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Abstract

Microscopy images are vital for plant growth prediction. These images can be used by
prediction models to forecast plant growth. The accuracy of such prediction models are
best when the images are clear, e.g. there is no blur present in the images. However,
microscope set-ups are often imperfect, which leads to microscopy images with a certain
level of blur. Furthermore, some objects might not lie in the same focal plane, causing
some objects to be blurry whilst others are in-focus. To remove blur from these images
and improve performance of prediction models, we propose a deblurring approach based
on Disentangled Representation Learning (DRL). Disentangled Representation Learning
is a deep learning technique which attempts to disentangle in the latent space between
multiple generative factors underlying a dataset. These generative factors each describe
a separate part of the data, like size or colour. This work aims at deblurring microscopy
images by disentangling image representations into two latent codes, one encoding blur and
one encoding the identity of the image. This disentanglement between blur and identity is
beneficial, since it allows direct altering of blur in an image without influencing the identity.
The goal of our novel approach is to deblur microscopy images using this disentanglement
between blur and identity in the latent space. We compare our approach with another DRL
approach named Multi-Level VAE, which functions as a baseline. Furthermore, an ablation
study is performed, which evaluates our contribution to earlier work on disentanglement
learning. The dataset used for training and testing contains microscopy images of plant
cells with different levels of blur.

Keywords: Disentangled Representation Learning, Manifold Learning, ML-VAE, Deblur-
ring, Microscopy Images



Chapter 1

Introduction

In the study of plant growth, visualizing plants on a cellular level can provide a lot of
information. During growth, plant cells go through four phases: G1, S, G2, and M [3, 16].
During G1, the first gap phase, the cell prepares itself for the next phase. It functions as a
checkpoint on whether the cell is ready to proceed with synthesis. In the synthesis phase
(S), the DNA in the cell gets replicated. After the checkpoint in the second gap phase, the
cell starts with its mitosis (M) in which the cell divides itself into two cells. Investigating
these phases on a cellular level by observing division planes and division rates of the cells
provides information about the growth and shape of the plant.

In order to investigate plants on a cellular level, a substantial zoom is needed. Over
time, microscopes have been developed to make objects of diminutive size visible to the
human eye. Microscopy plays an essential role in observing plant cells, human tissue, and
microscopic creatures. Combining microscopes with photography provides the opportunity
to create images of the zoomed-in view of a microscope. Therefore, it is possible to get
detailed images of plant cells. These images can be used and analysed by a prediction
model for plant growth. In order for these prediction models to be as accurate as possible,
the images should be as clear as possible. However, microscope setups are often imperfect,
leading to a level of blur in most microscopy images.

The field of Deep Learning has shown to be able to mitigate blur in images. Multiple
approaches for deblurring images use some form of latent representations. However, these
approaches do not use disentanglement learning. We introduce a deblurring method based
on Disentangled Representation Learning (DRL). In DRL, an autoencoder is trained, which
consists of an encoder and a decoder. Data points in a complex, high-dimensional space,
are mapped upon a less complex latent space by the encoder. DRL assumes all data in the
dataset is built upon a set of generative factors [20]. The goal of disentanglement learning
is creating separation between these generative factors in the latent space. In our approach,
we attempt to disentangle between two generative factors: blur and identity.

Whilst some deep learning based deblurring methods like Zhang et al. and Zhao et al.
[23, 24] might reach a certain level of disentanglement between blur and identity in their
latent representations, they do not fully exploit the possibilities of DRL. Disentangling
blur from identity in the latent representation allows altering blur in an image whilst
keeping the identity component of the image stable. Moreover, any modification of the
blur latent code does not influence the reconstruction of the image’s identity if the latent
representation is truly disentangled. Therefore, it allows more direct targeting of blur when
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attempting to deblur an image. In our approach, reaching a state of disentanglement is
the main training purpose instead of a by-product from other deep learning techniques,
leading to the aforementioned ability to directly change blur in the image whilst preserving
the identity.

Figure 1.1: Main research idea. The encoder takes a blurry input, which gets
encoded into two disentangled latent codes: one for identity and one for blur. The
disentanglement allows directly modifying the blur latent code. Afterwards, decod-
ing might lead to an in-focus image

As shown in Figure 1.1, the main idea behind our work is to disentangle between blur and
identity in the latent space. First, the encoder E and decoder D are trained to be able
to reconstruct an input image. Furthermore, a latent space with two latent disentangled
latent codes, one for blur and one for identity, is enforced. This disentanglement allows
direct modification of blur in an image without influencing the identity. This work aims to
generate an in-focus image from a blurry image by modifying the blur latent code.

Our approach is based on a work on disentanglement using manifold learning [4]. Manifold
learning assumes each generative factor is a submanifold. Together, these submanifolds
form a manifold underlying the data. Manifold learning attempts to capture each sub-
manifold into a separate latent code. When examining our case at hand, we assume the
manifold underlying the images in the dataset can be factored into two submanifolds:
blur and identity. Consequently, we disentangle between two latent codes in the latent
space, one for blur and one for identity. By using the information at hand in the dataset,
our novel approach expands on a work by Fumero et al. on manifold learning. This novel
approach is compared to a baseline, for which a Multi-Level Variational Autoencoder (ML-
VAE) is used [2]. In order to evaluate and compare these approaches, a dataset containing
microscopy images of plant cells with different levels of blur is used.

The baseline comparison shows our novel approach outperforms ML-VAE in terms of recon-
struction and deblurring. Besides the baseline comparison, an ablation study is performed
to investigate our contribution to the manifold-based approach [4]. Our contribution proves
to be vital in the ablation study.
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Chapter 2

Background

2.1 Disentangled Representation Learning

DRL is a deep learning method that tries to capture high-dimensional data into a repre-
sentation of lower, so-called latent dimensions. It is built upon the assumption that the
high-dimensional data is generated by a set of generative factors. All of these generative
factors are responsible for generating a distinct part of the high-dimensional data. DRL
attempts to disentangle these generative factors in the latent space.

Figure 2.1: Example illustration of DRL (Based on Wang et al. [20]). Image
dataset with four generative factors: shape, colour, position, and size. Images get
encoded into a latent space, which disentangles between these generative factors.
Latent codes get decoded back to images.

An example of DRL is presented in Figure 2.1. The high-dimensional image data can be
captured by four simple dimensions: shape, size, colour, and position. These dimensions
are the generative factors behind the dataset. The goal of DRL is to embed these generative
factors appropriately in a latent space. More precisely, DRL splits the latent space into
multiple latent codes. Each of these latent codes captures a different generative factor
and should only encode information about this generative factor. In the relatively simple
example of Figure 2.1, the data is mapped to four latent codes, each encoding a different
generative factor. Together, these four latent codes should encode all information. If each
latent codes captures only a single generative factor and all information is encoded in the
latent codes, the representation is truly disentangled.

DRL often uses an encoder-decoder structure. The encoder maps a data point to multiple
latent codes and the decoder reconstructs a data point from the different latent codes. The
decoder is vital to ensure the latent codes can be combined and decoded to the original
input. Once a disentangled representation has been established and the reconstruction
quality is good enough, making a change in a certain latent code in the latent representation
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and reconstructing images can lead to the generation of new data. If the representation is
truly disentangled, this allows modification of a single generative factor, without influencing
other generative factors. For example, following Figure 2.1, one can adjust the size of the
object, without influencing shape, colour, or position.

2.2 Autoencoder

Figure 2.2: Example schema of an autoencoder architecture with an encoder E
and a decoder D

z = E(x) (2.1)

As shown in Figure 2.2, an autoencoder is a neural network which consists of two parts:
an encoder E and a decoder D. The encoder takes a complex data point x from a dataset
X as an input and compresses it to a less complex point in a so-called latent space Z, as
shown in Eq. 2.1. This point in the latent space, z, is called a latent code.

x̃ = D(z) (2.2)

The decoder model does the inverse of the encoder model. It takes a latent code as an
input and decodes it into a complex data point x̃, as shown in Eq. 2.2. The goal of the
autoencoder is to reconstruct the encoder input by decoding the latent code, as displayed
in Eq. 2.3.

