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Abstract 

In recent years, decision-support systems have become a useful instrument for boosting 

efficiency and productivity in the provision of public services. However, the low 

sensitivity to individual settings and the lack of representation of certain groups might 

enhance systemic biases in such decision-support systems. The present study seeks to 

evaluate the accuracy of data used in algorithmic decision-support systems and the 

degree to which general standards in such systems reflect individual characteristics. 

Specifically, the study focuses on an algorithmic decision-support system deployed in a 

healthcare setting and designed to detect early patient deterioration through continuous 

monitoring of vital signs. The study was conducted at Isala Hospital Zwolle in the 

Netherlands, utilizing the Healthdot Philips patch to monitor the vital signs of 

hospitalized patients. The results showed that contextual factors such as activity, patient 

positioning, and individual factors such as BMI and age, affect the quality of heart rate 

and respiratory rate data obtained by the device. Similarly, it was observed that 

individual factors exert an influence on vital sign values. Specifically, heart rate values 

exhibited a significant increase among younger age groups when compared to other age 

groups. The results of this study show the importance of critical analysis of the 

completeness of the dataset used in algorithms for decision-support systems. In addition, 

the results of this study emphasize the importance of avoiding general approaches to 

diverse demographic populations. 

 

 

  



 

3 
 

Table of Contents 

1.Introduction ................................................................................................................................. 4 

2.Literature Review ........................................................................................................................ 7 

2.1 The use of Algorithm Decision-Support systems in the public service delivery .................. 7 

2.1.1 The rise of ADS in the public sector .............................................................................. 7 

2.1.2 Application and opportunities of ADS in the public sector ........................................... 8 

2.1.3 Challenges and risks of using ADS in the public sector ................................................ 9 

2.1.5 ADS applications ......................................................................................................... 11 

2.2 The case of the Early Warning System Score in healthcare ............................................... 12 

2.1.2 Vital signs measurements and the Early Warning System (EWS) .............................. 13 

2.1.3 Evidence of using wearable devices for continuous vital signs monitoring ................ 14 

2.1.4 Association of individual factors (age, gender, BMI) and vital signs thresholds ........ 18 

3. Conceptual framework .............................................................................................................. 20 

4. Methodology ............................................................................................................................. 23 

4.1 Data collection .................................................................................................................... 23 

4.2 Data cleaning and pre-processing ....................................................................................... 24 

4.3 Data analysis design ........................................................................................................... 25 

4.3 Analysis of relevant results ................................................................................................. 26 

5. Results ....................................................................................................................................... 27 

5.1 Quality of vital signs and missing values ........................................................................... 27 

  5.1.1. Descriptive statistics ..................................................................................................... 27 

  5.1.2. Association between the contextual and individual variables with missing values. ..... 30 

5.2 Individual characteristics and vital sign .............................................................................. 34 

6. Discussion ................................................................................................................................. 42 

7. Conclusions .............................................................................................................................. 54 

8. Ethical Acknowledgements ...................................................................................................... 55 

9. References ................................................................................................................................ 55 

10. Appendix ................................................................................................................................ 64 

 

 

  



 

4 
 

1.Introduction  

In public management and policy decisions, there has been an increasing use of data-

driven decisions in the last few years. Similarly, many decision-support systems have 

emerged, ranging from basic algorithms such as risk assessment to more sophisticated 

models that employ artificial intelligence (Chauhan, 2020). The implementation of data 

initiatives has increased the efficiency of public services by simplifying procedures, 

accelerating analysis and achieving more accurate predictions (König & Wenzelburger, 

2021; Kuziemski & Misuraca, 2020). Even though decision support systems have guided 

public administration, these systems are not error-free. Concerns are typically raised 

regarding the operation of the data-driven algorithm, as it may perpetuate biases and 

discriminatory practices, and thus produce unintended outcomes (Brown et al., 2019).  

Therefore, it is essential to recognize that datasets may be biased toward a particular 

population, and that the algorithm may exacerbate this bias (Kuziemski & Misuraca, 

2020). The underrepresentation of marginalized groups can result in decision-makers 

relying on incomplete data leading to unequal treatment. For instance, the Dutch 

government's utilization of an algorithm to assess the likelihood of fraudulent childcare 

benefit claims, inadvertently exposed non-Dutch families to racial profiling, resulting in 

the ‘childcare benefits scandal’ (Schellevis, 2021).  It's worth noting that a significant 

factor contributing to these challenges is the often poor data quality, one of those 

stemming from missing data (Kilkenny & Robinson, 2018), thus a comprehensive 

evaluation of data quality is imperative for fostering diversity and inclusion (Fararouei et 

al., 2017). 

Clinical settings have benefited from the implementation of decision-support systems, 

with one notable example being the Early Warning System (EWS) score. This system 

has served as a prognostication tool to identify deterioration in patients and trigger 

decisions regarding the amount of monitoring or the transferal of the patient (Fang et al., 

2020). The EWS is based on detecting vital sign deterioration, which is often followed 

by adverse events such as cardiac arrests. Vital signs of patients are put into the EWS 

and depending on predefined thresholds, points are assigned to each vital sign 

measurement, which are then summed up to provide a final score (Smith et al., 2014). 

Over time, technological advancements have automated the EWS, transitioning it from a 
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manual assessment to an automatic process, particularly with the integration of wearable 

sensors in clinical settings (Subbe & Bramley, 2022). 

Following the emergence of the COVID-19 pandemic and the strain on healthcare 

systems worldwide, the adoption of multiple electronic devices has increased, such as 

remote monitoring options for vital signs (Manta et al., 2020; Santos et al., 2021). These 

devices enable remote monitoring of vital signs inside and outside the hospital and 

provide real-time patient data that can be integrated into the EWS. Furthermore, the use 

of this technology has the potential to enhance patient outcomes by providing more 

frequent and accurate vital sign measurements (Posthuma, et al., 2020). However, there 

is limited information available about the differentiation of vital signs using these 

continuous monitoring devices, because the majority of existing literature has focused on 

the efficacy of wearable devices (Downey et al., 2018).  

Therefore, this study aims to examine the application of algorithmic decision-support 

system in the delivery of public services through the specific case of continuous vital 

sign monitoring in a medical setting. The primary objective is to assess the quality of 

data used for Algorithmic Decision-Support (ADS) systems and understand to what 

extent do these systems effectively capture and represent individual characteristics. 

Specifically, the research focuses on the Early Warning Score (EWS), a type of ADS 

used in healthcare to detect early patient deterioration. 

 

The study will address three distinct sub-questions: (1) What is the quality of vital 

signals recorded by wearable devices, and is there a correlation between data loss and 

patient-related factors? (2) How do the heart rate and respiratory rate distributions differ 

between the most important patient characteristics, such as gender, age and body mass 

index? (3) what are the implications of the data quality and individual characteristics on 

decision support systems like the EWS? 

To accomplish the research goals, a quantitative approach was used. The Healthdot 

patch, a wearable device created by Philips Electronics in the Netherlands, was used in 

the data collection process. A total of 403 hospitalized patients from Isala Hospital-

Zwolle were included in this phase of data collection, which lasted from November 2021 

to August 2022. A total of 3 mean tests and 1 regression analysis were carried out using 
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the collected data, which included information on patient activity and posture along with 

other patient characteristics.  

The outline of this study is organized into chapters. Chapter 2 includes a literature 

review starting from the use of ADS’s systems to the particular case of the EWS system 

in healthcare. In Chapter 3 a conceptual framework derived from the academic literature 

will be presented in a graphical way. Chapter 4 will delve into the methodology 

employed and the considerations of the data collection process. Chapter 5 will present 

the findings from the research. Subsequently, Chapter 6 will draw out the discussion 

based on the research findings in comparison to academic literature, as well as propose 

future line of research. Lastly, in Chapter 7 the main conclusions of the research will be 

summarized. 
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2.Literature Review 

2.1 The use of Algorithm Decision-Support systems in the public service 

delivery 

This chapter examines the adoption of Algorithmic Decision-Support (ADS) systems in 

the public sector, its early implementation, the rationale for its use, the inherent pitfalls 

and risks of its application and the associated problem with data incompleteness within 

these technologies. Furthermore, it provides an in-depth exploration of the diverse 

applications of ADS, with a specific focus on its significance in healthcare. By 

scrutinizing the evolution and implications of ADS in public service delivery, this 

chapter aims to stablish a framework about the use of this algorithms into the delivery of 

essential public services.  

2.1.1 The rise of ADS in the public sector 

Algorithmic Decision-Support systems have become increasingly prevalent in the public 

sector since the early 21st century. These systems have been employed to quantify 

political outcomes, facilitate large-scale decision-making, and address the limitations of 

human information processing (Zarsky, 2016). 

The adoption of ADS systems in the public sector is rooted in the values of efficiency 

and effective governance. During a time when a new framework known as New Public 

Management (NPM) emerged as a model for governance, the promise of efficiency in 

public administration based on private sector management practices became paramount 

(König & Wenzelburger, 2021). This led to a significant overlap between the core ideas 

of NPM and the adoption of ADS systems. Both seek to achieve higher standardization 

and automation, the use of quantifiable indicators, and a greater emphasis on measurable 

outcomes and performance rather than rigid procedures. As König & Wenzelburger ( 

2021) define, "ADM -Algorithmic Decision Making-  systems take NPM-ideas of 

efficient service delivery through evidence-based decisions to the next level as they use 

algorithmic systems to implement, or at least inform, such decisions". In this way, ADS 

systems have been portrayed as helpful tools that generate more efficient decisions 

compared to human decision-makers. 

The initial generations of ADS tools promised quantification and served as the basis for 

evidence-based policies. These tools were even recommended as one of the primary 
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methods for quantifying outcomes within the policy field (Nilsson et al., 2008). These 

systems were characterized by explicitly programmed steps that incorporated the 

knowledge of experts, allowing software agents to draw inferences and reason based on 

this knowledge (Chauhan, 2020). 

The increased availability of data and the development in computational models has led 

to a Big Data Era. As a result, ADS systems have become increasingly capable of 

analyzing vast amounts of data which have empowered these systems to provide more 

accurate and efficient outcomes (Höchtl et al., 2016). By leveraging to techniques such 

as automated machine learning algorithms, ADS has revolutionized decision-making 

processes by enabling classification and prediction tasks to be performed with greater 

precision. Nonetheless, due to the same phenomena, in recent year, the used of ADS 

systems has been extending to sensitive areas such as policing (Bennett Moses & Chan, 

2018; Oswald et al., 2018), childcare and social benefits (Chauhan, 2020; Keddell, 2019; 

Saxena et al., 2021), and predictive models for criminal recidivism (Miron et al., 2021; 

Završnik, 2021), shifting the goal of supporting decision-making to a an automated self-

learning classification tool. 

In conclusion, the rise of ADS in the public sector has been driven by advancements in 

AI technologies and the availability of extensive datasets. While the initial focus was on 

quantification and evidence-based policies, ADS has now evolved to encompass diverse 

areas, including sensitive domains like policing and criminal justice. The shift towards 

machine learning algorithms has revolutionized decision making, emphasizing 

classification and prediction. However, as it will be discussed further, careful 

considerations must be given to the ethical and accountability aspects associated with 

ADS to mitigate potential biases and risks. 

