0 5 2 1 12 

Internal additive 4 2 0 0 1 2 1 10 

External additive 5 9 7 7 3 4 1 36 

Converging 2 6 1 1 1 3 0 14 

Tota l 11 21 8 8 10 11 3 
 

Table 59:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for 

Weibull distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon) 

    

Surv iva l (Weibull) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.567, 

22.586 
-0.12, 

0.765 
0.556, 

3.7 
-0.011, 

1.081 
-0.153, 

0.339 
0.035, 

0.376 
-0.031, 

0.073 
-0.033, 

0.033 

M
ed

iu
m

 

-0.195, 

22.2 
-0.388, 

0.941 
-0.325, 

3.627 
0.05, 

1.3 
0.117, 

0.407 
0.217, 

0.331 
-0.057, 

0.083 
-0.04, 

0.048 

H
ig

h
 

0.091, 

5.364 
0.028, 

1.12 
0.145, 

2.593 
-0.127, 

1.728 
-0.019, 

0.512 
0.005, 

1.368 
0.035, 

0.908 
0.064, 

0.347 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.498, 

1.207 
0.719, 

4.128 
0.054, 

2.756 
-0.188, 

0.817 
0.339, 

0.514 
0.034, 

0.358 
-0.023, 

0.071 
-0.02, 

0.02 

M
ed

iu
m

 

0.646, 

1.953 
0.564, 

3.953 
-0.447, 

2.72 
0.309, 

1 
0.329, 

0.395 
0.068, 

1.358 
-0.035, 

0.073 
-0.007, 

0.03 

H
ig

h
 

-0.056, 

1.447 
-0.324, 

0.597 
0.042, 

1.783 
-0.076, 

1.093 
0.059, 

0.432 
-0.097, 

1.027 
-0.092, 

0.614 
0.007, 

0.225 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.17, 

0.927 
-0.01, 

0.323 
-0.083, 

1.593 
0.066, 

0.482 
0.017, 

0.067 
-0.044, 

0.691 
-0.013, 

0.043 
-0.01, 

0.026 

M
ed

iu
m

 

0.027, 

0.554 
-0.161, 

0.537 
0.1, 

0.778 
-0.002, 

0.462 
0.013, 

0.089 
0.021, 

0.203 
-0.012, 

0.065 
0.002, 

0.034 

H
ig

h
 

-0.055, 

0.449 
0.025, 

0.363 
-0.071, 

0.692 
0.012, 

0.315 
0.02, 

0.149 
-0.107, 

0.479 
0.193, 

0.316 
0.016, 

0.076 
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Table 60:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for 

Weibull distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Weibull) Survival (Weibull) Survival (Weibull) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.556, 

3.7 
0.035, 

0.376 
0.567, 

22.586 
-0.011, 

1.081 
-0.031, 

0.073 
-0.12, 

0.765 
-0.153, 

0.339 
-0.033, 

0.033 

A
ve

ra
ge
 

0.054, 

2.756 
0.034, 

0.358 
-0.498, 

1.207 
-0.188, 

0.817 
-0.023, 

0.071 
0.719, 

4.128 
0.339, 

0.514 
-0.02, 

0.02 

O
ld
 

-0.083, 

1.593 
-0.044, 

0.691 
0.17, 

0.927 
0.066, 

0.482 
-0.013, 

0.043 
-0.01, 

0.323 
0.017, 

0.067 
-0.01, 

0.026 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.325, 

3.627 
0.217, 

0.331 
-0.195, 

22.2 
0.05, 

1.3 
-0.057, 

0.083 
-0.388, 

0.941 
0.117, 

0.407 
-0.04, 

0.048 

A
ve

ra
ge
 

-0.447, 

2.72 
0.068, 

1.358 
0.646, 

1.953 
0.309, 

1 
-0.035, 

0.073 
0.564, 

3.953 
0.329, 

0.395 
-0.007, 

0.03 

O
ld
 0.1, 

0.778 
0.021, 

0.203 
0.027, 

0.554 
-0.002, 

0.462 
-0.012, 

0.065 
-0.161, 

0.537 
0.013, 

0.089 
0.002, 

0.034 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0.145, 

2.593 
0.005, 

1.368 
0.091, 

5.364 
-0.127, 

1.728 
0.035, 

0.908 
0.028, 

1.12 
-0.019, 

0.512 
0.064, 

0.347 

A
ve

ra
ge
 

0.042, 

1.783 
-0.097, 

1.027 
-0.056, 

1.447 
-0.076, 

1.093 
-0.092, 

0.614 
-0.324, 

0.597 
0.059, 

0.432 
0.007, 

0.225 

O
ld
 -0.071, 

0.692 
-0.107, 

0.479 
-0.055, 

0.449 
0.012, 

0.315 
0.193, 

0.316 
0.025, 

0.363 
0.02, 

0.149 
0.016, 

0.076 
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Log-logistic distributed data 

Table 61:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for 

log-logistic distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 1 1 0 5 4 2 15 

Internal additive 2 4 2 0 0 0 1 9 

External additive 6 0 14 4 3 3 1 31 

Converging 1 3 5 2 1 5 0 17 

Tota l 11 8 22 6 9 12 4 
 

Table 62:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for log-

logistic distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon) 

    

Surv iva l (Log- logistic) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

1.042, 

6.347 
-0.48, 

0.844 
0.381, 

3.233 
0.052, 

0.903 
-0.042, 

0.621 
0.059, 

0.435 
-0.01, 

0.113 
-0.016, 

0.063 

M
ed

iu
m

 

0.454, 

2.1 
0.525, 

7.918 
-0.084, 

3.122 
-0.07, 

0.888 
-0.061, 

0.551 
0.002, 

0.336 
0.036, 

0.144 
0.001, 

0.082 

H
ig

h
 

0.618, 

2.848 
0.08, 

1.066 
-0.015, 

2.67 
-0.024, 

1.74 
-0.104, 

0.522 
0.208, 

1.515 
0.078, 

0.541 
0.024, 

0.345 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.456, 

1.228 
0.06, 

3.948 
0.121, 

2.388 
-0.067, 

0.625 
0.093, 

0.354 
0.024, 

0.396 
-0.002, 

0.101 
-0.006, 

0.056 

M
ed

iu
m

 

-0.184, 

14.968 
0.269, 

3.915 
-0.148, 

2.209 
0.04, 

2.064 
0.039, 

0.339 
0.031, 

0.303 
0.013, 

0.127 
-0.012, 

0.065 

H
ig

h
 

-0.029, 

4.214 
-0.241, 

0.58 
0.235, 

3.827 
-0.258, 

1.075 
0.203, 

0.379 
0.164, 

1.14 
0.013, 

0.452 
0.008, 

0.233 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.165, 

0.929 
-0.028, 

0.315 
-0.123, 

0.889 
0.1, 

0.616 
0.028, 

0.075 
0.021, 

0.289 
0.028, 

0.082 
0.004, 

0.034 

M
ed

iu
m

 

0.011, 

0.589 
-0.141, 

0.534 
-0.082, 

2.266 
0.035, 

0.577 
0.013, 

0.08 
-0.016, 

0.206 
-0.015, 

0.069 
-0.027, 

0.037 

H
ig

h
 

-0.096, 

0.547 
0.011, 

0.384 
0.223, 

1.445 
-0.036, 

0.377 
-0.015, 

0.137 
-0.238, 

0.497 
0.081, 

0.263 
-0.014, 

0.076 
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Table 63:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for log-

logistic distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.381, 

3.233 
0.059, 

0.435 
1.042, 

6.347 
0.052, 

0.903 
-0.01, 

0.113 
-0.48, 

0.844 
-0.042, 

0.621 
-0.016, 

0.063 

A
ve

ra
ge
 

0.121, 

2.388 
0.024, 

0.396 
-0.456, 

1.228 
-0.067, 

0.625 
-0.002, 

0.101 
0.06, 

3.948 
0.093, 

0.354 
-0.006, 

0.056 

O
ld
 

-0.123, 

0.889 
0.021, 

0.289 
0.165, 

0.929 
0.1, 

0.616 
0.028, 

0.082 
-0.028, 

0.315 
0.028, 

0.075 
0.004, 

0.034 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.084, 

3.122 
0.002, 

0.336 
0.454, 

2.1 
-0.07, 

0.888 
0.036, 

0.144 
0.525, 

7.918 
-0.061, 

0.551 
0.001, 

0.082 

A
ve

ra
ge
 

-0.148, 

2.209 
0.031, 

0.303 
-0.184, 

14.968 
0.04, 

2.064 
0.013, 

0.127 
0.269, 

3.915 
0.039, 

0.339 
-0.012, 

0.065 

O
ld
 -0.082, 

2.266 
-0.016, 

0.206 
0.011, 

0.589 
0.035, 

0.577 
-0.015, 

0.069 
-0.141, 

0.534 
0.013, 

0.08 
-0.027, 

0.037 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.015, 

2.67 
0.208, 

1.515 
0.618, 

2.848 
-0.024, 

1.74 
0.078, 

0.541 
0.08, 

1.066 
-0.104, 

0.522 
0.024, 

0.345 

A
ve

ra
ge
 

0.235, 

3.827 
0.164, 

1.14 
-0.029, 

4.214 
-0.258, 

1.075 
0.013, 

0.452 
-0.241, 

0.58 
0.203, 

0.379 
0.008, 

0.233 

O
ld
 0.223, 

1.445 
-0.238, 

0.497 
-0.096, 

0.547 
-0.036, 

0.377 
0.081, 

0.263 
0.011, 

0.384 
-0.015, 

0.137 
-0.014, 

0.076 
 

  



87 
 

Lognormal distributed data 

Table 64:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for 

lognormal distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 1 1 1 1 3 3 0 10 

Internal additive 3 5 2 1 0 3 1 15 

External additive 2 0 2 20 1 4 3 32 

Converging 1 3 4 3 2 2 0 15 

Tota l 7 9 9 25 6 12 4 
 

Table 65:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for 

lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon) 

    

Surv iva l (Lognorm al) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.562, 

2.06 
-0.462, 

0.967 
0.107, 

2.786 
0.022, 

0.86 
0.025, 

0.482 
0.037, 

0.372 
-0.001, 

0.123 
-0.035, 

0.038 

M
ed

iu
m

 

-8.809, 

21.976 
-0.546, 

1.098 
0.158, 

2.766 
0.043, 

0.879 
0.036, 

0.487 
0.045, 

0.496 
-0.002, 

0.193 
-0.003, 

0.054 

H
ig

h
 

0.075, 

2.113 
-0.413, 

1.221 
0.195, 

2.584 
0.298, 

1.021 
0.051, 

0.503 
0.188, 

1.527 
0.09, 

0.601 
0.023, 

0.331 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.298, 

3.329 
0.571, 

3.947 
0.082, 

2.1 
-0.063, 

1.156 
-0.119, 

0.314 
-0.052, 

0.337 
0.014, 

0.116 
0.013, 

0.037 

M
ed

iu
m

 

0.149, 

3.036 
-0.808, 

2.123 
-0.011, 

2.451 
-0.114, 

1.123 
0.015, 

0.316 
-0.016, 

0.423 
0, 

0.108 
0.007, 

0.04 

H
ig

h
 

-0.37, 

2.158 
-0.214, 

0.57 
0.072, 

1.749 
-0.015, 

1.007 
0.137, 

0.35 
0.051, 

1.124 
-0.016, 

0.429 
-0.018, 

0.236 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.092, 

0.957 
0.027, 

0.545 
0.162, 

0.92 
-0.062, 

0.261 
0.023, 

0.071 
-0.094, 

0.267 
-0.029, 

0.05 
0.001, 

0.028 

M
ed

iu
m

 

0.076, 

3.395 
-0.055, 

0.505 
0.069, 

2.525 
-0.282, 

0.357 
0.009, 

0.078 
0.002, 

0.199 
0.028, 

0.068 
0.022, 

0.038 

H
ig

h
 

0.081, 

0.443 
0.002, 

0.409 
0.01, 

1.378 
0, 

0.354 
-0.012, 

0.135 
-0.226, 

0.508 
0.082, 

0.277 
-0.014, 

0.075 
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Table 66:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for 

lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.107, 

2.786 
0.037, 

0.372 
-0.562, 

2.06 
0.022, 

0.86 
-0.001, 

0.123 
-0.462, 

0.967 
0.025, 

0.482 
-0.035, 

0.038 

A
ve

ra
ge
 

0.082, 

2.1 
-0.052, 

0.337 
0.298, 

3.329 
-0.063, 

1.156 
0.014, 

0.116 
0.571, 

3.947 
-0.119, 

0.314 
0.013, 

0.037 

O
ld
 

0.162, 

0.92 
-0.094, 

0.267 
0.092, 

0.957 
-0.062, 

0.261 
-0.029, 

0.05 
0.027, 

0.545 
0.023, 

0.071 
0.001, 

0.028 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

0.158, 

2.766 
0.045, 

0.496 
-8.809, 

21.976 
0.043, 

0.879 
-0.002, 

0.193 
-0.546, 

1.098 
0.036, 

0.487 
-0.003, 

0.054 

A
ve

ra
ge
 

-0.011, 

2.451 
-0.016, 

0.423 
0.149, 

3.036 
-0.114, 

1.123 
0, 

0.108 
-0.808, 

2.123 
0.015, 

0.316 
0.007, 

0.04 

O
ld
 0.069, 

2.525 
0.002, 

0.199 
0.076, 

3.395 
-0.282, 

0.357 
0.028, 

0.068 
-0.055, 

0.505 
0.009, 

0.078 
0.022, 

0.038 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0.195, 

2.584 
0.188, 

1.527 
0.075, 

2.113 
0.298, 

1.021 
0.09, 

0.601 
-0.413, 

1.221 
0.051, 

0.503 
0.023, 

0.331 

A
ve

ra
ge
 

0.072, 

1.749 
0.051, 

1.124 
-0.37, 

2.158 
-0.015, 

1.007 
-0.016, 

0.429 
-0.214, 

0.57 
0.137, 

0.35 
-0.018, 

0.236 

O
ld
 0.01, 

1.378 
-0.226, 

0.508 
0.081, 

0.443 
0, 

0.354 
0.082, 

0.277 
0.002, 

0.409 
-0.012, 

0.135 
-0.014, 

0.075 
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Gompertz distributed data 

Table 67:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for 

Gompertz distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 0 7 0 0 2 4 0 13 

Internal additive 2 7 0 0 3 5 0 17 

External additive 4 2 3 8 1 6 0 24 

Converging 1 3 3 0 5 6 0 18 

Tota l 7 19 6 8 11 21 0 
 

Table 68:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for 

Gompertz distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon) 

    

Surv iva l (Gom pertz) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.318, 

5.312 
0.319, 

1.456 
-0.525, 

4.772 
-0.088, 

3.057 
-0.184, 

0.724 
0.244, 

0.296 
-0.004, 

0.088 
-0.036, 

0.036 

M
ed

iu
m

 

-3.34, 

14.042 
0.016, 

2.406 
-1.481, 

4.723 
0.019, 

3.086 
0.021, 

0.625 
-0.06, 

0.473 
-0.056, 

0.157 
-0.017, 

0.046 

H
ig

h
 

-0.415, 

5.307 
0.095, 

1.043 
-0.136, 

3.006 
-0.242, 

1.903 
0.051, 

0.629 
0.463, 

1.427 
0.042, 

0.89 
-0.052, 

0.321 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.246, 

1.139 
-0.382, 

2.601 
-0.087, 

3.94 
-0.127, 

2.153 
-0.028, 

0.264 
0.233, 

0.282 
0.001, 

0.096 
-0.023, 

0.023 

M
ed

iu
m

 

-0.093, 

1.246 
-0.37, 

0.738 
-0.73, 

4.001 
0.062, 

2.451 
-0.015, 

0.364 
-0.016, 

0.488 
-0.04, 

0.153 
-0.001, 

0.034 

H
ig

h
 

0.107, 

1.426 
-0.44, 

0.622 
0.296, 

4.17 
0.286, 

0.795 
0.097, 

0.357 
0.272, 

1.041 
-0.107, 

0.603 
-0.089, 

0.229 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.167, 

0.888 
0.006, 

0.325 
0.034, 

1.68 
-0.01, 

0.236 
0.026, 

0.089 
0.029, 

0.306 
-0.012, 

0.073 
0.041, 

0.046 

M
ed

iu
m

 

0.092, 

0.543 
-0.156, 

0.373 
0.031, 

1.836 
-0.02, 

0.761 
0.001, 

0.089 
-0.018, 

0.378 
0.005, 

0.163 
-0.028, 

0.044 

H
ig

h
 

0.018, 

0.412 
0.05, 

0.338 
0.19, 

1.755 
0.094, 

0.436 
-0.012, 

0.137 
0.022, 

0.47 
-0.146, 

0.259 
-0.006, 

0.07 
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Table 69:  

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for 

Gompertz distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon) 

    
In form ation 

    Low Medium High 
    

Survival (Gompertz) Survival (Gompertz) Survival (Gompertz) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.525, 

4.772 
0.244, 

0.296 
0.318, 

5.312 
-0.088, 

3.057 
-0.004, 

0.088 
0.319, 

1.456 
-0.184, 

0.724 
-0.036, 

0.036 

A
ve

ra
ge
 

-0.087, 

3.94 
0.233, 

0.282 
-0.246, 

1.139 
-0.127, 

2.153 
0.001, 

0.096 
-0.382, 

2.601 
-0.028, 

0.264 
-0.023, 

0.023 

O
ld
 

0.034, 

1.68 
0.029, 

0.306 
0.167, 

0.888 
-0.01, 

0.236 
-0.012, 

0.073 
0.006, 

0.325 
0.026, 

0.089 
0.041, 

0.046 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-1.481, 

4.723 
-0.06, 

0.473 
-3.34, 

14.042 
0.019, 

3.086 
-0.056, 

0.157 
0.016, 

2.406 
0.021, 

0.625 
-0.017, 

0.046 

A
ve

ra
ge
 

-0.73, 

4.001 
-0.016, 

0.488 
-0.093, 

1.246 
0.062, 

2.451 
-0.04, 

0.153 
-0.37, 

0.738 
-0.015, 

0.364 
-0.001, 

0.034 

O
ld
 0.031, 

1.836 
-0.018, 

0.378 
0.092, 

0.543 
-0.02, 

0.761 
0.005, 

0.163 
-0.156, 

0.373 
0.001, 

0.089 
-0.028, 

0.044 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.136, 

3.006 
0.463, 

1.427 
-0.415, 

5.307 
-0.242, 

1.903 
0.042, 

0.89 
0.095, 

1.043 
0.051, 

0.629 
-0.052, 

0.321 

A
ve

ra
ge
 

0.296, 

4.17 
0.272, 

1.041 
0.107, 

1.426 
0.286, 

0.795 
-0.107, 

0.603 
-0.44, 

0.622 
0.097, 

0.357 
-0.089, 

0.229 

O
ld
 0.19, 

1.755 
0.022, 

0.47 
0.018, 

0.412 
0.094, 

0.436 
-0.146, 

0.259 
0.05, 

0.338 
-0.012, 

0.137 
-0.006, 

0.07 
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B.2:  Survival probability at time t 

Weibull distributed data 

Table 70:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability 
at time t for Weibull distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 1 1 0 2 10 0 16 

Internal additive 2 4 3 1 0 9 0 19 

External additive 4 2 4 7 1 1 1 20 

Converging 1 6 1 3 1 5 0 17 

Tota l 9 13 9 11 4 25 1 
 

Table 71:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per 
scenario for Weibull distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result 
(Wilcoxon), * denotes scenarios that are not extrapolations 

    

Surv iva l (Weibull) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium* High* 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.006, 

0.042 
-0.004, 

0.018 
0.001, 

0.115 
-0.003, 

0.092 
0, 

0.015 
-0.006, 

0.083 
-0.006, 

0.008 
0, 

0.009 

M
ed

iu
m

 

0.008, 

0.044 
0.001, 

0.02 
-0.01, 

0.116 
-0.006, 

0.037 
0, 

0.014 
-0.003, 

0.136 
-0.006, 

0.008 
0, 

0.009 

H
ig

h
 

-0.005, 

0.065 
-0.005, 

0.018 
-0.006, 

0.066 
0.006, 

0.043 
-0.001, 

0.011 
-0.001, 

0.064 
0, 

0.008 
0, 

0.009 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.01, 

0.066 
-0.025, 

0.068 
-0.002, 

0.103 
-0.007, 

0.092 
0.004, 

0.015 
-0.001, 

0.08 
-0.004, 

0.007 
0.001, 

0.009 

M
ed

iu
m

 

-0.017, 

0.045 
-0.022, 

0.066 
0.002, 

0.111 
0.001, 

0.036 
0.002, 

0.012 
-0.005, 

0.134 
-0.004, 

0.007 
0.002, 

0.009 

H
ig

h
 

0.016, 

0.16 
-0.019, 

0.025 
0.001, 

0.059 
0.007, 

0.024 
-0.002, 

0.011 
-0.002, 

0.067 
0, 

0.008 
0.002, 

0.009 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.002, 

0.027 
-0.001, 

0.049 
-0.008, 

0.032 
-0.012, 

0.016 
0.001, 

0.008 
0.004, 

0.075 
-0.006, 

0.009 
-0.007, 

0.01 

M
ed

iu
m

 

-0.004, 

0.017 
-0.004, 

0.049 
0.006, 

0.056 
-0.002, 

0.016 
0.008, 

0.012 
-0.001, 

0.126 
-0.005, 

0.011 
0.001, 

0.009 

H
ig

h
 

-0.023, 

0.028 
0.025, 

0.04 
0, 

0.03 
0.011, 

0.02 
0.004, 

0.011 
-0.005, 

0.039 
0, 

0.006 
0.006, 

0.012 
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Table 72:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario 

for Weibull distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon), * denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Weibull) Survival (Weibull) Survival (Weibull) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.001, 

0.115 
-0.006, 

0.083 
0.006, 

0.042 
-0.003, 

0.092 
-0.006, 

0.008 
-0.004, 

0.018 
0, 

0.015 
0, 

0.009 

A
ve

ra
ge
 

-0.002, 

0.103 
-0.001, 

0.08 
0.01, 

0.066 
-0.007, 

0.092 
-0.004, 

0.007 
-0.025, 

0.068 
0.004, 

0.015 
0.001, 

0.009 

O
ld
 

-0.008, 

0.032 
0.004, 

0.075 
0.002, 

0.027 
-0.012, 

0.016 
-0.006, 

0.009 
-0.001, 

0.049 
0.001, 

0.008 
-0.007, 

0.01 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.01, 

0.116 
-0.003, 

0.136 
0.008, 

0.044 
-0.006, 

0.037 
-0.006, 

0.008 
0.001, 

0.02 
0, 

0.014 
0, 

0.009 

A
ve

ra
ge
 

0.002, 

0.111 
-0.005, 

0.134 
-0.017, 

0.045 
0.001, 

0.036 
-0.004, 

0.007 
-0.022, 

0.066 
0.002, 

0.012 
0.002, 

0.009 

O
ld
 0.006, 

0.056 
-0.001, 

0.126 
-0.004, 

0.017 
-0.002, 

0.016 
-0.005, 

0.011 
-0.004, 

0.049 
0.008, 

0.012 
0.001, 

0.009 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.006, 

0.066 
-0.001, 

0.064 
-0.005, 

0.065 
0.006, 

0.043 
0, 

0.008 
-0.005, 

0.018 
-0.001, 

0.011 
0, 

0.009 

A
ve

ra
ge
 

0.001, 

0.059 
-0.002, 

0.067 
0.016, 

0.16 
0.007, 

0.024 
0, 

0.008 
-0.019, 

0.025 
-0.002, 

0.011 
0.002, 

0.009 

O
ld
 0, 

0.03 
-0.005, 

0.039 
-0.023, 

0.028 
0.011, 

0.02 
0, 

0.006 
0.025, 

0.04 
0.004, 

0.011 
0.006, 

0.012 
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Log-logistic distributed data 

