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Abstract 
The analysis of quantitative data, particularly kinetics, can offer valuable insights for the monitoring 
of the rehabilitation process in cases of anterior cruciate ligament (ACL) injuries. However, the 
conventional methods of collecting kinetic data, using a force plate and an optical motion capture 
(OMC) system, are time-consuming and require an expensive laboratory setup. This study aims to 
validate existing machine learning (ML) algorithms based on inertial measurement units (IMUs) from 
literature and proposes three novel ML algorithms for estimating three-dimensional (3D) ground 
reaction forces (GRFs) and net knee joint moments during walking and single-leg hop tests. Nine 
healthy participants and eight ACL patients were assessed during walking and single-hop tests while 
wearing thirty reflective markers and eight IMUs. The collected dataset was used for the validation 
and development of the ML algorithms. The algorithms of Leporace and Stetter et al. were validated. 
Additionally, three novel movement-specific artificial neural networks (ANNs) were designed, and 
hyperparameter optimization and principal component analysis (PCA) based input selection were 
performed. The model evaluation based on leave-one-subject-out cross-validation (LOSO CV) among 
the ACL patients showed rRMSE values of 9.49, 16.28 and 11.79 percent during stance phase of 
walking for anterior-posterior, medial-lateral and vertical direction of GRF respectively. The most 
important finding of the present study is that medial-lateral GRFs and all net knee moments are still 
difficult to accurately estimate during a single leg hop test. However, it does show that ACL patients 
are a suitable population to develop and evaluate ML algorithms on. The current study serves as a 
first step in providing quantitative data for monitoring the ACL rehabilitation process.  

Index terms 
Anterior Cruciate Ligament, ground reaction force, inertial measurement unit, net knee joint 
moment, machine learning,  

Samenvatting (Dutch) 
De analyse van kwantitatieve data, in het bijzonder kinetica, kan waardevolle inzichten geven voor 
het monitoren van het revalidatieproces van voorste kruisband (VKB) letsels. Echter, de 
conventionele kinetica verzamelende methodes, gebruik makende van een krachtplaat en het 
optisch vastleggen van beweging, zijn tijdrovend en gebonden aan een dure meetopstelling. Het 
huidige onderzoek heeft als doel om bestaande machine learning (ML) algoritmen gebaseerd op 
inertiële meeteenheden te valideren en drie nieuwe ML algoritmen voor te stellen die 
driedimensionale (3D) grondreactiekrachten en netto knie gewrichtsmomenten bepalen tijdens 
lopen en eenbenige sprongtesten. Negen gezonde deelnemers en acht VKB patiënten zijn gemeten 
tijdens lopen en eenbenige sprongtesten terwijl zij dertig reflectieve markers en acht inertiële 
meeteenheden droegen. De gegevens die hierbij zijn verkregen zijn gebruikt voor het valideren en 
ontwikkelen van de ML algoritmen. De algoritmen van Leporace et al. en Stetter et al. zijn 
gevalideerd. Daarnaast zijn drie nieuwe bewegingsspecifieke kunstmatige neurale netwerken (ANNs) 
ontworpen en optimalisatie van hyperparameters en selectie van input parameters op basis van 
principale-componentenanalyse (PCA) is uitgevoerd. De evaluatie van het model tijdens de stand fase 
van het lopen in VKB patiënten leverde rRMSE waarden op van 9.49, 16.28 en 11.79 procent voor 
respectievelijk de anterior-posterior, mediaal-lateraal en verticale richting van de grondreactiekracht. 
De belangrijkste vondst uit het huidige onderzoek is dat mediale-laterale grondreactiekrachten en 
alle netto kniemomenten nog steeds moeilijk accuraat te bepalen zijn tijdens een sprongtest. 
Desalniettemin laat dit onderzoek zien dat VKB patiënten een geschikte populatie zijn om ML 
algoritmen voor te ontwikkelen en evalueren. Het huidige onderzoek dient als een eerste stap in het 
voorzien van kwantitatieve data voor het monitoren van het VKB revalidatie proces.         

Index woorden 
Voorste kruisband, grondreactiekracht, inertiële meeteenheid, netto kniegewrichtsmoment, machine 

learning  
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List of abbreviations 
3D = three-dimensional 

ACL = anterior cruciate ligament 

ANN = artificial neural network 

A-P = anterior-posterior 

BLC = bony landmark calibration 

BW = body weight 

IMU = inertial measurement unit 

F-E = flexion-extension 

GRF = ground reaction force 

I-E = internal-external 

KJF = knee joint force 

LLL = left lower leg 

LOSO CV = leave-one-subject-out cross-validation 

ML = machine Learning  

M-L = medial-lateral 

NN = neural network 

OHL = own hop landing    (name of a model) 

OHP = own hop push-off   (name of a model) 

OLW = own Leporace walk    (name of a model) 

OMC = optical motion capture  

OSHL = own Stetter hop landing  (name of a model) 

OSHP = own Stetter hop push-off  (name of a model) 

OW = own walk     (name of a model) 

PC = principal component 

PCA = principal component analysis 

RRD = Roessingh research and development 

rRMSE = relative root mean square error 

T-C = tension-compression 

vGRF = vertical ground reaction force 

V-V = varus-valgus
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Introduction 
Numerous sports players, particularly those engaged in soccer or skiing, may perceive an audible 
popping sensation within their knee during a sudden change of direction, a sudden stop, or an 
unanticipated landing from a jump [1]. This is a well-known symptom of an Anterior Cruciate 
Ligament (ACL) injury. To rehabilitate from an ACL reconstruction surgery, exercises, such as squats, 
jumps and cutting maneuvers, are trained for six to nine months to enhance muscle strength and 
neuromuscular control [2]. This rehabilitation process is divided into five different goal-based phases 
[3]. The physiotherapist guides this process from phase to phase by observing the performed 
movements and monitoring the patient’s progress. However, tracking this development is mostly a 
subjective task, which can make it challenging. Up until now, only kinematics are measured or 
observed in clinical practice. As the combination of anterior shear force, valgus moment, and internal 
rotational moment of the knee are believed to be key factors for ACL injury, analyzing knee joint 
kinetics will add valuable information regarding prevention of re-injuries [4]. Additionally, measuring 
kinetics will be appreciated, as these quantitative data can easily be compared and can be used to 
make informed decisions regarding entering the following rehabilitation phase.   

There are different ways to obtain objective measurements. Firstly, an optical motion capture (OMC) 
system can measure kinematics. Secondly, the kinetics can be estimated by inverse dynamics using 
ground reaction forces (GRFs) measured from force plates. Whilst these methods are the current 
standards for obtaining kinematics and kinetics, they also have disadvantages. Some disadvantages 
of OMC systems are their immobility and the time needed to prepare a patient and post-process 
data, using an expensive setup. This makes OMC systems unsuitable for use at the physiotherapist’s 
practice and makes them unable to track on-field activities. 

Inertial Measurement Units (IMUs) are relatively inexpensive and portable for on-site usage [5]. 
Together with the fact that they give three-dimensional (3D) acceleration, angular velocity, and 
magnetometer data, this makes them a possible solution to the aforementioned problems to collect 
kinematics. However, up until now IMUs are mostly used to provide kinematics and estimating 
kinetics using IMUs is not that common yet.   

Although kinetics can be estimated from kinematics in at least three different ways (biomechanical 
modeling, musculoskeletal modeling, and using machine learning (ML) algorithms), the focus of the 
current study lies on ML algorithms [6]–[8]. An advantage of ML-based approaches is that little to no 
a priori knowledge is needed; the model is purely built by using training data and only a few 
anthropometric measures are needed to personalize the model [9]. Many studies have been 
performed trying to relate IMU data to GRFs [8], [10]–[19]. Differences between these studies were 
mainly found in the location and number of IMU sensors, the type of task performed, the type of ML 
algorithm used, and the type of subjects. Mundt et al. compared three different artificial neural 
networks (ANNs), concluding that the dataset and the prediction tasks are more important than the 
type of neural network (NN), since all three networks were able to accomplish a high prediction 
accuracy [20]. Dorschky et al. suggested that ML models dedicated to one single task will probably 
outperform ML models which were jointly tuned for different output variables [16]. This indicates the 
need for task-specific and outcome-specific modeling [9], [16]. Next to this, it is mentioned that an 
examination of different network architectures is needed [16]. Networks need to avoid computing 
features of sensor data, such as fully convolutional networks, and need to allow a continuous 
estimation of kinetics, such as long short-term memory networks [16].  

Whereas the studied type of subjects varied from knee osteoarthritis patients to top athletes, only 
little recent attention was focused on people with pathological gait. To the best of our knowledge, 
knee arthroplasty, knee osteoarthritis, and hip osteoarthritis are the only types of pathological gait 
that were studied using IMUs for the estimation of lower body kinetics [21]–[23]. Therefore, the 
current research will validate existing algorithms on data of ACL patients to widen the research into 
pathological gait.  
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Studying ACL patients, it might still be challenging to determine the kinetics of ACL rehabilitation-
specific movements. The main reason for this is the relatively small amount of research that has been 
carried out regarding ACL rehabilitation-specific movements, such as hop tests, in comparison to the 
number of studies focused on walking or running. The walking movement will still be evaluated in the 
current research to ensure comparability with existing literature. Additionally, single leg hop tests 
will be studied since analysis of this ACL-specific movement is a first step towards the ultimate goal 
of measuring irregular, on-field activities. It is important to assess this movement as it is different 
from walking and running: the motion is not cyclical and mediolateral forces also play an essential 
role in the stability during the movement [24].  

This research aims to validate existing ML algorithms from literature estimating kinetics based on 
IMUs against a new dataset of healthy subjects and ACL patients. Additionally, this study aims to 
propose three novel ML algorithms for estimating 3D GRFs and net knee joint moments during 
walking and single-leg hop tests. The use of IMUs and ML algorithms is compared to the current 
standard: force plates and an OMC system.   
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Methods 
Data collection 
Measurement data were collected from nine healthy participants (3 M/6 F, height: 173.8 ± 7.8 cm, 
body mass: 71.0 ± 8.9 kg) and 8 ACL-injured patients (2 M/6 F, height: 173.4 ± 9.4 cm, body mass: 
74.2 ± 17.7 kg, ACL leg: 6 R/2 L) at Roessingh Research and Development (RRD) in Enschede, The 
Netherlands. All participants were informed of the experimental procedures, approved by the local 
ethical committee at the University of Twente, and provided written consent.   

Prior to attaching the data collection equipment, standardized anthropometric measurements were 
taken (including height, weight, knee and ankle width, inter-anterior superior iliac spine distance, and 
the length of both legs) to use for further data processing. During the measurements, participants 
were equipped with 30 reflective markers and 8 IMUs (Xsens, Enschede, The Netherlands) [25]. The 
IMUs were each mounted on a rig with 3 reflective markers attached. The precise positions of these 
markers and sensors can be found in Table 8 and Figure 1. The IMU data was recorded at 40 Hz using 
in-house developed FusionClinician software (RRD, Enschede, the Netherlands). The markers were 
tracked by an eight-camera Vicon OMC system (four Vero 2.2 MP cameras and four Vantage 5 MP 
cameras, Vicon Motion Systems, Oxford, UK) that sampled motion at 100 Hz. 3D GRFs were 
registered using two force plates embedded in the floor (OR6-5-1000, AMTI, Watertown, MA, USA), 
sampled at 1000 Hz.  

 

Figure 1 Location of the reflective markers and the IMU sensors. Left: schematic. Right: during experimental set-up. 

Each participant started with a segment calibration task, which included bending the upper body, 
bending the knees, and tipping the toes five times. After this, the participant performed two 
successful trials of walking and single leg hop tasks. A schematic overview of these movements is 
shown in Appendices: Performed movements (page 30). Prior to the measurements, several 
unrecorded trials were performed to ensure familiarization with the tasks. During the walking trial, 
the participant was instructed to walk as normally as possible, ensuring that each force plate was 
only hit with a foot once. The single leg hop trial involved the participant placing the jumping leg on 
the first force plate, jumping off the plate, and landing on the second force plate with the same leg. 
Trials were unsuccessful, thus excluded, if the participant did not step or land on the force plate with 
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the entire foot. Both left and right leg were captured as jumping leg of the hop test for both healthy 
subjects and ACL patients.  

Machine learning algorithm selection 
The development of the NNs was divided into two main steps. In the first step, algorithms from 
literature were implemented to validate their value against the acquired dataset. This involved 
implementing existing algorithms and evaluating their performance on the collected data. A 
flowchart displaying why specific papers were or were not validated can be seen in Appendices: 
Selection of literature models, Figure 14 (page 31). In the second step, experimentation with different 
inputs for the new own developed networks was performed. This step involved tweaking the 
architecture and training of the NNs to optimize their performance. 

Initially, one model was developed for the walking movement: a MLP based on literature to ensure 
fair comparability of the newly designed model with existing algorithms [18]. This model is called the 
‘Own Leporace Walk’ (OLW) model. 

To the author’s knowledge, the single leg hop movement has not been modeled yet using a 
movement-specific ML algorithm. Therefore, literature including multiple movements and/or other 
landing movements had been studied to create a new algorithm [15], [23], [26]–[30]. The algorithm 
of Stetter et al. was used as starting point, as it seemed reproducible enough and the knee joint 
forces (KJFs) were the kinetic parameter of interest [27]. The models built based on this algorithm 
are called ‘Own Stetter Hop Push-off’ (OSHP) and ‘Own Stetter Hop Landing’ (OSHL). 

Data processing 
Before the algorithms could be trained, the obtained data needed to be processed. Data was 
collected using three different measurement systems: IMUs, OMC and force plates. The overall data 
flow of this study is visualized in Figure 2. 

 

Figure 2 Visualization of data flow. Data was collected using three different measurement systems: IMUs, OMC and force 
plates. To combine information from the different systems, synchronization was needed. Per algorithm, the desired in- and 
outputs of the model were selected. Segmentation was executed to select the region(s) of interest within the synchronized 
dataset. 
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The raw OMC data were processed using Vicon Nexus Software (2.12.1, Oxford, UK). Prior to any 
computational steps, gaps in the marker trajectories were filled using spline fill and if needed rigid 
body fill. The marker trajectories were then smoothed using the Woltring filter (filter mode: MSE, 
smoothing: 2). After filtering, Vicon’s proprietary Dynamic Plug-in Gait Model was run per trial to 
calculate joint angles and net joint moments (by calculating inverse dynamics using the force plate 
kinetics) [31]. The c3d files resulting from this last step, containing information on marker locations, 
GRFs, joint angles and net joint moments, were used to develop the ML algorithms.  

The acceleration and angular velocity data from the IMUs were filtered using a zero-lag fourth-order 
low-pass Butterworth filter with a cut-off frequency of 25 Hz (OLW) or 15 Hz (OSHP and OSHL). The 
analog GRFs were filtered using a fourth-order, zero-phase Butterworth low-pass filter with a cut-off 
frequency of 25 Hz (OLW) or 15 Hz (OSHP and OSHL).  

To combine information from the different systems, a synchronization step was needed. 
Synchronization of the IMU and OMC data of all trials was achieved using the angular velocity of the 
right upper leg IMU and the calculated angular velocity of the corresponding rig. The latter was 
calculated by determining the orientation of the rig based on the position data of the three rig 
markers and then taking the derivative of this orientation. Figure 3 and Figure 4 show the 
background and an example application of these steps.  

