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Summary

Pelvic organ prolapse is a component of pelvic floor dysfunction and is a big issue

as it affects half of all women over the age of 50 years. With POP surgery, the

risk of recurrence is about 10-30%. To evaluate the effect of surgery the patients

are scanned with MRI before and after the operation. Manual delineation can be

labour-intensive, and having a deep learning model that is able to do this properly,

saves a lot of time and is more consistent than manual selection.

This study uses the MRI data from women who participated in the TORBO

study at the University of Twente. The U-Net model uses all the slices of one

orientation in one batch and trains the model on patterns in 2D images in three

directions, this is called 2.5D. ForkNet is used to integrate the 2.5D landmark

detection and bladder segmentation in one model.

The 2.5D U-Net model outperforms the 3D U-Net in bladder segmentation but

falls short in landmark detection, while ForkNet presents an opportunity to inte-

grate different anatomical features, albeit with the need for optimization in POP

assessment.
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1 Introduction

1.1 Pelvic organ prolapse

Pelvic organ prolapse (POP) is a component of pelvic floor dysfunction and is a

big issue as it affects half of all women over the age of 50 years [1]. POP is the

descent of the pelvic organs that result in a protrusion of the vagina, uterus or

both [2]. Some factors increase the risk of POP, with the largest being vaginal

delivery. Some of the other factors are nonmodifiable, for example, advancing age

and connective tissue disorder. Some factors are modifiable, for example, obesity

and smoking.

The assessment of POP is currently done by clinical examination, using the

pelvic organ prolapse quantification (POP-Q) system. A system introduced by the

International Continence Society. A medical expert defines six points around the

vagina [3]. The position of these points is measured during coughing relative to

the hymen. This relative position determines what stage of POP the patient has.

This system however is based on a moving structure as reference, which may not

be optimal for the purpose [4].

1.2 Clinical interference

The most common type of POP is anterior vaginal wall prolapse (AVWP), here

the muscles above the vagina have weakened [5]. This can cause the bladder to slip

out of place and bulge onto the vagina. The conservative nonsurgical treatments

are pelvic floor exercises and a vaginal pessary. However, if these nonsurgical

treatments do not improve the symptoms, surgery may be an option.

With POP surgery, the risk of recurrence is about 10-30% [6]. To evaluate the

effect of surgery the patients are scanned before and after the operation. The scans

will be both in a supine and standing position. This is important because in a
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supine position, the pelvic anatomy can be very different than when in a standing

position, due to gravity pulling organs down.

Magnetic resonance imaging (MRI) is a promising complementary tool for the

examination of POP. In a clinical POP-Q examination, it is hard to identify the

underlying pathophysiology of the POP problem. With the use of MRI, there

is more anatomical information on the pelvic region, which may give relevant

information regarding POP, that could make for a better examination [7].

To evaluate the effect of surgery, several anatomical landmarks are needed, as well

as a segmentation from the bladder. Manual delineation can be labour intensive,

taking at least 20 minutes and up to several hours per subject, and is prone to

inter-operator variations. This limits large-scale studies in adequately evaluating

POP interventions and so, having a deep learning model that is able to do this

properly, saves a lot of time and is more consistent than manual selection.

1.3 Previous research

Previous research projects at the University of Twente have used deep learning to

identify landmarks in the pelvic region [8, 9]. They show potential for landmark

detection. If this model is trained for anatomical landmarks relevant to the assess-

ment of POP, these can be used for AI-based POP assessment.

Another previous research project at our institution used deep learning to segment

the bladder in low-field MR images [10]. Here was shown the model could predict

the lower part of the bladder correctly for patients without POP. The lower part

is the most relevant part for the assessment of POP. However, the model was

not trained with data from POP patients. Resulting in poorer results segmenting

prolapsed bladders. Following this, another approach was taken. This approach

took data from POP patients as part of the training data [11]. This study also
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showed good segmentation. Again, especially on the lower part, which is the most

important for POP assessment.

1.4 Report outline

In this report, the three approaches mentioned above will be optimized and in-

tegrated into one AI tool for the automatic assessment of pelvic organ prolapse.