Table 73:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability 
at time t for log-logistic distributed data. Amount of model the method ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 1 1 4 0 1 4 0 11 

Internal additive 1 0 10 2 0 2 0 15 

External additive 2 0 8 15 1 3 0 29 

Converging 0 6 5 2 1 2 1 17 

Tota l 4 7 27 19 3 11 1 
 

Table 74:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per 
scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result 
(Wilcoxon), * denotes scenarios that are not extrapolations 

    

Surv iva l (Log- logistic) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium* High* 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.008, 

0.08 
0.007, 

0.027 
0.005, 

0.09 
-0.001, 

0.027 
0.004, 

0.011 
0, 

0.057 
-0.004, 

0.01 
-0.004, 

0.009 

M
ed

iu
m

 

0.005, 

0.044 
0.005, 

0.027 
0.001, 

0.089 
0.003, 

0.027 
-0.001, 

0.012 
-0.014, 

0.125 
0.001, 

0.009 
0.003, 

0.009 

H
ig

h
 

-0.004, 

0.065 
-0.005, 

0.02 
0.002, 

0.137 
0.001, 

0.025 
0.001, 

0.01 
-0.001, 

0.041 
0, 

0.008 
0, 

0.009 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.009, 

0.064 
0.03, 

0.048 
0.004, 

0.083 
-0.003, 

0.025 
0.001, 

0.011 
0, 

0.055 
-0.002, 

0.01 
-0.002, 

0.008 

M
ed

iu
m

 

0.013, 

0.066 
-0.026, 

0.067 
-0.006, 

0.076 
-0.006, 

0.025 
0, 

0.011 
-0.018, 

0.056 
0, 

0.01 
0, 

0.009 

H
ig

h
 

0.008, 

0.045 
-0.016, 

0.023 
0.001, 

0.066 
-0.006, 

0.036 
-0.007, 

0.013 
-0.003, 

0.042 
-0.001, 

0.006 
0.001, 

0.008 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.002, 

0.028 
-0.001, 

0.049 
-0.001, 

0.028 
0, 

0.015 
0.007, 

0.01 
0.005, 

0.051 
-0.002, 

0.011 
0, 

0.008 

M
ed

iu
m

 

-0.006, 

0.017 
-0.001, 

0.049 
-0.003, 

0.055 
-0.006, 

0.013 
0.002, 

0.008 
0.005, 

0.051 
0, 

0.01 
0.001, 

0.008 

H
ig

h
 

-0.028, 

0.031 
0.025, 

0.042 
-0.007, 

0.055 
0.002, 

0.018 
0.002, 

0.01 
-0.001, 

0.04 
-0.001, 

0.009 
0.007, 

0.013 
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Table 75:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario 

for log-logistic distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon), * denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.005, 

0.09 
0, 

0.057 
0.008, 

0.08 
-0.001, 

0.027 
-0.004, 

0.01 
0.007, 

0.027 
0.004, 

0.011 
-0.004, 

0.009 

A
ve

ra
ge
 

0.004, 

0.083 
0, 

0.055 
0.009, 

0.064 
-0.003, 

0.025 
-0.002, 

0.01 
0.03, 

0.048 
0.001, 

0.011 
-0.002, 

0.008 

O
ld
 

-0.001, 

0.028 
0.005, 

0.051 
0.002, 

0.028 
0, 

0.015 
-0.002, 

0.011 
-0.001, 

0.049 
0.007, 

0.01 
0, 

0.008 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

0.001, 

0.089 
-0.014, 

0.125 
0.005, 

0.044 
0.003, 

0.027 
0.001, 

0.009 
0.005, 

0.027 
-0.001, 

0.012 
0.003, 

0.009 

A
ve

ra
ge
 

-0.006, 

0.076 
-0.018, 

0.056 
0.013, 

0.066 
-0.006, 

0.025 
0, 

0.01 
-0.026, 

0.067 
0, 

0.011 
0, 

0.009 

O
ld
 -0.003, 

0.055 
0.005, 

0.051 
-0.006, 

0.017 
-0.006, 

0.013 
0, 

0.01 
-0.001, 

0.049 
0.002, 

0.008 
0.001, 

0.008 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0.002, 

0.137 
-0.001, 

0.041 
-0.004, 

0.065 
0.001, 

0.025 
0, 

0.008 
-0.005, 

0.02 
0.001, 

0.01 
0, 

0.009 

A
ve

ra
ge
 

0.001, 

0.066 
-0.003, 

0.042 
0.008, 

0.045 
-0.006, 

0.036 
-0.001, 

0.006 
-0.016, 

0.023 
-0.007, 

0.013 
0.001, 

0.008 

O
ld
 -0.007, 

0.055 
-0.001, 

0.04 
-0.028, 

0.031 
0.002, 

0.018 
-0.001, 

0.009 
0.025, 

0.042 
0.002, 

0.01 
0.007, 

0.013 
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Lognormal distributed data 

Table 76:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability 
at time t for lognormal distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 1 5 3 2 4 0 17 

Internal additive 0 1 4 7 0 3 4 19 

External additive 2 0 0 12 4 4 0 22 

Converging 0 5 3 2 1 1 2 14 

Tota l 4 7 12 24 7 12 6 
 

Table 77:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per 
scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result 
(Wilcoxon), * denotes scenarios that are not extrapolations  

    

Surv iva l (Lognorm al) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium* High* 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.008, 

0.125 
-0.002, 

0.023 
-0.003, 

0.078 
0.002, 

0.046 
0.001, 

0.011 
-0.002, 

0.059 
-0.002, 

0.006 
-0.004, 

0.009 

M
ed

iu
m

 

0.272, 

0.272 
0.001, 

0.022 
-0.001, 

0.077 
0.001, 

0.046 
0.002, 

0.01 
-0.008, 

0.059 
-0.002, 

0.006 
-0.004, 

0.009 

H
ig

h
 

-0.003, 

0.044 
0.001, 

0.019 
-0.001, 

0.064 
0.003, 

0.024 
-0.002, 

0.01 
-0.001, 

0.061 
-0.001, 

0.006 
-0.001, 

0.009 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.004, 

0.132 
0.016, 

0.032 
0.002, 

0.073 
0.003, 

0.024 
0.004, 

0.012 
0.001, 

0.06 
0, 

0.006 
-0.002, 

0.008 

M
ed

iu
m

 

0, 

0.12 
0.018, 

0.032 
0.002, 

0.071 
-0.003, 

0.024 
0.006, 

0.013 
-0.001, 

0.058 
0.001, 

0.006 
-0.001, 

0.009 

H
ig

h
 

0, 

0.044 
-0.012, 

0.021 
0.004, 

0.058 
0.001, 

0.034 
-0.009, 

0.014 
0, 

0.043 
-0.001, 

0.006 
0.001, 

0.008 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.002, 

0.028 
0.005, 

0.027 
-0.002, 

0.027 
-0.002, 

0.026 
0.005, 

0.009 
-0.004, 

0.117 
-0.003, 

0.01 
0, 

0.009 

M
ed

iu
m

 

-0.007, 

0.018 
-0.004, 

0.028 
0.005, 

0.05 
0.001, 

0.025 
0.001, 

0.008 
-0.002, 

0.109 
-0.005, 

0.011 
-0.002, 

0.009 

H
ig

h
 

0.029, 

0.035 
0.025, 

0.045 
0.01, 

0.06 
-0.001, 

0.018 
0.002, 

0.01 
0, 

0.04 
0, 

0.006 
0.007, 

0.013 
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Table 78:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario 

for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon), * denotes scenarios that are not extrapolations 

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.003, 

0.078 
-0.002, 

0.059 
0.008, 

0.125 
0.002, 

0.046 
-0.002, 

0.006 
-0.002, 

0.023 
0.001, 

0.011 
-0.004, 

0.009 

A
ve

ra
ge
 

0.002, 

0.073 
0.001, 

0.06 
-0.004, 

0.132 
0.003, 

0.024 
0, 

0.006 
0.016, 

0.032 
0.004, 

0.012 
-0.002, 

0.008 

O
ld
 

-0.002, 

0.027 
-0.004, 

0.117 
-0.002, 

0.028 
-0.002, 

0.026 
-0.003, 

0.01 
0.005, 

0.027 
0.005, 

0.009 
0, 

0.009 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.001, 

0.077 
-0.008, 

0.059 
0.272, 

0.272 
0.001, 

0.046 
-0.002, 

0.006 
0.001, 

0.022 
0.002, 

0.01 
-0.004, 

0.009 

A
ve

ra
ge
 

0.002, 

0.071 
-0.001, 

0.058 
0, 

0.12 
-0.003, 

0.024 
0.001, 

0.006 
0.018, 

0.032 
0.006, 

0.013 
-0.001, 

0.009 

O
ld
 0.005, 

0.05 
-0.002, 

0.109 
-0.007, 

0.018 
0.001, 

0.025 
-0.005, 

0.011 
-0.004, 

0.028 
0.001, 

0.008 
-0.002, 

0.009 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

-0.001, 

0.064 
-0.001, 

0.061 
-0.003, 

0.044 
0.003, 

0.024 
-0.001, 

0.006 
0.001, 

0.019 
-0.002, 

0.01 
-0.001, 

0.009 

A
ve

ra
ge
 

0.004, 

0.058 
0, 

0.043 
0, 

0.044 
0.001, 

0.034 
-0.001, 

0.006 
-0.012, 

0.021 
-0.009, 

0.014 
0.001, 

0.008 

O
ld
 0.01, 

0.06 
0, 

0.04 
0.029, 

0.035 
-0.001, 

0.018 
0, 

0.006 
0.025, 

0.045 
0.002, 

0.01 
0.007, 

0.013 
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Gompertz distributed data 

Table 79:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability 
at time t for Gompertz distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 0 3 1 0 7 3 0 14 

Internal additive 0 7 4 0 5 4 0 20 

External additive 2 1 5 6 6 2 0 22 

Converging 0 5 2 3 1 4 1 16 

Tota l 2 16 12 9 19 13 1 
 

Table 80:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per 
scenario for Gompertz distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result 
(Wilcoxon), * denotes scenarios that are not extrapolations  

    

Surv iva l (Gom pertz) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium* High* 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.001, 

0.124 
0.005, 

0.018 
-0.031, 

0.135 
0.009, 

0.117 
-0.001, 

0.016 
0.011, 

0.144 
-0.001, 

0.008 
-0.001, 

0.009 

M
ed

iu
m

 

-0.167, 

0.369 
0, 

0.018 
0.054, 

0.114 
-0.025, 

0.084 
0.001, 

0.015 
-0.004, 

0.139 
-0.004, 

0.007 
0, 

0.009 

H
ig

h
 

0.004, 

0.137 
-0.003, 

0.018 
0.018, 

0.165 
-0.002, 

0.025 
0, 

0.011 
0, 

0.062 
0, 

0.008 
0, 

0.008 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.016, 

0.063 
-0.014, 

0.068 
-0.012, 

0.13 
0.003, 

0.101 
0.002, 

0.015 
0.005, 

0.14 
0.001, 

0.008 
0.002, 

0.009 

M
ed

iu
m

 

-0.005, 

0.043 
-0.014, 

0.067 
-0.044, 

0.13 
-0.008, 

0.083 
-0.003, 

0.013 
-0.001, 

0.138 
-0.002, 

0.006 
0, 

0.008 

H
ig

h
 

0.003, 

0.168 
0.019, 

0.027 
0, 

0.068 
-0.012, 

0.041 
-0.007, 

0.013 
-0.002, 

0.04 
0, 

0.007 
0.001, 

0.009 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

0.002, 

0.028 
-0.006, 

0.049 
0.017, 

0.035 
0.005, 

0.013 
0.008, 

0.012 
-0.002, 

0.11 
-0.001, 

0.008 
0.005, 

0.011 

M
ed

iu
m

 

-0.004, 

0.017 
-0.003, 

0.03 
0.006, 

0.031 
0, 

0.022 
0.004, 

0.009 
0.001, 

0.128 
0.001, 

0.01 
-0.001, 

0.009 

H
ig

h
 

-0.018, 

0.024 
0.026, 

0.038 
-0.011, 

0.06 
-0.001, 

0.018 
0.003, 

0.009 
0.005, 

0.039 
0.003, 

0.007 
0.004, 

0.012 
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Table 81:  

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario 

for Gompertz distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result 

(Wilcoxon), * denotes scenarios that are not extrapolations  

    
In form ation 

    Low Medium High 
    

Survival (Gompertz) Survival (Gompertz) Survival (Gompertz) 
    Medium Low High Medium Low* High Medium Low* 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.031, 

0.135 
0.011, 

0.144 
-0.001, 

0.124 
0.009, 

0.117 
-0.001, 

0.008 
0.005, 

0.018 
-0.001, 

0.016 
-0.001, 

0.009 

A
ve

ra
ge
 

-0.012, 

0.13 
0.005, 

0.14 
0.016, 

0.063 
0.003, 

0.101 
0.001, 

0.008 
-0.014, 

0.068 
0.002, 

0.015 
0.002, 

0.009 

O
ld
 

0.017, 

0.035 
-0.002, 

0.11 
0.002, 

0.028 
0.005, 

0.013 
-0.001, 

0.008 
-0.006, 

0.049 
0.008, 

0.012 
0.005, 

0.011 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

0.054, 

0.114 
-0.004, 

0.139 
-0.167, 

0.369 
-0.025, 

0.084 
-0.004, 

0.007 
0, 

0.018 
0.001, 

0.015 
0, 

0.009 

A
ve

ra
ge
 

-0.044, 

0.13 
-0.001, 

0.138 
-0.005, 

0.043 
-0.008, 

0.083 
-0.002, 

0.006 
-0.014, 

0.067 
-0.003, 

0.013 
0, 

0.008 

O
ld
 0.006, 

0.031 
0.001, 

0.128 
-0.004, 

0.017 
0, 

0.022 
0.001, 

0.01 
-0.003, 

0.03 
0.004, 

0.009 
-0.001, 

0.009 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0.018, 

0.165 
0, 

0.062 
0.004, 

0.137 
-0.002, 

0.025 
0, 

0.008 
-0.003, 

0.018 
0, 

0.011 
0, 

0.008 

A
ve

ra
ge
 

0, 

0.068 
-0.002, 

0.04 
0.003, 

0.168 
-0.012, 

0.041 
0, 

0.007 
0.019, 

0.027 
-0.007, 

0.013 
0.001, 

0.009 

O
ld
 -0.011, 

0.06 
0.005, 

0.039 
-0.018, 

0.024 
-0.001, 

0.018 
0.003, 

0.007 
0.026, 

0.038 
0.003, 

0.009 
0.004, 

0.012 
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B.3:  RMST 

Weibull distributed data 

Table 82:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for Weibull 

distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 3 6 0 6 1 0 18 

Internal additive 3 9 7 1 6 1 0 27 

External additive 5 2 4 0 0 1 1 13 

Converging 3 2 1 0 2 5 1 14 

Tota l 13 16 18 1 14 8 2 
 

Table 83:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for Weibull 

distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    

Surv iva l (Weibull) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0, 

0.004 
-0.006, 

0.012 
0.001, 

0.009 
0, 

0.015 
-0.007, 

0.029 
-0.015, 

0.015 
-0.032, 

0.032 
-0.045, 

0.045 

M
ed

iu
m

 

0, 

0.004 
-0.006, 

0.013 
0.001, 

0.009 
0.002, 

0.016 
0.004, 

0.029 
-0.016, 

0.016 
-0.024, 

0.025 
-0.029, 

0.029 

H
ig

h
 

-0.001, 

0.008 
0.004, 

0.027 
0.001, 

0.01 
-0.002, 

0.017 
-0.004, 

0.044 
0.001, 

0.011 
-0.005, 

0.015 
0.001, 

0.032 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.001, 

0.005 
-0.008, 

0.015 
-0.001, 

0.009 
0.003, 

0.013 
-0.013, 

0.03 
-0.013, 

0.014 
-0.027, 

0.027 
-0.032, 

0.032 

M
ed

iu
m

 

-0.002, 

0.005 
-0.01, 

0.016 
0, 

0.01 
-0.003, 

0.014 
-0.006, 

0.038 
-0.015, 

0.015 
-0.02, 

0.021 
-0.014, 

0.017 

H
ig

h
 

-0.001, 

0.008 
0.004, 

0.032 
0, 

0.01 
0, 

0.016 
0.002, 

0.044 
-0.001, 

0.011 
-0.001, 

0.014 
-0.03, 

0.042 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.008, 

0.009 
-0.026, 

0.031 
0, 

0.01 
-0.016, 

0.018 
0.015, 

0.04 
-0.003, 

0.007 
0.014, 

0.018 
0.033, 

0.035 

M
ed

iu
m

 

-0.008, 

0.009 
-0.027, 

0.031 
0, 

0.01 
-0.016, 

0.018 
-0.024, 

0.031 
0.002, 

0.013 
0.005, 

0.019 
-0.045, 

0.045 

H
ig

h
 

-0.002, 

0.019 
-0.025, 

0.057 
0.001, 

0.011 
0, 

0.018 
0, 

0.033 
-0.001, 

0.01 
0.01, 

0.021 
0, 

0.033 
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Table 84:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for Weibull 

distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    
In form ation 

    Low Medium High 
    

Survival (Weibull) Survival (Weibull) Survival (Weibull) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

0.001, 

0.009 
-0.015, 

0.015 
0, 

0.004 
0, 

0.015 
-0.032, 

0.032 
-0.006, 

0.012 
-0.007, 

0.029 
-0.045, 

0.045 

A
ve

ra
ge
 

-0.001, 

0.009 
-0.013, 

0.014 
-0.001, 

0.005 
0.003, 

0.013 
-0.027, 

0.027 
-0.008, 

0.015 
-0.013, 

0.03 
-0.032, 

0.032 

O
ld
 0, 

0.01 
-0.003, 

0.007 
-0.008, 

0.009 
-0.016, 

0.018 
0.014, 

0.018 
-0.026, 

0.031 
0.015, 

0.04 
0.033, 

0.035 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

0.001, 

0.009 
-0.016, 

0.016 
0, 

0.004 
0.002, 

0.016 
-0.024, 

0.025 
-0.006, 

0.013 
0.004, 

0.029 
-0.029, 

0.029 

A
ve

ra
ge
 

0, 

0.01 
-0.015, 

0.015 
-0.002, 

0.005 
-0.003, 

0.014 
-0.02, 

0.021 
-0.01, 

0.016 
-0.006, 

0.038 
-0.014, 

0.017 

O
ld
 0, 

0.01 
0.002, 

0.013 
-0.008, 

0.009 
-0.016, 

0.018 
0.005, 

0.019 
-0.027, 

0.031 
-0.024, 

0.031 
-0.045, 

0.045 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0.001, 

0.01 
0.001, 

0.011 
-0.001, 

0.008 
-0.002, 

0.017 
-0.005, 

0.015 
0.004, 

0.027 
-0.004, 

0.044 
0.001, 

0.032 

A
ve

ra
ge
 

0, 

0.01 
-0.001, 

0.011 
-0.001, 

0.008 
0, 

0.016 
-0.001, 

0.014 
0.004, 

0.032 
0.002, 

0.044 
-0.03, 

0.042 

O
ld
 

0.001, 

0.011 
-0.001, 

0.01 
-0.002, 

0.019 
0, 

0.018 
0.01, 

0.021 
-0.025, 

0.057 
0, 

0.033 
0, 

0.033 
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Log-logistic distributed data 

Table 85:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for log-

logistic distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 1 5 8 0 5 1 1 21 

Internal additive 3 15 6 6 2 1 0 33 

External additive 3 0 0 0 0 0 0 3 

Converging 3 5 4 0 2 1 0 15 

Tota l 10 25 18 6 9 3 1 
 

Table 86:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for log-logistic 

distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    

Surv iva l (Log- logistic) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0, 

0.004 
-0.005, 

0.012 
-0.006, 

0.008 
0, 

0.014 
-0.001, 

0.035 
-0.014, 

0.014 
-0.014, 

0.016 
-0.015, 

0.018 

M
ed

iu
m

 

-0.001, 

0.004 
-0.005, 

0.02 
-0.005, 

0.011 
-0.002, 

0.014 
0.001, 

0.034 
-0.014, 

0.014 
-0.007, 

0.013 
-0.004, 

0.016 

H
ig

h
 

0, 

0.008 
0.007, 

0.028 
0, 

0.009 
0, 

0.018 
-0.004, 

0.037 
0, 

0.01 
-0.01, 

0.016 
-0.006, 

0.032 

A
ve

ra
ge

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.001, 

0.005 
-0.008, 

0.015 
-0.005, 

0.007 
-0.003, 

0.02 
-0.025, 

0.037 
-0.014, 

0.014 
-0.009, 

0.013 
-0.004, 

0.014 

M
ed

iu
m

 

-0.001, 

0.005 
-0.009, 

0.016 
-0.004, 

0.01 
-0.003, 

0.013 
-0.028, 

0.039 
-0.013, 

0.014 
-0.003, 

0.012 
0.002, 

0.016 

H
ig

h
 

0, 

0.009 
0.003, 

0.031 
0, 

0.01 
0.002, 

0.018 
0, 

0.033 
0, 

0.01 
-0.005, 

0.015 
0.041, 

0.051 

O
ld

 

H
et

er
og

en
ei

ty
 

L
o
w

 

-0.008, 

0.009 
-0.027, 

0.031 
0.002, 

0.007 
0.002, 

0.02 
-0.024, 

0.035 
-0.003, 

0.006 
0.016, 

0.018 
0, 

0.026 

M
ed

iu
m

 

-0.008, 

0.01 
-0.026, 

0.03 
0.001, 

0.008 
0.01, 

0.022 
-0.018, 

0.033 
-0.001, 

0.011 
-0.002, 

0.018 
0.001, 

0.027 

H
ig

h
 

-0.002, 

0.019 
-0.027, 

0.058 
0, 

0.01 
-0.006, 

0.023 
0.002, 

0.036 
-0.003, 

0.01 
0.007, 

0.019 
-0.02, 

0.036 
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Table 87:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for log-logistic 

distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    
In form ation 

    Low Medium High 
    

Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic) 
    Medium Low High Medium Low High Medium Low 

