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1 Introduction & Background

When companies are developing a new healthcare technology, such as a new drug, diagnostic technique, or
surgical procedure, the end goal is to release that technology onto the market. This will almost always involve
obtaining approval from the healthcare governing bodies in the countries of their target markets, especially so
for new drugs. For these approvals, some governing bodies will want not just an analysis and proof of the
health-related effects, but also a health economic evaluation of the new technology when implemented into the
respective national healthcare programs based on data gathered during the clinical trials (Coyle et al., 2023;
NICE, 2022).

In the United Kingdom (UK) specifically, the National Institute for Health and Care Excellence (NICE) that
governs healthcare technology assessments (HT'As) in the UK notes that a large portion of the technologies
NICE assesses affect the survival of patients, and thus having an accurate estimation of survival is essential
(Latimer, 2011; Latimer, 2013). However, patients are typically only monitored for a limited time during a
clinical trial, and some patients will still be alive at the end of this follow-up period. Thus, to get an estimate of
the survival of these patients, survival analyses and extrapolations are required (Clark et al., 2003).

Recent developments have shown that current survival extrapolation methods do not adequately account for
general population background mortality (GPM), which reflects the mortality of the general population and is
affected by factors such as age, sex, calendar year, location, etc. (Rutherford et al., 2020; Verheul et al., 1993).
As GPM increases with age, some extrapolations could result in patients having lower mortality than what is
observed in the general population if not adjusted correctly for GPM, leading to clinically implausible results
(Latimer, 2011). Several researchers have described or compared approaches of incorporating GPM
information into survival extrapolations in specific situations, but a general consensus on what method should
be used in certain situations is lacking (Guyot et al., 2017; Jackson et al., 2017). Others have recommended
assessing the performance of GPM incorporating extrapolation methods in a more generalised simulation study
(van Oostrum et al., 2021). This thesis responds to that recommendation.

In the next chapter, a problem description will be given based on the given assignment by OPEN Health and
the context of the van Oostrum et al. (2021) study that inspired the assignment. Then, an extensive literature
review was conducted, results of which will be reported in Chapter 3. Chapter 4 describes the methods used.
Chapter 5 will present the results, which will be further discussed in Chapter 6. Finally, Chapter 7 will give
conclusions and recommendations.



2 Problem description

This chapter will start with a brief literature review of some relevant sources cited by van Oostrum et al. and
others to get a better understanding of the problem of incorporating GPM into survival analyses as in their
research. Then, the assignment as originally presented by OPEN Health will be reviewed and a description of
the problem context of this research will be given. Finally, this chapter will be concluded by describing the core
problem and defining the research questions.

2.1 Literature review

211 Survival analyses and extrapolations

Survival analyses are a common technique in health economic evaluations, as a high proportion of technologies
assessed affect survival (Latimer, 2011; Latimer, 2013). Survival analyses are used to estimate the time to an
event of interest, generally called the survival time. The event can be many things, such as the time from
remission until relapse, or from diagnosis until death. Specific survival analysis methods are required because
survival data is typically censored, for example because the event of interest does not occur during follow-up
for all patients in the trial or some patients are lost to follow-up (Clark et al., 2003).

Most survival analyses will use a Kaplan-Meier curve to visualise and describe survival information gathered
during a clinical trial, for example to obtain the median survival. Such a Kaplan-Meier curve gives a non-
parametric estimate of the survival probability, or §(7), meaning the probability that a patient survives until time
t. Kaplan-Meier curves are used because the specific formula for S(#) accounts for patients that are censored,
cither because the event of interest did not occur for them or because they were lost to follow-up (Kaplan &
Meier, 1958). Another important function in survival analyses is the hazard function, or A(#), which is the
instantaneous event rate for someone who has already survived until time # (Clark et al., 2003).

The Kaplan-Meier curve, however, will not give any information about expected survival beyond the trial
period. Thus, to extrapolate survival beyond trial observations, a parametric model is often fitted to the patient-
level data. For doing so, the hazard function is assumed to follow a certain distribution, such as the Weibull or
exponential distribution, and parameters are estimated using maximum likelihood estimation (MLE)
(Kleinbaum & Klein, 2005). Once a distribution has been fitted, outcomes such as expected survival can be
estimated by extrapolating the survival.

2.1.2  Survival extrapolations incorporating background mortality

When a parametric model is fitted solely to the survival data from a clinical trial to make an extrapolation and
estimate the expected survival as described above, the resulting all-cause mortality (ACM) functions disregard
the difference between disease-specific mortality (DSM) and general population background mortality (GPM).
This can lead to the extrapolated overall survival being higher than the survival seen in the general population
since mortality is mostly driven by DSM during the trial period but GPM hazards will increase over time, for
example because patients become older during the extrapolation period and the risk of age-related death will
increase. In other words, extrapolations based solely on the trial data may produce biased extrapolations as the
increasing GPM hazards are ignored, even though they may explain a larger part of mortality than DSM in the
long term (van Oostrum et al., 2021). Therefore, recent NICE guidance recommends including GPM in ACM
functions, as this currently is not common practice in survival analyses (Rutherford et al., 2020), and other
guidance recommends using GPM when DSM is low or a treatment effect is large (Coyle et al., 2023).



Van Oostrum et al. (2021) tested several methods of incorporating GPM hazards into ACM functions, as
recommended by NICE, and compared these to an extrapolation without adjustment for GPM on three
datasets from oncological case studies. The following four extrapolation methods were compared:

¢ Internal additive hazards: add GPM hazards to the DSM hazard function and fit a distribution over
the combined hazard function (Jakobsen et al., 2019; Latimer, 2011),

¢ Converging hazards: patients have a higher initial mortality compared to the general population, but
this decreases until the mortality rate converges to that of the general population,

*  Proportional hazards: a hazard ratio that represents the excess mortality between the patients and
the general population is calculated to multiply the GPM hazards with to obtain ACM,

*  External additive hazards: like the internal additive approach, GPM hazards are added to DSM when
making extrapolations, however, GPM is ignored when fitting the survival model (Jackson et al., 2017).

Van Oostrum et al. (2021) compared the four GPM incorporating methods to each other and to extrapolations
that did not include GPM hazards. For each of the methods and case studies, multiple parametric distributions
were fitted (exponential, Weibull, log-logistic, loghormal and Gompertz).

The findings from van Oostrum et al. (2021) were that GPM adjustments are important, as not adjusting for
GPM will often result in survival extrapolations exceeding that of the general population. The one approach
they found to have face validity in all instances was the internal additive hazards approach. However, they also
found that the approaches have very different outcomes, and some methods could be more applicable in
different situations. Finally, they recommended comparing the performance of the four approaches on
additional datasets to test the generalisability of their findings beyond the oncological case studies, and to
compare the approaches using a simulation study with known DSM and GPM (van Oostrum et al., 2021).

2.2 Given assignment

The assignment given by OPEN Health was a direct response to the call for this research on the generalisability
of the findings of van Oostrum et al., which OPEN Health proposed to determine by performing a simulation
study. A simulation model would be built that can model patients with differing DSM and GPM, incorporating
additional parametric distributions to generate more varied datasets compared to van Oostrum et al. Then, the
proposed extrapolation methods by van Oostrum et al. would be applied to the output data of the simulation
to compare different scenarios and determine the performance of the methods.

2.3 Problem context

OPEN Health provides several services to pharmaceutical companies, such as providing support in market
access strategy and patient engagement. Furthermore, they perform analyses of clinical trials and new health
technologies, for example to estimate the effectiveness of a new health technology or for gaining approval from
the relevant healthcare governing bodies. Thus, performing survival analyses is a common practice at OPEN
Health. The question of whether or not to include GPM in these analyses is typically discussed with clients
beforehand, and the answer often depends on the specific requirements for the approval processes of new
healthcare technologies.

Herein lied the main problem, as the current guidance for HT'As in, for example, the UK and Canada does
recommend considering GPM adjustment in survival analyses (Coyle et al., 2023; Rutherford et al., 2020),
guidance on what specific methods to use is lacking (Coyle et al., 2023; Jackson et al., 2017). Van Oostrum et
al. (2021) drew some initial conclusions, for example that the internal additive hazards approach was at least
face valid for the different case studies used. However, these conclusions only apply to those specific case
studies. Thus, more research was needed on the accuracy and applicability of the various GPM adjusting
approaches in settings other than the oncological case studies to provide more scientific basis for guidance for
HTAs.



24 Core problem

To summarize, the core problem at hand was the lack of guidance for selecting a survival extrapolation method
that incorporates GPM. Such guidance could be used by OPEN Health to improve the quality of their survival
analyses, as it would give a stronger scientific basis when selecting an extrapolation method. There were other
problem owners in this case, such as HT'A bodies that want to improve their guidelines and other researchers
that study survival analysis techniques. Thus, other perspectives that do not necessarily apply to OPEN Health
were also considered such that the conclusions and recommendations of the research applied to other problem
owners as well. To summarize, the goal of the research was to provide guidance for selecting a survival
extrapolation method that incorporates GPM when performing survival analyses for HTAs.

2.5 Research questions

Based on the core problem research questions were defined to solve the following research problem:

More research is needed on the performance of survival extrapolation methods that incorporate GPM because
of gaps in literature related to the performance of survival extrapolation methods that incorporate GPM.

As the current research is responding to a recommendation to use a simulation study, the research question
corresponding to the research problem is as follows:

What is the performance in terms of accuracy of survival extrapolation methods that incorporate GPM
information in scenarios with different patient characteristics and availability of information?

With the following sub-questions:

1. How can we implement the survival extrapolation methods that incorporate GPM into survival analysis
packages for R?

To initialise the research and get a better understanding of the extrapolation methods that incorporate GPM,

the extrapolation methods compared in this research were implemented into an R script before considering

how the simulation would be performed. The selection of extrapolation methods to compare was based on a

literature review described in Chapter 3.

2. How do we create simulated datasets which reflect a wide range of relevant patient characteristics?
When the extrapolation methods were implemented and validated, the simulation study was designed. The
simulation study should create datasets similar to a clinical trial, but with a known survival. As such, datasets
were generated and censored such that the survival was known from the uncensored data, and extrapolations
could be performed on the censored data in order to assess the performance of the extrapolation methods. To
explore how such datasets could be created using a simulation study a literature review was performed and
described in Chapter 3.

3. How accurate are the extrapolation methods?
Finally, to conclude the research, the performance of each of the methods was compared.



3 Literature review

This chapter describes an exploratory literature review aimed at obtaining a better understanding of survival
analysis, extrapolation, how GPM can be included, and simulation to ensure the research at hand was performed
with the correct techniques and according to the best practices described in literature. Furthermore, gaps in
current guidance were identified, as well as the various options available in terms of models, performance
criteria, etc. In the next section, the search terms and selection process will be described. Afterwards, the results
of the literature review will be presented in two sections, one on survival analysis and extrapolation, and one
on simulation studies.

3.1 Search terms

As a broad search for “Survival analysis” on PubMed yielded over 695,000 papers, the query needed to be more
specific. Thus, for finding the literature on survival analysis and extrapolation, two searches were performed,
namely:

1. “survival analysis” AND “extrapolation”
2. “survival analysis” AND (“background mortality” OR “general population mortality” OR GPM)

Articles that focus on survival analysis techniques in general (i.e. guidance for survival analysis, presents a new
technique, etc.) were included, and articles that describe an execution of a survival analysis (i.e. an actual
comparison of two interventions) were excluded. Furthermore, studies discussing methods to address
measurement errors (i.e., handling wrongly recorded biomarkers, missing data, etc.) in survival analysis and
performance comparisons between other factors than the survival model used (i.e. effects of level of censoring,
trial population size, etc.) were also excluded, as these were outside of the scope of the research. The first query
yielded 455 articles at the time of the search (17% of March 2023), and the second yielded 130 articles on
PubMed. The initial articles were assessed based on title to determine whether the articles are general
discussions of survival analysis techniques or an execution of a survival analysis. Then, based on abstracts, the
articles were screened based on whether they met the inclusion criteria. After screening, the first query yielded
73 relevant articles, and the second a further 10 relevant articles.

3.2 Survival analysis and extrapolation

The general problem context presented in Chapter 2 is also shared by most of the literature found in the search.
Within the context of health economic analyses, an estimate of additional costs, resources and health
consequences that result from the use of a novel intervention compared to the usual clinical practice is required
(Tappenden et al., 20006). Since a high proportion of interventions assessed in HT'As will affect survival, an
estimate of survival benefit is essential (Latimer, 2013). For the evaluations, estimates over a lifetime horizon
are usually advocated, particulatly so for survival, since the evaluations attempt to reflect all differences in costs
and outcomes between the two interventions (CADTH, 2017; NICE, 2013). However, since trial data on new
interventions is often censored, meaning not all patients will have experienced the event of interest at the end
of the trial (Collett, 2003), obtaining a lifetime estimate is not possible using empirical evidence collected during
trials and mathematical modelling is required (Eddy, 1985).

The mean survival can be represented by the area under survival curves (Andersson et al., 2013) that plot the
proportion of patients that are alive over time (Latimer & Adler, 2022). The mean survival benefit is then
represented by the area between the survival curves for the patients that received the intervention and the
patients in the control group (who received the usual care or standard treatment) (Collett, 2003; Tappenden et
al., 20006). Thus, to obtain an estimate of the lifetime survival, extrapolation is usually performed to obtain a
survival curve over the entire lifetime of patients. Generally, parametric models are used to do so, but various
other models are available. Since the choice of the model used can have a substantial impact on the survival
estimates, and, in turn, cost-effectiveness estimates, the model selection for survival extrapolation is highly
important (Bullement et al., 2019; Latimer, 2013; Miners et al., 2005).



3.2.1  Available models

Numerous models are available for selection, and several authors have already performed literature reviews of
HTA submissions to get an overview of the models used in research to set up guides and frameworks (Guyot
et al., 2011; Jackson et al.,, 2017; Latimer, 2013; Palmer et al., 2023; Tappenden et al., 2006). Within these
reviews, it becomes apparent that there are three main characteristics that differ between models, namely
whether proportional hazards (PH) are assumed or not, and the flexibility of the model (Latimer, 2013). The
third factor is the use of external data, or data that is not gathered during the trial, which can include data such
as GPM or background mortality (Jackson et al., 2017).

The PH assumption refers to the assumption that a consfant hazard ratio can be applied to a survival curve of
one patient group to derive the survival curve of another patient group (Latimer, 2013). The PH assumption
can be avoided by fitting two separate models to the two patient groups (Guyot et al., 2011), or having the
hazard ratio change over time (Latimer, 2013). Having a hazard ratio that would change over time would also
increase the flexibility of the model, which generally refers to the complexity of the model.

In the next sections, the various models available found in the literature review will be discussed separately.
Afterwards, methods to include GPM data will be discussed.

3211 Parametric models

The simplest of survival models is, unsurprisingly, the most often used method in TAs for NICE (Latimer,
2013), and consists of fitting a parametric model using a certain distribution to the survival data gathered during
the trial. The PH assumption is still often used, although there are concerns about the use of the PH assumption
in literature (Coyle et al., 2023). When using the PH assumption, a single model is fit to the survival data of the
control group (who did not receive the intervention of interest), and the impact of the novel treatment is
described by a hazard ratio that can be applied to the survival curve of the control group (Latimer, 2013;
Tappenden et al., 2000). However, as mentioned, separate parametric models can be fit to both treatment arms
to avoid the PH assumption (Guyot et al., 2011; Latimer, 2011).

When a parametric model is fit, the assumption is made that the hazard function follows a certain probability
distribution. The most commonly used distributions are the exponential, Weibull, Gompertz, lognormal and
loglogistic distributions (Guyot et al., 2011), and NICE recommends to always compare these models and the
generalised gamma distribution in a survival analysis (Latimer, 2011). Other distributions have also been
proposed, such as the generalised F distributions (Jackson et al., 2010). Distributions can be fit to the survival
data using the maximum likelihood estimation (MLE) method. 1f the PH assumption is used, the hazard ratio
can be included in the likelihood functions (Collett, 2003).

3212  Piecewise models

Piecewise or hybrid models involve combining several non-parametric or parametric models (Latimer, 2011),
which can be done in several ways. One of the eatliest methods proposed was developed by Gelber et al. (1993),
referred to as the Gelber method. It involves fitting a parametric model only to the tail of a survival curve and
using the estimated parametric model along with estimates from the non-parametric Kaplan-Meier curve to
obtain a composite survival-function estimator. The point at which the parametric curve takes over from the
Kaplan-Meier can be determined with log-cumulative hazard probability plots. A common criticism of
piecewise models is that it requires the analyst to select cut points at which to fit different models, and different
decisions of these cut points can affect the overall extrapolation profoundly (Bullement et al., 2019).



3.2.1.3  Cubic spline models

Cubic spline models, or flexible parametric models (FPMs), were originally introduced by Royston and Parmar
(2002), mainly to better understand undetlying hazard functions and to overcome the PH assumption. The
general flexible or spline-based parametric approach attempts to model the logarithm of the baseline hazard
function as a natural cubic spline function of log time. Spline functions in general, put simply, are functions
that are defined piecewise by polynomials, typically used to smooth or interpolate data. Splines can have any
number of subintervals, or £ knots, where on the /th knot the spline is defined by the polynomial corresponding
to that knot (Ahlberg et al., 2016; Wikipedia, n.d.). Natural cubic splines specifically are constrained to be linear
beyond the boundary knots, or Amin and Amax.

Royston and Parmar (2002) originally presented methods to smooth log cumulative hazard functions (obtained
from typical survival data) into natural cubic spline functions by using full maximum likelihood, including
covariates. Since cubic splines are linear beyond the boundary knots, the log hazard at the boundary knot can
be used to extrapolate survival to a life-time horizon (Rutherford et al., 2020).

3214  Landmark models

Landmark models allow for modelling different responses to treatment, assuming that different responses result
in differing survival for patients. For example, a patient group that does not respond to treatment could have a
high or increasing hazard, while patients that respond well to treatment can have a low and decreasing hazard.
This split into different response groups is done at a defined “landmark” time point, after which separate
survival models are fitted to each response group (Rutherford et al., 2020). The models can take any form, but
typically parametric models are used (Anderson et al., 1983). Overall survival can then be estimated by weighting
the different survival functions by the proportion of patients within that group (Rutherford et al., 2020).

3215  Mixture models

Mixture models are similar to landmark models, as they can account for different sub-populations with different
survival profiles in a trial. However, mixture models do not explicitly group patients, but rather assign each
patient a probability of being in each distribution included in the mixture. Standard parametric models can be
used for different mixture components, and standard selection criteria can be used to select the number of

mixtures and distributional forms. Extrapolations are weighted for each mixture component and their
respective hazard rates (McLachlan et al., 2019; Rutherford et al., 2020).

3216  Cure models

Cure models are traditionally used when a proportion of patients will never experience the event of interest, or
are, in other words, cured (Boag, 1949). Consequently, their disease-specific hazard rate will reach zero at some
point, after which the corresponding cause-specific survival function will reach a plateau at a non-zero value.
As the cause-specific survival will then never reach zero, cure models will typically model cause-specific survival
alongside other cause mortality, or adopt a relative survival approach. Thus, the model estimates a cure fraction
among the population, and estimates survival for uncured and cured patients. By combining the two hazard
functions, an overall hazard function can be estimated (Rutherford et al., 2020).

3217  Polyhazard models

Polyhazard, or poly-Weibull models are typically used in settings where many competing risks are present.
Polyhazard models define an overall hazard function as the sum of several independent risk components, which
are described in a Weibull form. Typically, a Bayesian framework is used, where clinical knowledge is used to
define the priors (Demiris et al., 2015).



3218  Machine learning

Machine learning approaches have also been proposed, such as Random Survival Forests by Ishwaran et al.
(2008). These approaches, however, focus on using relationships between a large set of factors into a model,
and serve more as a replacement for PH models used in an epidemiological setting (Aivaliotis et al., 2021) rather
than for the survival models used in cost-effectiveness analyses.

3.2.2  Incorporation of GPM information

The use of external data, or data that was not gathered during a trial, has been long-established in survival
analysis and used in various applications. For example, researchers have proposed using external data to study
the loss of life of a patient resulting from a disease (Hakama & Hakulinen, 1977), to put results of survival
extrapolations into perspective (Verheul et al., 1993) or to use as a substitute for a control group (Pennington
et al., 2018). For this study specifically, however, the type of external data of interest is that which reflects the
background, expected, or general population mortality (GPM), terms which are used rather interchangeably in
literature.

The expected mortality can be defined as the mortality of a subsample of the general population that is similar
to the group of patients at the start of the follow-up period regarding aspects affecting survival, which are
typically limited to age, sex and calendar time, and is typically obtained from life table data (Verheul et al., 1993).
Using such GPM data has been shown to improve extrapolation performance by several researchers, usually
for reasons related to models not accurately capturing the increasing risks of death due to aging (Andersson et
al., 2013; van Oostrum et al., 2021). Others found that incorporating background mortality becomes necessary
for accurate long-term extrapolation when treatment benefit is large and treatment effect is long, meaning
survival is relatively high (Vickers, 2019).

In the next sections, various methods of incorporating such expected mortality data, henceforth referred to as
GPM information, found in the literature review will be discussed. Note that most methods are adaptations of
models already discussed in Section 3.2.1.

3221 Relative survival

Relative survival modelling, also referred to as internal additive hazards (van Oostrum et al., 2021), is a method
that derives DSM without requiring specific cause of death information (Andersson et al., 2013). Relative
survival modelling is typically used for estimating population cancer survival rates with data obtained from
cancer registries, and not from clinical trials, meaning extrapolation is not required (Dickman & Adami, 20006).
Recently, however, several authors have adapted the concept to be used for survival extrapolation, such as
Rutherford et al. (2020) in recent NICE guidance. It decomposes the ACM hazards of the trial population into
two parts:

h(t) = h*(t) + A(t)

Where t is the time since diagnosis, h*(t) is the GPM hazard function, stratified by age, sex, calendar year, and
other covariates, and A(t) is the DSM, or excess mortality rate. Then, the cortresponding survival function can
be rearranged to give the following equation:

S(t)

R(t) = S*(t)

Where R(t) is the relative sutvival as a ratio of the all-cause survival of the trial population and expected GPM
survival. h(t) can then be assumed to follow a certain probability distribution, and the separate DSM and GPM
hazards can be incorporated in the log-likelihood function of the model during MLE (van Oostrum et al., 2021).
More complex estimators for relative survival have been proposed, such as the Pohar-Perme statistic and the
standardised relative survival statistic. However, these serve more for comparison of survival between cohorts
in, for example, different countries, rather than for survival extrapolation for a single cohort (Perme et al., 2012;
Sasieni & Brentnall, 2017).



3222  Constant additive hazards

A second approach similar to the relative survival method was described by Jackson etal. (2017). Here, however,
the assumption is made that the excess hazards are constant compared to GPM. The excess hazards ate
estimated from the slope of a linear regression fitted to the logit of the relative survival seen in the latter part
of the observed data. The linear regression is typically fit after a time at which the hazard ratio is assumed to
behave in a stable manner, for example when invasive diagnostics or procedures are no longer required (Chu
et al., 2008; Hwang & Wang, 1999). Extrapolations can then be performed by adding the excess hazards to the
GPM hazards (Jackson et al., 2017).

3223  External additive hazards

An extension to the constant additive hazards method was used by van Oostrum et al. (2021), where researchers
also assume that DSM hazards are always additive to GPM hazards, except not as a constant. Rather, parametric
models are fit to the trial data, and GPM hazards are added to the fitted hazards afterwards. GPM hazatrds are
not included in MLE for model fitting, differentiating the method from the relative survival method. As such,
van QOostrum et al. (2021) refer to this method as external additive hazards, and the relative survival method as
internal additive hazatds.

3224  Converging hazards

The converging hazards method, as described by Jackson et al. (2017), assumes that the disease population may
have a higher mortality than GPM initially, but their mortality decreases until the mortality rate converges to
GPM after some time. Jackson et al. (2017) proposed setting a time whereafter only GPM hazards affect survival
of patient, and survival before is estimated using a parametric model fit to the trial data. Other authors
implemented converging hazards by fitting a parametric model to the ACM hazards of the trial population
without GPM information, and using the fitted ACM hazards until GPM hazards have become higher (van
Oostrum et al., 2021). Thus, the overall hazard function of the trial population is as follows:

h*(®)  if () > hacm ()
hycy(t) otherwise

h(t) = {

Jackson et al. (2017) mention that the time at which the hazards converge could be seen as the time at which
patients are cured, and thus the converging hazards method has strong similarities to cure models when other
cause mortality is included. The converging hazards method does not use a cure fraction, however.

3.22.5 Proportional hazards

The proportional hazards assumption has also been proposed for use with external data by Jackson et al. (2017),
where the hazard ratio between trial populations and the general population is assumed to be constant. Cause
specific mortality can then be obtained by multiplying GPM with a certain hazard ratio. Jackson et al. (2017)
state that the hazard ratio should be found in literature.

3226  Methods for cubic spline models

The previous methods have mostly focused on “standard” parametric models, although methods to incorporate
external data in cubic spline models have also been proposed. Nelson et al. (2007) extended cubic spline models
for use with relative survival by including an excess mortality component in the hazard function, also
introducing methods to include time-sensitive covariates. Andersson et al. (2013) proposed several
extrapolation methods, as the original implementations do not allow for extrapolation, that use assumptions on
how DSM compares to GPM as originally suggested by Hakama and Hakulinen (1977).



The /linear trend method assumes that the hazard function continues linearly beyond the boundary knot, which
could also be used with the relative survival models proposed by Nelson et al. (2007). The two other methods
proposed are relatively similar to the converging hazards and external additive hazards methods previously
described. The c#re method assumes that after some time the mortality rate of the patient group will return to
GPM, like the converging hazards method. Next, the constant excess hagards method assumes that excess hazards
are constant beyond the boundary knot, which can then be used to estimate the relative survival function
(Andersson et al., 2013).

3227  Polyhazard models

Benaglia et al. (2015) adapted a polyhazard model for use with datasets from the general population and one
from a patient population with some disease of interest to extrapolate the survival of the disease group. Here,
the hazards for the disease group are assumed to have two causes, one from the disease of interest, and one for
other causes. As causes of death are not observed in the study data, independent Weibull models cannot be fit.
Thus, a polyhazard model can be used by assuming that the other-cause survival distribution is the same as that
for the general population, and the increase in hazards (or excess hazards) due to the disease is obtained by a
cause-specific log hazard ratio between the study and population groups.

3.2.3  Available guidance for model selection

With the available models for survival extrapolations with and without using GPM information described, this
section will be devoted to the available guidance on selecting between one of those models to use for survival
analysis for an HTA. Most importantly, the NICE Decision Support Unit Technical Support Documents
(TSDs) will be discussed, as they are a leading HT'A governing body. Furthermore, other literature found in the
literature review will be discussed.

TSD 14 presents an algorithm for selecting a model for survival analysis that should be followed when preparing
a submission to NICE. TSD 14 focuses mostly on standard parametric models and piecewise models. It is
recommended to develop log-cumulative hazard plots that plot the log(-log) of the survival function against
log(time) of the two patient groups and selecting different models based on the relationship of the two curves:

»  If the curves are straight and parallel, parametric models with a PH assumption should be considered,
e If the curves are straight and not parallel, two separate parametric models should be fit and assessed,
e If the curves are not straight, piecewise or other more flexible models should be considered.

Then, the various models that are under consideration should be fit and assessed based on certain performance
criteria, and a selection should be made. For parametric models, TSD 14 recommends that exponential, Weibull,
Gompertz, log-logistic lognormal and generalised gamma models should always be considered (henceforth
referred to as the “standard parametric models”). To assess the suitability of a model, TSD 14 recommends
assessing visual fit of the parametric curve compared to the Kaplan-Meier curve, statistical fit using Akaike’s
Information Criterion (AIC) or Bayesian Information Criterion (BIC), and clinical plausibility using either
external data or an expert opinion (Latimer, 2011). The latter has been mentioned in other articles as a highly
important factor to assess suitability of survival models (Bell Gorrod et al., 2019; Williams et al., 2017). More
recent NICE guidance (TSD 21) includes descriptions of flexible models for survival analysis intended for use
when hazard functions are too complex for the models mentioned in TSD 14, but does not provide a selection
algorithm to distinguish between these models (Rutherford et al., 2020).