First, the models will be adapted to be trained on landmarks and segmentation,

factors used for AI-based POP assessment, and some of the discussion points of

the reports will be taken into account.

This report is divided into different sections. Starting with the introduction

in section 1. In section 2 relevant theory, concerning the evaluation of POP and

the use of deep learning will be given for this report. Materials and methods, like

the used data and applied AI models will be described in section 3, followed by

the results in section 4. In the end, there will be a discussion and conclusion in

sections 5 and 6 respectively.
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2 Theory

In this chapter, some concepts used in this study will be briefly explained.

2.1 Anterior colporrhaphy

Colporrhaphy is a surgical treatment performed to treat AVWP. With this surgery,

the vaginal walls are reinforced with dissolvable sutures to support the bladder and

rectum [5]. A questionnaire evaluating the technique of anterior colporrhaphy was

conducted among the members of the Dutch Urogynecologic Society [12]. The con-

clusion was that there was no widely accepted opinion on the best surgical approach.

To evaluate the results of the anterior colporrhaphy one can use MRI. In the

TORBO study patients are scanned before and after the surgery in standing and

supine position. The evaluation is performed by looking at the extent of bladder

prolapse, before and after the surgery because the anterior colporrhaphy should

support the bladder.

2.2 Magnetic resonance imaging

The MRI data used in this study was collected using the Esaote G-scan BRIO

0.25T. This MRI scanner has the possibility to scan in a supine and in a standing

position. The POP-Q examination is done in a supine position. In patients with

POP, there are significant anatomical differences when in a supine or standing

position[13], as is visible in figure 1. These differences can be very important

during the examination of POP.

2.3 PICS

For reliable pelvic measurements, a 3D coordinate system is often used, based on

bony structures as reference points [15]. These landmark reference points provide

a well-defined and rigid 3D coordinate system, which can follow movement. Also,
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Figure 1: In this figure the differences between supine and standing position are
clearly visible. The left MR image is acquired in a supine position and the right
image is acquired in a standing position. The red line is drawn around the bladder.
In the standing position a prolapse is clearly visible, whereas in the supine position
the bladder seems fairly normal. [14]

bone structures are easy to find in an MRI scan.

Four landmarks are used to define this 3D coordinate system. Two are along

the midline, those are: the inferior pubic point and the sacrococcygeal point (see

figure 2). Laterally, the left and right ischial spine points are chosen. These are

used to make a 3D cartesian coordinate system in which the PICS-plane is made.

For POP assessment, the volume of the bladder underneath the PICS-plane can

be looked at.

2.4 Deep learning

The interpretation of MR images can be a cumbersome process and very costly [16].

However, in recent years the impact of artificial intelligence (AI) technology in
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Figure 2: In this figure both the landmarks on the midline are shown. On the left
is the inferior pubic point. On the right is the sacrococcygeal point the PICS line is
rotated 34°to align with the longitudinal body axis in the standing position. [15]

healthcare has grown [17]. AI uses neural networks [18], which consist of artificial

neurons, with considerable equivalence to the human brain. A neural network

typically consists of input nodes, hidden layers and output nodes[19]. An artificial

neuron consists of different components [20], as shown in figure 3. By using AI,

image segmentation can be done automatically, this saves a lot of time.

2.4.1 Weights and biases

Weights are the values attached to each input. They convey the importance of

that corresponding input in predicting the final output [20]. Inputs with weights

closer to zero are less important for prediction compared to inputs with a higher

weight value. Biases are used for shifting the activation function. Weights and

biases are parameters trained by the model to have a predicted value as close as
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Figure 3: The schematic representation of an artificial neuron. With different
inputs, each with its own weight. All summated with a bias, after which it goes
trough an activation function. [20]

possible to the ground truth value.

2.4.2 Activation functions

The transfer function is a function that determines the output of a node. It

normalizes the output. This output determines if the neuron is activated or not

[21]. There are different activation functions, that all influence the input in another

way. Below the two most common are briefly explained.

Sigmoid function The sigmoid function exists between 0 and 1, see figure

4. Therefore it is especially used for models where the probability is predicted,

since probability ranges from 0 to 1.