 

Figure 3 Visualization of the synchronization method. The calculated angular velocity of the rig is shown in the upper graph 
in red. The middle graph displays both the angular velocity of the rig (resampled) in red and the angular velocity measured 
by the IMU in yellow. The calculated rig angular velocity was resampled to have the same sample frequency as the angular 
velocity of the IMU. The cross-correlation between these two signals was used to determine the time lag: the highest peak 
corresponds to the time difference. In the lower graph, this synchronization factor was used to shift the Vicon data to suit 
the IMU data, such that they practically overlap.   
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Figure 4 Illustration of the results of synchronization of one of the trials. Both IMU data (acceleration in x direction of left 
lower leg (LLL)) and Vicon data (vGRF) are shown (upper graph). The Vicon data was shifted with the determined 
synchronization factor (middle graph). After this step, the gait segmentation was performed (lower graph). 

Segmentation was executed to select the region(s) of interest within the synchronized dataset. 
Segmentation of the stance phase of gait was implemented using the methods of Leporace et al. 
based on a threshold of 10 N in the vertical GRF (vGRF) [18]. Example results of this segmentation are 
shown in Figure 4 and Figure 5. These stance phases were resampled to 51 samples per stance phase, 
as Leporace et al. had performed, which allowed for expressing all values as a percentage of stance.  

 

Figure 5 Selection of stance phase of gait (between orange and green dot) based on vGRF signal. This figure shows what 
parts of the vGRF, knee flexion/extension angle and net knee flexion/extension moment correspond with the stance phase. 
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For single leg hop tests, two different stance phases were segmented per trial: push-off and landing. 
Segmentation of both phases during the single leg hop test was performed using a sliding window 
approach and the threshold value body weight (BW) found by Stetter et al. [27]. The window size for 
selection of the start of the push-off phase was 150 ms and the window size for selecting the end of 
the landing phase was 200 ms. The average values of the windows needed to be approximately one 
time BW. For the push-off and landing phases, the standard deviation of the window values needed 
to be > 0.05 and < 0.025, respectively. If the deviation was larger than 0.05, the start of the push-off 
stance phase was found and if the deviation was smaller than 0.025 the end of the landing phase was 
determined. This way small alterations within the signal were acceptable, but the larger deviations 
that occur during preparation of the hop and landing of the hop were selected within the 
segmentations (see Figure 7). The best method for determining the start of the landing phase was 
chosen by testing two different methods: start landing, which involved looking for the minimum of 
the second force plate after applying a high pass filter (cut-off frequency=0.5 Hz) on the vGRF signal 
(see Figure 6), and start landing 2, which used a threshold of 0.05 times BW in the vGRF signal (see 
Figure 7). Start landing was found to occur at a later instance than start landing 2 in almost every 
trial, as can for example be seen in Figure 8. Therefore, start landing 2 was implemented for the final 
segmentation to ensure that important initial contact information was not lost. The end of the push-
off phase was selected in a similar way as the not chosen method of the start of the landing phase: 
the minimum of the high pass filtered vGRF signal of the first force plate (see Figure 6). Both hop 
stance phases were resampled to 100 samples per stance phase as Stetter et al. also had performed.  

Segmentations used as data for the own developed algorithms were resampled to 100 samples as 
this was easily translated to percentage of stance phase.  

Trials could be invalid due to incorrect saving of collected data, an incorrect segmentation of the 
stance phase or a different measurement set up, which did not allow for proper synchronization. An 
overview of how many trials were used is shown in Appendices: Overview of used trials per 
movement per subject group, Table 9 (page 32).  

In this study, GRFs were normalized by BW and net joint moments were normalized by BW and 
height of the participant to enable intersubject comparison [32].  

 

Figure 6 Determining end push-off and start landing by selecting the minima of the high-pass filtered vGRF signal. 
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Figure 7 Selection of stance phases of hop based on vGRF signal. This figure shows what parts of the vGRF, knee 
flexion/extension angle and net knee flexion/extension moment correspond with the stance phases. 

 

Figure 8 Zoomed in selection of stance phases of hop based on vGRF signal. This figure emphasizes that start landing occurs 
later than start landing 2. 
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Development of machine learning algorithms 
The NNs developed for this study were built using Python (version 3.9.13, packages: Pyrenn and 
pyTorch) and relate the IMU signals of a specific movement to the net knee joint moments and 3D 
GRFs of that movement. To heighten the generalization of the algorithms, all recorded instances of 
the selected segments were shuffled before being introduced to the ANNs [33].  

Although the selected algorithms for validation were partly chosen based on their reproducibility, 
not all algorithm parameters were known and/or could be implemented as before. The OLW 
algorithm developed in this paper differed from the original Leporace version in type of optimizer, 
number of epochs/stop criteria and the type of acceleration used. In this case the Adam optimizer 
was used, training was done for 1000 epochs and the segment accelerations were implemented 
instead of the Levenberg-Marquardt backpropagation, a minimum gradient and sensor accelerations. 
For the OSHP and OSHL algorithms the Adam optimizer was used instead of the Levenberg-
Marquardt backpropagation and the models were again trained for 1000 epochs. The activation 
function of the output layer was unknown from literature but a linear function was implemented for 
this.  

The new developed algorithms (Own Walk (OW), Own Hop Push-off (OHP) and Own Hop Landing 
(OHL)) used segment accelerations as input and the hidden neurons used a Rectified Linear Unit 
(ReLU) activation function. The output layer was a linear function and the Adam optimizer was used. 
A batchsize of 32 was used to speed up training time. One or more dropout layers were included to 
prevent the model from overfitting, especially because of the relatively small data set.  

The choice in input variables strongly affects the predictive ability of a NN [34]. Therefore, a thorough 
selection of these input variables is essential. Per IMU, the 3D linear accelerations were included in 
the new algorithms and the percentage of stance phase was added tot the IMU signal matrix. In 
total, 8 IMUs were used. Therefore, if all IMUs were used as inputs, 25 (8x3 +1) inputs would be 
available. A preselection of two to three IMUs was made for the new models. All networks were 
trained from scratch. The IMU signal matrix served as input and the 3D net knee joint moments and 
3D GRFs as target output. For the OHP and the OHL algorithm the 3D KJF was also used as an output 
because this was the only output Stetter et al. had implemented and the outcome of the own 
developed models now could be compared to the outcome of Stetter et al. [27]. An overview of all 
these in- and outputs is shown in Table 1.  

Leave-one-subject-out cross-validation (LOSO CV) was performed to evaluate how accurate the 
algorithm works for an unseen participant. This means that the model was trained and validated 
using data of all but one subject, and it was tested using the data of the remaining subject. The error 
averaged over all folds corresponds to the prediction error that can be expected for an unseen 
participant.  
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Table 1 In- and outputs of the different models. 

Model OLW 
1 IMU at lower 
leg 

OW 
2 IMUs + 1 joint: 
lower leg, upper 
leg and knee 

OSHP + OSHL  
2 IMUs: lower 
leg and upper 
leg 

OHP 
3 IMUs + 1 joint: 
lower leg, upper 
leg, sacrum and 
knee 

OHL 
3 IMUs + 1 joint: 
lower leg, upper 
leg, sacrum and 
knee 

Input 
parameters 

Acceleration 
(3D) 
(normalized by 
BW)  

Acceleration 
(3D) per IMU or 
joint 
(normalized by 
BW)  

Acceleration 
(3D) per IMU  

Acceleration 
(3D) per IMU or 
joint 
(normalized by 
BW) 

Acceleration 
(3D) per IMU or 
joint 
(normalized by 
BW) 

Velocity (3D) 
computed from 
IMU data 

Time point of 
the stance (as % 
of stance time) 

Angular velocity 
(3D) per IMU  

Stance duration 
(in seconds) 

Stance duration 
(in seconds) 

Displacement 
(3D) computed 
from IMU data 

  Time point of 
the stance (as % 
of stance time) 

Time point of 
the stance (as % 
of stance time) 

First derivative 
of acceleration 
(3D) computed 
from IMU data 

  

Stance duration 
(in seconds) 

Time point of 
the stance (as % 
of stance time) 

Total 
number of 
inputs 

14 10 12 14 14 

Output 
parameters 

GRFs (3D) GRFs (3D)  KJFs (3D) GRFs (3D) GRFs (3D) 

 Net knee joint 
moments (3D) 

 Net knee joint 
moments (3D) 

Net knee joint 
moments (3D) 

 KJFs (3D) KJFs (3D) 

Total 
number of 
outputs 

3 6 3 9 9 

 

Hyperparameter optimization 
To determine the best hyperparameters of the new models, the Python package Optuna was used 
[35]. The number of hidden layers, number of neurons per hidden layer, dropout rate per hidden 
layer, number of training epochs, learning rate and loss function were set as parameters to optimize. 
Optimization of OW was run by minimizing the sum of six separate Mean Absolute Error (MAE) 
values (MAE 3D GRF + MAE 3D net knee joint moments). For the OHP and the OHL algorithms, also 
the MAE of the 3D KJF was taken into account, thus the sum of nine separate MAE values was 
minimized. The combination with the lowest total MAE after running the optimization for three 
hours twice, was selected for the model and can be seen in Table 2.  

  



 

 

 11  

Table 2 An overview of the hyperparameter selection variables and the best scoring (lowest 3D MAE) values. 

Hyperparameter Possible parameter values Best outcome value 

OW OHP OHL 

Number of PCs [7,8,9] OR [8,9,10,11] 
(depending on number of 
original input features) 

[7,8,9] → 9 [8,9,10,11] 
→ 11 

[8,9,10,11] 
→ 9 

Number of hidden layers [1,2,3] 3 1 3 

Number of neurons per 
hidden layer 

[5,10,15,20,25,30,35,40,45,50] [20,50,45] 10 [10,30,15] 

Dropout rate per hidden 
layer 

[0.2,0.3,0.4,0.5] [0.3,0.3,0.3] 0.5 [0.4,0.4,0.5] 

Number of training epochs [500,1000,1500,2000] 1000 1000 500 

Learning rate [1e-5,1e-1], log steps in between 0.00214688 0.04175844 0.00087434 

Loss function [MSELoss, L1Loss] L1Loss MSELoss MSELoss 

 

Input selection 
To prevent the models from overfitting, a principal component analysis (PCA) was performed to only 

use principal components (PCs) that together explained 80 to 90 percent of the variance. For the new 

developed algorithms, the number of PCs was included in the hyperparameter optimization (see 

Table 2). Since the PCs are linear combinations of the initial input parameters, the model still 

depends on all the input features.  

Apart from the hyperparameter optimization and input selection also other techniques were applied 
to find the best new developed algorithms. An overview of these methods can be found in 
Appendices: Model iterations of own developed models (see page 49). The exact final architecture of 
the different networks is shown in Figure 9. 

Statistical analysis 
To compare the predictions of the different models, the accuracy was assessed for each model using 
the Pearson’s correlation coefficient (r), the root-mean-squared error (RMSE), and the relative RMSE 
(rRMSE). The Pearson’s correlation coefficient is categorized as weak (r<= 0.35), moderate (0.35 
<r<=0.67), strong (0.67<r<=0.90) or excellent (r>0.90) correlation [9]. The RMSE and rRMSE were 
calculated as performed by Ren et al. [36]. All statistical analyses were performed using Python 
version 3.9.13 (Python Software Foundation). 
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Figure 9 Architecture of: OW (upper), OHP (middle) and OHL (lower). 

   

  



 

 

 13  

Results 
Different ML algorithms are implemented, trained, and tested. The results of the best literature 
based models and of the new developed algorithms are shown in this section. More detailed results, 
including reasoning why the presented models were selected, can be found in Appendices: Methods 
for and results of obtaining the best validation models (page 33) and Appendices: Model iterations of 
own developed models (page 49).  

An exploration of the range of output values of both healthy subjects and ACL patients can be seen in 
Appendices: Methods for and results of obtaining the best validation model (page 33). Overall, this 
range seemed similar between the healthy subjects and the ACL patients, except for a few outliers in 
both groups.  

In Table 3 the outcome performance metrics of the walking models are shown. There were 
differences between the model performances throughout the LOSO CV of OLW. These can be 
observed in Figure 10 (the best scoring model) and Figure 11 (the worst scoring model). There are no 
significant intersubjectgroup performance differences for the OLW algorithm.  

The outcome performance metrics on the LOSO CV of the hop models during the push-off and 
landing phase are visible in Table 4 and Table 5. 
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Table 3 Outcome metrics for LOSO CV of right leg of walk models. Standard deviation is shown between brackets. h = trained 
and tested on healthy subjects (001-1; 002-1; 002-2; 004-1; 004-2; 006-1; 006-2; 007-1; 007-2; 008-2). p = trained and tested 
on ACL patients (p01-1; p02-1; p02-2; p04-1; p04-2; p05-1; p05-2; p07-1; p07-2; p08-1) . hp = trained and tested on 
combination of healthy subjects and ACL patients. Any significant intersubjectgroup differences are in bold. Light orange: r 
<= 0.65. Darker orange: r<= 0.35. Grey: not known/not applicable.   

 
OLW  OW  

RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r 

GRF A-P h 0.0490 
(0.0095) 

9.30 
(1.69) 

0.9049 
(0.0452) 

0.0523 
(0.0113) 

9.81 
(1.41) 

0.8959 
(0.0451) 

A-P p 0.0513 
(0.0126) 

10.93 
(1.81) 

0.8886 
(0.0524) 

0.0504 
(0.0107) 

10.40 
(1.69) 

0.8979 
(0.0314) 

A-P hp 0.0466 
(0.0090) 

9.39 
(1.49) 

0.9132 
(0.0203) 

0.0526 
(0.0144) 

10.14 
(1.96) 

0.8781 
(0.0669) 

M-L h 0.0232 
(0.0034) 

15.61 
(2.25) 

0.7024 
(0.1022) 

0.0177 
(0.0050) 

12.94 
(3.11) 

0.6996 
(0.2192) 

M-L p 0.0188 
(0.0055) 

15.20 
(4.14) 

0.7266 
(0.0776) 

0.0193 
(0.0087) 

16.02 
(6.68) 

0.7641 
(0.0410) 

M-L hp 0.0209 
(0.0039) 

15.78 
(3.13) 

0.7078 
(0.0898) 

0.0201 
(0.0060) 

14.70 
(3.98) 

0.7376 
(0.1595) 

Vertical h 0.2156 
(0.0382) 

13.36 
(2.66) 

0.6912 
(0.1504) 

0.2030 
(0.0718) 

11.97 
(3.68) 

0.7323 
(0.1811) 

Vertical p 0.1982 
(0.0281) 

12.83 
(1.69) 

0.7240 
(0.0876) 

0.1797 
(0.0207) 

11.94 
(1.38) 

0.7762 
(0.0870) 

Vertical hp 0.2078 
(0.0288) 

13.03 
(1.70) 

0.6982 
(0.0868) 

0.2038 
(0.0599) 

13.37 
(3.46) 

0.6902 
(0.2058) 

Norm h 0.2173 
(0.0382) 

13.43 
(2.62) 

0.6890 
(0.1526) 

 

Norm p 0.2012 
(0.0280) 

13.02 
(1.77) 

0.7148 
(0.0898) 

Norm hp 0.2096 
(0.0291) 

13.13 
(1.74) 

0.6943 
(0.0886) 

Net knee 
moment 

F-E h  0.0235 
(0.0085) 

14.47 
(3.97) 

0.6598 
(0.1691) 

F-E p 0.0322 
(0.0057) 

28.09 
(6.71) 

0.3859 
(0.0822) 

F-E hp 0.0252 
(0.0071) 

19.12 
(6.35) 

0.5637 
(0.2318) 

V-V h 0.0171 
(0.0107) 

22.27 
(7.64) 

0.5896 
(0.1502) 

V-V p 0.0166 
(0.0039) 

23.62 
(5.05) 

0.6526 
(0.0737) 

V-V hp 0.0196 
(0.0088) 

26.03 
(13.89) 

0.5885 
(0.2637) 

I-E h 0.0047 
(0.0009) 

14.43 
(1.91) 

0.8687 
(0.1041) 

I-E p 0.0039 
(0.0013) 

17.61 
(1.97) 

0.8192 
(0.0640) 

I-E hp 0.0046 
(0.0017) 

18.23 
(6.38) 

0.7738 
(0.1486) 

 
  



 

 

 15  

 

 
Figure 10 Illustration of predicted versus target GRFs, for the best scoring test subject based on total rRMSE value (subject 1) 
of the LOSO CV evaluation of OLW. 
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Figure 11 Illustration of predicted versus target GRFs, for the wort scoring test subject based on total rRMSE value (subject 
7) of the LOSO CV evaluation of OLW. 
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Table 4 Outcome metrics for LOSO CV of hop push-off models of right leg. Standard deviation is shown between brackets. h 
= trained and tested on healthy subjects (001-1; 002-1; 002-2; 003-1; 003-2; 004-1; 005-1; 005-2; 006-1; 006-2; 007-2; 008-
2). p = trained and tested on right ACL leg of patients (p01-1; p01-2; p02-1; p02-2; p05-1; p05-2; p07-2; p08-1). Any 
significant intersubjectgroup differences are in bold. Light orange: r <= 0.65. Darker orange: r <= 0.35. Grey: not known/not 
applicable.     