Other researchers have also discussed procedures to select a survival model. For example, the algorithm
described in TSD 14 was criticised by Bagust and Beale (2014) in part for assuming that patient-level data was
available to the researchers while manufacturers rarely make patient-level data available, even to those
contracted by the manufacturers to review the trial evidence. Bagust and Beale (2014) presented their own
methods for survival extrapolation that were later criticized by Latimer (2014) for recommending the exclusion
of certain data points, and the recommendation to assume survival follows an exponential model unless other
evidence exists. Thus, the methods of Bagust and Beale will not be explained further.
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Palmer et al. (2023) presented a selection algorithm for flexible models to address the lack of such an algorithm
in TSD 21. The algorithm presents 4 questions that will aid model selection for flexible models, with the most
important being how many treatment arms are present, whether flexible models are required and whether a
cure fraction can be assumed. Methodologies to answer each of these questions are presented in intermediate
steps of the algorithm, where using clinical expert opinion is highly important throughout. Once at the final
question of the algorithm, plausible models have been selected and a final comparison can be made based on
external evidence, clinical plausibility, hazard plots (including a comparison with GPM hazards), and AIC or
BIC statistics.

3231 Guidance on use of external data and background mortality

The use of external data is not mentioned in the TSD 14 algorithm for model selection, but is recommended
for assessing model validity. TSD 14, however, does not discuss incorporating GPM into models directly
(Latimer, 2011). TSD 21 does discuss the relative survival model and recommends incorporating external data
into the other types of flexible models described in the TSD. For example, for cure models the use of GPM in
a relative survival approach is recommended when cause-specific mortality is unknown. Furthermore, TSD 21
recommends that GPM should be used to check if mortality is lower than expected in the general population
and incorporated if so (Rutherford et al., 2020). Recent guidance from the Canadian Agency for Drugs and
Technologies in Health (CADTH) states that GPM can either guide the shape of the long-term survival curve
or be used as an upper limit in extrapolations, and should especially be considered in situations where DSM is
low or treatment effect is high (Coyle et al., 2023).

Other authors do not provide much guidance regarding selection between methods to incorporate GPM
beyond some inconsistent conclusions and recommending the assessment of clinical validity. For example, for
the GPM assumptions for cubic spline models discussed in Section 3.2.2.6, Jakobsen et al. (2019) found that
models using the linear trend assumption with relative survival and models using the cure assumption
performed well in certain settings, but found no consistent satisfactory performance for any of the assumptions
in other settings, only noting that including GPM is more important in younger populations. Andersson et al.
(2013) concluded that using the linear trend method with a relative survival approach was sufficiently accurate
for use with cubic spline models, although cure models were sometimes found to perform better. van Qostrum
et al. (2021) recommend the external additive hazards method for younger populations and converging or
proportional hazards models only if their assumptions are clinically plausible. Jackson et al. (2017) simply state
that long-term assumptions such as the converging or additive hazards assumption are untestable from data
alone and should be justified using clinical expertise. Palmer et al. (2023) note that the flexible models described
in their algorithm could be implemented using a relative survival framework to incorporate GPM, but do not
mention when this is or is not appropriate. For cure models, however, they always recommend using GPM for
the cured population.

3.3 Simulation

To conclude the literature review, literature found related to simulation studies, and specifically what such
studies tested and how such studies were executed in the context of survival extrapolation will be discussed. To
start, an often used simulation framework should be mentioned, namely that of Morris et al. (2019). It has been
used to assess performance of various survival extrapolation methods in, for example, the NICE guidance by
Rutherford et al. (2020), and several other articles (Gallacher et al., 2021a, 2021b; Keatns et al., 2021). The
framework is designed specifically for comparing statistical methods using Monte Catlo simulation, or
simulations that use pseudo-random sampling (Mortis et al., 2019), and was used for the rest of this study.

11



Rutherford et al. (2020) used a simulation study in recent NICE guidance to compare the performance of the
flexible survival methods presented in the guidance. They compared the RMST until the end of follow-up and
overall mean survival based on extrapolation in a single treatment arm, as they argued that if a survival model
extrapolates poorly, it is inappropriate for use in economic modelling regardless of how accurately a treatment
effect can be predicted. Benaglia et al. (2015) also used overall mean survival in a simulation study to assess
performance of survival extrapolation methods. Some studies have focused specifically on RMST until various
times beyond follow-up (Gallacher et al., 2021a, 2021b). Others use a loss of lifetime estimate, which serves as
a function of the area between the general population and patient population survival curves up to a specific
time point (Jakobsen et al., 2019).

Many different factors related to survival analysis have been compared with simulation. Most often, simulation
studies compare extrapolation based on data generated using different survival curves. For example, some
studies compared different levels of survival or differently shaped survival curves (Benaglia et al., 2015;
Rutherford et al.,, 2020). Differences between using different cure fractions have also been explored in some
studies (Jakobsen et al., 2019; Rutherford et al., 2020). Finally, factors such as differing ages of patients
(Jakobsen et al., 2019) or different trial sizes have also been compared (Rutherford et al., 2020). Other studies
do not use “theoretical” trials, but rather take real-world trials and use their characteristics to generate data, for
example by fitting parametric models to the trial data and using a similar level of censoring as what was seen in
the trial (Gallacher et al., 2021a, 2021b).

To generate data, simulation studies usually consider DSM and GPM separately. Rutherford et al. (2020) and
Jakobsen et al. (2019) both generate two survival times, one based on their defined DSM functions, and one
based on their GPM functions, and then pick the lowest survival time as a patient’s ACM survival time. Both
simulations also generate an age per patient that is used as input for their GPM functions. Benaglia et al. (2015)
generated separate patient and general population datasets to compare effects of models that assume a
proportional hazard compared to the general population. Then, to censor the data, simulation studies typically
generate another time using a censoring function, for example by generating a value from an exponential
function. Each patient is then censored appropriately, either if their censoring time is before their ACM survival
time, or their ACM survival time is after the end of follow-up (Benaglia et al., 2015; Gallacher et al., 2021b;
Jakobsen et al., 2019; Rutherford et al., 2020).

In Rutherford et al.’s simulation study (2020), a frailty term was used in the survival function for disease specific
survival. This frailty term is based on the frailty models described by Hougaard (1995), which assume that
variability in survival times originate from two separate sources, the first one being the randomness from a
hazard function, the second being a random effect called the frailty. The frailty can be univariate or multivariate,
and can serve as a replacement for other covariates (such as lifestyle, smoking, etc.) that are known to affect
survival but cannot be explicitly included in the analysis.
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4 Methods

In this chapter, the various methods used to obtain results for the research questions defined in Section 2.5 will
be described. A simulation study was selected for answering the research questions, specifically as it allowed
for many different scenarios to be compared. For designing the simulation study, the framework of Morris et
al. (2019) was used (see Section 3.3), meaning this chapter of the report will follow the recommended ADEMP
structure. First, the overall Aims of the study are defined. Then, the Data-generating mechanisms (DGMs) are
described, which are the mechanisms used to generate patient survival data in different scenarios. Next, the
Estimands of interest will be described, following with a definition of the different (extrapolation) Methods
used to obtain these estimands. Finally, the Performance measures used per estimand are given.

41 Aims

The overall aim of the simulation study was to assess the performance of several survival extrapolation methods
that incorporate GPM information for use in health economic models by comparing their extrapolations to a
known overall survival. Since, for use in health economic modelling, the relative treatment effect between
treatment arms is not necessarily of interest, only the performance on single treatment arms was assessed.
Furthermore, an extrapolation method being able to prove there is a difference in treatment effect is not
relevant if the method performs pootly when extrapolating survival. Performance was compared between many
different scenarios in order to draw conclusions that could provide guidance for selecting a GPM incorporating
method in these scenatios. The different scenarios used will be described in the next section.

4.2 Data generating mechanisms

A DGM denotes how random numbers are used to generate a dataset, and for a simulation study, many DGMs
are often used or compared (Mortis et al., 2019). One thing to note for DGMs, and more importantly the
random number generation, is that these random number generators are not actually random, but pseudo-
random, meaning that the chain of values generated can be reproduced using a seed value. The DGMs were
implemented in R, which has functions readily available for generating random numbers, and these generators
were assumed to be robust.

Many factors can differ between research trials, with arguably the most important being the survival of patients
and their characteristics. Another point of interest is the amount of information available to the researcher and
thus for extrapolation. For example, different extrapolation methods might be more applicable than others if
the age and sex of individual patients is known, rather than knowing solely the mean age and division between
sexes. Thus, there are two main dimensions to the scenatios that were vatried between the DGMs, namely the
patient characteristics and the amount of available information. The patient characteristics affect the survival
of the patient, and within survival both DSM and GPM should be considered. Thus, the DGMs were structured
such that a time of event was generated for each patient based on a certain DSM and GPM, and then censored
the data (i.e., as if only data from a trial was available) to perform the desired extrapolation. In Table 3, an
overview of all dimensions used for the DGMs is shown. Each of the dimensions will be discussed separately.
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421 Patient characteristics

Performance of the extrapolation methods between various patient populations with different characteristics
were compared. For patient characteristics, there are a vast number of factors that can affect their survival and
differ between populations. However, as the number of DGMs could not be exceedingly high due to the
runtime of the simulation, only a selection of differences in these factors was compared. The final selection of
factors, along with specifics on how the data is generated, was as follows:

4211 Age

As the incorporation of GPM information is often recommended for modelling age-related risks of death,
comparing patient populations with different ages was highly important. Thus, for each DGM, a random age
was assigned to a patient using a normal distribution, rounded down to an integer. Here, three different means
were used to represent young (u = 35), “average” (u = 50) and older populations (u = 75). Different standard
deviations were also used, however, varying standard deviations were included in a separate dimension of
DGMs, referred to as the heterogeneity of the population, that will be described in Section 4.2.1.3.

4212 Survival

Next, the survival for each patient needed to be defined. The survival for each patient consisted of two
components, as both DSM and GPM hazards should be considered. For GPM survival, the most recently
available life tables from the USA obtained from the CDC (Arias & Xu, 2022) were used in the simulation. As
each patient also has a generated sex (which is generated differently based on the level of heterogeneity,
described in Section 4.2.1.3), the appropriate life table was used for each patient. To generate a time until a
GPM event, a uniform random number was generated between 0 and the current survival probability of the
patient based on their age and life table. Using this upper limit normalizes the generated survival probability for
each patient based on their age, as otherwise a negative time until event could be generated. Then, the newly
generated random number was used to interpolate a time until event from the life table. Note that the method
to generate a GPM time was the same for all DGMs.

For DSM, both differing levels of survival and underlying probability distributions were compared in order to
compare a large variety in survival curves used to generate patient data. To keep the “level of survival” the same
over different distributions and to remove the need for human input to determine the parameters, basic
parametric models were fit to real-world survival data of different diseases. For this purpose, three Kaplan-
Meier curves were selected that reflect a low, medium and high level of survival, which were identified based
on a short brainstorm with the OPEN Health supervisors. For low survival, a survival curve of patients with
pancreatic cancer was used, with a median survival of 17.0 months (Kuhlmann et al., 2004). For medium
survival, a survival curve of patients with myocarditis was used, where 56% of patients were still alive after 5
years (median survival was not reported) (Magnani et al., 2006). For high survival, a survival curve of patients
with ulcerative colitis was used, where 59% of patients were still alive after 40 years (median survival was not
reported) (Jess et al., 2006).

Each of the Kaplan-Meier curves were digitized, and using the Guyot et al. (2012) algorithm, patient-level data
was generated. Then, parametric models were fit to the survival data, using the Weibull, log-normal, log-logistic
and Gompertz distribution. These are the standard distributions recommended by Latimer (2011), with the
exclusion of the exponential distribution and generalised Gamma distribution. The Weibull distribution is also
capable of modelling constant hazards like the exponential distribution does, hence its exclusion. Since the
Weibull and lognormal distributions are specialised cases of the generalised Gamma distribution (Latimer,
2011), the generalised Gamma distribution was excluded as well. Then, the parameters of the various fitted
survival models were used to generate data for the simulation. The statistical fit of the models to the data was
not considered further. The resulting Kaplan-Meier curves and parametric models are shown in Figure 1, Figure
2, and Figure 3. The models and their parameters are shown in Table 1.
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Figure 1:
Digitized Kaplan-Meier curve and parametric models used for low survival scenarios based on a pancreatic
cancer dataset (Kuhlmann et al., 2004)
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Figure 2:
Digitized Kaplan-Meier curve and parametric models used for medium survival scenarios based on a
myocarditis dataset (Magnani et al., 2006)
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Figure 3:

Digitized Kaplan-Meier curve and parametric models used for high survival scenarios based on an

ulcerative colitis dataset (Jess et al., 2006)
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Table 1:

Overview of survival distributions used for simulation

10

20

Survival time (years)

30 40

Distribution Parameter 1 Parameter 2
Low survival (pancreatic cancer)

Weibull A=2127 k=1297
Log-logistic a=1418 =2047
Lognormal p=1437 o= 2307
Gompertz n = 0.094 b=0431
Medium survival (myocarditis)

Weibull A=7973 k = 0.745
Log-logistic a=4221 f=1012
Lognormal b= 3858 o =5588
Gompertz n =-0.046 b=0.156
High survival (ulcerative colitis)

Weibull A=84977 k=1112
Log-logistic a=72418 =1172
Lognormal p=109720 | 0=6638
Gompertz n =0.028 b =0.007
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To generate a time until an all-cause mortality event, the lowest time between the DSM and GPM event times
was selected for each patient. The GPM data used assumes no person lives longer than 100 years, meaning the
background hazard at 100 years is infinity. As the internal additive hazards method fails if infinite background
hazards are supplied, the maximum event time was cut off at 99.999 years.

4213  Heterogeneity

In some populations, the differences between patients can be larger than in others. Thus, to get an indication
of how different methods perform if a population is more heterogenous, three different levels of heterogeneity
were compared by combining several factors. The first factor is the standard deviation of the normal
distribution used to generate an age for a patient, with a standard deviation of 3, 6, and 12 for low, medium,
and high levels of heterogeneity, respectively.

Secondly, the division over sexes of the patients was considered. Using a random uniform number generator,
patients were assigned a sex based on a certain percentage of male versus female patients. In the low
heterogeneity scenario, this percentage was either 90% male versus 10% female or 10% male versus 90%
female, also assigned randomly with a 50% chance for either sex being the majority. In the medium
heterogeneity scenario, this split between sexes was 70% versus 30%, and for the high heterogeneity scenario,
the split was an equal 50% versus 50%.

Finally, a frailty term was included for the medium and high heterogeneity scenarios. As described in Section
3.3, frailty models were introduced to be able to model various other factors that affect survival, such as lifestyle
and smoking habits, by modelling them as a separate, single random variable. Rutherford et al. (2020), however,
applied the concept in reverse in their simulation study by including a secondary random variable in their DGMs
for overall DSM survival. This adds an additional source of randomness to the DSM survival times of patients.
The DSM survival was then as follows:

Sa(t) = Sao(t)exP @F)

Wherte Sgo(t) ate the DSM survival functions as described in the previous section, and Z is the unknown frailty
term, distributed normally with a mean of 0 and standard deviation of 1. Different levels of frailty can then be
generated by using different values for . For low heterogeneity, no frailty was used, while for medium and
high heterogeneity, f = 0.5 and f = 2 were used, respectively.

To summarize, three different levels of heterogeneity were compared, with the following factors:

Table 2:
Scenarios for heterogeneity used in DGMs of simulation
Heterogeneity o of age  Division over sexes B of frailty

Low 3 90% / 10% N.A (frailty not included)
Medium 6 70% / 30% 0.5
High 9 50% / 50% 2

4.2.2  Available information for extrapolation

Besides patient characteristics, another dimension of interest was the available information for extrapolation.
Here, four different factors were used for comparison, which are the population size of the trial, the length of
follow-up, the level of right censoring, and whether the covariates are known for extrapolation. Thus, after
patient data has been generated according to the methods described in the previous section, the data was
censored according to these four factors. For each patient, a censoring time was generated from an exponential
distribution, which served as the right censoring time. This time, along with the follow-up length, was compared
to the ACM event time of each patient. If the ACM event time is after the patients’ censoring time or follow-
up length, the patient was censored accordingly.
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To reduce the total number of DGMs, the factors were combined into a few scenarios as was done for the
heterogeneity dimension. Three scenarios were used, which are as follows:

1. Low level of information

This DGM had the lowest amount of information available, with a population size of 100 and a follow-up
length of 1 year. For censoring, a rate of 0.3 was used, which should result in approximately 30% of the
population being right censored (disregarding their event time). For extrapolation, only the median age of
patients and percentage of male versus female patients was known, referred to as having “summary” knowledge
available. In high survival scenarios, the generated datasets were found to often have no events occurring within
a year of follow-up. As such, scenarios with both low information and high survival were excluded from
analysis.

2. Medium level of information

For the medium level of information, a population size of 300 patients was used, with a follow-up length of 3
years. The rate for censoring was 0.067, which means approximately 20% of patients are right censored. For
extrapolation, again only summary knowledge was available.

3. High level of information

Finally, the DGM with the highest level of information used a population size of 500 and follow-up length of
10 years. The censoring rate was 0.01, which censors approximately 10% of patients. For extrapolation, the
ages and sexes were known for each individual patient and were used for determining the background hazards
for the internal additive hazards method, which will be referred to as having “full” information.

42.3 DGM overview

To summarize, for each DGM, survival data was generated based on several dimensions of factors. For
comparison of results, each level of each dimension was compared to one another, meaning a full-factorial
experiment design was used. One combination of scenarios was excluded from analysis, namely those with low
information and high survival. Here, patients have a median survival of over 40 years, while only 1 year of
follow-up data is recorded, meaning datasets were relatively likely to have zero non-censored events. Not only
did models often not converge, but such a situation is unrealistic. In total, 288 DGMs were included. The
dimensions, and their levels, are summarized in Table 3.

4.3 Estimands

For estimands, several factors were of interest. Note that per estimand, several performance measures were
used that will be described in Section 4.5. The most important estimand used was the overall mean survival, as
calculated by the extrapolation methods. Additional estimands used were the restricted mean survival time
(RMST), or the fitted survival during the trial, cut off when follow-up ends. Note that RMST until the end of
follow-up is not an extrapolation, but closer to an interpolation as no estimate is made beyond the available
data. However, the estimand served as an indicator of model fit to the short-term or available data, and RMST
has also been used in similar simulation studies (Rutherford et al., 2020). Furthermore, survival probability at
certain times 7 based on the level of sutvival was assessed, with # = 3 for low sutvival, # = 15 for medium
survival, and # = 20 for high survival. This setves as an indicator of clinical validity, as clinicians can typically
give such an estimate for a disease. In medium and high information scenarios (with 3 and 10 years of follow-
up data, respectively), the survival probability for low survival will not be an extrapolation, as 3 years is still
within follow-up. A time #that was an extrapolation for all scenarios would have been preferable, but since the
expected disease-specific has already dropped to around 20% after 3 years in low survival scenarios, selecting a
later time #increases the risk of the generated survival probability being 0, and thus 3 years was selected for low
survival. For medium survival, the expected survival was also around 20% at 15 years, hence why 15 years was
selected. For high survival, however, survival would reach 20% long after 40 years, while old populations used
an average age of 75 and the maximum age of the simulation was 100. Therefore, 20 years was used as time 7
for high survival scenatios.
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Overview of DGMs for simulation

Dimension
Level Definition # of levels
Age N ~ (Y, Oage) X 3
Young p=35
Average p =50
Old p=75
Survival Various parametric models X 3
Low Pancreatic cancer survival
Medium Myocarditis survival
High Ulcerative colitis survival
Parametric distribution of survival Weibull,  Gompertz,  Log-logistic X 4
Lognormal
Heterogeneity Oage, division over sexes, frailty X 3
Low Oage = 3, 90% / 10%, none
Medium Oage = 6, 70% / 30%, 3 = 0.5
High Oage = 12, 50% / 50%, 3 = 2
Level of available information patents Ace"formg’ ielowUD (e x 3
extrapolation knowledge
Low n =100, A =0.3, 1 year, summary
Medium n =300, A =0.067, 3 years, summary
High n =500, A = 0.01, 10 years, full
Total number of DGMs: 288"

*Since low information and bigh survival scenarios are excluded, 288 scenarios are compared rather than the full-factorial 324

4.4 Extrapolation methods

In this section, the extrapolation methods that were compared will be described, along with details on their
implementations. Note that the selection of methods followed from van Oostrum et al. (2021). However, the
proportional hazards method was not included as it was unclear how the hazard ratio was obtained in their
study. Furthermore, literature related to the method recommends obtaining a hazard ratio from literature, which
is not possible in this simulation setting. Other models found in the literature review were not included as they
would have required more complicated DGMs that include more factors, which would have increased the
number of scenarios tremendously. For example, for testing cure models various cure fractions would have to
have been simulated in order to compare performance of the GPM incorporating method when different cure
fractions are assumed. For mixture, landmark, polyhazard and machine learning models either multiple patient
groups with differing survival or multiple competing risks would have to have been included. Finally, some
models were excluded because they require human input during modelling, such as deciding cut points for
piecewise models or the number of knots to use for cubic spline models.

For fitting the parametric models, all standard distributions mentioned in NICE guidance were used, which
are the exponential, Weibull, log-logistic, log-normal, Gompertz and generalized Gamma distributions
(Latimer, 2011). Furthermore, the generalized F distribution was used. For all methods, extrapolations were
performed using mid-point Riemann sums with an interval width of 0.1 years, as some methods do not result
in a parametric model with a function that can be integrated.

19



441 Non-GPM extrapolation

For the first extrapolation approach, a parametric distribution was simply fit to the censored data generated by
the DGMs, as described in Section 3.2.1.1. Since the flexsurv package in R allows fitting a parametric
distribution to survival data, the exact implementation of this method is not discussed further. However, it is
important to note that the fitted hazards (hyongpam(t)) of these models were used for some of the other
extrapolation methods.

4.4.2 Internal additive hazards

For the internal additive hazards method or relative survival method, £lexsurv also had a method readily
implemented. To use it, a background hazard at the time of event needed to be supplied for each patient in the
trial data. To obtain this background hazard from the life table, the assumption was made that hazards are
constant throughout a year, as life tables are typically presented with expected survival at a certain age or
probability of dying in a year at a certain age. Then, depending on the level of information available, the
(censored) event time of the patient was added to either the patient’s age or the median age in the trial and a
survival probability was obtained from the life table. Again, depending on the level of information available,
either a survival probability weighted based on the division over sexes in the trial obtained from the female and
male life tables, or a survival probability from the life table corresponding to the patient’s sex was obtained.

Since the assumption of constant hazards throughout a year was made, this survival probability could easily be
converted to hazards using the parametrization of the exponential distribution (which assumes constant
hazards) and solving for the rate:

A= —log S(t)/t

Note that t = 1, since constant hazards for 1 year were used. Furthermore, it is important that the probability
of surviving another year rather than overall survival was used, as otherwise this equation would give the
cumulative hazard.

Once the background hazards per patient are calculated, the values were put into the flexsurv function and
models were fit using the principles described in Section 3.2.2.1.

4.4.3 External additive hazards

For implementing the external additive hazards method, the fitted hazards from the non-GPM models were
taken and added to the background hazards in extrapolation. For each point of the Riemann sum, hazards were
calculated as follows:

hacu(®) = hpongpm (t) + A1)

Where Rpongpm (t) are the outputted hazards from the non-GPM models as desctibed in Section 4.4.1, and
A(t) ate the GPM or background hazards, obtained similarly as in the internal additive hazards method. These
hazards were then converted to overall survival and the area under the curve was calculated. For scenarios
where patient-level data was available and ages and sexes are known, a weighted average of the hazards was
taken based on mean age and division over sexes.

444 Converging hazards

As with the external additive hazards method, the fitted hazards from the non-GPM models were used to
extrapolate for the converging hazards method, except here the background hazards were compared to the
non-GPM hazards at each point of the Riemann sum, and the highest hazards were used to obtain the survival
curve.
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4.5 Performance measures

Two performance measures were used for each estimand. The main measure of interest was the bias of each
extrapolation method, or the average deviation from the known survival based on the event times generated by
the DGMs and the extrapolated survival using the different extrapolation methods. The known survival was
calculated by using the mean survival time of each patient sample, before their event times were censored. The
mean was calculated based on the generated patient sample for each replication (with sizes 100, 300 and 500
based on the level of information available), rather than attempting to get the theoretical survival from the
undetlying survival functions or by pooling all replication data together and calculating the means of these larger
datasets. Doing the latter could have resulted in an implicit bias when comparing the extrapolated survival to
the known survival. Furthermore, the consistency of each method was assessed. For this purpose, the root
mean-square error (RMSE) was used. Initially, coverage was included as a performance measure, but due to the
high computation time of obtaining lower and upper limits for the hazards based on parametric models,
coverage was excluded from the performance measures.
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5 Results

In this chapter, the results from the simulation will be described using the estimands and performance measures
as described in Chapter 4. As there were 288 scenarios in total not all results could be analysed in detail, let
alone be mentioned in this chapter. Thus, only a selection of results (selected based on a Wilcoxon rank sum
test that will be explained further) is shown in this chapter. Complete results are shown in Appendix A, B, and
C. Furthermore, this section mostly focuses on summaries and over-arching patterns in results, rather than
results for individual scenarios or models. The results are split into results per estimand (see Section 4.3 for a
description of the estimands), and reporting for each estimand follows a similar structure. For further
interpretation of certain results, specialised datasets were generated, which will be discussed in separate sections
throughout this chapter. Note that from this point forward, a “model” denotes a combination of a parametric
distribution and method to incorporate GPM (except for non-GPM models, where GPM is not incorporated).

For each estimand, the best performing model in terms of lowest absolute mean bias of the estimand was
identified per scenario, meaning it had the lowest absolute mean bias out of all models. Initially, all GPM
incorporating methods and parametric distributions used for modelling were considered for each scenario.
However, this resulted in relatively “noisy” results, and patterns were difficult to identify. Thus, per scenario,
models were filtered based on the parametric distribution used for modelling and the parametric distribution
used during data generation. In other words, in scenarios where data was generated using a Weibull distribution,
only models that use the Weibull distribution were considered. In this manner, the only difference between the
models under consideration was the method in which GPM was incorporated, which was the main point of
interest for comparison following from the research question. Moreover, models that used the same underlying
parametric distribution used to generate the data should perform well and generate more accurate results than
the other distributions from a theoretical perspective regardless of the GPM method. Per estimand, the filtered
results will be discussed first and will be used to identify patterns in performance. Then, the unfiltered results
will be discussed and compared to the results found in the filtered analysis to draw secondary conclusions.

As only the best performing models were identified, information regarding performance of second best, third
best, etc. per scenario is lost. To get an indication of how much better the best performing model performed
over the other models, a Wilcoxon rank sum test was employed. Here, per scenatio, the biases per replication
for each model were taken as samples, and the sample of biases of the best performing model was compared
to the other models and tested for statistically significant differences (o = 0.05, using a Bonferonni correction
for the three or 27 pairs of models compared, depending on whether all parametric distributions or only the
parametric distribution used to generate the data were considered). If the best performing model passed the
Wilcoxon test for a scenario, it is denoted as a “significant” result.

Per estimand, an overview of the amount of times a model (GPM method and parametric distribution)
performed best is shown. Then, per estimand, a visual representation of the best performing models for each
individual scenatio is shown for one of the four parametric distributions used to generate the data (a subset of
72 scenarios per estimand), as the other dimensions can be ascertained when looking at trial data (i.e., average
ages and trial size are known factors), while one cannot easily look at a survival curve and reason it looks like a
lognormal distributed curve. The parametric distribution to visually present in this main body of text was
selected per estimand based on which distribution had the most significant results using the Wilcoxon test for
the filtered results. Visual results for the other distributions used to generate survival data can be found in
Appendix A, although they will be discussed in separate sections in this chapter as well.
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5.1 Mean survival

51.1 Overview

Overall, the external additive hazards GPM incorporating method performed best in the most scenarios in
terms of mean survival (142 scenarios out of 288) when filtering for models that used the same parametric
distribution as the underlying data. The converging hazards method performed best in 84 scenarios, the internal
additive hazards method in 38 scenarios, and non-GPM extrapolations in 19 scenarios. A significantly best
method (using the Wilcoxon test) was found in 78% of scenarios overall. Figure 4 charts the number of times
each GPM incorporating ranked best for absolute mean bias of mean survival per dimension (keeping all other
dimensions the same) on the left, and in total on the right.