H
e

te
r
o

g
e

n
e

it
y
 

L
o
w
 

A
ge
 

Y
o
u
n
g  

-0.006, 

0.008 
-0.014, 

0.014 
0, 

0.004 
0, 

0.014 
-0.014, 

0.016 
-0.005, 

0.012 
-0.001, 

0.035 
-0.015, 

0.018 

A
ve

ra
ge
 

-0.005, 

0.007 
-0.014, 

0.014 
-0.001, 

0.005 
-0.003, 

0.02 
-0.009, 

0.013 
-0.008, 

0.015 
-0.025, 

0.037 
-0.004, 

0.014 

O
ld
 0.002, 

0.007 
-0.003, 

0.006 
-0.008, 

0.009 
0.002, 

0.02 
0.016, 

0.018 
-0.027, 

0.031 
-0.024, 

0.035 
0, 

0.026 

M
e
d
iu

m
 

A
ge
 

Y
o
u
n
g  

-0.005, 

0.011 
-0.014, 

0.014 
-0.001, 

0.004 
-0.002, 

0.014 
-0.007, 

0.013 
-0.005, 

0.02 
0.001, 

0.034 
-0.004, 

0.016 

A
ve

ra
ge
 

-0.004, 

0.01 
-0.013, 

0.014 
-0.001, 

0.005 
-0.003, 

0.013 
-0.003, 

0.012 
-0.009, 

0.016 
-0.028, 

0.039 
0.002, 

0.016 

O
ld
 0.001, 

0.008 
-0.001, 

0.011 
-0.008, 

0.01 
0.01, 

0.022 
-0.002, 

0.018 
-0.026, 

0.03 
-0.018, 

0.033 
0.001, 

0.027 

H
ig

h
 

A
ge
 

Y
o
u
n
g  

0, 

0.009 
0, 

0.01 
0, 

0.008 
0, 

0.018 
-0.01, 

0.016 
0.007, 

0.028 
-0.004, 

0.037 
-0.006, 

0.032 

A
ve

ra
ge
 

0, 

0.01 
0, 

0.01 
0, 

0.009 
0.002, 

0.018 
-0.005, 

0.015 
0.003, 

0.031 
0, 

0.033 
0.041, 

0.051 

O
ld
 

0, 

0.01 
-0.003, 

0.01 
-0.002, 

0.019 
-0.006, 

0.023 
0.007, 

0.019 
-0.027, 

0.058 
0.002, 

0.036 
-0.02, 

0.036 
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Lognormal distributed data 

Table 88:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for 

lognormal distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 6 5 0 5 2 0 20 

Internal additive 2 15 9 4 4 3 0 37 

External additive 2 4 0 0 0 0 0 6 

Converging 0 4 5 0 0 0 0 9 

Tota l 6 29 19 4 9 5 0 
 

Table 89:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for lognormal 

distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    

Surv iva l (Lognorm al) 

    

High Medium Low 

    

Information Information Information 

    

Medium High Low Medium High Low Medium High 

A
g
e

 

Y
o
u
n
g 

H
et

er
og

en
ei

ty
 

L
o
w

 

0, 

0.004 
0.003, 
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Table 90:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for lognormal 

distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    
In form ation 

    Low Medium High 
    

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal) 
    Medium Low High Medium Low High Medium Low 
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-0.014, 

0.016 

O
ld
 0.002, 

0.007 
-0.002, 

0.006 
-0.007, 

0.009 
-0.001, 

0.014 
0.009, 

0.014 
-0.026, 

0.03 
-0.009, 
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0.004, 

0.019 
-0.002, 
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-0.003, 

0.043 
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Gompertz distributed data 

Table 91:  

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for 

Gompertz distributed data. Amount of times the model ranked best  

 Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Tota l 
Non-GPM 2 2 6 1 8 0 0 19 

Internal additive 5 9 5 5 3 4 2 33 

External additive 2 2 2 1 0 0 0 7 

Converging 5 4 1 1 1 1 0 13 

Tota l 14 17 14 8 12 5 2 
 

Table 92:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for Gompertz 

distributed data. Survival and ages as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  
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Table 93:  

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for Gompertz 

distributed data. Information and heterogeneity as main axes. (Bias, RMSE), ▲ = Significant result (Wilcoxon)  

    
In form ation 
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Appendix C: Raw results of bias of overall extrapolated mean survival per scenario per method and distribution 

Table 94:  

Mean bias of overall mean survival – Non-GPM models 

Scenario characteristics  Distribution for extrapolation 

Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Average High High High Gompertz 4.76 1.01 3.17 5.58 7.22 7.41 4.15 NA 

Average High High High Log-logistic 5.84 1.91 4.51 6.53 8.20 8.81 5.11 NA 

Average High High High Lognormal 6.34 2.29 5.18 7.00 8.62 9.48 5.47 NA 

Average High High High Weibull 5.37 1.50 3.94 6.14 7.81 8.22 4.63 NA 

Average High High Medium Gompertz 4.91 -1.76 0.89 5.29 9.80 10.31 NA NA 

Average High High Medium Log-logistic 6.00 -1.34 2.46 6.22 10.54 12.09 NA NA 

Average High High Medium Lognormal 6.64 -1.32 3.31 6.70 10.76 13.77 NA NA 

Average High High Medium Weibull 6.00 -1.50 2.01 6.00 10.39 11.75 7.36 NA 

Average High Low High Gompertz 7.47 9.46 7.16 9.12 11.81 1.38 5.91 NA 

Average High Low High Log-logistic 6.29 8.48 5.76 7.95 10.71 0.06 4.80 NA 

Average High Low High Lognormal 5.84 7.48 4.77 7.07 9.65 0.57 5.52 NA 

Average High Low High Weibull 6.65 8.64 6.16 8.29 11.01 0.72 5.08 NA 

Average High Low Medium Gompertz 10.21 11.84 NA 10.36 15.31 3.33 NA NA 

Average High Low Medium Log-logistic 8.78 11.41 NA 8.82 14.25 0.64 NA NA 

Average High Low Medium Lognormal 5.98 10.26 NA 5.68 11.93 -3.95 NA NA 

Average High Low Medium Weibull 9.04 11.23 NA 9.07 14.37 1.50 NA NA 

Average High Medium High Gompertz 6.79 8.74 6.45 8.63 11.40 0.80 4.71 NA 

Average High Medium High Log-logistic 5.73 7.49 5.05 7.36 10.05 0.27 4.17 NA 

Average High Medium High Lognormal 5.60 6.64 4.44 6.75 9.22 1.21 5.27 5.68 

Average High Medium High Weibull 5.97 7.69 5.36 7.64 10.32 0.56 4.26 NA 

Average High Medium Medium Gompertz 10.06 11.25 NA 10.39 15.46 3.14 NA NA 

Average High Medium Medium Log-logistic 7.92 10.22 NA 8.02 13.63 -0.18 NA NA 

Average High Medium Medium Lognormal 5.43 8.75 NA 5.30 11.47 -3.79 NA NA 

Average High Medium Medium Weibull 8.69 10.32 NA 8.73 14.15 1.56 NA NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Average Low High High Gompertz 1.03 -1.53 -0.09 1.68 1.57 3.58 0.92 1.07 

Average Low High High Log-logistic 0.90 -1.55 -0.30 1.33 1.14 3.70 0.94 1.04 

Average Low High High Lognormal 0.89 -1.55 -0.32 1.30 1.11 3.69 0.94 1.03 

Average Low High High Weibull 0.97 -1.54 -0.21 1.50 1.34 3.72 0.92 1.05 

Average Low High Low Gompertz 3.42 -3.71 -2.04 1.92 2.70 18.24 NA NA 

Average Low High Low Log-logistic 2.75 -3.77 -2.59 1.05 1.68 17.38 NA NA 

Average Low High Low Lognormal 2.60 -3.74 -2.65 0.91 1.50 16.96 NA NA 

Average Low High Low Weibull 2.92 -3.79 -2.42 1.39 2.14 17.70 2.52 NA 

Average Low High Medium Gompertz 1.97 -2.94 -1.15 1.95 2.08 10.74 1.15 NA 

Average Low High Medium Log-logistic 1.75 -2.95 -1.52 1.44 1.41 10.77 1.35 NA 

Average Low High Medium Lognormal 1.74 -2.96 -1.55 1.40 1.37 10.80 1.39 NA 

Average Low High Medium Weibull 1.86 -2.96 -1.39 1.66 1.71 10.88 1.24 NA 

Average Low Low High Gompertz 0.14 -0.04 -0.05 0.74 0.46 -0.05 -0.05 -0.05 

Average Low Low High Log-logistic -0.08 -0.12 -0.12 -0.01 -0.08 -0.11 -0.11 -0.02 

Average Low Low High Lognormal -0.04 -0.06 -0.06 0.06 -0.04 -0.07 -0.05 NA 

Average Low Low High Weibull 0.06 -0.04 -0.05 0.44 0.22 -0.05 -0.05 -0.05 

Average Low Low Low Gompertz 2.42 0.26 0.28 3.00 4.29 4.86 1.85 NA 

Average Low Low Low Log-logistic 0.05 0.59 -0.66 0.10 0.45 -0.91 0.75 NA 

Average Low Low Low Lognormal -0.16 0.65 -0.65 -0.05 0.12 -0.85 NA NA 

Average Low Low Low Weibull 1.46 0.78 0.06 2.03 3.17 0.57 2.16 NA 

Average Low Low Medium Gompertz 0.44 0.08 0.03 1.32 1.26 -0.02 0.00 NA 

Average Low Low Medium Log-logistic -0.22 -0.18 -0.37 0.01 -0.11 -0.41 -0.26 NA 

Average Low Low Medium Lognormal -0.09 -0.05 -0.25 0.11 -0.02 -0.29 -0.02 NA 

Average Low Low Medium Weibull 0.22 0.13 -0.05 0.77 0.65 -0.13 -0.04 NA 

Average Low Medium High Gompertz 0.15 -0.07 -0.06 0.80 0.53 -0.04 -0.06 -0.04 

Average Low Medium High Log-logistic -0.07 -0.16 -0.17 0.08 -0.05 -0.09 -0.10 -0.01 

Average Low Medium High Lognormal -0.03 -0.10 -0.11 0.13 -0.02 -0.07 -0.04 NA 

Average Low Medium High Weibull 0.07 -0.06 -0.07 0.50 0.27 -0.06 -0.06 -0.04 

Average Low Medium Low Gompertz 2.19 -0.14 -0.04 2.62 3.73 5.34 1.62 NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Average Low Medium Low Log-logistic -0.28 0.06 -0.86 0.08 0.35 -1.07 NA NA 

Average Low Medium Low Lognormal -0.32 0.15 -0.84 -0.02 0.13 -1.02 NA NA 

Average Low Medium Low Weibull 1.05 0.24 -0.30 1.60 2.50 0.58 1.67 NA 

Average Low Medium Medium Gompertz 0.41 -0.14 -0.12 1.32 1.26 0.19 -0.07 NA 

Average Low Medium Medium Log-logistic -0.23 -0.30 -0.47 0.13 -0.05 -0.49 -0.21 NA 

Average Low Medium Medium Lognormal -0.13 -0.21 -0.39 0.20 0.00 -0.40 0.01 NA 

Average Low Medium Medium Weibull 0.16 -0.06 -0.19 0.84 0.70 -0.23 -0.09 NA 

Average Medium High High Gompertz 2.36 -2.76 0.85 3.03 3.37 6.88 2.45 2.70 

Average Medium High High Log-logistic 2.36 -2.86 1.03 3.12 3.42 6.83 2.63 NA 

Average Medium High High Lognormal 2.31 -2.83 0.89 2.92 3.12 6.64 2.66 2.78 

Average Medium High High Weibull 2.52 -2.70 1.28 3.49 3.92 6.76 2.39 NA 

Average Medium High Low Gompertz 3.76 -7.27 -3.12 2.30 5.15 20.51 4.98 NA 

Average Medium High Low Log-logistic 3.76 -7.37 -3.00 2.34 4.89 20.95 4.75 NA 

Average Medium High Low Lognormal 3.43 -7.24 -3.49 1.74 3.93 20.55 5.11 NA 

Average Medium High Low Weibull 4.72 -7.10 -1.61 3.82 6.64 21.98 4.57 NA 

Average Medium High Medium Gompertz 3.19 -5.72 -1.15 3.15 4.46 15.31 3.09 NA 

Average Medium High Medium Log-logistic 3.27 -5.81 -0.90 3.26 4.43 15.19 3.42 NA 

Average Medium High Medium Lognormal 3.08 -5.69 -1.16 2.91 3.85 14.87 3.72 NA 

Average Medium High Medium Weibull 3.71 -5.56 -0.08 4.08 5.47 15.40 2.97 NA 

Average Medium Low High Gompertz 0.61 -0.74 -0.46 2.00 2.29 0.67 -0.09 NA 

Average Medium Low High Log-logistic 0.87 -1.50 -0.62 1.69 1.94 3.29 0.42 NA 

Average Medium Low High Lognormal 1.04 -1.54 -0.58 1.49 1.50 4.11 1.27 NA 

Average Medium Low High Weibull 1.89 -0.69 0.60 3.42 3.93 3.60 0.47 NA 

Average Medium Low Low Gompertz 4.91 -1.07 -0.09 4.94 10.04 10.72 NA NA 

Average Medium Low Low Log-logistic 2.98 -3.43 -2.32 2.51 6.55 9.46 5.11 NA 

Average Medium Low Low Lognormal -0.03 -3.81 -4.10 -0.23 2.29 5.71 NA NA 

Average Medium Low Low Weibull 7.63 -3.17 1.69 7.24 11.76 20.63 NA NA 

Average Medium Low Medium Gompertz 1.71 -1.31 -1.00 3.55 5.80 3.03 0.18 NA 

Average Medium Low Medium Log-logistic 1.06 -2.98 -2.17 2.04 3.59 6.14 -0.27 NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Average Medium Low Medium Lognormal 1.14 -3.21 -2.62 1.13 1.88 7.63 2.01 NA 

Average Medium Low Medium Weibull 4.64 -2.10 0.93 5.74 8.07 14.24 0.99 NA 

Average Medium Medium High Gompertz 0.78 -0.99 -0.47 2.01 2.30 1.68 0.14 NA 

Average Medium Medium High Log-logistic 1.03 -1.63 -0.53 1.79 2.04 3.91 0.62 NA 

Average Medium Medium High Lognormal 1.14 -1.67 -0.51 1.59 1.61 4.50 1.36 NA 

Average Medium Medium High Weibull 1.86 -0.97 0.50 3.26 3.77 4.09 0.55 NA 

Average Medium Medium Low Gompertz 3.92 -2.04 -0.99 4.00 8.76 9.86 NA NA 

Average Medium Medium Low Log-logistic 2.45 -3.94 -2.67 2.22 6.08 10.55 NA NA 

Average Medium Medium Low Lognormal 1.21 -4.22 -4.18 -0.14 2.40 7.46 5.93 NA 

Average Medium Medium Low Weibull 7.13 -3.66 1.07 6.63 10.95 20.65 NA NA 

Average Medium Medium Medium Gompertz 1.61 -1.95 -1.35 3.16 5.23 4.51 0.06 NA 

Average Medium Medium Medium Log-logistic 1.39 -3.29 -2.19 2.06 3.55 8.18 0.04 NA 

Average Medium Medium Medium Lognormal 1.40 -3.48 -2.63 1.22 1.99 9.25 2.08 NA 

Average Medium Medium Medium Weibull 4.31 -2.52 0.51 5.26 7.48 14.29 0.87 NA 

Old High High High Gompertz 0.46 0.07 0.15 1.05 1.28 0.18 0.05 NA 

Old High High High Log-logistic 0.48 0.10 0.19 1.07 1.32 0.19 0.01 NA 

Old High High High Lognormal 0.51 0.12 0.22 1.10 1.36 0.23 0.00 NA 

Old High High High Weibull 0.48 0.09 0.18 1.07 1.31 0.19 0.03 NA 

Old High High Medium Gompertz 1.47 -0.13 0.23 2.24 3.66 1.90 0.90 NA 

Old High High Medium Log-logistic 1.71 -0.10 0.36 2.30 3.73 2.16 1.13 2.38 

Old High High Medium Lognormal 1.77 -0.11 0.50 2.39 3.81 2.63 1.39 NA 

Old High High Medium Weibull 1.62 -0.10 0.40 2.36 3.78 2.24 1.05 NA 

Old High Low High Gompertz 1.18 1.63 1.00 2.03 2.49 0.01 -0.10 NA 

Old High Low High Log-logistic 1.13 1.57 0.93 1.97 2.41 -0.03 -0.06 NA 

Old High Low High Lognormal 1.10 1.51 0.87 1.90 2.32 -0.03 0.03 NA 

Old High Low High Weibull 1.14 1.58 0.95 1.98 2.42 -0.01 -0.05 NA 

Old High Low Medium Gompertz 3.65 3.74 2.85 4.47 6.37 1.31 3.16 NA 

Old High Low Medium Log-logistic 3.48 3.72 2.64 4.32 6.25 0.94 3.00 NA 

Old High Low Medium Lognormal 3.16 3.59 2.25 4.03 6.00 0.39 2.72 NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Old High Low Medium Weibull 3.56 3.72 2.74 4.39 6.31 1.17 3.03 NA 

Old High Medium High Gompertz 0.85 1.11 0.63 1.63 2.05 -0.16 -0.18 NA 

Old High Medium High Log-logistic 0.80 1.05 0.56 1.55 1.96 -0.19 -0.14 NA 

Old High Medium High Lognormal 0.77 0.98 0.50 1.49 1.87 -0.18 -0.06 NA 

Old High Medium High Weibull 0.81 1.07 0.58 1.58 1.98 -0.18 -0.16 NA 

Old High Medium Medium Gompertz 2.96 2.80 2.10 3.83 5.69 1.01 2.32 NA 

Old High Medium Medium Log-logistic 2.75 2.75 1.84 3.62 5.50 0.61 2.17 NA 

Old High Medium Medium Lognormal 2.41 2.55 1.43 3.31 5.22 0.08 1.88 NA 

Old High Medium Medium Weibull 2.75 2.69 1.84 3.63 5.50 0.68 2.16 NA 

Old Low High High Gompertz 0.30 -0.36 0.06 0.77 0.66 0.45 0.19 NA 

Old Low High High Log-logistic 0.22 -0.36 -0.01 0.61 0.48 0.46 0.17 NA 

Old Low High High Lognormal 0.22 -0.35 -0.01 0.61 0.47 0.46 0.17 NA 

Old Low High High Weibull 0.24 -0.36 0.02 0.69 0.56 0.46 0.17 0.17 

Old Low High Low Gompertz 1.64 -1.77 -0.59 1.46 1.89 7.60 1.24 NA 

Old Low High Low Log-logistic 1.32 -1.76 -0.95 1.01 1.35 6.94 1.31 NA 

Old Low High Low Lognormal 1.37 -1.76 -0.93 1.03 1.38 7.03 1.43 NA 

Old Low High Low Weibull 1.53 -1.78 -0.78 1.25 1.67 7.41 1.38 NA 

Old Low High Medium Gompertz 0.92 -1.15 -0.15 1.23 1.31 3.70 0.59 NA 

Old Low High Medium Log-logistic 0.79 -1.14 -0.34 0.98 0.98 3.61 0.63 NA 

Old Low High Medium Lognormal 0.79 -1.13 -0.34 0.98 0.98 3.62 0.65 NA 

Old Low High Medium Weibull 0.86 -1.14 -0.25 1.11 1.15 3.71 0.62 NA 

Old Low Low High Gompertz 0.10 -0.04 -0.05 0.55 0.37 -0.05 -0.05 -0.05 

Old Low Low High Log-logistic -0.03 -0.06 -0.06 0.06 0.01 -0.06 -0.07 NA 

Old Low Low High Lognormal -0.02 -0.05 -0.05 0.08 0.01 -0.06 -0.05 NA 

Old Low Low High Weibull 0.05 -0.04 -0.05 0.37 0.21 -0.05 -0.05 -0.05 

Old Low Low Low Gompertz 1.37 0.22 0.22 1.98 2.77 1.99 1.05 NA 

Old Low Low Low Log-logistic 0.09 0.58 -0.45 0.31 0.70 -0.69 NA NA 

Old Low Low Low Lognormal -0.02 0.57 -0.50 0.12 0.40 -0.71 NA NA 

Old Low Low Low Weibull 1.00 0.67 0.08 1.57 2.38 0.17 1.11 NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Old Low Low Medium Gompertz 0.31 0.06 0.02 0.92 0.92 -0.03 -0.01 NA 

Old Low Low Medium Log-logistic -0.11 -0.09 -0.24 0.10 0.03 -0.27 -0.17 NA 

Old Low Low Medium Lognormal -0.05 -0.03 -0.19 0.14 0.06 -0.22 -0.07 NA 

Old Low Low Medium Weibull 0.18 0.10 -0.04 0.61 0.56 -0.11 -0.04 NA 

Old Low Medium High Gompertz 0.10 -0.05 -0.05 0.53 0.38 -0.04 -0.05 -0.04 

Old Low Medium High Log-logistic -0.02 -0.07 -0.08 0.12 0.04 -0.06 -0.06 -0.03 

Old Low Medium High Lognormal -0.02 -0.06 -0.06 0.12 0.03 -0.06 -0.05 -0.03 

Old Low Medium High Weibull 0.05 -0.05 -0.06 0.37 0.22 -0.05 -0.05 -0.05 

Old Low Medium Low Gompertz 1.12 -0.08 -0.02 1.70 2.38 2.00 0.73 NA 

Old Low Medium Low Log-logistic -0.06 0.17 -0.58 0.28 0.60 -0.77 NA NA 

Old Low Medium Low Lognormal 0.01 0.19 -0.61 0.17 0.41 -0.79 0.72 NA 

Old Low Medium Low Weibull 0.66 0.21 -0.21 1.20 1.82 0.11 0.82 NA 

Old Low Medium Medium Gompertz 0.26 -0.09 -0.08 0.87 0.87 0.03 -0.05 NA 

Old Low Medium Medium Log-logistic -0.10 -0.15 -0.29 0.19 0.10 -0.30 -0.13 NA 

Old Low Medium Medium Lognormal -0.06 -0.12 -0.26 0.20 0.11 -0.27 -0.04 NA 

Old Low Medium Medium Weibull 0.13 -0.04 -0.14 0.60 0.56 -0.17 -0.07 NA 

Old Medium High High Gompertz 0.43 -0.44 0.18 0.99 0.97 0.76 0.27 0.28 

Old Medium High High Log-logistic 0.45 -0.48 0.22 1.02 0.99 0.79 0.30 0.31 

Old Medium High High Lognormal 0.44 -0.47 0.21 0.98 0.92 0.79 0.34 0.34 

Old Medium High High Weibull 0.51 -0.45 0.29 1.16 1.17 0.80 0.28 0.30 

Old Medium High Low Gompertz 2.04 -2.69 -0.55 1.98 3.23 8.24 2.05 NA 

Old Medium High Low Log-logistic 2.15 -2.80 -0.47 2.01 3.10 8.78 2.28 NA 

Old Medium High Low Lognormal 1.99 -2.78 -0.63 1.83 2.81 8.70 NA NA 

Old Medium High Low Weibull 2.49 -2.74 0.15 2.61 3.85 9.13 1.94 NA 

Old Medium High Medium Gompertz 1.44 -1.68 0.09 1.83 2.30 5.04 1.05 NA 

Old Medium High Medium Log-logistic 1.49 -1.76 0.18 1.87 2.28 5.18 1.18 NA 

Old Medium High Medium Lognormal 1.43 -1.76 0.10 1.74 2.07 5.10 1.32 NA 

Old Medium High Medium Weibull 1.64 -1.71 0.47 2.17 2.69 5.26 0.93 NA 

Old Medium Low High Gompertz 0.38 0.06 0.07 0.99 1.00 0.07 0.07 NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Old Medium Low High Log-logistic 0.39 -0.04 0.10 0.93 0.94 0.34 0.19 0.24 