 
OSHP OHP 

RMSE 
(BW) 

rRMSE (% 
BW) 

r RMSE (BW) rRMSE (% 
BW) 

r 

KJF A-P h 0.1536 
(0.0432) 

14.28 
(6.87) 

0.8432 
(0.0676) 

0.1348 
(0.0273) 

12.49 
(1.46) 

0.9170 
(0.0192) 

A-P p 0.1681 
(0.0411) 

17.94 
(6.43) 

0.8083 
(0.0312) 

0.1705 
(0.0217) 

18.79 
(4.06) 

0.9182 
(0.0654) 

M-L h 0.0958 
(0.0388) 

15.82 
(6.39) 

0.8292 
(0.0604) 

0.1663 
(0.0860) 

28.04 
(27.90) 

0.7933 
(0.2777) 

M-L p 0.1414 
(0.0566) 

26.21 
(10.87) 

0.7969 
(0.0644) 

0.0702 
(0.0393) 

13.86 
(7.68) 

0.8937 
(0.0098) 

T-C h 0.1652 
(0.0526) 

7.66 (2.74) 0.9226 
(0.0410) 

0.1734 
(0.0432) 

8.40 (1.91) 0.8930 
(0.0518) 

T-C p 0.1986 
(0.0524) 

9.84 (2.49) 0.8824 
(0.0379) 

0.1799 
(0.0764) 

9.13 (3.96) 0.8623 
(0.1541 

Net knee 
moment 

F-E h  0.0400 
(0.0155) 

17.36 
(6.63) 

0.8233 
(0.0943) 

F-E p 0.0596 
(0.0284) 

36.77 
(30.72) 

0.5338 
(0.4530) 

V-V h 0.0498 
(0.0188) 

34.71 
(19.31) 

0.4654 
(0.3074) 

V-V p 0.0293 
(0.0103) 

22.99 
(10.59) 

0.7919 
(0.1285) 

I-E h 0.0198 
(0.0071) 

39.08 
(13.69) 

-0.3023 
(0.4344) 

I-E p 0.0114 
(0.0074) 

29.64 
(8.57) 

-0.1601 
(0.6057) 

GRF A-P h  0.0615 
(0.0163) 

18.99 
(4.64) 

0.7274 
(0.0946) 

A-P p 0.0542 
(0.0175) 

17.36 
(5.11) 

0.7450 
(0.1780) 

M-L h 0.0304 
(0.0159) 

25.57 
(7.10) 

0.1486 
(0.2835) 

M-L p 0.0248 
(0.0063) 

22.19 
(1.70) 

0.0033 
(0.3695) 

Vertical h 0.2058 
(0.0383) 

8.36 (1.56) 0.9141 
(0.0428) 

Vertical p 0.1977 
(0.0607) 

8.97 (3.14) 0.8714 
(0.1354) 
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Table 5 Outcome metrics for LOSO CV for hop landing models of right leg. Standard deviation is shown between brackets h = 
trained and tested on healthy subjects (001-1; 002-1; 002-2; 003-1; 003-2; 004-1; 005-1; 005-2; 006-1; 006-2; 007-2; 008-2). 
p = trained and tested on right ACL leg of patients (p01-1; p01-2; p02-1; p02-2; p05-1; p05-2; p07-2; p08-1). Any significant 
intersubjectgroup differences are in bold. Light orange: r <= 0.65. Darker orange: r<= 0.35. Grey: not known/not applicable.     

 OSHL OHL  

RMSE 
(BW) 

rRMSE (% 
BW) 

r RMSE (BW) rRMSE (% 
BW) 

r 

KJF 
A-P h 0.1778 

(0.0369) 
13.65 
(2.23) 

0.7319 
(0.2008) 

0.1348 
(0.0273) 

12.49 
(1.46) 

0.9170 
(0.0192) 

A-P p 0.1898 
(0.0139) 

14.39 
(3.52) 

0.6899 
(0.2057) 

0.1534 
(0.0121) 

11.94 
(2.15) 

0.8561 
(0.0371) 

M-L h 0.1449 
(0.0498) 

21.91 
(5.48) 

0.5924 
(0.2200) 

0.1663 
(0.0860) 

28.04 
(27.90) 

0.7933 
(0.2777) 

M-L p 0.1723 
(0.0709) 

26.68 
(9.66) 

0.5717 
(0.2005) 

0.1131 
(0.0517) 

21.27 
(6.91) 

0.7314 
(0.0787) 

T-C h 0.2140 
(0.1062) 

8.47 (3.16) 0.7786 
(0.1754) 

0.1734 
(0.0432) 

8.40 (1.91) 0.8930 
(0.0518) 

T-C p 0.2073 
(0.0463) 

8.04 (0.95) 0.8102 
(0.0868) 

0.1505 
(0.0417) 

6.55 (1.47) 0.8818 
(0.0477) 

Net knee 
moment 

F-E h  0.0400 
(0.0155) 

17.36 
(6.63) 

0.8233 
(0.0943) 

F-E p 0.0657 
(0.0230) 

26.93 
(26.08) 

0.6690 
(0.1893) 

V-V h 0.0498 
(0.0188) 

34.71 
(19.31) 

0.4654 
(0.3074) 

V-V p 0.0325 
(0.0138) 

22.88 
(5.13) 

0.5734 
(0.1142) 

I-E h 0.0198 
(0.0071) 

39.08 
(13.69) 

-0.3023 
(0.4344) 

I-E p 0.0069 
(0.0012) 

32.58 
(13.29) 

0.1615 
(0.4077) 

GRF A-P h  0.0615 
(0.0163) 

18.99 
(4.64) 

0.7274 
(0.0946) 

A-P p 0.0659 
(0.0128) 

11.19 
(2.30) 

0.8750 
(0.0315) 

M-L h 0.0304 
(0.0159) 

25.57 
(7.10) 

0.1486 
(0.2835) 

M-L p 0.0272 
(0.0091) 

17.79 
(3.29) 

0.3553 
(0.1565) 

Vertical h 0.2058 
(0.0383) 

8.36 (1.56) 0.9141 
(0.0428) 

Vertical p 0.1650 
(0.0334) 

6.38 (1.07) 0.8960 
(0.0299) 
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Discussion 
The purpose of this study was to analyze how accurate 3D GRFs and/or net knee joint moments can 
be determined during single leg hop tests and normal walking in ACL patients. The ML models were 
tested both on a healthy and an ACL patient dataset, consisting of IMU, OMC and force plate data.  

The most important finding of the present study was that M-L GRFs and all net knee moments are 
still difficult to accurately estimate during a single leg hop (r <= 0.65).  

For walking, the estimated GRF strongly correlates with the target GRF (r=0.90 A-P; r=0.70 M-L; 
r=0.73 vertical). Similar to other studies, Pearson’s correlation coefficients and rRMSE values were 
calculated and an overview of the comparison of these values to other research is shown in Table 6. 
Although the correlation between the predicted and target output is strong, it can be seen that the 
walking models developed during this study perform worse than those in previous research.   

Table 6 Comparison of the prediction error in GRF during gait of previous studies and the validated and developed model 
(OW and OLW). Grey areas are unknown.  

 Pearson’s correlation coefficient rRMSE (% BW) 

A-P M-L vertical A-P M-L vertical 

OW (healthy) 0.896 0.700 0.732 9.81 (1.41) 12.94 
(3.11) 

11.97 
(3.68) 

OLW (healthy) 0.905 0.702 0.691 9.30 (1.69) 15.61 
(2.25) 

13.36 
(2.66) 

Leporace et al. 2018 [18] 0.97 0.80 0.98  

Leporace et al. 2015 [37] 
1 MLP for 3 outcomes 

0.969 0.801 0.968  

Jiang et al. 2020 [38]  
Interparticipant  

 0.97  7.15  

Dorschky et al. 2020 [16] 0.971  0.980 3.76 (0.31)  9.99 (0.76) 

Oh et al. 2013 [34] 
Single support phase 

0.978 0.736 0.988 2.6 (0.7) 26.2 (4.0) 11.3 (2.1) 

Lim et al. 2019 [10] 0.98  0.96 6.16-6.70 
(1.76-2.99) 

 6.26-8.21 
(1.24-3.63) 

 
To the best of the author’s knowledge, this is the first study to present a movement-specific hop test 
model. Regarding knee force, the models of the current study scored similar to Stetter et al. in AP 
and tension/compression direction, but significantly higher than Stetter et al. in the M-L direction 
(see Table 7) [27]. A possible reason for this might be that the current models are movement specific 
and that the M-L KJFs within a hop test are very different from e.g. the KJFs during walking or fast 
running that were also included in the trained model of Stetter et al. In the current research, the 
same trend is visible as Stetter et al. had noticed: There is a drop in the estimation accuracy for M-L 
forces, both for the walking and the hop models [27].  

Table 7 Comparison of the prediction error in KJF during push-off phase of a single leg hop test of Stetter and the validated 
and developed model (OHP and OSHP). 

 Pearson’s correlation coefficient rRMSE (% BW) 

A-P M-L T-C A-P M-L T-C 

OHP (healthy) 0.917 0.793 0.893 12.49 (1.46) 28.04 
(27.90) 

8.40 (1.91) 

OHP (patients) 0.918 0.894 0.862 18.79 (4.06) 13.86 (7.68) 9.13 (3.96) 

OSHP (healthy) 0.843 0.829 0.923 14.28 (6.87) 15.82 (6.39) 7.66 (2.74) 

OSHP (patients) 0.812 0.789 0.882 17.94 (6.43) 26.21 
(10.87) 

9.84 (2.49) 

Stetter et al. 2019 
[27] 

0.89 0.31 0.92 17.4 (5.5) 45.9 (19.7) 15.4 (6.6) 
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When comparing the different subject groups (healthy participants vs. ACL patients) there are 
differences in accuracy visible. However, sometimes this is in the advantage of the patient group and 
other times in the advantage of the healthy participants. Since there are no decisive differences 
between the performance of the models of the two subject groups, it can be stated that ACL patients 
are a proper population to use in developing and testing of ML models and eventually apply these 
models. 

It is striking how in this research, the A-P direction can be estimated most accurate in the OLW 
algorithm, followed by the M-L direction and the vertical direction scores lowest. This is not as was 
expected from literature: Stetter et al. had noticed a drop in the estimation accuracy for M-L forces 
[27]. On the other hand, the OW algorithm does show the expected lower accuracy in estimating the 
M-L GRFs. 

Caution must be exercised in interpreting these results due to the limited amount of data available 
compared to e.g. Leporace et al. and Stetter et al. [18], [27]. While this study only reached a 
maximum of two stance phases per subject per leg, Leporace et al. achieved four stance phases per 
subject per leg, with a doubled number of subjects and Stetter et al. trained their model using 198 
trials. To compensate for the relative lack of data, several potential methods can be considered, 
including data simulation [16], utilizing more input data (e.g., a SINN [39]), predicting a single output 
per model (reducing the number of trained relationships), using a simplified model with fewer 
trainable parameters, using a naïve model (e.g. Charry et al. [40]) or developing subject specific 
models (because the intersubject differences are too large for the dataset size). In the current study 
a SINN, predicting a single output per model and subject specific models were applied.     

All outcome metrics in this study rely on a comparison between the estimated values from the model 
and the ground truth values. In this study, the kinetics derived from the Vicon model were selected 
as the ground truth. As there is no authoritative gold standard in this field, we thus studied the 
model’s proximity to the Vicon system. Future research should also focus on obtaining a quantitative 
measure that does not rely on a ‘not golden standard’. An example of such a measure could be 
dynamic stability. A small research into this measure was performed as side study and can be found 
in Appendices: Literature research ‘dynamic stability’ (page 54). 

Methodological limitations (experiments) 

Certain limitations of this study need to be considered when interpreting the results. Regarding data 
acquisition, these drawbacks include, but are not limited to, the precision of sensor and marker 
placement and the execution of the selected movements. Firstly, the placement of sensors and 
markers was carried out by two researchers with limited prior knowledge of the Plug-In Gait marker 
placement guidelines. Although the localization of marker locations was completed with care, 
employing more experienced researchers could enhance the precision of this process. Additionally, 
the movement of sensors and markers due to fabric movement should be taken into account [41]. 
Fortunately, a sensor-to-segment calibration was executed on the IMU data, mitigating the impact of 
uncertainties within sensor placement. Lastly, the performance of the hop test was constrained by a 
fixed distance between the force plates. This standardized approach aimed to reduce the variation 
between participants, but it differs from clinical practice where patients are typically instructed to 
jump as far as possible instead. As a result, the forces and net moments experienced during a 
restricted hop may not fully represent those observed in a maximal distance hop. Therefore, it can be 
questioned whether the constrained hop test adequately simulates ACL rehabilitation exercises.  
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Methodological limitations (data analyses) 

Looking at the data analyses part, it can be discussed what time window gives the most optimal 
segmentation, particularly concerning the single leg hop movement. It is not desired to let the model 
overfit on the balancing part before and after the actual hop, but it is also of interest to have 
information regarding the balancing part. Therefore, it is not possible to set fixed timeslots that hold 
for each subject. In this study, variability in the vGRF was used as a measure for adjustment of 
position and thus belonging to the push-off or landing phase. However, this method was influenced 
by filtering of the force plate data. The time of push-off seems to be delayed as a consequence of this 
[42]. Another segmentation problem is what threshold value to base the segmentation on. For the 
stance phase of gait, different threshold values are used in literature e.g. 10 N vGRF, 20 N vGRF or 
0.05 times body weight [9], [18], [30], [37]. For running, the gold standards for determining IC and TO 
events are respectively 10 N vGRF and 25 N vGRF [43], but for normal gait there has no such standard 
been found. This makes gait analysis research less consistent.    