2.1.2 Application and opportunities of ADS in the public sector 

One compelling argument that supports the use of Algorithmic Decision Systems is their 

superior information processing capabilities when compared to human capacities. The 

use of ADS allowed for the systematic handling of enormous volumes of data, which 

produced quicker outcomes and increased uniformity in the management of information 

(Kolkman, 2020). Especially in areas of public Administration referred to as “mass 

decision making”, such as taxes or social benefits, ADS may result in the development of 

valuable support systems (Monarcha-Matlak, 2021).  
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In light of the recognition that human cognitive resources are inherently limited, it 

becomes evident that ADS offers the potential to assess a wide array of information 

sources, thereby facilitating improved decision-making. As a result, organizations with 

more information resources and processing capacity are anticipated to achieve better 

results (Maciejewski, 2017). By leveraging algorithms, organizations seek to transform 

data into knowledge in the hope that informed decision-making will lead to improved 

resource efficiency (Holten Mandøller, et al., 2020). 

ADS is frequently viewed as a more objective method than human evaluation because it 

operates according to a predetermined set of rules.  By reducing human biases such as 

prejudices and stereotypes, the usage of ADS has the potential to improve the objectivity 

od the decision-making (Kolkman, 2020). The process of human decision-making is 

frequently impacted by heuristics and biases, which leads to outcomes that are less 

efficient. This is especially true in situations in which there is a limited amount of 

information. 

The usage of ADS has the potential to provide various benefits, including quicker 

response times, the analysis of large-scale data sets, and informed decision-making, all 

of which correspond with the principle of efficiency via enhanced information. However, 

it is critical to recognize that the fulfillment of these advantages is not assured, because 

ADS has inherent risks and limitations in public service delivery. As a result, a thorough 

knowledge of the possible benefits and downsides is required to guarantee the 

appropriate and successful deployment of ADS systems in the context of public services. 

2.1.3 Challenges and risks of using ADS in the public sector 

The utilization of algorithmic decision-systems (ADS) presents various challenges and 

possible risks that require examination, including issues related to transparency, limited 

contextual comprehension, and biases. Firstly, it is worth noting that numerous 

algorithms employed in decision-making procedures function as opaque entities, thereby 

posing challenges in comprehending the fundamental factors and criteria that shape their 

decision-making processes This phenomenon persists even when employing white-box 

artificial intelligence , as it requires the involvement of a domain expert capable of 

conducting audits on these systems(Dourish, 2016). 

Moreover, a lack of contextual comprehension presents a substantial peril in the realm of 

algorithmic decision-support. Algorithms have the risk of overlooking or 
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oversimplifying contextual factors that are essential in decision-making, including social, 

cultural, and ethical dimensions (Janssen & Kuk, 2016). In healthcare for example, some 

algorithmics tools oversimplifying the complexity of the patient. This can be seen in the 

use of the ADM CORONANET, a tool designed to support the admission/discharge 

decisions of oncology patients with COVID-19. The problem was that the model was 

unable to provide the logic behind the recommended action and its relationship with the 

biomarkers (Albumin, C-Reactive Protein, Lymphocytes , Neutrophils and Platelets)  

levels, especially given the limited number of biomarkers included (Wysocki et al., 

2023). 

Another important challenge inside the use of ADS is the risk of bias results against 

marginalized groups (Barocas & Selbst, 2018; Eubanks, 2017; O’Neil, 2016). Even 

though these biases can emerge at various stages, including data collection, data labeling, 

algorithm design, and decision implementation, (Janssen & Kuk, 2016) a large amount 

of these problems arise in the data collection and labeling process (Barocas & Selbst, 

2018; Eubanks, 2017; O’Neil, 2016). 

In the data collection stage, missing data or absence of demographics recollection can 

introduce biases (Cahan et al., 2019). Here, the problem arises if in data collection 

processes systematically exclude or underrepresent certain individuals or communities. 

For example, studies have shown how the absence of certain variables in datasets such as 

race or gender, can result in biased outcomes that disproportionately impact marginalized 

groups (Buolamwini, 2018; Zarsky, 2016). 

For instance, an example of bias during the labeling stage1 can be seen in the case 

examined by Obermeyer et. al. (2019). The authors scrutinize an algorithm used in US 

health systems to target high-risk care management. The issue was that the variable 

“illness" was labeled using “healthcare expenditure by patient" as a proxy, not reflecting 

actual outcomes. As a result, the algorithm assigns the same risk score to black patients 

who are much sicker than white patients, but usually spend less on healthcare. Black 

patients utilize healthcare facilities less for economic or trust-related reasons, producing 

a bias in the algorithm's forecasts.  

 
1 Data Labeling is  the process of adding labels to provide context to the raw data so that a machine learning model can 

learn from it. For example, the label can define if an image shows a bird or a car (AWS, 2023) 
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Another significant danger is that even when utilizing human judgment, some 

algorithmic biases may still be unintentionally accepted by us. The reasoning behind this 

is because individuals tend to exhibit a tendency to conform to the decisions made by 

technology-based system, rather than critically evaluating them (Hitron et al., 2022; 

Robinette et al., 2017). Hitron et al. (2022) examined conformity biases from a gender-

biased robot mediating a male-female argument. Despite being told the robot's algorithm 

is based on human cases, most participants did not associate the robot's conduct with 

prejudice. On the contrary, participants justified the robot's actions using explanations 

related to gender stereotypes. This phenomenon may lead to the belief that these systems 

can generate comparable biases on a larger magnitude than those resulting from human 

decisions. 

Therefore, it is crucial to acknowledge the risks associated with unreliable data and 

biases in ADS and to implement measures to minimize their impact. Enhancing data 

quality through rigorous validation processes, promoting diverse and representative 

datasets, and incorporating fairness considerations into algorithmic design are vital steps 

to counteract biases and ensure more equitable decision-making. 

2.1.5 ADS applications 

Although ADS has numerous uses in the public sector, not all sectors can use it equally. 

The ability to translate knowledge into ADS systems is more limited in fields like social 

benefits and caseworkers, where the value of in-person communication and human 

judgment is stressed (Holten Mandøller et al., 2020). Instead, ADS has demonstrated 

interesting applicability in the healthcare industry, where decisions involve less 

discretion and exhibit a more programmatic nature. 

For the use in enhanced medical services, ADS has found fertile ground for development 

in healthcare. Paramount priorities within this sector include the allocation of scarce 

resources, along with the prediction and prevention of adverse outcomes, and timely 

diagnoses. In response to these demands, ADS tools have been systematically designed 

to address such priorities. These tools span various domains including image recognition 

(Goyal et al., 2020), diagnostic tools (Chowdhury et al., 2020; Kermany et al., 2018), 

and early warning system (EWS) score  to identify risky patients (Capan et al., 2018). 

However, the utilization of ADS in healthcare encounters similar challenges as discussed 

earlier regarding data misrepresentation. Particularly in healthcare, there exists a 
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historical bias in the data collected for medical trials, characterized by imbalances in 

gender, race, and other factors, leading to non-representative recommendations. For 

instance, models that helps to develop medicine protocols are based predominantly on 

European ancestral genotypes (Gijsberts et al., 2015; Paulus et al., 2018). 

Although ADS systems are a powerful tool for improving performance and resource 

effectiveness, they are far from error-free. However, accurate results can be achieved 

from analyzing and intervening with the causes of biases, thereby lowering potential 

hazards. In this regard, it is clear that the efficacy of ADS depends on more than just the 

technology itself, as well as the sources of the data and the guiding principles that guide 

the development of these datasets and systems. 

2.2 The case of the Early Warning System Score in healthcare 

The primary focus of this study is to examine a specific application of Algorithmic 

Decision-Support system in the healthcare sector. The presence of structured healthcare 

data and the nature of evidence-based approaches, and the evident pressure to counter the 

scarcity in human resources in healthcare have evidently generated a keen interest in 

using Big Data and different algorithmics in the healthcare practice. As discussed in the 

previous section, this context led to an increase in research on assistant chatbots, AI 

image recognition models, and Machine Learning analysis (Zhao et al., 2021). 

However, even prior to this technological revolution, already in 1997 manual algorithms 

in the form of input-output systems were introduced as tools to assess patient 

deterioration within hospital settings, utilizing physiological measures such as vital signs 

(Nagarajah et al., 2022). This marked the introduction of the Early Warning System 

(EWS), which has since evolved over time. While recent advancements have made it 

feasible to automate the EWS and enhance ADS systems, concerns persist regarding the 

accuracy of data captured by these machines and whether conventional thresholds 

adequately account for individual variations. 

The following chapter analyzes these concerns, structured across three sections. The first 

section presents the vital signs measurements and its relationship with the Early Warning 

System, the second section talks about the use of wearable devices to continuous 

monitoring of vital signs and the last section explores the association between individual 

factors and vital signs thresholds.  
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2.1.2 Vital signs measurements and the Early Warning System (EWS) 

The abnormalities in a patient's vital signs are an important factor in detecting 

subsequent deterioration. This deterioration can be materialized as what is considered an 

adverse event such as a cardiac arrest, respiratory arrest or any other complication 

(Hillman et al., 2002; Sapra et al., 2020). The extent of vital sign abnormalities may also 

be a predictor of long-term patient health outcomes, a return to the emergency 

department (ED), and hospital readmissions (Andersen et al., 2016; DeVita et al., 2010). 

Due to its importance, it is used to assess the patient's level of urgency in the medical 

setting. For this reason, to account for these shifts in vital signs a number of early 

warning systems (EWS) have been developed as a method to identify vital sign 

abnormalities and similar parameters (Williams et al., 2016). 

The EWS is used in hospitals as part of a "track-and-trigger" system, in which a rising 

score results in a stepped-up response, ranging from more frequent patient observations 

(for a low score) to urgent review by the medical staff (Le Lagadec & Dwyer, 2017). 

Usually temperature, pulse rate, blood pressure, oxygen saturation, and respiratory rate 

are the vital signs that are most frequently measured. Diverse adaptations of the Early 

Warning System have been developed, encompassing supplementary variables and 

patient-specific specifications. 

Noteworthy among these adaptations is the National Early Warning Score (NEWS), 

which introduces the variable of "patient awareness" (Smith et al., 2013). Another 

example is the Chronic Respiratory Early Warning System, CREWS, tailored for 

patients with chronic hypoxaemia , characterized by persistently low oxygen saturation 

levels even when their condition is stable (Eccles et al., 2014). 

However, there are different modifications that include additional variables such as the 

National Early Warning Score, NEWS, and even different specifications based on the 

group of patients like the Chronic Respiratory Early Warning System, CREWS, which is 

adapted for patients with chronic respiratory diseases that often presents low oxygen 

saturation even when their condition is stable.  

The measurement of vital signs has traditionally been performed either partially or 

entirely by manual means, resulting in potential inaccuracies in measurement and 

calculation (Alam et al., 2014). In a conventional approach, vital signs are recorded three 

times daily or at 8-hour intervals. Nevertheless, factors like exhaustion and inadequate 
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personal preparedness can affect the accuracy of these recordings, making it difficult to 

identify early deterioration by the medical personal (Leuvan & Mitchell, 2008; Petersen, 

2018). The effectiveness of the EWS in predicting deterioration has been limited by the 

challenges associated with manual vital signs assessments (Downey et al., 2017). 

However, recent developments in wearable sensors offer the potential to replace current 

manual processes with remote and continuous monitoring of vital parameters, thereby 

reducing the patient's deterioration (Cardona-Morrell et al., 2016; Weenk et al., 2019). 

2.1.3 Evidence of using wearable devices for continuous vital signs monitoring  

The potential of incorporating wearable devices in the monitoring of vital signs is 

showing significant promise. When evaluating the available evidence pertaining to these 

devices, it is essential to not only evaluate their precision in measuring vital signs but 

also to scrutinize their ability to detect potential adverse events, including cardiac arrest, 

respiratory arrest, mortality, and rehospitalization. 