Figure 4:
Times each GPM incorporating method ranked best for absolute mean bias of mean survival per dimension
and total (models filtered based on parametric distribution)
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Figure 5:

Times each GPM incorporating method and distribution ranked best for absolute mean bias of mean
survival (all distributions considered)
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When all parametric distributions were considered in the analysis (regardless of whether the parametric
distribution matched that of the underlying data), the external additive hazards method also performed best in
the most scenarios in terms of mean survival (123 scenarios out of 288). The converging hazards method
performed best in 64 scenarios, the internal additive hazards method in 51 scenarios, and non-GPM
extrapolations in 50 scenarios. A significantly best model was found in 36% of scenarios overall. Figure 5 charts
the number of times each GPM incorporating method ranked best for mean survival per distribution when all
distributions were considered.

5.1.2 Filtered results

5121  Log-logistic results

For mean survival, the most significant results were found in the scenarios that used the log-logistic distribution
for generating the survival data when filtering for models that used the same distribution as the underlying data
(83% of scenarios using the Wilcoxon test). Thus, visualisations of the results per individual scenario will be
shown here for the log-logistic scenarios. Visualisations of the results for the other distributions can be found
in Appendix A.1 for the filtered results.

The results are presented in three tables, where the first (Table 4) shows the number of times the GPM
incorporating method ranked best for the log-logistic distributed scenarios, but more importantly serves as a
legend for the other two tables. Table 5 and Table 6 are intended to aid in identifying patterns between
dimensions of scenarios, which are used for rows and columns. Differently shaded cells represent the best
performing GPM method for the scenario based on the absolute mean bias. Within cells, the mean bias and
mean root mean square error (RMSE) is shown, and a black triangle denotes a significant result for the scenario.
The pair of tables have swapped main axes for both rows and columns: Table 5 groups by survival and ages,
and Table 6 groups by heterogeneity and level of information. The tables presented for other estimands will
follow the same structure.

A distinct pattern can be seen in Table 5 can be seen when moving from the bottom left to the top right
scenarios, where the converging hazards method performed best the most in scenarios with high survival or
old ages, although it was mixed with the external additive hazards method in scenarios with high survival
and young ages; and old ages with either medium or low survival. The external additive hazards method
performed the best the most often in scenarios with medium survival and young ages; medium survival and
average ages; and low survival and average ages. Performance in low survival and young ages was more mixed.

As can be seen in Table 6, the external additive hazards method always performed best in scenarios with low
information and low heterogeneity, and five out of six times for scenarios with low information and medium
heterogeneity. The converging hazards method always performed the best in scenarios with medium
information and high survival, and with high heterogeneity and old ages. In scenarios with either medium or
high information, the external additive hazards method generally performed the best, unless survival is high
or populations are old, where the converging hazards method performed better more often.
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Table 4:
Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute
mean bias of mean survival for log-logistic distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Table 5:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean
survival per scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, RVISE), A =
Significant result (Wilcoxon)

Survival (Log-logistic)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium  High

Low

Young
Heterogeneity
Medium

Low High

Age
Average
Heterogeneity
Low High  Medium

Old

Heterogeneity
Medium

High
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Table 6:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean
survival per scenario for log-logistic distributed data. Information and heterogeneity as main axes. (Bias,
RMSE), A = Significant result (Wilcoxon)

Information

Low Medium High
Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic)
Medium Low High Medium Low High Medium Low

Heterogeneity
Medium Low

High

5122  Results for other parametric distributions

Opverall, not many patterns in performance for mean survival seen for the log-logistic distributed data in Table
5 and Table 6 were visible across the distributions used to generate survival data for the filtered results (see
Appendix A.1). Generally speaking, looking at patterns seen in Table 5, the converging hazards method
performed best more often in scenarios with either high survival or old populations across distributions, even
more so in scenarios with high information. In scenarios with medium survival and young ages; medium survival
and average ages; and low survival and average ages, the external additive hazards method performed best
the most in all but the Weibull distributed scenarios, where it was mixed with either the converging hazards
method or the internal additive hazards method (see Table 23). Compared to patterns identified in Table 0,
the external additive hazards method always performed best in scenarios with low information and low
heterogeneity across distributions, and other patterns did not hold across distributions.

Across distributions, the internal additive hazards method was rarely selected as the best performing method
for mean survival, except for the Weibull distributed scenarios (see Table 23), where in low survival scenarios
the internal additive hazards method performed the best the most amount of times. Across other
distributions, the only times the internal additive hazards performed best in a scenatio was in low survival
scenarios as well.
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5.1.3 Unfiltered results

51.3.1  Log-logistic results

For results of mean survival where all models were considered, regardless of whether the parametric distribution
used for modelling matched the distribution used to generate the survival data, tables with a similar structure
to Tables 4, 5 and 6 will be presented and compared to the filtered results. Thus, the unfiltered results of mean
survival for the log-logistic distributed scenarios are shown here (since the log-logistic distributed scenarios had
the most significant results for the filtered results). Visualisations of results for the other distributions can be
found in Appendix B.1, although they will be discussed in this section as well. For the unfiltered results, multiple
models using different parametric distributions were under consideration for each GPM incorporating method.
As such, Tables 7, 8 and 9 now differ in brightness of colour based on the best performing parametric
distribution used for modelling. Table 7 serves as a legend for Tables 8 and 9, and shows the number of times
each model (parametric distribution and GPM incorporating method) ranked best for scenarios that used the
log-logistic distribution to generate survival data.

None of the patterns seen in the filtered results for mean survival (Tables 5 or 6) showed as explicitly in the
unfiltered results (Tables 8 and 9). The scenarios with medium survival and young ages; medium survival and
average ages; and low survival and average ages still showed a slight preference for the external additive
hazards method, albeit more mixed (see Table 8), as was seen in the filtered results (Table 5). In scenarios with
low survival, young ages, there was a stronger preference in the unfiltered results for the external additive
hazards method than in the filtered tesults. Furthermore, in scenatrios with low information, there was a
preference for the external additive hazards method regardless of heterogeneity, where in the filtered results
this was only true for low or medium heterogeneity (see Table 06).

5132  Results for other parametric distributions

Comparing the unfiltered results for mean survival of the log-logistic scenarios to scenarios that used other
parametric distributions to generate the data, the patterns described in the previous section held for the Weibull
distributed scenarios, less strongly for lognormal distributed scenarios and not at all for Gompertz distributed
scenarios (see Table 80). Compared to the patterns seen in the filtered results across distributions, the
converging hazards method still performed better more often scenarios with high survival or old populations
in the unfiltered results, although performance within scenatios with high survival or old ages was more mixed
with all the other methods. Furthermore, when moving from high to low survival or from older to younger
ages, it becomes more rare for the converging hazards method to have performed best.

The internal additive hazards method was selected as the best performing method for mean survival more
often in scenarios with medium survival in scenarios that used other distributions to generate the data,
compared to it only being selected in low survival scenarios for filtered results. The internal additive hazards
method was still mostly absent from scenarios with high survival, however. Across distributions, non-GPM
extrapolations mostly performed best in scenarios with high survival, and were relatively absent in scenarios
with medium or low survival. Another noteworthy result was how for the Gompertz distributed data, models
that used the Gompertz distribution only ranked highest in 8 scenarios, while generalised gamma ranked highest
in 21 scenarios and Weibull ranked highest in 19 scenarios (see Table 79). For other distributions, the
distribution used to generate the data was selected the most often as the highest ranking distribution for
extrapolation.
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Table 7:
Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for
log-logistic distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 2 1 1 15
Internal additive 2 4 2 9
External additive 6 0 31
Converging 1 3 17
Total 11 8 22 6 9 12 4
Table 8:

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for log-
logistic distributed data. Survival and ages as main axes. (Bias, RVISE), A = Significant result (Wilcoxon)

Survival (Log-logistic)
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Information Information Information
Medium  High Low Medium  High Medium  High
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Table 9:
Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for log-
logistic distributed data. Information and heterogeneity as main axes. (Bias, RVISE), A = Significant result

Information
Low Medium High

Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic)

Low High Medium Low High Medium

Medium

Low

A

-0.01, -0.48, -0.016,
0.113 0.844 0.063
-0.002, -0.006,

Low
Age

0.101

Heterogeneity
Medium

A

0.08,
1.066

A

A

% g -0.241, 0.203, 0.008,
IT|< 0.58 0.379 0.233
-0.015, -0.014,
0.137 0.076

5.1.4  Exploring performance of the external additive hazards method

To explore possible reasons why the external additive hazards method outperformed the internal additive
hazards method (the latter of which is currently most often recommended in literature) more often, a set of
models was generated for two scenarios with different levels of survival that had relatively large differences in
mean bias of extrapolated mean survival between the internal additive hazards and external additive hazards
method and where an external additive hazards model performed relatively well.

The first was the scenatio with young ages, high survival generated using the Gompertz distribution, medium
heterogeneity and high information, where external additive hazards models combined had a mean bias of mean
survival of 0.47, and the internal additive hazards models combined had a mean bias of 21.13. Following from
the unfiltered results from the simulation for this scenatio, the external additive hazards models that performed
the best used the generalised gamma distribution (with a mean bias of 0.015, the lowest out of all the models
for this scenario) and the internal additive hazards models that performed the best used the Weibull distribution
(with a mean bias of 13.54). Figure 6 charts the expected GPM and DSM survival curves for this scenario with
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the generated known Kaplan-Meier curve, and the extrapolated survival over time for the generalised gamma
external additive hazards model and the Weibull internal additive hazards model (the extrapolated non-GPM
generalised gamma survival is shown as its hazards are used for the external additive hazards extrapolation).

The second is the scenario with average ages, medium survival generated using the log-logistic distribution, low
heterogeneity and ;pw information, where external additive hazards models combined had a mean bias of -0.17,
and internal additive hazards models combined had a mean bias of 4.17. Based on the unfiltered results of the
simulation, the external additive hazards models that performed the best used the log-logistic distribution (with
a mean bias of 0.12, the lowest out of all the models for this scenario. The best performing model did not have
a significant result using the Wilcoxon test), and the internal additive hazards models that performed best used
the Weibull distribution (with a mean bias of -2.14, which was the fourth lowest mean bias for this scenario).
Figure 7 charts the expected GPM and DSM survival curves for this scenario with the generated known Kaplan-
Meier curve, and the extrapolated survival over time for log-logistic external additive hazards model and the
Weibull internal additive hazards model (the extrapolated non-GPM log-logistic survival is shown as its hazards
are used for the external additive hazards extrapolation).

Figure 6:

Survival curves for the best performing external additive hazards and internal additive hazards model in
terms of mean survival for scenario with young ages, high survival, medium heterogeneity, high
information, Gompertz distribution
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Figure 7:
Survival curves for the best performing external additive hazards and internal additive hazards model in
terms of mean survival for scenario with average ages, medium Weibull survival, low heterogeneity and

low information
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5.2 Survival probability at time t

521 Overview

For survival probability at time 7 (# = 3 for low survival, # = 15 for medium survival, # = 20 for high survival),
the external additive hazards GPM incorporating method performed best in terms of absolute mean bias in the
most scenarios when filtering for models that used the same parametric distribution as the distribution used to
generate the survival data (99 out of 288 scenarios). The internal additive method ranked the highest in 75
scenarios, the converging hazards method in 68 scenarios and the non-GPM extrapolations in 41 scenarios. A
significant result was found in 53% of scenarios (using the Wilcoxon test). Note that for low survival, and either
medium or high information scenarios, the estimated probabilities were not extrapolations, but interpolations,
as the time 7 is cither at the end or within follow-up. Figure 8 charts the number of times each GPM
incorporating ranked best for absolute mean bias of survival probability at time # per dimension (keeping all
other dimensions the same) on the left, and in total on the right.
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Figure 8:
Times each GPM incorporating method ranked best for absolute mean bias of survival probability at time
t per dimension and total (models filtered based on parametric distribution)
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The external additive hazards method also performed best in the most scenarios for survival probability at time
t when all parametric distributions were considered for analysis (93 out of 288 scenarios). Next, the internal
additive hazards method performed the best in 73 scenarios, the converging hazards method in 64 scenarios
and the non-GPM extrapolations in 58 scenarios. A significantly best model was found in 14% of the scenarios
overall using the Wilcoxon test. In Figure 9 the number of scenarios each method ranked best for survival
probability at time 7 per distribution when all distributions were considered is shown.

Figure 9:
Times each GPM incorporating method and distribution ranked best for absolute mean bias of survival
probability at time t (all distributions considered)
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522 Filtered results

5221  Lognormal results

The scenarios with lognormal distributed survival data had the most significant results for survival probability

at time # (60% of scenarios) when filtering for models that also used the lognormal distribution, thus, its results

are presented in Tables 10, 11 and 12. Visualisations of the results for the other distributions can be found in

Appendix A.2 for the filtered results. The results are presented in a similar manner to Tables 4, 5 and 6 (see

Section 5.1.2 for an explanation). For scenarios that were not an extrapolation (low survival and medium or

high information), a * is noted in the column of the results tables.

Table 10:

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute mean

bias of survival probability at time t for lognormal distributed data. Amount of times the method ranked best
Non-GPM Internal additive External additive Converging

Table 11:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival
probability at time t per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE),
A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Lognormal)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low Medium* High*

Low

Young
Heterogeneity
Medium

Low High

Age
Medium

Average
Heterogeneity

Low High

Old

Heterogeneity
Medium

High
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Table 12:

Filtered colour-coded table for best ranking method for absolute mean bias of survival probability at time t per
scenario for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A =
Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Information

Low Medium High
Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
Medium Low High Medium Low* High Medium Low*
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As can be seen in Table 11, the external additive hazards method performed best for nearly all the scenarios
that had medium survival in scenarios that used lognormal distributed survival data for survival probability at
time % In scenarios with high survival and young or average populations, the external additive hazards
method also performed the best the most often. The converging hazards method performed the best for all
scenarios with high survival and old ages. For scenarios with low survival and young or average ages, the
internal additive hazards method performed the best most often. Performance in scenarios with low survival
and old ages was mixed. Table 12 shows no distinct patterns in performance between the methods when
comparing information and heterogeneity as main axes for scenarios that used the lognormal distribution for
survival data.
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5222  Results for other parametric distributions

There were a few similarities in patterns in performance for survival probability at time #across the distributions
used to generate the survival data. Over all distributions, the converging hazards method is only outperformed
once by a non-GPM extrapolation out of all the scenarios with high survival and old ages. The results for
scenarios with low survival were similar throughout the distributions, where the internal additive hazards
method performed best the most often for young and average ages, and performance was mixed between the
methods for old ages. For scenarios with medium survival, the external additive hazards method performed
the best the most often for scenarios that used log-logistic (Table 38) and Gompertz (Table 44) distributions,
but not for the scenarios that used the Weibull distribution, where performance was mixed between the
methods (see Table 35). It was relatively rare for the internal additive hazards method to have performed the
best in either medium or high survival scenarios across distributions.

5.2.3 Unfiltered results

5231  Lognormal results

The lognormal results when all parametric distributions used for modelling were under consideration will be
presented in Tables 13, 14 and 15 in order to compare to the filtered lognormal results (which had the most
significant results) described in the previous section. For the unfiltered results, a significant result was found in
7% of the scenarios that used the lognormal distribution to generate the survival data. Visualisations for the
scenarios with other parametric distributions can be found in Appendix B.2. The tables shown here follow a
similar structure to those described in Section 5.1.3 for the unfiltered results.

The unfiltered results for lognormal distributed scenarios for survival probability at time #were relatively similar
to the filtered results (Tables 11 and 12) in scenarios with medium and low sutrvival. Table 14 shows that in
medium survival scenarios, models that used the external additive hazards method still performed the best
the most often, but the performance was more mixed with other models across the age, information and
heterogeneity dimensions. In low survival scenarios with young or average ages, the internal additive hazards
method performed the best most often. In low survival scenarios with old ages performance was relatively
mixed between the methods (see Table 14), as was seen in Table 11. However, the scenatios with high survival
no longer showed a preference for the external additive hazards method in scenarios with young or average
ages where performance was now mixed between the methods. In scenarios with high survival and old ages,
the converging hazards method was now outperformed by non-GPM extrapolations in the high information
scenarios. With heterogeneity and information used as main axes the results looked similar (see Table 15 and
Table 12), as there were no distinct patterns in performance between the methods.

5232  Results for other parametric distributions

Across the scenarios using different parametric distributions to generate survival data, results looked relatively
similar for high and low survival scenarios for survival probability at time # when all parametric distributions
used for modelling were considered in analysis (see Appendix B.2). In scenarios with high survival and young
or average ages performance was mixed between the methods across distributions. For scenarios with high
survival and old ages the converging hazards method nearly always performed the best in medium
information scenarios, and the non-GPM extrapolations always performed the best in high information
scenarios across distributions. It was still relatively rare for the internal additive hazards method to perform
the best in high and medium survival scenarios for the unfiltered results, as was seen in the filtered results across
distributions. In low survival scenatios, the internal additive hazards method still performed the best the
most often in scenarios with young or average ages across distributions when compared to the filtered results.

For scenarios with medium survival, however, there no longer was a preference for the external additive
hazards method in the results for scenarios that used the Weibull (Table 71) and Gompertz (Table 80)
distributions for survival data. Finally, for scenarios that used the Weibull distribution for generating survival
data, Weibull models did not perform the best in the most scenarios (13 scenatios out of 72), but rather the
generalised gamma models were selected the most often (25 scenarios).
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Table 13:
Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability
at time t for lognormal distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 2 1 17
Internal additive 0 1 19
External additive 2 0 22
Converging 0 5 14
Total 4 7 12 24 7 12 6
Table 14:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per
scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Lognormal)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low Medium* High*

Young
Heterogeneity
High  Medium  Low

Low

Age
Average
Medium

Heterogeneity
Low High

Old

Heterogeneity
Medium

A

0.01, -0.001,
0.06 0.018

High
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Table 15:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario
for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result,
* denotes scenarios that are not extrapolations

Information

Low Medium High

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
Medium Low High Medium Low* High Medium Low*

-0.002, 0.001,
0.023 0.011

0.016,
0.032

Medium Low

Heterogeneity

High

A

0.029, -0.001,
0.035 0.018
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53 RMST

5.3.1  Overview

Overall, for absolute mean bias RMST (calculated until the end of follow-up, which was 1 year for low
information, 3 years for medium information, and 10 years for high information scenarios), the internal additive
hazards method performed best the most often when filtering for models that used the same parametric
distribution as the generated survival data (135 out of 288 scenarios). Next, the non-GPM extrapolations
performed the best in 107 scenarios, the converging hazards method in 26 scenarios, and the external additive
hazards method in 15 scenarios. A significant result was found in 57% of scenarios overall when models were
tiltered based on the parametric distribution used for modelling and generating the data. Figure 10 charts the
number of times each GPM incorporating ranked best for absolute mean bias of RMST per dimension (keeping
all other dimensions the same) on the left, and in total on the right.

Figure 10:
Times each GPM incorporating method ranked best for absolute mean bias of RMST per dimension and
total (models filtered based on parametric distribution)
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When all models using all distributions were considered for analysis, the internal additive hazards method also
performed best the most for RMST (130 out of 288 scenarios). The non-GPM extrapolations performed best
in 75 scenarios, the converging hazards method in 51 scenarios, and the external additive hazards method in
29 scenarios. In 20% of scenarios a significant result was found using the Wilcoxon test for the unfiltered
results. In Figure 11 the number of scenarios where each GPM incorporating method ranked best per
distribution is shown for RMST when all distributions are considered.
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Figure 11:
Times each GPM incorporating method and distribution ranked best for absolute mean bias of RMST (all
distributions considered)
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5.3.2 Exploring performance of the non-GPM models

Before continuing onto the scenario-specific results for RMST, the performance of non-GPM inferpolations
for RMST should be discussed, as there were 78 scenarios in the unfiltered results where non-GPM
interpolations had a lower absolute mean bias, which was more often than both the converging hazards method
(51 scenarios) and the external additive hazards method (21 scenarios). There were a combined 104 out of 576
scenarios where non-GPM extrapolations had a lower absolute mean bias than models that incorporate GPM
for the other two estimands. However, for overall mean survival and survival probability at time % non-GPM
extrapolations were selected as the best the least often compared to the other methods.

Across all three estimands, non-GPM extrapolations performed the best in 186 out of 864 scenarios across
estimands in results that were not filtered for matching distributions used to generate survival data and used
for modelling, yet only 55 (30%) of these results were significant using the Wilcoxon test. The converging
hazards method performed the best in 179 out of 864 scenarios across estimands, yet only 24 (13%) of these
results were significant using the Wilcoxon test. Within the insignificant results for non-GPM extrapolations,
the converging hazards method as second best in 90 out of 131 scenarios across estimands, while within
insignificant results for converging hazards extrapolations, the non-GPM extrapolations were second best in
27 out of 155 scenarios across estimands.

5.3.3 Filtered results

5331  Lognormal results

For the filtered results where only models that used the same parametric distribution as the distribution used
to generate the survival data were under consideration, the results for the scenarios that used the lognormal
distribution had the most significant results (72% using the Wilcoxon test), and thus its results will be shown
here. Visualisations for the other distributions can be found in Appendix A.3. The results are presented in a
similar manner to Tables 4, 5 and 6 (see Section 5.1.2 for an explanation) in Tables 16, 17 and 18.

Overall, there were two distinct patterns that can be seen in Tables 17 and 18 for the scenarios that used the
lognormal distribution to generate the survival data. Table 17 shows that non-GPM extrapolations nearly
always performed best in high survival scenarios, and as survival becomes lower and ages become younger, the
internal additive hazards method performed best more often in the lognormal distributed scenarios.
Secondly, as can be seen in Table 18, the internal additive hazards method always performed best in scenarios
with low information. Then, as information becomes higher, non-GPM extrapolations performed better more
often.
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Table 16:

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of RMST for lognormal distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST

Table 17:

per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMISE), A = Significant

result (Wilcoxon)

Age

Average Young

Old

Heterogeneity

Heterogeneity

Heterogeneity

Survival (Lognormal)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium  High

Medium  Low High  Medium  Low High ~ Medium  Low

High
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Table 18:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST
per scenario for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A
= Significant result (Wilcoxon)

Information

Low Medium High
Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
Medium Low High Medium Low High Medium Low
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5332  Results for other parametric distributions

Both patterns described in the previous sections for scenarios that use lognormal distributed survival data
generally held across distributions (see Appendix A.3), with the largest difference being that the internal
additive hazards method no longer always outperformed the other methods in scenarios with low
information, although it still performed the best the most in those scenarios across distributions. Furthermore,
in scenarios with old ages and medium survival, there was a stronger preference for the non-GPM
extrapolations, which performed best in 27 out of 36 scenarios with those characteristics across distributions.
The external additive hazards method only performed the best in 15 scenarios out of 72 for RMST when
filtering models for the parametric distribution used to generate the survival data. 12 out of those 15 scenarios
were in the Weibull distributed scenarios (see Table 48), where the external additive hazards method only
performed best in scenarios with high heterogeneity, except for scenarios with high survival or old ages. The
other 3 scenarios where the external additive hazards method were in the log-logistic distributed scenarios
(see Table 51), where it also only ever performed best in scenarios with high heterogeneity and medium survival.
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5.3.4 Unfiltered results

5341  Lognormal results

For comparison with the filtered lognormal results (which had the most significant results) described in the
previous section, the results for the lognormal distributed scenarios when all parametric distributions used for
modelling were included in the analysis will be shown here. In the lognormal distributed scenarios, a significant
result was found in 26% of scenarios when all parametric distributions are considered. Visualisations for the
scenarios with other parametric distributions can be found in Appendix B.3. Tables 19, 20 and 21 follow a
similar structure to those described in Section 5.1.3 for the unfiltered results.

Compared to the filtered results for lognormal distributed scenarios, similar patterns can be seen in both Tables
17 and 20, and Tables 18 and 21. Table 20 shows that the non-GPM extrapolations nearly always performed
best in high survival scenarios when models using all parametric distributions were considered. Once again, the
internal additive hazards method performed best more often as survival becomes lower and ages become
younger in the lognormal distributed scenarios. Furthermore, when comparing Tables 18 and 22 the internal
additive hazards method neatly always performed best in scenarios with low information in both tables.
However, for the unfiltered results (Table 21), performance was more mixed between all GPM methods in
scenarios with medium or high information, where in the filtered results (Table 18) the mix was mostly between
the internal additive hazards method and non-GPM extrapolations.

Table 19:
Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for
lognormal distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 2 6 20
Internal additive 2 15 37
External additive 2 4 6
Converging 0 4 9

Total 6 29 19 4 9 5 0

5342  Results for other parametric distributions

Results across the scenarios with different parametric distributions for RMST when all parametric distributions
used for modelling were considered in analysis looked relatively similar (see Appendix B.3). The patterns
described in the previous section for lognormal distributed scenarios for the internal additive hazards method
held across distributions, where it performed best more often as survival becomes lower and ages become
younger. Compared to the filtered results across distributions in scenarios where the non-GPM extrapolations
generally performed best the most (high survival scenarios, and scenarios with medium survival and old ages),
the converging hazards method performed best more often in the unfiltered results (for example, compare
the filtered and unfiltered results for Weibull distributed scenarios in Tables 47 and 83).
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Table 20:

Colour-coded table for best ranking model for absolute mean bias of of RMST per scenario for lognormal
distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Age
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Average
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Survival (Lognormal)

High Medium Low
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Medium  High Low  Medium  High Low  Medium  High
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Finally, models using the Weibull distribution ranked highest a relatively high amount of times for RMST
compared to other estimands where performance across distributions used for modelling was more evenly
spread. In total, models that used the Weibull distribution were selected as the best in 87 out of 288 scenatios,
and were selected as the best the most often in scenarios where either the Gompertz, log-logistic or lognormal
distribution was used to generate survival data. However, in scenarios where the Weibull distribution was used
for generating data, models that used the log-logistic distribution performed the best in 18 scenatios, and
models that used the Weibull distribution performed best in 16 scenatios.
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Table 21:

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for lognormal

distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)
Information

Low Medium High

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
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5.3.5 Exploring discrepancies in parametric distribution for simulation and for modelling

To explore what occurred in scenarios where the parametric distribution of the best performing model did not
correspond with the parametric distribution used to generate the data, a scenatio that used the Gompertz
distribution and where models using other distributions performed best for all three estimands was selected to
explore further. This was the scenario with young ages, medium survival, medium heterogeneity and high
information. However, deviating from the high information scenario, a trial size of 1,000,000 patients, a very
low level of right censoring and follow-up length of 100 was used to determine whether Gompertz models
would outperform the models using other distributions when the dataset becomes larger. In Figure 12, the
survival curve for the best performing model overall (the non-GPM exponential model), and the best
performing model using the Gompertz distribution for the bias of mean survival (which was also the model
without GPM adjustment) is shown alongside the KM-curve and the expected DSM and GPM survival.
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Figure 12:

Survival curves for the best performing model overall and for best performing model using the Gompertz
distribution for mean survival for scenario with young ages, medium Gompertz survival, medium
heterogeneity and high information (trial size increased to 1,000,000 and almost no censoring)

~+ Expected GPM survival =t~ Expected DSM survival — Mon-GPM (Exp.) =+ Mon-GPM (Gompertz) —+ Kaplan-Meier curve

0.75

0.504

Survival probabilicy

0.257

0.00 7

Survival time (years)

5.4 Summary

To summarize, in results where models were filtered based on the parametric distribution used for generating
the survival data and for modelling, the methods that incorporate GPM outperformed non-GPM extrapolations
in 264 out of 288 scenarios for mean survival, 242 scenatios for survival probability at time # and 176 scenatios
for RMST (an average of 79% of scenarios across estimands). For results where all parametric distributions
were considered, the methods that incorporate GPM outperformed non-GPM extrapolations in 238 out of 288
scenarios for mean survival, 230 scenatios for survival probability at time # and 210 scenarios for RMST (an
average of 78% of scenarios across estimands).
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6 Discussion

The results show that incorporation of GPM information into survival extrapolations is important in certain
situations, as there was a large number of tested scenarios where an extrapolation that incorporated GPM
outperformed a non-GPM extrapolation (an average of 79% of scenarios across estimands when models were
filtered based on the parametric distributions used for generating survival data, and an average of 78% of
scenarios across estimands when all models were considered for analysis). However, between the GPM
incorporating methods, patterns between which method performed best were not as clear as was hoped for at
the start of this research. This chapter will start with theoretical interpretations for the identified patterns in
performance and further interpretation of certain results that contradict current knowledge from literature.
Next, the limitations and the strengths of the study will be discussed and related to previous literature found.
Finally, to conclude this chapter, the identified patterns in performance will be discussed and used to draw
recommendations for guidance for HT'A submissions and recommendations for future research will be made.