D(E(x)) ≈ x (2.3)

This can be achieved during training by comparing the reconstruction of the decoder to
the input and using it as the so-called reconstruction loss. Using extra losses alongside
the general reconstruction loss, one can enforce certain desirable properties on the latent
space, which might be beneficial when modifying the latent codes. For instance, one can
attempt to create new complex data points by modifying a latent code and run it through
the decoder. This can, for example, provide an option for targeted change in an image,
e.g. changing the colour of an object from red to blue.
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2.2.1 Variational Auto-Encoder

The Variational Auto-Encoder (VAE) is an extension of a normal autoencoder model intro-
duced by Kingma et al. in 2014 [9]. Instead of encoding inputs as points in the latent space,
it encodes inputs as a distribution in the latent space. In order to optimize the genera-
tive property of the auto-encoder, the latent space should obtain two important properties:

1) Points which are close together in the latent space should lead to similar generated
outputs once fed to the decoder. This increases the interpretability of the latent space. A
small change in the latent space should not lead to a massive difference in the generated
output.

2) All points in the latent space should be meaningful, e.g. no points in the latent space
should decode into meaningless outputs.

KL(qϕ(z|x)||p(z)) (2.4)

Variational Auto-Encoders attempt to maximize these two properties by adding a regu-
larization loss to the VAE objective. The regularization loss ensures the approximated
posterior distribution is close to a predefined known distribution. Using this insurance, a
point can be sampled from these predefined distributions and fed to the decoder, which
results in a new data point. A typical regularization loss is the Kullback-Leibler diver-
gence between the encoded distribution and a normal distribution. This is shown in Eq.
2.4, in which qϕ(z|x) is the inferred distribution of latent code z given data point x. Fur-
thermore, p(z) is the distribution of the latent code, which is generally fixed to a normal
distribution.

LELBO(x) = (x− x̃)2 −KL(qϕ(z|x)||p(z)) (2.5)

Equation 2.5 shows the final loss function which combines the reconstruction loss, the
Mean Squared Error in this example, with the Kullback-Leibler divergence. Together,
these terms form the Evidence Lower Bound (ELBO).
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Chapter 3

Related Work

3.1 Disentangled Representation Learning

3.1.1 Definition

In DRL, there is no generally accepted definition of a disentangled representation. Multi-
ple definitions exist, which show coherency and overlap in their definition of disentangle-
ment.

In 2013, Bengio et al. introduced an informal definition of a disentangled representation.
[1]. They stated that a disentangled representation should divide between the generative
factors of variation in the data. A resulting latent variable should be sensitive to variation
in a single generative factor, whilst being invariant to variation in the other generative
factors.

In 2018, Higgins et al. used group theory as the basis for disentanglement [5]. They first
define a group action, which they assume can decompose into actions on subgroups. If
each action of the subgroups acts on a subset of the latent dimensions and leaves the other
subsets fixed, the group action is considered disentangled. Consequently, a representation
is disentangled with respect to such a group action if the latent representation decomposes
into independent subspaces. In other words, each of these subspaces is only affected by
the actions of a single subgroup. This definition for disentanglement is commonly cited in
other research as Higgins’ definition

In 2016, Fumero et al. defined disentanglement using the manifold underlying the data
[4]. They assume that each complex data point lies in the vicinity of a manifold of lower
dimensionality. Furthermore, they assume this manifold can be decomposed as a product
of submanifolds. In their definition, they consider a representation as being disentangled
when a change in one of the latent codes corresponds to a change in exactly one submani-
fold.

3.1.2 Approaches

Many approaches have been proposed for the realization of DRL. Wang et al. separated
these approaches in five categories: Statistical, VAE Based, GAN Based, Hierarchical and
Others [20].

In 2017, Higgins et al. introduced β-VAE, an extension of normal VAEs presented by
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Kingma et al. in 2014 [6]. The β parameter was added to regulate the trade-off between
the reconstruction capabilities of the VAE and the level of disentanglement.

Building on top of β-VAE, Kim and Mnih introduced Factor-VAE in 2018 [8]. It attempts
to minimize the trade-off between reconstruction quality and latent space regularization
by stimulating the marginal distribution of representations to be factorial.

Kumar et al. proposed two approaches in 2018: DIP-VAE-I and DIP-VAE-II [10]. They
attempt to minimize a distance measure between the inferred prior qϕ(z) and the disen-
tangled generative prior p(z). The two approaches differ in their disentangling regularizer.
DIP-VAE-I only regularizes the covariance between the outputs of the encoder. DIP-VAE-
II regularizes the covariance between the approximate posterior qϕ(z) and the expected
posterior pθ(z).

In 2017, Bouchacourt et al. introduced the multi-level variational autoencoder (ML-VAE)
[2]. In their approach, disentanglement is created between multiple separate latent codes.
An example of such different latent codes is the identity and style of a painting.

In 2016, Fumero et al. proposed a disentanglement learning approach based on the prin-
ciples of manifold learning [4]. They assume all data points share an underlying manifold,
which can be divided into submanifolds. Their approach creates disentanglement by learn-
ing and separating these submanifolds.

Our novel approach expands upon the work by Fumero et al. by using the information
available in the dataset. In the work by Fumero et al., no prior knowledge about the
generative factors behind the data is assumed. However, we know the generative factors
we want to disentangle for our case. Furthermore, we know which latent code encodes
which generative factor. This gives us an edge in enforcing the latent representation to be
disentangled to our desire.

3.2 Deblurring

3.2.1 Kernel estimation

One approach at mitigating blur is solving the blind deconvolution problem [17, 15, 7,
13]. This line of work aims at estimating an unknown blur kernel and reconstructing the
original picture using this kernel estimation. Computations in this line of work can be
costly because of the need to invert the convolution. Furthermore, correctly estimating the
underlying blurring kernel is difficult.

Deep learning can be applied to the field of blurring kernel estimation and solving the
deconvolution problem [14, 22]. A work by Schuler et al. combined techniques of neural
network learning and image deconvolution, resulting in a learning-based approach [18].
Furthermore, Yaar et al. applied deep learning to iteratively improve kernel estimation,
whilst applying Super Resolution based on the estimated kernel [21].

3.2.2 Generative model based approaches

Another line of work uses generative model based approaches, which also show promising
results in mitigating blur. DeblurGan is a deep learning approach using a conditional GAN
proposed in 2018 by Kupyn et al. [11]. An improved version, DeblurGan-v2, was published
by the same authors in 2019 [12]. However, these models were mostly trained and tested
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on images with motion blur, whereas the blur in microscopy images is often out-of-focus
blur.

The subject of mitigating blur in microscopy images has also been investigated. In 2019,
Zhao et al. published a work in which they use a Convolutional Neural Network (CNN)
to mitigate blur. The model was trained and tested on a dataset containing microscopy
images and showed promising results. Moreover, they stated solutions to the deconvolution
problem are often costly and suboptimal when applied to real-world settings [24].

Furthermore, in 2022, Zhang et al. proposed a CycleGAN approach to mitigate blur [23].
It makes use of the cycle consistency of image transformations. E.g. transforming a winter
landscape into a summer landscape and back into a winter landscape should result in
the original image one has started the cycle with. Combining two GANs into this cyclic
structure proved to be beneficial when mitigating blur.

None of the generative model based approaches use any disentanglement involving blur in
their work. Our work investigates whether disentanglement between blur and identity in
the latent space allows blur mitigation. This disentanglement might also prove beneficial
when combined with these state-of-the-art approaches, since it allows altering blur in an
image more directly.
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Chapter 4

Method

To achieve our goal of deblurring microscopy images using DRL, we introduce our own
novel approach based on manifold learning to disentangle between blur and identity in
two separate latent codes. This novel approach is compared with a baseline: an ML-VAE
model. This section describes the methodology behind our work, starting with the ML-
VAE baseline. Subsequently, we discuss our novel approach by exploring the loss functions
and the ideas behind each loss. Furthermore, we discuss the knowledge advantage over the
original work by Fumero et al.