In the following subsection, these subjects will be explored to gain a comprehension of 

the advantages and constraints related to the utilization of wearable devices for patient 

monitoring within a hospital setting. Through examination of the various aspects, the 

aim is to offer a comprehensive evaluation of the feasibility and efficacy of wearable 

devices for continuous monitoring for in-hospital patients. 

a. Evidence of Vital Signs Monitoring with Wireless devices. 

Although different systematic reviews show that the evidence to support the use of 

continuous measurement of vital signs with wireless devices is inconclusive (Cardona-

Morrell et al., 2016; Leenen et al., 2020; Wells et al., 2022), there is a growing body of 

research supporting this claim. According to recent studies, this new technology offers 

an accurate record of vital signs (Jacobs et al., 2021; Posthuma, Visscher, et al., 2020; 

van der Stam, Mestrom, Scheerhoorn, et al., 2022) and support in the early detection of 

clinical adverse events (Breteler et al., 2018; Posthuma, Downey, et al., 2020). However, 

the sheer variety of technologies that are currently available, each with a specific set of 

functionalities, makes it challenging to address the reliability of these devices (Leenen et 

al., 2020). Another layer of difficulty is that many of the validation studies for these 

devices have been conducted with healthy volunteers and low-risk patients, making the 

results inapplicable to high-risk clinical settings (Breteler et al., 2018). 
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The majority of studies on reliability compare the precision of wearable sensors to other 

measurement methods like nursing measurements and bedside monitors (van Rossum et 

al., 2022; Wells et al., 2022). The results of these tests generally show that electronic 

devices can measure heart rate with good accuracy and with only small mean difference 

errors; however, the performance is rather subpar when measuring the respiratory rate 

(Wells et al., 2022). This unusual data could be the result of a bad wireless connection or 

the patient's level of movement, even though in-bed electronic devices or humans 

monitoring the RR exhibit different values. 

 

To understand these devices better, it will be helpful to divide them into two categories. 

First off, there are more advanced devices with extensive sensors made for in-depth 

prehospital (ambulance) or clinical physiological monitoring, like the ViSi Mobile and 

WVSM Device. The monitoring capabilities of these devices are comparable to those of 

conventional intensive care units, enabling the gathering of extensive and detailed data. 

However, a different class of monitoring equipment prioritizes functionality for wireless 

ambulatory clinical monitoring. Since they only provide a small number of vital signs, 

these gadgets are appropriate for daily use. Chest patch sensors like SensiumVitals, 

VitalPatch, and Philips Biosensor are examples of such devices (Leenen et al., 2020). 

 

The current study will use a wearable device called Healthdot, a chest patch developed 

by Phillips Healthcare to track the respiratory and heart rate of the patient. This specific 

device has been positively validated in clinical settings by two studies. Jacobs, et al. 

(2021) assessed the accuracy and precision of Healthdot in post-bariatric patients, 

comparing its measurements with standard electrocardiogram (ECG) and capnography 

measurements. The study found that Healthdot offers an accurate solution for both Heart 

Rate (HR) and Respiratory Rate (RR) measurements since 87.5% of the patients met the 

HR requirements and 92.3% met the RR requirements using a 5-minute average data. In 

the same way, Van der Stam, Mestrom, Scheerhoorn, et al., (2022) made the same 

comparison but this time with abdominal cancer patients finding better accurate results 

of more than 95% of precision in both vital signs. Since the presence of subcutaneous fat 

around the chest may cause accelerometer measurements to be inaccurate (Kant et al., 

2022), the lower percentages presented Jacobs et al., (2021) study may be explained by 

the higher BMI of the bariatric study cohort. 
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b. Analyzing wireless devices and clinical outcomes 

The performance of the wireless monitoring patch can be addressed by investigating 

their prediction of the early deterioration or improvement in clinical outcomes. In the 

study of Breteler et al. (2018) , the authors found evidence to support the use of wearable 

devices. Even though the study was carried out just with 31 patients of which just 11 

developed an adverse event, the authors could find a significant number of abnormalities 

in every device tested before the actual adverse event. In specific, Atrial fibrillation (AF) 

was the most common event and it was recognizable due to a sudden increase in HR in 

all recordings by SensiumVitals and HealthPatch. 

 

Other research with comparable artifacts discovered predictability in rehospitalization 

for heart failure (HF). The researchers (Stehlik et al., 2020) showed that a customized 

machine learning analytical platform supplied with patient monitoring data can 

accurately predict HF rehospitalization by using the wearable sensor (Vital Connect). 

The platform was able to identify the risk of hospitalization for HF worsening with 

76.0% to 87.5% sensitivity and 85% specificity, depending on the method used to judge 

pre-event positive windows. 

Finally, Van der Stam, Mestrom, Nienhuijs, et al.(2022) developed an early warning 

scoring system based on vital parameters measured by a Healthdot patch. A total of 103 

were included in the study of which 29 experienced clinically relevant deterioration 

during the study period. The cutoff point for the remote early warning scoring (CREWS) 

was chosen to match the number of true positives obtained in current practice, which 

resulted in comparable sensitivity and specificity for the REWS compared with the 

counterpart of the conventional modified early warning system (MEWS). 

In conclusion, there is a growing research body dedicated to analyzing the effectiveness, 

accuracy, and precision of the use of wearable monitoring devices. Many studies have 

shown that Healthdot patches and similar sensors perform well, establishing the 

feasibility of using this technology in clinical settings. Moreover, the potential 

improvement of using continuous monitoring to prevent the further development of 

adverse events is recognized. However, the current way to identify abnormalities and 

thresholds even with traditional early detection systems is still being adapted and 

developed.  
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c. Limitation in the use of wireless devices for Early Warning Systems (EWS) 

Wireless devices hold great promise in healthcare for continuously monitoring patients' 

vital signs, allowing for the rapid identification and response to any alterations in 

comparison to intermittent measurements. While it would be ideal for every patient to 

receive intensive care unit (ICU)-style continuous monitoring, wearable devices offer a 

potential solution in this regard (Downey et al., 2017). Nevertheless, the application of 

EWS into this context still remains as a challenge due two main problems: to the amount 

of data loss in the records of this wireless devices, and the amount of false-alarms rates 

while applying the EWS with this remote continuous monitoring. 

Regarding to the data quality problem of vital signs recorded by wireless devices, studies 

using remote devices have reported a data loss of 30 to 40% of the recordings (Jacobs et 

al., 2021). Although connectivity issues may contribute to this data loss, it remains 

unclear whether the devices fail to record information from specific populations. Similar 

to oximeters and other tools, the accuracy of measurements from these devices can be 

affected by factors such as skin color not being properly detected (Keller Matthew et al., 

2022). 

Hence, it is worth investigating whether this missing data could be related to other 

variables that hinder device performance. In a study assessing the accuracy of the 

Healthdot patch for continuously monitoring respiratory rate (RR) and heart rate (HR) in 

bariatric patients, the authors hypothesized that the required accuracy and precision using 

accelerometry in bariatric patients may be challenging due to their high Body-Mass-

Index (BMI) and thicker layer of subcutaneous fat around the chest. While the 

measurements were found to be reliable, a significant proportion of low-quality data for 

heart rate was observed, around 34.5% (Jacobs et al., 2021). Although, this data loss 

could be attributed to errors in device placement or other malfunctions, the authors did 

not rule out the possibility that specific characteristics of the population studied were 

contributing factors. 

On the other hand, regarding the number of false-negative alarms, this can be because 

EWS was developed within the context of intermittent vital sign measurements but not 

as a system for continuous monitoring. Differences in values between the two methods 

are expected, therefore there is a need for adjustments for the application of EWS in 

wireless continuous monitoring settings. For instance, the physical intermittent 
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measurement can show different values due to what is referred as the "white coat 

syndrome" where vital signs can be elevated simply by the arousal effect of the nurse 

interaction (C. Downey et al., 2019). 

Although existing literature has demonstrated inherent flaws in EWS alerts for certain 

populations, the challenge is amplified when measurements are continuous. Alarm 

fatigue, characterized by excessive false-positive alerts, has been identified as a key issue 

(Jeskey et al., 2011). To mitigate this challenge, numerous strategies have been 

developed, including adjusting thresholds based on population characteristics, 

night/daytime adjustments, or implementing adaptive thresholds based on pre-defined 

settings (e.g., pre-operation). While these approaches have shown improvements in 

alarm performance, none of the proposed solutions truly address the analysis of 

individual factors in the development of adaptive thresholds. 

2.1.4 Association of individual factors (age, gender, BMI) and vital signs thresholds 

Although most of the early warning systems in clinical deterioration use vital signs, the 

thresholds are developed solely on the information received from the intermittent 

measurements. This can present serious problems because what can be considered a 

normal vital sign deviation could differ by person depending on multiple factors 

(Ljunggren et al., 2016). In this section, evidence of individual factors that affect the 

vital signs trends will be discussed. 

Vital signs tend to alter as a patient gets older. For instance, while blood pressure may 

rise as we age (Pinto, 2007), heart rate normally declines (Yeragani et al., 1997). In the 

same way, the respiratory rate can decrease with increasing age due to physiological 

changes to the respiratory system that affect the chest wall, the shape of the diaphragm, 

and the lung parenchyma itself (Chester & Rudolph, 2011). 

Gender also has been shown to affect heart rates and respiratory rates. For instance, 

studies have shown that women tend to have lower heart rates compared to men due 

which can be due to differences in body size, physical activity, and hormone levels 

(Koenig & Thayer, 2016; Wei et al., 2017). Along the same line, there is research that 

supports that men tend to have a slightly higher respiratory rate compared to women 

(Lomauro & Aliverti, 2018). 
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In the same way, a difference in vital signs can be caused by several illnesses, including 

diabetes, heart disease, and respiratory problems. Individuals with chronic obstructive 

pulmonary disease (COPD) had higher respiratory rates compared to those without these 

conditions (Jensen et al., 2013). In the same way, heart rate can differ depending on the 

pre-health conditions. For instance, diabetes can cause a slower heart rate (Bassi et al., 

2018). 

All of the beforementioned factors can have an impact on the way that vital signs are 

used fot EWS, especially when they are the main input for deteriorative detection. 

Although there is awareness of the lack of sensitivity of general thresholds as decision 

support (Downey et al., 2017; Langsted et al., 2020), there are few attempts to introduce 

the individual variability inside ADS like the EWS. For instance, Van der Stam, 

Mestrom, Nienhuijs, et al., (2022) support investigating the role of specific individual 

factors like age, gender, and co-morbidities due to the high amount of false negative with 

the traditional EWS. Along the same lines, Langsted et al. (2020) found that Including 

Charlson Comorbidity Index status in EWS or adjusting for Charlson Comorbidity Index 

-status could increase the predictive value of the EWS in predicting 7-day mortality. 

To conclude, it is important to incorporate individual factors in the analysis of vital 

signs. Due to the development of recent technology, there are technological opportunities 

to address the lack of incorporation individual factors in the analysis, namely by using 

the continuous monitoring of vital signs proportionate with wireless wearables devices. 

Such a device introduces a new opportunity for analysis and has the potential to increase 

decision-support systems like the EWS.   
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3. Conceptual framework  

In this section, a conceptual model is provided of the key stages and components 

involved in a comprehensive Algorithmic Decision-Support system for public service 

delivery. The novelty of this model relies on tracking all the flow starting from the input 

through the transformation and the results of the algorithmic support systems. This 

approach highlights the importance of analyzing missing data and its interaction with 

other patient variables. 