ReLU function The Rectified Linear Unit (ReLU) function, is a function that

exists between 0 and infinity, see figure 4. The function rectifies all values lower

than zero, to zero. All the values above zero, keep their value.
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Figure 4: The left graph is the visualization of the sigmoid function, with its
formula. The right graph is the visualization of the rectified linear unit function,
with its formula. [21]

2.4.3 Error and loss function

The error in deep learning is the difference between the predicted output and the

desired output. In a model, a loss function is used. A common example of a loss

function is the mean squared error (MSE). A loss function measures the calculated

error for a single training.

2.4.4 Optimization functions

Optimization functions are algorithms or methods used to change attributes of

your neural network in order to reduce losses [22]. An example is ADAM, adaptive

moment estimation. This optimizer is a bit slower than some of the other options,

but this is to ensure a smooth convergence to the global minimum.

2.4.5 Hyperparameters

Hyperparameters are parameters that define the model’s architecture [23]. Exam-

ples of hyperparameters are the learning rate (lr) and weight decay (wd).

2.5 Convolutional neural networks

Convolutional neural networks (CNN) are a building block for deep learning

methods, primarily used for image-driven pattern recognition tasks. CNNs are com-
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putational processing systems that are based on the biological nervous systems[24].

The biggest benefit of using CNNs instead of other artificial neural networks is

that CNNs are reduced in the number of parameters. This is because it looks at

local regions instead of the whole image [25].

2.5.1 Components of convolutional neural networks

CNNs have three different kinds of layers [26]: convolutional layers, pooling layers

and fully connected layers. In a convolutional layer a kernel slides over the input

data with strides, performing an elementwise multiplication [27]. It sums up the

results into a single output pixel. The kernel will perform the same operation for

every location it slides over, transforming an input matrix into a feature matrix, see

figure 5. A pooling layer reduces the number of parameters of the input tensor. It

does this by moving a kernel over the matrix and taking one value. There are two

types of pooling layers: max pooling and average pooling. With max pooling the

maximum value of the matrix is put in the corresponding output matrix, see figure

6. With average pooling the average of the matrix is put in the corresponding

output matrix.

Figure 5: Visual representation of convolution, where the kernel slides over the
input matrix with strides of 1.
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Figure 6: Visual representation of max pooling where the max value of each 2x2
block is put in the corresponding output matrix

2.5.2 U-Net

U-Net is a deep-learning technique widely used in the medical imaging community

[28]. The basic structure of a U-Net architecture consists of two paths: an encoding

path and a decoding path. The encoding path is similar to a regular CNN. The

U-Net however, distinguishes itself by using the decoding path. In each stage, it

upsamples the feature map using up-convolution. Then the feature map from the

corresponding layer in the encoding path is cropped and concatenated onto the

upsampled feature map. Following this, there will be two successive convolutions

and ReLu activations. At last, a 1x1 convolution is applied to reduce the feature

map to the required number of channels and make the segmented image. The

decoding and encoding path are more or less symmetric [29], this yields a U-shaped

architecture as visible in figure 7

2.5.3 ForkNet

ForkNet is a CNN architecture originally proposed for the construction of human

head models from MRI images[30]. The architecture is different from conventional

U-Net structures, through the way it handles individual decoder paths for each

individual anatomical structure. The basic architecture is visible in figure 8, here

a ForkNet with 2 outputs is shown.
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Figure 7: Visualisation of U-Net architecture, with on the left the input. Different
convolutional and pooling layers in the middle and on the right the output. [29]

Figure 8: Visualisation of basic ForkNet architecture, with on the left the input.
Different convolutional and pooling layers in the middle and on the right the two
outputs, this ForkNet has a degree of N=2. In the middle, the decoder track for
each anatomical structure starts its own path. [30]
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2.6 2.5D Deep learning

Previous approaches [10, 11] for bladder segmentation used 3D deep learning

networks. In other segmentation research, another approach is being used [31].

This approach uses a 2.5D approach, ensembling 3 orthogonal views to segment.

With MRI scans this means it trains the model in three different directions: sagittal,

coronal and transversal. This approach uses less computing power and therefore is

quicker.

2.7 Evaluation

For landmarks and segmentation, different evaluation methods will be used.