Old Medium Low High Lognormal 0.38 -0.07 0.09 0.81 0.76 0.46 0.32 0.32 

Old Medium Low High Weibull 0.59 0.05 0.28 1.32 1.36 0.38 0.13 NA 

Old Medium Low Low Gompertz 2.79 0.25 0.43 3.00 5.26 3.93 3.89 NA 

Old Medium Low Low Log-logistic 1.95 -0.80 -0.32 2.23 4.11 3.94 2.52 NA 

Old Medium Low Low Lognormal 0.86 -1.14 -1.47 0.80 2.12 1.96 2.91 NA 

Old Medium Low Low Weibull 3.59 -1.08 1.36 3.91 5.84 8.27 3.26 NA 

Old Medium Low Medium Gompertz 1.10 0.07 0.13 2.20 3.08 0.81 0.33 NA 

Old Medium Low Medium Log-logistic 0.90 -0.57 -0.21 1.71 2.36 1.72 0.39 NA 

Old Medium Low Medium Lognormal 0.82 -0.75 -0.48 1.29 1.65 2.11 1.12 NA 

Old Medium Low Medium Weibull 1.94 -0.42 0.85 2.84 3.71 4.13 0.52 NA 

Old Medium Medium High Gompertz 0.33 -0.05 0.02 0.91 0.92 0.12 0.05 NA 

Old Medium Medium High Log-logistic 0.35 -0.15 0.03 0.85 0.85 0.35 0.14 NA 

Old Medium Medium High Lognormal 0.33 -0.18 0.03 0.74 0.69 0.45 0.25 NA 

Old Medium Medium High Weibull 0.50 -0.07 0.19 1.21 1.24 0.37 0.09 NA 

Old Medium Medium Low Gompertz 2.20 -0.30 0.03 2.62 4.74 3.92 NA NA 

Old Medium Medium Low Log-logistic 1.72 -1.16 -0.59 1.96 3.70 4.14 2.26 NA 

Old Medium Medium Low Lognormal 0.98 -1.40 -1.43 0.89 2.17 2.89 2.76 NA 

Old Medium Medium Low Weibull 3.23 -1.30 0.99 3.58 5.44 7.96 2.71 NA 

Old Medium Medium Medium Gompertz 0.92 -0.28 -0.08 1.93 2.71 1.02 0.23 NA 

Old Medium Medium Medium Log-logistic 0.85 -0.77 -0.30 1.59 2.18 2.09 0.35 NA 

Old Medium Medium Medium Lognormal 0.83 -0.91 -0.51 1.25 1.59 2.55 1.03 NA 

Old Medium Medium Medium Weibull 1.73 -0.65 0.61 2.57 3.38 4.06 0.43 NA 

Young High High High Gompertz 6.42 -1.13 3.48 6.89 9.39 13.29 6.61 NA 

Young High High High Log-logistic 7.92 0.08 5.61 8.29 10.75 15.06 7.71 NA 

Young High High High Lognormal 9.17 0.69 6.91 9.16 11.46 16.07 NA 10.73 

Young High High High Weibull 7.63 -0.42 4.83 7.81 10.31 14.41 7.26 9.24 

Young High High Medium Gompertz 5.01 -5.87 -1.45 4.79 11.30 14.01 7.26 NA 

Young High High Medium Log-logistic 6.10 -5.67 0.99 6.18 12.34 16.64 NA NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Young High High Medium Lognormal 6.54 -5.95 1.84 6.52 12.31 17.99 NA NA 

Young High High Medium Weibull 5.64 -5.75 0.09 5.72 12.03 16.10 NA NA 

Young High Low High Gompertz 12.11 13.71 11.36 13.62 17.44 4.44 NA NA 

Young High Low High Log-logistic 8.84 11.08 7.59 10.40 14.51 0.60 NA NA 

Young High Low High Lognormal 7.69 8.90 5.43 8.48 12.36 1.35 9.58 NA 

Young High Low High Weibull 9.69 11.49 8.64 11.27 15.26 2.23 9.28 NA 

Young High Low Medium Gompertz 13.09 15.60 NA 12.59 19.46 4.71 NA NA 

Young High Low Medium Log-logistic 9.22 13.94 NA 8.30 16.35 -1.70 NA NA 

Young High Low Medium Lognormal 3.86 11.32 NA 2.21 11.72 -9.80 NA NA 

Young High Low Medium Weibull 10.38 13.92 NA 9.71 17.32 0.57 NA NA 

Young High Medium High Gompertz 10.66 12.89 9.99 12.75 16.91 2.16 9.25 NA 

Young High Medium High Log-logistic 8.07 9.82 6.62 9.63 13.75 0.53 NA NA 

Young High Medium High Lognormal 7.63 7.92 5.27 8.31 12.05 2.83 9.37 NA 

Young High Medium High Weibull 8.63 10.43 7.44 10.40 14.51 1.20 7.79 NA 

Young High Medium Medium Gompertz 5.49 NA NA NA NA 5.49 NA NA 

Young High Medium Medium Log-logistic 8.28 12.40 NA 7.58 15.93 -2.78 NA NA 

Young High Medium Medium Lognormal -8.81 NA NA NA NA -8.81 NA NA 

Young High Medium Medium Weibull 9.80 12.92 NA 9.26 17.19 -0.20 NA NA 

Young Low High High Gompertz 1.19 -2.36 -0.59 1.86 1.68 5.50 0.96 1.28 

Young Low High High Log-logistic 0.99 -2.40 -0.90 1.36 1.08 5.63 0.97 1.19 

Young Low High High Lognormal 1.01 -2.38 -0.89 1.38 1.09 5.68 1.00 1.20 

Young Low High High Weibull 1.11 -2.38 -0.76 1.62 1.39 5.69 0.97 1.23 

Young Low High Low Gompertz 4.03 -4.68 -2.95 1.91 2.82 24.40 2.66 NA 

Young Low High Low Log-logistic 3.42 -4.72 -3.53 0.80 1.46 23.26 3.23 NA 

Young Low High Low Lognormal 3.44 -4.71 -3.53 0.78 1.43 23.28 3.40 NA 

Young Low High Low Weibull 3.77 -4.78 -3.33 1.32 2.18 24.13 3.11 NA 

Young Low High Medium Gompertz 2.42 -3.86 -1.91 2.08 2.18 14.90 1.15 NA 

Young Low High Medium Log-logistic 2.10 -3.91 -2.38 1.36 1.26 14.90 1.34 NA 

Young Low High Medium Lognormal 2.12 -3.88 -2.37 1.37 1.25 14.94 1.43 NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Young Low High Medium Weibull 2.27 -3.90 -2.19 1.72 1.74 15.07 1.17 NA 

Young Low Low High Gompertz 0.15 -0.04 -0.05 0.79 0.48 -0.05 -0.05 -0.05 

Young Low Low High Log-logistic -0.11 -0.14 -0.15 -0.02 -0.10 -0.13 -0.13 NA 

Young Low Low High Lognormal -0.04 -0.06 -0.06 0.07 -0.04 -0.07 -0.05 NA 

Young Low Low High Weibull 0.08 -0.04 -0.05 0.46 0.22 -0.05 -0.05 NA 

Young Low Low Low Gompertz 3.03 0.26 0.31 3.40 4.86 6.93 2.44 NA 

Young Low Low Low Log-logistic 0.12 0.60 -0.68 0.11 0.43 -0.92 1.17 NA 

Young Low Low Low Lognormal 0.25 0.65 -0.68 -0.09 0.05 -0.88 2.41 NA 

Young Low Low Low Weibull 1.62 0.79 0.04 2.17 3.40 0.80 2.51 NA 

Young Low Low Medium Gompertz 0.48 0.08 0.03 1.44 1.33 -0.01 0.00 NA 

Young Low Low Medium Log-logistic -0.25 -0.21 -0.40 -0.01 -0.14 -0.44 -0.28 NA 

Young Low Low Medium Lognormal -0.09 -0.06 -0.26 0.11 -0.04 -0.30 -0.02 NA 

Young Low Low Medium Weibull 0.24 0.13 -0.05 0.82 0.68 -0.13 -0.04 NA 

Young Low Medium High Gompertz 0.17 -0.07 -0.06 0.89 0.57 -0.03 -0.06 -0.03 

Young Low Medium High Log-logistic -0.09 -0.20 -0.20 0.07 -0.09 -0.10 -0.13 -0.02 

Young Low Medium High Lognormal -0.04 -0.12 -0.12 0.14 -0.04 -0.08 -0.04 NA 

Young Low Medium High Weibull 0.07 -0.06 -0.07 0.54 0.27 -0.06 -0.06 -0.04 

Young Low Medium Low Gompertz 2.61 -0.16 -0.07 2.90 4.14 7.05 1.80 NA 

Young Low Medium Low Log-logistic -0.04 0.02 -0.92 0.04 0.31 -1.10 1.43 NA 

Young Low Medium Low Lognormal -0.36 0.12 -0.88 -0.06 0.08 -1.06 NA NA 

Young Low Medium Low Weibull 1.27 0.23 -0.31 1.78 2.76 1.10 2.08 NA 

Young Low Medium Medium Gompertz 0.46 -0.15 -0.12 1.48 1.35 0.28 -0.07 NA 

Young Low Medium Medium Log-logistic -0.28 -0.36 -0.53 0.10 -0.10 -0.55 -0.25 NA 

Young Low Medium Medium Lognormal -0.14 -0.23 -0.41 0.20 -0.03 -0.43 0.03 NA 

Young Low Medium Medium Weibull 0.17 -0.07 -0.20 0.90 0.72 -0.24 -0.09 NA 

Young Medium High High Gompertz 2.56 -5.07 0.05 3.29 3.80 10.38 2.88 NA 

Young Medium High High Log-logistic 2.65 -5.18 0.33 3.43 3.89 10.24 3.16 NA 

Young Medium High High Lognormal 2.52 -5.06 0.18 3.20 3.52 9.99 3.31 NA 

Young Medium High High Weibull 2.94 -4.82 0.76 4.03 4.66 10.19 2.82 NA 
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Age Survival Heterogeneity Information Distribution 

Mean of 

method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F 

Young Medium High Low Gompertz 3.73 -10.07 -5.41 1.59 5.35 27.21 NA NA 

Young Medium High Low Log-logistic 4.11 -10.08 -5.25 1.73 5.06 27.90 5.33 NA 

Young Medium High Low Lognormal 3.78 -9.84 -5.70 1.02 3.80 27.40 6.02 NA 

Young Medium High Low Weibull 5.36 -9.65 -3.47 3.68 7.36 28.87 NA NA 

Young Medium High Medium Gompertz 3.32 -8.37 -3.05 2.83 4.56 20.78 3.16 NA 

Young Medium High Medium Log-logistic 3.42 -8.47 -2.69 3.05 4.60 20.52 3.51 NA 

Young Medium High Medium Lognormal 3.25 -8.28 -2.97 2.65 3.89 20.18 4.06 NA 

Young Medium High Medium Weibull 4.15 -7.99 -1.50 4.28 6.15 20.98 2.98 NA 

Young Medium Low High Gompertz 0.40 -1.48 -1.11 2.15 2.50 0.91 -0.57 NA 

Young Medium Low High Log-logistic 0.72 -2.71 -1.59 1.59 1.88 5.21 -0.04 NA 

Young Medium Low High Lognormal 1.17 -2.68 -1.46 1.45 1.39 6.49 1.33 1.68 

Young Medium Low High Weibull 2.51 -1.22 0.44 4.36 5.09 5.96 0.41 NA 

Young Medium Low Low Gompertz 5.87 -1.92 -0.67 5.59 12.14 14.21 NA NA 

Young Medium Low Low Log-logistic 3.05 -4.78 -3.51 2.43 7.49 13.61 NA NA 

Young Medium Low Low Lognormal 0.99 -5.21 -5.55 -1.09 1.89 7.56 8.35 NA 

Young Medium Low Low Weibull 10.09 -3.88 1.82 9.07 15.06 28.43 10.04 NA 

Young Medium Low Medium Gompertz 1.79 -2.17 -1.78 3.91 6.80 4.37 -0.39 NA 

Young Medium Low Medium Log-logistic 0.90 -4.34 -3.45 1.81 3.74 8.72 -1.08 NA 

Young Medium Low Medium Lognormal 1.21 -4.52 -3.86 0.76 1.61 11.15 2.15 NA 

Young Medium Low Medium Weibull 6.14 -2.78 0.66 7.10 10.20 20.48 1.17 NA 

Young Medium Medium High Gompertz 0.69 -1.89 -1.19 2.16 2.54 2.79 -0.28 NA 

Young Medium Medium High Log-logistic 1.03 -2.91 -1.47 1.79 2.09 6.32 0.34 NA 

Young Medium Medium High Lognormal 1.33 -2.89 -1.41 1.57 1.56 7.12 1.49 1.85 

Young Medium Medium High Weibull 2.44 -1.68 0.22 4.10 4.81 6.74 0.46 NA 

Young Medium Medium Low Gompertz 5.05 -3.11 -1.61 4.67 10.88 14.43 NA NA 

Young Medium Medium Low Log-logistic 2.71 -5.44 -4.05 1.93 6.79 14.32 NA NA 

Young Medium Medium Low Lognormal 0.07 -5.69 -5.60 -0.87 2.10 10.40 NA NA 

Young Medium Medium Low Weibull 9.33 -4.66 0.82 8.07 13.76 28.66 NA NA 

Young Medium Medium Medium Gompertz 1.71 -3.00 -2.32 3.35 5.98 6.62 -0.38 NA 

Young Medium Medium Medium Log-logistic 1.40 -4.77 -3.57 1.80 3.64 11.87 -0.58 NA 

Young Medium Medium Medium Lognormal 1.56 -4.86 -3.91 0.89 1.79 13.25 2.21 NA 

Young Medium Medium Medium Weibull 5.63 -3.45 0.05 6.41 9.31 20.49 0.95 NA 
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Table 95:  

Mean bias of overall mean survival – internal additive hazards models 

Scenario characteristics Distribution used for extrapolation  

Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Average High High High Gompertz 11.72 4.23 7.39 9.23 10.90 19.63 18.97 NA 

Average High High High Log-logistic 14.13 5.84 9.51 10.85 12.42 18.55 27.60 NA 

Average High High High Lognormal 14.41 6.55 10.53 11.65 13.07 16.99 27.69 NA 

Average High High High Weibull 13.53 5.14 8.65 10.19 11.82 20.40 24.98 NA 

Average High High Medium Gompertz 13.56 -0.28 2.72 6.85 11.21 30.41 30.41 NA 

Average High High Medium Log-logistic 13.90 0.48 4.69 8.76 12.18 28.65 28.65 NA 

Average High High Medium Lognormal 14.04 0.60 5.67 9.77 12.48 27.85 27.85 NA 

Average High High Medium Weibull 13.84 0.16 4.08 7.97 11.95 29.44 29.44 NA 

Average High Low High Gompertz 19.48 15.24 13.29 25.58 16.28 20.77 25.75 NA 

Average High Low High Log-logistic 18.61 14.03 11.55 25.04 14.99 20.30 25.73 NA 

Average High Low High Lognormal 17.94 12.75 10.39 22.98 13.98 21.77 25.73 NA 

Average High Low High Weibull 18.82 14.20 12.02 25.24 15.31 20.35 25.80 NA 

Average High Low Medium Gompertz 23.38 16.30 NA 25.74 NA 25.75 25.75 NA 

Average High Low Medium Log-logistic 23.24 15.81 NA 25.71 NA 25.73 25.73 NA 

Average High Low Medium Lognormal 22.91 14.49 NA 25.69 NA 25.74 25.74 NA 

Average High Low Medium Weibull 23.25 15.59 NA 25.78 NA 25.81 25.81 NA 

Average High Medium High Gompertz 19.09 14.65 12.63 25.28 15.91 19.52 26.56 NA 

Average High Medium High Log-logistic 18.00 13.23 11.06 23.26 14.58 19.81 26.06 NA 

Average High Medium High Lognormal 17.38 12.12 10.34 20.69 13.83 21.41 25.91 NA 

Average High Medium High Weibull 18.13 13.41 11.40 23.44 14.89 19.42 26.22 NA 

Average High Medium Medium Gompertz 23.77 15.48 NA 26.51 NA 26.54 26.54 NA 

Average High Medium Medium Log-logistic 23.07 14.38 NA 25.91 NA 26.01 26.01 NA 

Average High Medium Medium Lognormal 20.50 12.68 NA 25.68 12.32 25.90 25.90 NA 

Average High Medium Medium Weibull 21.56 14.47 NA 26.13 14.79 26.21 26.21 NA 

Average Low High High Gompertz 1.54 -1.44 0.23 2.05 2.01 4.70 1.48 1.73 

Average Low High High Log-logistic 1.41 -1.45 0.01 1.69 1.56 4.79 1.52 1.71 
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Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Average Low High High Lognormal 1.38 -1.44 -0.02 1.66 1.52 4.77 1.51 1.68 

Average Low High High Weibull 1.47 -1.44 0.10 1.87 1.78 4.80 1.49 1.71 

Average Low High Low Gompertz 3.36 -3.70 -1.99 2.00 2.81 18.44 2.62 NA 

Average Low High Low Log-logistic 2.87 -3.76 -2.55 1.13 1.79 17.59 3.02 NA 

Average Low High Low Lognormal 2.69 -3.73 -2.61 0.99 1.60 17.18 NA NA 

Average Low High Low Weibull 3.03 -3.78 -2.37 1.47 2.25 17.90 2.70 NA 

Average Low High Medium Gompertz 2.15 -2.91 -1.05 2.10 2.26 11.12 1.39 NA 

Average Low High Medium Log-logistic 1.93 -2.92 -1.43 1.58 1.58 11.16 1.61 NA 

Average Low High Medium Lognormal 1.93 -2.93 -1.45 1.55 1.54 11.20 1.66 NA 

Average Low High Medium Weibull 2.04 -2.93 -1.29 1.81 1.89 11.28 1.49 NA 

Average Low Low High Gompertz 0.18 -0.02 -0.03 0.77 0.41 -0.03 -0.03 NA 

Average Low Low High Log-logistic -0.07 -0.10 -0.10 0.01 -0.07 -0.09 -0.08 NA 

Average Low Low High Lognormal -0.02 -0.04 -0.05 0.08 -0.02 -0.05 -0.02 NA 

Average Low Low High Weibull 0.07 -0.02 -0.04 0.45 0.19 -0.04 -0.04 -0.03 

Average Low Low Low Gompertz 2.59 0.29 0.31 3.05 4.33 4.97 NA NA 

Average Low Low Low Log-logistic -0.08 0.62 -0.66 0.09 0.36 -0.81 NA NA 

Average Low Low Low Lognormal -0.15 0.69 -0.65 -0.05 0.08 -0.81 NA NA 

Average Low Low Low Weibull 1.37 0.82 0.07 2.06 3.13 0.76 NA NA 

Average Low Low Medium Gompertz 0.45 0.10 0.05 1.36 1.19 0.00 0.02 NA 

Average Low Low Medium Log-logistic -0.21 -0.17 -0.36 0.02 -0.12 -0.40 -0.23 NA 

Average Low Low Medium Lognormal -0.07 -0.03 -0.24 0.13 -0.02 -0.28 0.01 NA 

Average Low Low Medium Weibull 0.23 0.15 -0.03 0.79 0.59 -0.11 -0.02 NA 

Average Low Medium High Gompertz 0.18 -0.04 -0.03 0.86 0.52 0.00 -0.02 0.00 

Average Low Medium High Log-logistic -0.04 -0.13 -0.14 0.11 -0.03 -0.05 -0.05 0.04 

Average Low Medium High Lognormal 0.00 -0.07 -0.08 0.17 0.01 -0.03 0.01 NA 

Average Low Medium High Weibull 0.10 -0.03 -0.04 0.54 0.26 -0.03 -0.03 -0.01 

Average Low Medium Low Gompertz 2.35 -0.12 -0.02 2.67 3.77 5.46 NA NA 

Average Low Medium Low Log-logistic -0.28 0.09 -0.85 0.09 0.32 -1.06 NA NA 

Average Low Medium Low Lognormal -0.31 0.18 -0.83 -0.02 0.11 -1.01 NA NA 
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Average Low Medium Low Weibull 0.95 0.27 -0.29 1.63 2.48 0.64 NA NA 

Average Low Medium Medium Gompertz 0.43 -0.12 -0.10 1.37 1.22 0.24 -0.04 NA 

Average Low Medium Medium Log-logistic -0.21 -0.28 -0.46 0.15 -0.04 -0.47 -0.17 NA 

Average Low Medium Medium Lognormal -0.11 -0.19 -0.37 0.22 0.01 -0.39 0.07 NA 

Average Low Medium Medium Weibull 0.18 -0.04 -0.17 0.87 0.67 -0.21 -0.06 NA 

Average Medium High High Gompertz 3.72 -2.32 2.00 4.13 4.62 8.98 4.06 4.55 

Average Medium High High Log-logistic 3.76 -2.45 2.16 4.19 4.64 8.94 4.23 4.64 

Average Medium High High Lognormal 3.57 -2.46 1.94 3.92 4.26 8.68 4.20 4.45 

Average Medium High High Weibull 3.78 -2.30 2.42 4.59 5.19 8.83 3.95 NA 

Average Medium High Low Gompertz 3.80 -7.22 -2.91 2.53 5.43 21.16 NA NA 

Average Medium High Low Log-logistic 4.02 -7.33 -2.81 2.55 5.15 21.31 5.25 NA 

Average Medium High Low Lognormal 3.28 -7.20 -3.33 1.93 4.16 20.86 NA NA 

Average Medium High Low Weibull 4.97 -7.06 -1.39 4.05 6.92 22.36 NA NA 

Average Medium High Medium Gompertz 3.65 -5.60 -0.74 3.56 4.95 15.98 3.77 NA 

Average Medium High Medium Log-logistic 3.71 -5.72 -0.50 3.66 4.90 15.82 4.10 NA 

Average Medium High Medium Lognormal 3.77 -5.60 -0.81 3.27 4.27 15.48 4.36 5.43 

Average Medium High Medium Weibull 4.17 -5.46 0.35 4.49 5.96 16.03 3.65 NA 

Average Medium Low High Gompertz 1.16 -0.40 -0.03 2.57 2.82 1.51 0.47 NA 

Average Medium Low High Log-logistic 1.52 -1.21 -0.13 2.27 2.55 4.52 1.15 NA 

Average Medium Low High Lognormal 1.80 -1.28 -0.12 2.02 2.11 5.36 2.10 2.38 

Average Medium Low High Weibull 2.66 -0.36 1.24 4.17 4.74 4.94 1.21 NA 

Average Medium Low Low Gompertz 10.64 -0.83 0.20 5.34 10.42 38.08 NA NA 

Average Medium Low Low Log-logistic 5.65 -3.31 -2.14 2.72 6.84 24.15 NA NA 

Average Medium Low Low Lognormal 1.70 -3.73 -4.02 -0.11 2.48 13.90 NA NA 

Average Medium Low Low Weibull 9.63 -3.06 2.05 7.58 12.18 29.38 NA NA 

Average Medium Low Medium Gompertz 2.10 -1.09 -0.73 3.91 6.10 3.67 0.71 NA 

Average Medium Low Medium Log-logistic 1.43 -2.83 -1.95 2.35 3.90 6.88 0.20 NA 

Average Medium Low Medium Lognormal 1.27 -3.09 -2.46 1.38 2.19 8.35 NA NA 

Average Medium Low Medium Weibull 5.18 -1.93 1.37 6.22 8.60 15.15 1.68 NA 
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Average Medium Medium High Gompertz 1.46 -0.62 0.05 2.65 2.96 2.84 0.85 NA 