The primary objective of this analysis is to examine the data and outcomes of an 

Algorithm Decision-Support system, specifically the Early Warning System (EWS). To 

achieve this the study focuses on the measurement of vital signs using a wireless device 

and explores their implications within the EWS framework (Graph 1). 

The model is divided into two stages. The first stage will show the retrieval of 

information from the wireless sensor and transformed into raw vital signs. In this stage, it 

is theorized that factors linked to the subject are affecting the amount of data retrieved 

from the wireless device. For explanatory purposes of this thesis, the factors will be 

divided into two types: contextual and individual. The first type of factor, contextual, 

relates to variables that are associated with the patient and her surroundings, such as the 

patient's posture when lying in bed and the degree of physical activity. In contrast, the 

second type of factors, individual, pertain to biological attributes such as gender and age, 

as well as relevant health indicators like the Body Mass Index. 

As discussed in the literature review, the amount of data loss can be due different factors. 

While it is reasonable to think that activity level can lead to sweating and affect the 

adherence of the patch (Bent et al., 2020), on the other hand it is also possible that some 

positions can create additional noise, as certain body positions can create pressure where 

the patch is attached to the patient. Therefore, two hypotheses are formulated:  

• H1: Contextual factors are associated with the loss of data in heart rate measured 

by the wireless device.  

• H2: Contextual factors are associated with the loss of data in respiratory rate 

measured by the wireless device. 

Similarly, the consideration of individual factors should not be disregarded when 

attempting to determine the cause of data loss. In this scenario, it is plausible that there 
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may exist a potential correlation between gender, age, and body mass index with regards 

to the patterns observed in the data that is currently missing. The current body of 

literature has not yet provided sufficient evidence to support this claim. However, it is 

acknowledged as a potential hypothesis that specific populations may be associated with 

data loss  (Jacobs et al., 2021). 

• H3: Individual factors are associated with the loss of data in heart rate measured 

by the wireless device. 

• H4: Individual factors are associated with the loss of data in respiratory rate 

measured by the wireless device. 

The second stage hypothesized that vital signs baselines are different for patients 

depending on individual characteristics such sex (Koenig & Thayer, 2016; Wei et al., 

2017), age  (Chester & Rudolph, 2011; Shindo et al., 2021; Zhang, 2007), and BMI 

(Littleton, 2012). The examination of these variables’ relationship gain insights into how 

patient-specific variables may impact the interpretation of vital signs within the EWS. As 

discusses in the literature, individual specific characteristics gives different baselines and 

therefore requires specific thresholds. Therefore, two hypotheses are formulated: 

• H5: Heart Rate presents different distributions depending on individual factors.  

o H5a Heart Rate presents different distributions depending on gender. 

o H5b Heart Rate presents different distributions depending on BMI. 

o H5c Heart Rate presents different distributions depending on age. 

• H6: Respiratory Rate presents different distributions depending on individual 

factors.  

o H6a Respiratory Rate presents different distributions depending on 

gender. 

o H6b Respiratory Rate presents different distributions depending on BMI. 

o H6c Respiratory Rate presents different distributions depending on age. 

Lastly, the model shows that any factor explained before and the process behind the 

ADS will have serious implications for the Decision-Making Support System, in this 

case, the EWS. Understanding the process and limitations is an essential step for 

optimizing the EWS and ensuring that it accounts for the diverse and unique aspects of 

each individual. 
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Graph 1: Conceptual Framework 
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4. Methodology 

4.1 Data collection 

The data for this study was gathered from Isala Hospital-Zwolle during the period from 

November 2021 to August 2022. Isala Hospital is a large regional hospital, 

encompassing multiple locations in the region across the Netherlands, with its primary 

facility situated in Zwolle. As part of the hospital's research projects on wearable 

devices, the information for this study was available and provided at the beginning of the 

research. 

The study involved 403 patients who were subjected to continuous monitoring of their 

vital signs during their stay at the designated medical unit. The monitoring period's 

duration varied between 3.5 hours and 737 hours. In order to maintain uniformity, the 

application of the wearable device was restricted to individuals who had been 

hospitalized for a duration of at least 48 hours. 

The wireless device used for retrieved the vital signs of the patients was the Heathdot 

patch manufactured by Philips Electronics Nederland B.V. This device is a small patch, 

5x3 cm in size, is attached to the patient's lower left rib on the mid-clavicular line 

(Appendix 1) (Van der Stam, Mestrom, Scheerhoorn, et al., 2022). The Healthdot 

possess an accelerometer-based technology that process the motion signal to calculate 

heart rate (HR), Respiratory Rate (RR) and other measurements. The aforementioned 

data is stored within the system and subsequently transmitted at regular intervals of 5 

minutes to a cloud server in the form of an aggregated average (Jacobs et al., 2021). 

In this study, I used the information retrieved from the cloud server of the Heathdot. HR 

and RR are displayed in beats per minutes (bpm) and breaths per minutes(rpm) 

respectively. Additionally, physical activity is measured by the accelerometer and gives 

an activity level scale from 0 to 10. Furthermore, the device assesses the body position of 

the patient, providing a total of eight options for measurement. These options include 

lying on the abdomen, lying on the right side, lying on the left side, lying in a reversed 

position, being in an upright position, being in a backward position, being in a supine 

position, and being in a forward position (Appendix 2). 
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4.2 Data cleaning and pre-processing  

This study initially included a dataset consisting of 403 patients and 416 series of vital 

signs to be analyzed. To ensure the consistency and reliability of the data, patients who 

passed away during the study period were subsequently removed from the dataset. This 

exclusion aims to eliminate additional variability that could potentially affect the study 

outcomes. As a result, the final dataset comprised of 392 series of vital signs collected 

from 381 patients. This exclusionary measure, which encompassed 5% of the population 

(equivalent to 22 patients), was made due to substantial dissimilarity in their biomarkers 

and the insufficient sample size to appropriately incorporate them as a control variable. 

As a result, the final dataset consists of 392 series of vital signs, collected from a cohort 

of 381 patients. 

Demographics of the included patients are presented in Table 1, providing a 

comprehensive overview of the study population. However, out of the total amount of 

series with vital signs, 39 series did not contain recorded demographic information. As a 

result, the final dataset consists of 353 series with available individual variables. 

Table 1 : Fundamental demographic information2 

Gender Patients Obs (%)    
Female 146 151 42.80%    

Male 198 202 57.20%    
Total 344 353      

       

Age Patients Obs Mean Min Max 
Stand. 

Dev. 

18-30 4 10,381 22 21 27 2 

30-50 23 30,403 43 33 50 5 

50-70 137 214,509 62 51 70 5 

>70 176 242,955 79 71 96 6 

Total 340 498,248 68 21 96 14 

 

BMI  Patients Obs Mean Min Max 
Stand. 

Dev. 

BMI<25 117 191,964 22 14 25 2 

25<BMI< 30 130 188,171 27 25 30 1 

BMI>30 133 96,156 35 30 65 6 

Total 380 476,291 26 14 65 6 

       

       

 
2 39 series did not count with demographics values. 
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Department  Patients Obs (%)    
Internal 

Medicine 
89 93 26.30% 

   
Lung disease 33 33 9.30%    

Surgery 222 227 64.30%    
Total 344 353     

 

4.3 Data analysis design 

The study follows a quantitative design based on the recording of the vital signs of 

patients over a range of two days up to two weeks. This data will be used for 

correlational analysis, mean differences, distribution comparison, and regressions to 

assess the relationship between the data quality and the relationship between vital signs 

and patients’ characteristics. 

The study will follow two steps. The first step is to assess the quality of the data and find 

any link between the missing values, understood as an empty record or corrupted data, 

and any specific patient characteristic. To assess the missing patterns in the vital signs, 

the first step involves doing Little's chi-squared test to determine if the missing data is 

completely random (MCAR). If the likelihood of an observation being missing is equal 

across all cases, it is referred to be MCAR (Li, 2013). 

Little's chi-squared test was introduced in 1998 as a multivariate test to examine the 

Missing Completely at Random (MCAR) assumption. This test assesses mean 

differences across subgroups that exhibit the same missing data pattern. It achieves this 

by comparing the observed variable means for each missing data pattern with the 

expected population means, which are estimated using the maximum likelihood 

estimates (Craig, 2010; Little, 1988) . 

In the case of rejecting the null hypothesis MCAR, it is inferred that other variables are 

affecting into the missing patterns. To see if any observable variable is associated with 

the missing value, a logistic regression will be performed which will include as a 

dependent variable a dummy variable indicating 1 if the value in the vital sign is missing 

and 0 if it is not missing. For the independent variables, posture, activity level, gender, 

BMI and age will be included.  

The first phase is critical because it determines whether there may be a systematic 

underrepresentation in the recording of wearable devices, which may discriminate 
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against specific groups due to their inability to reliably capture vital signs. Because of 

this, the first step is to identify any potential bias in the total number of vital signs 

recorded. This is important to maintain internal validity at the moment of claiming a 

relationship between vital signs and patients' characteristics. 

In the second phase, after the quality is assessed, the vital signs and their relationship 

with individual characteristics will be evaluated. For this, every patient characteristic 

will be divided into groups and a distribution comparison will be performed against each 

group. In this way, a t-test and ANOVA test will be used to assess how heart rate and 

respiratory rate data distributions are different depending on the most essential patient 

characteristics (gender, age, and body mass index). 

 With more than one million observations, it is assumed that the underlying distribution 

per group will behave as a normal function; however, it is expected that the mean and the 

standard deviation will differ in each group. The analysis focuses mostly on the 

differences in means, which following the central limit theory will behave as normally 

distributed if the sample size exceeds 30 observations per group (Table 1).  

4.3 Analysis of relevant results  

Regarding missing data, studies have demonstrated that a 10% bias is sufficient to 

significantly skew data results (Bennett, 2001; Lee & Huber, 2021). According to 

statistical guidance articles, if more than 40% of the data for crucial variables is missing, 

significant bias will be found in the analyses, and the results should only be viewed as 

hypothesis-generating (Dong & Peng, 2013; Jakobsen et al., 2017). As a result, for the 

purposes of this study, a moderate quantity of missing data is defined as between 10% 

and 40%, while a large quantity of missing data is defined as greater than 40%. 

Regarding the clinically relevant results, the medical standard for identifying relevant 

differences in heart rate and respiratory rate is 10±10 beats per minute and 3±3  breaths 

per minute, respectively (Leenen et al., 2020). For the purpose of this study, it will be 

considered clinically relevant if the statistical significance is s (p 0.001) and if the 

difference agrees with the specified limits. 
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5. Results 

In the subsequent chapter, the outcomes of the statistical analysis will be presented. This 

chapter will be divided into two distinct segments. The initial segment will assess the 

first four hypotheses concerning the quality of vital signs. Conversely, the second 

segment will explore the remaining hypotheses, focusing on the relationship between 

individual characteristics and vital sign distributions. 

5.1 Quality of vital signs and missing values  

5.1.1. Descriptive statistics 

As stated before, the quality of data in the study is understood as the completeness of the 

data. In this regard a value is considered missing when there is a loss in the data set of 

vital signs and the records are not shown or are corrupted. From the total recordings of 

the dataset, heart rate represents 27% of the data loss, while  respiratory rate showed data 

loss of 15%. In this regard, records of vital signs showed to be 16% more complete 

within respiratory rate in comparison of heart rate records.  