6.1 Interpretation of results
In this section the results of the study will be interpreted further and possible reasons for certain results being
contradictory to current knowledge or otherwise unexpected will be identified.

6.1.1  Performance of the external additive hazards method

In general, the external additive hazards method extrapolated the best in the most scenarios for overall mean
survival and survival probability at time #in both the filtered and unfiltered results (RMST was an interpolation,
as it was calculated until the end of follow-up). However, in literature, most authors that compared GPM
incorporating methods recommend using an internal additive hazards approach (more commonly referred to
as relative survival models) (Andersson et al., 2013; Palmer et al., 2023; Rutherford et al., 2020). To explore
possible reasons why, two scenarios were selected for further exploration, as described in Section 5.1.4.

In Figure 6, the internal additive hazards model follows the known Kaplan-Meier curve relatively closely until
at some point it starts overestimating the survival after around 7 — 10, while the external additive hazards model
follows the Kaplan-Meier curve more closely until the end of the data (when patients have reached age 100).
Figure 7 shows that both models extrapolated rather poorly. However, the external additive hazards model
starts adjusting for GPM more strongly after around 20 years when comparing its extrapolation to its non-
GPM counterpart. This indicates that the internal additive hazards method does not account enough for GPM
at the tail-end of the data when GPM becomes higher, while the external additive hazards method does. This
could be due to the internal additive hazards method only capturing GPM hazards of patients during the trial,
meaning GPM hazards will be the same for all patients that are censored at the end of follow-up. Thus, the
internal additive hazards method could lead to a bias in scenarios where many patients are censored at the end
of follow-up, as the effect of GPM hazards is underestimated if the GPM hazards are low at that time.

For example, for the dataset shown in Figure 6 (using high survival and young ages), 384 out of 500 patients
were still alive at the end of follow-up (10 years), where expected GPM survival is still above 95%. For the
dataset shown in Figure 7 (using medium survival and average ages), 71 out of 100 patients were still alive at
the end of follow-up (1 year), where expected GPM survival is also still above 95%. Since the external additive
hazards method uses the entire life table to calculate GPM hazards after fitting a model, rather than only using
a background hazard calculated for each patient before fitting a model, this bias is not present. This would also
explain why the internal additive hazards method generally only performed best in low survival scenarios across
estimands, as in those scenarios, patients are less likely to still be alive at the end of follow-up and GPM has
less of an effect on overall ACM survival.
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6.1.2  Performance of non-GPM extrapolations

Next, the performance of non-GPM extrapolations should be discussed, as although there seems to be a
consensus in the literature that incorporating GPM information should increase accuracy of a survival model,
there were several scenarios in which a non-GPM extrapolation had a lower absolute mean bias for an estimand
than a model that did incorporate GPM information. Across estimands and survival distributions used to
generate survival data, non-GPM extrapolations generally only performed the best in scenarios with high
survival or old ages, where the other method that often performed the best was the converging hazards method.
Since the converging hazards method takes the lowest hazards from either the GPM hazards or the fitted
hazards from the non-GPM models, the non-GPM extrapolations and converging hazards extrapolations
should look relatively similar in scenarios where DSM survival is high, and GPM hazards are the most important
cause of mortality.

This is confirmed not only by the converging hazards often being selected as the best performing method in
scenarios similar to scenarios where non-GPM extrapolations were selected as the best, but also by the relatively
low number of significant results for the non-GPM extrapolations and converging hazards extrapolations.
Furthermore, in many scenarios where the non-GPM extrapolations performed best, but results were ot
significant using the Wilcoxon test, models using the converging hazards method were often second best (as
described in Section 5.3.2), meaning there was no significant difference between the extrapolations that did not
use GPM information and the converging hazards extrapolations. Thus, the converging hazards method seems
to be an adequate substitute in situations where non-GPM extrapolations performed the best, but in situations
where the converging hazards method performed the best, non-GPM extrapolations are less likely to be an
adequate substitute.

6.1.3  Discrepancies in parametric distribution for simulation and for modelling

Within the results that consider models using all parametric distributions when selecting the best performing
model, there were several sets of scenarios where the distribution used for generating the survival data is not
the same as the distribution most often selected as the best performing model (regardless of the GPM
incorporating method). This occurred for scenatios that use the Gompertz distribution to generate survival
data for the overall mean survival estimand (generalised gamma is selected most often) and for scenarios that
use the Weibull distribution to generate survival data for the survival probability at time # estimand (generalised
gamma is selected most often). For RMST, models that used the Weibull distribution were selected most often
in scenarios that used the Gompertz, log-logistic or lognormal distributions to generate survival data, and
models that used the log-logistic distribution were selected most often in scenarios that used the Weibull
distribution to generate survival data.

First, it should be noted that the Weibull distribution is a specialised case of the generalised gamma distribution
(Latimer, 2011), which may explain the discrepancy for Weibull distributed scenarios for the survival probability
at time 7 estimand (where models using the generalised Gamma distribution performed best in more scenarios
than models using the Weibull distribution). For the other distributions, a scenario where the best performing
model did not use the same parametric distribution as the one used to generate data for all three estimands was
selected to explore further, as described in Section 5.3.5. For this scenario, a large dataset of 1,000,000 patients
was generated. Figure 12 shows that the KM-curve matches the shape of the expected DSM survival until
around 30 years where it starts to decrease faster than the expected DSM survival, likely due to GPM having a
stronger effect after a certain period of time. The Gompertz model actually followed the KM-curve relatively
closely, but underestimates survival from around 10 to 30 years. The non-GPM exponential model was the best
performing model for bias of overall mean survival, but had a worse visual fit than the Gompertz model. As
such, it seems safe to assume that discrepancies in the distribution used to generate survival data and the
distribution selected for modelling were due to GPM altering the shape of the expected DSM survival in smaller
datasets, and using traditional selection techniques for a parametric distribution (which includes assessing visual
fit) would result in selecting a distribution that matches the undetlying data.
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6.2 Limitations

There are vatious limitations found throughout execution of this research that should be considered for the
conclusions and that could possibly be addressed in future research. First, it is possible that more patterns in
performance between methods across scenarios would have become apparent if more analysis had been done
on the methods that were only slightly outperformed by the best performing method. For example, more
analysis on the pool of best methods (meaning the methods that are among the highest ranking using a pairwise
Wilcoxon signed rank test) could have been conducted, as it is possible other GPM methods could have been
within that pool, and more patterns could emerge if also considering the second, third, etc. best performing
methods per scenario where a significant result was not found. Furthermore, when all parametric distributions
are under consideration, there could be scenarios where the pool of best methods all use the same GPM
incorporating method that were not found using the current analysis, or the pool of best methods actually
contains a majority of models using another GPM incorporating method. An attempt to rectify these issues
was made by filtering the models under consideration for using the same parametric distribution as was used
for generating the survival data in that scenario, but using a more sophisticated selection process could have
improved the overall analysis.

The estimands used could also be improved. RMST is an often-used metric in survival analysis, and was also
used in another simulation study on survival extrapolations, where RMST until the end of follow-up was
assessed (Rutherford et al., 2020), and thus, RMST was implemented similarly for this study. In doing so, the
estimand did not explicitly help to answer the main research question, which was to assess extrapolation
performance while RMST until the end of follow-up can be estimated without extrapolation. Furthermore, the
RMST would also not be of interest in real-world situations for a lot of scenarios tested in this study. For
example, for a trial with the characteristics of the high survival and medium information scenarios, looking at
RMST has very little value when the expected survival (based on the underlying survival distribution using the
ulcerative colitis data) is still over 90% after 3 years. This could be addressed by changing the estimand to a
RMST at twice the follow-up length of the trial, for instance. However, the RMST as it currently stands did
prove to be useful as an indicator of short-term fit of the survival models to the data. For survival probability
at time #in low survival (# = 3) scenarios, the estimand was also not extrapolated in the scenarios with medium
or high information (where follow-up is 3 and 10 years, respectively).

Finally, some minor limitations and assumptions used in the coding of this research should be addressed. For
example, ages are limited to 100 due to the lifetables assuming infinite hazards at age 100, thus making this a
hard assumption to avoid. Due to these infinite hazards, however, the max event time of a patient had to be
limited to 99.999, as certain R function used for the internal additive hazards method would fail if infinite
hazards were supplied. However, this would only affect modelling if the event time was uncensored, which can
only occur if a patient is older than 99 for low information scenarios, older than 97 for medium information
scenarios or older than 90 for high information scenarios. When 100,000,000 patients were generated using
functions for the old ages and high heterogeneity scenario, only 4% of patients were older than 90, and thus
this assumption is assumed to not have affected results significantly.

The generalised F distribution was also considered in analysis, but in a majority of the scenarios (217 out of
288), generalised F models failed to converge in at least one replication due to the standard optimisation
function used by the flexsurv package failing to find an optimal result. Since changing the optimisation
function resulted in other models often failing to converge, the decision was made to keep using the standard
optimisation function (the Broyden-Fletcher-Goldfarb-Shanno algorithm).
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6.3 Strengths

In this section, strengths of the study will be discussed. Overall, this study seems to be the first simulation study
for survival extrapolation where such a large number of scenarios is compared, as although all the dimensions
of scenarios that were used in this study have been compared in other simulation studies individually, none
have compared all dimensions in a full-factorial manner. Furthermore, although the analysis methods used
(such as the colour-coded tables and Wilcoxon test) could be improved further (as discussed in the limitations),
they are relatively novel methods that could be employed for similar simulation studies in the future.

6.4 Comparison with literature

Before making recommendations for guidance, the results of this study will be briefly compared to previous
literature that is not official HT'A guidance. Firstly, as has already been discussed in Section 6.1.1, most articles
that discuss GPM incorporating methods recommend using an internal additive hazards approach, yet this
study found many scenarios where an external additive hazards approach performed better than an internal
additive hazards approach. Furthermore, Jackson et al. (2017) stated that the long-term assumptions used to
incorporate GPM information (most of which were included in this study) cannot be tested from data alone,
while there certainly are a few patterns in performance resulting from this study that prove otherwise (which
will be discussed in Section 6.5).

Otherwise, this study supports the general consensus that incorporating GPM into survival extrapolations
improves survival extrapolations, especially considering the interpretation for scenarios where non-GPM
extrapolations performed best (see Section 6.1.2). Furthermore, the results of the simulation somewhat support
a conclusion drawn by van Oostrum et al. (2021), as they recommend using the external additive hazards
method in young populations. In this study, the external additive hazards method generally performed the best
most often in scenarios with young ages and medium survival for overall mean survival (for both filtered and
unfiltered results). In scenarios with young ages and low or high survival, however, the preference for the
external additive hazards method was less strong, although it still performed the best the most often.

6.5 Recommendations for guidance for selecting a GPM method

Current guidance for survival extrapolations for HT'A submissions states that incorporating GPM information
should at least be used for assessing clinical plausibility of the extrapolation (Latimer, 2011), and more recent
NICE guidance recommends to always incorporate GPM information, where using clinical expertise to select
a GPM incorporating method is recommended (Rutherford et al., 2020). The simulation results show that
incorporating GPM information generally improves survival extrapolations, providing support for the guidance
stating that GPM information should always be incorporated in parametric survival models. In scenarios where
non-GPM extrapolations did outperform GPM incorporating models in terms of absolute mean bias, the results
were often not significant using the Wilcoxon test and the converging hazards method was often the second
best performing method (see Section 6.1.2).

Furthermore, the results show that the current recommendations for incorporating GPM information into
survival extrapolations using the standard parametric models, which mostly recommend using the internal
additive hazards approach (referred to as relative survival in the guidance) (Rutherford et al., 2020), could be
extended to explicitly include the external additive hazards and converging hazards methods. For example, for
mean survival, the internal additive hazards method was outperformed by the external additive hazards method
and converging hazards method more often (see Figures 4 and 5). Currently, the converging hazards and
external additive hazards are only vaguely mentioned throughout the guidance, and mostly for other types of
models (cubic spline models, mixture, landmark, piecewise and cure models). The distinction between the three
methods could be more explicit, and concise information as to how to extrapolate or fit a standard parametric
model using the assumptions as was done for the relative survival approach is lacking (Rutherford et al., 2020).
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Before continuing onto patterns in the performance of the methods, it should be noted that there are technically
two decisions to be made for the types of models tested in this research, namely the way in which GPM
information is incorporated, but also what parametric distribution to use for the model. Current guidance
already has a clear selection process for choosing a parametric distribution based on trial data until the end of
its follow-up. Given the differences in results for the RMST and overall mean survival estimand, it is arguable
that the GPM incorporating method should be selected first and then a parametric distribution should be
selected using the already published guidance afterwards.

For example, current guidance recommends assessing visual fit using AIC or BIC tests to assess statistical fit
of the models under consideration to the (short-term) trial data to select a parametric distribution (Latimer,
2011). RMST is also known at the end of a trial, and thus, performance of a model on RMST in this study could
be seen as a test on fit to the short-term trial data. Since the results for RMST show that external additive
hazards models were selected the least often as the best performing method, while for overall mean survival it
was the selected the most, selecting a GPM incorporating method using the current guidance could lead to
inaccurate results as the internal additive hazards models might have a higher AIC or BIC.

First, for overall mean survival and survival probability at time 7 estimands, the internal additive hazards method
generally did not perform well in scenarios with high survival in both the filtered (see Appendix A.1 and A.2)
and unfiltered results (see Appendix B.1 and B.2). This is likely due to the relatively high number of patients
that are still alive at the end of follow-up, where GPM can still be low (see Section 6.1.1). Thus, for trials with
high survival, using either a converging or external additive hazards adjustment is more appropriate. Although
the converging hazards method had a lower bias over the high survival scenarios (0.54, see Table 97) than the
external additive hazards method (-2.52, see Table 96) overall, there were high survival scenarios in which the
external additive hazards models significantly outperformed converging hazards models, and thus both
methods should be considered.

In low survival, the internal additive hazards method did generally perform better for survival probability at
time 7 but this was likely due to the medium and high information scenarios not being an extrapolation as
results for survival probability at time #look similar to the results for RMST in scenarios with low survival. For
mean survival, there were a few low survival scenarios where the internal additive hazards performed the best,
and thus the method should be included in analysis for low survival diseases. Furthermore, the converging
hazards generally performed better in scenatios with either old ages or high or medium survival, and was rarely
the best performing method in scenarios with low survival and young or average ages (and never significantly
so) for both the overall mean survival and survival probability at time # estimands. Thus, the converging hazards
method can be excluded from analysis in trials with low survival and young or average ages.

Next, in low information scenarios, external additive hazards models were often among the best for overall
mean survival, often significantly so (see Appendix A.1 and Appendix B.1), which is likely due to a similar
reason to what is described in Section 6.1.1, as more patients are likely to still be alive at the end of follow-up
if the follow-up length is short. Thus, the internal additive hazards method performed poorly in these scenarios.
Since there were still a few low information scenarios where converging hazards models performed the best in
both the filtered and unfiltered results, the method cannot be excluded entirely in low information scenatrios
and both the external additive method and converging hazards method should be considered.

The patterns described in the previous paragraphs are summarised in a flowchart in Figure 13. For definitions
of the scenarios, refer to Table 3. More specific patterns were found in the results, but they involve
combinations of three dimensions of scenarios. If a trial happens to match three out of the four discernible
dimensions (level of survival, ages, heterogeneity and level of information), a researcher could look at the colour
coded tables presented in Appendix A and Appendix B. For scenarios not mentioned in Chapter 5 or in this
section, using clinical expertise to select between a GPM incorporating method still seems to be the only
sufficient way to select a GPM incorporating method.
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Figure 13:
Flowchart for selecting a GPM incorporating method for parametric survival extrapolations. (Refer to Table
3 for definitions of scenarios)
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6.6 Recommendations for future research

In future research more complex DGMs could be tested, as for generating data, only an additive hazards
assumption was used in this study, where the lowest out of a generated DSM and GPM time was selected for
the ACM event time per patient. Although results sometimes showed preference for using a converging hazards
assumption, the robustness of these methods over more complex data generation mechanisms should be
assessed. This could be assessed by selecting a base-case scenario for the other dimensions of scenarios used in
this study, and only comparing different assumptions about the relationship between DSM and GPM. Using
more complex DGMs would also allow the possibility of more complex models to be compared, for example
by incorporating a cure fraction and comparing incorporation of GPM information into cure models using
different assumptions. However, as the mechanism used in this research has been used in multiple prior
simulation studies (Rutherford et al., 2020) and (Jakobsen et al., 2019), comparing more complex survival
functions was outside of the scope. Furthermore, the bias that could have resulted from using an additive
hazards assumption in data generation was not addressed, which could for example have been alleviated by
explicitly using a converging hazards methods during data generation and weighting the results. However,
considering that the results still showed scenarios where the converging hazards method performed best, this
bias may be assumed to be small.

Furthermore, the low performance of the internal additive hazards method in datasets with a relatively low
GPM and high level of censoring that was identified in Section 6.1.1 could be explored further, as the consensus
in literature seems to be that the internal additive hazards method usually is most appropriate the best while
the results prove otherwise for the scenarios considered in this study. Another possible extension of the
simulation could be to vary the factors for scenatios continuously and attempt to fit a statistical model to the
results to find patterns between the methods on a continuous scale.
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7 Conclusions & recommendations

To conclude, and to answer the main research question of the study (“What is the performance in terms of accuracy of
survival extrapolation methods that incorporate GPM information in scenarios with different patient characteristics and availability
of information?”), methods that incorporate GPM information outperformed non-GPM extrapolations in a
majority of scenarios across estimands overall. Thus, the study strongly supports the current NICE guidance
and showed that GPM information should always be incorporated into survival extrapolations, as even in
scenarios where non-GPM extrapolations outperformed extrapolations that did use GPM information, the
converging hazards method was generally an adequate substitute.

The results of the study show that the method used to incorporate GPM information should be selected before
choosing what parametric model to use, and that all standard parametric distributions mentioned by NICE
should be considered. Based on the performance of the internal additive hazards method being rather low, yet
it being the only method currently explicitly mentioned in NICE guidance for parametric models, the research
would recommend including the converging hazards and external additive hazards methods explicitly in HT'A
guidance for standard parametric models.

Furthermore, the study shows that there are certain GPM methods that can be excluded from analysis in certain
situations. In situations with high survival (median survival of over 40 years, or similar survival to ulcerative
colitis), or with low information (trial size of around 100 patients per treatment arm or less, around 30% of
patients being right censored and follow-up time of 1 year), the internal additive hazards method can be
excluded. In situations with a young patient population (average age of 35) and medium survival (median
survival of over 5 years, or survival similar to myocarditis), the external additive hazards method can be used
unless there are explicit doubts of its clinical validity. In situations with low survival (median survival of 17
months, or similar survival to pancreatic cancer), and young (average age of 35) or average ages (average age of
50), the converging hazards method can be excluded from analysis. These findings are summarised in Figure
13. For other situations simulated in this study, clinical expertise should be used to select a GPM incorporating
method, as is in line with current NICE guidance.

In future research, performance of the GPM incorporating methods used in this study, as well as other models,
should be explored using more complex relationships between GPM and DSM, for example by using a
converging hazards assumption in the data generating mechanisms rather than an additive hazards assumption.
Moreovet, the relationship between the performance of the internal additive hazards method and datasets that
have a low GPM and high level of censoring should be explored further. Finally, a similar simulation study
could be performed with the intention of fitting a statistical model to the results from the onset.
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Appendix A: Filtered colour-coded tables for best ranking methods per

scenario

This Appendix shows the results of the simulation by colour-coding the tested methods and showing the best
performing method for each scenario based on the absolute mean bias for the estimand. Separate tables are
shown for each estimand and underlying survival distribution used to generate data separately. For each
distribution used to generate survival data, only models that used the same distribution were considered. The
DGM dimensions (survival, age, heterogeneity, level of information) are used as rows and columns for the
tables, tables are shown in pairs with flipped “minor” “and major” dimension of rows and columns. Cells show
the mean bias and mean RMSE for the method over 2,500 replications. A triangle denotes whether the result
was significant based on a Wilcoxon signed-rank test (o = 0.05). Each pair of tables is accompanied by another
that mostly serves as a legend, but also shows the overall number of times a method ranked best and the
percentage of that result which was significant for each survival distribution used to generate the data.
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A.1: Overall mean survival

Weibull distributed data

Table 22:

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of mean survival for Weibull distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Times method ranked best

Table 23:
Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean
survival per scenario for Weibull distributed data. Survival and ages as main axes. (Bias, RMSE), A =
Significant result (Wilcoxon)
Survival (Weibull)
High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium  High

INA

Young
Heterogeneity

Age

Average
Heterogeneity

Old

Heterogeneity
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Table 24:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean
survival per scenario for Weibull distributed data. Information and heterogeneity as main axes. (Bias,
RMSE), A = Significant result (Wilcoxon)

Information

Low Medium High
Survival (Weibull) Survival (Weibull) Survival (Weibull)
Medium Low High Medium Low High Medium Low
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Log-logistic distributed data
Table 25:
Legend for filtered colour-coded table and times a GPM incorporating method for absolute mean bias of

mean survival for log-logistic distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Table 26:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean
survival per scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, RMSE), A =
Significant result (Wilcoxon)

Survival (Log-logistic)

High Medium Low
Information Information Information
Medium  High Low Medium  High Low Medium  High

Low

Medium

Young
Heterogeneity

Low High

Age
Average
Medium

Heterogeneity
Low High

Old
Heterogeneity

Medium

High
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Table 27:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean
survival per scenario for log-logistic distributed data. Information and heterogeneity as main axes. (Bias,
RMSE), A = Significant result (Wilcoxon)

Information

Low Medium High
Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic)
Medium Low High Medium Low High Medium Low

Medium Low

Heterogeneity

High
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Lognormal distributed data

Table 28:

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute
mean bias of mean survival for lognormal distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Table 29:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean
survival per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RVISE), A =
Significant result (Wilcoxon)

Survival (Lognormal)

High Medium Low
Information Information Information
Medium  High Low Medium  High Low Medium  High

Low

Medium

Young
Heterogeneity

Low High

Age
Average
Medium

Heterogeneity
Low High

Old

Heterogeneity
Medium

High

62



Table 30:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean

survival per scenario for lognormal distributed data. Information and heterogeneity as main axes. (Bias,

RMSE), A = Significant result (Wilcoxon)

Information

Low Medium High
Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
Medium Low High Medium Low High Medium Low
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Gompertz distributed data
Table 31:
Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of mean survival for Gompertz distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Table 32:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean
survival per scenario for Gompertz distributed data. Survival and ages as main axes. (Bias, RMSE), A =
Significant result (Wilcoxon)

Survival (Gompertz)

High Medium Low
Information Information Information
Medium  High Low Medium  High Low Medium  High

Low

Medium

Young
Heterogeneity

Low High

Age
Average
Medium

Heterogeneity
Low High

Old
Heterogeneity

Medium

High
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Table 33:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of mean

survival per scenario for Gompertz distributed data. Information and heterogeneity as main axes. (Bias,

RMSE), A = Significant result (Wilcoxon)

Information

Low Medium High
Survival (Gompertz) Survival (Gompertz) Survival (Gompertz)
Medium Low High Medium Low High Medium Low
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A.2: Survival probability at time t

Weibull distributed data

Table 34:

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of survival probability at time t for Weibull distributed data. Amount of times the method ranked
best
Non-GPM Internal additive External additive Converging

Times method ranked best

Table 35:
Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival
probability at time t per scenario for Weibull distributed data. Survival and ages as main axes. (Bias, RVSE),
A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations
Survival (Weibull)
High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium* High*

INA

Young
Heterogeneity

Age
Average

Heterogeneity

Old
Heterogeneity
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Table 36:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival

probability at time t per scenario for Weibull distributed data. Information and heterogeneity as main axes.

(Bias, RMISE), A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Heterogeneity

Information

Low Medium High
Survival (Weibull) Survival (Weibull) Survival (Weibull)
Medium Low High Medium Low* High Medium Low*

Low

Medium

High
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Log-logistic distributed data
Table 37:
Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of survival probability at time t for log-logistic distributed data. Amount of times the method ranked
best

Non-GPM Internal additive External additive Converging

Times method ranked best

Table 38:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival
probability at time t per scenario for log-logistic distributed data. Survival and ages as main axes. (Bias,
RMSE), A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Log-logistic)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium* High*

Young
Heterogeneity
Medium Low

High
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Table 39:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival
probability at time t per scenario for log-logistic distributed data. Information and heterogeneity as main axes.
(Bias, RMISE), A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Information

Low Medium High
Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic)
Medium Low High Medium Low* High Medium Low*

Medium Low

Heterogeneity

High
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Lognormal distributed data

Table 40:

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute
mean bias of survival probability at time t for lognormal distributed data. Amount of times the method ranked
best

Non-GPM Internal additive External additive Converging

Times method ranked best

Table 41:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival
probability at time t per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE),
A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Lognormal)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low Medium* High*

Young
Heterogeneity
Medium Low

Low High

Age
Average
Medium

Heterogeneity
Low High

Old
Heterogeneity

Medium

High

70



Table 42:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival
probability at time t per scenario for lognormal distributed data. Information and heterogeneity as main axes.
(Bias, RMISE), A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Information

Low Medium High
Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
Medium Low High Medium Low* High Medium Low*

Medium Low

Heterogeneity

High

71



Gompertz distributed data
Table 43:
Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of survival probability at time t for Gompertz distributed data. Amount of times the method ranked
best

Non-GPM Internal additive External additive Converging

Times method ranked best

Table 44:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival
probability at time t per scenario for Gompertz distributed data. Survival and ages as main axes. (Bias,
RMSE), A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Gompertz)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low Medium* High*

Young
Heterogeneity
Medium Low

High
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Table 45:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of survival
probability at time t per scenario for Gompertz distributed data. Information and heterogeneity as main axes.
(Bias, RMISE), A = Significant result (Wilcoxon), * denotes scenarios that are not extrapolations

Information

Low Medium High
Survival (Gompertz) Survival (Gompertz) Survival (Gompertz)
Medium Low High Medium Low* High Medium Low*

Medium Low

Heterogeneity

High
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A.3: RMST

Weibull distributed data

Table 46:

Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of RMST for Weibull distributed data. Amount of times the method ranked best
Non-GPM Internal additive External additive Converging

Table 47:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST
per scenario for Weibull distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon)
Survival (Weibull)
High Medium Low
Information Information Information
Medium  High Low Medium  High Low Medium High

NA

Young
Heterogeneity

Age

Average

Heterogeneity

Old
Heterogeneity
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Table 48:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST
per scenario for Weibull distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A =
Significant result (Wilcoxon)

Information

Low Medium High
Survival (Weibull) Survival (Weibull) Survival (Weibull)
Medium Low High Medium Low High Medium Low

Medium Low

Heterogeneity

High
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Log-logistic distributed data
Table 49:
Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of RMST for log-logistic distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Table 50:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST
per scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, RVISE), A = Significant
result (Wilcoxon)

Survival (Log-logistic)

High Medium Low
Information Information Information
Medium  High Low Medium  High Low Medium High

Low

Medium

Young
Heterogeneity

Low High

Age
Average
Medium

Heterogeneity
Low High

Old
Heterogeneity

Medium

High
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Table 51:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST
per scenario for log-logistic distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A
= Significant result (Wilcoxon)

Information

Low Medium High
Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic)
Medium Low High Medium Low High Medium Low
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Lognormal distributed data
Table 52:
Legend for filtered colour-coded table and times a GPM incorporating method ranked best for absolute

mean bias of RMST for lognormal distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Table 53:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST
per scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RVISE), A = Significant
result (Wilcoxon)

Survival (Lognormal)

High Medium Low
Information Information Information
Medium  High Low Medium  High Low Medium High

Low

Medium

Young
Heterogeneity

Low High

Age
Average
Medium

Heterogeneity
Low High

Old
Heterogeneity

Medium

High
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Table 54:

Filtered colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST
per scenario for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A
= Significant result (Wilcoxon)

Information

Low Medium High
Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
Medium Low High Medium Low High Medium Low

Medium Low

Heterogeneity

High
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Gompertz distributed data
Table 55:
Legend for colour-coded table and times a GPM incorporating method ranked best for absolute mean

bias of RMST for Gompertz distributed data. Amount of times the method ranked best