Pogson et al. described that it was better to not standardize the length of the signal by rescaling to 
save the time dynamics [13]. Zero padding would be a solution for this. Since the focus of this study 
did not lay in time dynamic based models, this is not a big concern for the outcomes of the current 
study but should be kept in mind for future research.       

For the ML models it is best to perform a normalization, as defined by Huang et al.: “a general 
transformation which ensures that the transformed data has certain statistical properties” [44]. In 
this study, the input features were transformed per input feature. This means that the size of 
acceleration in the x direction was scaled independently of the size of the acceleration in the y 
direction. However, if you transform the input features, thus the three input directions, separately 
from each other, the actual directions of e.g., acceleration vectors likely change and may not be 
representative anymore. The ML model might not have difficulties with training this model, but the 
inputs are not ‘real’ data inputs anymore, which makes it difficult for us humans to see how the ML 
model created logical connections between them. How tridimensional data can be processed best to 
use in ML models can still be questioned for this reason. 

Clinical implications 

Research on prediction of kinetics using IMU data and ML model(s) had mostly been restricted to 
healthy subjects during the walk or running movement. In contrast to previous work, this study 
focused on the hop test and ACL patients as well as on walking and healthy subjects. Still, the clinical 
course of events can only be adapted if more ACL rehabilitation-based research will be performed on 
this topic.     

In this research, contrasting to Stetter et al., De Brabandere et al. and Zhang et al., a different model 
is developed for each different movement type with the goal of higher intersubject generalization 
[9], [23], [27], [28]. For clinical practice, this might be received as an extra selection a physiotherapist 
needs to make before being able to analyze the results. However, this should not impose additional 
workload to the physiotherapist, as the practitioner needs to know which activity was performed to 
determine more muscle-specific forces instead of only looking at the net joint moments and GRFs.  
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Future research 

Future investigations should focus more on ACL rehabilitation movements. For example, the side hop 
movement where sidewards forces play a more pronounced role might be interesting to evaluate. It 
should also be explored what other movements of the ACL rehabilitation process play a key role in 
the overall evaluation of the progress within this process. When suitable movements are selected 
and ML models for these movements are created that can estimate kinetics accurately enough, the 
outcome of these models can be used as quantitative measures during rehabilitation. The 
physiotherapist will see graphs of e.g. the knee moment as result of the ML model and the known 
healthy knee moment is plotted against this graph. These graphs provide an easy way of monitoring 
progress within a patient and as soon as a database of more patient data has been built, they can be 
used to compare progress of a patient against a norm and to give more muscle specific exercises as 
homework to the patient.  

In this research, the stance phase was segmented based on force plate data. However, if this model 
is used in clinical practice, only IMU data will be available. Therefore, IMU based segmentation 
techniques should be explored more in future research. An example of this can be seen in the 
research of Benson et al., even though this entailed the running movement [43].  

The models designed in this research could be further optimized by implementing biomechanical 
relations, e.g. the second law of Newton for better estimation of the vGRF [45]. Specific parameters 
of the formula used for this, could be retuned as well. An additional improvement in performance 
could be reached by first estimating the kinematics, and consequently determining the kinetics. This 
two-staged approach was advised by Mundt et al [46]. To improve the joint angle estimation using 
IMUs, position estimation could be used, e.g. by using the ultrawideband technique or ultrasound 
[47], [48]. In clinical practice, this advanced joint angle estimation may enhance the accuracy of 
estimated kinetic parameters.   
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Conclusion 
All in all, two existing models (from Leporace et al. and Stetter et al.) were validated and fine-tuned 
against a dataset of healthy subjects and ACL patients. On top of that, three new models were 
developed to be able to predict GRFs and net knee joint moments, not only during walking but also 
during single leg hop tests. The model evaluation of OW based on LOSO CV among the ACL patients 
showed rRMSE values of 9.49, 16.28 and 11.79 percent during stance phase of walking for 
anterior/posterior, medial/lateral and vertical direction of GRF respectively. The most important 
finding of the present study was that M-L GRFs and all net knee moments are still difficult to 
accurately estimate during a single leg hop. However, it showed that ACL patients are a suitable 
population to develop and evaluate ML algorithms on. The current method is a first step of providing 
quantitative data for monitoring the ACL rehabilitation process. To make this even more ACL-
focused, other ACL rehabilitation movements should be modeled as well, especially movements 
requiring relatively large M-L forces.   
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Appendices 
Participant preparation 
Table 8 Overview of the locations of the reflective markers on the body. 

Segment Marker name Location [31] 

Upper body STRN Mid sternum 

CLAV Clavicular notch 

C7 7th cervical vertebra 

T10 10th thoracic vertebra 

IST(1,2,3) Rig markers 

Pelvis RASI/LASI Anterior superior iliac spine 

RPSI/LPSI Posterior superior iliac spine 

RPEL/LPEL Lateral hip 

IPV(1,2,3) Rig markers 

Upper leg RTHI/LTHI Mid-lateral thigh 

RKNE/LKNE Lateral epicondyle of the femur 

RMKN/LMKN Medial epicondyle of the femur 

IRTH(1,2,3)/ILTH(1,2,3) Rig markers 

Lower leg RTIB/LTIB Mid-lateral shank 

RHEE/LHEE Calcaneus 

RANK/LANK Lateral malleolus 

RMAN/LMAN Medial malleolus 

IRTB(1,2,3)/ILTB(1,2,3) Rig markers 

Feet R1MT/L1MT 1st metatarsophalangeal joint 

R5MT/L5MT 5th metatarsophalangeal joint 

RTOE/LTOE Over the second metatarsal 
head, on the mid-foot side of 
the equinus break between 
forefoot and mid-foot  

IRF(1,2,3)/ILF(1,2,3) Rig markers 

 

  



 

 

 30  

Performed movements 
A visualization of the performed movements can be seen in Figure 12 and Figure 13.

 

Figure 12 Schematic walking trial. 

 

Figure 13 Schematic hop test trial of left leg. 
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Selection of literature models 
To determine the most appropriate ML model for the gait and single leg hop test analysis, all read 
papers containing kinetic (gait) models were selected for extensive re-analysis. During this analysis, 
the algorithms were graded on what type(s) of kinetics their output was/were, the accuracy of the 
algorithm compared to other papers, and the reproducibility of the methods: was the description of 
the algorithm extensive enough and were no other inputs than IMU data needed for the algorithm to 
work. This process can be seen in Figure 14. For the hop test algorithm, the accuracy comparison was 
left out due to the little number of papers to compare with. 

 

Figure 14 Overview of ML algorithm choices for validation.  

Although four and three papers were selected sufficient, only one model of each movement was 
modeled based on existing literature. The choice of Leporace 2018 et al. was made because the 
amount of data was too small to model a CNN (as Dorschky et al. did), Mundt et al. had no 
concluding remarks on which of their model was best and Leporace 2015 was older than the one of 
2018. The method of Stetter et al. was preferred above the other two. Chaaban et al. had used a 
more feature selection based model which was exactly what we wanted to avoid since it takes more 
preprocessing steps. Cerfoglio et al. did have an interesting approach, but it was not included based 
on limited time.  
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Overview of used trials per movement per subject group 
Table 9 Overview of used trials per movement per subject group. This is divided into used, segmentation problems, 
synchronization problems, no ACL leg and saving problems. 

 Healthy subjects ACL patients 

Walk (right) 10 used; 5 synchronization 
problems; 3 saving problems 

10 used; 4 no ACL injury on right 
leg; 2 segmentation problems 

Hop left 13 used; 3 synchronization 
problems; 2 saving problems 

NA 

Hop right 12 used; 2 segmentation 
problems; 2 synchronization 
problems; 2 saving problems 

8 used; 4 no ACL injury on right 
leg; 2 segmentation problem; 2 
saving problems 
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Methods for and results of obtaining the best validation models 
For each model, the initial evaluation involved testing its performance on the same dataset on which 
it was trained. It was expected that the model would perform well in this case, since it was 
specifically trained to predict the same outcome relations. Secondly, a LOSO CV was conducted to 
assess the model’s generalizability to unseen data. If this step gave promising results in terms of 
outcome metrics, an additional phase of hyperparameter optimization and PCA was carried out. This 
optimization and selection process was based on the outcome metrics of the different models. In 
Figure 15 this model evaluation process is shown.  

 

Figure 15 An illustration of the model evaluation process. 

Before starting the analysis of the models, the range within the output variables was explored to look 

for possible differences between and within both subject groups. As can be seen in Figure 16, Figure 

17, Figure 18, Figure 19, Figure 20 and Figure 21 for the hop push-off phase, there are a few outliers, 

but overall there is no significant difference between both groups.   

 

Figure 16 Variation within the A-P GRF during the push-off phase of the right leg hop jump for healthy subjects (<1200 
samples) and for ACL patients (>1200 samples).   
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Figure 17 Variation within the M-L GRF during the push-off phase of the right leg hop jump for healthy subjects (<1200 
samples) and for ACL patients (>1200 samples). 

 

Figure 18 Variation within the vGRF during the push-off phase of the right leg hop jump for healthy subjects (<1200 samples) 
and for ACL patients (>1200 samples). 

 

Figure 19 Variation within the flexion/extension net knee joint moment during the push-off phase of the right leg hop jump 
for healthy subjects (<1200 samples) and for ACL patients (>1200 samples). 
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Figure 20 Variation within the varus/valgus net knee joint moment during the push-off phase of the right leg hop jump for 
healthy subjects (<1200 samples) and for ACL patients (>1200 samples). 

 

Figure 21 Variation within the internal/external net knee joint moment during the push-off phase of the right leg hop jump 
for healthy subjects (<1200 samples) and for ACL patients (>1200 samples). 

Gait models 

Leporace model: pyrenn-based 
To mimic the methods of Leporace et al. [18] the Levenberg-Marquardt back-propagation algorithm 
was implemented using Python’s pyrenn package [49]. All inputs, outputs, stance phase selection 
parameters and network architecture were implemented as in [18]. The maximum number of epochs 
was set to 1000 and default settings were used for the termination error, damping factor, damping 
constant and other pyrenn parameters. As depicted in Figure 22, the predicted value is not an 
accurate estimation of the target value, with all predicted values falling outside the range of target 
values. Furthermore, it is notable that retraining the pyrenn-based model yielded visibly different 
results each time, as evident from the comparison between Figure 23 and Figure 24. For these 
observations highlight the unreliability of the pyrenn-based model, it has been excluded from further 
evaluation.    
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Figure 22 3D GRF predictions of the pyrenn-based model. 

 

Figure 23 3D GRF predictions of the pyrenn-based model, after rescaling y-axes to the range of target values. 

 

Figure 24 3D GRF predictions of the pyrenn-based model, after rescaling y-axes to the range of target values. This time 
retrained using the same in- and output values for training. 
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Leporace model: pyTorch-based 
Unfortunately, no other easy to implement Levenberg-Marquardt algorithms could be identified. 
Consequently, a change in the type of optimizer was necessary compared to the methods employed 
by Leporace et al. Keeping all other parameters as much the same as possible, the Adam optimizer 
was then implemented, using Python’s pyTorch package [50]. Examples of predicted values 
generated by this pyTorch-based model, after being trained and tested on the same dataset, are 
illustrated in Figure 25 and Figure 26. Although retraining the model (Figure 26) gave slightly varying 
results, the overall predicted values remained near the target values. The outcome metrics of this 
model are presented in Table 10. 

  

Figure 25 3D GRF predictions of the pyTorch-based model. 

 

Figure 26 3D GRF predictions of the pyTorch-based model. This time retrained using the same in- and output values for 
training. 
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The LOSO CV was performed, where a different subject was used as the test subject each time. The 
outcome metrics of this model are presented in Table 10 (highlighted in green).    

Additionally, the model was evaluated using a separate test set consisting of trials from different 
subjects. In this way, the model might already have been trained to learn some subject-specific 
information. As this is a manner of data leakage, this method was purely used to test whether the 
algorithm is in disadvantage when using it to predict for a new subject. However, the results 
obtained from this method (using 4 trials, 2 trials or even including the subject ID as input) did not 
significantly outperform the LOSO CV. Therefore, it can be assumed that the model does not show a 
disadvantage when predicting for unseen subjects.  

Incorporating the subject ID as input data has also been trained and tested using the LOSO CV. The 
expectation was that this wouldn’t show higher performance, as the input subject ID of the test 
person would be completely new to the model, making it challenging to use the subject ID 
effectively. The results of this model demonstrated similar outcomes as the normal LOSO CV.  

Lastly, a separate model was trained for each output value, enabling the network to learn output-
specific relationships rather than training relationships for all three outputs simultaneously. As 
depicted in Table 10, the A-P RMSE and rRMSE, as well as the A-P and M-L Pearson r, showed better 
performance than the normal LOSO CV. However, there was no significant difference observed 
between the scores of both models.   

Leporace model: pyTorch-based and time coherent 
Due to the limited amount of available data, the amount of information provided to the model was 
enhanced by including additional input features based on the time coherent nature of the data. This 
method, known as a stacked input neural network (SINN), was implemented following a similar 
approach as Wouda et al. had performed [39]. Specifically, the number of future and past data points 
considered was set to 2 and the number of samples that were shifted between the samples was also 
set as 2. For instance, the output of sample 50 was determined based on all previous inputs from 
sample 46, 48, 50, 52 and 54. It should be noted that the initial and final samples of the signal were 
excluded due to insufficient past and future samples, respectively. However, this did not pose an 
issue as the segmented stance phase for all subjects did not occur near the beginning or end of the 
signal. After the additional time instances were added as input features, all samples were shuffled. 
Outcome metrics of this approach, evaluated using both the test set that equaled the train set and 
the LOSO CV, are also reported in Table 10.    
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Table 10 Outcome metrics of a few different gait models, compared to Leporace’s model. Standard deviation is shown 
between brackets. Green: selected Leporace model.  