 

Table 1: Total recording of Heart Rate and Respiratory rate 

Recordings 
HR  RR  

n % n % 

Complete 404,419 73% 469,769 85% 

Missing 148,165 27% 82,815 15%  

Total  552 584 100% 552 584 100% 

 

Table 2: Descriptive summary of Heart Rate and Respiratory Rate 

Variable Obs Mean Std. Dev. Min Max 

Heart Rate 404419.00 77.78 14.25 31.00 190.00 

Respiratory Rate 469769.00 18.33 4.80 5.00 54.00 

 

 

To assess if this missing data has a special pattern related to observable variables, a 

Complete Missing at Random multivariate test was performed. The variables tested were 

Heart Rate and Respiratory Rate against activity level, position, BMI, age, and gender. 

The chi squared test showed a p-value less than 0.001 which is significant and lets us 
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reject the null hypothesis of random missing (Table3). The rejection of hypothesis lets us 

infer that there is a possible association between the variables and the missing data.  

Table 3: Complete Missing at Random testS 

Missing data patterns heart rate position, activity, BMI, Age, and Gender 

Number of obs 552 583 

Chi-square distance  75 205.8 

Degrees of freedom 41 

Prob > chi-square   <.001 

Missing data patterns respiratory rate position, activity, BMI, Age, and Gender 

Number of obs 552 583 

Chi-square distance  81 808.2 

Degrees of freedom 39 

Prob > chi-square   <.001 

 

As discussed in the framework, two types of variables affecting data loss will be 

evaluated. The first group includes the contextual variables such as activity and position 

which are measured by the same wireless devices. 

 

In Table 4, certain activity levels present a larger portion of missing vital sign data. 

When the activity level reached more than seven in the scale, around 90% of the heart 

and respiratory records are missing. The same effect is saw when the activity level is 0, 

were the amount of missing in heart rate and respiratory rate is 99% and 95% 

respectively. It is essential to note that the number of recordings for activity levels nine 

and ten, 222 and 66 respectively, are the shortest, which could reduce statistical power. 

The significance of these findings will be evaluated in the section that follows. 
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Table 4: Activity level and vital signs missing values. 

   

Activity level 
Total 

Recordings 

Number of 

missings HR 

Number of 

missings RR 

% HR 

missings  

% RR 

missings  

0 10,431 10,372 9,862 99%  95% 

1 4,177 1,794 1,143 43% 27% 

2 32,571 3,395 445 10% 1% 

3 154,251 17,643 859 11% 1% 

4 181,171 39,657 9,868 22% 5% 

5 85,770 37,765 26,747 44% 31% 

6 33,695 23,164 20,735 69% 62% 

7 12,910 11,936 10,873 92% 84% 

8 2,150 2,135 2,000 99% 93% 

9 222 222 215 100% 97% 

10 66 66 66 100% 100% 

Total 517,414 148,149 82,813 29% 16% 

 

Regarding to the posture as a contextual variable, it is seen that when the position are 

“lying on belly”, “Upright” and “Forward” there is a large amount of missing data (Table 

5). While in heart rate, the number of missing recordings obtained during lying in belly 

reached the 62% this number is lower for heart rate being 49%. During the “Upright” 

position, the level of missing reached 60% for heart rate and 52% for respiratory rate. 

Finally, during the forward position, the level of missing values for heart rate was 58% 

and the 49% for respiratory rate. This lead to inquire a possible relationship between the 

position and the missing data in vital signs, however the significancy of these results will 

be evaluated in the next section. 

Table 5: Position and vital signs missing values. 

Position 

Total 

Recordings 

(ascendant) 

Number of 

missings HR 

Number of 

missings RR 

% HR 

missings  

% RR 

missings  

Supine position 221,418 49,760 18,820 22% 8% 

Backward 131,553 39,422 19,241 30% 15% 

Upright 55,342 33,314 28,982 60% 52% 

Lying right 49,094 8,078 6,605 16% 13% 

Lying left 43,237 7,784 1,454 18% 3% 

Lying on belly 8,707 5,431 4,282 62% 49% 

Forward 4,887 2,821 2,406 58% 49% 

Other way around 3,176 1,539 1,023 48% 32% 

Total 517,414 148,149 82,813 29% 16% 
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In relation to the distribution of missing values across individual variables, patterns of 

moderate percentages of missing data can be seen through the groups of BMI and age. 

Specifically, in the case of BMI, the percentage of missing goes from 18% (<25) for the 

lower level to 35% to the largest level (>30). A similar pattern is observed in the 

distribution of missing data by age, with the youngest individuals exhibiting the lowest 

proportion of missing data at 8%, while the oldest individuals had a higher proportion of 

missing data at 32%. In contrast, the respiratory rate exhibited minimal variation, 

remaining relatively constant. 

Table 6: Individual variables and vital signs missing values. 

Variables 
Total of 

Recordings  

 Number of 

missing HR  

 Number of 

missing RR  

% HR 

missings  

% RR  

missings  

Gender           

Female 207,986 51,124 32,708 25% 16% 

Male 298,430 82,505 44,162 28% 15% 

Total 506,416 133,629 76,870 26% 15% 

BMI           

BMI less than 25 191,964 34,886 29,168 18% 15% 

BMI more than 25 but less than 

30 188,171 53,716 28,095 28% 15% 

BMI more than 30 172,449 60,547 25,550 35% 15% 

Total 552,584 149,149 82,813 27% 15% 

Age           

0-30 years 10,381 831 704 8% 7% 

30-50 years 30,403 4,891 3,050 16% 10% 

50-70 years 214,509 47,945 27,704 22% 13% 

More than 70 years 242,955 77,546 42,845 32% 18% 

Total 498,248 143,307 74,303 26% 15% 

The observation implies that there may exist a potential association between individual 

variables and the occurrence of missing data in the context of heart rate. However, it is 

noteworthy that such a relationship is not as readily apparent when considering 

respiratory rate. The forthcoming section will entail the execution of a logistic regression 

analysis to evaluate the statistical significance and effect of the variables evaluated.  

5.1.2. Association between the contextual and individual variables with missing 

values.  

Heart Rate  
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To examine the hypotheses ranging from 1 to 4, a logistic regression analysis was 

conducted. For this regression analysis, some variables were aggregated to make the 

inference easier to understand (Table 7). In this way, BMI was grouped into three 

categories following medical standards (Nuttall, 2015). Additionally, the age was 

organized into four groups: less than 30, 30 to 50, 50 to 70, and more than 70 years old. 

 

The regression revealed a significant association between higher activity levels and the 

presence of missing values in Heart Rate measurements, as indicated by a predictive 

margin of more than 0.91 for level 7 and 0.99 for level 8, both with a z-value lower than 

0.001 (Table 7). Similarly, specific body positions, namely "Lying on Belly," "Upright," 

and "Forward," demonstrated predictive margins of 0.47, 0.32, and 0.30, respectively, 

with z-values significantly below 0.001. These findings suggest that the occurrence of 

missing data in heart rate is positively associated with certain positions and higher levels 

of activity. Consequently, the results provide support for Hypothesis 1 that states that 

contextual factors are associated with the loss of data in heart rate measured by the 

wireless device.  

 

Regarding the individual variables, the logistic regression analysis also included the 

predictive margins for gender, age, and BMI (Table 7). The results indicate that the male 

gender exhibited a predictive margin of 0.27, which is 0.03 points higher than that of the 

female gender. This suggests that both genders have similar effects on the probability of 

resulting in heart rate missing values and there is not a relevant effect of gender on 

missing heart rate.  

 

In terms of BMI, the group with a BMI greater than 30 demonstrated a predictive margin 

of 0.41, which is 0.20 points larger than the group with a normal BMI, and 0.11 points 

larger than the overweight BMI group. These findings suggest that individuals with 

higher BMI values have a greater likelihood of experiencing missing values in heart rate 

data compared to those with lower BMI values.  

 

Furthermore, when examining the age groups, the predictive margin was found to be 

higher for the "more than 70 years" age group, with a value of 0.34. This is more than 

0.20 points larger than the predictive margins observed for the youngest age group. 
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These results indicate that individuals in the older age group are more likely to have 

missing values in heart rate data compared to their younger counterparts.  

 

The information presented about the individual variables indicates that the BMI and age 

increase the probability of missing values in heart rate. For BMI, the predicted 

probability is 41% when the patient has a BMI level greater than 30, and for age the 

predicted probability is 34% when the patients is older than 70 years. These results 

support Hypothesis 2 that states individual factors are associated with the loss of data in 

heart rate measured by the wireless device. 

Respiratory Rate 

Regarding to the Respiratory Rate, the regression analysis revealed a significant 

association between higher activity levels and the presence of missing values, as 

indicated by a predictive margin of more than 0.7 for levels 7, 8 and 9 and a z-value 

lower than 0.001 (Table 7). On the contrary, the lowest activity level recorded, the level 

zero, showed a 0.93 of predictive margin for the heart rate. On the regards of specific 

body positions, it is seen that “Lying on Belly” had the higher predictive margin in the 

group with a value of 0.24 and a z-values significantly below 0.001, and it is 0.15 points 

superior that “lying on left” (the category with less predictive margin). These findings 

suggest that the occurrence of missing data in Respiratory Rate is positively associated 

with certain levels of activity and positions. Consequently, the results provide support 

for Hypothesis 3 that states that contextual factors are associated with the loss of data in 

respiratory rate measured by the wireless device. 

 

Regarding the individual variables, the results indicate that the female gender exhibited a 

predictive margin of 0.17 which is the 0.01 point bigger than the male gender, showing 

no relevance difference in the probability between both groups (Table 7). The same 

results are observed with the BMI variable, were the predictive margins for all groups 

reach around 0.16 showing a low effect of this variable on the probability of missing 

values in the respiratory rate. When examining the age group, none of the groups have a 

predictive value more than 0.17, showing here too a week relationship between the age 

and respiratory rate missing values.  
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The information presented about the individual variables indicates a low association 

between the individual variables, less than 17% of predictive probability, and the missing 

values in respiratory rate. In this regard, the evidence reported does not support the 

Hypothesis 4 that states individual factors are associated with the loss of data in 

respiratory rate measured by the wireless device. 

Table 7: Logit regression and predicted margin of missing values vital signs against position, activity and individual 
variables 

Variables Missing of Heart Rate  
Missing Respiratory 

Rate 

 Margin P>z  Margin P>z 

Position         

Lying on Belly 0.457 >0.001 0.23 >0.001 

Lying right 0.207 >0.001 0.20 >0.001 

Lying left 0.260 >0.001 0.09 >0.001 

Other way around 0.264 >0.001 0.15 >0.001 

Upright 0.305 >0.001 0.18 >0.001 

Backward 0.312 >0.001 0.16 >0.001 

Supine position 0.269 >0.001 0.14 >0.001 

Forward 0.296 >0.001 0.16 >0.001 

Activity level         

0 0.99 >0.001 0.93 >0.001 

1 0.34 >0.001 0.29 >0.001 

2 0.10 >0.001 0.02 >0.001 

3 0.12 >0.001 0.01 >0.001 

4 0.22 >0.001 0.06 >0.001 

5 0.41 >0.001 0.30 >0.001 

6 0.64 >0.001 0.56 >0.001 

7 0.92 >0.001 0.79 >0.001 

8 0.99 >0.001 0.91 >0.001 

9   0.96 >0.001 

10   
 

 

Gender         

Female 0.26 >0.001 0.16 >0.001 

Male 0.30 >0.001 0.16 >0.001 

BMI         

BMI less than 25 0.20 >0.001 0.17 >0.001 

BMI more than 25 but less than 30 0.28 >0.001 0.15 >0.001 

BMI more than 30 0.40 >0.001 0.15 >0.001 

Age     

0-30 years 0.13 >0.001 0.08 >0.001 

30-50 years 0.16 >0.001 0.13 >0.001 

50-70 years 0.25 >0.001 0.14 >0.001 

More than 70 years 0.33 >0.001 0.18 >0.001 
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To summarize, it is concluded that the quality of data is a problem specially for the Heart 

Rate vital signs, where around the 27% of the data is missing in comparison with the 15% 

in Respiratory Rate. In assessing if these missing values were related to any observable 

variable in the data set it was found that contextual variables, activity, and position, did 

have an association with the missing values in both vital signs (Hypothesis 1 and 

Hypothesis 3). In specific, “lying in belly” position and high activity had the biggest 

probability on increasing the missing values observed in both vital signs. On the other 

hand, individual variables just showed to be associated in the heart rate case, where BMI 

and Age were the most related to missing values (Hypothesis 2).  