Non-GPM Internal additive External additive Converging

Table 56:

Colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST per
scenario for Gompertz distributed data. Survival and ages as main axes. (Bias, RVISE), A = Significant result
(Wilcoxon)

Survival (Gompertz)

High Medium Low
Information Information Information
Medium  High Low Medium  High Low Medium High

Low

Medium

Young
Heterogeneity

Low High

Age
Average
Medium

Heterogeneity
Low High

Old
Heterogeneity

Medium

High
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Table 57:

Colour-coded table for best ranking GPM incorporating method for absolute mean bias of RMST per
scenario for Gompertz distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A =
Significant result (Wilcoxon)

Information

Low Medium High
Survival (Gompertz) Survival (Gompertz) Survival (Gompertz)
Medium Low High Medium Low High Medium Low
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Appendix B: Colour-coded tables for best ranking methods per scenario

This Appendix shows the results of the simulation by colour-coding the tested methods and showing the best
performing method for each scenario based on the absolute mean bias for the estimand. Separate tables are
shown for each estimand and underlying survival distribution used to generate data separately. The DGM
dimensions (survival, age, heterogeneity, level of information) are used as rows and columns for the tables,
tables are shown in pairs with flipped “minor” “and major” dimension of rows and columns. Cells show the
mean bias and mean RMSE for the method over 2,500 replications. A triangle denotes whether the result was
significant based on a Wilcoxon signed-rank test (« = 0.05). Each pair of tables is accompanied by another that
mostly serves as a legend, but also shows the overall number of times a method ranked best and the percentage
of that result which was significant for each survival distribution used to generate the data.
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B.1: Overall mean survival

Weibull distributed data

Table 58:

Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for
Weibull distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 0 4 0 12
Internal additive 4 2 0 10
External additive 5 9 36
Converging 2 6 14
Total 11 21 8 8 10 11 3
Table 59:

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for
Weibull distributed data. Survival and ages as main axes. (Bias, RVISE), A = Significant result (Wilcoxon)
Survival (Weibull)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium  High
A A A A A
b4 -0.12, 0.556, -0.011, -0.153, 0.035, -0.033,
S 0.765 37 1081 0339

A A
-0.388, -0.325, 0.05, 0.117, 0.217, -0.057,
0.941 1.3 0.407

Young
Heterogeneity
Medium

A

-0.019,
0.512

High

5364

Low

Age
Average
Heterogeneity

Old

Heterogeneity

High

83



Table 60:
Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for

Weibull distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon)

Information

Low Medium High

Survival (Weibull) Survival (Weibull) Survival (Weibull)
Medium Low High Medium Low High Medium Low
a a a a
%0 0.556, 0.035, -0.12, -0.153, -0.033,
N 37 0.376 0.765 0.339 0.033
A A
[
3| o & 0054 0.034, -0.02,
o|l ™™ 5
= << z 2.756 0.358 0.02

Medium

Heterogeneity

High
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Log-logistic distributed data
Table 61:
Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for

log-logistic distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 2 1 1 15
Internal additive 2 4 2 9
External additive 6 0 31
Converging 1 3 17
Total 11 8 22 6 9 12 4
Table 62:

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for log-
logistic distributed data. Survival and ages as main axes. (Bias, RMISE), A = Significant result (Wilcoxon)

Survival (Log-logistic)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium  High
A
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S| 6347 0844 0113
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Table 63:

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for log-
logistic distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon)

Information

Low Medium High

Survival (Log-logistic)
Medium Low High Medium

Survival (Log-logistic) Survival (Log-logistic)

Low High Medium Low

A

-0.01, -0.48, -0.016,
0.113 0.844 0.063
-0.002, -0.006,

Low
Age

0.101
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e
(4]
s 5
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5 s
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(0]
I
0.08,
1.066
A
5 g 0241, 0203, 0.008,
T|< 0.58 0.379 0.233
20015, -0014,
0.137 0.076
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Lognormal distributed data

Table 64:

Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for
lognormal distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 1 1 1 10
Internal additive 3 5 2 15
External additive 2 0 32
Converging 1 3 15
Total 7 9 9 25 6 12 4
Table 65:

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for
lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Survival (Lognormal)
High Medium Low
Information
Medium  High Low

A

Information

Medium

Information
Medium

High Low High

-0.562,
2.06

Low

Young
Heterogeneity

Age
Average

Heterogeneity

Old

Heterogeneity
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Table 66:

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for
lognormal distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon)

Information

Low Medium High
Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
Medium Low High Medium Low High Medium Low
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R
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- 0002,
0.199
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-0.012, -0.014,
0.135 0.075
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Gompertz distributed data
Table 67:
Legend for colour-coded table and times a model ranked best for absolute mean bias of mean survival for

Gompertz distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 0 7 13
Internal additive 2 7 17
External additive 4 2 24
Converging 1 3 18
Total 7 19 6 8 11 21 0
Table 68:

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for
Gompertz distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Survival (Gompertz)
High Medium Low

Information Information Information
Medium  High Medium  High Medium  High

0.319,
1.456

Young
Heterogeneity

Age
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Heterogeneity

Old

Heterogeneity

0.094, -0.012,
0436 0.137

89



Table 69:

Colour-coded table for best ranking model for absolute mean bias of mean survival per scenario for
Gompertz distributed data. Information and heterogeneity as main axes. (Bias, RVISE), A = Significant result
(Wilcoxon)

Information

Low Medium High
Survival (Gompertz) Survival (Gompertz) Survival (Gompertz)
Medium Low High Medium Low High Medium Low
A
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B.2: Survival probability at time t
Weibull distributed data

Table 70:
Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability

at time t for Weibull distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 2 1 16
Internal additive 2 4 19
External additive 4 2 20
Converging 1 6 17
Total 9 13 9 11 4 25 1
Table 71:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per
scenario for Weibull distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Weibull)

High Medium Low
Information Information Information
Medium  High Medium  High Medium*  High*
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Table 72:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario
for Weibull distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon), * denotes scenarios that are not extrapolations

Information

Low Medium High
Survival (Weibull) Survival (Weibull) Survival (Weibull)
Medium Low High Medium Low* High Medium Low*
A
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Log-logistic distributed data
Table 73:

Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability
at time t for log-logistic distributed data. Amount of model the method ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 1 1 11
Internal additive 1 0 15
External additive 2 0 29
Converging 0 6 17
Total 4 7 27 19 3 11 1
Table 74:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per
scenario for log-logistic distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Log-logistic)
High Medium Low

Information
Medium  High Low

Information Information
Medium  High Low Medium* High*

0.004, 0, -0.004, -0.004,
0.011 0.057 0.01 0.009

Low

Young
Heterogeneity

=
o 9 &
oo & | S0
< 9|8
<3
T
z 0 0.007, 0
S 0015 001
=
(3]
ol g é 0,002,
Ol 3 0.008
g =
T

A

-0.007,
0.055

0.002,
0.018
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Table 75:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario
for log-logistic distributed data. Information and heterogeneity as main axes. (Bias, RVISE), A = Significant result

(Wilcoxon), * denotes scenarios that are not extrapolations

Information

Low Medium

High

Survival (Log-logistic) Survival (Log-logistic)

Survival (Log-logistic)

A

0.005, 0.003,
0.044 0.027

Heterogeneity
Medium

(&)

| g ©| 0001,

T|< j?’ 0.066
o | -0007,  -0.001,
Ol 0055 0.04

Medium Low High Medium Low* High Medium Low*

-0.004, 0.007, 0.004, -0.004,

0.01 0.027 0.011 0.009

g o -0.002, -0.002,
= << 0.01 0.008

0,
0.008

0.001,
0.008
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Lognormal distributed data

Table 76:

Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability
at time t for lognormal distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 2 1 17
Internal additive 0 1 19
External additive 2 0 22
Converging 0 5 14
Total 4 7 12 24 7 12 6
Table 77:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per
scenario for lognormal distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Lognormal)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low Medium* High*

Young
Heterogeneity
High  Medium  Low

Low

Age

Average
Medium

Heterogeneity
Low High

Old

Heterogeneity
Medium

A
0.01, -0.001,
0.06 0.018

High
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Table 78:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario
for lognormal distributed data. Information and heterogeneity as main axes. (Bias, RVISE), A = Significant result
(Wilcoxon), * denotes scenarios that are not extrapolations

Information

Low Medium High

Survival (Lognormal) Survival (Lognormal) Survival (Lognormal)
Medium Low High Medium Low* High Medium Low*

-0.002, 0.001,
0.023 0.011

0.016,
0.032

Medium Low

Heterogeneity

High

A

0.029, -0.001,
0.035 0.018
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Gompertz distributed data
Table 79:

Legend for colour-coded table and times a model ranked best for absolute mean bias of survival probability
at time t for Gompertz distributed data. Amount of times the model ranked best

Exponential Weibull

Non-GPM 0 3
Internal additive 0 7
External additive 2 1
Converging 0 5
Total 2 16 12 9 19
Table 80:

Log-logistic Lognormal Gompertz Gen. Gamma

13

Gen. F

Total

14

20

22

16

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per
scenario for Gompertz distributed data. Survival and ages as main axes. (Bias, RVISE), A = Significant result

(Wilcoxon), * denotes scenarios that are not extrapolations

Survival (Gompertz)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low Medium* High*
-0.001, -0.001, -0.001,

Low

0.124

Young
Heterogeneity

=
L
o S
oo & | S0
< 2§
<3
T
=
(3]
E@,.g 0,
Ol 3 0022
g =
T A

-0.011,
0.06

-0.001,
0.018

0.008

0.009
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Table 81:

Colour-coded table for best ranking model for absolute mean bias of survival probability at time t per scenario
for Gompertz distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result
(Wilcoxon), * denotes scenarios that are not extrapolations

Heterogeneity

Information

Low Medium High

Survival (Gompertz)
High Medium

Survival (Gompertz)
Medium Low High Medium

Survival (Gompertz)
Low*

Low*

Low

Medium

High

Age

Age

Young

Average

Average

Old

-0.031, -0.001,
0.135 0.009
-0.012, 0.002,

0.13 0.009

-0.002, 0,
0.025 0.008

0,
0.068

-0.002,
0.04

-0.011,
0.06
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B.3: RMST
Weibull distributed data
Table 82:

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for Weibull

distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma

Non-GPM 2 3 6

Internal additive 3 9 /
External additive 5 2
Converging 3 2
Total 13 16 18 1
Table 83:

14 8

Gen. F

Total

18
27
13

14

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for Weibull
distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)
Survival (Weibull)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Medium
) 0 -0.007, -0.045,
31 0004 0015 0029 0.045
2 _ =
%" g, E 0002, 0004 0.029,
X g 3| 0004 0016 0.029 0016 0.025 0.029
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2| -0.001 0,032,
S| o005 0032
=
ol & €
g o & 2| 0002 0003,  -0.006, 0.014,
< ¢ g o| 0005 0014 0.038
< 3 >
=
&
ol g -0.045,
ol g 0019 0.045
ko
T A
0002,  -0.025, 0.01, 0
0.019 0.057 0.01 0.021 0.033
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Table 84:

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for Weibull
distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Heterogeneity

Low

Medium

High

Low

Information

Medium

Survival (Weibull)

Medium

Low

Survival (Weibull)
High Medium

Low

0,
0.004

0,

-0.001,
0.005

gl 0001,
2| 0009
[}
o0

% g -0.001,
£| 0009
-| o -0.003,
Ol oo1 0.007
2 0001,  -0016
2| 0009

High

High
Survival (Weibull)
Medium Low
-0.007, -0.045,
0.029 0.045
A
-0.032,
0.032
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Log-logistic distributed data
Table 85:

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for log-

logistic distributed data. Amount of times the model ranked best

Exponential Weibull

Non-GPM 1 5
Internal additive 3 15
External additive 3 0

Converging 3 5
Total 10 25
Table 86:

18 6

Log-logistic Lognormal Gompertz Gen. Gamma

Gen. F

Total

21

33

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for log-logistic

distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Survival (Log-logistic)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium  High
A A A
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< 2|5 8| ooos 0014 0012
<8 =
I A
S 0 , 0, 0,005 0041,
T| 0009 0.033 001 0015 0051
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Table 87:

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for log-logistic
distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Heterogeneity

Information

Old

-0.002,
0.019

-0.006,
0.023

0.007,
0.019

Low Medium High
Survival (Log-logistic) Survival (Log-logistic) Survival (Log-logistic)
Medium Low High Medium Low High Medium Low
A A A
%D -0.006, -0.014, 0, 0, -0.014, -0.015,
S 0008 0.014 0.004 0.014 0.016 0.018
o A A A
% e &l -0.005, -0.014, -0.001, -0.003, -0.009, -0.004,
= << <QE>) 0.007 0.014 0.005 0.02 0.013 0.014
A
) -0.003, 0.002, 0.016, 0,
© 0.006 0.02 0018
A
%ﬂ -0.005, -0.014, -0.001, -0.002, -0.007,
S| 0011 0.014 0.004 0.014 0.013
€ o A A
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< 2 0012
o -0.002,
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-0.02,
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-0.027,
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Lognormal distributed data

Table 88:

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for

lognormal distributed data. Amount of times the model ranked best

Non-GPM
Internal additive
External additive
Converging

Total
Table 89:

Exponential Weibull

2 6
2 15
2 4
0 4
6 29 19 4 9

Log-logistic Lognormal Gompertz Gen. Gamma

Gen. F

Total

20

37

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for lognormal
distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Age

Young

Average

Old

Survival (Lognormal)

High Medium Low
Information Information Information
Medium  High Low  Medium  High Low  Medium  High
A A
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Table 90:

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for lognormal

distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Heterogeneity

Low

Medium

High

Age

Age

Old

Old

Low

Information

Medium

High

Medium

Survival (Lognormal)

Survival (Lognormal)

Survival (Lognormal)
Medium

0.007

0.01

Low High Medium Low High
A
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A A A
-0.012, -0.001, 0.001, -0.005, -0.003,
0.012 0.005 0012 0.012 0023

-0.002,
0.006

-0.003,
0.01

A

A

-0.001, 0.009,
0.014 0.014
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Low

-0.024,
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Gompertz distributed data

Table 91:

Legend for colour-coded table and times a model ranked best for absolute mean bias of RMST for
Gompertz distributed data. Amount of times the model ranked best

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F Total
Non-GPM 2 2 19
Internal additive 5 9 33
External additive 2 2 7
Converging 5 4 13
Total 14 17 14 8 12 5 2
Table 92:

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for Gompertz
distributed data. Survival and ages as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Survival (Gompertz)

High Medium Low
Information
Medium  High Low  Medium  High Low

Information Information
Medium  High
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Table 93:

Colour-coded table for best ranking model for absolute mean bias of RMST per scenario for Gompertz
distributed data. Information and heterogeneity as main axes. (Bias, RMSE), A = Significant result (Wilcoxon)

Heterogeneity

Low

Medium

High

Low

Information
Medium High

Survival (Gompertz)

Survival (Gompertz) Survival (Gompertz)

Medium Low High Medium Low High Medium Low
2| 0004 0016 0 -0.002,
L 0006 0017 0.004 0.02
[0}
g & 0003 -0016 | -0001,
< jt>) 0.006 0016 0.005
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Appendix C: Raw results of bias of overall extrapolated mean survival per scenario per method and distribution

Table 94:
Mean bias of overall mean survival — Non-GPM models

Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Scenario characteristics

Mean of

Survival Heterogeneity Information Distribution method

High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium

Gompertz 476
Log-logistic 5.84
Lognormal 6.34
Weibull 537
Gompertz 491
Log-logistic 6.00
Lognormal 6.64
Weibull 6.00
Gompertz 747
Log-logistic 6.29
Lognormal 5.84
Weibull 6.65
Gompertz 10.21
Log-logistic 8.78
Lognormal 598
Weibull 9.04
Gompertz 6.79
Log-logistic 573
Lognormal 5.60
Weibull 597
Gompertz 10.06
Log-logistic 792
Lognormal 543
Weibull 8.69

Distribution for extrapolation

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

1.01
191
2.29
150
-1.76
-1.34
-1.32
-1.50
9.46
8.48
748
8.64
11.84
1141
10.26
1123
8.74
749
6.64
7.69
1125
1022
8.75
10.32

317
4.51
5.18
3.94
0.89
246
3.31
201
7.16
576
4.77
6.16
NA
NA
NA
NA
645
505
444
536
NA
NA
NA
NA

558
6.53
7.00
6.14
529
6.22
6.70
6.00
9.12
7.95
707
8.29
1036
8.82
5.68
9.07
8.63
7.36
6.75
7.64
1039
8.02
530
873

722

8.20

8.62

7.81

9.80
10.54
10.76
10.39
11.81
10.71

9.65
11.01
15.31
1425
1193
14.37
11.40
10.05

9.22
10.32
1546
13.63
1147
14.15

741
8.81
948
8.22
10.31
12.09
1377
1175
138
0.06
0.57
0.72
333
0.64
-3.95
1.50
0.80
0.27
121
0.56
314
-0.18
-3.79
1.56

4.15
511
547
4.63
NA
NA
NA
7.36
591
4.80
552
508
NA
NA
NA
NA
4.71
417
5.27
426
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
5.68
NA
NA
NA
NA
NA
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Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Mean of

Survival Heterogeneity Information Distribution method

Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

High
High
High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium

High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High

Low

Gompertz 1.03
Log-logistic 0.90
Lognormal 0.89
Weibull 0.97
Gompertz 342
Log-logistic 275
Lognormal 2.60
Weibull 292
Gompertz 197
Log-logistic 175
Lognormal 1.74
Weibull 1.86
Gompertz 0.14
Log-logistic -0.08
Lognormal -0.04
Weibull 0.06
Gompertz 242
Log-logistic 0.05
Lognormal -0.16
Weibull 146
Gompertz 0.44
Log-logistic -0.22
Lognormal -0.09
Weibull 0.22
Gompertz 0.15
Log-logistic -0.07
Lognormal -0.03
Weibull 0.07
Gompertz 2.19

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

-1.53
-1.55
-1.55
-1.54
-3.71
-3.77
-3.74
-3.79
-294
-2.95
-2.96
-2.96
-0.04
-0.12
-0.06
-0.04

0.26

0.59

0.65

0.78

0.08
-0.18
-0.05

0.13
-0.07
-0.16
-0.10
-0.06
-0.14

-0.09
-0.30
-032
-0.21
-204
-2.59
-2.65
-242
-1.15
-1.52
-1.55
-1.39
-0.05
-0.12
-0.06
-0.05

0.28
-0.66
-0.65

0.06

0.03
-0.37
-0.25
-0.05
-0.06
-017
-0.11
-0.07
-0.04

1.68
133
130
150
192
1.05
0.91
139
195
144
140
1.66
0.74
-0.01
0.06
044
3.00
0.10
-0.05
203
1.32
0.01
0.11
0.77
0.80
0.08
0.13
0.50
262

157
1.14
1.11
134
2.70
1.68
150
2.14
2.08
141
137
171
0.46
-0.08
-0.04
0.22
429
045
0.12
3.17
1.26
-0.11
-0.02
0.65
0.53
-0.05
-0.02
0.27
373

3.58

370

3.69

372
18.24
17.38
16.96
17.70
10.74
10.77
10.80
10.88
-0.05
-0.11
-0.07
-0.05

4.86
-091
-0.85

0.57
-0.02
-041
-029
-013
-0.04
-0.09
-0.07
-0.06

534

0.92
0.94
0.94
092
NA
NA
NA
252
115
1.35
139
124
-0.05
-0.11
-0.05
-0.05
1.85
0.75
NA
216
0.00
-0.26
-0.02
-0.04
-0.06
-0.10
-0.04
-0.06
1.62

1.07
1.04
1.03
1.05
NA
NA
NA
NA
NA
NA
NA
NA
-0.05
-0.02
NA
-0.05
NA
NA
NA
NA
NA
NA
NA
NA
-0.04
-0.01
NA
-0.04
NA
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Mean of

Age Survival Heterogeneity Information Distribution method Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F
Average Low Medium Low Log-logistic -0.28 0.06 -0.86 0.08 0.35 -1.07 NA NA
Average Low Medium Low Lognormal -0.32 0.15 -0.84 -0.02 0.13 -1.02 NA NA
Average Low Medium Low Weibull 1.05 0.24 -0.30 1.60 2.50 0.58 1.67 NA
Average Low Medium Medium Gompertz 0.41 -0.14 -0.12 132 126 0.19 -0.07 NA
Average Low Medium Medium Log-logistic -0.23 -0.30 -047 013 -0.05 -049 -0.21 NA
Average Low Medium Medium Lognormal -013 -0.21 -0.39 0.20 0.00 -040 0.01 NA
Average Low Medium Medium Weibull 0.16 -0.06 -0.19 0.84 0.70 -0.23 -0.09 NA
Average Medium High High Gompertz 2.36 =276 0.85 303 337 6.88 245 270
Average Medium High High Log-logistic 236 -2.86 1.03 312 342 6.83 263 NA
Average Medium High High Lognormal 231 -2.83 0.89 292 312 6.64 266 278
Average Medium High High Weibull 252 -2.70 128 349 392 6.76 239 NA
Average Medium High Low Gompertz 376 =727 =312 2.30 515 20.51 498 NA
Average Medium High Low Log-logistic 376 -7.37 -3.00 2.34 4.89 20.95 4.75 NA
Average Medium High Low Lognormal 343 -724 -349 174 393 20.55 511 NA
Average Medium High Low Weibull 4.72 -7.10 -1.61 382 6.64 21.98 4.57 NA
Average Medium High Medium Gompertz 3.19 -572 -1.15 315 446 15.31 3.09 NA
Average Medium High Medium Log-logistic 327 -5.81 -0.90 3.26 443 15.19 342 NA
Average Medium High Medium Lognormal 3.08 -5.69 -1.16 291 385 14.87 372 NA
Average Medium High Medium Weibull 3.71 -5.56 -0.08 4.08 547 1540 297 NA
Average Medium Low High Gompertz 0.61 -0.74 -046 2.00 2.29 0.67 -0.09 NA
Average Medium Low High Log-logistic 0.87 -1.50 -0.62 1.69 1.94 329 042 NA
Average Medium Low High Lognormal 1.04 -1.54 -0.58 149 150 411 127 NA
Average Medium Low High Weibull 1.89 -0.69 0.60 342 393 3.60 047 NA
Average Medium Low Low Gompertz 491 -1.07 -0.09 4.94 10.04 10.72 NA NA
Average Medium Low Low Log-logistic 298 -343 -2.32 2.51 6.55 9.46 511 NA
Average Medium Low Low Lognormal -0.03 -3.81 -4.10 -023 2.29 5.71 NA NA
Average Medium Low Low Weibull 7.63 -3.17 1.69 724 1176 20.63 NA NA
Average Medium Low Medium Gompertz 171 -1.31 -1.00 355 5.80 303 0.18 NA
Average Medium Low Medium Log-logistic 1.06 -298 =217 204 359 6.14 -0.27 NA
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Age
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Mean of

Survival Heterogeneity Information Distribution method

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low

Low

Medium Lognormal 1.14
Medium Weibull 4.64
High Gompertz 0.78
High Log-logistic 1.03
High Lognormal 1.14
High Weibull 1.86
Low Gompertz 392
Low Log-logistic 245
Low Lognormal 1.21
Low Weibull 713
Medium Gompertz 1.61
Medium Log-logistic 139
Medium Lognormal 1.40
Medium Weibull 4.31
High Gompertz 0.46
High Log-logistic 048
High Lognormal 0.51
High Weibull 048
Medium Gompertz 147
Medium Log-logistic 1.71
Medium Lognormal 177
Medium Weibull 162
High Gompertz 118
High Log-logistic 113
High Lognormal 1.10
High Weibull 1.14
Medium Gompertz 3.65
Medium Log-logistic 348
Medium Lognormal 3.16

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

-3.21
-2.10
-0.99
-1.63
-1.67
-097
-204
-3.94
-4.22
-3.66
-1.95
-3.29
-348
-2.52
0.07
0.10
0.12
0.09
-0.13
-0.10
-0.11
-0.10
1.63
157
151
158
374
372
359

=262
093
-047
-0.53
-0.51
0.50
-0.99
-2.67
-4.18
107
-1.35
=219
-2.63
0.51
0.15
0.19
0.22
0.18
0.23
0.36
0.50
0.40
1.00
093
0.87
0.95
2.85
2.64
225

113
574
201
179
159
326
4.00
222
-0.14
6.63
3.16
206
122
526
1.05
107
1.10
107
224
230
2.39
236
203
197
190
198
447
4.32
4.03

1.88
8.07
2.30
204
1.61
377
8.76
6.08
240
1095
523
355
199
748
128
132
1.36
1.31
3.66
373
3.81
378
249
241
2.32
242
6.37
6.25
6.00

763
14.24
1.68
391
4.50
4.09
9.86
10.55
746
20.65
4.51
8.18
9.25
1429
0.18
0.19
0.23
0.19
1.90
216
263
224
0.01
-0.03
-0.03
-0.01
1.31
0.94
0.39

201
0.99
0.14
0.62
136
0.55
NA
NA
593
NA
0.06
0.04
2.08
0.87
0.05
0.01
0.00
0.03
0.90
113
139
1.05
-0.10
-0.06
0.03
-0.05
3.16
3.00
272

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
238
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age
Oold
Old
Oold
Old
Oold
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old

Mean of

Survival Heterogeneity Information Distribution method

High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low

Low

Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low

Low

Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal

Weibull

3.56
0.85
0.80
0.77
0.81
2.96
275
241
275
0.30
0.22
0.22
0.24
1.64
132
137
153
0.92
0.79
0.79
0.86
0.10
-0.03
-0.02
0.05
137
0.09
-0.02
1.00

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

372
1.11
1.05
0.98
1.07
2.80
275
2.55
2.69
-0.36
-0.36
-0.35
-0.36
-1.77
-1.76
-1.76
-1.78
-1.15
-1.14
-1.13
-1.14
-0.04
-0.06
-0.05
-0.04
0.22
0.58
057
0.67

274
0.63
0.56
0.50
0.58
2.10
1.84
143
1.84
0.06
-0.01
-0.01
0.02
-0.59
-0.95
-093
-0.78
-0.15
-0.34
-0.34
-0.25
-0.05
-0.06
-0.05
-0.05
0.22
-0.45
-0.50
0.08

4.39
1.63
155
149
158
383
3.62
3.31
363
0.77
0.61
0.61
0.69
146
1.01
1.03
1.25
123
0.98
0.98
1.11
0.55
0.06
0.08
0.37
198
0.31
0.12
157

6.31
205
196
1.87
198
5.69
550
522
550
0.66
048
047
0.56
1.89
135
138
1.67
1.31
0.98
0.98
115
0.37
0.01
0.01
0.21
277
0.70
0.40
2.38

117
-0.16
-0.19
-0.18
-0.18

1.01

0.61

0.08

0.68

045

046

0.46

046

7.60

6.94

703

741

370

361

362

371
-0.05
-0.06
-0.06
-0.05

199
-0.69
-0.71

017

303
-0.18
-0.14
-0.06
-0.16

232

2.17

1.88

2.16

0.19

0.17

0.17

0.17

124

1.31

143

138

0.59

0.63

0.65

0.62
-0.05
-0.07
-0.05
-0.05

1.05

NA
NA
1.11

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0.17
NA
NA
NA
NA
NA
NA
NA
NA
-0.05
NA
NA
-0.05
NA
NA
NA
NA
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Age
Oold
Old
Oold
Old
Oold
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old

Mean of

Survival Heterogeneity Information Distribution method

Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Medium

Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High

Low

Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High

Gompertz 0.31
Log-logistic -0.11
Lognormal -0.05
Weibull 0.18
Gompertz 0.10
Log-logistic -0.02
Lognormal -0.02
Weibull 0.05
Gompertz 1.12
Log-logistic -0.06
Lognormal 0.01
Weibull 0.66
Gompertz 0.26
Log-logistic -0.10
Lognormal -0.06
Weibull 0.13
Gompertz 043
Log-logistic 045
Lognormal 0.44
Weibull 0.51
Gompertz 2.04
Log-logistic 215
Lognormal 199
Weibull 249
Gompertz 144
Log-logistic 149
Lognormal 143
Weibull 1.64
Gompertz 0.38