2.7.1 Euclidian distance

For evaluating the performance of the model in landmark detection, Euclidian dis-

tance will be used. The Euclidian distance is the distance from the predicted point to

the ground truth point. Euclidian distance=
√
(xp − xg)2 + (yp − yg)2 + (zp − zg)2.

With xp being the predicted x position of the landmark and xg, the x position of

the ground truth landmark.

2.7.2 Dice similarity coefficient

For evaluating the performance of the model in bladder segmentation, the dice

similarity coefficient (DSC) will be used. The dice similarity coefficient is a

statistical tool which measures the similarity between two sets of data [32]. The

two sets in this study are the predicted bladder segmentation and its ground truth.

The score can be between 0 and 1, 0 being no overlap and 1 being perfect overlap.

The formula is as follows: DSC = 2 * (|pbladder∩ gbladder|)/(|pbladder| + |gbladder|),

where pbladder are pixels that are considered part of the bladder by the prediction of

the model and gbladder are pixels that are part of the bladder of the ground truth.
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3 Materials and methods

In this chapter, the used methods will be explained

3.1 Data

This study uses the MRI data from women who participated in the TORBO study

at the University of Twente, see figure 9 for an example of an MRI scan. For this

study, researchers are looking for the effect of an anterior colporrhaphy operation.

Patients are scanned before the operation and 6 weeks after. They are scanned

in the supine position and in a standing position which is an angle of 81 degrees

with respect to the supine position. So, there are four scans per patient. For

the different sets of training for the model, 29 scans were used. For testing, 4

other scans were used. They were chosen from different patients at different times

concerning the operation and in different positions. This is to try and train the

model with as varied an input as possible. The 29 training and 4 test scans are

the same as previous research [11], so a good comparison could be made between

models regarding segmentation.

Figure 9: An example of an MRI scan from the TORBO study at the UT. All three
orientations are shown in this figure.
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3.1.1 Input

Different inputs are needed to train the model for segmentation and landmarks

detection using MRI images. The MRI scan will be given as input as a NIfTI file.

Landmark detection uses heatmaps as ground truth. A heatmap is an im-

age with values between 0 and 1. With the pixel on the place of the coordinate of

the landmark having 1 as the value, from there, a Gaussian or Laplacian distribu-

tion is made, an example is visible in figure 10. This study will look at what is the

best distribution to train the model. This will be done by trying Gaussian and

Laplacian distributions with varying standard deviations of 2, 4, 8 and 16 pixels.

Bladder segmentation uses manual bladder segmentation as input. This is an

Figure 10: On the left is a sagittal MRI image with the heatmap on the inferior
point of the pubic bone. On the right, only the heatmap is visible, which will be an
input to the model. The heatmap is Gaussian distributed with a standard deviation
of 4 pixels.

image with binary values. So, if a pixel is part of the bladder it has a value of 1.

Otherwise, it has a value of 0, in figure 11 is an example.
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Figure 11: On the left, a sagittal MRI image with the segmentation of the bladder
in yellow. On the right, only the segmentation is visible, which will be an input to
the model. The map is binary, so it only contains values that are either 0 or 1.

3.2 2.5D U-Net

This study uses U-Net, like the other approaches mentioned earlier. However, this

study approaches the U-Net differently. The previous studies used 3D U-Net. This

means that the model is trained on 3D information. It takes voxels as input and

tries to recognize patterns in the volume of an MR scan.

In this study, a 2D U-Net in three directions is used. This divides the scans

into slices in different orientations, namely sagittal, coronal and transversal. The

model then combines all the slices of one orientation in one batch and trains the

model on patterns in 2D images. After this, the model will be trained for the other

orientations. As the model will be trained on 2D data in 3 directions, this is called

2.5D.

This means that three different models will be trained in 2D. When testing the
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model, each test scan will be tested in 2D. After which they will be summed up

and divided by three.

3.3 Landmarks

Landmarks are used for the assessment of POP. For landmark detection in this

study, scripts were used from previous studies [8, 9]. After this, landmark detection

with a 2.5D U-Net was tried. As ground truth, different variations of heatmaps

were tried. This is to test which ground truth is the best for the model to learn.