 RMSE  rRMSE Pearson Correlation 
Coefficient  (r) 

A-P M-L Vertical A-P M-L Vertical A-P M-L Vertical 

Leporace 
test = 
train 

0.0274 0.0122 0.1366 5.16 8.74 10.38 0.9684 0.9165 0.8132 

Leporace 
test = 
one trial 
of four 
subjects 

0.0537 0.0183 0.2722 8.38 12.98 14.88 0.8794 0.6463 0.5450 

Leporace 
test = 
one trial 
of two 
subjects 

0.0591 0.0167 0.2990 10.42 13.34 16.74 0.8190 0.7242 0.4495 

Leporace 
test = 
one trial 
of two 
subjects 
including 
subject 
ID 

0.0545 0.0170 0.2864 9.74 13.39 16.38 0.8443 0.7386 0.4763 

Leporace 
LOSO CV 
average 

0.0537 
(0.0110) 

0.0184 
(0.0021) 

0.2359 
(0.0356) 

9.99 
(1.93) 

13.87 
(1.98) 

14.35 
(1.57) 

0.8891 
(0.0465) 

0.7283 
(0.1149) 

0.6641 
(0.1129) 

Leporace 
LOSO CV 
including 
subject 
ID 

0.0540 0.0198 0.2322 10.06 14.85 14.17 0.9016 0.6748 0.6785 

Leporace 
LOSO CV 
only one 
output 
per 
trained 
model 

0.0505 
(0.0111) 

0.0185 
(0.0017) 

0.2429 
(0.0379) 

9.31 
(1.53) 

14.04 
(1.83) 

14.71 
(1.99) 

0.9042 
(0.0325)  

0.7397 
(0.1114) 

0.6346 
(0.1307) 

Time 
coherent 
Leporace 
(SINN) 
test = 
train 

0.0273 0.0155 0.0734 5.36 10.14 5.51 0.9694  0.8530 0.9564 

Time 
coherent 
Leporace 
(SINN) 
LOSO CV 
average 

0.05299 
(0.0097) 

0.0195 
(0.0034) 

0.2422 
(0.0427) 

9.76 
(1.82) 

14.92 
(3.08) 

14.63 
(2.32) 

0.8844 
(0.0540) 

0.6805 
(0.1466) 

0.6412 
(0.1373) 

Leporace 
[18] 

 0.97 0.80 0.98 
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Evaluating models using patient data 
The first test was to test a model trained on healthy subject data, using patient data. The result of 
this is visible in Table 11. 

Plots of the input variables showed that ACL patients tended to have a longer stance phase than the 
healthy subjects (see Figure 27). 

 

Figure 27 Variation within stance duration of patients (<= 561 samples) and healthy subjects (> 561 samples) 

The patient models were run twice: once with the IMU data calibrated using the bony landmark 
calibration (BLC) as performed using in-house developed software (RRD, Enschede, The Netherlands) 
and once using stand calibration (the first few seconds of a trial when the subject is standing still). 
The healthy subject data was created using the latter of the two. When comparing the input of the 
patient data with the input of the subject data, at first it looked as if there were large differences 
between the groups (see Figure 28 and Figure 30). However, when testing whether this was a 
consequence of the different calibration techniques by calibrating the patient data using the stand 
calibration this time, it was visible that these large difference had become a lot smaller and the data 
was in a more similar range as the subject data (see Figure 29 and Figure 31). This was the reason 
why the patient models were also rerun using this new data using the less sophisticated stand 
calibration technique. The results of the evaluation of the patient models are shown in Table 11. The 
models of the combined healthy subjects and patient data scored best. This implies that the amount 
of data is more important than the possible difference between the two groups.  

 

Figure 28 Variation within the acceleration of the LLL in the y direction of patients using the BLC (<= 510 samples) and 
healthy subjects (> 510 samples) 
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Figure 29 Variation within the acceleration of the LLL in the y direction of patients using the stand calibration (<= 561 
samples) and healthy subjects (> 561 samples) 

 

 

Figure 30 Variation within the displacement of the LLL in the y direction of patients using the BLC (<= 510 samples) and 
healthy subjects (> 510 samples) 

 

Figure 31 Variation within the displacement of the LLL in the y direction of patients using the stand calibration (<= 561 
samples) and healthy subjects (> 561 samples) 
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Table 11 Outcome metrics of a few different patient gait models. Standard deviation is shown between brackets. In red: 
results using the BLC to Vicon comparison on ACL patients. In black: results using the stand calibration on ACL patients.  

 RMSE   rRMSE   Pearson 
Correlat
ion 
Coeffici
ent (r) 

  

A-P M-L Vertical A-P M-L Vertical A-P M-L Vertical 

Pretraine
d (by 
healthy 
subjects) 
Leporace 
pyTorch 

0.0656 0.0221 0.3006 10.01 12.42 16.95 0.7792 0.4999 0.5056 

Patient 
Leporace 
LOSO CV  

0.0701 
(0.0367) 

0.0195 
(0.0063) 

0.3042 
(0.1068) 

14.75 
(6.73) 

16.25 
(4.64) 

19.10 
(6.03) 

0.6771 
(0.3632) 

0.6875 
(0.1529) 

0.6482 
(0.1377) 

Patient 
Leporace 
LOSO CV 
without 8 
and 61 
and 12 

0.0525 
(0.0152) 

0.0217 
(0.0051) 

0.2509 
(0.0597) 

12.28 
(3.40) 

19.33 
(5.32) 

15.59 
(3.32) 

0.8473 
(0.0727) 

0.6867 
(0.1803) 

0.6989 
(0.1597) 

Combine
d patient 
and 
subject  
Leporace 
LOSO CV 

0.0538 
(0.0135) 

0.0191 
(0.0046) 

0.2329 
(0.0617) 

11.41 
(2.43) 

16.18 
(3.64) 

14.50 
(3.50) 

0.8632 
(0.0643) 

0.7099 
(0.1350) 

0.7025 
(0.1555) 

Pretraine
d (by 
healthy 
subjects) 
Leporace 
pyTorch 

0.0605 0.0198 0.2765 10.37 12.39 16.36 0.8145 0.6285 0.5598 

Patient 
Leporace 
LOSO CV 
without 8 
and 61 

0.0571 
(0.0205) 

0.0206 
(0.0042) 

0.2576 
(0.0914) 

12.22 
(3.69) 

17.31 
(3.54) 

16.16 
(5.09) 

0.8187 
(0.0994) 

0.6965 
(0.1065) 

0.6662 
(0.1442) 

Combine
d patient 
and 
subject  
Leporace 
LOSO CV 

0.0536 
(0.0128) 

0.0189 
(0.0035) 

0.2366 
(0.0476) 

10.78 
(2.26) 

15.37 
(3.48) 

14.77 
(2.64) 

0.8652 
(0.0666) 

0.7222 
(0.0872) 

0.6681 
(0.0924) 
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Hop models 

Stetter model take-off: pyTorch based 
After the conclusion that pyrenn was not a suitable package to use, the hop analysis was started 
using a pyTorch-based model. All inputs, outputs and network architecture were implemented as 
Stetter et al. had performed [27].  

The test=train method performed excellent (r >0.90, see Table 12). This can also be seen in the 
prediction plot in Figure 32. Therefore, it can be mentioned that this model can learn from training 
data.  

The next step in the model evaluation process was to train and test using the LOSO CV. This gave 
poorer results, especially the standard deviation of the scores was really high. The difference 
between the performance of the different trained and tested subject models was high. This could be 
an indication of a few subjects being unsuitable for this model. This hypothesis was checked by 
inspecting the variances within the input features. In Figure 33 an example is illustrated where for 
one trial (samples between 1100 and 1200) a clear distinction from all other samples is visible. For 
some other input features, e.g., in Figure 34, a large dispersion of samples is seen for some of the 
trials (samples between 800 and 1000). Based on these observations, these trials (subject 7 and 
subject 8 hop left 2) were excluded from the dataset and the LOSO CV was run again. In Table 12 it 
can be seen that this approach only gave a better result for the A-P correlation coefficient. For all 
other metrics, the performance was worse. On top of that, the standard deviation was still very large 
and, in some cases, larger than the actual score. Afterwards, models with only one direction of the 
KJF as output were evaluated. They scored similar to the original LOSO CV model. The model where 
the subject ID was included as an input seemed to be better than the original LOSO CV model, but 
the standard deviations were still substantial large so no definite word could be spoken on it. As the 
performance of the models was still not as hoped or expected, one additional analysis was 
performed to test the hypothesis that the intersubject differences were too large to teach the model 
to generalize them by providing the train dataset. This was tested by creating a subject specific 
model. This was similar to the test=train situation but slightly deviated from this scenario because it 
was performed with both hop tests of a subject and the train/validation/test split was 70/15/15, 
indicating that the test set was unseen data. The results of this last evaluation imply that within 
different subject trials, the variation is not too large to train a model that is generalizable for that 
specific subject. 

All in all, it can be said that the intersubject differences were too large to make a generalizable model 
for all subjects, but the intrasubject differences are small enough to generalize a subject-specific 
model.  

Side note 
When comparing the patient models to the healthy subject models, the decision was made to 
explore the right leg hop, since six out of the eight patients had their right leg injured. In making this 
comparison, it soon stood out that the right leg healthy subject models scored significantly better 
than the left leg models. Three possible reasons are thought of: 1. The mirrored ML forces are more 
easy to make relations to for the model. 2. For many people, the right leg is their dominant leg. 
Therefore, they might have better balance with this leg compared to the left leg, which makes the 
jump more predictable. 3. It is a coincidence that all left hops are performed less good/ there are 
more intrasubject differences.  
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Figure 32 Prediction result of one test trial, when test = train. 

 

Figure 33 Variance within one of the model inputs: acceleration in the z direction of the LLL. 

 

Figure 34 Variance within one of the model inputs: angular velocity in the x direction of the LLL. 



 

 

 45  

Table 12 Outcome metrics of a few different hop push-off models, compared to literature models. Standard deviation is 
shown between brackets. Light green: very good learning ability. Green: selected OSHP model.  

 RMSE rRMSE Pearson Correlation 
Coefficient (r) 

A-P M-L T-C A-P M-L T-C A-P M-L T-C 

Stetter 
test=trai
n (right 
leg) all 
subjects 

0.1516 0.1710 0.1819 10.22 14.85 6.60 0.7979 0.5316 0.8557 

Stetter 
test = 
train 
(left leg) 

0.0195 0.0131 0.0159 1.78 2.25 0.94 0.9971 0.9937 0.9977 

Stetter 
test = 
one trial 
of five 
subjects 

0.1899 0.2984 0.3013 12.66 20.42 10.94 0.7192 0.1199 0.5368 

Stetter 
test = 
15% of 
subject 
data 

0.0243 
(0.0079) 

0.0158 
(0.0051) 

0.0313 
(0.0086) 

2.15 
(0.34) 

3.24 
(1.60) 

1.74 
(0.52) 

0.9972 
(0.0004) 

0.9856 
(0.0158) 

0.9956 
(0.0030) 

Stetter 
LOSO CV 
average 
(right 
leg) 

0.1536 
(0.0432) 

0.0958 
(0.0388) 

0.1652 
(0.0526) 

14.28 
(6.87) 

15.82 
(6.39) 

7.66 
(2.74) 

0.8432 
(0.0676) 

0.8292 
(0.0604) 

0.9226 
(0.041) 

Stetter 
LOSO CV 
average 
(left leg) 

0.2171 
(0.0891) 

0.3755 
(0.1703) 

0.3416 
(0.1252) 

18.71 
(5.63) 

41.71 
(19.36) 

16.58 
(4.98) 

0.6090 
(0.2885) 

0.2116 
(0.5637) 

0.4064 
(0.4133) 

Stetter 
LOSO CV 
without 
subject 7 
and 8 
hop left 
2 (left 
leg) 

0.2168 
(0.0872) 

0.4097 
(0.2624) 

0.3761 
(0.1803) 

19.85 
(6.29) 

43.74 
(20.84) 

18.19 
(7.89) 

0.6556 
(0.1988) 

0.1936 
(0.6665) 

0.3639 
(0.4521) 

Stetter 
LOSO CV 
only one 
output 
per 
trained 
model 
(left leg) 

0.2206 
(0.1029) 

0.3758 
(0.2083) 

0.3901 
(0.1555) 

18.81 
(6.44) 

41.74 
(20.67) 

18.60 
(6.48) 

0.6555 
(0.2884) 

0.2891 
(0.5168) 

0.2615 
(0.4969) 

Stetter 
LOSO CV 
including 
subject 
ID (left 
leg) 

0.2457 
(0.1155) 

0.2779 
(0.1360) 

0.3879 
(0.3088) 

20.40 
(7.58) 

34.39 
(17.47) 

17.57 
(10.95) 

0.6059 
(0.3142) 

0.3158 
(0.5766) 

0.4568 
(0.4515) 
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 RMSE rRMSE Pearson Correlation 
Coefficient (r) 

A-P M-L T-C A-P M-L T-C A-P M-L T-C 

Time 
coherent 
Stetter 
(SINN) 
test = 
train 

0.0083 0.0068 0.0119 0.65 1.16 0.59 0.9998 0.9990 0.9996 

Time 
coherent 
Stetter 
(SINN) 
LOSO CV 
average 

0.2787 
(0.0907) 

0.3794 
(0.2117) 

0.4927 
(0.2293) 

20.25 
(5.41) 

43.97 
(16.39) 

18.48 
(7.58) 

0.5762 
(0.2334) 

0.2705 
(0.5359) 

0.5687 
(0.1972) 

Stetter 
[27] 

 17.4 
(5.5) 

45.9 
(19.7) 

15.4 
(6.6) 

0.89 
(0.25) 

0.31 
(0.46) 

0.92 
(0.39) 

Table 13 Outcome metrics of a few different hop landing models, compared to literature models. Standard deviation is 
shown between brackets Grey areas are unknown or not applicable. Green: selected OSHL model. 

 RMSE rRMSE Pearson Correlation 
Coefficient (r) 

A-P M-L T-C A-P M-L T-C A-P M-L T-C 

Stetter 
test = 
train 
(right 
leg) all 
subjects 

0.1395 0.1599 0.2104 9.86 15.13 7.31 0.7438 0.4159 0.7165 

Stetter 
test = 
train 

0.0066 0.0060 0.0111 0.51 1.02 0.56 0.9998 0.9991 0.9996 

Stetter 
test=trai
n one 
output 
per 
trained 
model 

0.0077 0.0089 0.0171 0.60 1.52 0.86 0.9998 0.9995 0.9996 

Stetter 
LOSO CV 
average 
(right 
leg) 

0.1778 
(0.0369) 

0.1449 
(0.0498) 

0.2140 
(0.1062) 

13.65 
(2.29) 

21.91 
(5.48) 

8.47 
(3.16) 

0.7319 
(0.2008) 

0.5924 
(0.2200) 

0.7786 
(0.1754) 

Stetter 
LOSO CV 
average 
(left leg) 

0.2660 
(0.0986) 

0.3038 
(0.0732) 

0.3502 
(0.1012) 

17.46 
(5.27) 

35.27 
(13.82) 

12.45 
(3.17) 

0.3331 
(0.3230) 

0.0231 
(0.5485) 

0.4495 
(0.3292) 

Stetter 
LOSO CV 
only one 
output 
per 
trained 
model 

0.2161 
(0.0396) 

0.2246 
(0.0638) 

 20.83 
(4.61) 

63.82 
(58.38) 

 0.5946 
(0.1948) 

0.5323 
(0.3938) 

 

Stetter 
[27] 

 25.1 
(9.4) 

38.9 
(14.4) 

16.7 
(7.2) 

0.77 
(0.53) 

0.42 
(0.38) 

0.84 
(0.43) 
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Evaluating models using patient data 
Table 14 Outcome metrics of a few different (right leg) hop push-off models when trained and tested on patient data. 
Standard deviation is shown between brackets. Grey areas are unknown.  