4.1 Baseline: ML-VAE

The baseline adopts the techniques of ML-VAE to disentangle between blur and identity
[2]. It is used as a baseline to compare our novel manifold-based approach. Multi-level
VAE disentangles by splitting the dataset into different groups. The groups are composed
of data points which have one shared generative factor and the other generative factor
different. This means all images of the same identity, e.g. of the same cell, but with
different levels of blur form a group G, where XG corresponds to the observations within
G. Each observation Xi in XG has a shared identity and a unique blur level. In our latent
representation, this should be encoded into a shared identity latent code IG and a unique
blur latent code Bi. The shared identity latent code IG is constructed from encoding all
observations in that group and taking the product of their identity density functions, as
displayed in Eq. 4.1.

q(IG = i|XG = xG;ϕi) ∼
∏︂
k∈G

q(IG = i|Xk = xk;ϕi) (4.1)

In the original work on ML-VAE, taking the product of normal distributions is defined as
accumulating group evidence. The latent codes for identity in a group get combined into
one identity latent code. This yields disentanglement, since the identity latent distribution
is now the shared factor between all images in a group. Furthermore, they assume that
with increasing the number of observations in a group, the variance of this grouped latent
distribution decreases. The other latent code is the varying factor between all images in a
group, which in our case is blur.
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4.1.1 Extended VAE objective

Figure 4.1: Multi-Level VAE setup, extending the normal VAE objective. A group
of images sharing their identity get encoded into blur latent codes and identity latent
codes. The accumulating evidence technique is used to create a single identity latent
code for the entire group. The Kullback-Leibler divergence terms for the blur and
identity latent codes combined with the reconstruction score form the ML-VAE
objective

During training, as presented in Figure 4.1, the ML-VAE objective consists of three terms:
A reconstruction loss, which is further discussed in Section 4.3, and two regularization
terms similar to the regularization term in an original VAE setup as discussed in Section
2.2.1.

∑︂
k∈G

KL(q(Bk|Xk;ϕb)||p(Bk)) (4.2)

For the blur latent codes, the regularization term is the group average of the Kullback-
Leibler divergence between the prior p(Bk) and the variational approximation q(Bk|Xk;ϕb),
as displayed in Eq. 4.2.

KL(q(IG|XG;ϕi)||p(IG)) (4.3)

Since there is only one latent code for the identity of the group, the regularization term
for the identity latent code is just the KL divergence between the true posterior p(IG) and
the variational approximation for the grouped identity code q(IG|XG;ϕi), as shown in Eq.
4.3. Together with the reconstruction loss, these terms form the ELBO (Evidence Lower
Bound, Eq. 4.4) which is maximised during training.

ELBO(G; θ, ϕb, ϕi) =

∑︁
x∈X γ(g(f(x)), x)

|X|
−

∑︂
k∈G

KL(q(Bk|Xk;ϕb)||p(Bk))

−KL(q(IG|XG;ϕi)||p(IG)) (4.4)

10



4.2 Novel manifold-based approach

Figure 4.2: Example illustration of an underlying manifold. The manifold M
underlies points that lie on a three-dimensional torus. This manifold is constructed
by two submanifolds: M1 and M2. Function f maps points from the manifold M
onto a two-dimensional plane Z. The plane Z can be factored into subspaces S1

and S2. These subspaces encode the two submanifolds M1 and M2. Image based
on Fumero et al. [4]

The field of manifold learning assumes all complex data points in a dataset share a man-
ifold. This low-level manifold M underlying the data consists of multiple submanifolds
M1,M2, ...,Mn. Take the example presented in Figure 4.2, for which each data point is
a point on a three-dimensional torus. The underlying data manifold is factored into two
submanifolds, M1 and M2. A fundamental notion behind the idea of manifold learning is
the independence of submanifolds. In our example, the position in the poloidal direction
determined by M2 (green) does not influence the position in the toroidal direction deter-
mined by M1 (blue). Manifold learning is often put into practice, where the latent space
is orchestrated to learn about the submanifolds underlying the data.

Our novel approach uses techniques from the field of manifold learning to disentangle
between blur and identity. To implement our approach, we use an encoder-decoder model.
The latent space is divided in two latent codes: One latent code encoding the blur, and
one latent code encoding the identity of the image. After encoding, the latent codes are
concatenated and fed to the decoder. Multiple losses are used in an attempt to create the
disentanglement between blur and identity and their latent codes. This section displays
the train of thought behind these losses.

L = Lrec + β · (Lcons + Lcont + Lcross) (4.5)

The final loss function is displayed in Eq. 4.5. The reconstruction loss is discussed in
Section 4.3. The other losses are discussed in Sections 4.2.1, 4.2.2, and 4.2.3. The β
parameter is discussed in Section 4.2.4.
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4.2.1 Consistency Loss

Figure 4.3: Consistency loss, same identity, varying z-level. Two images with
equal identities get encoded. A change in the blur latent code should not influence
the identity latent code. The blur latent code gets changed, combined with original
identity latent code C1,−20 and decoded. The resulting reconstruction gets encoded
again, after which the identity latent code should not have changed. Therefore,
the distance between the original identity latent code C1,−20 and the new identity
latent code C ′

1 is minimised.

The consistency loss is introduced to ensure the principle of true disentanglement. In a
truly disentangled representation, a change in one latent dimension has no influence on
the other latent dimensions. Applying it to the problem at hand: if the blur latent code
is adapted, the identity of the image should not be influenced. Moreover, if the identity
latent code is adapted, the blur in the image should not be influenced. To achieve this,
the consistency loss is calculated in three steps, as shown in Figure 4.3. First, we encode
two images with one varying factor. Then, the latent code encoding the varying factor
is changed. We combine this new latent code for the varying factor with the latent code
for the stable factor and decode the combination. Afterwards, the resulting decoding is
encoded again into two latent codes. The latent code for the stable factor should not
have been influenced by the change. Therefore, the consistency loss measures the latent
distance between the original stable latent code and the stable latent code of the re-encoded
decoding output. Figure 4.3 only displays the consistency loss with the identity latent code
as the stable latent code. In practice, this case is combined with another case in which the
blur latent code is the stable latent code and the identity is varied. In this second case, the
distance between the original blur latent code and the blur latent code of the re-encoded
decoding output is measured.

Lcons = δ(E(x̂)i, z1,i) (4.6)

Equation 4.6 shows the consistency loss. Let X1 and X2 denote the input images with one
varying factor. Z denotes the latent representation for the input images, e.g. Z1 = E(X1)
and Z2 = E(X2), for which E is the encoder. z1,i denotes the latent code which is similar,
whereas z1,j denotes the latent code encoding the varying factor between the image pair.
x̂ is the decoding of z1,i and z2,j , e.g. x̂ = D(z1,i, z2,j). The resulting loss is the Euclidean
distance normalized by vector length, δ, between the latent code of the equal factor E(x̂)i
and the original latent code of the equal factor z1,i.
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4.2.2 Contrastive Loss

Figure 4.4: Contrastive loss: different identity, same z-level. Two images with
varying identity but equal blur level get encoded. The contrastive loss makes sure
the latent codes in the identity latent space are pushed away from each other, since
they are dissimilar. The latent codes in the blur latent space are pushed together,
since they should be equal.

The contrastive loss is based on the premise that images that share the same generative
factor have equal latent codes representing this factor. On the contrary, images that do
not share a generative factor have latent codes representing that factor which are different.
These two premises of the contrastive loss can be incorporated in the loss function for the
case at hand in the following way.

Firstly, we encode a pair of images with different identities and an equal blur level (Figure
4.4). Since both blur latent codes of the two images should encode the same information,
we attempt to push them towards each other by minimising the latent distance between
the two latent codes. Since the identities are unequal, the identity latent codes for the
two images are pushed away from each other by maximising the latent distance between
them.

Secondly, we encode a pair of images with equal identities and a different blur level. For
this pair, the identity latent codes for the two images are forced together, whilst the blur
latent codes are pushed away from each other.

Equation 4.7 shows the contrastive loss in mathematical notation. We denote the latent
code encoding the equal factor as ze. β = 1 if the corresponding latent code encodes the
equal factor, e.g. z = ze. If not, β = 0. The first term of the contrastive loss is used to
pull equal latent codes together. The second term of the loss is used to push dissimilar
latent codes away. We introduce a max distance parameter m which makes sure pushing
away latent codes from each other is not unbounded, just like in Fumero et al. For our
experiment, m = 0.6. To measure the latent distance, we use the Euclidean distance
normalized by vector length δ.