Both Gaussian and Laplacian heatmaps were tried with the standard deviation

varying between 2, 4, 8 and 16 pixels. In figure 12 is an example of different

distributions in 2D.

Figure 12: In this figure different distributions with different deviations are visible.
In yellow a Laplacian distribution is visible. In red and blue Gaussian distributions
are visible.

The output of the model was fitted to the heatmap distribution that was used
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for the input. So, if the model was trained with a heatmap with a Gaussian

distribution with σ = 4 pixels, the output will be fitted to a Gaussian distribution

with σ = 4 pixels. Fitting means that it will construct a Gaussian heatmap with

σ = 4 pixels that fits best with the output data points. By fitting the output, a

predicted landmark coordinate can be determined from a heatmap. This coordinate

is needed for the assessment of POP.

3.4 Bladder segmentation

For bladder segmentation, the 2.5D U-Net was used. In previous studies, 3D

U-Net was used. The goal of doing the 2.5D U-Net was to see if fewer scans would

give a better result in segmenting the bladder than a 3D U-Net. To test this, a

comparison with a different study was made [11].

The 2.5D U-Net will be compared to the 3D U-Net based on the DSC score

and usability for POP assessment. It will be compared using different amounts

of training data. The model will be trained with 15, 20, 25 and 29 training

scans. The training scans are the same as the ones used in the previous study. The

models will be tested on 4 scans, these also will be the same as in the previous study.

For bladder segmentation, the output of every orientation will be subjected to a

sigmoid activation function. Which makes the value 0 if it predicts that the pixel

is not part of the bladder and 1 if it is part of the bladder.

3.5 ForkNet architecture

In this study, ForkNet is used to integrate the 2.5D landmark detection and blad-

der segmentation in one model. The inputs of the model are the MRI scans, the

heatmaps for the different landmarks and the manual segmentation of the bladder.

The inputs will follow the same encoding and decoding path, with the same archi-

tecture as in figure 8. The convolutional and pooling layers also have the same
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architecture for segmentation, for landmark detection, in the last step the logic

sigmoid will be replaced with a ReLu activation function. The ForkNet used in

this study has a degree of N=5. That means that there will be 5 different decoding

paths, whereas in figure 8, there are only 2. The 5 outputs will be the bladder

segmentation, a heatmap for the pubic bone, a heatmap for the sacrococcygeal

point, a heatmap for the left ischial spine and a heatmap for the right ischial spine

respectively.

This model will be built in Python, using the JupyterLab environment of the

University of Twente. The model will be built using the Keras interface in Python.

The optimizer ADAM will be used with its standard hyperparameters. The pa-

rameters for the Batchnormalization function are momentum = 0.9 and epsilon =

0.001.
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4 Results

In this chapter, the results of this study will be shown.

4.1 heatmap shape

A heatmap is an input for the training of the model for landmark detection.

Different ground truths were compared as input. The outputs of the different

training sessions were used to evaluate which heatmap variant leads to the most

accurate landmark detection. The different variants of heatmaps were Gaussian

and Laplace-distributed heatmaps. Standard deviations were 2, 4, 8 and 16 pixels.

All variations were tested on 5 test scans. In table 1 the average distance is shown

per heatmap variant. The results indicate that a Gaussian-distributed heatmap

with a standard deviation of 4 pixels as ground truth leads to the best results and

therefore will be applied in all analyses this study.

Euclidian distance
variation Gaussian Laplace
Standard
deviation
(pixel)

σ = 16 σ = 8 σ = 4 σ = 2 σ = 16 σ = 8 σ = 4 σ = 2

Average
distance
(mm)

7.3 6.1 4.3 105.5 13.7 9.0 5.5 5.7

Table 1: Different heatmap variations and its Euclidian distance from the predicted
landmark coordinate to the ground truth coordinate.

4.2 Model output

4.2.1 Landmark detection

The output of the model also is in the form of a heatmap, shown in figure 13.

The maximum value is not 1. Also, the distribution is not a perfect Gaussian

distribution, which is represented in figure 14. The output was fitted to a Gaussian

distribution with a standard deviation of 4 pixels. Fitting the output determined
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a point, this is what the model predicts as the coordinate of the landmark. Then

the distance to the real coordinate of the landmark is calculated in mm.