5.2 Individual characteristics and vital sign  

a. Gender 

To investigate any potential gender-based variations in heart rate, a T-test was conducted 

(Table 7). The findings demonstrated that there are significant differences between male 

and female heart rates (p<0.001). The female heart rate is higher, although the difference 

is just about one point, being 78.5 point for female and 77.3 for male. Despite being 

statistically significant, the difference of one point base on gender is not clinically 

relevant because the difference is lower than the pre-establish range of +10,-10 bpm. In 

consequence, there is insufficient evidence to support the claim that heart rate values 

distribute differently depending on gender (sub-hypothesis 5 a). 

 

Regarding the respiratory rate, a t-test was performed to find differences between female 

and male groups. It was found that the female has a mean respiratory value of 18.1 while 

the male has a mean value of 18.5, showing a difference of -0.4. However, although the 

difference is statistically significant (p<0.001), the size of the different is not clinically 

relevant as the difference is lower than the pre-establish of +3,-3 rpm margin. As a 

result, I conclude that there is insufficient evidence to support the claim that respiratory 

rate values distribute differently depending on gender (sub-hypothesis 6a). 
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Table 8: Mean test of vital signs values by gender 

 

 Heart Rate values   Respiratory Rate values 

Gender Mean  Std. Err. 
[95% Conf. 

Interval] 
Std. Dev. Mean  Std. Err. 

[95% Conf. 

Interval] 

Std. 

Dev. 

Female 78.50 0.03 78.39 78.52 12.39 18.10 0.01 18.06 18.11 5.15 

Male 77.30 0.03 77.21 77.34 15.16 18.50 0.01 18.51 18.55 4.66 

Difference  
1.2 -0.4 

<0.001 <0.001 

 

Figure 1: Distribution of Heart Rate by Gender 

 

Figure 2: Distribution of Respiratory Rate by Gender 
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b. BMI 

A one-way ANOVA was performed to examine the potential differences in heart rate 

among groups with different BMI classifications. The participants were categorized into 

three groups: BMI<25 (n = 157,075), 25<BMI<30 (n = 135,451), and BMI>30 (n = 

111,893). The results indicated a statistically significant difference between the groups, as 

evidenced by the one-way ANOVA (F = 2038.27, p < .0001).  

 

Further analysis using a Tukey post-hoc test revealed statistically significant differences 

in heart rate between certain pairs of groups (Table 8). Specifically, the heart rate was 

significantly higher in the 25<BMI<30 group compared to the BMI<25 group (mean 

difference = 3.06, p < .0001), indicating a contrast effect between these groups. However, 

this effect is not large enough to be consider clinically relevant considering the pre-

established margin of +10, -10 (Leenen et al., 2020). In this way, there is not enough 

evidence that supports sub-hypothesis 5 b, which posits that heart rate exhibits distinct 

distributions based on BMI. 

 

Regarding respiratory rate, the one-way ANOVA analysis revealed a statistically 

significant difference between the groups (F = 3398.25, p < .0001). Post-hoc analysis 

using the Tukey test indicated a statistically significant difference in respiratory rate 

between the BMI>30 group and the BMI<25 group (mean difference = 1.38, p < .0001), 

indicating a notable contrast effect between these two groups. Furthermore, there were 

statistically significant differences observed between the other groups as well, although 

the effect sizes were comparatively smaller. 

 

To synthesize, the findings for respiratory rate show a different distribution per BMI 

classifications, however the effects were considered not clinically relevant. The normal 

group (BMI<25) showed a bigger rate compared with the overweighted group 

(25<BMI<30); however, the effect was considerable smaller, around 1.4 point. This effect 

is not considered relevant followed the pre-established standard of  +-3 rpm (Leenen et 

al., 2020). The findings do not support the sub-hypothesis 6 b, which suggests that 

respiratory rate displays varied distributions patterns depending on BMI. 
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Table 9: Mean test for heart rate values by BMI 

BMI Mean   Sd 

BMI <25 76 14.91 

25<BMI< 30 79.06 12.80 

BMI>30  78.72 14.72 

Bartlett's test for equal 

variances 
(0.000)*** 

       

Tukey's test Contrast Std. Err. t P>t [95% Conf. Interval] 

25<BMI< 30 vs BMI<25 3.06 0.05 58.25 <0.001 2.94 3.19 

BMI>30 vs BMI<25 2.72 0.06 49.05 <0.001  2.59 2.85 

BMI>30 vs 25<BMI< 30 -0.34 0.06 -5.97 <0.001  -0.48 -0.21 

 
      

 

Table 10: Mean test for respiratory rate values by BMI 

BMI Mean sd 

BMI <25 17.58 4.5520799 

25<BMI< 30 18.5 4.8579999 

BMI>30  18.96 4.8913531 

Bartlett's test for 
equal variances 

(0.000)*** 

       

Tukey's test Contrast Std. Err. t P>t [95% Conf. Interval] 

25<BMI< 30 vs 
BMI<25 

0.92 0.02 54.75 <0.001  0.88 0.96 

BMI>30 vs BMI<25 1.38 0.02 80.45 <0.001  1.34 1.42 

BMI>30 vs 25<BMI< 
30 

0.46 0.02 26.79 <0.001  0.42 0.50 

 

Figure 3: Distribution of Heart Rate by BMI 
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Figure 4: Distribution of Respiratory Rate by BMI 

 

 

c. Age 

 

A one-way ANOVA was performed to examine the potential differences in heart rate 

among groups with different age classifications. The participants were categorized into 

four groups: Age<30 , 30<Age<50 , and 50<Age<70, and Age>70. The results indicated a 

statistically significant difference between the groups, as evidenced by the one-way 

ANOVA (F = 6537.58 , p <.0001).  

 

The results showed that heart rate variates depending on different group ages (Table 11). 

Specifically, the bigger size and significant effects were found when the age groups were 

compared to the younger group “ between 18 to 30 years old”. In this regard, the younger 

group has a hear rate of 12 bpm bigger  compared with the people in ages between 30 to 

50 (p <.0001). A similar effect was found when the comparison of the same young group 

was between people with ages in the range 50–70 (difference of 18 bpm, p<.0001) and 

people who were more than 70 years old (difference of 19 bpm, p<.0001). Because these 
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differences are bigger than 10 points in bpm, this result is considered statistically and 

clinically relevant(Leenen et al., 2020) . This finding supports the sub-hypothesis 5c that 

heart rate presents a different distribution depending on age. 

 

The results of the ANOVA test revealed a statistically significant difference in respiratory 

rate among the groups (F = 1659.27 , p < 0.001). However, the contrast effect sizes were 

relatively smaller(Table 12). Only one comparison, specifically between the "more than 

70 years old" and "30 to 50 years old" age groups, showed a difference in respiratory rate 

exceeding one unit. Although there were significant differences in respiratory rate 

observed between age groups (p < 0.001), the magnitude of these differences was 

relatively small and did not pass through the pre-established margin of +3,-3 rpm (Leenen 

et al., 2020).   

 

Therefore, the sub-hypothesis that states respiratory rate presents different d depending on 

age (sub hypothesis 6 c) cannot be supported based on the findings. Despite the statistical 

significance, the relevance of the observed differences in respiratory rate between age 

groups may be limited. 

Table 11:Mean test for heart rate values by Age 

AGE Mean   sd 

18-30 years 94.78 10.50 

30-50 years 82.50 11.95 

50-70 years 76.90 13.93 

More than 70 years 76.61 13.86 

Bartlett's test for equal variances (0.000)*** 

       

Tukey's test Contrast Std. Err. t P>t [95% Conf. Interval] 

30-50  VS   <30  -12.27 0.16 -74.7 >0.001 -12.69 -11.85 

50-70  VS   <30  -17.86 0.14 -124.01 >0.001 -18.23 -17.49 

  > 70  VS   <30  -18.17 0.14 -126.16 >0.001 -18.54 -17.80 

50-70   VS   30-50  -5.59 0.09 -60.79 >0.001 -5.83 -5.36 

  > 70   VS   30-50  -5.91 0.09 -64.16 >0.001 -6.14 -5.67 

 > 70   VS   50-70  -0.31 0.05 -6.58 >0.001 -0.43 -0.19 
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Table 12: Mean test for respiratory values by age 

BMI Mean   sd 

18-30 years 18.51 4.92 

30-50 years 17.71 4.77 

50-70 years 18.70 4.98 

More than 70 years 18.84 4.61 

Bartlett's test for equal 

variances 
(0.000)*** 

       

Tukey's test Contrast Std. Err. t P>t [95% Conf. Interval] 

30-50  VS   <30  -0.79 0.05 -16.03 >0.001 -0.92 -0.67 

50-70  VS   <30  0.20 0.05 3.79 >0.001 0.06 0.33 

  > 70  VS   <30  0.33 0.05 6.78 >0.001 0.21 0.46 

50-70   VS   30-50  0.99 0.02 44.19 >0.001 0.93 1.05 

  > 70   VS   30-50  1.13 0.02 72.47 >0.001 1.09 1.17 

 > 70   VS   50-70  0.14 0.02 6.25 >0.001 0.08 0.19 

 

Figure 5: Distribution of Heart Rate by Age 
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Figure 6: Distribution of Respiratory Rate by Age 

 

 

In summary, the findings of these chapter suggest that heart rate distributions exhibit 

statistically and relevant significant differences depending on individual factor in the case 

of age groups. However, respiratory rate did not demonstrate significant differences based 

on individual factors. Consequently, sub-hypotheses 5a, 5b, 6a, 6b and 6c were rejected, 

while sub-hypothesis 5c was supported.  
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6. Discussion  

The primary aimed of this study was to investigate the utilization of an Algorithmic 

Decision-Support system for delivering public services, focusing on continuous vital sign 

monitoring within a medical context. Specifically, the study seeks to evaluate the data 

quality employed in the ADS system and understand to what extent do these systems 

effectively capture and represent individual characteristics. This study utilized the 

Healthdot Path, a wireless device capable of continuously monitoring vital signs and 

tracking both heart rate and respiratory rate in patients. 

 

In this section, these results will be discussed and put in context to understand its 

implications. The interpretation of the results will follow the research questions , then the 

practical implication will be discussed in the light of Heath Sector and Public 

Administration. Finally, the limitations of the study and further research lines will be 

addressed.  

6.1 Summary of the results 

This research aimed to investigate the quality of data used for Algorithmic Decision-

Support system and understand to what extent do these systems effectively capture and 

represent individual characteristics. To fulfill this objective, three research questions 

were formulated, each accompanied by corresponding hypotheses. Following the 

analysis, four of the hypotheses were upheld, substantiating the envisaged correlations 

between variables. A visual depiction of these outcomes is illustrated in Figure 7. 

gure 7: Hypothesis supported in the study. 
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It was found that contextual variables that include certain positions and a high activity 

level have a strong association with the data loss for heart rate (H1, H2). For respiratory 

rate, it was found that higher activity levels were associated with data loss patterns (H3). 