Ldist = (1− β) · δ + β ·max(m− δ, 0) (4.7)

13



4.2.3 Cross Reconstruction Loss

The cross reconstruction loss is a novel element to the overall training objective, which is
not in the work by Fumero et al. It is introduced to ensure a change in one of the latent
codes results in expected behaviour in terms of reconstruction. Such a latent code change
should not influence the other factor in terms of the resulting reconstruction. For example,
a change in the blur latent code should not influence the location of the cell, which is part
of the identity. Besides not influencing the other generative factor, a latent code change
should result in a reconstruction that reflects the change in the latent code correctly. For
example, changing the blur latent code to a different ∆ z-level should reconstruct the input
image at the new ∆ z-level.

In order to calculate the cross reconstruction loss, we use a three-fold data traversal. For
example, we encode the pair of images X1,−20 and X1,+25 with the same identity (C1) but
different ∆ z-levels (-20 and +25). This encoding results in identity latent codes C1,1, C1,2

and blur latent codes B−20,1, B+25,2. Since their identity is equal, we can swap out their
blur latent codes and expect the image reconstructions produced by the decoder D to also
be swapped when compared to the input images. D(C1,1, B+25,2) should decode to X1,+25

and D(C1,2, B−20,1) to X1,−20. The eventual loss for this example can be calculated as
listed in Eq. 4.8, in which γ is the reconstruction loss explained in Section 4.3:

Lcross = γ(D(X1,1, B+25), X1,+25) + γ(D(X1,2, B−20), X1,−20) (4.8)

Just like Lcons and Ldist, the same loss is also calculated for a pair of images with equal
∆ z-level but different identities, as displayed in Figure 4.5.

Figure 4.5: Cross recon loss procedure. Two images with different identities but
equal blur level get encoded. Their blur latent codes get swapped during decoding.
Since the blur latent codes are equal, this swap should not influence the reconstruc-
tion. Therefore, the reconstructions are compared to the original input

14



4.2.4 Delaying losses

Figure 4.6: Delaying losses using β parameter over time. β parameter exponen-
tially increases after 30 epochs are used

Another technique that is used in Fumero et al. is delaying the distance-based losses. At
the start of the training procedure, the latent spaces for blur and identity are unstructured.
The relative distance between points in the latent space does not yet indicate whether these
points are similar or not. Therefore, calculating a distance within these latent spaces is
meaningless. This makes the distance-based losses meaningless to some extent. We can
delay the distance-based losses by adding a parameter β, which increases exponentially
from 0 to 1 after approximately 30 epochs, as shown in Figure 4.6.

4.2.5 Knowledge advantage over normal manifold projection

In Fumero et al. no prior knowledge about which latent code encodes which generative
factor is assumed [4]. This touches upon an important distinction between Fumero et al.
and this work. In the case at hand, much more information about the input data is given,
which can be used to our advantage when attempting to disentangle in the latent space.
First, we know which latent code encodes which generative factor, because we simply assign
each of the generative factors we want to disentangle between to their own latent code.
This gives us the possibility to calculate the losses in Fumero et al. more directly.

For example, for the consistency loss, they encode two images with one different generative
factor. They assume of the existence of some oracle O that tells exactly which latent code
captures the difference between the two images. In Fumero et al., the oracle is estimated
by encoding this pair of images. Thereafter, they measure the distance between the pair for
each latent code and select the latent code which has the highest distance to calculate the
consistency loss. This method is not flawless, since we do not know for sure whether the
correct latent code is chosen. In our setup, we know exactly which latent code captures
which generative factor. Because of this knowledge advantage, we are completely sure
which latent code captures the change introduced in calculating the consistency loss.

15



Furthermore, the knowledge advantage together with the nature of the dataset enables
the usage of the cross reconstruction loss. We can make a change in the blur latent space
and know what the output of the reconstruction should look like. Furthermore, there is a
ground truth for almost all of these changes in the blur latent space, since we have images
at many different ∆ z-levels. The added value of this cross reconstruction loss is examined
in Section 5.3.

4.3 Reconstruction Loss

For the reconstruction loss in both the ML-VAE approach as our novel manifold-based
approach, we use a pre-trained VGG-16 model. The VGG-16 model was introduced by
Simonyan and Zisserman in 2015 [19]. Originally, this model was trained for image recog-
nition, e.g. localising objects within images and classifying images. However, the model
can also be used to calculate an image similarity score between two images. During train-
ing, we experienced a vast improvement in terms of reconstruction quality when using the
VGG-16 model compared to using the L1-norm or L2-norm as the reconstruction loss. The
loss function can be expressed as Eq. 4.9, in which γ is the VGG-16 model score, E is the
operation by the encoder and D is the operation by the decoder.

Lrecon =

∑︁
x∈X γ(D(E(x)), x)

|X|
(4.9)

4.4 Evaluation metrics

4.4.1 Disentanglement evaluation

To investigate the level of disentanglement between blur and identity reached by the mod-
els, we perform a quantitative evaluation using the ML-VAE score.

ML-VAE score

The quantitative method used to evaluate the level of disentanglement achieved by a model
is the ML-VAE score. It is a technique presented in the work on ML-VAE [2]. The concept
revolves around the level of information about the grouped latent code (identity latent
code) in the observation-specific latent code (blur latent code). One should not be able to
identify an image’s identity based on its blur latent code.

Figure 4.7: ML-VAE score calculation procedure
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The calculation of the ML-VAE score is displayed in Figure 4.7. A set of images X with
identities I get encoded by the encoder. Two classifiers are trained for 300 epochs, one for
the identity latent codes C and one for the blur latent codes B. The classifiers take the
latent codes as an input and attempt to predict the identity of the images. Logically, the
prediction based on the identity latent codes should be as accurate as possible, whereas
the prediction based on the blur latent codes should be as inaccurate as possible. The
accuracies for the predictions combined lead to the ML-VAE score, for which the identity
predictions are a positive influence and the blur predictions are a negative influence. This
leads to the formula displayed in Eq. 4.10.

ML-VAEscore =

∑︁|I|
k Pid(Ck) = Ik

|I|
−

∑︁|I|
j Pblur(Bj) = Ij

|I|
(4.10)

4.4.2 Reconstruction evaluation

To measure the reconstruction capability, the model takes an input image, encodes and
decodes it. The resulting reconstruction is compared to the original input image in terms of
their Peak Signal-To-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM),
which measure image similarity. Furthermore, one can visually observe the quality of the
reconstructions.

4.4.3 Deblurring evaluation

To evaluate the deblurring capabilities of the different approaches, we use the following
deblurring strategy.

Figure 4.8: Deblurring procedure

First, a blurry image X1−blurry is sampled from the dataset. This is the image we attempt
to deblur. Secondly, we sample a random in-focus image X2−focus with a different identity.
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These images are encoded into B1, C1 and, B2, C2 respectively. In an attempt to deblur,
we combine the identity latent code of the blurry image with the blur latent code of the
in-focus image. This combination gets decoded. In order to evaluate the performance,
we compare the reconstruction (X1−deblur) with the target in-focus image X1−focus. The
reconstruction is compared to the in-focus image using the PSNR and SSIM, similar to the
reconstruction evaluation.
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Chapter 5

Experimental Results

5.1 Experiment setup

5.1.1 Dataset

The training and testing dataset consists of bright-field microscopy images of dividing
protoplast plant cells. These images were taken daily under the same circumstances in
terms of lighting, room temperature, zoom-level (20x) and microscope used. However, the
cells depicted on the image vary each day. Each day, 100 images are taken with varying
z-levels. For each day, one of the images is marked as the in-focus image. Furthermore, a
projection image is generated which combines all z-levels into one where the most cells are
in-focus.

Data preprocessing

The original images contain multiple cells and are of size 2048×1536. As a first prepro-
cessing step, the images are downsized to a size of 1024×768. In order to have a feasible
input dimension for the neural network, the images are cropped to 48 images of 128×128.
For each crop, we have images at z-levels ranging approximately from 50 z-levels below the
in-focus plane and 50 z-levels above the in-focus plane. The preprocessing results in the
following folder structure:
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Data

Brightfield

23-08-2022-location-17

crop-1

-40.tif

-39.tif

-38.tif
...

crop2

-40.tif

-39.tif

-38.tif
...