Figure 13: The output of the model of landmark detection on the inferior pubic
bone on the left. The maximum value is not 1, which is the case with the input on
the right.

Figure 14: The output values of the model are represented in red. These are taken
from the slice of the ground truth maximum. The green is the fitted Gaussian
distribution to these values. The blue is the ground truth value as a reference.

4.2.2 Segmentation

A manually segmented bladder is an input for the model for the training of

segmentation. This has binary values, if the value is 0, the pixel is not part of the

bladder. If the value is 1, the pixel is part of the bladder. An output of the model

is shown in figure 15. Here four different shades are visible: white, light grey, dark

grey and black. These shades have values of 1, 0.67, 0.33 and 0 respectively. This

is because the activation function used in the 2.5D model is a sigmoid. This leads
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to a value being 0 or 1. When the different orientations are summed and divided

by three, the values mentioned above are established. After which the values will

be made binary with a threshold of 0.5.

Figure 15: On the left a sagittal view of a ground truth bladder segmentation
over a MRI scan is visible. In the middle is an output of the model for bladder
segmentation shown. On the right is the binary version of the model prediction,
with a threshold of 0.5.

4.3 2.5D and 3D U-Net

In this section, the results of 2.5D will be presented. To make a good comparison

with 3D, results from earlier studies will also be included.

4.3.1 Landmark detection

The results of landmark detection with 2.5D ForkNet are shown in figure 16. Here,

the average Euclidian distance is visible for each landmark with different amounts

of training data. The average distance is the distance of the predicted landmark

position to the ground truth landmark position over the four test scans.

The average Euclidian distance ranges from 3.00mm to 49.51mm. To put those

distances into perspective, different predictions and ground truths are plotted onto

an MRI scan in figure 17.
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Figure 16: In this figure the different average Euclidian distances are plotted. The
average Euclidian distance is the average of the 4 test scans. The average Euclidian
distances are plotted per landmark and per amount of training scans.

Figure 17: Examples of landmark detection predictions by the model, for visual-
ization of distances. In all images, a sagittal MRI image is shown. The ground
truth is the green dot, and the predicted point is the red dot. In the left image,
the landmark of interest is the sacrococcygeal point, here the Euclidian distance
is 12.81 mm. In the middle image, the landmark of interest is the inferior pubic
point, here the Euclidian distance is 5.49mm. In the right image, the landmark of
interest is the left ischial spine, here the Euclidian distance is 118.55mm.

In figure 18 the average Euclidian distances are plotted per landmark and per

amount of training data. In this figure, the standard deviation is also plotted. In

the graph for the different landmarks, there are large differences in the average

Euclidian distance per landmark. Also, the standard deviation varies a lot and
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Figure 18: Average Euclidian distance for different landmarks and different training
sessions. In the left graph, the average Euclidian distance per landmark is visible.
The standard deviation is included. In the right graph, the average Euclidian
distance per amount of training data is visible. The standard deviation is included.

is high, especially with the sacrococcygeal point. In the graph for the different

amounts of training scans, the average Euclidian distance becomes larger from 15

to 20 and 25 training scans, which is against expectations. The batch with 29

training scans has the lowest Euclidian distance. Here, the standard deviation is

also high.

The inferior pubic point is the only landmark in the 3D study, so the comparison is

made based on this landmark. The 3D study used 36 training scans and 3 validation

scans. The 3D U-Net training needs the validation data and training data assigned

beforehand. The 2.5D splits the data into validation data and training data during

the training, to make a comparison, the training and validation scans of the 3D

study are counted as one batch of 39 training scans. In figure 19 the Euclidian

distances are shown.

4.3.2 Segmentation

The dice similarity coefficients of the 2.5D model are shown in figure 20. The

results of 3D are also included in this graph to make a comparison between the

2.5D and 3D U-Net model. The 2.5D model has DSC scores ranging from 0.80 to

0.92 with the different training scans.
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Figure 19: The Euclidian distances of the different models, with different amounts
of training data.

Figure 20: The dice similarity coefficients of 2.5D and 3D U-Net models, with
different amounts of training data.