Average Medium Medium High Log-logistic 1.79 -1.31 0.04 2.45 2.76 5.30 1.48 NA 

Average Medium Medium High Lognormal 1.98 -1.38 0.01 2.18 2.30 5.88 2.30 2.59 

Average Medium Medium High Weibull 2.71 -0.61 1.20 4.07 4.66 5.57 1.40 NA 

Average Medium Medium Low Gompertz 9.06 -1.84 -0.73 4.28 9.12 34.48 NA NA 

Average Medium Medium Low Log-logistic 4.65 -3.83 -2.50 2.43 6.37 20.80 NA NA 

Average Medium Medium Low Lognormal 1.37 -4.14 -4.10 -0.01 2.59 12.49 NA NA 

Average Medium Medium Low Weibull 8.67 -3.56 1.39 6.96 11.35 27.24 NA NA 

Average Medium Medium Medium Gompertz 2.02 -1.74 -1.08 3.52 5.55 5.23 0.65 NA 

Average Medium Medium Medium Log-logistic 1.78 -3.15 -1.96 2.37 3.87 8.97 0.59 NA 

Average Medium Medium Medium Lognormal 1.76 -3.37 -2.45 1.48 2.31 9.97 2.62 NA 

Average Medium Medium Medium Weibull 5.48 -2.37 0.93 5.73 7.97 15.16 NA NA 

Old High High High Gompertz 12.06 10.18 9.13 11.97 8.98 16.14 15.96 NA 

Old High High High Log-logistic 12.95 11.43 10.94 13.83 9.90 15.80 15.80 NA 

Old High High High Lognormal 13.85 11.98 11.58 14.45 NA 15.63 15.63 NA 

Old High High High Weibull 12.66 11.07 10.22 13.18 9.56 15.97 15.95 NA 

Old High High Medium Gompertz 9.09 2.97 3.73 8.59 6.69 16.27 16.27 NA 

Old High High Medium Log-logistic 9.34 3.34 4.20 9.90 6.99 15.81 15.81 NA 

Old High High Medium Lognormal 9.52 3.49 4.54 10.60 7.20 15.64 15.64 NA 

Old High High Medium Weibull 9.31 3.20 4.16 9.48 6.99 16.01 16.01 NA 

Old High Low High Gompertz 14.96 14.96 14.96 14.96 NA 14.96 14.96 NA 

Old High Low High Log-logistic 15.04 15.04 15.04 15.04 NA 15.04 15.04 NA 

Old High Low High Lognormal 15.12 15.12 15.12 15.12 NA 15.12 15.12 NA 

Old High Low High Weibull 15.04 15.04 15.04 15.04 NA 15.04 15.04 NA 

Old High Low Medium Gompertz 13.33 14.12 7.58 14.98 NA 14.98 14.98 NA 

Old High Low Medium Log-logistic 13.27 14.04 7.17 15.04 NA 15.04 15.04 NA 

Old High Low Medium Lognormal 13.19 13.84 6.68 15.13 NA 15.14 15.14 NA 

Old High Low Medium Weibull 13.33 14.01 7.50 15.04 NA 15.05 15.05 NA 

Old High Medium High Gompertz 14.98 14.98 14.98 14.98 NA 14.98 14.98 NA 
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Old High Medium High Log-logistic 15.00 14.99 14.99 15.00 NA 15.00 15.00 NA 

Old High Medium High Lognormal 15.05 15.04 15.03 15.06 NA 15.06 15.06 NA 

Old High Medium High Weibull 15.02 15.01 15.01 15.02 NA 15.02 15.02 NA 

Old High Medium Medium Gompertz 12.76 11.88 6.98 14.96 NA 14.97 14.97 NA 

Old High Medium Medium Log-logistic 12.67 11.62 6.73 14.99 NA 15.00 15.00 NA 

Old High Medium Medium Lognormal 12.06 10.96 6.04 15.06 10.13 15.07 15.07 NA 

Old High Medium Medium Weibull 12.63 11.43 6.68 15.00 NA 15.02 15.02 NA 

Old Low High High Gompertz 1.73 0.16 1.21 2.00 2.11 3.10 1.78 NA 

Old Low High High Log-logistic 1.66 0.21 1.11 1.80 1.85 2.98 1.79 1.87 

Old Low High High Lognormal 1.66 0.22 1.11 1.80 1.85 2.97 1.80 1.86 

Old Low High High Weibull 1.69 0.21 1.18 1.92 2.00 3.02 1.79 NA 

Old Low High Low Gompertz 2.06 -1.70 -0.34 1.79 2.30 8.26 NA NA 

Old Low High Low Log-logistic 1.69 -1.68 -0.73 1.31 1.74 7.64 1.87 NA 

Old Low High Low Lognormal 1.69 -1.68 -0.71 1.34 1.77 7.74 NA NA 

Old Low High Low Weibull 1.92 -1.70 -0.54 1.58 2.08 8.11 1.98 NA 

Old Low High Medium Gompertz 1.55 -1.00 0.31 1.78 1.95 4.90 1.37 NA 

Old Low High Medium Log-logistic 1.41 -0.97 0.08 1.50 1.59 4.82 1.44 NA 

Old Low High Medium Lognormal 1.42 -0.96 0.08 1.50 1.58 4.85 1.47 NA 

Old Low High Medium Weibull 1.50 -0.98 0.19 1.65 1.78 4.93 1.43 NA 

Old Low Low High Gompertz 0.24 0.10 0.08 0.76 0.51 0.07 0.08 0.08 

Old Low Low High Log-logistic 0.10 0.09 0.06 0.17 0.11 0.08 0.10 NA 

Old Low Low High Lognormal 0.11 0.10 0.07 0.20 0.11 0.08 0.11 NA 

Old Low Low High Weibull 0.16 0.11 0.06 0.50 0.29 0.06 0.06 0.06 

Old Low Low Low Gompertz 1.78 0.38 0.38 2.24 3.02 2.85 NA NA 

Old Low Low Low Log-logistic 0.59 0.81 -0.43 0.27 0.47 1.81 NA NA 

Old Low Low Low Lognormal 0.39 0.80 -0.48 0.10 0.22 1.30 NA NA 

Old Low Low Low Weibull 1.81 0.91 0.19 1.71 2.41 3.85 NA NA 

Old Low Low Medium Gompertz 0.46 0.20 0.15 1.15 1.05 0.10 0.12 NA 

Old Low Low Medium Log-logistic -0.02 0.04 -0.16 0.18 0.07 -0.20 NA NA 
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Old Low Low Medium Lognormal 0.06 0.11 -0.11 0.23 0.11 -0.14 0.13 NA 

Old Low Low Medium Weibull 0.29 0.26 0.06 0.75 0.60 -0.01 0.08 NA 

Old Low Medium High Gompertz 0.34 0.14 0.16 0.86 0.67 0.19 0.17 0.19 

Old Low Medium High Log-logistic 0.19 0.13 0.10 0.32 0.23 0.18 0.20 NA 

Old Low Medium High Lognormal 0.20 0.14 0.11 0.33 0.22 0.17 0.22 NA 

Old Low Medium High Weibull 0.26 0.15 0.13 0.62 0.44 0.15 0.15 0.17 

Old Low Medium Low Gompertz 1.45 0.05 0.14 1.95 2.63 2.46 NA NA 

Old Low Medium Low Log-logistic 0.13 0.36 -0.53 0.32 0.52 0.02 NA NA 

Old Low Medium Low Lognormal 0.06 0.38 -0.57 0.20 0.34 -0.03 NA NA 

Old Low Medium Low Weibull 0.98 0.40 -0.11 1.35 1.91 1.32 NA NA 

Old Low Medium Medium Gompertz 0.45 0.05 0.07 1.12 1.06 0.25 0.12 NA 

Old Low Medium Medium Log-logistic 0.02 -0.02 -0.19 0.31 0.19 -0.21 NA NA 

Old Low Medium Medium Lognormal 0.07 0.03 -0.16 0.34 0.20 -0.17 0.21 NA 

Old Low Medium Medium Weibull 0.27 0.12 -0.01 0.79 0.67 -0.05 0.09 NA 

Old Medium High High Gompertz 3.70 1.40 3.19 3.87 4.22 5.32 3.88 4.04 

Old Medium High High Log-logistic 3.66 1.22 3.16 3.82 4.16 5.41 3.87 4.01 

Old Medium High High Lognormal 3.48 1.12 2.99 3.63 3.91 5.31 NA 3.90 

Old Medium High High Weibull 3.74 1.22 3.29 4.03 4.46 5.38 3.81 3.98 

Old Medium High Low Gompertz 3.27 -2.42 0.20 2.72 4.12 11.73 NA NA 

Old Medium High Low Log-logistic 3.02 -2.58 0.22 2.70 3.92 10.83 NA NA 

Old Medium High Low Lognormal 3.08 -2.58 0.01 2.48 3.58 10.45 4.53 NA 

Old Medium High Low Weibull 3.52 -2.53 0.94 3.37 4.73 11.09 NA NA 

Old Medium High Medium Gompertz 2.85 -1.14 1.37 3.07 3.72 7.15 2.90 NA 

Old Medium High Medium Log-logistic 2.82 -1.28 1.40 3.05 3.64 7.16 2.97 NA 

Old Medium High Medium Lognormal 2.69 -1.32 1.22 2.84 3.33 7.01 3.05 NA 

Old Medium High Medium Weibull 3.00 -1.24 1.76 3.40 4.12 7.24 2.74 NA 

Old Medium Low High Gompertz 2.33 1.67 1.86 2.94 3.17 2.27 2.07 NA 

Old Medium Low High Log-logistic 2.42 1.33 1.89 2.81 3.07 3.05 2.37 NA 

Old Medium Low High Lognormal 2.35 1.18 1.77 2.54 2.73 3.25 2.62 NA 
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Old Medium Low High Weibull 2.92 1.58 2.49 3.65 4.06 3.33 2.42 NA 

Old Medium Low Low Gompertz 9.06 1.41 1.50 5.57 6.23 19.88 19.77 NA 

Old Medium Low Low Log-logistic 5.47 -0.12 0.48 3.17 4.98 18.85 NA NA 

Old Medium Low Low Lognormal 3.78 -0.62 -1.06 1.34 2.77 16.49 NA NA 

Old Medium Low Low Weibull 6.63 -0.45 2.61 5.12 7.04 18.85 NA NA 

Old Medium Low Medium Gompertz 3.13 1.23 1.42 3.57 4.56 4.69 3.31 NA 

Old Medium Low Medium Log-logistic 2.22 0.23 0.85 2.88 3.65 3.81 1.91 NA 

Old Medium Low Medium Lognormal 2.05 -0.06 0.38 2.28 2.81 4.13 2.79 NA 

Old Medium Low Medium Weibull 3.96 0.49 2.49 4.42 5.48 6.91 NA NA 

Old Medium Medium High Gompertz 2.54 1.67 2.05 3.06 3.33 2.75 2.36 NA 

Old Medium Medium High Log-logistic 2.58 1.35 2.04 2.93 3.21 3.38 2.57 NA 

Old Medium Medium High Lognormal 2.48 1.19 1.90 2.66 2.86 3.52 2.78 NA 

Old Medium Medium High Weibull 3.00 1.56 2.56 3.67 4.08 3.55 2.58 NA 

Old Medium Medium Low Gompertz 6.25 0.62 0.97 4.31 5.66 19.68 NA NA 

Old Medium Medium Low Log-logistic 4.91 -0.60 0.13 2.75 4.55 17.72 NA NA 

Old Medium Medium Low Lognormal 3.45 -0.94 -0.99 1.42 2.85 14.93 NA NA 

Old Medium Medium Low Weibull 6.14 -0.75 2.14 4.65 6.60 18.08 NA NA 

Old Medium Medium Medium Gompertz 2.53 0.73 1.11 3.22 4.12 3.50 NA NA 

Old Medium Medium Medium Log-logistic 2.21 -0.04 0.73 2.72 3.45 4.21 NA NA 

Old Medium Medium Medium Lognormal 1.93 -0.28 0.35 2.23 2.74 4.61 NA NA 

Old Medium Medium Medium Weibull 3.36 0.16 2.11 4.05 5.04 6.64 2.17 NA 

Young High High High Gompertz 9.07 0.47 5.72 8.79 11.31 16.21 11.90 NA 

Young High High High Log-logistic 13.38 2.13 8.36 10.61 13.00 18.18 28.01 NA 

Young High High High Lognormal 14.95 2.97 9.87 11.67 13.85 19.12 32.21 NA 

Young High High High Weibull 11.74 1.42 7.36 9.94 12.41 17.43 21.18 12.45 

Young High High Medium Gompertz 14.93 -5.07 -0.42 5.66 12.15 38.68 38.55 NA 

Young High High Medium Log-logistic 14.97 -4.63 2.32 7.29 13.31 35.75 35.75 NA 

Young High High Medium Lognormal 14.70 -4.83 3.26 7.79 13.35 34.32 34.32 NA 

Young High High Medium Weibull 15.04 -4.81 1.31 6.72 12.96 37.05 37.03 NA 
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Young High Low High Gompertz 22.46 17.18 14.86 26.50 19.80 23.83 32.58 NA 

Young High Low High Log-logistic 19.15 14.38 10.77 18.77 16.67 22.60 31.70 NA 

Young High Low High Lognormal 17.38 12.00 8.54 12.62 14.67 25.16 31.31 NA 

Young High Low High Weibull 19.71 14.80 11.93 19.69 17.49 22.34 32.00 NA 

Young High Low Medium Gompertz 29.04 18.68 NA 32.31 NA 32.59 32.59 NA 

Young High Low Medium Log-logistic 25.60 16.96 NA 31.30 16.32 31.72 31.72 NA 

Young High Low Medium Lognormal 23.73 14.15 NA 30.20 11.67 31.31 31.31 NA 

Young High Low Medium Weibull 26.06 16.91 NA 31.69 17.71 32.01 32.01 NA 

Young High Medium High Gompertz 21.13 16.42 13.54 21.21 19.27 22.30 34.03 NA 

Young High Medium High Log-logistic 18.05 13.18 10.04 15.36 16.12 21.37 32.22 NA 

Young High Medium High Lognormal 17.05 11.11 8.64 12.18 14.57 24.14 31.64 NA 

Young High Medium High Weibull 18.68 13.81 10.89 16.36 16.88 21.41 32.75 NA 

Young High Medium Medium Gompertz 34.02 NA NA NA NA NA 34.02 NA 

Young High Medium Medium Log-logistic 25.37 15.24 NA 31.25 15.94 32.22 32.22 NA 

Young High Medium Medium Lognormal 31.64 NA NA NA NA NA 31.64 NA 

Young High Medium Medium Weibull 28.28 15.77 NA 31.88 NA 32.74 32.74 NA 

Young Low High High Gompertz 1.43 -2.32 -0.46 2.03 1.88 6.05 1.22 1.59 

Young Low High High Log-logistic 1.22 -2.36 -0.78 1.52 1.26 6.15 1.23 1.50 

Young Low High High Lognormal 1.24 -2.34 -0.77 1.54 1.27 6.21 1.27 1.51 

Young Low High High Weibull 1.35 -2.34 -0.63 1.79 1.58 6.24 1.24 1.55 

Young Low High Low Gompertz 4.08 -4.68 -2.93 1.96 2.88 24.51 2.74 NA 

Young Low High Low Log-logistic 3.47 -4.72 -3.51 0.84 1.51 23.38 3.32 NA 

Young Low High Low Lognormal 3.50 -4.70 -3.52 0.82 1.48 23.40 3.49 NA 

Young Low High Low Weibull 3.83 -4.78 -3.31 1.36 2.23 24.24 3.22 NA 

Young Low High Medium Gompertz 2.52 -3.85 -1.87 2.16 2.27 15.11 1.27 NA 

Young Low High Medium Log-logistic 2.19 -3.90 -2.33 1.43 1.34 15.11 1.47 NA 

Young Low High Medium Lognormal 2.22 -3.87 -2.33 1.44 1.34 15.15 1.56 NA 

Young Low High Medium Weibull 2.36 -3.88 -2.14 1.80 1.83 15.28 1.30 NA 

Young Low Low High Gompertz 0.18 -0.04 -0.04 0.80 0.41 -0.04 -0.04 NA 
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Young Low Low High Log-logistic -0.11 -0.13 -0.14 -0.02 -0.10 -0.12 -0.12 NA 

Young Low Low High Lognormal -0.03 -0.05 -0.06 0.08 -0.04 -0.06 -0.04 NA 

Young Low Low High Weibull 0.06 -0.03 -0.05 0.46 0.19 -0.05 -0.05 -0.04 

Young Low Low Low Gompertz 3.17 0.27 0.32 3.42 4.88 6.99 NA NA 

Young Low Low Low Log-logistic -0.10 0.62 -0.68 0.10 0.39 -0.92 NA NA 

Young Low Low Low Lognormal -0.19 0.67 -0.68 -0.09 0.04 -0.88 NA NA 

Young Low Low Low Weibull 1.46 0.81 0.05 2.19 3.39 0.89 NA NA 

Young Low Low Medium Gompertz 0.47 0.09 0.04 1.45 1.25 -0.01 0.00 NA 

Young Low Low Medium Log-logistic -0.24 -0.20 -0.39 -0.01 -0.15 -0.43 -0.27 NA 

Young Low Low Medium Lognormal -0.09 -0.05 -0.26 0.12 -0.03 -0.30 0.00 NA 

Young Low Low Medium Weibull 0.23 0.14 -0.04 0.82 0.61 -0.12 -0.03 NA 

Young Low Medium High Gompertz 0.18 -0.06 -0.05 0.91 0.53 -0.02 -0.05 -0.02 

Young Low Medium High Log-logistic -0.08 -0.18 -0.19 0.08 -0.08 -0.09 -0.11 0.00 

Young Low Medium High Lognormal -0.03 -0.10 -0.11 0.15 -0.03 -0.06 -0.02 0.00 

Young Low Medium High Weibull 0.10 -0.05 -0.06 0.55 0.25 -0.05 -0.05 NA 

Young Low Medium Low Gompertz 2.80 -0.15 -0.06 2.93 4.16 7.11 NA NA 

Young Low Medium Low Log-logistic -0.33 0.03 -0.92 0.05 0.28 -1.09 NA NA 

Young Low Medium Low Lognormal -0.36 0.14 -0.88 -0.05 0.07 -1.06 NA NA 

Young Low Medium Low Weibull 1.13 0.24 -0.30 1.79 2.75 1.15 NA NA 

Young Low Medium Medium Gompertz 0.47 -0.14 -0.12 1.50 1.30 0.30 -0.06 NA 

Young Low Medium Medium Log-logistic -0.27 -0.35 -0.52 0.11 -0.10 -0.54 -0.23 NA 

Young Low Medium Medium Lognormal -0.13 -0.22 -0.41 0.21 -0.02 -0.42 0.05 NA 

Young Low Medium Medium Weibull 0.17 -0.06 -0.19 0.91 0.68 -0.23 -0.08 NA 

Young Medium High High Gompertz 3.35 -4.89 0.59 3.82 4.41 11.42 3.68 4.43 

Young Medium High High Log-logistic 3.24 -5.02 0.85 3.94 4.47 11.27 3.93 NA 

Young Medium High High Lognormal 3.09 -4.91 0.66 3.68 4.06 11.00 4.07 NA 

Young Medium High High Weibull 3.53 -4.66 1.29 4.54 5.26 11.20 3.58 NA 

Young Medium High Low Gompertz 3.87 -10.05 -5.30 1.71 5.51 27.48 NA NA 

Young Medium High Low Log-logistic 3.98 -10.07 -5.16 1.84 5.20 28.07 NA NA 
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Young Medium High Low Lognormal 3.90 -9.82 -5.62 1.12 3.93 27.57 6.21 NA 

Young Medium High Low Weibull 5.47 -9.64 -3.35 3.81 7.51 29.03 NA NA 

Young Medium High Medium Gompertz 3.55 -8.32 -2.85 3.05 4.82 21.14 3.49 NA 

Young Medium High Medium Log-logistic 3.65 -8.43 -2.50 3.25 4.84 20.86 3.89 NA 

Young Medium High Medium Lognormal 3.47 -8.24 -2.79 2.84 4.11 20.50 4.40 NA 

Young Medium High Medium Weibull 4.39 -7.95 -1.29 4.50 6.41 21.32 3.37 NA 

Young Medium Low High Gompertz 0.62 -1.35 -0.94 2.39 2.64 1.29 -0.35 NA 

Young Medium Low High Log-logistic 1.01 -2.60 -1.40 1.85 2.12 5.80 0.28 NA 

Young Medium Low High Lognormal 1.49 -2.57 -1.27 1.68 1.66 7.09 1.71 2.10 

Young Medium Low High Weibull 2.84 -1.09 0.70 4.70 5.40 6.61 0.72 NA 

Young Medium Low Low Gompertz 11.83 -1.82 -0.52 5.74 12.36 43.41 NA NA 

Young Medium Low Low Log-logistic 4.90 -4.72 -3.42 2.54 7.66 22.44 NA NA 

Young Medium Low Low Lognormal 2.19 -5.18 -5.52 -1.03 1.99 11.35 11.51 NA 

Young Medium Low Low Weibull 11.36 -3.83 2.00 9.26 15.30 34.10 NA NA 

Young Medium Low Medium Gompertz 1.97 -2.07 -1.66 4.09 6.90 4.68 -0.09 NA 

Young Medium Low Medium Log-logistic 1.09 -4.28 -3.36 1.96 3.86 9.11 -0.75 NA 

Young Medium Low Medium Lognormal 1.39 -4.47 -3.79 0.88 1.76 11.53 2.45 NA 

Young Medium Low Medium Weibull 6.42 -2.71 0.87 7.34 10.46 20.97 1.57 NA 

Young Medium Medium High Gompertz 0.98 -1.75 -0.99 2.45 2.77 3.36 0.02 NA 

Young Medium Medium High Log-logistic 1.37 -2.78 -1.23 2.08 2.40 7.01 0.72 NA 

Young Medium Medium High Lognormal 1.69 -2.78 -1.19 1.84 1.87 7.79 1.93 2.34 

Young Medium Medium High Weibull 2.82 -1.55 0.52 4.47 5.16 7.47 0.83 NA 

Young Medium Medium Low Gompertz 9.96 -3.02 -1.48 4.81 11.08 38.39 NA NA 

Young Medium Medium Low Log-logistic 4.14 -5.39 -3.97 2.04 6.95 21.09 NA NA 

Young Medium Medium Low Lognormal 2.18 -5.66 -5.57 -0.81 2.20 13.03 9.86 NA 

Young Medium Medium Low Weibull 10.25 -4.61 0.99 8.24 13.98 32.63 NA NA 

Young Medium Medium Medium Gompertz 1.92 -2.91 -2.20 3.52 6.09 7.00 0.02 NA 

Young Medium Medium Medium Log-logistic 1.60 -4.72 -3.47 1.95 3.79 12.28 -0.22 NA 