...
...
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5.1.2 Model Architecture

The model architecture for both approaches (Sections 4.1 and 4.2) is largely kept equal. In
both cases, a convolutional neural network existing of an encoder and decoder is used.

Figure 5.1: Encoder architecture

Figure 5.1 shows the architecture used for the encoder. For our purpose, we use convolu-
tional layers and pooling layers.

The convolutional layers use a kernel size of 3×3, with a stride of 1. After the convolutional
layer, batch normalization is applied to speed up the training process. Moreover, a ReLu
activation function is used. Besides these convolutional layers, pooling layers using max
pooling are used to reduce dimensions. Combining a pooling layer and two convolutional
layers, a convolutional block is formed.

The input (1×128×128 dimensional) goes through three of these blocks, after which the
encoder splits into an identity part and a blur part. These separate parts both consist
of another convolution block. This results in two representations with a dimension of
512×8×8. These are flattened to two latent codes of 32768 dimensions, one for identity
and one for blur.
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Figure 5.2: Decoder architecture

The decoder takes two 32768-dimensional latent codes, one for blur and one for identity.
These latent codes get concatenated and reshaped into a 1024×8×8 shape. Four blocks
follow, each consisting of a bilinear upsampling layer with scale = 2 and two convolutional
layers. The convolutional layers are the same as in the encoder architecture. The final
convolutional layer in the final block reconstructs the original 1×128×128 input.

5.1.3 Training setup

The models are trained on the JupyterLab instance of the University of Twente. For both
models, a Jupyter notebook is created. The models are trained on PyTorch v1.13.1 using
the Adam optimizer with β1 = 0.9 and β2 = 0.999. The initial learning rate for the
optimizer is 0.001, but is decreased during training using a learning rate scheduler. The
learning rate is multiplied by 0.98 every five epochs. Each model is trained for 400 epochs
in total. The dataset is split into a training set and a test set, with 150 and 50 identities
respectively. For each identity, there are approximately 100 images at different z-levels,
resulting in 15,000 images in the training set and 5,000 images in the test set.
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5.2 Baseline comparison: ML-VAE and novel approach

The first experiment is a comparison between the baseline (ML-VAE) and our novel man-
ifold learning based disentanglement approach. For the manifold learning based approach,
we investigate two versions: A standard approach in which both the blur and identity
latent code are 32678-dimensional and an approach in which the blur latent code is one-
dimensional. The reasoning behind the one-dimensional latent code can be found in Section
5.2.1.

5.2.1 One-dimensional blur latent code reasoning

In the dataset at hand, the different levels of blur are described by the difference in z-level
from the in-focus plane. This ∆ z-level is one-dimensional. Therefore, it would make
sense to encode the level of blur in an image into a one-dimensional latent code, e.g.
just a single number. This one-dimensional blur latent code would provide two desirable
properties.

First, the level of information about the identity of an image present in the blur latent
code is minimal. Because of the single latent dimension, it simply cannot hold information
on the identity of the image. Therefore, the disentanglement between blur and identity
might be better.

Second, the one-dimensionality of the latent code ensures linearity in the latent space. Since
the latent code is one-dimensional, a correct linearity when graphing latent codes by their
∆ z-level is ensured if the principle behind the contrastive loss is implemented correctly.
This might prove to be beneficial during linear interpolation and deblurring.
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5.2.2 Reconstruction capabilities

Figure 5.3: Reconstructions ML-VAE, manifold-based model. Top row: input,
second row: ML-VAE, third row: manifold-based, bottom row: 1D manifold-based.
Two images of equal identity but different blur levels in each column. Images from
the training data

Figure 5.3 shows the reconstruction capabilities of the ML-VAE model, manifold-based
model and 1-dimensional blur latent code manifold-based model. For ML-VAE, the overall
reconstructions shown in the second row are fine, but not spectacular. The third and
fourth images shows that some detail is lost in the reconstructions if the input image is a
complex cell with lots of detail. Furthermore, for the detailed images, the reconstructions
are a bit less outspoken. The black colour gets a more greyish tone.

The reconstructions generated by the manifold-based approach displayed in the third row
are good. The colours are more vibrant than the ML-VAE approach, the grey-out effect is
not as prevalent. Furthermore, the complex images in the third and fourth column show
a higher level of detail than the ML-VAE approach. Another interesting facet to notice
for the images in the third and fourth column is the noise that occurs in the bottom-right
corner.

The reconstructions for the 1-dimensional blur latent code model shown in the bottom
row are good. The quality is similar to the normal manifold-based model’s reconstruction
quality, and the level of detail in the cell is comparable. This shows the model can still
reconstruct complex images, even though the blur latent code is trimmed down to a single
dimension.
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Model Test set Training set
SSIM PSNR SSIM PSNR

ML-VAE 0.9101 31.923 0.9233 32.279
Manifold-based 0.9455 37.927 0.9462 38.455
1D manifold-based 0.9422 36.560 0.9444 37.437

Table 5.1: Quantitative evaluation of the reconstruction capabilities of the differ-
ent approaches

Table 5.1 shows the average SSIM and PSNR score as a measure of reconstruction perfor-
mance for both the test and training set. We can observe that the ML-VAE model is out-
performed by the manifold-based approaches in terms of reconstruction. Furthermore, the
1D manifold-based model performs slightly worse than the normal manifold based model.
This can be explained by the massive size difference of the blur latent code between the
normal manifold-based approach and the 1D manifold-based approach. Because of this
size difference, the overall level of information in the blur latent code might be higher.
Therefore, the reconstructions might be slightly better. However, the 1D manifold-based
model might disentangle better.

5.2.3 Disentanglement evaluation

One of the goals for this research is the true disentanglement between blur and identity in
the latent space. In order to evaluate the model’s disentanglement, we evaluate the level
of disentanglement between the latent spaces quantitatively, as described in Section 5.2.3.
Furthermore, we graph multiple latent codes in the latent spaces to visually investigate
the structure of the latent space.

Model Blur latent code accuracy Identity latent code accuracy ML-VAE score
ML-VAE 0.962 0.995 0.033
Manifold-based 0.732 0.955 0.263
1D manifold-based 0.007 0.958 0.951

Table 5.2: ML-VAE score for three approaches: ML-VAE, manifold-based and
1D manifold-based

Table 5.2 shows the accuracy of predicting the identity of an image based on its latent
codes. For the ML-VAE model, both the identity latent code as the blur latent code are
good predictors for the identity. The blur latent code still holds a lot of information about
the identity of the image, which is not good. Therefore, the ML-VAE score for the ML-VAE
approach is relatively low.

The manifold-based approach shows some improvement, seeing as the blur latent code
holds less information about the identity of the image than in the ML-VAE approach.
Resulting, the ML-VAE score is higher for the manifold-based approach. However, the
blur latent code still holds information about the identity, as the blur predictor for the
manifold-based approach still reaches an accuracy of 0.732 after 300 epochs.

The one-dimensional manifold-based approach proves to be the best, as the ML-VAE score
is the highest. The accuracy for the blur latent code predictor is extremely low. This makes
sense, because the single dimension cannot encode something as complex as identity.
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(a) ML-VAE (b) Manifold-based (c) 1D manifold-based

Figure 5.4: ML-VAE score predictors’ accuracy over time. Left: ML-VAE. Mid-
dle: manifold-based. Right: 1D manifold-based

Figure 5.4 shows how the accuracy of the predictors evolve over time during training. We
can observe that the blur latent code predictor of the ML-VAE approach (left) can predict
identity quite well after a small amount of epochs. On the contrary, the blur latent code
predictor for the manifold-based approach (middle) takes more time to be able to predict
the identity of an image. The one-dimensional manifold-based approach (right) is not able
to classify an image based on the blur latent code at all, which is good. All three approaches
show good results in terms of classification based on the identity latent code.