Regarding the representation of individual characteristics, it was found that heart rate 

showed a different distribution when age was less than 30 compared with other age 

groups (H5c). Respiratory rate showed no difference in distribution depending on 

individual characteristics. 

These results bear substantial implications for the utilization of wearable devices and 

decision support systems, such as Early Warning Systems (EWS), within the healthcare 

realm. The study underscores that EWS, often reliant on generic threshold values, might 

inadequately accommodate individual deviations in vital signs. Consequently, a one-

size-fits-all approach may not be optimal, and a more tailored and personalized approach 

to EWS could improve patient outcomes. A more comprehensive exploration of these 

implications will be presented in the subsequent section. 

 

6.2 Interpretation of Results 

By following the logical order of the research questions, this chapter aims to provide a 

thorough and perceptive explanation of the obtained results, ultimately fostering a deeper 

comprehension of the implications and significance of the study's findings. 

 
(1) What is the quality of vital signals recorded by wearable devices, and is there a correlation 

between data loss and patient-related factors? 

 

Although some prior research on the Heathdot device has suggested connectivity issues 

or malfunctions as potential explanations for missing data, no definitive conclusions 

have been reached through empirical examination of this hypothesis (Jacobs et al., 

2021). Thus, this thesis aimed to examine whether these missing patterns were entirely 

random or if they exhibited associations with observable variables. 

 

Regarding the hypotheses H1 and H3, my results indicate a significant association 

between contextual variables, such as activity level and position, and the occurrence of 

data loss in both vital signs, respiratory rate and heart rate. Specifically, the results from 

our study revealed that activity levels beyond 7 were strongly correlated with a 
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substantial increase in the likelihood of missing data for both respiratory rate (over 80%) 

and heart rate (91%) (Table 7). 

 

However, interpreting these outcomes in practical terms poses some challenges. As 

outlined in the guidelines provided by Phillips (Philips Electronics Nederland B.V, 

2020), an activity level of 0 signifies a state of rest, whereas an activity level of 10 

corresponds to "maximum activity” . Unfortunately, the lack of additional references or 

contextual information hinders a comprehensive understanding of this activity scale's 

interpretation. Hence, there is still ambiguity regarding the extent to which "maximum 

activity" encompasses routine tasks such as walking to the bathroom or engaging in 

conversation. It is crucial to note that the patients in our study were hospitalized, with 

most of them requiring  post-surgical intervention, implying that extreme physical 

exertion or strenuous activities were not plausible scenarios. 

 

More research should be done to understand what this activity level scale means. 

Especially in situations where the devices are used for monitoring patients outside the 

hospital. The missing data at certain activity levels can result in not necessarily having a 

continuous monitoring of the patient and losing the option of getting an alarm when the 

patient requires attention. The loss of data can pose a critical problem, and a complete 

understanding of it by the medical stuff can help them to take better decisions. In recent 

years, research on motor artifacts in wireless vital signs devices has increased (An et al., 

2022; Bent et al., 2020; Shcherbina et al., 2017). Although it involves different types of 

devices like exercise wrist bands and some medical devices, it is becoming evident that 

there are problems related to high activity levels and the potential of these devices to 

keep their performance in those instances. 

 

Another interesting point that is also observed in the results, is that when activity was 

zero, the likelihood of missing data was high (99% for heart rate and 93% for respiratory 

rate). This finding appears to contradict the initial assumption that vital sign data will 

perform better at low activity levels. However, upon consulting with the medical team, it 

became apparent that the system may assign a zero value when the patch is not entirely 

and securely attached. Thus, this outcome could be indicative of a malfunction in the 

patch and the subsequent data recording process. Despite the absence of a definitive 
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explanation, this observation warrants consideration and may have implications for the 

overall reliability and accuracy of the system's performance. 

 

With regard to the hypotheses H2 and H4, our findings indicate a significant association 

between individual variables and the occurrence of data loss in heart rate (H2), but no 

significant association was found for respiratory rate (H4). On the side of Heart rate, 

upon certain level of BMI the amount the probability of data loss increased reaching to 

40% when the BMI was more than 30 (Obesity). In comparison with the other two 

groups BMI<25 (Normal) and 25<BMI<30 (Overweight), the probability of getting data 

loss under obesity increased in 100% and in 40%respectively (Table 7). These results 

can serve as an indication of technical problems with this wireless device in recording 

certain populations.  

 

Previous studies have assessed the accuracy of Healthdot measurements in bariatric 

patients, typically encompassing individuals with a BMI of 30 or higher. While these 

investigations did not reveal any statistically significant disparities between the 

recordings obtained via the Healthdot device and the hospital's designated gold standard, 

a noteworthy concern surfaced concerning the prevalence of missing data in heart rate 

recordings, amounting to approximately 35% of the total records (Jacobs et al., 2021). 

 

This issue assumes critical importance as it brings to light a notable limitation of the 

aforementioned study: its exclusive focus on evaluating the accuracy of the available 

data, without accounting for the role of data loss and potential biases it may introduce in 

assessing the devices' accuracy. Addressing the issue of missing data is of utmost 

significance, as such omissions can potentially distort the overall evaluation of the 

device's precision and lead to skewed conclusions. 

 

Finally, as an answer to the research question, the quality of data understood as data 

completeness is not the same for all the recordings. It depends on contextual variables 

such activity and position, as well as with individual variables such BMI. It is seen that 

the quality of data is worst when the activity levels are high and when patients present 

BMI levels more than 30.  

  
(2) How do the heart rate and respiratory rate distributions differ between the most 

important patient characteristics, such as gender, age and body mass index? 
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The aim of this question was to analyze if the distribution of vital signs was similar 

across the different individual characteristics or if there were important differences in the 

distribution that led us to rethink the use of general standards in assessing the vital signs.  

 

In the examination of Heart Rate data, the results revealed a marginal but significant 

difference of approximately 1.2 bpm between male and female individuals; however, this 

disparity did not yield clinical relevance (H5a). It is important to acknowledge that, due 

to the large volume of data in this study, even the smallest differences in distributions 

may register as statistically significant. However, when compared to the clinically 

relevant pre-established threshold of +10, -10 bpm (Leenen et al., 2020), these 

differences may not carry practical relevance. Likewise, when analyzing heart rate 

among different groups of Body Mass Index (H5b), non-substantive differences were 

observed, which may be attributed to the machine’s inherent recording error rather than 

genuine variations in distribution. 

 

In the analysis of continuous vital sign distributions, the only instance where statistically 

significant and practically relevant differences were observed pertained to the 

comparison between different age groups. Specifically, younger age groups exhibited 

approximately 18 bpm higher heart rate values than older age groups (H5c).  According 

to existing literature, there is evidence to suggest that heart rate exhibits a decline as 

individuals progress in age (Yeragani et al., 1997). The existing guidelines delineate 

varying ranges of normal vital signs for pediatric populations (Fleming et al., 2011). 

However, in the context of adult patients, it is worth noting that there are currently no 

specific guidelines that propose distinct acceptable ranges based on age groups other 

than the broader range of 60 to 100 bpm (Avram et al., 2019). This observation is 

particularly significant considering that normal aging has been consistently linked to a 

gradual decline in cardiac vagal modulation, which serves as a plausible explanation for 

the observed variations (Bonnemeier et al., 2003). 

 

On the side of respiratory rate, no individual characteristics such as gender, BMI and age 

had relevant results. In the aspect of gender (H6a), although the literature tends to 

indicate a gender difference in the RR, often sex differences can, in fact, be attributed to 

scale, as women are generally smaller than men (Lomauro & Aliverti, 2018). It is 
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plausible that the absence of gender effects observed in this study could be attributable to 

the comparatively homogeneous population, in which there may not be significant 

differences in body size. To test this hypothesis regarding the potential confounding 

effect of body size on gender differences in RR, height would have been required as a 

control variable. Unfortunately, this study lacked data on participants' height, which 

represents a significant limitation. 

 

In regard to BMI (H6b), the literature supports that with higher levels of BMI, the 

respiratory rate increases (Littleton, 2012); however, this effect is not seen in this thesis. 

One reason why this result was obtained is because the population in the research did not 

have enough representation for all levels of BMI, especially for the ones over 40 points, 

which were just 16% of the dataset. Studies stating differences in the respiratory rate 

patterns found differences of around 3 to 10 rpm compared with the normal subjects 

when the population in the studies presented morbid obesity (BMI > 40). For this reason, 

it can be hypothesized that with the current population used for this thesis, there were no 

significant differences, but it is necessary to conduct research on a more diverse 

population that includes representation of all levels of BMI. 

 

Finally, with regard to age (H6c), the results on respiratory rate showed that there were 

no specific effect depending on respiratory rate. This finding contrasts with existing 

literature, which has generally supported distinct RR values between young adults (aged 

18 to 70 years) and older adults (over 70 years) (Takayama et al., 2019). However, with 

this specific population this effect has not been detected. Small changes in respiratory 

rate are important however, the precision of the Healthdot measuring these vital signs 

has been putting into questions (Wells et al., 2022). 

  

Finally, it is important to notice that this thesis just found a difference in distributions for 

the age group in heart rate. These results are constrained by the type of population we 

had, the type of device we used, and the bias toward lower activity levels. This does not 

rule out the possibility that with a more representative and diverse group, as well as all 

the activity levels in the range, these results could have been different. More research 

should be done in this regard to analyze these individual characteristics and conduct 

continuous monitoring of vital signs. 
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(3) What are the implications of the data quality and individual characteristics on decision 

support systems like the EWS? 

 

Decision support systems like the Early Warning System (EWS) rely on patient data 

compiled from intermittent vital signs records. However, advancements in technology 

now enable continuous monitoring of vital signs, providing a wealth of real-time data. 

As discussed in the literature chapter of this thesis, EWS was originally designed for 

intermittent vital signs monitoring. Incorporating continuous monitoring into the system 

has the potential to generate a massive amount of data, but it also offers significant 

advantages in identifying moments of patient deterioration that might otherwise go 

unnoticed.  

Nevertheless, the EWS system has shown problems when performing with continuous 

monitoring systems and wireless devices. Usually, the systems send many false positive 

alarms, leading to nurse fatigue (Leenen et al., 2022). This fact indicates that the 

conventional EWS, designed for intermittent monitoring, may not be suitable for 

continuous monitoring scenarios with remote devices. To address this issue, researchers 

have attempted to develop customized EWS versions for continuous monitoring. These 

adaptations involve changing threshold values or employing advanced machine learning 

techniques to predict individualized approaches and reduce false negatives. 

Lately, research has focused on the use of machine learning algorithms to identify 

specific patterns in the vital signs; however, it's crucial to keep in mind that, in the end, 

those approaches are not explanatory. Indeed, one of the primary goals of researchers is 

to comprehend the underlying relationships and factors influencing specific phenomena. 

In the case of EWS, it is crucial to investigate why the original threshold system may not 

perform optimally under continuous vital sign monitoring. 

Understanding the limitations of the original threshold system is essential to refine and 

enhance EWS for continuous monitoring. Factors such as age, gender, body size, and 

other individual characteristics may influence vital signs and, subsequently, the 

appropriate threshold values for each patient.  

The thesis provided evidence supporting the notion that heart rate distributions differed 

depending on age groups, with younger adults having significantly higher heart rates 

than older adults. EWS's current threshold system may not appropriately accommodate 

these differences (Leenen et al., 2023). For instance, following the results obtained in 
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this study, a minor increase in heart rate could significantly impact the EWS score for 

younger patients (+ 6 bmp), whereas a substantial change is required for older patients (+ 

22 bpm). This indicates that the threshold used in EWS is too low for younger patients 

and too high for older patients, compromising its accuracy for continuous monitoring. 