 RMSE rRMSE Pearson Correlation 
Coefficient (r) 

A-P M-L T-C A-P M-L T-C A-P M-L T-C 

Stetter 
pretrain
ed on 
healthy 
subjects 

0.1583 0.1235 0.1859 11.81 16.58 8.14 0.7852 0.5179 0.8281 

Stetter 
test = 
train 
Right 
ACL 
patients 
only 

0.1555 0.0919 0.1606 11.27 13.33 6.95 0.7817 0.5936 0.8640 

Stetter 
LOSO CV 
average 

0.1536 
(0.0428) 

0.0961 
(0.0388) 

0.1650 
(0.0533) 

14.28 
(6.84) 

15.87 
(6.40) 

7.65 
(2.77) 

0.8432 
(0.0676) 

0.8293 
(0.0604) 

0.922 
(0.0409) 

Stetter 
LOSO CV 
average 
right ACL 
patients 
only 

0.1779 
(0.0573) 

0.0983 
(0.0543) 

0.1953 
(0.0436) 

18.40 
(7.81) 

20.08 
(7.38) 

9.82 
(2.03) 

0.8127 
(0.0288) 

0.7894 
(0.0738) 

0.8819 
(0.0419) 

Stetter 
[27] 

 17.4 
(5.5) 

45.9 
(19.7) 

15.4 
(6.6) 

0.89 
(0.25) 

0.31 
(0.46) 

0.92 
(0.39) 
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Table 15 Outcome metrics of a few different (right leg) hop landing models when (trained and) tested on patient data. 
Standard deviation is shown between brackets. Grey areas are unknown. 

 RMSE rRMSE Pearson Correlation 
Coefficient (r) 

A-P M-L T-C A-P M-L T-C A-P M-L T-C 

Stetter 
pretrain
ed on 
healthy 
subjects 

0.1851 0.1470 0.2406 10.52 15.41 7.92 0.4949 0.2753 0.5722 

Stetter 
test = 
train 
right ACL 
patients 
only 

0.1677 0.1073 0.1651 10.01 13.95 5.53 0.6218 0.3751 0.8450 

Stetter 
LOSO CV 
average 

0.1780 
(0.0368) 

0.1447 
(0.0500) 

0.2152 
(0.1067) 

13.68 
(2.29) 

21.87 
(5.37) 

8.52 
(3.17) 

0.7317 
(0.2008) 

0.5922 
(0.2202) 

0.7784 
(0.1755) 

Stetter 
LOSO CV 
average 
right ACL 
patients 
only 

0.1918 
(0.0322) 

0.1188 
(0.0498
0) 

0.1839 
(0.110) 

14.53 
(4.00) 

22.19 
(7.08) 

7.58 
(0.47) 

0.7401 
(0.1868) 

0.5691 
(0.2053) 

0.8098 
(0.1121) 

Stetter 
[27] 

 25.1 
(9.4) 

38.9 
(14.4) 

16.7 
(7.2) 

0.77 
(0.53) 

0.42 
(0.38) 

0.84 
(0.43) 

 

Model-based discussion 

Pyrenn model 
Where the pyrenn package was a feasible choice at first sight because of its implementation of the 
Levenberg-Marquardt backpropagation algorithm, it appeared to not give the expected results. A few 
hypotheses for these strange results are given. At first, the cause seemed to lie in a lack of data. 
However, when testing and training on the same trials, the predictions weren’t within the range of 
the target output. Therefore, the amount of data is not the only problem. After a deep dive into the 
code of the package, it was discovered that there was no validation included in this algorithm. 
Consequently, no hyperparameter tuning was performed, which can contribute to this low 
performance. Still, a small amount of data and no hyperparameter tuning cannot be the only 
elements leading to this low-scoring algorithm. Probably there are more problems with the pyrenn 
package implementation, but it would have been very time-consuming to find these problems. The 
quick(er) solution was using other optimizers.   
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Model iterations of own developed models 
Next to the OW, OHP and OHL models mentioned in this paper, also other slightly different models 

were tried to improve the outcome metrics. One model worked with normalized inputs (centered 

around zero per input) because this is an assumption that the PCA makes. For another model, the 

hyperparameters were optimized for a longer time. Instead of the regular 100 trials, now 400 trials 

with different settings were taken into account. The results of these deviating models are shown in 

Table 16, Table 17 and Table 18. 

In the LOSO CV where the healthy subject group and the ACL patients are combined, we see that for 

OHL (see Table 18) the performance metrics were averaged compared to the outcome of both 

separate groups for most of the kinetics. This shows that the benefit of having additional data 

available to train the model, approximately outweighs the disadvantage of the differences between 

the two groups. The combined LOSO CV for the two other iterations of OHP model shows the same 

trend; most outcome metrics are between the outcomes of the two separate groups. The combined 

LOSO CV for the OHL model with inputs centered around zero shows that in some cases the 

combined models score better. However, these are not significant differences. The combined OHL 

presented in the head of the paper shows for many output variables a worse, but not significant, 

outcome than that of the separate groups. The combined OHP presented in the head of the paper 

shows for all output variables a worse, but not significant, correlation coefficient than both separate 

groups. This could indicate that the differences between the groups are too large to generalize for 

this model. Therefore, it is of additional value that the ACL patient group was analyzed in this study.    

The results of the longer optimization model for OHL show that for ACL patients this actually is the 

best performing hop landing model. However, because this is not the case for the healthy 

participants, it was not chosen to present in the head of the paper.  

Table 16 Additional outcome metrics for LOSO CV for OW model of right leg. Standard deviation is shown between brackets. 
h = trained and tested on healthy subjects (001-1; 002-1; 002-2; 004-1; 004-2; 006-1; 006-2; 007-1; 007-2; 008-2). Light 
orange: r <= 0.65. Darker orange: r<= 0.35.    

 OW with inputs centered 
around zero 

OW  (settings optimized for 
400 trials instead of 100) 

OW (paper) 

RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r 

GRF A-P h 0.0548 
(0.0140) 

10.23 
(2.10) 

0.8679 
(0.0543) 

0.5657 
(0.0105) 

10.90 
(1.21) 

0.8736 
(0.0565) 

0.0523 
(0.0113) 

9.81 
(1.41) 

0.8959 
(0.0451) 

M-L 
h 

0.0219 
(0.0077) 

14.03 
(4.04) 

0.7412 
(0.1653) 

0.0198 
(0.0071) 

13.04 
(3.70) 

0.7721 
(0.1518) 

0.0177 
(0.0050) 

12.94 
(3.11) 

0.6996 
(0.2192) 

Verti
cal h 

0.2325 
(0.0535) 

14.18 
(2.79) 

0.6346 
(0.1614) 

0.2165 
(0.0473) 

13.69 
(2.46) 

0.6856 
(0.1502) 

0.2030 
(0.0718) 

11.97 
(3.68) 

0.7323 
(0.1811) 

Net 
knee 
mom
ent 

F-E h 0.0236 
(0.0073) 

14.77 
(3.77) 

0.6362 
(0.2023) 

0.0230 
(0.0073) 

15.04 
(3.18) 

0.5882 
(0.1825) 

0.0235 
(0.0085) 

14.47 
(3.97) 

0.6598 
(0.1691) 

V-V h 0.0286 
(0.0101) 

34.73 
(15.27) 

0.4462 
(0.2787) 

0.0274 
(0.0113) 

35.02 
(16.72) 

0.5517 
(0.2856) 

0.0171 
(0.0107) 

22.27 
(7.64) 

0.5896 
(0.1502) 

I-E h 0.0068 
(0.0013) 

24.37 
(5.46) 

0.6829 
(0.2086) 

0.0068 
(0.0020) 

24.05 
(6.86) 

0.7063 
(0.2062) 

0.0047 
(0.0009) 

14.43 
(1.91) 

0.8687 
(0.1041) 
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Table 17 Additional outcome metrics for LOSO CV for OHP model of right leg. Standard deviation is shown between brackets. 
h = trained and tested on healthy subjects (001-1; 002-1; 002-2; 003-1; 003-2; 004-1; 005-1; 005-2; 006-1; 006-2; 007-2; 008-
2). p = trained and tested on right ACL leg of patients (p01-1; p01-2; p02-1; p02-2; p05-1; p05-2; p07-2; p08-1). hp = trained 
and tested on combination of healthy subjects and ACL patients. Light orange: r <= 0.65. Darker orange: r<= 0.35.    

 OHP with inputs centered 
around zero 

OHP (settings optimized for 
400 trials instead of 100) 

OHP (paper) 

RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r 

KJF A-P h 0.1109 
(0.0448) 

9.99 
(3.49) 

0.9320 
(0.0165) 

0.1033 
(0.0479) 

9.28 
(3.59) 

0.9445 
(0.0205) 

0.1348 
(0.0273) 

12.49 
(1.46) 

0.9170 
(0.0192) 

A-P p 0.1307 
(0.0512) 

13.58 
(5.23) 

0.9407 
(0.0329) 

0.1289 
(0.0484) 

13.20 
(4.13) 

0.9125 
(0.0476) 

0.1705 
(0.0217) 

18.79 
(4.06) 

0.9182 
(0.0654) 

A-P 
hp 

0.1079 
(0.0495) 

10.19 
(4.05) 

0.9455 
(0.0152) 

0.1087 
(0.0460) 

10.39 
(4.20) 

0.9383 
(0.0279) 

0.1273 
(0.0439) 

12.69 
(3.07) 

0.8972 
(0.0463) 

M-L 
h 

0.1755 
(0.0812) 

25.64 
(18.90) 

0.6934 
(0.2372) 

0.1698 
(0.0792) 

24.94 
(17.48) 

0.7399 
(0.2196) 

0.1663 
(0.0860) 

28.04 
(27.90) 

0.7933 
(0.2777) 

M-L 
p 

0.0750 
(0.0388) 

14.95 
(6.82) 

0.8924 
(0.0717) 

0.1169 
(0.0404) 

18.77 
(5.51) 

0.8572 
(0.0415) 

0.0702 
(0.0393) 

13.86 
(7.68) 

0.8937 
(0.0098) 

M-L 
hp 

0.1395 
(0.0661) 

23.70 
(17.71) 

0.7567 
(0.2398) 

0.1425 
(0.0653) 

22.45 
(15.55) 

0.7676 
(0.2158) 

0.1522 
(0.0460) 

28.44 
(20.37) 

0.7698 
(0.2511) 

T-C h 0.1689 
(0.0538) 

7.70 
(2.40) 

0.9016 
(0.0428) 

0.1758 
(0.0623) 

8.18 
(2.90) 

0.8897 
(0.0568) 

0.1734 
(0.0432) 

8.40 
(1.91) 

0.8930 
(0.0518) 

T-C p 0.1642 
(0.0577) 

7.58 
(2.65) 

0.8793 
(0.0831) 

0.1919 
(0.0681) 

8.78 
(3.02) 

0.8207 
(0.1271) 

0.1799 
(0.0764) 

9.13 
(3.96) 

0.8623 
(0.1541 

T-C 
hp 

0.1540 
(0.0569) 

7.08 
(2.54) 

0.9083 
(0.0608) 

0.1673 
(0.0649) 

7.66 
(3.07) 

0.8851 
(0.0775) 

0.2228 
(0.0636) 

12.14 
(2.94) 

0.7924 
(0.0866) 

Net 
knee 
mom
ent 

F-E h 0.0294 
(0.0116) 

12.71 
(5.55) 

0.8738 
(0.0796) 

0.0318 
(0.0126) 

13.92 
(5.51) 

0.8738 
(0.0514) 

0.0400 
(0.0155) 

17.36 
(6.63) 

0.8233 
(0.0943) 

F-E p 0.0593 
(0.0293) 

29.42 
(23.06) 

0.6813 
(0.2862) 

0.0569 
(0.0176) 

30.35 
(23.53) 

0.7276 
(0.2845) 

0.0596 
(0.0284) 

36.77 
(30.72) 

0.5338 
(0.4530) 

F-E 
hp 

0.0365 
(0.0216) 

17.39 
(14.17) 

0.7925 
(0.2237) 

0.0378 
(0.0199) 

18.42 
(15.44) 

0.8136 
(0.2342) 

0.0394 
(0.0165) 

19.64 
(12.77) 

0.7598 
(0.1528) 

V-V h 0.05326 
(0.0245) 

32.29 
(16.94) 

0.3898 
(0.3213) 

0.0490 
(0.0252) 

28.92 
(17.74) 

0.5030 
(0.3052) 

0.0498 
(0.0188) 

34.71 
(19.31) 

0.4654 
(0.3074) 

V-V p 0.0318 
(0.0131) 

26.30 
(12.39) 

0.7173 
(0.0732) 

0.0313 
(0.0094) 

22.64 
(14.24) 

0.7660 
(0.1668) 

0.0293 
(0.0103) 

22.99 
(10.59) 

0.7919 
(0.1285) 

V-V 
hp 

0.0417 
(0.0217) 

29.59 
(18.92) 

0.5628 
(0.2747) 

0.0402 
(0.0203) 

26.22 
(16.55) 

0.5929 
(0.2488) 

0.0483 
(0.0240) 

39.49 
(23.97) 

0.1753 
(0.6555) 

I-E h 0.0140 
(0.0079) 

36.99 
(14.90) 

-0.073 
(0.4640) 

0.0120 
(0.0078) 

35.24 
(12.97) 

-0.1678 
(0.4392) 

0.0198 
(0.0071) 

39.08 
(13.69) 

-0.3023 
(0.4344) 

I-E p 0.0061 
(0.0029) 

29.88 
(12.86) 

-0.0491 
(0.5883) 

0.0085 
(0.0051) 

26.36 
(14.87) 

0.1671 
(0.6874) 

0.0114 
(0.0074) 

29.64 
(8.57) 

-0.1601 
(0.6057) 
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OHP with inputs centered 
around zero 

OHP (settings optimized for 
400 trials instead of 100) 

OHP (paper) 

RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r 

I-E 
hp 

0.0094 
(0.0076) 

35.47 
(14.79) 

-0.1068 
(0.5610) 

0.0096 
(0.0066) 

30.45 
(12.63) 

0.2092 
(0.4347) 

0.0126 
(0.0076) 

37.25 
(18.30) 

0.1337 
(0.6852) 

GRF 
A-P h 0.0569 

(0.0219) 
16.86 
(6.97) 

0.7092 
(0.3304) 

0.0524 
(0.0188) 

15.71 
(6.58) 

0.7538 
(0.2627) 

0.0615 
(0.0163) 

18.99 
(4.64) 

0.7274 
(0.0946) 

A-P p 0.0431 
(0.0157) 

13.20 
(4.03) 

0.8321 
(0.0936) 

0.0454 
(0.0078) 

13.03 
(3.33) 

0.8235 
(0.0947) 

0.0542 
(0.0175) 

17.36 
(5.11) 

0.7450 
(0.1780) 

A-P 
hp 

0.0527 
(0.0171) 

16.10 
(5.20) 

0.7629 
(0.1757) 

0.0481 
(0.0151) 

14.51 
(5.59) 

0.7884 
(0.2215) 

0.0609 
(0.0197) 

18.82 
(5.35) 

0.6815 
(0.1625) 

M-L 
h 

0.0228 
(0.0116) 

20.01 
(6.91) 

0.3729 
(0.3817) 

0.0211 
(0.0124) 

19.25 
(7.76) 

0.4159 
(0.3780) 

0.0304 
(0.0159) 

25.57 
(7.10) 

0.1486 
(0.2835) 

M-L 
p 

0.0184 
(0.0033) 

20.59 
(4.10) 

0.1898 
(0.2451) 

0.0198 
(0.0054) 

18.05 
(3.40) 

0.4025 
(0.2113) 

0.0248 
(0.0063) 

22.19 
(1.70) 

0.0033 
(0.3695) 

M-L 
hp 

0.0213 
(0.0102) 

22.44 
(5.89) 

0.2958 
(0.2916) 

0.0195 
(0.0089) 

18.70 
(6.02) 

0.4460 
(0.3176) 

0.0234 
(0.0111) 

23.34 
(6.70) 

0.1628 
(0.4316) 

Verti
cal h 

0.1970 
(0.0691) 

7.64 
(2.66) 

0.9155 
(0.0338) 

0.2021 
(0.0712) 

7.99 
(2.88) 

0.9091 
(0.0490) 

0.2058 
(0.0383) 

8.36 
(1.56) 

0.9141 
(0.0428) 

Verti
cal p 

0.1676 
(0.0473) 

6.94 
(2.16) 

0.8939 
(0.0691) 

0.2128 
(0.0507) 

8.63 
(2.30) 

0.8486 
(0.1076) 

0.1977 
(0.0607) 

8.97 
(3.14) 

0.8714 
(0.1354) 

Verti
cal 
hp 

0.1771 
(0.0685) 

7.06 
(2.64) 

0.9207 
(0.0455) 

0.1936 
(0.0758) 

7.68 
(3.11) 

0.8990 
(0.0655) 

0.2431 
(0.0663) 

11.15 
(2.61) 

0.8405 
(0.0695) 
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Table 18 Additional outcome metrics for LOSO CV for OHL model of right leg. Standard deviation is shown between brackets. 
h = trained and tested on healthy subjects (001-1; 002-1; 002-2; 003-1; 003-2; 004-1; 005-1; 005-2; 006-1; 006-2; 007-2; 008-
2). p = trained and tested on right ACL leg of patients (p01-1; p01-2; p02-1; p02-2; p05-1; p05-2; p07-2; p08-1). hp = trained 
and tested on combination of healthy subjects and ACL patients. Light orange: r <= 0.65. Darker orange: r<= 0.35.   