Young Medium Medium Medium Lognormal 1.75 -4.81 -3.83 1.02 1.95 13.64 2.50 NA 

Young Medium Medium Medium Weibull 5.88 -3.39 0.25 6.64 9.56 20.96 1.28 NA 
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Table 96:  

Mean bias of overall mean survival – external additive hazards models 

Scenario characteristics  Distribution used for extrapolation 

Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Average High High High Gompertz -2.16 -3.55 -2.70 -1.85 -1.21 -1.28 -2.35 NA 

Average High High High Log-logistic -2.37 -3.80 -2.81 -2.13 -1.50 -1.40 -2.58 NA 

Average High High High Lognormal -2.49 -3.94 -2.87 -2.26 -1.66 -1.47 -2.74 NA 

Average High High High Weibull -2.28 -3.70 -2.76 -2.00 -1.36 -1.35 -2.50 NA 

Average High High Medium Gompertz -2.25 -5.24 -3.94 -2.03 0.11 -0.12 NA NA 

Average High High Medium Log-logistic -2.47 -5.70 -3.91 -2.35 -0.35 -0.03 NA NA 

Average High High Medium Lognormal -2.51 -6.03 -3.85 -2.47 -0.63 0.44 NA NA 

Average High High Medium Weibull -2.11 -5.47 -3.78 -2.10 -0.06 0.17 -1.46 NA 

Average High Low High Gompertz -2.05 -1.35 -2.14 -1.55 -0.60 -4.20 -2.48 NA 

Average High Low High Log-logistic -2.63 -1.83 -2.79 -2.11 -1.12 -4.86 -3.04 NA 

Average High Low High Lognormal -2.93 -2.32 -3.28 -2.56 -1.63 -4.79 -3.00 NA 

Average High Low High Weibull -2.44 -1.72 -2.59 -1.93 -0.96 -4.56 -2.88 NA 

Average High Low Medium Gompertz -1.43 -0.25 NA -1.15 0.97 -5.29 NA NA 

Average High Low Medium Log-logistic -2.15 -0.46 NA -1.88 0.47 -6.72 NA NA 

Average High Low Medium Lognormal -3.55 -0.99 NA -3.40 -0.61 -9.21 NA NA 

Average High Low Medium Weibull -1.99 -0.50 NA -1.75 0.56 -6.28 NA NA 

Average High Medium High Gompertz -1.96 -1.25 -2.06 -1.37 -0.37 -4.14 -2.56 NA 

Average High Medium High Log-logistic -2.80 -2.15 -3.02 -2.29 -1.31 -4.78 -3.26 NA 

Average High Medium High Lognormal -3.03 -2.64 -3.42 -2.69 -1.79 -4.58 -3.11 -2.98 

Average High Medium High Weibull -2.59 -1.95 -2.78 -2.06 -1.09 -4.55 -3.10 NA 

Average High Medium Medium Gompertz -1.10 -0.09 NA -0.74 1.44 -5.02 NA NA 

Average High Medium Medium Log-logistic -2.44 -0.86 NA -2.15 0.31 -7.05 NA NA 

Average High Medium Medium Lognormal -3.74 -1.63 NA -3.55 -0.78 -9.02 NA NA 

Average High Medium Medium Weibull -1.97 -0.72 NA -1.72 0.65 -6.07 NA NA 

Average Low High High Gompertz -0.25 -1.62 -0.67 0.13 0.10 0.68 -0.22 -0.15 

Average Low High High Log-logistic -0.36 -1.65 -0.82 -0.11 -0.17 0.72 -0.27 -0.23 
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Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Average Low High High Lognormal -0.36 -1.64 -0.83 -0.12 -0.18 0.74 -0.27 -0.23 

Average Low High High Weibull -0.30 -1.64 -0.76 0.01 -0.04 0.75 -0.25 -0.20 

Average Low High Low Gompertz 0.85 -3.72 -2.24 0.27 0.83 9.10 NA NA 

Average Low High Low Log-logistic 0.38 -3.79 -2.71 -0.31 0.16 8.53 NA NA 

Average Low High Low Lognormal 0.29 -3.76 -2.76 -0.40 0.05 8.29 NA NA 

Average Low High Low Weibull 0.54 -3.80 -2.57 -0.10 0.45 8.71 0.53 NA 

Average Low High Medium Gompertz 0.14 -2.97 -1.48 0.30 0.44 4.67 -0.11 NA 

Average Low High Medium Log-logistic -0.02 -2.99 -1.77 -0.03 0.01 4.67 -0.04 NA 

Average Low High Medium Lognormal -0.03 -2.99 -1.79 -0.06 -0.02 4.67 -0.02 NA 

Average Low High Medium Weibull 0.04 -2.99 -1.67 0.10 0.19 4.71 -0.09 NA 

Average Low Low High Gompertz 0.08 -0.06 -0.07 0.56 0.36 -0.07 -0.06 -0.06 

Average Low Low High Log-logistic -0.11 -0.14 -0.14 -0.06 -0.11 -0.14 -0.14 -0.07 

Average Low Low High Lognormal -0.06 -0.08 -0.08 0.01 -0.06 -0.09 -0.07 NA 

Average Low Low High Weibull 0.03 -0.06 -0.07 0.35 0.18 -0.07 -0.07 -0.07 

Average Low Low Low Gompertz 1.66 0.23 0.24 2.24 3.20 2.74 1.28 NA 

Average Low Low Low Log-logistic -0.04 0.54 -0.67 0.02 0.36 -0.91 0.39 NA 

Average Low Low Low Lognormal -0.19 0.61 -0.66 -0.10 0.07 -0.86 NA NA 

Average Low Low Low Weibull 1.09 0.74 0.03 1.60 2.51 0.18 1.47 NA 

Average Low Low Medium Gompertz 0.34 0.05 0.01 1.01 1.01 -0.04 -0.02 NA 

Average Low Low Medium Log-logistic -0.24 -0.21 -0.38 -0.05 -0.13 -0.42 -0.27 NA 

Average Low Low Medium Lognormal -0.11 -0.08 -0.26 0.05 -0.05 -0.30 -0.05 NA 

Average Low Low Medium Weibull 0.17 0.10 -0.06 0.62 0.56 -0.14 -0.06 NA 

Average Low Medium High Gompertz 0.07 -0.09 -0.09 0.54 0.37 -0.07 -0.09 -0.07 

Average Low Medium High Log-logistic -0.13 -0.19 -0.19 -0.02 -0.11 -0.14 -0.15 -0.09 

Average Low Medium High Lognormal -0.08 -0.13 -0.13 0.03 -0.07 -0.11 -0.08 NA 

Average Low Medium High Weibull 0.02 -0.09 -0.09 0.34 0.18 -0.09 -0.09 -0.07 

Average Low Medium Low Gompertz 1.38 -0.16 -0.08 1.87 2.72 2.91 1.03 NA 

Average Low Medium Low Log-logistic -0.34 0.03 -0.86 -0.04 0.23 -1.08 NA NA 

Average Low Medium Low Lognormal -0.36 0.11 -0.84 -0.11 0.06 -1.03 NA NA 
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Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Average Low Medium Low Weibull 0.69 0.20 -0.32 1.19 1.92 0.07 1.06 NA 

Average Low Medium Medium Gompertz 0.25 -0.16 -0.15 0.94 0.95 0.05 -0.10 NA 

Average Low Medium Medium Log-logistic -0.28 -0.33 -0.49 0.01 -0.10 -0.50 -0.25 NA 

Average Low Medium Medium Lognormal -0.18 -0.23 -0.40 0.08 -0.05 -0.42 -0.04 NA 

Average Low Medium Medium Weibull 0.09 -0.09 -0.21 0.61 0.56 -0.25 -0.11 NA 

Average Medium High High Gompertz -0.85 -3.26 -1.34 -0.50 -0.34 0.88 -0.73 -0.63 

Average Medium High High Log-logistic -0.85 -3.31 -1.24 -0.45 -0.31 0.84 -0.64 NA 

Average Medium High High Lognormal -0.79 -3.23 -1.23 -0.47 -0.37 0.84 -0.57 -0.52 

Average Medium High High Weibull -0.65 -3.13 -1.02 -0.14 0.06 0.93 -0.60 NA 

Average Medium High Low Gompertz -0.51 -7.33 -4.13 -1.02 0.66 8.47 0.30 NA 

Average Medium High Low Log-logistic -0.47 -7.42 -4.02 -0.97 0.54 8.81 0.23 NA 

Average Medium High Low Lognormal -0.59 -7.28 -4.29 -1.25 0.07 8.70 0.51 NA 

Average Medium High Low Weibull 0.25 -7.15 -2.99 0.04 1.68 9.57 0.32 NA 

Average Medium High Medium Gompertz -0.61 -5.87 -2.63 -0.45 0.29 5.44 -0.44 NA 

Average Medium High Medium Log-logistic -0.56 -5.94 -2.47 -0.38 0.28 5.39 -0.26 NA 

Average Medium High Medium Lognormal -0.57 -5.80 -2.55 -0.48 0.06 5.37 -0.02 NA 

Average Medium High Medium Weibull -0.17 -5.68 -1.87 0.21 0.98 5.66 -0.32 NA 

Average Medium Low High Gompertz -0.46 -1.17 -1.00 0.24 0.42 -0.48 -0.80 NA 

Average Medium Low High Log-logistic -0.69 -1.87 -1.34 -0.27 -0.10 0.26 -0.84 NA 

Average Medium Low High Lognormal -0.61 -1.88 -1.29 -0.38 -0.32 0.62 -0.43 NA 

Average Medium Low High Weibull 0.16 -1.12 -0.38 0.94 1.20 0.78 -0.45 NA 

Average Medium Low Low Gompertz 1.66 -1.52 -1.11 1.93 4.95 4.08 NA NA 

Average Medium Low Low Log-logistic 0.10 -3.61 -2.90 0.12 2.60 3.10 1.26 NA 

Average Medium Low Low Lognormal -1.75 -3.94 -4.26 -1.62 0.08 0.98 NA NA 

Average Medium Low Low Weibull 3.07 -3.34 0.05 3.17 5.74 9.71 NA NA 

Average Medium Low Medium Gompertz 0.05 -1.67 -1.44 1.21 2.57 0.46 -0.83 NA 

Average Medium Low Medium Log-logistic -0.77 -3.18 -2.54 -0.07 0.90 1.64 -1.40 NA 

Average Medium Low Medium Lognormal -0.77 -3.37 -2.89 -0.62 -0.09 2.41 -0.06 NA 

Average Medium Low Medium Weibull 1.54 -2.35 -0.19 2.34 3.64 6.17 -0.36 NA 
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Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Average Medium Medium High Gompertz -0.52 -1.42 -1.10 0.10 0.28 -0.18 -0.79 NA 

Average Medium Medium High Log-logistic -0.70 -2.01 -1.35 -0.31 -0.14 0.43 -0.81 NA 

Average Medium Medium High Lognormal -0.64 -2.01 -1.32 -0.41 -0.35 0.70 -0.47 NA 

Average Medium Medium High Weibull 0.01 -1.39 -0.55 0.73 0.98 0.83 -0.53 NA 

Average Medium Medium Low Gompertz 0.89 -2.38 -1.86 1.19 4.04 3.46 NA NA 

Average Medium Medium Low Log-logistic -0.32 -4.09 -3.21 -0.15 2.22 3.64 NA NA 

Average Medium Medium Low Lognormal -1.11 -4.33 -4.36 -1.63 0.06 1.91 1.70 NA 

Average Medium Medium Low Weibull 2.65 -3.80 -0.45 2.69 5.16 9.62 NA NA 

Average Medium Medium Medium Gompertz -0.20 -2.25 -1.81 0.81 2.07 1.05 -1.05 NA 

Average Medium Medium Medium Log-logistic -0.70 -3.48 -2.61 -0.16 0.77 2.59 -1.29 NA 

Average Medium Medium Medium Lognormal -0.72 -3.64 -2.94 -0.66 -0.12 3.14 -0.11 NA 

Average Medium Medium Medium Weibull 1.23 -2.75 -0.56 1.95 3.20 6.07 -0.54 NA 

Old High High High Gompertz -2.75 -2.79 -2.79 -2.67 -2.69 -2.78 -2.80 NA 

Old High High High Log-logistic -3.00 -3.03 -3.03 -2.91 -2.93 -3.03 -3.05 NA 

Old High High High Lognormal -3.09 -3.12 -3.13 -3.01 -3.03 -3.12 -3.15 NA 

Old High High High Weibull -2.89 -2.92 -2.93 -2.81 -2.83 -2.92 -2.94 NA 

Old High High Medium Gompertz -2.48 -2.88 -2.78 -2.27 -1.85 -2.44 -2.64 NA 

Old High High Medium Log-logistic -2.66 -3.12 -2.99 -2.50 -2.09 -2.62 -2.82 -2.50 

Old High High Medium Lognormal -2.75 -3.23 -3.06 -2.59 -2.19 -2.60 -2.85 NA 

Old High High Medium Weibull -2.57 -3.02 -2.87 -2.38 -1.96 -2.49 -2.73 NA 

Old High Low High Gompertz -2.89 -2.92 -2.89 -2.74 -2.75 -3.01 -3.04 NA 

Old High Low High Log-logistic -2.86 -2.89 -2.87 -2.72 -2.72 -2.98 -3.00 NA 

Old High Low High Lognormal -2.83 -2.86 -2.84 -2.69 -2.70 -2.95 -2.95 NA 

Old High Low High Weibull -2.86 -2.88 -2.86 -2.71 -2.72 -2.98 -3.00 NA 

Old High Low Medium Gompertz -2.22 -2.13 -2.38 -2.02 -1.53 -2.94 -2.30 NA 

Old High Low Medium Log-logistic -2.23 -2.10 -2.40 -2.02 -1.52 -3.02 -2.31 NA 

Old High Low Medium Lognormal -2.27 -2.08 -2.46 -2.06 -1.54 -3.14 -2.35 NA 

Old High Low Medium Weibull -2.21 -2.10 -2.37 -2.00 -1.51 -2.95 -2.31 NA 

Old High Medium High Gompertz -3.08 -3.11 -3.09 -2.94 -2.95 -3.18 -3.19 NA 
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Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Old High Medium High Log-logistic -3.08 -3.11 -3.10 -2.95 -2.96 -3.19 -3.19 NA 

Old High Medium High Lognormal -3.07 -3.10 -3.08 -2.94 -2.95 -3.17 -3.15 NA 

Old High Medium High Weibull -3.07 -3.10 -3.08 -2.94 -2.94 -3.17 -3.18 NA 

Old High Medium Medium Gompertz -2.50 -2.47 -2.68 -2.28 -1.79 -3.13 -2.63 NA 

Old High Medium Medium Log-logistic -2.54 -2.47 -2.74 -2.33 -1.83 -3.23 -2.67 NA 

Old High Medium Medium Lognormal -2.62 -2.50 -2.83 -2.39 -1.87 -3.37 -2.74 NA 

Old High Medium Medium Weibull -2.53 -2.47 -2.72 -2.31 -1.81 -3.19 -2.66 NA 

Old Low High High Gompertz -0.63 -0.66 -0.63 -0.52 -0.57 -0.74 -0.66 NA 

Old Low High High Log-logistic -0.68 -0.68 -0.68 -0.60 -0.66 -0.74 -0.71 NA 

Old Low High High Lognormal -0.68 -0.68 -0.68 -0.60 -0.66 -0.73 -0.71 NA 

Old Low High High Weibull -0.67 -0.68 -0.67 -0.57 -0.63 -0.74 -0.70 -0.70 

Old Low High Low Gompertz -0.23 -1.84 -1.04 -0.19 0.02 1.94 -0.30 NA 

Old Low High Low Log-logistic -0.41 -1.84 -1.27 -0.42 -0.24 1.63 -0.32 NA 

Old Low High Low Lognormal -0.39 -1.84 -1.26 -0.41 -0.23 1.67 -0.27 NA 

Old Low High Low Weibull -0.32 -1.86 -1.18 -0.31 -0.11 1.82 -0.29 NA 

Old Low High Medium Gompertz -0.45 -1.29 -0.75 -0.29 -0.25 0.35 -0.50 NA 

Old Low High Medium Log-logistic -0.54 -1.30 -0.86 -0.42 -0.41 0.30 -0.53 NA 

Old Low High Medium Lognormal -0.53 -1.30 -0.86 -0.42 -0.41 0.31 -0.52 NA 

Old Low High Medium Weibull -0.50 -1.30 -0.82 -0.37 -0.34 0.34 -0.52 NA 

Old Low Low High Gompertz -0.08 -0.16 -0.16 0.15 0.04 -0.15 -0.15 -0.15 

Old Low Low High Log-logistic -0.17 -0.19 -0.17 -0.13 -0.14 -0.18 -0.18 NA 

Old Low Low High Lognormal -0.15 -0.17 -0.15 -0.11 -0.13 -0.17 -0.17 NA 

Old Low Low High Weibull -0.10 -0.17 -0.15 0.08 -0.01 -0.15 -0.15 -0.15 

Old Low Low Low Gompertz 0.55 0.05 0.03 0.92 1.32 0.60 0.37 NA 

Old Low Low Low Log-logistic -0.11 0.33 -0.51 0.02 0.30 -0.73 NA NA 

Old Low Low Low Lognormal -0.19 0.33 -0.55 -0.09 0.12 -0.74 NA NA 

Old Low Low Low Weibull 0.43 0.41 -0.06 0.77 1.22 -0.18 0.41 NA 

Old Low Low Medium Gompertz 0.04 -0.08 -0.11 0.35 0.36 -0.14 -0.13 NA 

Old Low Low Medium Log-logistic -0.23 -0.21 -0.31 -0.10 -0.12 -0.34 -0.26 NA 
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Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Old Low Low Medium Lognormal -0.18 -0.16 -0.27 -0.07 -0.10 -0.30 -0.18 NA 

Old Low Low Medium Weibull -0.01 -0.04 -0.14 0.23 0.22 -0.19 -0.14 NA 

Old Low Medium High Gompertz -0.14 -0.19 -0.19 0.06 -0.03 -0.20 -0.20 -0.20 

Old Low Medium High Log-logistic -0.20 -0.22 -0.21 -0.15 -0.18 -0.22 -0.22 -0.22 

Old Low Medium High Lognormal -0.19 -0.21 -0.19 -0.15 -0.17 -0.21 -0.21 -0.21 

Old Low Medium High Weibull -0.15 -0.19 -0.19 0.00 -0.07 -0.19 -0.19 -0.19 

Old Low Medium Low Gompertz 0.32 -0.22 -0.19 0.68 1.04 0.49 0.13 NA 

Old Low Medium Low Log-logistic -0.27 -0.02 -0.63 -0.07 0.17 -0.82 NA NA 

Old Low Medium Low Lognormal -0.25 0.00 -0.66 -0.13 0.06 -0.83 0.09 NA 

Old Low Medium Low Weibull 0.14 0.02 -0.32 0.46 0.82 -0.31 0.17 NA 

Old Low Medium Medium Gompertz -0.05 -0.23 -0.22 0.24 0.26 -0.17 -0.20 NA 

Old Low Medium Medium Log-logistic -0.26 -0.29 -0.38 -0.11 -0.13 -0.39 -0.27 NA 

Old Low Medium Medium Lognormal -0.23 -0.25 -0.35 -0.10 -0.12 -0.36 -0.21 NA 

Old Low Medium Medium Weibull -0.11 -0.18 -0.25 0.14 0.14 -0.27 -0.20 NA 

Old Medium High High Gompertz -1.37 -1.38 -1.39 -1.28 -1.34 -1.39 -1.40 -1.40 

Old Medium High High Log-logistic -1.34 -1.35 -1.36 -1.25 -1.31 -1.38 -1.37 -1.37 

Old Medium High High Lognormal -1.29 -1.30 -1.30 -1.21 -1.28 -1.33 -1.32 -1.32 

Old Medium High High Weibull -1.28 -1.31 -1.31 -1.17 -1.23 -1.33 -1.31 -1.30 

Old Medium High Low Gompertz -0.98 -2.97 -1.82 -0.90 -0.40 1.13 -0.95 NA 

Old Medium High Low Log-logistic -0.90 -3.02 -1.74 -0.84 -0.40 1.40 -0.80 NA 

Old Medium High Low Lognormal -0.95 -2.98 -1.79 -0.88 -0.49 1.40 NA NA 

Old Medium High Low Weibull -0.72 -2.96 -1.43 -0.55 -0.07 1.58 -0.87 NA 

Old Medium High Medium Gompertz -1.11 -2.20 -1.45 -0.94 -0.78 -0.11 -1.17 NA 

Old Medium High Medium Log-logistic -1.06 -2.22 -1.38 -0.89 -0.75 -0.04 -1.09 NA 

Old Medium High Medium Lognormal -1.03 -2.17 -1.36 -0.88 -0.77 0.00 -1.00 NA 

Old Medium High Medium Weibull -0.96 -2.16 -1.23 -0.73 -0.56 0.05 -1.10 NA 

Old Medium Low High Gompertz -0.95 -1.00 -1.00 -0.81 -0.87 -1.00 -1.00 NA 

Old Medium Low High Log-logistic -0.97 -0.99 -1.01 -0.87 -0.90 -0.99 -1.01 -1.00 

Old Medium Low High Lognormal -0.95 -0.95 -0.97 -0.88 -0.92 -0.95 -0.98 -0.98 
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Old Medium Low High Weibull -0.94 -0.99 -1.01 -0.79 -0.86 -0.99 -1.00 NA 

Old Medium Low Low Gompertz -0.20 -0.94 -1.02 -0.05 0.83 -0.18 0.14 NA 

Old Medium Low Low Log-logistic -0.56 -1.50 -1.36 -0.35 0.40 -0.14 -0.39 NA 

Old Medium Low Low Lognormal -1.00 -1.68 -1.95 -0.94 -0.34 -0.88 -0.21 NA 

Old Medium Low Low Weibull 0.03 -1.73 -0.65 0.24 0.95 1.46 -0.08 NA 

Old Medium Low Medium Gompertz -0.69 -1.00 -0.98 -0.32 -0.01 -0.84 -0.97 NA 

Old Medium Low Medium Log-logistic -0.83 -1.33 -1.17 -0.54 -0.30 -0.63 -0.98 NA 

Old Medium Low Medium Lognormal -0.85 -1.39 -1.27 -0.68 -0.53 -0.51 -0.71 NA 

Old Medium Low Medium Weibull -0.49 -1.27 -0.76 -0.17 0.11 0.07 -0.93 NA 

Old Medium Medium High Gompertz -1.02 -1.06 -1.07 -0.90 -0.94 -1.06 -1.07 NA 

Old Medium Medium High Log-logistic -1.04 -1.06 -1.08 -0.95 -0.98 -1.06 -1.09 NA 

Old Medium Medium High Lognormal -1.01 -1.02 -1.04 -0.96 -0.99 -1.02 -1.05 NA 

Old Medium Medium High Weibull -1.00 -1.04 -1.07 -0.86 -0.92 -1.04 -1.06 NA 

Old Medium Medium Low Gompertz -0.45 -1.25 -1.22 -0.22 0.61 -0.19 NA NA 

Old Medium Medium Low Log-logistic -0.70 -1.75 -1.52 -0.51 0.20 -0.08 -0.53 NA 

Old Medium Medium Low Lognormal -1.00 -1.87 -1.95 -0.94 -0.37 -0.54 -0.31 NA 

Old Medium Medium Low Weibull -0.12 -1.87 -0.81 0.10 0.80 1.35 -0.31 NA 

Old Medium Medium Medium Gompertz -0.82 -1.20 -1.13 -0.48 -0.19 -0.85 -1.06 NA 

Old Medium Medium Medium Log-logistic -0.90 -1.46 -1.25 -0.64 -0.42 -0.58 -1.04 NA 