For the assessment of the anterior colporrhaphy surgery, the volume of the bladder

underneath the PICS plane may be considered. So, especially the lower part of the
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Figure 21: In this figure model predictions of bladder segmentation are plotted next
to their ground truth. The ground truths are in green, and the model predictions
are in red. In the left image, a test scan (p019) is visible. On the right another
test scan (p031) is visible.

bladder is the region of interest for this study. The segmentations are compared to

their ground truths in figure 21.
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5 Discussion

This study shows mixed results. 2.5D U-Net seems to be better for the segmenta-

tion of the bladder than 3D U-Net. The DSC scores obtained with a 2.5D U-Net

are consistently higher with the same amount of training data. Although there

are limited test scans, it seems that the lower part of the bladder is not always

segmented right. Which may be a problem in the context of POP assessment.

The 2.5D U-Net seems to be worse for landmark detection than the 3D U-Net.

The Euclidian distances are quite high and mostly inconsistent. Although we

anticipated that with more training the Euclidian distance decreases, this was not

always the case.

In this study the use ForkNet was successful in determining landmarks and seg-

mentation of the bladder in one model. However, in ForkNet it is possible to only

use one U-Net model. So either 2.5D or 3D has to be used.

The DSC for 2.5D was higher with the same amount of training scans, this

means that when there is little data available, 2.5D would be better to perform

bladder segmentation. Combining the landmarks and segmentation into one model

using ForkNet in principle works, and could therefore be an option for research

that is in its starting phase.

Landmark detection using a 2.5D U-Net with limited training data is very inconsis-

tent. With more training data, it may be anticipated that the network performance

improves, however, in this study, this was not the case. Also, the training results

were very inconsistent. This means that the results vary a lot from test scan

to test scan. It could possibly be due to the input being a 2D heatmap. In 3D

there is more information from the surrounding anatomy. In 2.5D it only has the

anatomical information of the slice as surrounding. Having less information in

training can lead to a worse result. Also, the fitting of the output to a Gaussian
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heatmap model can lead to worse results. Because the prediction is based on 2D

heatmap slices, there is no perfect 3D Gaussian distribution as output.

The approach using 3D landmark detection mentioned above had a 2.3 ± 0.8

mm error [8], which is a lower average Euclidian distance than this study, also

much more consistent. When comparing to the literature, another 3D approach

tried to localize 4 landmarks [33]. That study had errors ranging from 0.9 to 3.6

mm with 73 training images. Which is also a better result than this study. One of

the previous approaches used 2.5D for landmark detection [9]. That study however

used only relevant slices, whereas this study used all the slices from an MRI scan.

Which can make comparing not really representative. The two landmarks that

both studies have in common are the pubic bone and the sacrococcygeal point. The

other study achieved Euclidian distances of 2.0 and 11.1mm respectively, which is

better than the 4.84 and 23.55mm this study achieved. However, the other study

used 156 training scans, and only relevant slices, which makes the training easier.

Future research could look into improving landmark detection in 2.5D, this can be

done by trying other forms of input than a heatmap. Also, other loss functions

can be tried. Now, the MSE is used which in combination with heatmaps as input

can be the cause for poorer results. Also, the model can be tuned with parameter

optimization, which could lead to better results in both landmark detection and

segmentation. This could also lead to shorter training times. Finally, 2.5D ForkNet

can be compared to 3D ForkNet with the four landmarks and bladder segmenta-

tion used as parameters. To compare the volume of the bladder underneath the

PICS plane, also the lowest point of the bladder can be determined. Both can be

compared to the ground truth, to see which could work better for POP assessment.
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6 Conclusion

The 2.5D U-Net model outperforms the 3D U-Net in bladder segmentation but

falls short in landmark detection, while ForkNet presents an opportunity to inte-

grate different anatomical features, albeit with the need for optimization in POP

assessment. The 2.5D U-Net model gets a higher dice similarity coefficient with

bladder segmentation than the 3D U-Net, by using the same amount of input

data. For landmark detection, the used 2.5D U-Net model is inconsistent and does

not give better results than 3D U-Net. Using ForkNet, it is possible to combine

different anatomical features into one AI model. However, it needs to be optimized

to the goal of POP assessment.
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