 OHL with inputs centered 
around zero 

OHL  (settings optimized for 
400 trials instead of 100) 

OHL (paper) 

RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r 

KJF A-P h 0.1320 
(0.0582) 

11.09 
(3.86) 

0.8319 
(0.1210) 

0.1251 
(0.0514) 

9.66 
(3.45) 

0.8321 
(0.1075) 

0.1348 
(0.0273) 

12.49 
(1.46) 

0.9170 
(0.0192) 

A-P p 0.1598 
(0.0169) 

11.74 
(2.05) 

0.7776 
(0.1623) 

0.1390 
(0.0169) 

9.59 
(2.52) 

0.8826 
(0.0624) 

0.1534 
(0.0121) 

11.94 
(2.15) 

0.8561 
(0.0371) 

A-P 
hp 

0.1267 
(0.0448) 

9.57 
(3.31) 

0.8523 
(0.0819) 

0.1272 
(0.0427) 

8.99 
(3.25) 

0.8411 
(0.1028) 

0.1335 
(0.0419) 

10.76 
(2.71) 

0.8327 
(0.1766) 

M-L 
h 

0.1500 
(0.0656) 

25.35 
(16.82) 

0.6806 
(0.3529) 

0.1489 
(0.0568) 

21.43 
(15.14) 

0.6655 
(0.3231) 

0.1663 
(0.0860) 

28.04 
(27.90) 

0.7933 
(0.2777) 

M-L 
p 

0.1172 
(0.0439) 

19.07 
(3.54) 

0.6957 
(0.1858) 

0.1169 
(0.0481) 

18.72 
(4.82) 

0.7603 
(0.0954) 

0.1131 
(0.0517) 

21.27 
(6.91) 

0.7314 
(0.0787) 

M-L 
hp 

0.1314 
(0.0569) 

20.08 
(11.47) 

0.7056 
(0.2945) 

0.1432 
(0.0583) 

20.08 
(12.50) 

0.7080 
(0.2719) 

0.1387 
(0.0637) 

22.90 
(14.04) 

0.7283 
(0.2739) 

T-C h 0.2033 
(0.0700) 

9.14 
(2.78) 

0.7657 
(0.0863) 

0.2059 
(0.0473) 

8.25 
(2.18) 

0.7762 
(0.0867) 

0.1734 
(0.0432) 

8.40 
(1.91) 

0.8930 
(0.0518) 

T-C p 0.1369 
(0.0369) 

5.46 
(1.15) 

0.8832 
(0.0623) 

0.1178 
(0.0204) 

4.33 
(0.49) 

0.9185 
(0.0242) 

0.1505 
(0.0417) 

6.55 
(1.47) 

0.8818 
(0.0477) 

T-C 
hp 

0.1771 
(0.050) 

7.32 
(2.38) 

0.8211 
(0.1025 

0.1737 
(0.0620) 

6.60 
(2.68) 

0.8487 
(0.1023) 

0.1855 
(0.0551) 

8.13 
(2.05) 

0.8131 
(0.0850) 

Net 
knee 
mom
ent 

F-E h 0.0502 
(0.0178) 

13.75 
(3.73) 

0.7986 
(0.1104) 

0.0501 
(0.0159) 

12.57 
(3.96) 

0.8133 
(0.0975) 

0.0400 
(0.0155) 

17.36 
(6.63) 

0.8233 
(0.0943) 

F-E p 0.0714 
(0.0199) 

28.27 
(27.71) 

0.4931 
(0.2407) 

0.0646 
(0.0232) 

21.57 
(19.93) 

0.6364 
(0.2188) 

0.0657 
(0.0230) 

26.93 
(26.08) 

0.6690 
(0.1893) 

F-E 
hp 

0.0538 
(0.0180) 

15.81 
(12.79) 

0.7276 
(0.2284) 

0.0504 
(0.0184) 

13.75 
(11.06) 

0.7688 
(0.1826) 

0.0519 
(0.0171) 

16.10 
(10.93) 

0.7483 
(0.1766) 

V-V h 0.0461 
(0.0209) 

25.54 
(16.33) 

0.5623 
(0.4382) 

0.0462 
(0.0195) 

21.75 
(14.72) 

0.5741 
(0.3978) 

0.0498 
(0.0188) 

34.71 
(19.31) 

0.4654 
(0.3074) 

V-V p 0.0319 
(0.0094) 

20.33 
(3.43) 

0.5379 
(0.1762) 

0.0325 
(0.0127) 

19.99 
(5.05) 

0.6638 
(0.1071) 

0.0325 
(0.0138) 

22.88 
(5.13) 

0.5734 
(0.1142) 

V-V 
hp 

0.0409 
(0.0169) 

20.45 
(10.90) 

0.6049 
(0.3545) 

0.0436 
(0.0171) 

20.64 
(11.63) 

0.6214 
(0.3313) 

0.0418 
(0.0191) 

23.13 
(12.93) 

0.6249 
(0.3468) 

I-E h 0.0069 
(0.0041) 

27.69 
(13.12) 

0.1842 
(0.4628) 

0.0072 
(0.0040) 

26.35 
(12.91) 

0.0830 
(0.2670) 

0.0198 
(0.0071) 

39.08 
(13.69) 

-0.3023 
(0.4344) 

I-E p 0.0090 
(0.0015) 

25.90 
(6.42) 

0.1856 
(0.2353) 

0.0070 
(0.0009) 

30.42 
(14.11) 

0.2894 
(0.3376) 

0.0069 
(0.0012) 

32.58 
(13.29) 

0.1615 
(0.4077) 
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OHL with inputs centered 
around zero 

OHL  (settings optimized for 
400 trials instead of 100) 

OHL (paper) 

RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r RMSE 
(BW) 

rRMSE 
(% BW) 

r 

I-E 
hp 

0.0071 
(0.0036) 

24.27 
(11.81) 

0.1540 
(0.2128) 

0.0071 
(0.0041) 

24.11 
(12.92) 

0.2781 
(0.2738) 

0.0072 
(0.0043) 

28.06 
(15.08) 

0.3190 
(0.3648) 

GRF 
A-P h 0.0761 

(0.0198) 
13.03 
(4.03) 

0.8757 
(0.0402) 

0.0713 
(0.0161) 

10.90 
(2.47) 

0.8600 
(0.0609) 

0.0615 
(0.0163) 

18.99 
(4.64) 

0.7274 
(0.0946) 

A-P p 0.0631 
(0.0181) 

10.06 
(3.35) 

0.8574 
(0.0979) 

0.0483 
(0.0106) 

7.43 
(1.81) 

0.9220 
(0.0477) 

0.0659 
(0.0128) 

11.19 
(2.30) 

0.8750 
(0.0315) 

A-P 
hp 

0.0605 
(0.0174) 

9.56 
(3.35) 

0.9050 
(0.0460) 

0.0646 
(0.0204) 

9.43 
(2.79) 

0.8925 
(0.0470) 

0.0712 
(0.0213) 

11.74 
(3.66) 

0.8788 
(0.0466) 

M-L 
h 

0.0273 
(0.0133) 

16.82 
(4.03) 

0.1849 
(0.2462) 

0.0272 
(0.0133) 

15.71 
(4.61) 

0.2160 
(0.1384) 

0.0304 
(0.0159) 

25.57 
(7.10) 

0.1486 
(0.2835) 

M-L 
p 

0.0269 
(0.0071) 

15.58 
(2.02) 

0.3967 
(0.1300) 

0.0263 
(0.0096) 

15.48 
(3.26) 

0.4233 
(0.1634) 

0.0272 
(0.0091) 

17.79 
(3.29) 

0.3553 
(0.1565) 

M-L 
hp 

0.0265 
(0.0111) 

15.19 
(3.66) 

0.3800 
(0.1893) 

0.0262 
(0.0105) 

14.07 
(3.84) 

0.4182 
(0.1415) 

0.0277 
(0.0111) 

16.54 
(4.41) 

0.2233 
(0.1956) 

Verti
cal h 

0.2245 
(0.0877) 

9.00 
(3.20) 

0.8160 
(0.0886) 

0.2267 
(0.0597) 

8.11 
(2.36) 

0.8157 
(0.0857) 

0.2058 
(0.0383) 

8.36 
(1.56) 

0.9141 
(0.0428) 

Verti
cal p 

0.1620 
(0.0316) 

5.74 
(0.91) 

0.8823 
(0.0752) 

0.1243 
(0.0212) 

4.11 
(0.55) 

0.9274 
(0.0220) 

0.1650 
(0.0334) 

6.38 
(1.07) 

0.8960 
(0.0299) 

Verti
cal 
hp 

0.1914 
(0.0636) 

7.05 
(2.69) 

0.8539 
(0.0923) 

0.1930 
(0.0723) 

6.70 
(2.92) 

0.8653 
(0.0959) 

0.2016 
(0.0691) 

8.00 
(2.62) 

0.8510 
(0.0771) 
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Literature research ‘dynamic stability’ 
As this was originally part of my project, I wanted to insert the notes I made along the way. This can 
be seen as a quick start of diving further into a measure to determine dynamic stability in ACL 
patients.  

https://www.sciencedirect.com/topics/medicine-and-dentistry/joint-stability  
The functional joint stability accomplished through the integration and complementary relationship 
between the static and the dynamic components of joint stability is referred to as dynamic joint 
stability.  
 
(1) Effects of anterior load carriage on dynamic gait stability during level overground walking 
Dynamic gait stability quantifies the kinematic relationship between the human body's center of 
mass and base of support and has been widely used to assess fall risk.  
Dynamic gait stability was determined based on the kinematics. 
It was developed based on the Feasible Stability Region (FSR) theoretical framework (Pai & Patton, 
1997). The FSR theory defines dynamic gait stability in terms of the COM's relative motion state (i.e., 
the combination of position and velocity) to its BOS (=Base of Support). The FSR is enclosed by two 
limits: the boundaries against backward and forward balance loss. These two boundaries were 
determined analytically using computer simulation assisted by dynamic optimization techniques (Pai 
Iqbal, 1999; Pai Patton, 1997; Yang, Anderson, Pai, 2007; Yang, Passariello, Pai, 2008). The simulation 
process sought the minimum (or maximum) COM velocity relative to the BOS, for a series of discrete 
initial COM positions, which would bring the COM over the heel to avoid a backward balance loss (or 
to the toe to prevent a forward balance loss) when the body's COM stops moving. Then, each 
boundary was obtained by spline interpolations over the derived COM velocity-position pairs in the 
state space. The boundaries have also been verified experimentally by massive data collected during 
various motor tasks (Wang et al., 2011; Wang et al., 2012; Yang et al., 2018). 
 
Two reasons could account for the discrepancy in the findings between the studies. First, stability in 
the previous study was quantified by the margin of stability. Although the concept of margin of 
stability was also established from the kinematic relationship between the COM and BOS, it was 
proposed based on a simplified inverted pendulum model that used a linear approximation to solve 
its equation of motion (Hof, Gazendam, & Sinke, 2005). While the margin of stability is highly 
attractive due to its simplicity, the linearity may not quite accurately characterize the limits of 
stability at a gait speed range like that during walking (Hof et al., 2005). The FSR-based dynamic gait 
stability was analytically derived based on a 7-link human gait model and could more accurately 
quantify the COM-BOS kinematic relationship during gait than the margin of stability (Yang et al., 
2007). Second, like the concept of dynamic gait stability, the margin of stability originally used the 
edge of the BOS as the reference point to determine the stability value. However, the reference 
point was the geometric center of the BOS (Alamoudi et al., 2018). As the centroid of the BOS is 
always different from its edge, this variation could also contribute to the difference in the findings 
regarding the front load carriage's effect on gait stability. The results in the current study would 
provide a precise picture of gait stability during anteriorly-loaded walking. 
 

(2) Quantifying the Dynamic Stability of Gait Patterns in People with Hallux Valgus 

To assess complex gait dynamics, we quantified the potential changes in gait stability by using the 
maximum Lyapunov exponent (MLE). Angular displacements of the ankle, knee, and hip in the 
sagittal plane during walking were investigated to calculate the MLE for gait stability based on foot 
conditions (i.e., barefoot, flat shoes, and high heels). 
 
The maximum Lyapunov exponent (MLE), one such non linear dynamics analysis method, estimates 
the local stability of a system [21, 23, 24]. The MLE can be used to represent gait stability by 

https://www.sciencedirect.com/topics/medicine-and-dentistry/joint-stability
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quantifying the ability of the human dynamic system to attenuate small perturbations in the gait 
trajectory that occur over time [25–29]. For example, people without neurological diseases or 
musculoskeletal disorders use their body to dampen variability and improve gait stability, in order to 
maintain a stable gait pattern even in situations involving disturbances. A larger MLE results in faster 
divergence and indicates lower dynamic stability [21]. The MLE has also been used to investigate gait 
stability of specific groups, such as the elderly and patients with knee arthritis [1, 25] 
 
The Lyapunov exponent is a variable that quantifies the distance between two points in proximity as 
they move away over time [24]. For the Lyapunov exponent, the small perturbations arising from the 
difference between stride lengths are traced [22]. A Lyapunov exponent exists for each moving 
dimension in the analyzed gait trajectory. When the divergence rate is high, the Lyapunov exponent 
has the highest value; this value is called the Maximum Lyapunov Exponent, i.e., .max [20, 24]. Data 
were analyzed without filtering and resampling to accurately represent the variability within the 
system. Kinematic data pertaining to the lower extremity of each subject were analyzed to obtain the 
time series data over 30 gait cycles [22]. 
 