Latent space visualization

In order to qualitatively evaluate whether the latent space shows disentanglement, we create
t-distributed stochastic neighbour embedding (tSNE) plots. tSNE is a technique similar
to dimensionality reduction, which allows graphing data with three or more dimensions
into a 2-dimensional plot. We create tSNE plots for the blur and identity latent codes. In
order to generate these tSNE plots, we sample 30 images for 8 different identities, resulting
in 240 images. These images are encoded by the encoder, which results in 240 blur latent
codes and 240 identity latent codes. The tSNE algorithm is first applied to the identity
latent codes. The resulting output is plotted and coloured by their identity. Afterwards,
the tSNE algorithm is applied to the blur latent codes. The output is plotted and coloured
by their ∆ z-level.

For the tSNE algorithms, we use principal component analysis as its initialization method.
Moreover, two plots per latent space are generated with different perplexities: 10 and 30.
It is important to denote that patterns in tSNE can be a bit deceiving, e.g. a linear pattern
in the tSNE plot does not necessarily indicate linearity in the latent space.

Blur Latent Space In order to investigate the structure of the two latent space, we
created two tSNE plots with perplexities 10 and 30. These images are coloured by their ∆
z-level, since this is vital for how we want the latent space to be structured.
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Figure 5.5: ML-VAE tSNE blur latent space, coloured by ∆ z-level

The structure of the blur latent space for the ML-VAE approach displayed by Figure 5.5
is quite unorganized. There is some group forming to be observed in both plots, in which
images with a similar ∆ z-level are grouped together in terms of their blur latent code, but
the effect is minimal. Furthermore, we observe some linear patterns in which the gradient
is nicely linearly structured, but this effect is minimal. Important to note that a linear
pattern in a tSNE plot does not necessarily indicate linearity in the latent space.
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Figure 5.6: Manifold-based approach tSNE blur latent space, coloured by ∆ z-
level

The structure of the blur latent space for the manifold-based approach displayed by Figure
5.6 shows a better structure than the ML-VAE approach. We can see that blur latent
codes for images with a high ∆ z-level get grouped together nicely. Furthermore, there is
a clear gradient when traversing from the high ∆ z-level to the zero point. The blur latent
codes for images with a negative ∆ z-level are a bit less organized, but still show some nice
grouping properties

Graphing the blur latent space is different for the one-dimensional blur latent code model.
Since the blur latent code is one-dimensional, there is no need to use the tSNE algorithm.
We can simply plot the latent code values on both the x- and y-axis.

Figure 5.7: one-dimensional blur latent code model, blur latent space, coloured
by ∆ z-level

We can observe a gradient in terms of the ∆ z-level in the blur latent space plot (Figure 5.7).
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This is a desirable pattern for the latent space, since latent codes for similar blur levels are
close together in the latent space. Furthermore, the structure of the latent space is linear.
There is no need for any complex enforcement on the latent space to be linear.

(a) perplexity = 10 (b) perplexity = 30

Figure 5.8: ML-VAE tSNE identity latent space, coloured by identity

Identity latent space The tSNE plots of the identity latent space for the ML-VAE
model (Figure 5.8) display groupings based on the image’s identity. This shows one can
distinguish between identities based on the identity latent code and latent codes of images
with equal identities tend to be similar. However, they do not yet encode to one point.
This indicates there is some variance in the identity latent codes, which is caused by the
presence of blur information in the identity latent code. This shows the disentanglement
is only partially working.
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(a) perplexity = 10 (b) perplexity = 30

Figure 5.9: Manifold-based approach tSNE identity latent space, coloured by
identity

The tSNE plot with perplexity = 10 of the identity latent space for the manifold-based
approach (Figure 5.9) shows a similar structure. An interesting difference can be observed
in the perplexity = 30 plot. The 30 identity latent codes are grouped together better than
in the ML-VAE approach plot, indicating that the identity latent codes are more similar
in the manifold-based approach than in the ML-VAE approach.
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(a) perplexity = 10 (b) perplexity = 30

Figure 5.10: one-dimensional blur latent code manifold-based approach tSNE
identity latent space, coloured by identity

Figure 5.10 shows the tSNE plots of the identity latent space for the one-dimensional blur
latent code model. These plots are similar to the normal manifold-based model in Figure
5.9. Furthermore, they show that identity latent codes for images with an equal identity
are grouped together in the identity latent space. This means the model is able to extract
the identity from the image and encode it in the identity latent code.
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5.2.4 Deblurring evaluation

The main goal of this research is to deblur blurry microscopy images. In order to eval-
uate the deblurring capabilities, we use the deblurring strategy as discussed in Section
4.4.3.

Figure 5.11: Deblurring results of the ML-VAE model, manifold-based model
and 1D manifold-based model. Top row: in-focus image from which the blur code
is used. Second row: blurry image from which the identity latent code is used.
Third row: Target in-focus image. Fourth row: ML-VAE deblurring result. Fifth
row: Manifold-based deblurring result. Bottom row: 1D manifold-based deblurring
result.

Figure 5.11 shows the deblurring results for the ML-VAE model, manifold-based model and
1D manifold-based model. When following the deblurring procedure using the ML-VAE
model, we see some interesting results displayed in the fourth row. The decoding result of
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the first column shows a good improvement in terms of the outline of the cell. The edge
of the cell becomes very sharp. The components inside the cell are more detailed than the
blurred image, but are not yet as detailed as the target in-focus image. The phenomenon
of not being able to reconstruct the level of detail of the in-focus image can be observed
best in the second and third column. These reconstructions again show the sharp edges.
However, the inside of the cell remains vague and undetailed.

The fifth row shows the results of the deblurring procedure when using the manifold-based
model. The main differences with the ML-VAE model are edge sharpness and cellular
detail. The edge sharpness of the deblurring attempts is a bit less good than the ML-VAE
model. A part of the vague glow around the edge remains present in the reconstructions
of the manifold-based approach. However, the level of detail is better when comparing it
to the deblurring attempts of the ML-VAE model.

The deblurring results for the 1D manifold-based model in the bottom row show an im-
provement over both the results for ML-VAE and the normal manifold-based model. The
edge of the cells in the first three columns are as sharp as the ML-VAE reconstructions.
Furthermore, the level of detail in the cell is better than the deblurring attempts from the
normal manifold-based model. The deblurring attempt in the first column shows a level of
detail which is almost similar to the target in-focus image.

Model Test set Training set
SSIM PSNR SSIM PSNR

ML-VAE 0.8629 28.816 0.8927 29.801
Manifold-based 0.8925 31.062 0.9095 32.150
1D manifold-based 0.9179 33.020 0.9315 34.492

Table 5.3: Quantitative evaluation of the deblurring capabilities of the different
approaches following the deblurring procedure shown in Figure 4.8

Table 5.3 shows a quantitative analysis of the deblurring performance of the three ap-
proaches. Similar to the quantitative reconstruction analysis (Section 5.2.2), the ML-VAE
model gets outperformed by the manifold-based models. Moreover, the 1D manifold-based
model outperforms the normal manifold-based model. A possible cause for this observation
might be the improved level of disentanglement and structure in the latent space for the
1D manifold-based model we observed in Section 5.2.3.
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5.2.5 Linear interpolation

Figure 5.12: Linear interpolation procedure

Once training is finished and the disentanglement between blur and identity is fulfilled,
we can visually examine its effectiveness by interpolating between two images with equal
identities but different ∆ z-levels. As shown in Figure 5.12 we sample a pair of images.
One with ∆ z-level -30 and one with ∆ z-level +30. X1 can be encoded into identity code
C and blur code B1. X2 can be encoded into identity code C and blur code B2. We assume
the identity codes are equal, since the identity is shared between the images.