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

0.06
-0.09
-0.03

0.10
-0.05
-0.07
-0.06
-0.05
-0.08

0.17

0.19

0.21
-0.09
-0.15
-0.12
-0.04
-0.44
-048
-047
-0.45
-2.69
-2.80
-2.78
-2.74
-1.68
-1.76
-1.76
-1.71

0.06

0.02
-024
-0.19
-0.04
-0.05
-0.08
-0.06
-0.06
-0.02
-0.58
-0.61
-0.21
-0.08
-0.29
-0.26
-0.14

0.18

0.22

0.21

0.29
-0.55
-047
-0.63

0.15

0.09

0.18

0.10

047

0.07

0.92
0.10
0.14
0.61
0.53
0.12
0.12
0.37
170
0.28
0.17
120
0.87
0.19
0.20
0.60
0.99
1.02
0.98
116
1.98
201
1.83
261
1.83
187
174
217
0.99

0.92
0.03
0.06
0.56
0.38
0.04
0.03
0.22
2.38
0.60
0.41
1.82
0.87
0.10
0.11
0.56
0.97
0.99
0.92
117
323
3.10
281
3.85
2.30
228
207
269
1.00

-0.03
-0.27
-022
-0.11
-0.04
-0.06
-0.06
-0.05
2.00
-0.77
-0.79
0.1
0.03
-0.30
-027
-017
0.76
0.79
0.79
0.80
8.24
878
8.70
9.13
5.04
518
5.10
526
0.07

-0.01
-017
-0.07
-0.04
-0.05
-0.06
-0.05
-0.05
0.73
NA
0.72
0.82
-0.05
-0.13
-0.04
-0.07
0.27
0.30
0.34
0.28
205
228
NA
194
1.05
118
132
093
0.07

NA
NA
NA
NA
-0.04
-0.03
-0.03
-0.05
NA
NA
NA
NA
NA
NA
NA
NA
0.28
0.31
0.34
0.30
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Young
Young
Young
Young
Young
Young

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High

Mean of
Heterogeneity Information Distribution method

Low High Log-logistic 0.39
Low High Lognormal 0.38
Low High Weibull 0.59
Low Low Gompertz 2.79
Low Low Log-logistic 1.95
Low Low Lognormal 0.86
Low Low Weibull 359
Low Medium Gompertz 1.10
Low Medium Log-logistic 0.90
Low Medium Lognormal 0.82
Low Medium Weibull 194
Medium High Gompertz 0.33
Medium High Log-logistic 0.35
Medium High Lognormal 0.33
Medium High Weibull 0.50
Medium Low Gompertz 2.20
Medium Low Log-logistic 172
Medium Low Lognormal 0.98
Medium Low Weibull 323
Medium Medium Gompertz 0.92
Medium Medium Log-logistic 0.85
Medium Medium Lognormal 0.83
Medium Medium Weibull 173
High High Gompertz 6.42
High High Log-logistic 792
High High Lognormal 9.17
High High Weibull 7.63
High Medium Gompertz 5.01
High Medium Log-logistic 6.10

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

-0.04
-0.07

0.05

0.25
-0.80
-1.14
-1.08

0.07
-0.57
-0.75
-042
-0.05
-0.15
-0.18
-0.07
-0.30
-1.16
-1.40
-1.30
-0.28
-0.77
-091
-0.65
-1.13

0.08

0.69
-042
-5.87
-5.67

0.10
0.09
0.28
043
-032
-147
136
0.13
-0.21
-048
0.85
0.02
0.03
0.03
0.19
0.03
-0.59
-1.43
0.99
-0.08
-0.30
-0.51
0.61
348
561
6.91
4.83
-1.45
0.99

0.93
0.81
132
3.00
223
0.80
391
220
1.71
129
2.84
0.91
0.85
0.74
1.21
262
1.96
0.89
3.58
193
1.59
125
257
6.89
8.29
9.16
7.81
4.79
6.18

0.94
0.76
136
526
411
212
5.84
308
2.36
1.65
3.71
0.92
0.85
0.69
124
474
3.70
217
544
2.71
2.18
159
3.38
9.39
10.75
1146
10.31
11.30
12.34

0.34
046
0.38
393
3.94
1.96
8.27
0.81
1.72
2.1
4.13
0.12
0.35
045
0.37
392
4.14
2.89
796
1.02
2.09
255
4.06
1329
15.06
16.07
14.41
14.01
16.64

0.19
0.32
0.13
3.89
252
291
326
033
0.39
112
0.52
0.05
0.14
0.25
0.09

NA
226
276
2.71
0.23
0.35
1.03
043
6.61
7.71

NA
7.26
7.26

NA

0.24
0.32
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
10.73
9.24
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Mean of
Survival Heterogeneity Information Distribution method

High High Medium Lognormal 6.54
High High Medium Weibull 5.64
High Low High Gompertz 12.11
High Low High Log-logistic 8.84
High Low High Lognormal 7.69
High Low High Weibull 9.69
High Low Medium Gompertz 13.09
High Low Medium Log-logistic 9.22
High Low Medium Lognormal 3.86
High Low Medium Weibull 1038
High Medium High Gompertz 10.66
High Medium High Log-logistic 8.07
High Medium High Lognormal 763
High Medium High Weibull 8.63
High Medium Medium Gompertz 549
High Medium Medium Log-logistic 8.28
High Medium Medium Lognormal -8.81
High Medium Medium Weibull 9.80
Low High High Gompertz 119
Low High High Log-logistic 0.99
Low High High Lognormal 1.01
Low High High Weibull 1.1
Low High Low Gompertz 4.03
Low High Low Log-logistic 342
Low High Low Lognormal 344
Low High Low Weibull 377
Low High Medium Gompertz 242
Low High Medium Log-logistic 2.10
Low High Medium Lognormal 212

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

-5.95
-5.75
1371
11.08
8.90
1149
15.60
13.94
1132
1392
12.89
9.82
792
1043
NA
1240
NA
1292
-2.36
-240
-2.38
-2.38
-4.68
-4.72
-4.71
-4.78
-3.86
-391
-3.88

1.84
0.09
1136
7.59
543
8.64
NA
NA
NA
NA
9.99
6.62
527
744
NA
NA
NA
NA
-0.59
-0.90
-0.89
-0.76
-2.95
-3.53
-3.53
-3.33
-1.91
-2.38
-2.37

6.52
572
13.62
1040
8.48
11.27
1259
8.30
2.21
9.71
1275
9.63
8.31
10.40
NA
7.58
NA
9.26
1.86
136
1.38
162
1.91
0.80
0.78
132
2.08
136
137

1231
12.03
1744
14.51
1236
15.26
1946
16.35
1172
1732
1691
1375
12.05
14.51
NA
1593
NA
17.19
1.68
1.08
1.09
139
2.82
146
143
218
2.18
126
125

1799
16.10
4.44
0.60
135
2.23
4.71
-1.70
-9.80
0.57
2.16
0.53
283
120
549
-2.78
-8.81
-0.20
550
563
5.68
5.69
2440
2326
23.28
2413
14.90
14.90
14.94

NA
NA
NA
NA
9.58
9.28
NA
NA
NA
NA
9.25
NA
9.37
7.79
NA
NA
NA
NA
0.96
0.97
1.00
0.97
2.66
323
340
3.11
115
1.34
143

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
128
119
120
123
NA
NA
NA
NA
NA
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Mean of

Survival Heterogeneity Information Distribution method

Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium

Medium

High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High

Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High

Weibull 227
Gompertz 0.15
Log-logistic -0.11
Lognormal -0.04
Weibull 0.08
Gompertz 303
Log-logistic 012
Lognormal 0.25
Weibull 1.62
Gompertz 048
Log-logistic -0.25
Lognormal -0.09
Weibull 0.24
Gompertz 017
Log-logistic -0.09
Lognormal -0.04
Weibull 0.07
Gompertz 261
Log-logistic -0.04
Lognormal -0.36
Weibull 127
Gompertz 046
Log-logistic -0.28
Lognormal -0.14
Weibull 0.17
Gompertz 2.56
Log-logistic 265
Lognormal 252
Weibull 294

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

-390 =219 172 174
-0.04 -0.05 0.79 048
-0.14 -0.15 -0.02 -0.10
-0.06 -0.06 0.07 -0.04
-0.04 -0.05 0.46 0.22
0.26 0.31 340 4.86
0.60 -0.68 0.11 043
0.65 -0.68 -0.09 0.05
0.79 0.04 217 340
0.08 0.03 144 133
-0.21 -040 -0.01 -0.14
-0.06 -0.26 0.11 -0.04
0.13 -0.05 0.82 0.68
-0.07 -0.06 0.89 0.57
-0.20 -0.20 0.07 -0.09
-0.12 -0.12 0.14 -0.04
-0.06 -0.07 0.54 0.27
-0.16 -0.07 290 414
0.02 -092 0.04 0.31
0.12 -0.88 -0.06 0.08
0.23 -0.31 1.78 276
-0.15 -0.12 148 135
-0.36 -0.53 0.10 -0.10
-0.23 -0.41 0.20 -0.03
-0.07 -0.20 0.90 0.72
-507 0.05 329 3.80
-5.18 0.33 343 3.89
-5.06 0.18 320 352
-4.82 0.76 4.03 4.66

15.07
-0.05
-0.13
-0.07
-0.05

693
-092
-0.88

0.80
-0.01
-044
-0.30
-0.13
-0.03
-0.10
-0.08
-0.06

7.05
-1.10
-1.06

1.10

0.28
-0.55
-043
-024
1038
10.24

9.99
10.19

117
-0.05
-0.13
-0.05
-0.05

244

117

241

2.51

0.00
-0.28
-0.02
-0.04
-0.06
-0.13
-0.04
-0.06

1.80

143

NA

2.08
-0.07
-0.25

0.03
-0.09

2.88

3.16

3.31

2.82

NA
-0.05
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
-0.03
-0.02
NA
-0.04
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Mean of
Heterogeneity Information Distribution method

High Low Gompertz 373
High Low Log-logistic 411
High Low Lognormal 3.78
High Low Weibull 536
High Medium Gompertz 332
High Medium Log-logistic 342
High Medium Lognormal 325
High Medium Weibull 4.15
Low High Gompertz 0.40
Low High Log-logistic 0.72
Low High Lognormal 1.17
Low High Weibull 2.51
Low Low Gompertz 5.87
Low Low Log-logistic 3.05
Low Low Lognormal 0.99
Low Low Weibull 10.09
Low Medium Gompertz 179
Low Medium Log-logistic 0.90
Low Medium Lognormal 1.21
Low Medium Weibull 6.14
Medium High Gompertz 0.69
Medium High Log-logistic 1.03
Medium High Lognormal 133
Medium High Weibull 244
Medium Low Gompertz 5.05
Medium Low Log-logistic 271
Medium Low Lognormal 0.07
Medium Low Weibull 9.33
Medium Medium Gompertz 171
Medium Medium Log-logistic 140
Medium Medium Lognormal 156
Medium Medium Weibull 5.63

Exponential Weibull Log-logistic Lognormal Gompertz Gen. Gamma Gen. F

-10.07
-10.08
-9.84
-9.65
-8.37
-8.47
-8.28
-799
-1.48
-2.71
-2.68
-122
-1.92
-4.78
-5.21
-3.88
=217
-4.34
-4.52
-2.78
-1.89
=291
-2.89
-1.68
-3.11
-5.44
-5.69
-4.66
-3.00
-4.77
-4.86
-3.45

-541
-525
-5.70
-347
-3.05
-2.69
-297
-1.50
-1.11
-1.59
-146

0.44
-0.67
-3.51
-5.55

1.82
-1.78
-3.45
-3.86

0.66
-1.19
-147
-1.41

0.22
-1.61
-4.05
-5.60

0.82
-2.32
-3.57
-391

0.05

159
173
1.02
3.68
283
3.05
265
4.28
215
159
145
4.36
559
243
-1.09
9.07
391
1.81
0.76
7.10
2.16
1.79
157
4.10
4.67
193
-0.87
8.07
335
1.80
0.89
641

535
5.06
3.80
7.36
4.56
4.60
3.89
6.15
250
1.88
139
5.09
12.14
749
1.89
15.06
6.80
374
1.61
10.20
2.54
2.09
156
4.81
10.88
6.79
2.10
1376
598
3.64
179
9.31

27.21
2790
2740
28.87
20.78
20.52
20.18
2098
091
521
6.49
596
14.21
13.61
7.56
2843
4.37
872
11.15
2048
2.79
6.32
7.12
6.74
1443
1432
1040
28.66
6.62
11.87
1325
2049

NA
533
6.02

NA
3.16
3.51
4.06
298

-0.57
-0.04
133
0.41

NA

NA
8.35

10.04
-0.39
-1.08
215
117
-0.28
0.34
1.49
046

NA

NA

NA

NA

-0.38
-0.58
221
0.95

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.68
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.85
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Table 95:

Mean bias of overall mean survival — internal additive hazards models

Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Survival
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
Low

Low

Scenario characteristics

Heteroge
neity

High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High

Informati

on

High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High

Distributi
on

Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz

Log-logistic

Mean of
method

1172
14.13
1441
1353
13.56
13.90
14.04
13.84
19.48
18.61
1794
18.82
23.38
2324
2291
23.25
19.09
18.00
17.38
18.13
23.77
23.07
20.50
21.56

154

141

Exponenti
al

423

5.84

6.55

5.14
-0.28

048

0.60

0.16
1524
14.03
1275
14.20
16.30
15.81
1449
1559
14.65
1323
1212
1341
1548
14.38
12.68
1447
-144
-1.45

Distribution used for extrapolation

Weibull
7.39
9.51

10.53
8.65
2.72
4.69
5.67
4.08

1329

1155

10.39

12.02

NA
NA
NA
NA

1263

11.06

10.34

1140

NA
NA
NA
NA
0.23
0.01

Log-
logistic

9.23
10.85
11.65
10.19

6.85

8.76

9.77

797
25.58
25.04
2298
25.24
2574
25.71
25.69
25.78
25.28
23.26
20.69
2344
26.51
2591
25.68
26.13

2.05

1.69

Lognorma
I

10.90
1242
13.07
11.82
11.21
1218
1248
11.95
16.28
14.99
1398
15.31
NA
NA
NA
NA
1591
14.58
13.83
14.89
NA
NA
1232
1479
201
156

Gen.

Gompertz Gamma

19.63
18.55
16.99
2040
3041
28.65
27.85
29.44
20.77
20.30
21.77
20.35
2575
25.73
2574
25.81
19.52
19.81
2141
1942
26.54
26.01
2590
26.21

4.70

4.79

18.97
27.60
27.69
24.98
3041
28.65
27.85
29.44
25.75
25.73
25.73
25.80
25.75
25.73
2574
25.81
26.56
26.06
2591
2622
26.54
26.01
2590
26.21

1.48

152

Gen. F

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
173
1.71
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Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Heteroge
neity

High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium

Medium

Informati

on

High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low

Low

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic

Lognormal

Mean of
method

138
147
3.36
2.87
2.69
303
215
193
193
204
0.18
-0.07
-0.02
0.07
2.59
-0.08
-0.15
137
045
-0.21
-0.07
0.23
0.18
-0.04
0.00
0.10
235
-0.28
-0.31

Exponenti

al
-144

-144
-3.70
-3.76
-3.73
-3.78
-291
-292
-293
-293
-0.02
-0.10
-0.04
-0.02

0.29

0.62

0.69

0.82

0.10
-017
-0.03

0.15
-0.04
-013
-0.07
-0.03
-0.12

0.09

0.18

Weibull

-0.02

0.10
-1.99
-2.55
-2.61
-2.37
-1.05
-1.43
-1.45
-1.29
-0.03
-0.10
-0.05
-0.04

0.31
-0.66
-0.65

0.07

0.05
-0.36
-0.24
-0.03
-0.03
-0.14
-0.08
-0.04
-0.02
-0.85
-0.83

Log-

logistic

1.66

1.87
2.00
113
0.99
147
2.10
1.58
1.55
1.81
0.77
0.01
0.08
045
3.05
0.09
-0.05
206
136
0.02
0.13
0.79
0.86
0.11
017
0.54
267
0.09
-0.02

Lognorma

1
152

178
281
179
1.60
2.25
2.26
158
154
1.89
0.41
-0.07
-0.02
0.19
433
0.36
0.08
313
119
-0.12
-0.02
0.59
0.52
-0.03
0.01
0.26
377
0.32
0.11

4.77

Gen.
Gompertz Gamma  Gen. F
1.51 1.68

4.80 149 1.71
1844 262 NA
17.59 3.02 NA
17.18 NA NA
17.90 2.70 NA
1112 1.39 NA
11.16 1.61 NA
11.20 1.66 NA
11.28 1.49 NA
-0.03 -0.03 NA
-0.09 -0.08 NA
-0.05 -0.02 NA
-0.04 -0.04 -0.03

497 NA NA
-0.81 NA NA
-0.81 NA NA

0.76 NA NA

0.00 0.02 NA
-040 -0.23 NA
-0.28 0.01 NA
-0.11 -0.02 NA

0.00 -0.02 0.00
-0.05 -0.05 0.04
-0.03 0.01 NA
-0.03 -0.03 -0.01

546 NA NA
-1.06 NA NA
-1.01 NA NA
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Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Survival
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Informati

on

Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium

Medium

Distributi
on

Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Mean of Exponenti
method

043

0.95

-0.21
-0.11
0.18
372
376
357
378
3.80
4.02
328
497
3.65
3.71
377
417
116
152
1.80
2.66
10.64
5.65
1.70
9.63
2.10
143
127
5.18

-0.12

al
0.27

-0.28
-0.19
-0.04
=232
-245
-246
-2.30
=722
-733
-7.20
-7.06
-5.60
-5.72
-5.60
-546
-040
-1.21
-1.28
-0.36
-0.83
-3.31
-3.73
-3.06
-1.09
-2.83
-3.09
-193

Weibull

-0.10

-0.29

-0.46
-0.37
-0.17
2.00
2.16
194
242
=291
-2.81
-3.33
-1.39
-0.74
-0.50
-0.81
0.35
-0.03
-0.13
-0.12
124
0.20
-2.14
-4.02
205
-0.73
-1.95
-246
137

137

Log- Lognorma

logistic
1.63

0.15
022
0.87
413
4.19
392
4.59
253
255
193
4.05
3.56
3.66
327
4.49
257
227
202
417
5.34
272
-0.11
7.58
391
235
1.38
6.22

122

1
248

-0.04
0.01
0.67
4.62
4.64
4.26
519
543
515
4.16
6.92
4.95
4.90
427
596
282
255
2.11
4.74

1042
6.84
248

1218
6.10
3.90
2.19
8.60

Gompertz

024

0.64

-047
-0.39
-0.21
8.98
8.94
8.68
8.83
21.16
21.31
20.86
22.36
1598
15.82
1548
16.03
1.51
4.52
536
4.94
38.08
2415
13.90
29.38
3.67
6.88
8.35
15.15

Gen.

Gamma

-0.04

NA

-0.17
0.07
-0.06
4.06
423
4.20
395
NA
525
NA
NA
377
4.10
4.36
3.65
047
115
2.10
1.21
NA
NA
NA
NA
0.71
0.20
NA
1.68

Gen. F
NA
NA
NA
NA
NA
4.55
4.64
445
NA
NA
NA
NA
NA
NA
NA
543
NA
NA
NA
2.38
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

Heteroge
neity

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low

Medium

Informati

on

High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium

High

Distributi
on

Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Gompertz

Mean of Exponenti
method

198

146
179

2.71
9.06
4.65
137
8.67
202
178
176
548
12.06
1295
13.85
12.66
9.09
9.34
9.52
9.31
14.96
15.04
15.12
15.04
1333
1327
13.19
1333
14.98

-1.38

al
-0.62
-1.31

-0.61
-1.84
-3.83
-4.14
-3.56
-1.74
-3.15
-3.37
-2.37
10.18
1143
1198
11.07

297

334

349

320
14.96
15.04
15.12
15.04
14.12
14.04
13.84
14.01
14.98

Weibull

0.01

0.05
0.04

1.20
-0.73
-2.50
-4.10

1.39
-1.08
-1.96
-2.45

0.93

9.13
10.94
11.58
10.22

373

4.20

4.54

4.16
14.96
15.04
1512
15.04

7.58

7.7

6.68

7.50
14.98

2.18

Log- Lognorma

logistic
2.65
245

4.07
428
243
-0.01
6.96
352
2.37
1.48
573
11.97
1383
1445
13.18
8.59
9.90
10.60
948
14.96
15.04
1512
15.04
14.98
15.04
15.13
15.04
14.98

2.30

1
2.96
2.76

4.66
9.12
6.37
2.59
1135
555
3.87
2.31
797
8.98
9.90
NA
9.56
6.69
6.99
7.20
6.99
NA
NA
NA
NA
NA
NA
NA
NA
NA

Gompertz

5.88

2.84
5.30

557
34.48
20.80
1249
27.24

523

8.97

997
15.16
16.14
15.80
15.63
1597
16.27
15.81
15.64
16.01
14.96
15.04
15.12
15.04
14.98
15.04
15.14
15.05
14.98

Gen.

Gamma

2.30

0.85
1.48

1.40
NA
NA
NA
NA

0.65

0.59

262
NA

15.96
15.80
15.63
15.95
16.27
15.81
15.64
16.01
14.96
15.04
1512
15.04
14.98
15.04
15.14
15.05
14.98

259

Gen. F
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Heteroge Informati Distributi Mean of Exponenti Log- Lognorma Gen.

Age Survival neity on on method al Weibull logistic | Gompertz Gamma Gen. F
Old High Medium High Log-logistic 15.00 14.99 14.99 15.00 NA 15.00 15.00 NA
Old High Medium High Lognormal 15.05 15.04 15.03 15.06 NA 15.06 15.06 NA
Old High Medium High Weibull 15.02 15.01 15.01 15.02 NA 15.02 15.02 NA
Old High Medium Medium Gompertz 1276 11.88 6.98 14.96 NA 1497 1497 NA
Old High Medium Medium Log-logistic 1267 11.62 6.73 14.99 NA 15.00 15.00 NA
Old High Medium Medium Lognormal 12.06 10.96 6.04 15.06 1013 15.07 15.07 NA
Old High Medium Medium Weibull 1263 1143 6.68 15.00 NA 15.02 15.02 NA
Old Low High High Gompertz 173 0.16 1.21 2.00 2.11 3.10 178 NA
Old Low High High Log-logistic 1.66 0.21 1.1 1.80 1.85 298 1.79 1.87
Old Low High High Lognormal 1.66 0.22 1.11 1.80 1.85 297 1.80 1.86
Old Low High High Weibull 1.69 0.21 1.18 192 2.00 3.02 1.79 NA
Old Low High Low Gompertz 206 -1.70 -0.34 1.79 230 8.26 NA NA
Old Low High Low Log-logistic 1.69 -1.68 -0.73 1.31 174 7.64 187 NA
Old Low High Low Lognormal 1.69 -1.68 -0.71 1.34 177 7.74 NA NA
Old Low High Low Weibull 192 -1.70 -0.54 1.58 208 8.11 1.98 NA
Old Low High Medium Gompertz 155 -1.00 0.31 178 195 4.90 137 NA
Old Low High Medium Log-logistic 141 -0.97 0.08 1.50 1.59 4.82 1.44 NA
Old Low High Medium Lognormal 142 -0.96 0.08 1.50 158 4.85 147 NA
Old Low High Medium Weibull 1.50 -0.98 0.19 1.65 1.78 493 143 NA
Old Low Low High Gompertz 0.24 0.10 0.08 0.76 0.51 0.07 0.08 0.08
Old Low Low High Log-logistic 0.10 0.09 0.06 0.17 0.11 0.08 0.10 NA
Old Low Low High Lognormal 0.11 0.10 0.07 0.20 0.11 0.08 0.11 NA
Old Low Low High Weibull 0.16 0.11 0.06 0.50 0.29 0.06 0.06 0.06
Old Low Low Low Gompertz 178 0.38 0.38 2.24 302 2.85 NA NA
Old Low Low Low Log-logistic 0.59 0.81 -043 0.27 047 1.81 NA NA
Old Low Low Low Lognormal 0.39 0.80 -048 0.10 0.22 1.30 NA NA
Old Low Low Low Weibull 1.81 0.91 0.19 1.71 241 3.85 NA NA
Old Low Low Medium Gompertz 0.46 0.20 0.15 115 1.05 0.10 0.12 NA
Old Low Low Medium Log-logistic -0.02 0.04 -0.16 0.18 0.07 -0.20 NA NA
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Age
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low

Low

Informati

on
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic

Lognormal

Mean of Exponenti

method
0.06
029
0.34
0.19
0.20
0.26
145
0.13
0.06
0.98
045
0.02
0.07
027
370
3.66
348
3.74
327
3.02
3.08
352
2.85
2.82
269
3.00
233
242
235

al Weibull
0.11 -0.11
0.26 0.06
0.14 0.16
0.13 0.10
0.14 0.11
0.15 0.13
0.05 0.14
0.36 -0.53
0.38 -0.57
0.40 -0.11
0.05 0.07
-0.02 -0.19
003 -0.16
012 -0.01
140 3.19
122 3.16
112 299
122 329
242 0.20
-2.58 022
-2.58 0.01
-2.53 0.94
-1.14 137
-1.28 1.40
-132 122
-1.24 1.76
1.67 1.86
133 1.89
118 177

Log- Lognorma

logistic
0.23
0.75
0.86
0.32
0.33
0.62
1.95
032
0.20
1.35
112
0.31
0.34
0.79
3.87
3.82
363
4.03
272
2.70
248
337
3.07
3.05
284
340
294
2.81
254

1
0.11
0.60
0.67
0.23
0.22
0.44
263
0.52
0.34
191
1.06
0.19
0.20
0.67
422
4.16
391
4.46
412
392
358
4.73
372
3.64
333
412
317
307
273

Gompertz
-0.14
-0.01

0.19
0.18
0.17
0.15
246
0.02
-0.03
132
0.25
-0.21
-017
-0.05
532
541
531
538
1173
10.83
1045
11.09
715
7.16
7.01
724
227
3.05
325

Gen.
Gamma

0.13
0.08
0.17
0.20
0.22
0.15
NA
NA
NA
NA
0.12
NA
0.21
0.09
3.88
3.87
NA
3.81
NA
NA
453
NA
290
297
3.05
274
2.07
237
262

Gen. F
NA
NA

0.19
NA
NA

017
NA
NA
NA
NA
NA
NA
NA
NA

4.04

4.01

390

398
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High

Heteroge
neity

Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High

Informati

on

High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium

Medium

Distributi
on

Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Mean of Exponenti

method
292
9.06
547
378
6.63
313
222
2.05
396
2.54
2.58
248
3.00
6.25
491
345
6.14
253
2.21
193
336
9.07
1338
14.95
1174
14.93
14.97
14.70
15.04

al
158
141
-0.12
-0.62
-045
123
0.23
-0.06
049
167
135
119
156
0.62
-0.60
-0.94
-0.75
0.73
-0.04
-0.28
0.16
047
213
297
142
-507
-4.63
-4.83
-4.81

Weibull
249
1.50
048

-1.06
261
142
0.85
0.38
249
2.05
2.04
1.90
256
097
0.13

-0.99
2.14
1.11
0.73
0.35
2.11
572
8.36
9.87
7.36

-042
232
326
1.31

Log- Lognorma

logistic
3.65
557
317
1.34
512
357
2.88
2.28
4.42
3.06
293
266
3.67
4.31
275
142
4.65
322
272
2.23
4.05
8.79
10.61
11.67
9.94
5.66
7.29
7.79
6.72

1

4.06
6.23
4.98
277
704
4.56
3.65
281
548
333
3.21
2.86
4.08
5.66
4.55
2.85
6.60
412
345
2.74
504
11.31
13.00
13.85
1241
1215
13.31
1335
1296

Gompertz
333
19.88
18.85
1649
18.85
4.69
3.81
413
6.91
275
338
352
355
19.68
1772
14.93
18.08
350
4.21
4.61
6.64
16.21
18.18
19.12
1743
38.68
3575
34.32
37.05

Gen.
Gamma

242
19.77
NA
NA
NA
3.31
191
2.79
NA
236
2.57
278
2.58
NA
NA
NA
NA
NA
NA
NA
2.17
11.90
28.01
32.21
21.18
38.55
3575
3432
3703