This section concludes by emphasizing the significance of optimizing decision support 

systems such as EWS to align with continuous vital sign monitoring. Researchers can 

improve EWS performance and prepare the way for more effective and personalized 

patient care in the context of remote continuous vital sign monitoring by recognizing and 

addressing data quality issues, individual characteristics such as age-related variations in 

vital sign values. 

6.3 Practical implications  

a. Reflection of the study results to the healthcare practice: 

The use of wearable patches for continuous vital sign monitoring has the potential to 

alleviate the strain on medical staff and reduce the time invested in individually 

recording vital signs. This technology opens up possibilities for remote monitoring of 

inside and outside patients. However, critical attention should be given to how to 

understand the shortcomings of this device. 

The findings of this study have important implications for medical care, particularly in 

interpreting and understanding the results generated by continuous vital sign monitoring 

systems. The study revealed that patients with a higher BMI are at a higher risk of data 

loss in their vital signs. Moreover, the study also highlighted that vital signs' accuracy 

may be compromised during periods of high activity levels. By being cognizant of these 

factors, medical care teams can better evaluate the reliability and limitations of the 

continuous monitoring systems employed. 

Additionally, it is critical to recognize that this big data trend in medical care is 

becoming more prevalent. So, in this regard, it is essential that healthcare professionals 

are well-versed in understanding biases and data loss in the recorded vital signs. Being 

aware of how a lack of data can influence decision-making and the algorithms used for 

data analysis Training healthcare providers in these areas will enhance their ability to 

interpret continuous vital sign data accurately and make informed clinical decisions. 
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Moreover, it requires a shift in how healthcare professionals interact with and interpret 

patient data. It calls for a deeper understanding of the technology and data science 

aspects, ensuring that healthcare professionals are not only proficient in using the 

wearable devices but also adept at leveraging the generated data to provide optimal 

patient care.  

The development of new wearable devices for continuous vital sign monitoring should 

prioritize the needs of the medical staff and healthcare providers who will be using these 

devices to care for patients. Manufacturers must collaborate closely with medical 

professionals to ensure that the devices collect and provide relevant context along with 

the vital sign measurements. 

 

As demonstrated in this study, the absence of references for activity levels was a 

significant drawback, as it hindered the ability to interpret the vital sign data accurately. 

Providing context for activity levels, such as clearly defining what each level represents 

in terms of physical exertion or movement, is crucial for healthcare providers to 

understand the implications of vital sign measurements during different activity states. 

 

Finally, the last practical implication of the study is the need to redefine the threshold 

values used in decision support systems, especially in the context of continuous vital 

sign monitoring. Implementing group threshold values based on individual 

characteristics such as age can improve the accuracy of EWS, leading to more precise 

and timely alerts for healthcare providers. This can result in quicker responses to 

deteriorating patient conditions, reducing adverse events and hospital readmissions. 

b. Implication of the use of ADS for Public Administration   

The research findings presented in this thesis hold significant implications not only for 

healthcare practice but also for public administration and algorithmic decision support 

systems (ADS) across various sectors. The study sheds light on the central role of data 

quality and data loss within ADS, asserting that the data used in these systems holds 

equal importance to the results they provide, as it profoundly influences decision-

making and outcomes. Additionally, it highlights the importance of acknowledgment 

based on individual characteristics rather than general standards.  
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A crucial aspect explored in this research is the investigation of whether the observed 

low data quality in ADS a random occurrence is or consistently lower for specific 

populations or under certain circumstances. The study demonstrates that data quality 

varies among distinct groups and situations, with certain conditions predisposing data 

loss and introducing biases within the system. As an example, the lack of information, or 

inconsistent data collection by ethnicity or gender has historically affects the results of 

ADM in sectors such education (Hu & Rangwala, 2020; Ramineni & Williamson, 2018) 

, healthcare (Jessani et al., 2022; Yi et al., 2022) and justice, (Berk et al., 2021; 

Hamilton, 2019) leading to recommendations that reinforced discrimination. 

 

Further examination of this phenomenon in various administrative decision-making 

contexts is essential to fully grasping the limitations of its results. Ensuring the accuracy 

and high quality of data collected by ADS for every individual under its purview is 

paramount to ensuring equitable opportunities and outcomes for all (O’Neil, 2016). 

Recognizing and addressing these variations is essential to ensuring fairness and equal 

opportunities for all citizens, as stated. 

 

Additionally, the present thesis suggests the use of more individualized standards over 

general standards in the Public Sector. ADS for service delivery should be applicable to 

a diverse population. Aggregate data lead to over generalization of certain results, and 

differentiation at least for demographic information is necessary to enable algorithmic 

fairness  (Andrus & Villeneuve, 2022). While the present study finds that healthcare may 

showcase biological differences more directly, it is not rules out that other variables such 

as social roles and economic backgrounds may also play significant role.  

 

As a last point, the study underscores the critical importance of investing in the 

advancement of public administrators' skills concerning the utilization and potential risks 

associated with Big Data and the algorithms they employ. A comprehensive analysis 

encompassing the input, process, and output of these algorithms can substantially 

empower public servants to identify and address false positives effectively . This 

becomes especially pertinent in light of research indicating that workers often exhibit a 

predisposition to unquestioningly accept outcomes produced by algorithms (Hitron et al., 

2022; Robinette et al., 2017). 
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In specific domains like welfare aid, children's benefits, and migration, enhancing 

awareness regarding the inherent flaws and potential biases of algorithmic decision-

making, in conjunction with human interpretation, holds the promise of yielding fewer 

errors and more efficient results (Kolkman, 2020). Although acknowledging the 

inevitability of imperfections in any system, the integration of human expertise and 

targeted training can lead to a more optimal solution. Such knowledge not only facilitates 

better decision-making but also empowers administrators to proactively identify and 

prevent errors before they escalate into larger issues. 

 

In conclusion, this study advocates for a meticulous and discerning approach towards 

data quality, bias, and individualization Algorithmic Decision-Support systems in public 

administration. Embracing the insights gained from this study can lead to significant 

advancements in various sectors, fostering greater efficiency, fairness, and effectiveness 

in public service delivery. 

 

6.4 Limitations of the study and future research lines:  

The present study, while contributing valuable insights, does have several potential 

limitations that warrant consideration. These limitations encompass both the scope of the 

research and the data set employed, providing a foundation for future research endeavors 

in this domain. 

Firstly, this study focuses on a restricted set of individual variables such as age, BMI, 

and gender. However, it is important to acknowledge that to effectively test hypotheses 

pertaining to differences in respiratory rate, the inclusion of additional variables such as 

height and weight is pertinent. The potential biological variations in lung size, which 

may lead to divergent respiratory rate baseline values, necessitate the incorporation of 

such variables. Furthermore, the influence of comorbidities and clinical history on vital 

sign patterns presents a compelling avenue for further investigation to ascertain how 

these factors impact continuous vital sign monitoring. 

In regard to missing data, it is encouraged that future research include a detailed 

evaluation of the missing data problem and its potential effects on accuracy assessments 

in order to completely appraise the Heathdot's performance and the dependability of its 

measurements. Such efforts will aid in gaining a more complete knowledge of the 



 

53 
 

device's capabilities and limits, thereby improving the clinical value and validity of its 

readings in bariatric patients and beyond. 

Secondly, the data set employed for this thesis was derived from a specific population, 

which may not encompass the full spectrum of patient characteristics. Notably, the 

absence of representation for individuals with higher BMI levels (greater than 40) is a 

notable limitation. Similarly, the thesis is confined to the context of a particular country 

and the institutional settings surrounding it, potentially limiting the generalizability of 

the findings. 

Finally, it is noteworthy to mention that the study covered a dataset of over 498,248 

instances of heart rate and respiratory rate measurements, which were collected from a 

cohort of 384 patients. This indicates that the data could exhibit a certain level of 

clustering at the individual patient level. The conducted analysis utilized treat the data 

values as independent measurements. However, it is important to acknowledge that there 

are other variables, observed and unobserved, that can alter the values of vital signs. 

Future research in this area should endeavor to address these limitations by incorporating 

participants from diverse countries, thus broadening the demographic representation. 

This approach will facilitate the inclusion of a more comprehensive range of individual 

variables, leading to a deeper understanding of the nuances and universalities of 

Algorithmic Decision-Support systems. Additionally, a promising direction for future 

research lies in the comparison of new thresholds and the development of novel early 

warning systems for continuous monitoring, thus enhancing the precision and 

effectiveness of such systems. 

In conclusion, despite these acknowledged limitations, this research serves as an initial 

step towards assessing the quality of the data integrated into Algorithmic Decision-

Support systems and comprehending the extent to which these systems accurately 

capture and represent individual characteristics. Building upon these foundational 

insights, future research endeavors can forge ahead in unraveling the intricate interplay 

between data quality, algorithmic models, and the personalized nature of healthcare 

decision-making. 
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7. Conclusions 

The main objective of this thesis was to evaluate the quality of the data utilized in 

algorithmic decision-support systems and determine the extent to which these systems 

accurately capture and represent individual characteristics. The research focused on 

continuous monitoring of vital signs in hospitalized patients as a case study. The findings 

of this study have provided significant insights into optimizing data quality and 

enhancing our comprehension of the connections between vital signs and patient 

characteristics. 

The examination of the data revealed noteworthy variations in data completeness across 

different recordings. These variations were predominantly influenced by activity levels, 

affecting 90% of vital signs data, as well as individual variables like BMI, which had an 

impact on 40% of heart rate data. Additionally, regarding individual characteristics and 

their connection with vital sign patterns, it was observed that younger patients exhibited 

a distinct heart rate distribution in comparison to older patients, with a significant 

difference of 18 bpm. 

The implications of this study extend to the utilization of wearable devices and decision 

support systems, particularly Early Warning Systems (EWS), in healthcare. The results 

suggest that employing a one-size-fits-all approach may not yield optimal outcomes. 

Instead, adopting a more tailored and personalized approach to EWS implementation 

could potentially lead to improved patient outcomes. 

Moreover, the problems and challenges discussed concerning algorithmic decision 

support in the continuous monitoring of vital signs can be relevant to other decision 

support systems utilized in public administration. In particular, the emphasis on data 

quality sheds light on possible unintended biases that tend to concentrate in certain 

circumstances rather than being randomly assigned. Additionally, evaluating different 

treatment approaches based on individual characteristics could be explored to ascertain 

whether such personalized strategies enhance the performance of algorithmic decision 

support. 

In conclusion, this study advocates for a meticulous and discerning approach towards 

data quality, bias, and individualization in public Administration Decision Support 

Systems. The insights derived from this research have the potential to drive significant 



 

55 
 

advancements in various sectors, fostering greater efficiency, fairness, and effectiveness 

in public service delivery. By embracing these findings and implementing responsible 

algorithmic decision support strategies, we can strive towards a more equitable and 

impactful approach to healthcare and public administration decision-making. 
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10. Appendix 

Appendix 1. Collocation of the Healthdot in the patient 

 

Note: The wearable patch is attached in lower left rib. From “Reliability of heart rate and 

respiration rate measurements with a wireless accelerometer in postbariatric recovery” by Philips 

Electronic Nederland BV(2020) (doi: https://doi.org/10.1371/journal.pone.0247903.g001). Under 

a CC BY license, original copyright 2020. 

 

Appendix 2. Position of the patient measured by the Healthdot 

 

Adpated from “Heathot Technical Sheet” by Philips Electronics Nederland B.V, (2020). 

 

https://doi.org/10.1371/journal.pone.0247903.g001