Binter = (1− ratio) ·B1 + ratio ·B2 (5.1)

We can linearly interpolate between the two blur latent codes using Eq. 5.1, in an attempt
to find the in-focus point somewhere in the middle. The ratios are 6 steps between 0 and
1: [0, 0.16, 0.33, · · ·, 1]. We expect to find the in-focus images at ratio = 0.5.
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Figure 5.13: Linear interpolation on the blur latent space for the ML-VAE
model, the manifold-based approach and the 1D manifold-based approach. Top
row: ground truth, images at decreasing focal lengths. Second row: interpolation
results for ML-VAE model. Third row: interpolation results for manifold-based
model. Bottom row: Interpolation results for 1D manifold-based model

As shown in Figure 5.13, a linear interpolation on the blur latent space of the ML-VAE
model does not lead to an in-focus image somewhere along the interpolation. E.g. we are
unable to locate the sweet spot in the blur latent space using a linear interpolation. This
corresponds quite well with the results of Section 5.2.3, which showed that the blur latent
space for the ML-VAE approach is relatively unorganized. A final thing we can observe
is that such an interpolation in the blur latent space does in fact only influence the level
of blur in the image and not the identity. For example, in the first row, we can observe
the image slowly becoming blurrier as we move to a blur latent with a high ∆ z-level.
This shows that the blur latent space mostly captures the blur of the image and not the
identity.

The third row of Figure 5.13 displays the linear interpolations of the manifold-based ap-
proach. This shows a more promising interpolation when compared to the ML-VAE model
interpolations. We can observe new detail arising in the image and other details disap-
pearing during the interpolation, which is desired behaviour when interpolating on the blur
latent space. In the middle of the cell, a new part of the cell appears.

The reconstructions for the 1-dimensional blur latent code model shown in the bottom
row of Image 5.13 are good. The quality is similar to the normal manifold-based model’s
reconstruction quality and the level of detail in the cell is comparable. This shows the
model can still reconstruct complex images, even though the blur latent code is trimmed
down to a single dimension.
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5.3 Ablation study: novel approach

The second experiment is an ablation study for our novel manifold-based approach. As
described in Section 4.2, multiple losses from the Fumero et al. paper are used in the
manifold-based approach. Furthermore, we add the cross reconstruction loss because of
the knowledge advantage present with the given dataset, as mentioned in Section 4.2.5.
In order to investigate whether all the different losses are improving disentanglement and
deblurring, we perform an ablation study. This is done by retraining the manifold model.
With each run, one of the losses is turned off and does not contribute to the overall
training loss. Afterwards, we compare the model performance qualitatively by visually
inspecting the reconstructions and deblurring attempts. The training run with all losses
active functions as a baseline. Furthermore, we quantitatively measure the performance,
in similar fashion to the comparison experiment described in Section 5.2.
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5.3.1 Disabling Losses

Figure 5.14: Deblurring results of the manifold model with different losses
switched off. Top row: in-focus image from which the blur code is used. Sec-
ond row: blurry image from which the identity latent code is used. Third row:
Target in-focus image. Fourth row: manifold-based deblurring result. Fifth row:
manifold-based without Lcont deblurring result. Bottom row: manifold-based with-
out Lcross deblurring result.
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Figure 5.15: Reconstructions manifold-based model without cross reconstruction
loss

Model
Test set Training set

Reconstruction Deblurring Reconstruction Deblurring
SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR

Manifold-based 0.9455 37.927 0.8925 31.062 0.9462 38.455 0.9095 32.150
No Cross Recon Loss 0.9439 38.098 0.7724 24.736 0.9452 38.323 0.8123 25.406
No Contrastive Loss 0.9487 38.914 0.8722 29.642 0.9486 38.239 0.8935 30.563

Table 5.4: Performance of models in ablation study in terms of reconstruction
and deblurring

Disabling Contrastive Loss

After disabling the contrastive loss (Lcont), the resulting model shows a slight increase in
reconstruction capability, as displayed in Table 5.4. However, the model shows a drop
in deblurring performance for both the training and test set. When investigating the
deblurring attempts in the sixth row of Figure 5.14, we observe that the identity of the
image is the same as the blurry image, which is good. However, the blur in the image
changes a lot less than the normal manifold-based approach. This shows the contrastive
loss is vital for the deblurring performance.

Disabling cross reconstruction loss

When disabling the cross reconstruction loss (Lcross), we can observe some interesting
things. As shown in Figure 5.15, the reconstructions remain on the same level as the
manifold-based model with cross reconstruction loss, although some noise can be observed
in the third and fourth column. The model without cross reconstruction loss even shows a
slight increase in terms of quantitatively evaluating the reconstruction capability, as pre-
sented in Table 5.4. However, we observe a massive drop in the deblurring performance
of the model. This shows the cross reconstruction loss is vital for the deblurring perfor-
mance of the model. The visualizations of the deblurring attempts presented in Figure
5.14 strengthen our observation. The deblurring attempts show some hybrid form between
the in-focus image and the blurry image, which shows the blur latent code still encodes
part of the identity.
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Chapter 6

Conclusions and Future Work

In-focus microscopy images are fundamental for the performance of computational models
predicting plant growth. However, microscope setups are often imperfect, leading to a
certain level of blur in the resulting images. In order to mitigate such blur, deep learning
models can be used. By investigating a novel approach using disentangled representation
learning, this work has shown that disentangling between blur and identity in two separate
latent codes is not only possible, but allows improving image quality. This disentanglement
between blur and identity allows modification of the blur in an image without disturbing
the identity of the image.

Furthermore, by qualitatively and quantitatively assessing our approach, this work has
shown that our novel manifold-based approach outperforms an ML-VAE baseline in terms
of disentanglement, reconstruction, deblurring and structure of the latent space. Moreover,
our approach proves to be able to capture the level of blur in a 1-dimensional latent code,
which ensures linearity in the latent space. This linearity is backed up by a visualiza-
tion of the latent space. Disentangled representation learning proved to be beneficial for
deblurring, because it allows directly changing blur in an image without influencing the
identity. This feature of disentanglement could prove vital to improve other state-of-the-art
deblurring methods using latent representations.

Future research in the direction of blur mitigation using disentangled representation learn-
ing should focus on strengthening the work. This means comparing the method proposed
in this work to other state-of-the-art deblurring methods. Furthermore, our method should
be tested on other datasets with different sorts of blur, to see to what extent the disen-
tanglement generalizes. Moreover, the independent adaptability provided by disentangled
representation learning might allow improvement in state-of-the-art deblurring approaches
using latent codes, which is worth investigating.

39



Bibliography

[1] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A
Review and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, August 2013. Conference Name: IEEE Transactions on
Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2013.50.

[2] Diane Bouchacourt, Ryota Tomioka, and Sebastian Nowozin. Multi-Level Variational
Autoencoder: Learning Disentangled Representations from Grouped Observations,
May 2017. arXiv:1705.08841 [cs, stat]. URL: http://arxiv.org/abs/1705.08841,
doi:10.48550/arXiv.1705.08841.

[3] Dennis Francis. The plant cell cycle 15 years on. New Phytologist, 174(2):261–
278, 2007. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-
8137.2007.02038.x. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.
1469-8137.2007.02038.x, doi:10.1111/j.1469-8137.2007.02038.x.

[4] Marco Fumero, Luca Cosmo, Simone Melzi, and Emanuele Rodolà. Learning disentan-
gled representations via product manifold projection, October 2021. arXiv:2103.01638
[cs]. URL: http://arxiv.org/abs/2103.01638, doi:10.48550/arXiv.2103.01638.

[5] Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo
Rezende, and Alexander Lerchner. Towards a Definition of Disentangled Represen-
tations, December 2018. arXiv:1812.02230 [cs, stat]. URL: http://arxiv.org/abs/
1812.02230, doi:10.48550/arXiv.1812.02230.

[6] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew
Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning Basic
Visual Concepts with a Constrained Variational Framework. July 2022. URL: https:
//openreview.net/forum?id=Sy2fzU9gl.

[7] Kwang Eun Jang, Hee Won Yang, and Jong Chul Ye. Single channel 2-D and 3-
D blind image deconvolution for circularly symmetric fir blurs. In 2009 16th IEEE
International Conference on Image Processing (ICIP), pages 1313–1316, November
2009. ISSN: 2381-8549. doi:10.1109/ICIP.2009.5413582.

[8] Hyunjik Kim and Andriy Mnih. Disentangling by Factorising. In Proceedings of the
35th International Conference on Machine Learning, pages 2649–2658. PMLR, July
2018. ISSN: 2640-3498. URL: https://proceedings.mlr.press/v80/kim18b.html.