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

1245
NA
NA
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Heteroge
neity

Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High

Low

Informati

on

High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium

High

Distributi
on

Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Gompertz

Mean of Exponenti

method
2246
19.15
17.38
19.71
29.04
25.60
23.73
26.06
21.13
18.05
17.05
18.68
34.02
2537
31.64
28.28
143
122
124
135
4.08
347
350
383
252
2.19
222
2.36
0.18

al
1718
1438
12.00
14.80
18.68
16.96
14.15
1691
16.42
1318
1.1
13.81
NA
1524
NA
15.77
-2.32
-2.36
-2.34
-2.34
-4.68
-4.72
-4.70
-4.78
-3.85
-3.90
-3.87
-3.88
-0.04

Weibull
14.86
10.77

8.54
11.93
NA
NA
NA
NA
13.54
10.04
8.64
10.89
NA
NA
NA
NA
-0.46
-0.78
-0.77
-0.63
-293
-3.51
-3.52
-3.31
-1.87
-2.33
-2.33
214
-0.04

Log- Lognorma

logistic
26.50
1877
1262
19.69
3231
31.30
30.20
31.69
21.21
1536
1218
16.36
NA
31.25
NA
31.88
203
152
1.54
1.79
1.96
0.84
0.82
1.36
216
143
1.44
1.80
0.80

1
19.80
16.67
14.67
1749

NA
16.32
11.67
17.71
19.27
1612
14.57
16.88

NA
15.94

NA

NA

1.88
126
127
158
2.88
1.51
1.48
223
227
134
134
1.83
0.41

Gompertz
2383
22.60
2516
2234
3259
31.72
31.31
3201
22.30
21.37
2414
2141

NA
32.22
NA
32.74
6.05
6.15
6.21
6.24
24.51
2338
2340
2424
15.11
15.11
1515
15.28
-0.04

Gen.
Gamma

3258
31.70
31.31
32.00
3259
31.72
31.31
3201
34.03
3222
31.64
32.75
34.02
3222
31.64
3274
122
123
127
124
274
332
349
322
127
147
1.56
1.30
-0.04

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

1.59
1.50
1.51
1.55
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High

Informati

on

High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low

Low

Distributi
on

Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz

Log-logistic

Mean of Exponenti

method
-0.11
-0.03
0.06
3.17
-0.10
-0.19
146
047
-0.24
-0.09
0.23
0.18
-0.08
-0.03
0.10
2.80
-0.33
-0.36
113
047
-0.27
-0.13
017
335
324
3.09
353
387
398

Log- Lognorma

al Weibull logistic |
-013 -0.14 -0.02 -0.10
-0.05 -0.06 0.08 -0.04
-0.03 -0.05 0.46 0.19
0.27 0.32 342 4.88
0.62 -0.68 0.10 0.39
0.67 -0.68 -0.09 0.04
0.81 0.05 219 339
0.09 0.04 1.45 125
-0.20 -0.39 -0.01 -015
-0.05 -0.26 0.12 -0.03
0.14 -0.04 0.82 0.61
-0.06 -0.05 091 0.53
-0.18 -0.19 0.08 -0.08
-0.10 -0.11 0.15 -0.03
-0.05 -0.06 0.55 0.25
-0.15 -0.06 293 416
0.03 -0.92 0.05 0.28
0.14 -0.88 -0.05 0.07
0.24 -0.30 1.79 275
-0.14 -0.12 1.50 1.30
-0.35 -0.52 0.11 -0.10
-022 -0.41 0.21 -0.02
-0.06 -0.19 0.91 0.68
-4.89 0.59 3.82 441
-5.02 0.85 394 447
-4.91 0.66 3.68 4.06
-4.66 1.29 4.54 526
-10.05 -5.30 1.71 551
-10.07 -5.16 1.84 520

Gompertz
-0.12
-0.06
-0.05

6.99
-0.92
-0.88

0.89
-0.01
-043
-0.30
-0.12
-0.02
-0.09
-0.06
-0.05

7.1
-1.09
-1.06

115

0.30
-0.54
-042
-0.23
1142
1127
11.00
11.20
2748
28.07

Gen.
Gamma

-0.12
-0.04
-0.05
NA
NA
NA
NA
0.00
-0.27
0.00
-0.03
-0.05
-0.11
-0.02
-0.05
NA
NA
NA
NA
-0.06
-0.23
0.05
-0.08
3.68
393
4.07
358
NA
NA

Gen. F
NA
NA

-0.04
NA
NA
NA
NA
NA
NA
NA
NA

-0.02

0.00
0.00
NA
NA
NA
NA
NA
NA
NA
NA
NA
443
NA
NA
NA
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Medium

Heteroge
neity

High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Medium

Informati

on

Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium

Medium

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal

Weibull

Mean of Exponenti

method
390
547
355
365
347
4.39
0.62
1.01
149
2.84
11.83
490
2.19
11.36
197
1.09
1.39
6.42
0.98
137
1.69
2.82
9.96
4.14
2.18
10.25
192
1.60
175
5.88

al
-9.82
-9.64
-8.32
-843
-8.24
-7.95
-1.35
-2.60
-2.57
-1.09
-1.82
-4.72
-5.18
-3.83
-2.07
-4.28
-447
-2.71
-1.75
-2.78
-2.78
-1.55
-3.02
-5.39
-5.66
-4.61
-291
-4.72
-4.81
-3.39

Weibull
-5.62
-3.35
-2.85
-2.50
-2.79
-1.29
-0.94
-1.40
-127

0.70
-0.52
-342
-5.52

2.00
-1.66
-3.36
-3.79

0.87
-0.99
-1.23
-1.19

0.52
-148
-3.97
-5.57

0.99
-220
-347
-3.83

0.25

Log- Lognorma

logistic
112
3.81
3.05
325
284
4.50
239
1.85
1.68
4.70
574
2.54
-1.03
9.26
4.09
1.96
0.88
7.34
245
2.08
1.84
4.47
4.81
2.04
-0.81
8.24
352
1.95
1.02
6.64

1

393
7.51
4.82
4.84
411
641
2.64
212
1.66
540
1236
7.66
199
15.30
6.90
3.86
176
1046
277
240
187
5.16
11.08
6.95
220
1398
6.09
379
195
9.56

Gompertz
2757
29.03
21.14
20.86
20.50
21.32

1.29
5.80
7.09
6.61
4341
2244
1135
34.10
4.68
9.11
11.53
20.97
336
7.01
7.79
747
38.39
21.09
13.03
3263
7.00
1228
13.64
20.96

Gen.
Gamma

6.21
NA
349
3.89
4.40
3.37
-0.35
0.28
1.71
0.72
NA
NA
11.51
NA
-0.09
-0.75
245
157
0.02
0.72
193
0.83
NA
NA
9.86
NA
0.02
-0.22
2.50
1.28

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA
2.10
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
2.34
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Table 96:

Mean bias of overall mean survival — external additive hazards models

Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Scenario characteristics

Survival
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
Low

Low

Heteroge
neity

High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High

Informati

on

High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High

Distributi
on

Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz

Log-logistic

Mean of
method

-2.16
-2.37
-249
-2.28
-225
-247
-2.51
=211
-2.05
-2.63
-293
-244
-1.43
=215
-3.55
-1.99
-1.96
-2.80
-3.03
-2.59
-1.10
-244
-3.74
-197
-0.25
-0.36

Exponenti
al

-3.55
-3.80
-394
-3.70
-5.24
-5.70
-6.03
-547
-1.35
-1.83
-2.32
-1.72
-0.25
-046
-0.99
-0.50
-1.25
=215
-2.64
-1.95
-0.09
-0.86
-1.63
-0.72
-1.62
-1.65

Weibull
-2.70
-2.81
-2.87
-2.76
-3.94
-391
-3.85
-3.78
-2.14
-2.79
-3.28
-2.59

NA
NA
NA
NA
-2.06
-3.02
-342
-2.78
NA
NA
NA
NA
-0.67
-0.82

Distribution used for extrapolation

Log- Lognorma Gen.
logistic | Gompertz Gamma
-1.85 -1.21 -1.28 -2.35
-2.13 -1.50 -1.40 -2.58
-2.26 -1.66 -1.47 -2.74
-2.00 -1.36 -1.35 -2.50
-2.03 0.11 -0.12 NA
-2.35 -0.35 -0.03 NA
-247 -0.63 044 NA
-2.10 -0.06 0.17 -1.46
-1.55 -0.60 -420 -248
=211 -1.12 -4.86 -3.04
-2.56 -1.63 -4.79 -3.00
-1.93 -0.96 -4.56 -2.88
-1.15 0.97 -529 NA
-1.88 047 -6.72 NA
-340 -0.61 -9.21 NA
-1.75 0.56 -6.28 NA
-1.37 -0.37 -4.14 -2.56
-2.29 -1.31 -4.78 -3.26
-2.69 -1.79 -4.58 -3.11
-2.06 -1.09 -4.55 -3.10
-0.74 144 -5.02 NA
-2.15 0.31 -7.05 NA
-3.55 -0.78 -9.02 NA
-1.72 0.65 -6.07 NA
0.13 0.10 0.68 -022
-0.11 -017 0.72 -0.27

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
-2.98
NA
NA
NA
NA
NA
-0.15
-023
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Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Heteroge
neity

High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium

Medium

Informati

on

High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low

Low

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic

Lognormal

Mean of Exponenti

method
-0.36
-0.30
0.85
0.38
0.29
0.54
0.14
-0.02
-0.03
0.04
0.08
-0.11
-0.06
0.03
1.66
-0.04
-0.19
1.09
0.34
-0.24
-0.11
017
0.07
-0.13
-0.08
0.02
138
-0.34
-0.36

al
-1.64
-1.64
-3.72
-3.79
-3.76
-3.80
-297
-2.99
-2.99
-2.99
-0.06
-0.14
-0.08
-0.06
0.23
0.54
0.61
0.74
0.05
-0.21
-0.08
0.10
-0.09
-0.19
-013
-0.09
-0.16
0.03
0.11

Weibull
-0.83
-0.76
-224
271
-2.76
-2.57
-1.48
-1.77
-1.79
-1.67
-0.07
-0.14
-0.08
-0.07

024
-0.67
-0.66

0.03

0.01
-0.38
-0.26
-0.06
-0.09
-0.19
-0.13
-0.09
-0.08
-0.86
-0.84

Log- Lognorma

logistic
-0.12
0.01
0.27
-0.31
-0.40
-0.10
0.30
-0.03
-0.06
0.10
0.56
-0.06
0.01
0.35
224
0.02
-0.10
1.60
1.01
-0.05
0.05
0.62
0.54
-0.02
0.03
0.34
187
-0.04
-0.11

|
-0.18
-0.04
0.83
0.16
0.05
045
0.44
0.01
-0.02
0.19
0.36
-0.11
-0.06
0.18
3.20
0.36
0.07
251
1.01
-013
-0.05
0.56
0.37
-0.11
-0.07
0.18
272
0.23
0.06

Gompertz
0.74
0.75
9.10
853
829
871
4.67
4.67
4.67
4.71
-0.07
-0.14
-0.09
-0.07

274
-091
-0.86

0.18
-0.04
-042
-0.30
-0.14
-0.07
-0.14
-0.11
-0.09

291
-1.08
-1.03

Gen.

Gamma Gen. F
-0.27 -023
-0.25 -0.20

NA NA
NA NA
NA NA
0.53 NA
-0.11 NA
-0.04 NA
-0.02 NA
-0.09 NA
-0.06 -0.06
-0.14 -0.07
-0.07 NA
-0.07 -0.07
128 NA
0.39 NA
NA NA
147 NA
-0.02 NA
-0.27 NA
-0.05 NA
-0.06 NA
-0.09 -0.07
-0.15 -0.09
-0.08 NA
-0.09 -0.07
1.03 NA
NA NA
NA NA
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Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Survival
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Informati

on

Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium

Medium

Distributi
on

Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Mean of Exponenti

method
0.69
0.25
-0.28
-0.18
0.09
-0.85
-0.85
-0.79
-0.65
-0.51
-047
-0.59
0.25
-0.61
-0.56
-0.57
-0.17
-046
-0.69
-0.61
0.16
1.66
0.10
-1.75
3.07
0.05
-0.77
-0.77
154

al
0.20
-0.16
-0.33
-0.23
-0.09
-3.26
-3.31
-3.23
-313
-7.33
-742
-7.28
-7.15
-5.87
-5.94
-5.80
-5.68
=117
-1.87
-1.88
-1.12
-1.52
-3.61
-3.94
-3.34
-1.67
-3.18
-3.37
-2.35

Weibull
-0.32
-0.15
-049
-0.40
-0.21
-1.34
-124
-1.23
-1.02
-4.13
-4.02
-429
-2.99
-2.63
-247
-2.55
-1.87
-1.00
-1.34
-1.29
-0.38
-1.11
-290
-4.26

0.05
-1.44
-2.54
-2.89
-0.19

Log- Lognorma

logistic
1.19
0.94
0.01
0.08
0.61
-0.50
-0.45
-047
-0.14
-1.02
-0.97
-1.25
0.04
-045
-0.38
-048
0.21
024
-0.27
-0.38
0.94
193
0.12
-1.62
317
1.21
-0.07
-0.62
234

|
192
0.95
-0.10
-0.05
0.56
-0.34
-0.31
-0.37
0.06
0.66
0.54
0.07
1.68
0.29
0.28
0.06
0.98
042
-0.10
-0.32
1.20
4.95
2.60
0.08
574
257
0.90
-0.09
3.64

Gompertz
0.07
0.05

-0.50
-042
-0.25
0.88
0.84
0.84
0.93
847
8.81
8.70
9.57
544
539
537
5.66
-048
0.26
0.62
0.78
4.08
3.10
0.98
9.71
0.46
1.64
241
6.17

Gen.
Gamma

1.06
-0.10
-0.25
-0.04
-0.11
-0.73
-0.64
-0.57
-0.60

0.30

0.23

0.51

0.32
-0.44
-0.26
-0.02
-0.32
-0.80
-0.84
-043
-0.45

NA
126
NA
NA
-0.83
-1.40
-0.06
-0.36

Gen. F
NA
NA
NA
NA
NA

-0.63
NA
-0.52
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

Heteroge
neity

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low

Medium

Informati

on

High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium

High

Distributi
on

Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Gompertz

Mean of Exponenti

method
-0.52
-0.70
-0.64
0.01
0.89
-0.32
-1.11
265
-0.20
-0.70
-0.72
1.23
=275
-3.00
-3.09
-2.89
-248
-2.66
=275
-2.57
-2.89
-2.86
-2.83
-2.86
=222
-2.23
=227
-2.21
-3.08

al
-1.42
-2.01
-2.01
-1.39
-2.38
-4.09
-4.33
-3.80
-2.25
-348
-3.64
-2.75
-2.79
-3.03
-3.12
-2.92
-2.88
-3.12
-3.23
-3.02
-2.92
-2.89
-2.86
-2.88
-213
-2.10
-2.08
-2.10
-3.11

Weibull
-1.10
-1.35
-1.32
-0.55
-1.86
-3.21
-4.36
-045
-1.81
-2.61
-294
-0.56
-2.79
-3.03
-3.13
-293
-2.78
-2.99
-3.06
-2.87
-2.89
-2.87
-2.84
-2.86
-2.38
-240
-246
-2.37
-3.09

Log- Lognorma

logistic
0.10
-0.31
-041
0.73
1.19
-0.15
-1.63
2.69
0.81
-0.16
-0.66
195
-2.67
291
-3.01
-2.81
-2.27
-2.50
-2.59
-2.38
-2.74
-2.72
-2.69
-2.71
-2.02
-202
-2.06
-2.00
-2.94

|
0.28
-0.14
-0.35
0.98
4.04
2.22
0.06
5.16
207
0.77
-0.12
320
-2.69
-293
-3.03
-2.83
-1.85
-2.09
=219
-1.96
=275
=272
-2.70
-2.72
-1.53
-1.52
-1.54
-1.51
-2.95

Gompertz
-0.18
043
0.70
0.83
346
3.64
191
9.62
1.05
2.59
314
6.07
-2.78
-3.03
-3.12
-2.92
-2.44
-2.62
-2.60
-249
-301
-298
-295
-2.98
-2.94
-3.02
-3.14
-295
-3.18

Gen.
Gamma

-0.79
-0.81
-047
-0.53
NA
NA
1.70
NA
-1.05
-1.29
-0.11
-0.54
-2.80
-3.05
-3.15
-294
-2.64
-2.82
-2.85
-2.73
-3.04
-3.00
-2.95
-3.00
-2.30
-2.31
-2.35
-2.31
-3.19

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

-2.50
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Heteroge Informati Distributi Mean of Exponenti Log- Lognorma Gen.

Age Survival neity on on method al Weibull logistic | Gompertz Gamma Gen. F
Old High Medium High Log-logistic -3.08 -3.11 -3.10 -2.95 -2.96 -3.19 -3.19 NA
Old High Medium High Lognormal -3.07 -3.10 -3.08 -2.94 -295 -317 -3.15 NA
Old High Medium High Weibull -3.07 -3.10 -3.08 -2.94 -2.94 -317 -3.18 NA
Old High Medium Medium Gompertz -2.50 -247 -2.68 -2.28 -1.79 -313 -2.63 NA
Old High Medium Medium Log-logistic -2.54 =247 -2.74 -2.33 -1.83 -3.23 -2.67 NA
Old High Medium Medium Lognormal =262 -2.50 -2.83 -2.39 -1.87 -337 -2.74 NA
Old High Medium Medium Weibull -2.53 =247 -2.72 -2.31 -1.81 -3.19 -2.66 NA
Old Low High High Gompertz -0.63 -0.66 -0.63 -0.52 -0.57 -0.74 -0.66 NA
Old Low High High Log-logistic -0.68 -0.68 -0.68 -0.60 -0.66 -0.74 -0.71 NA
Old Low High High Lognormal -0.68 -0.68 -0.68 -0.60 -0.66 -0.73 -0.71 NA
Old Low High High Weibull -0.67 -0.68 -0.67 -0.57 -0.63 -0.74 -0.70 -0.70
Old Low High Low Gompertz -0.23 -1.84 -1.04 -0.19 0.02 194 -0.30 NA
Old Low High Low Log-logistic -0.41 -1.84 -1.27 -042 -0.24 1.63 -0.32 NA
Old Low High Low Lognormal -0.39 -1.84 -1.26 -0.41 -0.23 1.67 -0.27 NA
Old Low High Low Weibull -0.32 -1.86 -1.18 -0.31 -0.11 1.82 -0.29 NA
Old Low High Medium Gompertz -045 -129 -0.75 -0.29 -0.25 0.35 -0.50 NA
Old Low High Medium Log-logistic -0.54 -1.30 -0.86 -042 -0.41 0.30 -0.53 NA
Old Low High Medium Lognormal -0.53 -1.30 -0.86 -042 -041 0.31 -0.52 NA
Old Low High Medium Weibull -0.50 -1.30 -0.82 -0.37 -0.34 0.34 -0.52 NA
Old Low Low High Gompertz -0.08 -0.16 -0.16 0.15 0.04 -0.15 -0.15 -0.15
Old Low Low High Log-logistic -017 -0.19 -0.17 -0.13 -0.14 -0.18 -0.18 NA
Old Low Low High Lognormal -0.15 -0.17 -0.15 -0.11 -0.13 -0.17 -017 NA
Old Low Low High Weibull -0.10 -017 -0.15 0.08 -0.01 -015 -0.15 -015
Old Low Low Low Gompertz 0.55 0.05 0.03 092 132 0.60 0.37 NA
Old Low Low Low Log-logistic -0.11 0.33 -0.51 0.02 0.30 -0.73 NA NA
Old Low Low Low Lognormal -0.19 0.33 -0.55 -0.09 0.12 -0.74 NA NA
Old Low Low Low Weibull 043 041 -0.06 0.77 122 -0.18 041 NA
Old Low Low Medium Gompertz 0.04 -0.08 -0.11 0.35 0.36 -0.14 -0.13 NA
Old Low Low Medium Log-logistic -0.23 -0.21 -0.31 -0.10 -0.12 -0.34 -0.26 NA
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Age
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low

Low

Informati

on
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic

Lognormal

Mean of Exponenti

method
-0.18
-0.01
-0.14
-0.20
-0.19
-0.15
0.32
-0.27
-0.25
0.14
-0.05
-0.26
-023
-0.11
-137
-1.34
-129
-1.28
-0.98
-0.90
-0.95
-0.72
-1.11
-1.06
-1.03
-0.96
-0.95
-0.97
-0.95

al
-0.16
-0.04
-0.19
-0.22
-0.21
-0.19
-0.22
-0.02
0.00
0.02
-0.23
-0.29
-0.25
-0.18
-1.38
-1.35
-1.30
-1.31
-297
-3.02
-2.98
-2.96
-2.20
-2.22
-2.17
-2.16
-1.00
-0.99
-0.95

Weibull
-0.27
-0.14
-0.19
-0.21
-0.19
-0.19
-0.19
-0.63
-0.66
-0.32
-0.22
-0.38
-0.35
-0.25
-1.39
-1.36
-1.30
-1.31
-1.82
-1.74
-1.79
-143
-1.45
-1.38
-1.36
-1.23
-1.00
-1.01
-097

Log- Lognorma

logistic
-0.07
0.23
0.06
-0.15
-0.15
0.00
0.68
-0.07
-0.13
0.46
0.24
-0.11
-0.10
0.14
-1.28
-1.25
-1.21
-1.17
-0.90
-0.84
-0.88
-0.55
-0.94
-0.89
-0.88
-0.73
-0.81
-0.87
-0.88

|
-0.10
0.22
-0.03
-0.18
-0.17
-0.07
1.04
0.17
0.06
0.82
0.26
-0.13
-0.12
0.14
-1.34
-1.31
-128
-1.23
-040
-040
-049
-0.07
-0.78
-0.75
-0.77
-0.56
-0.87
-0.90
-092

Gompertz
-0.30
-0.19
-0.20
-0.22
-0.21
-0.19

0.49
-0.82
-0.83
-0.31
-017
-0.39
-0.36
-0.27
-1.39
-1.38
-1.33
-133

113

140

140

1.58
-0.11
-0.04

0.00

0.05
-1.00
-0.99
-0.95

Gen.

Gamma Gen. F
-0.18 NA
-0.14 NA
-0.20 -0.20
-022 -0.22
-0.21 -0.21
-0.19 -0.19

0.13 NA
NA NA
0.09 NA
017 NA
-0.20 NA
-0.27 NA
-0.21 NA
-0.20 NA
-1.40 -140
-1.37 -137
-1.32 -132
-1.31 -1.30
-0.95 NA
-0.80 NA
NA NA
-0.87 NA
-1.17 NA
-1.09 NA
-1.00 NA
-1.10 NA
-1.00 NA
-1.01 -1.00
-0.98 -0.98
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Age
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High

Heteroge
neity

Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High

Informati

on

High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium

Medium

Distributi
on

Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Mean of Exponenti

method
-094
-0.20
-0.56
-1.00
0.03
-0.69
-0.83
-0.85
-049
-1.02
-1.04
-1.01
-1.00
-045
-0.70
-1.00
-0.12
-0.82
-0.90
-0.90
-0.61
-140
-1.61
-1.50
-1.28
-242
-2.83
-3.10
=263

al
-0.99
-0.94
-1.50
-1.68
-1.73
-1.00
-1.33
-1.39
-1.27
-1.06
-1.06
-1.02
-1.04
-1.25
-1.75
-1.87
-1.87
-1.20
-1.46
-1.51
-1.41
-5.09
-5.33
-547
-5.17
-842
-9.18
-9.83
-8.84

Weibull
-1.01
-1.02
-1.36
-1.95
-0.65
-0.98
-1.17
-127
-0.76
-1.07
-1.08
-1.04
-1.07
122
-1.52
-1.95
-0.81
-1.13
-1.25
-1.32
-0.89
-2.70
-2.59
-246
-2.51
-5.80
-5.37
-541
-5.44

Log- Lognorma

logistic
-0.79
-0.05
-0.35
-0.94
0.24
-0.32
-0.54
-0.68
-0.17
-0.90
-0.95
-0.96
-0.86
-0.22
-0.51
-094
0.10
-048
-0.64
-0.74
-0.30
-1.16
-1.44
-1.50
-1.20
-246
-2.74
-3.07
-2.53

|
-0.86
0.83
0.40
-0.34
0.95
-0.01
-0.30
-0.53
0.11
-0.94
-0.98
-0.99
-092
0.61
0.20
-0.37
0.80
-0.19
-042
-0.60
-0.03
0.10
-0.25
-041
0.03
124
0.65
0.07
0.98

Gompertz
-0.99
-0.18
-0.14
-0.88

146
-0.84
-0.63
-0.51

0.07
-1.06
-1.06
-1.02
-1.04
-0.19
-0.08
-0.54

1.35
-0.85
-0.58
-043

0.00

170

1.58

157

1.74

205

252

276

265

Gen.
Gamma

-1.00
0.14
-0.39
-0.21
-0.08
-097
-0.98
-0.71
-093
-1.07
-1.09
-1.05
-1.06
NA
-0.53
-0.31
-0.31
-1.06
-1.04
-0.79
-1.00
-122
-1.60
NA
-1.37
-1.15
NA
NA
NA

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

-0.73
-0.49
NA
NA
NA
NA
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Heteroge Informati Distributi Mean of Exponenti Log- Lognorma Gen.