The higher MLE values at the knee joint showed that, for people with HV, the lowest local dynamic 
stability is observed at the knee joint, as compared to that at the lower limb joints. 
 
(3) Effects of anteriorly-loaded treadmill walking on dynamic gait stability in young adults 
Dynamic gait stability, defined by the Feasible Stability Region (FSR) theory, quantifies the kinematic 
relationship between the body’s center of mass (COM) and base of support (BOS). FSR-based 
dynamic gait stability has been used to evaluate the fall risk. 
The FSR characterizes the position-velocity relationship between the body’s COM and its BOS to 
sustain balance [9] (Appendix). 
Dynamic gait stability is defined as the shortest distance from the COM’s motion state to the FSR’s 
lower boundary [9]. 
 
Compared with other metrics quantifying body stability (e.g., maximum Floquet multipliers [10–12], 
Lyapunov exponents [11–13], the margin of stability [14]), FSR-based dynamic gait stability is more 
closely related to fall risk given that balance control is a process to preserve an appropriate COM-BOS 
relationship [15,16]. 
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(4) Seven-Weeks Gait-Retraining in Minimalist 
Dynamic Postural Stability Index (DPSI), 
we analyzed the Dynamic Postural Stability Index and its directional components: the medial-lateral, 
anterior posterior, and vertical stability indices (Wikstrom et al., 2005). 
For both assessments, participants completed a double leg jump, from 70 cm away from the center 
of the platform, landed on their dominant foot, and stabilized as quickly as possible (Wikstrom et al., 
2005). Upon landing, participants remained in a single limb stance for 20 seconds but only the first 3 
seconds after landing were used for further analysis (Wikstrom et al., 2005). 
The Dynamic Postural Stability Index (DPSI) and its directional components: the medial-lateral (MLSI), 
anterior-posterior (APSI), and vertical (VSI) stability indices, were calculated from the GRF signals as 
the dispersion of forces from the center of pressure in each of the axes (Wikstrom et al., 2005). 
It is important to note that these dynamic postural stability variables do not have specific units 
because they are dimensionless. Thus, higher values indicate worse stability and lower values 
indicate better stability. 
 
Dynamic postural stability was measured by asking participants to jump over a known distance and 
land on the ground with one leg stabilizing as quickly as possible. This task quantifies the ability to 
move from a highly unstable situation to a controlled situation. Dynamic postural stability variables 
were calculated from the GRF signals as the dispersion of forces in each of the axes, where higher 
values of each variable were associated with poor stability and lower values with high stability. 
 

(5) Dynamic gait stability in patients with idiopathic normal pressure hydrocephalus with high and 
low fall-risk 
Dynamic stability was defined as the ability to maintain an extrapolated center of mass within the 
base of support at heel contact, with the distance between the two defined as the margin of stability. 
Conscious motor control was assessed by the Movement-Specific Reinvestment Scale. 
 
Thus, it can be surmised that dynamic stability during gait in iNPH differs from that in healthy 
individuals. Based on the simple inverted pendulum model, dynamic stability during gait can be 
represented by the ability to maintain an extrapolated center of mass (COM) within the base of 
support(BOS), with the distance between the two defined as the margin of stability (MOS) (Hof et al., 
2005). The MOS can reflect the degree of dynamic stability during gait in various gait impairments, 
including neurological disorders such as Parkinson's disease, multiple sclerosis, and post-stroke 
patients (Hak et al., 2013; Peebles et al., 2016, 2017; Stegemller et al., 2012; Urakami et al., 2021). 
However, no previous studies have experimentally evaluated dynamic gait stability parameters, such 
as the MOS, in patients with iNPH. Moreover, it is unclear whether there is difference in dynamic 
stability during gait between patients with iNPH with high and low fall-risk. 
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(6) Effect of dynamic stability on a step task in ACL deficient individuals 
Not useful 
 
(7) A diagonal landing task to assess dynamic postural stability in ACL reconstructed females 
Previous research has used time to stabilization (TTS) from forward landing tasks to assess dynamic 
postural stability in ACL reconstructed (ACLR) athletes in order to identify impaired sensorimotor 
control and mechanical stability. The purpose of the present study was to compare TTS values from a 
forward land and a diagonal land to determine if diagonal landing TTS values are more sensitive to 
dynamic postural stability deficits in female ACLR athletes. 
 
Time to stabilization (TTS) is a functional measurement of neuromuscular control and dynamic 
postural stability. TTS scores assess an athlete's ability to transfer from a dynamic to a static situation 
on one leg. Longer TTS values have been reported in athletes with chronic ankle instability as well as 
athletes who have undergone ACL reconstruction surgery when compared to healthy controls [20–
22]. These studies considered TTS scores from a forward landing task.  
Recently it has been suggested that dynamic postural stability tests should include landings that 
challenge stability in the medial–lateral (M–L) direction, thus emphasizing an increased requirement 
for frontal and transverse plane neuromuscular control, as well as the anterior–posterior (A–P) 
direction [23]. Injury mechanisms are more likely to include a M–L component to the landing, which 
the forward landing protocol does not challenge. This is in agreement with recent research which 
suggests that ACL injury is most likely the result of multiplanar neuromuscular control deficits 
[24,25]. 
 
These findings suggest that TTS values from a diagonal landing are more sensitive at detecting 
dynamic postural stability deficits in an ACLR population compared to TTS values from a forward 
landing. 
 

(8) The Effects of Balance Training on Static and Dynamic Postural Stability Indices After Acute ACL 
Reconstruction 
Before and after the interventions, overall, anteroposterior, and mediolateral stability indices were 
measured with a Biodex Balance System in bilateral and unilateral stance positions with the eyes 
open and closed. 
 
The overall stability index (OSI), anteroposterior stability index (APSI), and mediolateral stability 
index (MLSI) were recorded with a Biodex Balance System (SD 950-340, Biodex Medical Systems, Inc., 
Shirley, NY, USA). 
The Biodex system has a circular deck with a 55 cm diameter located 20 cm above the floor inside its 
body, which is able to tilt 20 degrees from the horizontal position to all sides. The overall stability 
index shows the variance in plate deviation from the horizontal plane. The anteroposterior and 
mediolateral indices show the deviation of the plate from the horizontal position in the sagittal and 
frontal planes, respectively. The scores for the indices show the level of deviation from the horizontal 
position, so the lower scores indicate better balance (Akbari et al., 2014a, 2014b, Manual of Biodex 
System). 
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(9) Dynamic stability in the anterior cruciate ligament deficient knee 
however, research has shown that passive anterior knee laxity is unrelated to knee stability during 
dynamic activities [5, 11,18, 29]. 
 
During low level activities, such as walking, ACL deficient individuals who are highly successful at 
stabilizing their knees dynamically (copers) display no alteration in their gait pattern [22]. If copers 
are included in the mix of all subjects, then genuine differences in movement patterns will be 
obscured. 
 

(10) Dynamic Knee stability Current theory and implications for clinicians and scientists 
The ability of the knee joint to remain stable when subjected to the rapidly changing loads it 
withstands during activity is referred to as dynamic knee stability. 
Dynamic knee stability is the result of the integration of articular geometry, soft tissue restraints, and 
the loads applied to the joint from weight-bearing and muscle action. 
 
Dynamic knee stability is the result of several factors, including articular geometry, soft tissue 
restraints, and the loads applied to the joint from weight-bearing and muscle action. 
 

(12) The effect of the stability threshold on time to stabilization and its reliability following a single leg 
drop jump landing. 
The TTS (time to stabilization) was defined as time between impact and the intersection of the 
processed signal with the threshold, after which it remained below the threshold for the subsequent 
0.5 s. 

Finally, in order to define the phase that primarily concerns the impact of the landing, we established 
the mean ‘time to bodyweight’ (TTBW) (based on 492 trials). This is the intersection of the RAW V 
signal with the bodyweight (100%) directly following the impact peak(Fig. 1). In further data 
processing, we ignored thresholds yielding TTS values shorter than mean TTBW. 

Based on minisymposium on 3 February 2023 
Adding an arch support to a heel lift improves stability and comfort during gait 
The displacement and velocity in the medial-lateral COP, especially during the forefoot contact phase 
and the foot flat phase, are associated with foot stability [6]. 
The COP trajectory during gait reflects the dynamic action of the foot [16]. The medial shift of the 
COP during forefoot contact phase in the arch support condition suggests a transfer of loading. There 
fore, the medial shift of the COP trajectory caused by the arch support might indicate better stability. 
 
Energy cost of running instability evaluated with wearable trunk accelerometry 
Wearable trunk accelerometers provide a new level of analysis for dynamic stability of human 
locomotion. Accelerometers have improved from an accuracy, sensitivity, and computing power 
standpoint and have enabled more sophisticated analyses of motion. When mounted to the lower 
trunk, accelerometry unobtrusively estimates CoM motion and thus allows for several aspects of 
dynamic stability to be captured. These stability aspects, whether it function vertically, i.e., body 
weight support; mediolaterally (ML), i.e., side-to-side balance control; or anteroposteriorly (AP), i.e., 
braking and propulsion could more directly test various biomechanical hypotheses underpinning 
running economy. 
Several linear and nonlinear stability aspects are worthy of investigation. 

1. higher amplitudes or variations of trunk accelerations expressed as the acceleration root 
mean square (RMS) could reflect excessive changes in momentum that are energetically 
wasteful (14). 
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2. the dominant autocorrelations of acceleration waveforms could empirically test whether the 
ability to maintain a global consistency either between steps or strides are influential on 
economy. 

3. sample entropy of trunk accelerations accounts for the complexity of the trunk acceleration 
signal waveform and could assess whether overall fluidity of a runner’s gait pattern is related 
to economy (1). 

We experimentally evaluate these hypotheses using simple and nonlinear measures including 1) the 
RMS, 2) interstep, 3) interstride regularity, and 4) the sample entropy of waveforms of each 
acceleration axis (vertical, M-L, and A-P), each of which express unique aspects of dynamic stability 
during running. 
 
Individual selection of gait retraining strategies is essential to optimally reduce medial knee load 
during gait 
 
Influence of outdoor running fatigue and medial tibial stress syndrome on accelerometer-based 
loading and stability 
Various types of dynamic loading and dynamic stability measures have since been reported in the 
literature, and thus these terms need to be more specifically defined. Dynamic stability is defined 
operationally as the ability to maintain optimal variability, symmetry, regularity, or complexity of tri-
axial trunk acceleration patterns while running. 
These measures were quantified firstly by the ratio of each linear acceleration axis root mean square 
(RMS) relative to the resultant vector RMS to capture variability in accelerations [22]; secondly by the 
regularity of steps and strides using the primary and secondary dominant unbiased autocorrelation 
coefficients to indicate consistency between steps and strides, with perfect regularities equivalent to 
one [20] (of note, this autocorrelation procedure is also used to acquire step frequency using the 
time lag of the primary dominant autocorrelation coefficient [13,20]); and thirdly using sample 
entropy as a non-linear measure to capture complexity of unfiltered acceleration waveforms, with 
values typically in range of 0–2 for physiological systems, and higher values indicating less periodicity 
or more unpredictability [24]. In contrast to the aforementioned measures, sample entropy was 
analysed from unfiltered accelerations so as not to mask or remove any dynamical properties or 
variability present within the system that could be physiological meaningful [24,25]. Detailed 
equations and algorithm inputs for the computation and extraction of these dynamic stability 
measures are shown in the APPENDIX. All formulas and explanations are included in appendix (also 
saved in the same folder as the article itself). 
 
Surface effects on dynamic stability and loading during outdoor running using wireless trunk 
accelerometry 
Dynamic postural stability parameters were quantified from tri-axial (vertical, M-L, A-P) accelerations 
firstly using the ratio of each linear acceleration axis root mean square (RMS) relative to the resultant 
vector RMS to capture variability [21]; secondly using step and stride regularity (unbiased 
autocorrelations procedure) to capture symmetry and consistency of running steps and strides 
respectively, with perfect regularity equivalent to one [25]; and thirdly using sample entropy from 
raw accelerations to capture the waveform predictability, with higher values indicating less 
periodicity or more unpredictability [27]. 
 
Wireless Tri-axial Trunk accelerometry detects deviations in dynamic center of mass motion due to 
running-induced fatigue 
Tri-axial trunk accelerometry measures were examined using the acceleration root mean square 
(RMS), the RMS ratio of each axis to the resultant vector [19], step regularity and stride regularity 
[18], and sample entropy [25] of accelerations. 
The acceleration root mean square (RMS) was calculated for each axis independently and gives an 
overall indication of variability of acceleration dispersion [18,19]. Next, the acceleration RMS ratio, 
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an indicator of the proportion of accelerations in each axis contributing to the overall movement, 
was calculated as the RMS of each axis relative to the resultant vector RMS [19,20]. 
Step and stride regularity of accelerations were computed using the unbiased autocorrelation 
procedure previously described by Moe Nilssen et al., [18]. Representative unbiased autocorrelation 
patterns of all three acceleration axes are shown in Fig 1. Step regularity, the first dominant 
autocorrelation peak (Ad1 in Fig 1), indicates a correlation between consecutive steps and is 
therefore considered the symmetry index. Since mediolateral trunk accelerations produce both 
positive and negative accelerations that represent left–to-right lateral trunk motion, step regularity 
values for the mediolateral direction are always negative (Ad1 in Fig1B). The absolute value for 
mediolateral step regularity was therefore used for analysis. Step frequency was computed from the 
vertical axis of the sequence of trunk accelerations using samples per dominant period of the 
autocorrelation peak and sampling frequency of the accelerometer as inputs [18] (D1 in Fig 1A). 
Stride regularity (Ad2 in Fig 1), the second dominant autocorrelation peak, represents a correlation 
between consecutive strides and can be considered as a regularity index. After normalization to the 
zero lag component, the maximum value (most periodic, most regular) for both step regularity and 
stride regularity is one. 
Lastly, the sample entropy of accelerations was determined using the non-linear mathematical 
algorithms previously described in detail by Richman and Moorman [25] and quantifies the 
uncertainty or unpredictability of the accelerometry time series [34], with a larger value indicating 
a less periodic and less predictable or periodic pattern. In contrast to the aforementioned measures, 
sample entropy was analyzed from unfiltered accelerations so as not to mask or remove any 
dynamical properties or variability present within the system [25]. In the literature, there are two 
contrasting approaches in human gait analysis to select the data string length parameter for sample 
entropy, either according to a fixed number of samples (time) [35,36], or according to a fixed number 
of gait cycles [37]. In contrast to its predecessor statistic (approximate entropy), sample entropy 
values are more robust to shorter data strings and become stable at data strings exceeding over 2000 
samples [34]–all of our trials were beyond this length to acquire 20 consecutive running steps 
(minimum was 2700 samples). Thus, we selected the “fixed-step” approach, also enabling 
consistency in number of steps selected from the sacral marker trajectory. Therefore, input 
parameters for our sample entropy calculation were firstly, a time series sample length (N) 
equivalent to 20 running steps (typical data string between 2700 to 3300 data points), secondly, a 
series length (m) of 2 data points, and thirdly, a tolerance window (r) normalized to 0.2 times the 
standard deviation of individual time series [34].  
 