[9] Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes, December
2022. arXiv:1312.6114 [cs, stat]. URL: http://arxiv.org/abs/1312.6114, doi:
10.48550/arXiv.1312.6114.

40

https://doi.org/10.1109/TPAMI.2013.50
http://arxiv.org/abs/1705.08841
https://doi.org/10.48550/arXiv.1705.08841
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2007.02038.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.2007.02038.x
https://doi.org/10.1111/j.1469-8137.2007.02038.x
http://arxiv.org/abs/2103.01638
https://doi.org/10.48550/arXiv.2103.01638
http://arxiv.org/abs/1812.02230
http://arxiv.org/abs/1812.02230
https://doi.org/10.48550/arXiv.1812.02230
https://openreview.net/forum?id=Sy2fzU9gl
https://openreview.net/forum?id=Sy2fzU9gl
https://doi.org/10.1109/ICIP.2009.5413582
https://proceedings.mlr.press/v80/kim18b.html
http://arxiv.org/abs/1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114


[10] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational In-
ference of Disentangled Latent Concepts from Unlabeled Observations, December
2018. arXiv:1711.00848 [cs, stat]. URL: http://arxiv.org/abs/1711.00848, doi:
10.48550/arXiv.1711.00848.

[11] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro Mishkin, and Jiri
Matas. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Net-
works, April 2018. arXiv:1711.07064 [cs]. URL: http://arxiv.org/abs/1711.07064,
doi:10.48550/arXiv.1711.07064.

[12] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang Wang. DeblurGAN-v2:
Deblurring (Orders-of-Magnitude) Faster and Better, August 2019. arXiv:1908.03826
[cs]. URL: http://arxiv.org/abs/1908.03826, doi:10.48550/arXiv.1908.03826.

[13] Anat Levin, Yair Weiss, Fredo Durand, and William T. Freeman. Understanding and
evaluating blind deconvolution algorithms. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1964–1971, June 2009. ISSN: 1063-6919. doi:
10.1109/CVPR.2009.5206815.

[14] Cewen Liu, Mengyao Sun, Nanxun Dai, Wei Wu, Yanwen Wei, Mingjie Guo, and Hao-
huan Fu. Deep learning-based point-spread function deconvolution for migration image
deblurring. Geophysics, 87(4):S249–S265, June 2022. doi:10.1190/geo2020-0904.1.

[15] S. Ramya and T. Mercy Christial. Restoration of blurred images using Blind Deconvo-
lution Algorithm. In 2011 International Conference on Emerging Trends in Electrical
and Computer Technology, pages 496–499, March 2011. doi:10.1109/ICETECT.2011.
5760166.

[16] Carolyn G. Rasmussen and Marschal Bellinger. An overview of plant
division-plane orientation. New Phytologist, 219(2):505–512, 2018. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1111/nph.15183. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/nph.15183, doi:10.1111/nph.
15183.

[17] Dongwei Ren, Wangmeng Zuo, David Zhang, Jun Xu, and Lei Zhang. Partial De-
convolution With Inaccurate Blur Kernel. IEEE Transactions on Image Processing,
27(1):511–524, January 2018. Conference Name: IEEE Transactions on Image Pro-
cessing. doi:10.1109/TIP.2017.2764261.

[18] Christian J. Schuler, Michael Hirsch, Stefan Harmeling, and Bernhard Schölkopf.
Learning to Deblur. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 38(7):1439–1451, July 2016. Conference Name: IEEE Transactions on Pattern
Analysis and Machine Intelligence. doi:10.1109/TPAMI.2015.2481418.

[19] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for
Large-Scale Image Recognition, April 2015. arXiv:1409.1556 [cs]. URL: http://
arxiv.org/abs/1409.1556, doi:10.48550/arXiv.1409.1556.

[20] Xin Wang, Hong Chen, Si’ao Tang, Zihao Wu, and Wenwu Zhu. Disentangled Rep-
resentation Learning, November 2022. arXiv:2211.11695 [cs]. URL: http://arxiv.
org/abs/2211.11695, doi:10.48550/arXiv.2211.11695.

[21] Asfand Yaar, Hasan F. Ates, and Bahadir K. Gunturk. Deep Learning-Based Blind
Image Super-Resolution using Iterative Networks. In 2021 International Conference

41

http://arxiv.org/abs/1711.00848
https://doi.org/10.48550/arXiv.1711.00848
https://doi.org/10.48550/arXiv.1711.00848
http://arxiv.org/abs/1711.07064
https://doi.org/10.48550/arXiv.1711.07064
http://arxiv.org/abs/1908.03826
https://doi.org/10.48550/arXiv.1908.03826
https://doi.org/10.1109/CVPR.2009.5206815
https://doi.org/10.1109/CVPR.2009.5206815
https://doi.org/10.1190/geo2020-0904.1
https://doi.org/10.1109/ICETECT.2011.5760166
https://doi.org/10.1109/ICETECT.2011.5760166
https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.15183
https://onlinelibrary.wiley.com/doi/abs/10.1111/nph.15183
https://doi.org/10.1111/nph.15183
https://doi.org/10.1111/nph.15183
https://doi.org/10.1109/TIP.2017.2764261
https://doi.org/10.1109/TPAMI.2015.2481418
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.48550/arXiv.1409.1556
http://arxiv.org/abs/2211.11695
http://arxiv.org/abs/2211.11695
https://doi.org/10.48550/arXiv.2211.11695


on Visual Communications and Image Processing (VCIP), pages 01–05, December
2021. ISSN: 2642-9357. doi:10.1109/VCIP53242.2021.9675367.

[22] Ruomei Yan and Ling Shao. Blind Image Blur Estimation via Deep Learning. IEEE
Transactions on Image Processing, 25(4):1910–1921, April 2016. Conference Name:
IEEE Transactions on Image Processing. doi:10.1109/TIP.2016.2535273.

[23] Chi Zhang, Hao Jiang, Weihuang Liu, Junyi Li, Shiming Tang, Mario Juhas,
and Yang Zhang. Correction of out-of-focus microscopic images by deep
learning. Computational and Structural Biotechnology Journal, 20:1957–1966,
January 2022. URL: https://www.sciencedirect.com/science/article/pii/
S2001037022001192, doi:10.1016/j.csbj.2022.04.003.

[24] Huangxuan Zhao, Ziwen Ke, Ningbo Chen, Songjian Wang, Ke Li, Lidai
Wang, Xiaojing Gong, Wei Zheng, Liang Song, Zhicheng Liu, Dong Liang,
and Chengbo Liu. A new deep learning method for image deblurring in op-
tical microscopic systems. Journal of Biophotonics, 13(3):e201960147, 2020.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/jbio.201960147. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.201960147, doi:10.
1002/jbio.201960147.

42

https://doi.org/10.1109/VCIP53242.2021.9675367
https://doi.org/10.1109/TIP.2016.2535273
https://www.sciencedirect.com/science/article/pii/S2001037022001192
https://www.sciencedirect.com/science/article/pii/S2001037022001192
https://doi.org/10.1016/j.csbj.2022.04.003
https://onlinelibrary.wiley.com/doi/abs/10.1002/jbio.201960147
https://doi.org/10.1002/jbio.201960147
https://doi.org/10.1002/jbio.201960147

	Introduction
	Background
	Disentangled Representation Learning
	Autoencoder
	Variational Auto-Encoder


	Related Work
	Disentangled Representation Learning
	Definition
	Approaches

	Deblurring
	Kernel estimation
	Generative model based approaches


	Method
	Baseline: ML-VAE
	Extended VAE objective

	Novel manifold-based approach
	Consistency Loss
	Contrastive Loss
	Cross Reconstruction Loss
	Delaying losses
	Knowledge advantage over normal manifold projection

	Reconstruction Loss
	Evaluation metrics
	Disentanglement evaluation
	Reconstruction evaluation
	Deblurring evaluation


	Experimental Results
	Experiment setup
	Dataset
	Model Architecture
	Training setup

	Baseline comparison: ML-VAE and novel approach
	One-dimensional blur latent code reasoning
	Reconstruction capabilities
	Disentanglement evaluation
	Deblurring evaluation
	Linear interpolation

	Ablation study: novel approach
	Disabling Losses


	Conclusions and Future Work