Age Survival neity on on method al Weibull logistic | Gompertz Gamma Gen. F
Young High Low High Gompertz 057 137 0.32 1.20 290 -2.96 NA NA
Young High Low High Log-logistic -1.62 -048 -2.06 -0.95 0.92 -5.51 NA NA
Young High Low High Lognormal -2.53 -1.87 -347 -2.24 -0.46 -548 -1.64 NA
Young High Low High Weibull -1.01 -0.12 -1.41 -0.37 143 -4.51 -1.07 NA
Young High Low Medium Gompertz 0.30 237 NA 0.32 393 -543 NA NA
Young High Low Medium Log-logistic -2.34 1.07 NA -248 1.84 -9.77 NA NA
Young High Low Medium Lognormal -5.66 -0.56 NA -6.19 -092 -14.98 NA NA
Young High Low Medium Weibull -1.53 118 NA -1.57 247 -8.19 NA NA
Young High Medium High Gompertz 047 156 0.24 1.35 324 -3.61 0.02 NA
Young High Medium High Log-logistic -1.87 -0.95 -242 -1.20 0.69 -5.46 NA NA
Young High Medium High Lognormal -2.51 -2.28 -3.51 -2.28 -0.55 -4.74 -1.69 NA
Young High Medium High Weibull -1.30 -0.39 -1.76 -0.57 132 -4.86 -1.55 NA
Young High Medium Medium Gompertz -4.37 NA NA NA NA -4.37 NA NA
Young High Medium Medium Log-logistic -2.66 045 NA -2.68 1.81 -10.24 NA NA
Young High Medium Medium Lognormal -14.22 NA NA NA NA -14.22 NA NA
Young High Medium Medium Weibull -1.56 0.95 NA -1.51 2.70 -8.39 NA NA
Young Low High High Gompertz -0.04 -2.39 -0.98 045 0.39 215 -0.05 013
Young Low High High Log-logistic -0.21 -244 -1.22 0.09 -0.03 2.22 -0.10 0.02
Young Low High High Lognormal -0.20 -242 -1.21 0.10 -0.03 2.24 -0.08 0.02
Young Low High High Weibull -0.12 -242 -1.11 0.27 0.17 225 -0.08 0.06
Young Low High Low Gompertz 1.55 -4.68 -3.05 0.46 1.19 14.48 0.91 NA
Young Low High Low Log-logistic 1.08 -4.73 -3.58 -0.35 0.21 13.69 124 NA
Young Low High Low Lognormal 1.09 -4.71 -3.59 -0.37 0.19 13.67 1.36 NA
Young Low High Low Weibull 1.31 -4.79 =341 0.01 0.70 1422 116 NA
Young Low High Medium Gompertz 0.60 -3.87 -2.09 0.60 0.74 8.18 0.04 NA
Young Low High Medium Log-logistic 0.33 -392 -2.50 0.08 0.09 8.14 0.12 NA
Young Low High Medium Lognormal 0.36 -3.89 -2.49 0.09 0.09 8.18 0.19 NA
Young Low High Medium Weibull 048 -391 -2.33 0.34 043 8.29 0.03 NA
Young Low Low High Gompertz 0.12 -0.05 -0.06 0.67 043 -0.06 -0.05 -0.05
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High

Informati

on

High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low

Low

Distributi
on

Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz

Log-logistic

Mean of Exponenti

method
-013
-0.05
0.06
2.28
0.04
0.13
132
041
-0.26
-0.11
0.21
012
-0.12
-0.06
0.05
1.87
-0.14
-0.38
0.96
0.36
-0.30
-0.17
0.13
-0.73
-0.66
-0.66
-0.30
-0.50
-0.17

al
-0.15
-0.07
-0.05
0.24
0.58
063
0.77
0.07
-0.22
-0.07
0.12
-0.08
-0.21
-0.13
-0.07
-017
0.00
0.11
0.22
-0.16
-0.36
-0.24
-0.08
-5.30
-5.39
-5.24
-5.01
-10.09
-10.10

Weibull
-0.15
-0.07
-0.06

0.29
-0.68
-0.68

0.03

0.02
-0.40
-0.27
-0.05
-0.07
-0.21
-0.13
-0.08
-0.09
-093
-0.88
-0.32
-0.14
-0.53
-042
-0.21
-1.85
-1.66
-1.67
-124
-6.13
-5.96

Log- Lognorma

logistic
-0.05
0.04
0.40
2.79
0.06
-0.11
1.87
122
-0.04
0.08
0.72
0.71
0.01
0.08
0.44
233
-0.03
-0.11
148
120
0.04
0.13
0.75
-0.21
-0.10
-0.16
0.44
-1.46
-1.32

| Gompertz
-0.11 -0.14
-0.05 -0.08
0.20 -0.06
399 448
0.38 -093
0.04 -0.88
294 040
119 -0.03
-015 -0.44
-0.05 -0.31
0.63 -013
048 -0.05
-0.11 -013
-0.06 -0.09
0.24 -0.07
337 446
0.25 -1.12
0.04 -1.07
235 0.50
1.16 0.15
-0.12 -0.55
-0.05 -043
0.65 -0.25
0.11 325
0.18 320
0.05 3.15
0.83 335
1.09 14.07
0.94 14.63

Gen.
Gamma

-0.14
-0.06
-0.06
1.86
0.80
177
190
-0.01
-0.29
-0.03
-0.04
-0.07
-0.15
-0.06
-0.07
1.32
0.96
NA
152
-0.08
-0.27
0.00
-0.10
-0.39
-0.21
-0.07
-0.17
NA
0.81

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

-0.05
-0.06
NA
-0.05
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Medium

Informati

on

Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium

Medium

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Mean of Exponenti

method
-0.31
0.80
-046
-0.39
-042
027
-041
-0.70
-0.39
0.95
2.85
0.41
-1.08
552
0.36
-0.79
-0.62
313
-041
-0.61
-0.39
0.73
207
0.04
-1.80
4.82
0.08
-0.60
-0.50
261

Log- Lognorma

al Weibull logistic | Gompertz
-9.85 -6.25 -1.73 0.19 1442
-9.67 -4.49 0.14 259 1541
-8.43 -4.09 -0.50 0.64 9.89
-8.52 -3.84 -0.37 0.66 9.75
-8.32 -3.96 -0.54 0.30 9.65
-804 -2.86 0.60 1.82 10.21
-1.66 -1.36 0.72 1.01 -0.18
-2.87 -1.99 -0.09 0.16 1.61
-2.82 -1.86 -017 -0.12 236
-1.40 -0.15 2.17 2.64 265
=211 -1.38 299 746 727
-4.85 -3.88 0.38 392 648
-527 -5.63 =217 0.11 257
-3.95 0.56 5.30 9.22 16.52
-2.31 -1.98 197 4.01 1.57
-442 -3.62 0.05 146 370
-4.58 -3.98 -0.68 0.02 520
-2.88 -0.01 4.06 6.10 1145
-2.08 -1.53 0.55 0.85 0.65
-3.07 -1.96 -0.06 0.20 212
-3.04 -1.89 -0.18 -0.11 261
-1.87 -044 1.82 2.29 287
-3.25 -2.22 217 642 7.21
-5.50 -4.37 -0.08 332 6.83
-5.74 -5.70 -2.08 0.16 433
-4.71 -0.33 AT 8.19 16.50
-312 -2.53 1.39 325 275
-4.85 -3.76 -0.07 126 5.50
-492 -4.05 -0.68 0.04 6.37
-3.54 -0.61 342 533 11.26

Gen.
Gamma

135
NA
-0.24
-0.02
0.38
-0.13
-0.98
-1.01
-0.17
-0.19
NA
NA
391
548
-1.09
-1.92
0.31
0.09
-091
-0.85
-0.15
-0.30
NA
NA
NA
NA
-122
-1.65
0.26
-0.21

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA

0.02
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

0.04
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Table 97:

Mean bias of overall mean survival — converging hazards models

Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Scenario characteristics

Survival
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
Low

Low

Heteroge
neity

High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High

Informati

on

High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High

Distributi
on

Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz

Log-logistic

Mean of
method

1.06
1.10
1.05
1.09
0.49
048
0.50
0.76
2.21
159
125
179
1.64
0.98
-0.39
112
2.21
133
1.09
155
202
0.72
-0.55
120
0.32
0.20

Exponenti
al

-0.44
-024
-0.21
-032
-2.67
-2.71
-2.89
-2.66
3.06
2.59
209
2.70
391
373
327
372
3.15
2.24
172
243
415
340
268
355
-1.53
-1.55

Weibull
0.66
0.88
092
0.81

-1.05
-0.58
-0.37
-0.61
244
176
119
196
NA
NA
NA
NA
242
1.41
0.95
1.64
NA
NA
NA
NA
-0.20
-0.39

Log-
logistic

1.46
1.41
134
1.45
1.18
1.08
1.02
125
2.81
225
174
241
246
1.81
0.30
190
291
197
1.52
2.19
2.94
157
0.15
199
091
0.65

Distributions used for extrapolation

Lognorma

207
1.89
175
199
338
295
265
324
329
2.84
237
297
4.06
372
290
377
352
263
215
2.84
4.62
3.65
276
395
0.90
0.58

Gen.

Gompertz Gamma

170
167
157
1.70
1.62
1.67
208
192
-0.38
-126
-1.07
-0.86
-3.88
-535
-8.01
-4.91
-0.55
-1.21
-0.81
-097
-3.61
-574
-7.78
-4.68
112
1.20

0.92
0.99
093
0.94
NA
NA
NA
140
2.06
134
1.21
153
NA
NA
NA
NA
1.80
0.96
1.00
114
NA
NA
NA
NA
047
0.44

Gen. F

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.07
NA
NA
NA
NA
NA
0.56
0.50
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Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Heteroge
neity

High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium

Medium

Informati

on

High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low

Low

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic

Lognormal

Mean of Exponenti

method
0.20
027
128
0.77
0.67
1.02
0.66
047
047
0.55
0.13
-0.08
-0.04
0.06
193
0.02
-0.16
1.28
042
-0.22
-0.09
022
0.14
-0.08
-0.04
0.06
1.65
-0.29
-0.33

al
-1.55
-1.54
-3.71
-3.77
-3.74
-3.79
-2.94
-2.95
-2.96
-2.96
-0.04
-0.12
-0.06
-0.04
0.26
0.59
0.65
0.78
0.08
-0.18
-0.05
0.13
-0.07
-0.16
-0.10
-0.06
-0.14
0.06
0.15

Weibull
-0.40
-0.31
-2.06
-2.60
-2.65
-243
-120
-1.54
-1.56
-1.41
-0.05
-0.12
-0.06
-0.05

0.28
-0.66
-0.65

0.06

0.03
-0.37
-0.25
-0.05
-0.06
-0.17
-0.11
-0.07
-0.04
-0.86
-0.84

Log- Lognorma

logistic
0.63
0.78
1.08
040
0.29
0.66
113
0.74
0.71
0.90
0.69
-0.01
0.06
042
270
0.09
-0.06
1.89
123
0.00
0.11
0.74
0.72
0.06
0.11
0.46
232
0.06
-0.04

|
0.56
0.74
176
0.98
0.84
133
130
0.80
0.77
1.03
045
-0.08
-0.04
0.22
3.86
044
0.11
296
1.21
-0.11
-0.03
0.64
0.51
-0.06
-0.02
0.26
333
0.33
0.12

Gompertz
1.22
123
9.35
8.84
8.59
9.00
503
508
509
51
-0.05
-0.11
-0.07
-0.05

294
-091
-0.85

0.23
-0.02
-041
-0.29
-013
-0.04
-0.10
-0.07
-0.06

312
-1.07
-1.02

Gen.
Gamma

0.44

045
NA
NA
NA
136
0.61
0.73
0.76
0.66
-0.05
-0.11
-0.05
-0.05
1.56
0.56
NA
1.78
0.00
-0.26
-0.02
-0.04
-0.06
-0.10
-0.04
-0.06
132
NA
NA

Gen. F
0.50
0.53

NA
NA
NA
NA
NA
NA
NA
NA
-0.05
-0.03
NA
-0.05
NA
NA
NA
NA
NA
NA
NA
NA
-0.04
-0.02
NA
-0.04
NA
NA
NA
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Age

Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average

Average

Survival
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Informati

on

Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium

Medium

Distributi
on

Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal

Weibull

Mean of Exponenti

method
0.87
0.36
-0.24
-0.14
0.15
0.52
0.44
049
0.64
049
0.50
0.32
128
0.56
0.59
0.52
1.00
0.31
0.21
0.28
117
2.69
0.96
-122
422
0.95
0.06
0.02
268

al
0.24
-0.14
-0.30
-0.21
-0.06
-2.77
-2.87
-2.84
-2.70
-7.27
-7.37
-7.24
-7.10
-5.72
-5.81
-5.69
-5.56
-0.75
-1.51
-1.54
-0.70
-1.10
-343
-3.82
-3.17
-1.32
-2.98
-3.21
-2.10

Weibull
-0.30
-0.12
-047
-0.39
-0.19

0.10

0.20

0.14

043
-341
-3.31
-3.71
-210
-1.55
-1.36
-1.55
-0.66
-048
-0.68
-0.65

046
-043
-247
-4.11

1.08
-1.02
-2.18
-2.63

0.72

Log- Lognorma

logistic
147
1.20
0.11
0.17
0.78
114
117
1.08
148
0.50
0.52
0.13
1.66
1.21
1.26
1.07
1.90
1.35
0.88
0.72
2.31
343
1.36
-0.80
4.99
257
114
0.41
4.05

|
2.32
119
-0.05
0.00
0.69
136
137
123
175
250
2.32
172
358
2.11
2.06
174
283
1.62
113
0.81
2.68
7.06
4.38
129
798
4.31
2.39
1.10
565

Gompertz
0.14
0.11

-0.49
-0.40
-0.23
192
1.79
175
1.88
8.87
9.16
9.04
9.90
6.10
598
593
6.23
0.30
1.34
1.68
1.90
4.51
352
136
10.21
126
262
338
7.26

Gen.
Gamma

135
-0.07

-0.21
0.01
-0.09
0.90
0.97
1.00
0.98
1.75
1.68
1.96
174
1.21
1.40
1.61
126
-0.17
0.09
0.65
0.34
NA
242
NA
NA
-0.13
-0.63
1.09
0.51

Gen. F
NA
NA
NA
NA
NA
1.00
NA
1.05
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Average
Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Old

Oold

Old

Oold

Old

Oold

Old

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High

Heteroge
neity

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low

Medium

Informati

on

High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium

High

Distributi
on

Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Gompertz

Mean of Exponenti

method
0.35
0.25
0.28
1.04
1.85
049
-043
376
0.72
0.18
0.10
2.34
-0.54
-0.67
-0.73
-0.61
-0.35
-048
-0.50
-0.39
-0.09
-0.08
-0.08
-0.08
0.30
029
0.24
0.31
-0.36

al
-1.00
-1.63
-1.67
-0.97
-2.05
-3.94
-4.22
-3.66
-1.95
-3.29
-348
-2.53
-0.53
-0.65
-0.70
-0.59
-0.69
-0.81
-0.88
-0.75
-0.10
-0.09
-0.08
-0.09
0.71
0.75
0.77
0.75
-0.36

Weibull
-0.50
-0.63
-0.61

033
-1.25
-2.80
-4.20

052
-1.37
222
-2.64

0.31
-0.54
-0.66
-0.71
-0.60
-0.58
-0.67
-0.67
-0.58

0.05

0.05

0.05

0.06

043

0.41

0.35

043
-0.26

Log- Lognorma

logistic
1.26
0.90
0.73
2.11
261
1.09
-0.77
447
216
1.09
042
3.61
-0.48
-0.64
-0.70
-0.57
0.02
-0.16
-0.22
-0.06
0.05
0.06
0.06
0.06
0.63
0.65
0.64
0.65
-0.25

|
154
1.14
0.83
247
6.05
397
131
7.35
377
228
1.11
5.14
-0.55
-0.73
-0.80
-0.65
0.40
0.18
0.08
0.29
-0.13
-0.11
-0.10
-0.11
0.77
0.81
0.84
0.81
-041

Gompertz
0.80
154
1.76
198
390
410
232

10.13
197
361
4.12
7.12

-0.54

-0.67

-0.72

-0.61

-0.56

-0.69

-0.62

-0.57

-0.12

-0.14

-0.14

-013

-0.94

-1.03

-1.22

-097

-0.38

Gen.
Gamma

-0.01
0.20
0.66
0.35

NA
NA
3.00
NA

-0.29

-042
1.09
0.37

-0.57

-0.69

-0.75

-0.64

-0.66

-0.73

-0.71

-0.69

-0.28

-0.27

-0.23

-0.26
0.17
0.17
0.09
0.17

-0.49

NA

Gen. F
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
-046
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Heteroge Informati Distributi Mean of Exponenti Log- Lognorma Gen.

Age Survival neity on on method al Weibull logistic | Gompertz Gamma Gen. F
Old High Medium High Log-logistic -0.38 -0.39 -0.29 -0.27 -042 -041 -048 NA
Old High Medium High Lognormal -0.38 -0.39 -0.31 -0.29 -043 -041 -046 NA
Old High Medium High Weibull -0.36 -0.37 -0.28 -0.26 -0.41 -0.39 -048 NA
Old High Medium Medium Gompertz 0.01 0.38 0.09 0.36 0.55 -113 -0.19 NA

Old High Medium Medium Log-logistic -0.05 037 0.01 0.32 0.54 -1.26 -0.26 NA
Old High Medium Medium Lognormal -0.14 0.34 -0.11 0.26 0.53 -149 -0.38 NA
Old High Medium Medium Weibull -0.03 037 0.03 0.33 0.56 -1.21 -0.27 NA
Old Low High High Gompertz -0.04 -0.36 -0.03 0.23 0.18 -022 -0.01 NA
Old Low High High Log-logistic -0.08 -0.36 -0.08 0.13 0.08 -0.19 -0.05 NA
Old Low High High Lognormal -0.07 -0.36 -0.08 0.13 0.08 -0.18 -0.04 NA
Old Low High High Weibull -0.05 -0.36 -0.06 0.18 0.12 -0.19 -0.03 -0.03
Old Low High Low Gompertz 0.35 -1.77 -0.64 0.68 0.99 2.39 046 NA
Old Low High Low Log-logistic 0.16 -1.76 -0.97 0.39 0.66 2.14 047 NA
Old Low High Low Lognormal 0.18 -1.76 -0.95 0.41 0.68 2.19 0.54 NA
Old Low High Low Weibull 0.27 -1.78 -0.82 0.55 0.85 2.31 0.52 NA
Old Low High Medium Gompertz 0.16 -1.15 -0.21 0.54 0.63 0.92 0.24 NA
Old Low High Medium Log-logistic 0.08 -1.14 -0.38 0.39 044 0.92 0.23 NA
Old Low High Medium Lognormal 0.08 -1.13 -0.38 0.39 0.44 0.94 0.25 NA
Old Low High Medium Weibull 0.12 -1.14 -0.30 047 0.53 0.95 0.24 NA
Old Low Low High Gompertz 0.08 -0.04 -0.05 047 0.34 -0.05 -0.05 -0.05
Old Low Low High Log-logistic -0.03 -0.06 -0.06 0.05 0.00 -0.06 -0.07 NA
Old Low Low High Lognormal -0.02 -0.05 -0.05 0.07 0.00 -0.06 -0.05 NA
Old Low Low High Weibull 0.04 -0.04 -0.05 0.33 0.20 -0.05 -0.05 -0.05
Oold Low Low Low Gompertz 1.00 0.22 0.21 1.62 223 0.92 0.78 NA
Old Low Low Low Log-logistic 0.07 0.58 -0.45 0.26 0.64 -0.69 NA NA
Old Low Low Low Lognormal -0.04 0.57 -0.50 0.10 0.36 -0.71 NA NA
Old Low Low Low Weibull 0.81 0.66 0.08 1.35 202 -0.04 0.81 NA
Oold Low Low Medium Gompertz 0.27 0.06 0.02 0.79 0.82 -0.03 -0.01 NA
Old Low Low Medium Log-logistic -0.11 -0.09 -0.24 0.08 0.03 -027 -017 NA
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Age
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low

Low

Informati

on
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic

Lognormal

Mean of Exponenti

method
-0.06
017
0.07
-0.03
-0.02
0.04
0.74
-0.09
-0.05
049
0.21
-0.11
-0.07
0.10
-0.19
-0.20
-0.19
-0.14
0.01
0.06
-0.06
027
0.05
0.05
0.04
0.16
017
0.13
0.11

al
-0.03
0.10
-0.05
-0.07
-0.06
-0.05
-0.08
0.17
0.19
0.21
-0.09
-0.15
-0.12
-0.04
-0.46
-0.49
-0.49
-0.46
-2.69
-2.80
-2.78
-2.74
-1.68
-1.76
-1.76
-1.71
0.03
-0.07
-0.09

Weibull
-0.19
-0.04
-0.05
-0.08
-0.06
-0.06
-0.02
-0.58
-0.61
-0.21
-0.08
-0.29
-0.26
-0.14
-0.16
-0.15
-0.13
-0.10
-0.87
-0.79
-0.90
-0.35
-0.24
-0.19
-0.23

0.01
0.03
0.03
0.02

Log- Lognorma

logistic
0.12
0.55
043
0.09
0.09
0.31
1.35
022
0.12
1.00
0.71
0.15
0.16
0.51
-0.01
-0.01
-0.01
0.07
0.50
0.52
043
0.87
047
048
0.44
0.66
047
0.35
0.26

|
0.05
0.53
0.32
0.03
0.02
0.20
1.89
0.53
0.36
154
0.75
0.09
0.10
0.51
-0.06
-0.07
-0.08
0.02
113
1.08
0.95
1.45
0.68
0.67
0.60
0.88
045
0.35
0.25

Gompertz
-0.22
-0.11
-0.05
-0.06
-0.06
-0.05

0.83
-0.78
-0.80
-0.17

0.00
-0.30
-0.27
-0.17
-0.28
-0.33
-0.32
-0.30

1.81

2.02

2.01

217

091

0.90

0.90

0.96

0.03

0.09

0.10

Gen.

Gamma Gen. F
-0.07 NA
-0.04 NA
-0.05 -0.04
-0.06 -0.04
-0.05 -0.04
-0.05 -0.05

0.50 NA
NA NA
045 NA
0.56 NA
-0.05 NA
-0.13 NA
-0.05 NA
-0.07 NA
-0.16 -0.16
-0.16 -0.16
-0.15 -0.15
-0.10 -0.10
0.19 NA
0.35 NA
NA NA
0.24 NA
017 NA
0.22 NA
0.29 NA
0.16 NA
0.03 NA
0.06 0.07
0.09 0.09
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Age
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Old
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High

Heteroge
neity

Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High

Informati

on

High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium

Medium

Distributi
on

Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Mean of Exponenti

method
0.24
1.04
0.50
-0.14
126
0.56
0.31
022
0.83
0.10
0.04
0.02
0.15
0.72
0.32
-0.13
1.06
0.38
0.21
0.16
0.66
1.62
1.69
1.83
191
0.00
-013
-0.32
-0.04

al
0.02
0.16
-0.82
-1.15
-1.10
0.03
-0.58
-0.75
-043
-0.08
-017
-0.19
-0.10
-0.34
-1.17
-1.40
-1.31
-0.30
-0.78
-0.92
-0.66
-2.38
-1.99
-1.86
-2.10
-6.50
-6.73
-7.20
-6.61

Weibull
0.15
0.03

-0.53
-1.50
0.67
0.07
-0.26
-0.50
0.57
-0.03
-0.05
-0.05
0.06
-0.25
-0.75
-1.47
042
-0.14
-0.35
-0.54
0.37
0.57
112
137
1.02
-3.29
-2.23
-2.09
-2.53

Log- Lognorma

logistic
0.55
1.56
1.08
0.16
192
124
0.85
0.58
1.44
0.36
0.25
017
0.44
132
0.87
0.19
173
1.02
0.72
0.51
1.25
2.11
2.11
2.11
223
0.57
0.62
0.36
0.71

|
049
268
2.09
1.05
274
172
123
0.84
1.81
0.34
0.24
0.16
0.40
240
1.83
1.03
2.56
1.45
1.07
0.75
1.61
335
3.14
298
3.36
447
3.96
337
4.27

Gompertz
0.14
0.50
0.52

-0.32
223
0.22
0.53
0.64
142
0.00
0.01
0.02
0.06
048
0.61
0.07
212
0.25
0.59
0.72
1.30
4.07
3.89
375
4.08
335
376
393
393

Gen.
Gamma

0.08
1.30
0.68
093
112
0.09
0.10
0.52
0.20
-0.02
-0.02
0.01
0.01
NA
0.52
0.82
0.85
-0.02
0.03
043
0.10
2.00
190
NA
2.01
1.39
NA
NA
NA

NA

Gen. F
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
263
276
NA
NA
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low

Low

Heteroge
neity

Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High
High
High
High
High
High
High

Low

Informati

on

High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium

High

Distributi
on

Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Gompertz

Mean of Exponenti

method
473
253
161
3.18
329
0.70
=262
153
4.60
2.23
159
2.81
-3.34
041
-1337
153
0.41
0.23
0.24
0.33
195
145
146
1.71
1.00
0.72
0.74
0.87
0.14

al
592
410
269
446
6.71
544
3.88
5.56
6.13
360
223
4.16
NA
4.88
NA
538
-2.36
-240
-2.38
-2.38
-4.68
-4.72
-4.71
-4.78
-3.86
-391
-3.88
-390
-0.04

Weibull
4.96
2.54
1.03
3.19

NA
NA
NA
NA
4.80
2.06
091
2.73
NA
NA
NA
NA
-0.67
-0.95
-0.94
-0.82
-297
-3.53
-3.54
-3.34
-1.94
-2.39
-2.38
-2.20
-0.05

Log- Lognorma

logistic
558
346
2.11
402
383
1.04
-2.81
1.99
571
312
2.00
376
NA
0.85
NA
2.09
112
0.72
0.73
092
114
022
0.20
0.64
1.30
0.71
0.72
1.01
0.75

|
6.71
4.87
355
533
706
517
265
575
713
4.64
342
525
NA
523
NA
6.07
1.06
0.58
0.58
0.82
197
0.85
0.83
144
146
0.72
0.72
112
047

Gompertz
0.50
-2.31
211
-115
-4.44
-8.84
-14.19
-720
-0.49
-2.29
-1.27
-1.67
-3.34
-9.31
-13.37
=741
245
2.54
257
257
14.65
13.89
13.87
14.41
842
841
846
8.55
-0.05

Gen.
Gamma

NA
NA
2.37
322
NA
NA
NA

NA
4.31
NA
225
2.60
NA
NA
NA
NA
0.52
049
0.52
0.51
1.60
199
212
1.90
0.63
0.75
0.82
0.64
-0.05

NA

Gen. F
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
0.73
0.64
0.64
0.68
NA
NA
NA
NA
NA
NA
NA
NA
-0.05
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity

Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
High
High
High
High
High
High

Informati

on

High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low

Low

Distributi
on

Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz

Log-logistic

Mean of Exponenti Log- Lognorma

method al Weibull logistic | Gompertz
-0.11 -0.14 -0.15 -0.03 -0.10 -013
-0.04 -0.06 -0.06 0.07 -0.04 -0.07
0.08 -0.04 -0.05 0.44 0.22 -0.05
248 0.26 0.31 314 449 4.61
0.08 0.60 -0.68 0.09 042 -0.92
0.18 0.65 -0.68 -0.09 0.05 -0.88
145 0.79 0.04 2.06 324 044
0.46 0.08 0.03 1.36 1.30 -0.02
-0.25 -0.21 -0.40 -0.02 -0.14 -0.44
-0.09 -0.06 -0.26 0.11 -0.04 -0.30
0.23 0.13 -0.05 0.79 0.67 -013
0.16 -0.07 -0.06 0.83 0.55 -0.03
-0.10 -0.20 -0.20 0.05 -0.09 -0.11
-0.04 -0.12 -0.12 0.12 -0.04 -0.08
0.07 -0.06 -0.07 0.51 0.27 -0.06
2.06 -0.16 -0.07 266 3.82 4.60
-0.09 0.02 -0.92 0.02 0.30 -1.11
-0.36 0.12 -0.88 -0.07 0.08 -1.07
1.09 0.23 -0.31 1.67 262 0.55
042 -0.15 -0.12 1.38 1.31 0.19
-0.28 -0.36 -0.53 0.09 -0.10 -0.55
-0.15 -0.23 -041 0.18 -0.03 -043
0.16 -0.07 -0.20 0.85 0.71 -0.24
0.40 -5.07 -0.64 1.31 1.71 397
045 -5.18 -0.44 1.40 175 3.85
0.40 -5.06 -0.52 1.28 155 377
0.80 -4.82 -0.02 1.94 241 4.00
0.25 -10.07 -5.64 -0.14 2.76 1435
0.67 -10.08 -548 -0.01 2.56 14.87

Gen.

Gamma

0.00

-0.13
-0.05
-0.05
2.11
0.95
2.04
215

-0.28
-0.02
-0.04
-0.06
-0.13
-0.04
-0.06
1.54
116
NA
176
-0.07
-0.25
0.03
-0.09
114
1.31
1.41
127
NA
215

NA

Gen. F
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
-0.03
-0.03
NA
-0.04
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
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Age

Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young
Young

Survival
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Heteroge
neity
High
High
High
High
High
High
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium

Medium

Informati

on

Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium
Medium
High
High
High
High
Low
Low
Low
Low
Medium
Medium
Medium

Medium

Distributi
on

Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull
Gompertz
Log-logistic
Lognormal
Weibull

Mean of Exponenti

method
047
1.61
0.52
0.58
0.50
126
0.11
-0.03
0.31
1.71
366
1.05
-0.55
6.53
1.01
-0.18
-0.03
4.02
0.21
0.11
0.35
1.51
2.84
0.67
-1.39
575
0.76
0.05
012
348

al
-9.84
-9.65
-8.37
-847
-8.28
-7.99
-148
-2.71
-2.68
-1.22
-193
-4.78
-5.22
-3.88
=217
-4.34
-4.52
-2.78
-1.89
291
-2.89
-1.69
-3.11
-5.44
-5.69
-4.66
-3.00
-4.77
-4.86
-345

Weibull
-5.86
-3.84
-3.34
-3.04
-3.25
-1.96
-1.11
-1.63
-1.49

0.36
-093
-3.61
-5.56

1.31
-1.79
-3.46
-3.87

0.54
-1.21
-1.53
-147

0.12
-1.82
-4.13
-5.62

0.37
-2.33
-3.58
-392
-0.07

Log- Lognorma

logistic
-0.53
1.59
0.96
1.09
0.84
213
157
0.84
0.72
3.31
4.23
1.40
-1.57
6.91
3.05
1.01
0.12
551
147
093
0.76
299
337
092
-1.42
599
246
0.93
0.18
4.84

|
1.67
434
2.29
2.28
1.82
353
193
115
0.78
391
9.33
547
1.05
1132
547
2.68
0.95
790
1.86
126
0.85
358
8.23
4.84
116
10.21
467
251
1.03
708

Gompertz
14.65
15.64
10.33
1015
10.03
10.60

0.39
247
316
3.55
7.59
6.79
2.84
16.88
2.14
440
590
1221
145
298
340
377
7.52
7.15
4.61
16.85
343
6.24
7.06
11.99

Gen.
Gamma

2.71
NA
123
1.46
1.87
128
-0.62
-0.32
0.71
0.31
NA
NA
5.14
6.67
-0.63
-1.38
126
0.75
-040
-0.06
0.79
0.30
NA
NA
NA
NA
-0.69
-1.00
1.25
049

0.95

Gen. F
NA
NA
NA
NA
NA
NA
NA
NA

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
1.02
NA
NA
NA
NA
NA
NA
NA
NA
NA
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