Old Medium Medium Medium Lognormal -0.90 -1.51 -1.32 -0.74 -0.60 -0.43 -0.79 NA 

Old Medium Medium Medium Weibull -0.61 -1.41 -0.89 -0.30 -0.03 0.00 -1.00 NA 

Young High High High Gompertz -1.40 -5.09 -2.70 -1.16 0.10 1.70 -1.22 NA 

Young High High High Log-logistic -1.61 -5.33 -2.59 -1.44 -0.25 1.58 -1.60 NA 

Young High High High Lognormal -1.50 -5.47 -2.46 -1.50 -0.41 1.57 NA -0.73 

Young High High High Weibull -1.28 -5.17 -2.51 -1.20 0.03 1.74 -1.37 -0.49 

Young High High Medium Gompertz -2.42 -8.42 -5.80 -2.46 1.24 2.05 -1.15 NA 

Young High High Medium Log-logistic -2.83 -9.18 -5.37 -2.74 0.65 2.52 NA NA 

Young High High Medium Lognormal -3.10 -9.83 -5.41 -3.07 0.07 2.76 NA NA 

Young High High Medium Weibull -2.63 -8.84 -5.44 -2.53 0.98 2.65 NA NA 
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neity 

Informati

on 

Distributi

on 
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Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Young High Low High Gompertz 0.57 1.37 0.32 1.20 2.90 -2.96 NA NA 

Young High Low High Log-logistic -1.62 -0.48 -2.06 -0.95 0.92 -5.51 NA NA 

Young High Low High Lognormal -2.53 -1.87 -3.47 -2.24 -0.46 -5.48 -1.64 NA 

Young High Low High Weibull -1.01 -0.12 -1.41 -0.37 1.43 -4.51 -1.07 NA 

Young High Low Medium Gompertz 0.30 2.37 NA 0.32 3.93 -5.43 NA NA 

Young High Low Medium Log-logistic -2.34 1.07 NA -2.48 1.84 -9.77 NA NA 

Young High Low Medium Lognormal -5.66 -0.56 NA -6.19 -0.92 -14.98 NA NA 

Young High Low Medium Weibull -1.53 1.18 NA -1.57 2.47 -8.19 NA NA 

Young High Medium High Gompertz 0.47 1.56 0.24 1.35 3.24 -3.61 0.02 NA 

Young High Medium High Log-logistic -1.87 -0.95 -2.42 -1.20 0.69 -5.46 NA NA 

Young High Medium High Lognormal -2.51 -2.28 -3.51 -2.28 -0.55 -4.74 -1.69 NA 

Young High Medium High Weibull -1.30 -0.39 -1.76 -0.57 1.32 -4.86 -1.55 NA 

Young High Medium Medium Gompertz -4.37 NA NA NA NA -4.37 NA NA 

Young High Medium Medium Log-logistic -2.66 0.45 NA -2.68 1.81 -10.24 NA NA 

Young High Medium Medium Lognormal -14.22 NA NA NA NA -14.22 NA NA 

Young High Medium Medium Weibull -1.56 0.95 NA -1.51 2.70 -8.39 NA NA 

Young Low High High Gompertz -0.04 -2.39 -0.98 0.45 0.39 2.15 -0.05 0.13 

Young Low High High Log-logistic -0.21 -2.44 -1.22 0.09 -0.03 2.22 -0.10 0.02 

Young Low High High Lognormal -0.20 -2.42 -1.21 0.10 -0.03 2.24 -0.08 0.02 

Young Low High High Weibull -0.12 -2.42 -1.11 0.27 0.17 2.25 -0.08 0.06 

Young Low High Low Gompertz 1.55 -4.68 -3.05 0.46 1.19 14.48 0.91 NA 

Young Low High Low Log-logistic 1.08 -4.73 -3.58 -0.35 0.21 13.69 1.24 NA 

Young Low High Low Lognormal 1.09 -4.71 -3.59 -0.37 0.19 13.67 1.36 NA 

Young Low High Low Weibull 1.31 -4.79 -3.41 0.01 0.70 14.22 1.16 NA 

Young Low High Medium Gompertz 0.60 -3.87 -2.09 0.60 0.74 8.18 0.04 NA 

Young Low High Medium Log-logistic 0.33 -3.92 -2.50 0.08 0.09 8.14 0.12 NA 

Young Low High Medium Lognormal 0.36 -3.89 -2.49 0.09 0.09 8.18 0.19 NA 

Young Low High Medium Weibull 0.48 -3.91 -2.33 0.34 0.43 8.29 0.03 NA 

Young Low Low High Gompertz 0.12 -0.05 -0.06 0.67 0.43 -0.06 -0.05 -0.05 



135 
 

Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti
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l Gompertz 
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Young Low Low High Log-logistic -0.13 -0.15 -0.15 -0.05 -0.11 -0.14 -0.14 NA 

Young Low Low High Lognormal -0.05 -0.07 -0.07 0.04 -0.05 -0.08 -0.06 NA 

Young Low Low High Weibull 0.06 -0.05 -0.06 0.40 0.20 -0.06 -0.06 NA 

Young Low Low Low Gompertz 2.28 0.24 0.29 2.79 3.99 4.48 1.86 NA 

Young Low Low Low Log-logistic 0.04 0.58 -0.68 0.06 0.38 -0.93 0.80 NA 

Young Low Low Low Lognormal 0.13 0.63 -0.68 -0.11 0.04 -0.88 1.77 NA 

Young Low Low Low Weibull 1.32 0.77 0.03 1.87 2.94 0.40 1.90 NA 

Young Low Low Medium Gompertz 0.41 0.07 0.02 1.22 1.19 -0.03 -0.01 NA 

Young Low Low Medium Log-logistic -0.26 -0.22 -0.40 -0.04 -0.15 -0.44 -0.29 NA 

Young Low Low Medium Lognormal -0.11 -0.07 -0.27 0.08 -0.05 -0.31 -0.03 NA 

Young Low Low Medium Weibull 0.21 0.12 -0.05 0.72 0.63 -0.13 -0.04 NA 

Young Low Medium High Gompertz 0.12 -0.08 -0.07 0.71 0.48 -0.05 -0.07 -0.05 

Young Low Medium High Log-logistic -0.12 -0.21 -0.21 0.01 -0.11 -0.13 -0.15 -0.06 

Young Low Medium High Lognormal -0.06 -0.13 -0.13 0.08 -0.06 -0.09 -0.06 NA 

Young Low Medium High Weibull 0.05 -0.07 -0.08 0.44 0.24 -0.07 -0.07 -0.05 

Young Low Medium Low Gompertz 1.87 -0.17 -0.09 2.33 3.37 4.46 1.32 NA 

Young Low Medium Low Log-logistic -0.14 0.00 -0.93 -0.03 0.25 -1.12 0.96 NA 

Young Low Medium Low Lognormal -0.38 0.11 -0.88 -0.11 0.04 -1.07 NA NA 

Young Low Medium Low Weibull 0.96 0.22 -0.32 1.48 2.35 0.50 1.52 NA 

Young Low Medium Medium Gompertz 0.36 -0.16 -0.14 1.20 1.16 0.15 -0.08 NA 

Young Low Medium Medium Log-logistic -0.30 -0.36 -0.53 0.04 -0.12 -0.55 -0.27 NA 

Young Low Medium Medium Lognormal -0.17 -0.24 -0.42 0.13 -0.05 -0.43 0.00 NA 

Young Low Medium Medium Weibull 0.13 -0.08 -0.21 0.75 0.65 -0.25 -0.10 NA 

Young Medium High High Gompertz -0.73 -5.30 -1.85 -0.21 0.11 3.25 -0.39 NA 

Young Medium High High Log-logistic -0.66 -5.39 -1.66 -0.10 0.18 3.20 -0.21 NA 

Young Medium High High Lognormal -0.66 -5.24 -1.67 -0.16 0.05 3.15 -0.07 NA 

Young Medium High High Weibull -0.30 -5.01 -1.24 0.44 0.83 3.35 -0.17 NA 

Young Medium High Low Gompertz -0.50 -10.09 -6.13 -1.46 1.09 14.07 NA NA 

Young Medium High Low Log-logistic -0.17 -10.10 -5.96 -1.32 0.94 14.63 0.81 NA 
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Young Medium High Low Lognormal -0.31 -9.85 -6.25 -1.73 0.19 14.42 1.35 NA 

Young Medium High Low Weibull 0.80 -9.67 -4.49 0.14 2.59 15.41 NA NA 

Young Medium High Medium Gompertz -0.46 -8.43 -4.09 -0.50 0.64 9.89 -0.24 NA 

Young Medium High Medium Log-logistic -0.39 -8.52 -3.84 -0.37 0.66 9.75 -0.02 NA 

Young Medium High Medium Lognormal -0.42 -8.32 -3.96 -0.54 0.30 9.65 0.38 NA 

Young Medium High Medium Weibull 0.27 -8.04 -2.86 0.60 1.82 10.21 -0.13 NA 

Young Medium Low High Gompertz -0.41 -1.66 -1.36 0.72 1.01 -0.18 -0.98 NA 

Young Medium Low High Log-logistic -0.70 -2.87 -1.99 -0.09 0.16 1.61 -1.01 NA 

Young Medium Low High Lognormal -0.39 -2.82 -1.86 -0.17 -0.12 2.36 -0.17 0.02 

Young Medium Low High Weibull 0.95 -1.40 -0.15 2.17 2.64 2.65 -0.19 NA 

Young Medium Low Low Gompertz 2.85 -2.11 -1.38 2.99 7.46 7.27 NA NA 

Young Medium Low Low Log-logistic 0.41 -4.85 -3.88 0.38 3.92 6.48 NA NA 

Young Medium Low Low Lognormal -1.08 -5.27 -5.63 -2.17 0.11 2.57 3.91 NA 

Young Medium Low Low Weibull 5.52 -3.95 0.56 5.30 9.22 16.52 5.48 NA 

Young Medium Low Medium Gompertz 0.36 -2.31 -1.98 1.97 4.01 1.57 -1.09 NA 

Young Medium Low Medium Log-logistic -0.79 -4.42 -3.62 0.05 1.46 3.70 -1.92 NA 

Young Medium Low Medium Lognormal -0.62 -4.58 -3.98 -0.68 0.02 5.20 0.31 NA 

Young Medium Low Medium Weibull 3.13 -2.88 -0.01 4.06 6.10 11.45 0.09 NA 

Young Medium Medium High Gompertz -0.41 -2.08 -1.53 0.55 0.85 0.65 -0.91 NA 

Young Medium Medium High Log-logistic -0.61 -3.07 -1.96 -0.06 0.20 2.12 -0.85 NA 

Young Medium Medium High Lognormal -0.39 -3.04 -1.89 -0.18 -0.11 2.61 -0.15 0.04 

Young Medium Medium High Weibull 0.73 -1.87 -0.44 1.82 2.29 2.87 -0.30 NA 

Young Medium Medium Low Gompertz 2.07 -3.25 -2.22 2.17 6.42 7.21 NA NA 

Young Medium Medium Low Log-logistic 0.04 -5.50 -4.37 -0.08 3.32 6.83 NA NA 

Young Medium Medium Low Lognormal -1.80 -5.74 -5.70 -2.08 0.16 4.33 NA NA 

Young Medium Medium Low Weibull 4.82 -4.71 -0.33 4.44 8.19 16.50 NA NA 

Young Medium Medium Medium Gompertz 0.08 -3.12 -2.53 1.39 3.25 2.75 -1.22 NA 

Young Medium Medium Medium Log-logistic -0.60 -4.85 -3.76 -0.07 1.26 5.50 -1.65 NA 

Young Medium Medium Medium Lognormal -0.50 -4.92 -4.05 -0.68 0.04 6.37 0.26 NA 

Young Medium Medium Medium Weibull 2.61 -3.54 -0.61 3.42 5.33 11.26 -0.21 NA 
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Table 97:  

Mean bias of overall mean survival – converging hazards models 

Scenario characteristics  Distributions used for extrapolation 

Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Average High High High Gompertz 1.06 -0.44 0.66 1.46 2.07 1.70 0.92 NA 

Average High High High Log-logistic 1.10 -0.24 0.88 1.41 1.89 1.67 0.99 NA 

Average High High High Lognormal 1.05 -0.21 0.92 1.34 1.75 1.57 0.93 NA 

Average High High High Weibull 1.09 -0.32 0.81 1.45 1.99 1.70 0.94 NA 

Average High High Medium Gompertz 0.49 -2.67 -1.05 1.18 3.38 1.62 NA NA 

Average High High Medium Log-logistic 0.48 -2.71 -0.58 1.08 2.95 1.67 NA NA 

Average High High Medium Lognormal 0.50 -2.89 -0.37 1.02 2.65 2.08 NA NA 

Average High High Medium Weibull 0.76 -2.66 -0.61 1.25 3.24 1.92 1.40 NA 

Average High Low High Gompertz 2.21 3.06 2.44 2.81 3.29 -0.38 2.06 NA 

Average High Low High Log-logistic 1.59 2.59 1.76 2.25 2.84 -1.26 1.34 NA 

Average High Low High Lognormal 1.25 2.09 1.19 1.74 2.37 -1.07 1.21 NA 

Average High Low High Weibull 1.79 2.70 1.96 2.41 2.97 -0.86 1.53 NA 

Average High Low Medium Gompertz 1.64 3.91 NA 2.46 4.06 -3.88 NA NA 

Average High Low Medium Log-logistic 0.98 3.73 NA 1.81 3.72 -5.35 NA NA 

Average High Low Medium Lognormal -0.39 3.27 NA 0.30 2.90 -8.01 NA NA 

Average High Low Medium Weibull 1.12 3.72 NA 1.90 3.77 -4.91 NA NA 

Average High Medium High Gompertz 2.21 3.15 2.42 2.91 3.52 -0.55 1.80 NA 

Average High Medium High Log-logistic 1.33 2.24 1.41 1.97 2.63 -1.21 0.96 NA 

Average High Medium High Lognormal 1.09 1.72 0.95 1.52 2.15 -0.81 1.00 1.07 

Average High Medium High Weibull 1.55 2.43 1.64 2.19 2.84 -0.97 1.14 NA 

Average High Medium Medium Gompertz 2.02 4.15 NA 2.94 4.62 -3.61 NA NA 

Average High Medium Medium Log-logistic 0.72 3.40 NA 1.57 3.65 -5.74 NA NA 

Average High Medium Medium Lognormal -0.55 2.68 NA 0.15 2.76 -7.78 NA NA 

Average High Medium Medium Weibull 1.20 3.55 NA 1.99 3.95 -4.68 NA NA 

Average Low High High Gompertz 0.32 -1.53 -0.20 0.91 0.90 1.12 0.47 0.56 

Average Low High High Log-logistic 0.20 -1.55 -0.39 0.65 0.58 1.20 0.44 0.50 
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Average Low High High Lognormal 0.20 -1.55 -0.40 0.63 0.56 1.22 0.44 0.50 

Average Low High High Weibull 0.27 -1.54 -0.31 0.78 0.74 1.23 0.45 0.53 

Average Low High Low Gompertz 1.28 -3.71 -2.06 1.08 1.76 9.35 NA NA 

Average Low High Low Log-logistic 0.77 -3.77 -2.60 0.40 0.98 8.84 NA NA 

Average Low High Low Lognormal 0.67 -3.74 -2.65 0.29 0.84 8.59 NA NA 

Average Low High Low Weibull 1.02 -3.79 -2.43 0.66 1.33 9.00 1.36 NA 

Average Low High Medium Gompertz 0.66 -2.94 -1.20 1.13 1.30 5.03 0.61 NA 

Average Low High Medium Log-logistic 0.47 -2.95 -1.54 0.74 0.80 5.08 0.73 NA 

Average Low High Medium Lognormal 0.47 -2.96 -1.56 0.71 0.77 5.09 0.76 NA 

Average Low High Medium Weibull 0.55 -2.96 -1.41 0.90 1.03 5.11 0.66 NA 

Average Low Low High Gompertz 0.13 -0.04 -0.05 0.69 0.45 -0.05 -0.05 -0.05 

Average Low Low High Log-logistic -0.08 -0.12 -0.12 -0.01 -0.08 -0.11 -0.11 -0.03 

Average Low Low High Lognormal -0.04 -0.06 -0.06 0.06 -0.04 -0.07 -0.05 NA 

Average Low Low High Weibull 0.06 -0.04 -0.05 0.42 0.22 -0.05 -0.05 -0.05 

Average Low Low Low Gompertz 1.93 0.26 0.28 2.70 3.86 2.94 1.56 NA 

Average Low Low Low Log-logistic 0.02 0.59 -0.66 0.09 0.44 -0.91 0.56 NA 

Average Low Low Low Lognormal -0.16 0.65 -0.65 -0.06 0.11 -0.85 NA NA 

Average Low Low Low Weibull 1.28 0.78 0.06 1.89 2.96 0.23 1.78 NA 

Average Low Low Medium Gompertz 0.42 0.08 0.03 1.23 1.21 -0.02 0.00 NA 

Average Low Low Medium Log-logistic -0.22 -0.18 -0.37 0.00 -0.11 -0.41 -0.26 NA 

Average Low Low Medium Lognormal -0.09 -0.05 -0.25 0.11 -0.03 -0.29 -0.02 NA 

Average Low Low Medium Weibull 0.22 0.13 -0.05 0.74 0.64 -0.13 -0.04 NA 

Average Low Medium High Gompertz 0.14 -0.07 -0.06 0.72 0.51 -0.04 -0.06 -0.04 

Average Low Medium High Log-logistic -0.08 -0.16 -0.17 0.06 -0.06 -0.10 -0.10 -0.02 

Average Low Medium High Lognormal -0.04 -0.10 -0.11 0.11 -0.02 -0.07 -0.04 NA 

Average Low Medium High Weibull 0.06 -0.06 -0.07 0.46 0.26 -0.06 -0.06 -0.04 

Average Low Medium Low Gompertz 1.65 -0.14 -0.04 2.32 3.33 3.12 1.32 NA 

Average Low Medium Low Log-logistic -0.29 0.06 -0.86 0.06 0.33 -1.07 NA NA 

Average Low Medium Low Lognormal -0.33 0.15 -0.84 -0.04 0.12 -1.02 NA NA 
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Average Low Medium Low Weibull 0.87 0.24 -0.30 1.47 2.32 0.14 1.35 NA 

Average Low Medium Medium Gompertz 0.36 -0.14 -0.12 1.20 1.19 0.11 -0.07 NA 

Average Low Medium Medium Log-logistic -0.24 -0.30 -0.47 0.11 -0.05 -0.49 -0.21 NA 

Average Low Medium Medium Lognormal -0.14 -0.21 -0.39 0.17 0.00 -0.40 0.01 NA 

Average Low Medium Medium Weibull 0.15 -0.06 -0.19 0.78 0.69 -0.23 -0.09 NA 

Average Medium High High Gompertz 0.52 -2.77 0.10 1.14 1.36 1.92 0.90 1.00 

Average Medium High High Log-logistic 0.44 -2.87 0.20 1.17 1.37 1.79 0.97 NA 

Average Medium High High Lognormal 0.49 -2.84 0.14 1.08 1.23 1.75 1.00 1.05 

Average Medium High High Weibull 0.64 -2.70 0.43 1.48 1.75 1.88 0.98 NA 

Average Medium High Low Gompertz 0.49 -7.27 -3.41 0.50 2.50 8.87 1.75 NA 

Average Medium High Low Log-logistic 0.50 -7.37 -3.31 0.52 2.32 9.16 1.68 NA 

Average Medium High Low Lognormal 0.32 -7.24 -3.71 0.13 1.72 9.04 1.96 NA 

Average Medium High Low Weibull 1.28 -7.10 -2.10 1.66 3.58 9.90 1.74 NA 

Average Medium High Medium Gompertz 0.56 -5.72 -1.55 1.21 2.11 6.10 1.21 NA 

Average Medium High Medium Log-logistic 0.59 -5.81 -1.36 1.26 2.06 5.98 1.40 NA 

Average Medium High Medium Lognormal 0.52 -5.69 -1.55 1.07 1.74 5.93 1.61 NA 

Average Medium High Medium Weibull 1.00 -5.56 -0.66 1.90 2.83 6.23 1.26 NA 

Average Medium Low High Gompertz 0.31 -0.75 -0.48 1.35 1.62 0.30 -0.17 NA 

Average Medium Low High Log-logistic 0.21 -1.51 -0.68 0.88 1.13 1.34 0.09 NA 

Average Medium Low High Lognormal 0.28 -1.54 -0.65 0.72 0.81 1.68 0.65 NA 

Average Medium Low High Weibull 1.17 -0.70 0.46 2.31 2.68 1.90 0.34 NA 

Average Medium Low Low Gompertz 2.69 -1.10 -0.43 3.43 7.06 4.51 NA NA 

Average Medium Low Low Log-logistic 0.96 -3.43 -2.47 1.36 4.38 3.52 2.42 NA 

Average Medium Low Low Lognormal -1.22 -3.82 -4.11 -0.80 1.29 1.36 NA NA 

Average Medium Low Low Weibull 4.22 -3.17 1.08 4.99 7.98 10.21 NA NA 

Average Medium Low Medium Gompertz 0.95 -1.32 -1.02 2.57 4.31 1.26 -0.13 NA 

Average Medium Low Medium Log-logistic 0.06 -2.98 -2.18 1.14 2.39 2.62 -0.63 NA 

Average Medium Low Medium Lognormal 0.02 -3.21 -2.63 0.41 1.10 3.38 1.09 NA 

Average Medium Low Medium Weibull 2.68 -2.10 0.72 4.05 5.65 7.26 0.51 NA 
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Average Medium Medium High Gompertz 0.35 -1.00 -0.50 1.26 1.54 0.80 -0.01 NA 

Average Medium Medium High Log-logistic 0.25 -1.63 -0.63 0.90 1.14 1.54 0.20 NA 

Average Medium Medium High Lognormal 0.28 -1.67 -0.61 0.73 0.83 1.76 0.66 NA 

Average Medium Medium High Weibull 1.04 -0.97 0.33 2.11 2.47 1.98 0.35 NA 

Average Medium Medium Low Gompertz 1.85 -2.05 -1.25 2.61 6.05 3.90 NA NA 

Average Medium Medium Low Log-logistic 0.49 -3.94 -2.80 1.09 3.97 4.10 NA NA 

Average Medium Medium Low Lognormal -0.43 -4.22 -4.20 -0.77 1.31 2.32 3.00 NA 

Average Medium Medium Low Weibull 3.76 -3.66 0.52 4.47 7.35 10.13 NA NA 

Average Medium Medium Medium Gompertz 0.72 -1.95 -1.37 2.16 3.77 1.97 -0.29 NA 

Average Medium Medium Medium Log-logistic 0.18 -3.29 -2.22 1.09 2.28 3.61 -0.42 NA 

Average Medium Medium Medium Lognormal 0.10 -3.48 -2.64 0.42 1.11 4.12 1.09 NA 

Average Medium Medium Medium Weibull 2.34 -2.53 0.31 3.61 5.14 7.12 0.37 NA 

Old High High High Gompertz -0.54 -0.53 -0.54 -0.48 -0.55 -0.54 -0.57 NA 

Old High High High Log-logistic -0.67 -0.65 -0.66 -0.64 -0.73 -0.67 -0.69 NA 

Old High High High Lognormal -0.73 -0.70 -0.71 -0.70 -0.80 -0.72 -0.75 NA 

Old High High High Weibull -0.61 -0.59 -0.60 -0.57 -0.65 -0.61 -0.64 NA 

Old High High Medium Gompertz -0.35 -0.69 -0.58 0.02 0.40 -0.56 -0.66 NA 

Old High High Medium Log-logistic -0.48 -0.81 -0.67 -0.16 0.18 -0.69 -0.73 -0.46 

Old High High Medium Lognormal -0.50 -0.88 -0.67 -0.22 0.08 -0.62 -0.71 NA 

Old High High Medium Weibull -0.39 -0.75 -0.58 -0.06 0.29 -0.57 -0.69 NA 

Old High Low High Gompertz -0.09 -0.10 0.05 0.05 -0.13 -0.12 -0.28 NA 

Old High Low High Log-logistic -0.08 -0.09 0.05 0.06 -0.11 -0.14 -0.27 NA 

Old High Low High Lognormal -0.08 -0.08 0.05 0.06 -0.10 -0.14 -0.23 NA 

Old High Low High Weibull -0.08 -0.09 0.06 0.06 -0.11 -0.13 -0.26 NA 

Old High Low Medium Gompertz 0.30 0.71 0.43 0.63 0.77 -0.94 0.17 NA 

Old High Low Medium Log-logistic 0.29 0.75 0.41 0.65 0.81 -1.03 0.17 NA 

Old High Low Medium Lognormal 0.24 0.77 0.35 0.64 0.84 -1.22 0.09 NA 

Old High Low Medium Weibull 0.31 0.75 0.43 0.65 0.81 -0.97 0.17 NA 

Old High Medium High Gompertz -0.36 -0.36 -0.26 -0.25 -0.41 -0.38 -0.49 NA 
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Old High Medium High Log-logistic -0.38 -0.39 -0.29 -0.27 -0.42 -0.41 -0.48 NA 

Old High Medium High Lognormal -0.38 -0.39 -0.31 -0.29 -0.43 -0.41 -0.46 NA 

Old High Medium High Weibull -0.36 -0.37 -0.28 -0.26 -0.41 -0.39 -0.48 NA 

Old High Medium Medium Gompertz 0.01 0.38 0.09 0.36 0.55 -1.13 -0.19 NA 

Old High Medium Medium Log-logistic -0.05 0.37 0.01 0.32 0.54 -1.26 -0.26 NA 

Old High Medium Medium Lognormal -0.14 0.34 -0.11 0.26 0.53 -1.49 -0.38 NA 

Old High Medium Medium Weibull -0.03 0.37 0.03 0.33 0.56 -1.21 -0.27 NA 

Old Low High High Gompertz -0.04 -0.36 -0.03 0.23 0.18 -0.22 -0.01 NA 

Old Low High High Log-logistic -0.08 -0.36 -0.08 0.13 0.08 -0.19 -0.05 NA 

Old Low High High Lognormal -0.07 -0.36 -0.08 0.13 0.08 -0.18 -0.04 NA 

Old Low High High Weibull -0.05 -0.36 -0.06 0.18 0.12 -0.19 -0.03 -0.03 

Old Low High Low Gompertz 0.35 -1.77 -0.64 0.68 0.99 2.39 0.46 NA 

Old Low High Low Log-logistic 0.16 -1.76 -0.97 0.39 0.66 2.14 0.47 NA 

Old Low High Low Lognormal 0.18 -1.76 -0.95 0.41 0.68 2.19 0.54 NA 

Old Low High Low Weibull 0.27 -1.78 -0.82 0.55 0.85 2.31 0.52 NA 

Old Low High Medium Gompertz 0.16 -1.15 -0.21 0.54 0.63 0.92 0.24 NA 

Old Low High Medium Log-logistic 0.08 -1.14 -0.38 0.39 0.44 0.92 0.23 NA 

Old Low High Medium Lognormal 0.08 -1.13 -0.38 0.39 0.44 0.94 0.25 NA 

Old Low High Medium Weibull 0.12 -1.14 -0.30 0.47 0.53 0.95 0.24 NA 

Old Low Low High Gompertz 0.08 -0.04 -0.05 0.47 0.34 -0.05 -0.05 -0.05 

Old Low Low High Log-logistic -0.03 -0.06 -0.06 0.05 0.00 -0.06 -0.07 NA 

Old Low Low High Lognormal -0.02 -0.05 -0.05 0.07 0.00 -0.06 -0.05 NA 

Old Low Low High Weibull 0.04 -0.04 -0.05 0.33 0.20 -0.05 -0.05 -0.05 

Old Low Low Low Gompertz 1.00 0.22 0.21 1.62 2.23 0.92 0.78 NA 

Old Low Low Low Log-logistic 0.07 0.58 -0.45 0.26 0.64 -0.69 NA NA 

Old Low Low Low Lognormal -0.04 0.57 -0.50 0.10 0.36 -0.71 NA NA 

Old Low Low Low Weibull 0.81 0.66 0.08 1.35 2.02 -0.04 0.81 NA 

Old Low Low Medium Gompertz 0.27 0.06 0.02 0.79 0.82 -0.03 -0.01 NA 

Old Low Low Medium Log-logistic -0.11 -0.09 -0.24 0.08 0.03 -0.27 -0.17 NA 



142 
 

Age Survival 

Heteroge

neity 

Informati

on 

Distributi

on 

Mean of 

method 

Exponenti

al Weibull 

Log-

logistic 

Lognorma

l Gompertz 

Gen. 

Gamma Gen. F 

Old Low Low Medium Lognormal -0.06 -0.03 -0.19 0.12 0.05 -0.22 -0.07 NA 

Old Low Low Medium Weibull 0.17 0.10 -0.04 0.55 0.53 -0.11 -0.04 NA 

Old Low Medium High Gompertz 0.07 -0.05 -0.05 0.43 0.32 -0.05 -0.05 -0.04 

Old Low Medium High Log-logistic -0.03 -0.07 -0.08 0.09 0.03 -0.06 -0.06 -0.04 

Old Low Medium High Lognormal -0.02 -0.06 -0.06 0.09 0.02 -0.06 -0.05 -0.04 

Old Low Medium High Weibull 0.04 -0.05 -0.06 0.31 0.20 -0.05 -0.05 -0.05 

Old Low Medium Low Gompertz 0.74 -0.08 -0.02 1.35 1.89 0.83 0.50 NA 

Old Low Medium Low Log-logistic -0.09 0.17 -0.58 0.22 0.53 -0.78 NA NA 

Old Low Medium Low Lognormal -0.05 0.19 -0.61 0.12 0.36 -0.80 0.45 NA 

Old Low Medium Low Weibull 0.49 0.21 -0.21 1.00 1.54 -0.17 0.56 NA 

Old Low Medium Medium Gompertz 0.21 -0.09 -0.08 0.71 0.75 0.00 -0.05 NA 

Old Low Medium Medium Log-logistic -0.11 -0.15 -0.29 0.15 0.09 -0.30 -0.13 NA 

Old Low Medium Medium Lognormal -0.07 -0.12 -0.26 0.16 0.10 -0.27 -0.05 NA 

Old Low Medium Medium Weibull 0.10 -0.04 -0.14 0.51 0.51 -0.17 -0.07 NA 

Old Medium High High Gompertz -0.19 -0.46 -0.16 -0.01 -0.06 -0.28 -0.16 -0.16 

Old Medium High High Log-logistic -0.20 -0.49 -0.15 -0.01 -0.07 -0.33 -0.16 -0.16 

Old Medium High High Lognormal -0.19 -0.49 -0.13 -0.01 -0.08 -0.32 -0.15 -0.15 

Old Medium High High Weibull -0.14 -0.46 -0.10 0.07 0.02 -0.30 -0.10 -0.10 

Old Medium High Low Gompertz 0.01 -2.69 -0.87 0.50 1.13 1.81 0.19 NA 

Old Medium High Low Log-logistic 0.06 -2.80 -0.79 0.52 1.08 2.02 0.35 NA 

Old Medium High Low Lognormal -0.06 -2.78 -0.90 0.43 0.95 2.01 NA NA 

Old Medium High Low Weibull 0.27 -2.74 -0.35 0.87 1.45 2.17 0.24 NA 

Old Medium High Medium Gompertz 0.05 -1.68 -0.24 0.47 0.68 0.91 0.17 NA 

Old Medium High Medium Log-logistic 0.05 -1.76 -0.19 0.48 0.67 0.90 0.22 NA 

Old Medium High Medium Lognormal 0.04 -1.76 -0.23 0.44 0.60 0.90 0.29 NA 

Old Medium High Medium Weibull 0.16 -1.71 0.01 0.66 0.88 0.96 0.16 NA 

Old Medium Low High Gompertz 0.17 0.03 0.03 0.47 0.45 0.03 0.03 NA 

Old Medium Low High Log-logistic 0.13 -0.07 0.03 0.35 0.35 0.09 0.06 0.07 

Old Medium Low High Lognormal 0.11 -0.09 0.02 0.26 0.25 0.10 0.09 0.09 
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Old Medium Low High Weibull 0.24 0.02 0.15 0.55 0.49 0.14 0.08 NA 

Old Medium Low Low Gompertz 1.04 0.16 0.03 1.56 2.68 0.50 1.30 NA 

Old Medium Low Low Log-logistic 0.50 -0.82 -0.53 1.08 2.09 0.52 0.68 NA 

Old Medium Low Low Lognormal -0.14 -1.15 -1.50 0.16 1.05 -0.32 0.93 NA 

Old Medium Low Low Weibull 1.26 -1.10 0.67 1.92 2.74 2.23 1.12 NA 

Old Medium Low Medium Gompertz 0.56 0.03 0.07 1.24 1.72 0.22 0.09 NA 

Old Medium Low Medium Log-logistic 0.31 -0.58 -0.26 0.85 1.23 0.53 0.10 NA 

Old Medium Low Medium Lognormal 0.22 -0.75 -0.50 0.58 0.84 0.64 0.52 NA 

Old Medium Low Medium Weibull 0.83 -0.43 0.57 1.44 1.81 1.42 0.20 NA 

Old Medium Medium High Gompertz 0.10 -0.08 -0.03 0.36 0.34 0.00 -0.02 NA 

Old Medium Medium High Log-logistic 0.04 -0.17 -0.05 0.25 0.24 0.01 -0.02 NA 

Old Medium Medium High Lognormal 0.02 -0.19 -0.05 0.17 0.16 0.02 0.01 NA 

Old Medium Medium High Weibull 0.15 -0.10 0.06 0.44 0.40 0.06 0.01 NA 

Old Medium Medium Low Gompertz 0.72 -0.34 -0.25 1.32 2.40 0.48 NA NA 

Old Medium Medium Low Log-logistic 0.32 -1.17 -0.75 0.87 1.83 0.61 0.52 NA 

Old Medium Medium Low Lognormal -0.13 -1.40 -1.47 0.19 1.03 0.07 0.82 NA 

Old Medium Medium Low Weibull 1.06 -1.31 0.42 1.73 2.56 2.12 0.85 NA 

Old Medium Medium Medium Gompertz 0.38 -0.30 -0.14 1.02 1.45 0.25 -0.02 NA 

Old Medium Medium Medium Log-logistic 0.21 -0.78 -0.35 0.72 1.07 0.59 0.03 NA 

Old Medium Medium Medium Lognormal 0.16 -0.92 -0.54 0.51 0.75 0.72 0.43 NA 

Old Medium Medium Medium Weibull 0.66 -0.66 0.37 1.25 1.61 1.30 0.10 NA 

Young High High High Gompertz 1.62 -2.38 0.57 2.11 3.35 4.07 2.00 NA 

Young High High High Log-logistic 1.69 -1.99 1.12 2.11 3.14 3.89 1.90 NA 

Young High High High Lognormal 1.83 -1.86 1.37 2.11 2.98 3.75 NA 2.63 

Young High High High Weibull 1.91 -2.10 1.02 2.23 3.36 4.08 2.01 2.76 

Young High High Medium Gompertz 0.00 -6.50 -3.29 0.57 4.47 3.35 1.39 NA 

Young High High Medium Log-logistic -0.13 -6.73 -2.23 0.62 3.96 3.76 NA NA 

Young High High Medium Lognormal -0.32 -7.20 -2.09 0.36 3.37 3.93 NA NA 

Young High High Medium Weibull -0.04 -6.61 -2.53 0.71 4.27 3.93 NA NA 
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Young High Low High Gompertz 4.73 5.92 4.96 5.58 6.71 0.50 NA NA 

Young High Low High Log-logistic 2.53 4.10 2.54 3.46 4.87 -2.31 NA NA 

Young High Low High Lognormal 1.61 2.69 1.03 2.11 3.55 -2.11 2.37 NA 

Young High Low High Weibull 3.18 4.46 3.19 4.02 5.33 -1.15 3.22 NA 

Young High Low Medium Gompertz 3.29 6.71 NA 3.83 7.06 -4.44 NA NA 

Young High Low Medium Log-logistic 0.70 5.44 NA 1.04 5.17 -8.84 NA NA 

Young High Low Medium Lognormal -2.62 3.88 NA -2.81 2.65 -14.19 NA NA 

Young High Low Medium Weibull 1.53 5.56 NA 1.99 5.75 -7.20 NA NA 

Young High Medium High Gompertz 4.60 6.13 4.80 5.71 7.13 -0.49 4.31 NA 

Young High Medium High Log-logistic 2.23 3.60 2.06 3.12 4.64 -2.29 NA NA 

Young High Medium High Lognormal 1.59 2.23 0.91 2.00 3.42 -1.27 2.25 NA 

Young High Medium High Weibull 2.81 4.16 2.73 3.76 5.25 -1.67 2.60 NA 

Young High Medium Medium Gompertz -3.34 NA NA NA NA -3.34 NA NA 

Young High Medium Medium Log-logistic 0.41 4.88 NA 0.85 5.23 -9.31 NA NA 

Young High Medium Medium Lognormal -13.37 NA NA NA NA -13.37 NA NA 

Young High Medium Medium Weibull 1.53 5.38 NA 2.09 6.07 -7.41 NA NA 

Young Low High High Gompertz 0.41 -2.36 -0.67 1.12 1.06 2.45 0.52 0.73 

Young Low High High Log-logistic 0.23 -2.40 -0.95 0.72 0.58 2.54 0.49 0.64 

Young Low High High Lognormal 0.24 -2.38 -0.94 0.73 0.58 2.57 0.52 0.64 

Young Low High High Weibull 0.33 -2.38 -0.82 0.92 0.82 2.57 0.51 0.68 

Young Low High Low Gompertz 1.95 -4.68 -2.97 1.14 1.97 14.65 1.60 NA 

Young Low High Low Log-logistic 1.45 -4.72 -3.53 0.22 0.85 13.89 1.99 NA 

Young Low High Low Lognormal 1.46 -4.71 -3.54 0.20 0.83 13.87 2.12 NA 

Young Low High Low Weibull 1.71 -4.78 -3.34 0.64 1.44 14.41 1.90 NA 

Young Low High Medium Gompertz 1.00 -3.86 -1.94 1.30 1.46 8.42 0.63 NA 

Young Low High Medium Log-logistic 0.72 -3.91 -2.39 0.71 0.72 8.41 0.75 NA 

Young Low High Medium Lognormal 0.74 -3.88 -2.38 0.72 0.72 8.46 0.82 NA 

Young Low High Medium Weibull 0.87 -3.90 -2.20 1.01 1.12 8.55 0.64 NA 

Young Low Low High Gompertz 0.14 -0.04 -0.05 0.75 0.47 -0.05 -0.05 -0.05 
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Young Low Low High Log-logistic -0.11 -0.14 -0.15 -0.03 -0.10 -0.13 -0.13 NA 

Young Low Low High Lognormal -0.04 -0.06 -0.06 0.07 -0.04 -0.07 -0.05 NA 

Young Low Low High Weibull 0.08 -0.04 -0.05 0.44 0.22 -0.05 -0.05 NA 

Young Low Low Low Gompertz 2.48 0.26 0.31 3.14 4.49 4.61 2.11 NA 

Young Low Low Low Log-logistic 0.08 0.60 -0.68 0.09 0.42 -0.92 0.95 NA 

Young Low Low Low Lognormal 0.18 0.65 -0.68 -0.09 0.05 -0.88 2.04 NA 

Young Low Low Low Weibull 1.45 0.79 0.04 2.06 3.24 0.44 2.15 NA 

Young Low Low Medium Gompertz 0.46 0.08 0.03 1.36 1.30 -0.02 0.00 NA 

Young Low Low Medium Log-logistic -0.25 -0.21 -0.40 -0.02 -0.14 -0.44 -0.28 NA 

Young Low Low Medium Lognormal -0.09 -0.06 -0.26 0.11 -0.04 -0.30 -0.02 NA 

Young Low Low Medium Weibull 0.23 0.13 -0.05 0.79 0.67 -0.13 -0.04 NA 

Young Low Medium High Gompertz 0.16 -0.07 -0.06 0.83 0.55 -0.03 -0.06 -0.03 

Young Low Medium High Log-logistic -0.10 -0.20 -0.20 0.05 -0.09 -0.11 -0.13 -0.03 

Young Low Medium High Lognormal -0.04 -0.12 -0.12 0.12 -0.04 -0.08 -0.04 NA 

Young Low Medium High Weibull 0.07 -0.06 -0.07 0.51 0.27 -0.06 -0.06 -0.04 

Young Low Medium Low Gompertz 2.06 -0.16 -0.07 2.66 3.82 4.60 1.54 NA 

Young Low Medium Low Log-logistic -0.09 0.02 -0.92 0.02 0.30 -1.11 1.16 NA 

Young Low Medium Low Lognormal -0.36 0.12 -0.88 -0.07 0.08 -1.07 NA NA 

Young Low Medium Low Weibull 1.09 0.23 -0.31 1.67 2.62 0.55 1.76 NA 

Young Low Medium Medium Gompertz 0.42 -0.15 -0.12 1.38 1.31 0.19 -0.07 NA 

Young Low Medium Medium Log-logistic -0.28 -0.36 -0.53 0.09 -0.10 -0.55 -0.25 NA 

Young Low Medium Medium Lognormal -0.15 -0.23 -0.41 0.18 -0.03 -0.43 0.03 NA 

Young Low Medium Medium Weibull 0.16 -0.07 -0.20 0.85 0.71 -0.24 -0.09 NA 

Young Medium High High Gompertz 0.40 -5.07 -0.64 1.31 1.71 3.97 1.14 NA 

Young Medium High High Log-logistic 0.45 -5.18 -0.44 1.40 1.75 3.85 1.31 NA 

Young Medium High High Lognormal 0.40 -5.06 -0.52 1.28 1.55 3.77 1.41 NA 

Young Medium High High Weibull 0.80 -4.82 -0.02 1.94 2.41 4.00 1.27 NA 

Young Medium High Low Gompertz 0.25 -10.07 -5.64 -0.14 2.76 14.35 NA NA 

Young Medium High Low Log-logistic 0.67 -10.08 -5.48 -0.01 2.56 14.87 2.15 NA 
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Young Medium High Low Lognormal 0.47 -9.84 -5.86 -0.53 1.67 14.65 2.71 NA 

Young Medium High Low Weibull 1.61 -9.65 -3.84 1.59 4.34 15.64 NA NA 

Young Medium High Medium Gompertz 0.52 -8.37 -3.34 0.96 2.29 10.33 1.23 NA 

Young Medium High Medium Log-logistic 0.58 -8.47 -3.04 1.09 2.28 10.15 1.46 NA 

Young Medium High Medium Lognormal 0.50 -8.28 -3.25 0.84 1.82 10.03 1.87 NA 

Young Medium High Medium Weibull 1.26 -7.99 -1.96 2.13 3.53 10.60 1.28 NA 

Young Medium Low High Gompertz 0.11 -1.48 -1.11 1.57 1.93 0.39 -0.62 NA 

Young Medium Low High Log-logistic -0.03 -2.71 -1.63 0.84 1.15 2.47 -0.32 NA 

Young Medium Low High Lognormal 0.31 -2.68 -1.49 0.72 0.78 3.16 0.71 0.95 

Young Medium Low High Weibull 1.71 -1.22 0.36 3.31 3.91 3.55 0.31 NA 

Young Medium Low Low Gompertz 3.66 -1.93 -0.93 4.23 9.33 7.59 NA NA 

Young Medium Low Low Log-logistic 1.05 -4.78 -3.61 1.40 5.47 6.79 NA NA 

Young Medium Low Low Lognormal -0.55 -5.22 -5.56 -1.57 1.05 2.84 5.14 NA 

Young Medium Low Low Weibull 6.53 -3.88 1.31 6.91 11.32 16.88 6.67 NA 

Young Medium Low Medium Gompertz 1.01 -2.17 -1.79 3.05 5.47 2.14 -0.63 NA 

Young Medium Low Medium Log-logistic -0.18 -4.34 -3.46 1.01 2.68 4.40 -1.38 NA 

Young Medium Low Medium Lognormal -0.03 -4.52 -3.87 0.12 0.95 5.90 1.26 NA 

Young Medium Low Medium Weibull 4.02 -2.78 0.54 5.51 7.90 12.21 0.75 NA 

Young Medium Medium High Gompertz 0.21 -1.89 -1.21 1.47 1.86 1.45 -0.40 NA 

Young Medium Medium High Log-logistic 0.11 -2.91 -1.53 0.93 1.26 2.98 -0.06 NA 

Young Medium Medium High Lognormal 0.35 -2.89 -1.47 0.76 0.85 3.40 0.79 1.02 

Young Medium Medium High Weibull 1.51 -1.69 0.12 2.99 3.58 3.77 0.30 NA 

Young Medium Medium Low Gompertz 2.84 -3.11 -1.82 3.37 8.23 7.52 NA NA 

Young Medium Medium Low Log-logistic 0.67 -5.44 -4.13 0.92 4.84 7.15 NA NA 

Young Medium Medium Low Lognormal -1.39 -5.69 -5.62 -1.42 1.16 4.61 NA NA 

Young Medium Medium Low Weibull 5.75 -4.66 0.37 5.99 10.21 16.85 NA NA 

Young Medium Medium Medium Gompertz 0.76 -3.00 -2.33 2.46 4.67 3.43 -0.69 NA 

Young Medium Medium Medium Log-logistic 0.05 -4.77 -3.58 0.93 2.51 6.24 -1.00 NA 

Young Medium Medium Medium Lognormal 0.12 -4.86 -3.92 0.18 1.03 7.06 1.25 NA 

Young Medium Medium Medium Weibull 3.48 -3.45 -0.07 4.84 7.08 11.99 0.49 NA 
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